
(11) Application No. AU 200073936 B2
(10) Patent No. 765453

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Method and apparatus for producing print from a bayer image

(51)7 International Patent Classification(s)
G06T 005/00

(21) Application No: 200073936 (22) Application Date: 2000.09.08

(87) WIPO No: WO01/20549

(30) Priority Data

(31) Number (32) Date (33) Country
PQ2890 1999.09.16 AU

(43) Publication Date: 2001.04.17
(43) Publication Journal Date : 2001.06.14
(44) Accepted Journal Date : 2003.09.18

(71) Applicant(s)
Silverbrook Research Pty Ltd

(72) Inventor(s)
Simon Robert Walmsley; Paul Lapstun

(74) Agent/Attorney
SILVERBROOK RESEARCH PTY LTD,393 Darling Street,BALMAIN NSW 2041

(56) Related Art
SAKAMOTO ET AL "SOFTWARE PIXEL INTERPOLATION FOR DIGITAL
STILL CAMERAS SUITABLE FOR A 32-BIT MCU" IEEE TRANSACTIONS
ON CONSUMER ELECTRONICS,V 44, NO 4, P 1342-1352

/ AU 200073936
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(43) International Publication Date (10) International Publication Number
22 March 2001 (22.03.2001) PCT WO 01/20549 Al

(51) International Patent Classification7: G06T 5/00

(21) International Application Number: PCT/AUOO/01075

(22) International Filing Date:
8 September 2000 (08.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
PQ2890 16 September 1999 (16.09.1999) AU

(71) Applicants (for all designated Slates except US): SIL­
VERBROOK RESEARCH PTY LTD [AU/AU]; 393
Darling Street, Balmain, NSW 2041 (AU). WALMSLEV,
■Simon, Robert [AU/AU]; Unit 3,‘9 Peinbtuke Sueeu
-Epping, NSWLaiZirfAU):—

(72) Inventor; and
(75) Inventor/Applicant (for US only): LAPSTUN, Paul

[NO/AU]; 13 Duke Avenue, Rodd Point NSW 2046 (AU).

SiX©'» (,

(74) Agent: SILVERBROOK, Kia; c/o Silverbrook Research
Pty Ltd, 393 Darling Street, Balmain, NSW 2041 (AU).

(81) Designated States (national): AE, AO, AT,, AM, AT, AU,
AZ, BA, BB, BO, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FL GB, GD, GE GH, GM, HR,
HU, ID, TL, IN, TS, IP, KE, KG, KP, KR, K7„ LC, LK, T.R,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU. SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ΖΑ, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FT, FR, GB, GR, IE,
IT, LU, MC, NL, FT, SE), OAP1 patent (BE, BJ, CE, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
With international search report.

[Continued on next page]

(54) Title: METHOD AND APPARATUS 1OR PRODUCING PRINT FROM A BAYER IMAGE

2 69

••50
w
: §

1 8
• <I!°

(57) Abstract: A method of providing an image for
printing at a predetermined bi-level dot resolution
which corresponds to a predetermined continuous tone
resolution, the method including the steps of: receiving
a first data set indicative of the image, the data set being
in a Bayer format of a first resolution; converting the
first data set into a second data set of the predetermined
continuous tone resolution; converting the second data
set into a third data set of the predetermined bi-level
dot resolution; and making the third data set available
to a printer at the predetermined bi-level dot resolution.
An apparatus for providing an image for printing at a
predetermined bi-level dot resolution which corresponds
to a predetermined continuous tone resolution, the
apparatus including: input means for receiving a first
data set indicative of the image, the data set being in a
Bayer format of a first resolution; sampling means for
converting the first data set into a second data set of the
predetermined continuous tone resolution; processing
means for converting the second data set into a third
data set of the predetermined bi-level dot resolution;
and making the third data set available to a printer for
printing at the predetermined bi-level dot resolution. A
camera including: a CCD array for providing a Bayer
image; a printer for selectively providing a printed
image; and an apparatus according to claim 17 for
receiving the Bayer image and providing the printer
with the third data set such that the printed image is
produced.

WO 01/20549 Al

For two-letter codes and other abbreviations, refer to the "Guid­
ance Notes on Codes and Abbreviations" appearing at the begin­
ning of each regular issue of the PCT Gazette.

WO 01/20549 PCT/AU0O/O1O75

-1 -

METHOD AND APPARATUS FOR PRODUCING PRINT FROM A BAYER IMAGE

FIELD OF INVENTION

The present invention relates to a method and apparatus for producing print from a bayer

image.

The invention has been developed primarily for a digital camera including an integral printer

for providing a paper print of an image captured by the camera and will be described hereinafter with

reference to that application. However, it will be appreciated that the invention is not limited to that

particular field of use.

CO-PENDING APPLICATIONS

Reference may be had to co-pending applications claiming priority from Australian

Provisional Patent Application number PQ2890 dated 16 September 1999. The co-pending

applications describe related modules and methods for implementing the compact printer system. The

co-pending applications, filed simultaneously to the present application, are as follows:

International Patent
Application No. Ref. No. Title of Invention

PCT/AU0O/O1O74 PCP02 Method and Apparatus for Sharpening An Image
PCT/AU0O/O1O73 PCP03 Method and Apparatus for Up-Interpolating a Bayer Image
PCT/AU0O/O1O76 PCP04 Method and Apparatus for Rotating Bayer Images

SUMMARY OF INVENTION

According to a first aspect of the invention there is provided a method of providing an image

for printing at predetermined bi-levet dot resolution which corresponds to a predetermined continuous

tone resolution, the method including the steps of:

receiving a first data set indicative of the image, the data set of the predetermined continuous

tone resolution;

converting the first data set into a second data set of the predetermined continuous tone

resolution;

converting the second data set into a third data set of the predetermined bi-level dot

resolution; and

making the third data set available to a printer at the predetermined bi-level dot resolution.

RECTIFIED SHEET (Rule 91) RO/AU

WO 01/20549 PCT/AU00/01075

-2-
Preferably, the first resolution matches the predetermined bi-level dot resolution. In other

embodiments, however, the first resolution is greater than the predetermined bi-level dot resolution. In

still further embodiment the first resolution is less than the predetermined bi-level dot resolution.

Preferably also, the first data set is in are red, green and blue (RGB) format and the printer is

responsive to a cyan, magenta and yellow (CMY) format, and the method includes the additional step

of converting the third data set from an RGB format to a CMY format.

In a preferred form the method includes the step of sharpening the second data set.

Alternatively, the method includes the preferred step of sharpening the first data set.

Preferably, the first data set is obtained from a sensor device and the method includes the

step of compensating the first data set for non-linearities in the sensor device. More preferably, the step

of compensating includes converting the first data set from a plurality of x bit samples to a plurality of y

bit samples, where x > y. Even more preferably, x = 10 and y = 8.

Preferably also, the method includes the step of planarising the first data set into a red plane,

a green plane and a blue plane.

In a preferred form, the method includes the further steps of:

determining for the first data set the m% of darkest pixels and the n% of the lightest pixels;

adjusting the first data set to equate the m% of darkest pixels; and

adjusting the first data set to equate the n% of lightest pixels.

Preferably, the method includes the additional step of adjusting the first data set to provide a

predetermined white balance. More preferably, the method includes the additional step of adjusting the

first data set to provide a predetermined range expansion. Even more preferably, the color resolution of

the first data set is increased while maintaining the same spatial resolution.

In a preferred form, the first data set is selectively adjusted for providing the image in a

predetermined rotational orientation.

According to a second aspect of the invention there is provided an apparatus for providing an

image for printing at a predetermined bi-level dot resolution which corresponds to a predetermined

continuous tone resolution, the apparatus including:

input means for receiving a first data set indicative of the image, the data set being in a Bayer

format of a first resolution;

sampling means for converting the first data set into a second data set of the predetermined

continuous tone resolution;

WO 01/20549 PCT/AUOO/01075

5

10

15

20

25

-3-
processing means for converting the second data set into a third data set of the

predetermined bi-level dot resolution; and

making the third data set available to a printer for printing at the predetermined bi-levei dot

resolution.

Preferably, the first resolution matches the predetermined bi-level dot resolution.

Alternatively, the first resolution is greater than the predetermined bi-level dot resolution. In other

embodiments, however, the first resolution is less than the predetermined bi-level dot resolution.

Preferably also, the first data set is in a red, green and blue (RGB) format and the printer is

responsive to a cyan, magenta and yellow (CMY) format, wherein the processing means converting the

third data set from an RGB format to a CMY format.

Preferably also, the apparatus sharpens the second data set. In other embodiment, however,

the apparatus sharpens the first data set.

In a preferred form, the first data set is obtained from a sensor device and the input means

compensates the first data set for non-linearities in the sensor device. More preferably, the

compensation for non-linearities includes converting the first data set from a plurality of x bit samples to

a plurality of y bit samples, where x > y. Even more preferably, x = 10 and y = 8.

Preferably, the input means planarises the first data set into a red plane, a green plane and a

blue plane.

More preferably, the input means:

determines for the first data set the m% of darkest pixels and the n% of lightest pixels;

adjusts the first data set to equate the m% of darkest pixels; and

adjusts the first data set to equate the n% of lightest pixels.

In a preferred form, the input means adjusts the first data set to provide a predetermined

white balance. More preferably, the input means adjusts the first data set to provide a predetermined

range expansion. Even more preferably, the input means increases the color resolution of the first data

set while maintaining the same spatial resolution.

Preferably, the input means selectively adjusts the first data set for providing the image in a

predetermined rotational orientation.

According to a third aspect of the invention, there is provided a camera including:

a CCD array for providing a Bayer image;

WO 01/20549 PCT/AU00/01075

-4-
a printer for selectively providing a printed image; and

an apparatus as described above for receiving the Bayer image and providing the printer with

the third data set such that the printed image is produced.

Brief Description of the Drawings

Preferred embodiments of the invention will now be described, by way of example only, with

reference to the following description and Figures.

Fig. 1 shows a high level image flow of the PCP.

Fig. 2 shows a block diagram of the PCP in isolation.

Fig. 3 shows a block diagram of the PCP connected to Printcam hardware.

Fig. 4 shows a 4-inch Memjet printhead.

Fig. 5 shows the arrangement of segments in a 4-inch printhead.

Fig. 6 shows the arrangement of nozzles in a pod, numbered by fixing order.

Fig. 7 shows the arrangement of nozzles in a pod, numbered by loading order.

Fig. 8 shows a chromopod.

Fig. 9 shows a podgroup.

Fig. 10 shows a phasegroup.

Fig. 11 shows the relationship between segments, firegroups, phasegroups, podgroups and

chromopods.

Fig. 12 shows AEnable and BEnable pulse profiles during the printing of an odd and even

dot.

Fig. 13 shows the orientation of print formats based on the CFA image.

Fig. 14 shows a block diagram of the image capture chain.

Fig. 15 shows the arrangement of pixels in a Bayer CFA 2G mosaic.

Fig. 16 shows the linearize RGB process.

Fig. 17 shows the planarize RGB process.

Fig. 18 shows a block diagram of the image print chain.

WO 01/20549 PCT/AUOO/01075

-5-
Fig. 19 shows a sample color range for a single color plane.

Fig. 20 shows the steps involved in white balance and range expansion.

Fig. 21 shows a block diagram of apparatus capable of performing white balance and range

expansion.

Fig. 22 shows the various color plane pixels in relation to CFA resolution.

Fig. 23 shows the effect of rotating the green plane by 45 degrees.

Fig. 24 shows the distance between rotated pixels for the green plane.

Fig. 25 shows the process of mapping movement in unrotated CFA space to rotated CFA

space.

Fig. 26 shows a block diagram of the sharpen process.

Fig. 27 shows the process involved in high-pass filtering a single luminance pixel with a 3 χ 3

kernel.

Fig. 28 shows the transformation in conversion from RGB to CMY.

Fig. 29 shows conversion from RGB to CMY by trilinear interpolation.

Fig. 30 shows pixel replication of a single pixel to a 5 χ 5 block.

Fig. 31 shows a block diagram of the half-toning process.

Fig. 32 shows the process of reformatting dots for the printer.

Fig. 33 shows a block diagram of the image capture unit.

Fig. 35 shows a block diagram of the image access unit.

Fig. 36 shows a block diagram of the image histogram unit.

Fig. 37 shows a block diagram of the printed interface.

Fig. 38 shows the block diagram of the Memjet interface.

Fig. 39 shows the generation of AEnable and BEnable pulse widths.

Fig. 40 shows a block diagram of dot count logic.

Fig. 41 shows the interface of the print generator unit.

Fig. 42 shows a block diagram of the print generator unit.

Fig. 43 shows a block diagram of the test pattern access unit.

- WO 01/20549 PCT/AU0O/O1O75

5

10

15

20

25

-6-
Fig. 44 shows a block diagram of Buffer 5.

Fig. 45 shows a block diagram of Buffer 4.

Fig. 46 shows a block diagram of the Uplnterpolate, Halftone and Reformat process.

Fig. 47 shows how to map from a standard dither cell and a staggered dither cell.

Fig. 48 shows a block diagram of the Convert RGB to CMY process/ .

Fig. 49 shows a block diagram of Buffer 2.

Fig. 50 shows a basic high-pass spatial filter using a 3 χ 3 kernel.

Fig. 51 shows a block diagram of the sharpen unit.

Fig. 52 shows the structure of Buffer 1

Fig. 53 shows a block diagram of the Resample and Create Luminance Channel process.

Fig. 54 shows a block diagram of the Convolve Unit.

Fig. 55 shows the order of pixels generated from the receptor.

Fig. 56 shows movement in x or y in rotated and unrotated space.

Fig. 57 shows the address of entries in Buffer 1 's green sub-buffer.

Fig. 58 shows the relationship between green entries dependent on rotation.

Fig. 59 shows 4x4 sampling of the green channel.

Fig. 60 shows 4x4 green sampling type 1.

Fig. 61 shows 4x4 green sampling type 2.

Fig. 62 shows the two types of row addressing for green.

Fig. 63 shows the addressing of entries in buffer 1’s red and blue sub-buffers.

Fig. 64 shows the first 16 samples read for calculating first pixel.

Fig. 65 shows the overlapping worst case 4x4 reading from blue and red buffers.

Fig. 66 shows a block diagram of the rotate, white balance and range expansion unit.

Fig. 67 shows the active image area within the generated coordinate space.

WO 01/20549 PCT/AU00/O1075

-7­

1 OVERVIEW OF THE PCP

1.1 High Level Functional Overview

The Printcam Central Processor (PCP) possesses all the processing power for a Printcam

and is specifically designed to be used in the Printcam digital still camera system. The PCP 3 connects

to an image sensor 1 (for image capture), and a Memjet printer 2 for image printout. In terms of image

processing, the PCP can be thought of as being the translator of images from capture to printout, as

shown in Figure 1:

• The Image Sensor 1 is a CMOS image sensor, which captures a 1500 χ 1000 RGB image.

The Image Sensor is the image input device.

• The Printhead 2 is a 4 inch long 1600dpi Memjet printer capable of printing in three colors:

cyan, magenta and yellow. The Printhead is the image output device.

• The PCP 3 takes an image from the Image Sensor 1, processes it, and sends the final form

of the image to the Printhead 2 for printing. Since the Image Sensor 1 captures in RGB and

the Printhead 2 prints in CMY, the PCP 3 must translate from the RGB color space to the

CMY color space. The PCP 3 contains all of the requirements for the intermediate image pro­

cessing, including white balance, color correction and gamut mapping, image sharpening,

and half toning. In addition, the PCP 3 controls the user interface and entire print process,

providing support for a variety of image formats. The PCP 3 also contains interfaces to allow

export and import of photos, complying with the DPOF (Digital Print Order Format) standard.

1.2 High Level Internal Overview

The PCP 3 is designed to be fabricated using a 0.25 micron CMOS process, with

approximately 10 million transistors, almost half of which are flash memory or static RAM. This leads to

an estimated area of 16mm*. The estimated manufacturing cost is $4 in the year 2001. The PCP 3 is a

relatively straightforward design, and design effort can be reduced by the use of datapath compilation

techniques, macrocells, and IP cores. The PCP 3 contains:

• A low speed CPU/microcontroller core 10

• 1.5 MBytes of multi-level Flash memory (2-bits per cell) 11

• A CMOS Image Sensor Interface 98 inside an Image Capture Unit 12

• 16 KByte Flash memory for program storage 13

• 4 KByte RAM for program variable storage 14

The PCP 3 is intended to run at a clock speed of approximately 100 MHz on 3V externally

and 1.5V internally to minimize power consumption. The actual operating frequency will be an integer

multiple ofthe Printhead operating frequency. The CPU 10 is intended to be a simple micro-controller

WO 01/20549 PCT/AU00/O1O75

-8-
style CPU, running at about 1 MHz. Both the CPU 10 and CMOS sensor interface 12 can be vendor

supplied cores.

Figure 2 shows a block diagram of the PCP 3 in isolation.

The PCP 3 is designed for use in Printcam systems. Figure 3 shows a block diagram of the

PCP 3 connected to the rest of the Printcam hardware.

2 PRINTHEAD BACKGROUND

The PCP 3 is specifically designed to connect to a 4-inch (10-cm) Memjet printhead 2. The

printhead 2 is used as a page-width printer, producing a 4-inch wide printed image without having to be

moved. Instead, paper 20 is printed on as it moves past the printhead 2, as shown in Figure 4.

2.1 Composition of 4-inch Printhead

Each 4-inch printhead 2 consists of 8 segments, each segment 1/2 an inch in length. Each of

the segments 21 prints bi-level cyan, magenta and yellow dots over a different part of the page to

produce the final image. The positions of the segments are shown in Figure 5.

Since the printhead 2 prints dots at 1600 dpi, each dot is 22.5pm in diameter, and spaced

15.875pm apart. Thus each half-inch segment prints 800 dots, with the 8 segments corresponding to

positions:.

Table 1. Final Image Dots Addressed by Each Segment

Segment First dot Last dot
0 0 799
1 800 1,599
2 1,600 2,399
3 2,400 3,199
4 3,200 3,999
5 4,000 4,799
6 4,800 5,599
7 5,600 6,399

Although each segment 21 produces 800 dots of the final image, each dot is represented by

a combination of bi-level cyan, magenta, and yellow ink. Because the printing is bi-level, the input

image should be dithered or error-diffused for best results.

Each segment 21 then contains 2400 nozzles: 800 each of cyan, magenta, and yellow. A

four-inch printhead 2 contains 8 such segments 21 for a total of 19,200 nozzles.

WO 01/20549 PCT/AU0O/O1O75

-9­

2.1.1 Grouping of Nozzles Within a Segment

The nozzles 22 within a single segment 21 are grouped for reasons of physical stability as

well as minimization of power consumption during printing. In terms of physical stability, a total of 10

nozzles share the same ink reservoir. In terms of power consumption, groupings are made to enable a

low-speed and a high-speed printing mode.

The printhead 2 supports two printing speeds to allow different speed/power trade-offs to be

made In different product configurations.

In the low-speed printing mode, 96 nozzles 22 are fired simultaneously from each 4-inch

printhead 2. The fired nozzles should be maximally distant, so 12 nozzles 22 are fired from each

segment. To fire all 19,200 nozzles, 200 different sets of 96 nozzles must be fired.

In the high-speed printing mode, 192 nozzles 22 are fired simultaneously from each 4-inch

printhead 2. The fired nozzles 22 should be maximally distant, so 24 nozzles are fired from each

segment. To fire all 19,200 nozzles, 100 different sets of 192 nozzles must be fired.

The power consumption in the low-speed mode is half that of the high-speed mode. Note

however, that the energy consumed to print a line, and hence a page, is the same in both cases.

In a scenario such as a battery powered Printcam, the power consumption requirements

dictate the use of low-speed printing.

2.1.1.1 10 Nozzles Make a Pod

A single pod 23 consists of 10 nozzles 22 sharing a common ink reservoir. 5 nozzles 22 are

in one row, and 5 are in another. Each nozzle 22 produces dots approximately 22.5pm in diameter

spaced on a 15.875pm grid. Figure 6 shows the arrangement of a single pod, with the nozzles 22

numbered according to the order in which they must be fired.

Although the nozzles 22 are fired in this order, the relationship of nozzles 22 and physical

placement of dots on the printed page is different. The nozzles 22 from one row represent the even

dots from one line on the page, and the nozzles on the other row represent the odd dots from the

adjacent line on the page. Figure 7 shows the same pod 23 with the nozzles 22 numbered according to

the order in which they must be loaded.

The nozzles 22 within a pod 23 are therefore logically separated by the width of 1 dot. The

exact distance between the nozzles 22 will depend on the properties of the Memjet firing mechanism.

The printhead 2 is designed with staggered nozzles designed to match the flow of paper 20.

WO 01/20549 PCT/AUOO/01075

5

10

15

20

25

-10­
2.1.1.2 3 Pods Make a Chromapod

One pod 23 of each color (cyan, magenta, and yellow) are grouped into a chromapod 24. A

chromapod 24 represents different color components of the same horizontal set of 10 dots, on different

lines. The exact distance between different color pods 23 depends on the Memjet operating

parameters, and may vary from one Memjet design to another. The distance is considered to be a

constant number of dot-widths, and must therefore be taken into account when printing: the dots

printed by the cyan nozzles will be for different lines than those printed by the magenta or yellow

nozzles. The printing algorithm must allow for a variable distance up to about 8 dot-widths between

colors (see Table 3 for more details). Figure 8 illustrates a single chromapod 24.

2.1.1.3 5 Chromapods make a Podgroup

5 chromapods 24 are organized into a single podgroup 25. Since each chromapod contains

30 nozzles 22, each podgroup contains 150 nozzles 22: 50 cyan, 50 magenta, and 50 yellow nozzles.

The arrangement is shown in Figure 9, with chromapods numbered 0-4. Note that the distance

between adjacent chromapods is exaggerated for clarity.

2.1.1.4 2 Podgroups make a Phasegroup

2 podgroups 25 are organized into a single phasegroup 26. The phasegroup 26 is so named

because groups of nozzles 23 within a phasegroup are fired simultaneously during a given firing phase

(this is explained in more detail below). The formation of a phasegroup from 2 podgroups 25 is entirely

for the purposes of low-speed and high-speed printing via 2 PodgroupEnable lines.

During low-speed printing, only one of the two PodgroupEnable lines is set in a given firing

pulse, so only one podgroup of the two fires nozzles. During high-speed printing, both PodgroupEnable

lines are set, so both podgroups fire nozzles. Consequently a low-speed print takes twice as long as a

high-speed print, since the high-speed print fires twice as many nozzles at once.

Figure 10 illustrates the composition of a phasegroup. The distance between adjacent

podgroups is exaggerated for clarity.

2.1.1.5 2 Phasegroups make a Firegroup

Two phasegroups (PhasegroupA and PhasegroupB) are organized into a single firegroup

27, with 4 firegroups in each segment. Firegroups 27 are so named because they all fire the same

nozzles 27 simultaneously. Two enable lines, AEnable and BEnable, allow the firing of PhasegroupA

nozzles and PhasegroupB nozzles independently as different firing phases. The arrangement is shown

in Figure 11. The distance between adjacent groupings is exaggerated for clarity.

WO 01/20549 PCT/AU00/01075

-11 -
2.1.1.6 Nozzle Grouping Summary

Table 2 is a summary of the nozzle groupings in a printhead.

5

10

15

20

25

Table 2. Nozzle Groupings for a single 4-inch printhead

Name of Grouping Composition
Replication

Ratio
Nozzle
Count

Nozzle 22 Base unit 1:1 1
Pod 23 Nozzles per pod 10:1 10
Chromapod 24 Pods per CMY chromapod 3:1 30
Podgroup 25 Chromapods per podgroup 5:1 150
Phasegroup 26 Podgroups per phasegroup 2:1 300
Firegroup 27 Phasegroups per firegroup 2:1 600
Segment 21 Firegroups per segment 4:1 2,400
4-inch printhead 2 Segments per 4-inch printhead 8:1 19,200

2.2 Load and Print Cycles

A single 4-inch printhead 2 contains a total of 19,200 nozzles 22. A Print Cycle involves the

firing of up to all of these nozzles, dependent on the information to be printed. A Load Cycle involves

the loading up of the printhead with the information to be printed during the subsequent Print Cycle.

Each nozzle 22 has an associated NozzieEnable bit that determines whether or not the

nozzle will fire during the Print Cycle. The NozzieEnable bits (one per nozzle) are loaded via a set of

shift registers.

Logically there are 3 shift registers per segment (one per color), each 800 long. As bits are

shifted into the shift register for a given color they are directed to the lower and upper nozzles on

alternate pulses. Internally, each 800-deep shift register is comprised of two 400-deep shift registers:

one for the upper nozzles, and one for the lower nozzles. Alternate bits are shifted into the alternate

internal registers. As far as the external interface is concerned however, there is a single 800 deep shift

register.

Once all the shift registers have been fully loaded (800 load pulses), all of the bits are

transferred in parallel to the appropriate NozzieEnable bits. This equates to a single parallel transfer of

19,200 bits. Once the transfer has taken place, the Print Cycle can begin. The Print Cycle and the Load

Cycle can occur simultaneously as long as the parallel load of all NozzieEnable bits occurs at the end

of the Print Cycle.

2.2.1 Load Cycle

The Load Cycle is concerned with loading the printhead's shift registers with the next Print

Cycle's NozzieEnable bits.

5

10

15

20

25

WO 01/20549 PCT/AUOO/01075

-12-
Each segment 21 has 3 inputs directly related to the cyan, magenta, and yellow shift

registers. These inputs are called CDataln, MData In and YDataln. Since there are 8 segments, there

are a total of 24 color input lines per 4-inch printhead. A single pulse on the SRCIock line (shared

between all 8 segments) transfers the 24 bits into the appropriate shift registers. Alternate pulses

transfer bits to the lower and upper nozzles respectively. Since there are 19,200 nozzles, a total of 800

pulses are required for the transfer. Once all 19,200 bits have been transferred, a single pulse on the

shared PTransfer line causes the parallel transfer of data from the shift registers to the appropriate

NozzleEnable bits.

The parallel transfer via a pulse on PTransfer must take place after the Print Cycle has

finished. Otherwise the NozzleEnable bits for the line being printed will be incorrect.

Since all 8 segments 21 are loaded with a single SRCIock pulse, any printing process must

produce the data in the correct sequence for the printhead. As an example, the first SRCIock pulse will

transfer the CMY bits for the next Print Cycle's dot 0, 800, 1600, 2400, 3200, 4000, 4800, and 5600.

The second SRCIock pulse will transfer the CMY bits for the next Print Cycle's dot 1, 801, 1601, 2401,

3201,4001,4801 and 5601. After 800 SRCIock pulses, the PTransfer pulse can be given.

It is important to note that the odd and even CMY outputs, although printed during the same

Print Cycle, do not appear on the same physical output line. The physical separation of odd and even

nozzles within the printhead, as well as separation between nozzles of different colors ensures that

they will produce dots on different lines of the page. This relative difference must be accounted for

when loading the data into the printhead. The actual difference in lines depends on the characteristics

of the inkjet mechanism used in the printhead. The differences can be defined by variables D, and D2

where D, is the distance between nozzles of different colors, and D2 is the distance between nozzles of

the same color. Table 3 shows the dots transferred to segment n of a printhead on the first 4 pulses.

Table 3. Order of Dots Transferred to a 4-inch Printhead

Pulse Dot Yellow Line Magenta Line Cyan Line
1 800Sa N N+D,b N+2Di

2 800S+1 N+D2c n+d,+d2 N+2D,+D2

3 800S+2 N N+D, N+2D,

4 800S+3 n+d2 n+d,+d2 N+2Dj+Dz

a. S = segment number (0-7)

b. D, = number of lines between the nozzles of one color and the next (likely = 4-8)

c. D2 = number of lines between two rows of nozzles of the same color (likely - 1)

And so on for all 800 pulses.

WO 01/20549 PCT/AU00/01075

-13-
Data can be clocked into the printhead at a maximum rate of 20 MHz, which will load the

entire data for the next line in 40ps.

2.2.2 Print Cycle

A 4-inch printhead 2 contains 19,200 nozzles 22. To fire them all at once would consume too

much power and be problematic in terms of ink refill and nozzle interference. Consequently two firing

modes are defined: a low-speed print mode and a high-speed print mode:

• In the low-speed print mode, there are 200 phases, with each phase firing 96 nozzles. This

equates to 12 nozzles per segment, or 3 per firegroup.

• In the high-speed print mode, there are 100 phases, with each phase firing 192 nozzles. This

equates to 24 nozzles per segment, or 6 per firegroup.

The nozzles to be fired in a given firing pulse are determined by

• 3 bits ChromapodSelect (select 1 of 5 chromapods 24 from a firegroup 27)

• 4 bits NozzleSelect (select 1 of 10 nozzles 22 from a pod 23)

• 2 bits of PodgroupEnable lines (select 0,1, or 2 podgroups 25 to fire)

When one of the PodgroupEnable lines is set, only the specified Podgroup’s 4 nozzles will

fire as determined by ChromapodSelect and NozzleSelect. When both of the PodgroupEnable lines are

set, both of the podgroups will fire their nozzles. For the low-speed mode, two fire pulses are required,

with PodgroupEnable = 10 and 01 respectively. For the high-speed mode, only one fire pulse is

required, with PodgroupEnable = 11.

The duration of the firing pulse is given by the AEnable and BEnable lines, which fire the

PhasegroupA and PhasegroupB nozzles from all firegroups respectively. The typical duration of a firing

pulse is 1.3 - 1.8 με. The duration of a pulse depends on the viscosity of the ink (dependent on

temperature and ink characteristics) and the amount of power available to the printhead. See Section

2.3 on page 18 for details on feedback from the printhead in order to compensate for temperature

change.

The AEnable and BEnable are separate lines in order that the firing pulses can overlap. Thus

the 200 phases of a low-speed Print Cycle consist of 100 A phases and 100 B phases, effectively giving

100 sets of Phase A and Phase B. Likewise, the 100 phases of a high-speed print cycle consist of 50 A

phases and 50 B phases, effectively giving 50 phases of phase A and phase B.

Figure 12 shows the AEnable and BEnable lines during a typical Print Cycle. In a high- speed

print there are 50 2με cycles, while in a low-speed print there are 100 2με cycles.

For the high-speed printing mode, the firing order is:

• ChromapodSelect 0, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

WO 01/20549 PCT/AU00/01075

-14-

• ChromapodSelect 1, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

• ChromapodSelect 2, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

• ChromapodSelect 3, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

• ChromapodSelect 4, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

• ChromapodSelect 0, NozzleSelect 1, PodgroupEnable 11 (Phases A and B)

• ...

• ChromapodSelect 3, NozzleSelect 9, PodgroupEnable 11 (Phases A and B)

• ChromapodSelect 4, NozzleSelect 9, PodgroupEnable 11 (Phases A and B)

For the low-speed printing mode, the firing order is similar. For each phase of the high speed

mode where PodgroupEnable was 11, two phases of PodgroupEnable = 01 and 10 are substituted as

follows:

• ChromapodSelect 0, NozzleSelect 0, PodgroupEnable 01 (Phases A and B)

• ChromapodSelect 0, NozzleSelect 0. PodgroupEnable 10 (Phases A and B)

• ChromapodSelect 1, NozzleSelect 0, PodgroupEnable 01 (Phases A and B)

• ChromapodSelect 1, NozzleSelect 0, PodgroupEnable 10 (Phases A and B)

•

• ChromapodSelect 3, NozzleSelect 9, PodgroupEnable 01 (Phases A and B)

• ChromapodSelect 3, NozzleSelect 9, PodgroupEnable 10 (Phases A and B)

• ChromapodSelect 4, NozzleSelect 9, PodgroupEnable 01 (Phases A and B)

• ChromapodSelect 4, NozzleSelect 9, PodgroupEnable 10 (Phases A and B)

When a nozzle 22 fires, it takes approximately 100ps to refill. The nozzle 22 cannot be fired

before this refill time has elapsed. This limits the fastest printing speed to 100gs per line. In the high­

speed print mode, the time to print a line is 100ps, so the time between firing a nozzle from one line to

the next matches the refill time, making the high-speed print mode acceptable. The low-speed print

mode is slower than this, so is also acceptable.

The firing of a nozzle 22 also causes acoustic perturbations for a limited time within the

common ink reservoir of that nozzle’s pod 23. The perturbations can interfere with the firing of another

nozzle within the same pod 23. Consequently, the firing of nozzles within a pod should be offset from

each other as long as possible. We therefore fire three nozzles from a chromapod 24 (one nozzle 22

per color) and then move onto the next chromapod 24 within the podgroup 25.

• In the low-speed printing mode the podgroups 25 are fired separately. Thus the 5 chroma­

pods 24 within both podgroups must all fire before the first chromapod fires again, totalling 10

χ 2ps cycles. Consequently each pod 23 is fired once per 20ps.

WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-15-

• In the high-speed printing mode, the podgroups 25 are fired together. Thus the 5 chroma­

pods 24 within a single podgroup must all fire before the first chromapod fires again, totalling

5 χ 2ps cycles. Consequently each pod 23 is fired once per 10 ps.

As the ink channel is 300pm long and the velocity of sound in the ink is around 1500m/s, the

resonant frequency of the ink channel is 2.5MHz, thus the low speed mode allows 50 resonant cycles

for the acoustic pulse to dampen, and the high speed mode allows 25 resonant cycles. Thus any

acoustic interference is minimal in both cases.

2.2.3 Sample Timing

As an example, consider the timing of printing an 4” χ 6" photo in 2 seconds, as is required by

Printcam. In order to print a photo in 2 seconds, the 4-inch printhead must print 9600 lines (6 χ 1600).

Rounding up to 10,000 lines in 2 seconds yields a line time of 200 ps. A single Print Cycle and a single

Load Cycle must both finish within this time. In addition, a physical process external to the printhead

must move the paper an appropriate amount.

From the printing point of view, the low-speed print mode allows a 4-inch printhead to print an

entire line in 200 ps. In the low-speed print mode, 96 nozzles 22 fire per firing pulse, thereby enabling

the printing of an entire line within the specified time.

The 800 SRCIock pulses to the printhead 2 (each clock pulse transferring 24 bits) must also

take place within the 200 ps line time. The length of an SRCIock pulse cannot exceed 200 ps/800 =

250ns, indicating that the printhead must be clocked at 4MHz. In addition, the average time to calculate

each bit value (for each of the 19,200 nozzles) must not exceed 200ps /19,200 = 10ns. This requires a

dot generator running at one of the following speeds:

• 100 MHz generating 1 bit (dot) per cycle

• 50 MHz generating 2 bits (dots) per cycle

• 25 MHz generating 4 bits (dots) per cycle

2.3 Feedback from the Printhead

The printhead 2 produces several lines of feedback (accumulated from the 8 segments). The

feedback lines are used to adjust the timing of the firing pulses. Although each segment 21 produces

the same feedback, the feedback from all segments share the same tri-state bus lines. Consequently

only one segment 21 at a time can provide feedback.

A pulse on the SenseSegSefect line ANDed with data on Cyan enables the sense lines for

that segment. The feedback sense lines will come from the selected segment until the next

SenseSegSelect pulse. The feedback sense lines are as follows:

7/¾¾¾¾¾¾¾¾¾

WO 01/20549 PCT/AU00/01075

-16-

• Tsenseinforms the controller how hot the printhead is. This allows the controller to adjust

timing of firing pulses, since temperature affects the viscosity of the ink.

• Vsenseinforms the controller how much voltage is available to the actuator. This allows the

controller to compensate for a flat battery or high voltage source by adjusting the pulse width.

• Rsenseinforms the controller of the resistivity (Ohms per square) of the actuator heater. This

allows the controller to adjust the pulse widths to maintain a constant energy irrespective of

the heater resistivity.

• Wsenseinforms the controller of the width of the critical part of the heater, which may vary up

to ± 5% due to lithographic and etching variations. This allows the controller to adjust the

pulse width appropriately.

2.4 Special Cycles

2.4.1 Preheat Cycle

The printing process has a strong tendency to stay at the equilibrium temperature. To ensure

that the first section of the printed photograph has a consistent dot size, the equilibrium temperature

must be met before printing any dots. This is accomplished via a preheat cycle.

The Preheat cycle involves a single Load Cycle to all nozzles with 1s (i.e. setting all nozzles

to fire), and a number'of short firing pulses to each nozzle. The duration of the pulse must be

insufficient to fire the drops, but enough to heat up the ink. Altogether about 200 pulses for each nozzle

are required, cycling through in the same sequence as a standard Print Cycle.

Feedback during the Preheat mode is provided by Tsense, and continues until equilibrium

temperature is reached (about 30° C above ambient). The duration of the Preheat mode is around 50

milliseconds, and depends on the ink composition.

Preheat is performed before each print job. This does not affect printer performance, as it is

done while the page data is transferred to the printer.

2.4.2 Cleaning Cycle

In order to reduce the chances of nozzles becoming clogged, a cleaning cycle can be

undertaken before each print job. Each nozzle is be fired a number of times into an absorbent sponge.

The cleaning cycle involves a single Load Cycle to all nozzles with 1s (i.e. setting all nozzles

to fire), and a number of firing pulses to each nozzle. The nozzles are cleaned via the same nozzle

firing sequence as a standard Print Cycle. The number of times that each nozzle 22 is fired depends

upon the ink composition and the time that the printer has been idle, as with preheat, the cleaning cycle

has no effect on printer performance.

WO 01/20549 PCT/AU00/01075

-17­

2.5 Printhead Interface Summary

A single 4-inch printhead 2 has the following connections:

Table 4. Four-Inch Printhead Connections

Name #Pins Description
ChromapodSelect 3 Select which chromapod will fire (0-4)
NozzleSelect 4 Select which nozzle from the pod will fire (0-9)
PodgroupEnable 2 Enable the podgroups to fire (choice of: 01, 10,11)
AEnable 1 Firing pulse for phasegroup A
BEnable 1 Firing pulse for phasegroup B
CDataln[0-7] 8 Cyan input to cyan shift register of segments 0-7
MDataln[0-7] 8 Magenta input to magenta shift register of segments 0-7
YDataln[0-7] 8 Yellow input to yellow shift register of segments 0-7
SRCIock 1 A pulse on SRCIock (ShiftRegisterClock) loads the current val­

ues from CDataln[0-7], MDataln[0-7] and YDataln[0-7] into the
24 shift registers.

PTransfer 1 Parallel transfer of data from the shift registers to the internal
NozzleEnable bits (one per nozzle).

SenseSegSelect 1 A pulse on SenseSegSelect ANDed with data on CDataln[n]
selects the sense lines for segment n.

Tsense 1 Temperature sense
Vsense 1 Voltage sense
Rsense 1 Resistivity sense
Wsense 1 Width sense
Logic GND 1 Logic ground
Logic PWR 1 Logic power
V- Bus Actuator Ground
V+ bars Actuator Power
TOTAL 44

Internal to the 4-inch printhead, each segment has the following connections to the bond

pads:

Table 5. Four-Inch Printhead Internal Segment Connections

Name #Pins Description
Chromapod­
Select

3 Select which chromapod will fire (0-4)

NozzleSelect 4 Select which nozzle from the pod will fire (0-9)
PodgroupEn­
able

2 Enable the podgroups to fire (choice of: 01, 10,11)

AEnable 1 Firing pulse for phasegroup A
BEnable 1 Firing pulse for phasegroup B

WO 01/20549 PCT/AU0O/O1O75

-18-
Table 5. Four-Inch Printhead Internal Segment Connections

Name #Pins Description
CDataln 1 Cyan input to cyan shift register
M Data In 1 Magenta input to magenta shift register
YDataln 1 Yellow input to yellow shift register
SRCIock 1 A pulse on SRCIock (ShiftRegisterClock) loads the current values from

CDataln, MDataln and YDataln into the 3 shift registers.
PTransfer 1 Parallel transfer of data from the shift registers to the internal

NozzleEnable bits (one per nozzle).
SenseSeg-
Select

1 A pulse on SenseSegSelect ANDed with data on CDataln selects the
sense lines for this segment.

Tsense 1 Temperature sense
Vsense 1 Voltage sense
Rsense 1 Resistivity sense
Wsense 1 Width sense
Logic GND 1 Logic ground
Logic PWR 1 Logic power
V- 21 Actuator Ground
V+ 21 Actuator Power
TOTAL 65 (65 χ 8 segments = 520 for all segments)

3 IMAGE PROCESSING CHAINS

The previous sections have dealt only with the highest level overview of the PCP functionality

- that of mapping CFA images to a variety of output print formats. In fact, there are a number of steps

involved in taking an image from the image sensor, and producing a high quality output print. We can

break the high level process into two image processing chains, each with a number of steps:

• Image Capture Chain

• Print Chain

The Image Capture Chain is concerned with capturing the image from the Image Sensor and

storing it locally within the Printcam. The Print Chain is concerned with taking the stored image and

printing it. These two chains map onto the basic Printcam functionality as follows:

• Take&Print = Image Capture Chain followed by Print Chain

• Reprint = Print Chain

For example, a user may print a thumbnail image (Take&Print), and if happy with the results,

print several standard copies (Reprint).

This chapter describes an implementation independent image processing chain that meets

the quality requirements of Printcam. At this stage, we are not considering exactly how the processing

(·>
WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-19-
is performed in terms of hardware, but rather what must be done. These functions must be mapped

onto the various units within the POP.

Regardless of the PCP implementation, there are a number of constraints:

• The input image is a CFA based contone RGB image.

• The output image is for a Memjet printhead (bi-level dots at 1600 dpi) in CMY color space,

and is always the same output width (4 inches wide).

3.0.1 Supported Print Formats

The PCP 3 supports a variety of output print formats, as shown in Table 6. In all cases, the

width of the image is 4 inches (matching the printhead width). Only the length of the print out varies.

Table 6. Supported Image Formats

Format Name Aspect Ratio
Output Size

(inches)
Output resolution

(at 1600 dpi) Rotation
Standard 30 2:3 4" χ 6” 6400 χ 9600 90
Passport 31 2:3 4’χ 6” 6400 χ 9600 90
Panoramic 33 4:6 4” χ 12” 6400 x 19200 90
Thumbnail 32 2:3 4’ x 2.67” 6400 χ 4267 0

The image sensor does not provide orientation information. All input images are captured at

the same resolution (1500 χ 1000), and may need to be rotated 90 degrees before printout. Figure 13

illustrates the mapping between the captured CFA image and the various supported print formats. Note

that although the image is shown rotated 90 degrees anti-clockwise, the image can be rotated

clockwise or anti-clockwise.

3.1 Image Capture Chain

The Image Capture Chain is responsible for taking an image from the Image Sensor and

storing it locally within the Printcam. The Image Capture Chain involves a number of processes that

only need to be performed during image capture. The Image Capture Chain is illustrated in Figure 14,

with subsequent sections detailing the sub-components.

3.1.1 Image Sensori

. The input image comes from an image sensor 1. Although a variety of image sensors are

available, we only consider the Bayer color filter array (CFA). The Bayer CFA has a number of

attributes which are defined here.

The image captured by the CMOS sensor 1 (via a taking lens) is assumed to have been

sufficiently filtered so as to remove any aliasing artifacts. The sensor itself has an aspect ratio of 3:2,

<> ι»
WO 01/20549 PCT/AU0O/O1O75

5

10

15

20

25

-20-
with a resolution of 1500 χ 1000 samples. The most likely pixel arrangement is the Bayer color filter

array (CFA), with each 2x2 pixel block arranged in a 2G mosaic as shown in Figure 15:

Each contone sample of R, G, or B (corresponding to red, green, and blue respectively) is

10-bits. Note that each pixel of the mosaic contains information about only one of R, G, or B. Estimates

of the missing color information must be made before the image can be printed out.

The CFA is considered to perform adequate fixed pattern noise (FPN) suppression.

3.1.2 Linearize RGB 40

• The image sensor 40 is unlikely to have a completely linear response. Therefore the 10-bit

RGB samples from the CFA must be considered to be non-linear. These non-linear samples

are translated into 8-bit linear samples by means of lookup tables (one table per color).

Pixels from the CFA lines 0, 2,4 etc. index into the R and G tables, while pixels from the CFA

lines 1, 3, 5 etc. index into the G and B tables. This is completely independent of the orientation of the

camera. The process is shown in Figure 16. The total amount of memory required for each lookup table

is 2'° χ 8-bits. The 3 lookup tables 45 therefore require a total of 3 KBytes (3 χ 210 bytes).

3.1.3 Planarize RGB 41

The pixels obtained from the CFA have their color planes interleaved due to the nature of the

Bayer mosaic of pixels. By this we mean that on even horizontal lines, one red pixel is followed by a

green pixel and then by another red pixel - the different color planes are interleaved with each other. In

some image processing systems, an interleaved format is highly useful. However in the Printcam

processing system, the algorithms are more efficient if working on planar RGB.

A planarized image is one that has been separated into its component colors. In the case of

the CFA RGB image, there are 3 separate images: one image containing only the red pixels, one image

containing only the blue pixels, and one image containing only the green pixels. Note that each plane

only represents the pixels of that color which were actually sampled. No resampling is performed during

the planarizing process. As a result, the R, G and B planes are not registered with each other, and the

G plane is twice as large as either the R or B planes. The process is shown in Figure 17.

The actual process is quite simple - depending on the color of the pixels read in, the output

pixels are sent to the next position in the appropriate color plane’s image (therefore in the same

orientation as the CFA).

The red 45 and blue 47 planar images are exactly one quarter of the size of the original CFA

image. They are exactly half the resolution in each dimension. The red and blue images are therefore

750 χ 500 pixels each, with the red image implicitly offset from the blue image by one pixel in CFA

space (1500 χ 1000) in both the x and y dimensions. .

WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-21 -
Although the green planar image 46 is half of the size of the original CFA image, it is not set

out as straightforwardly as the red or blue planes. The reason is due to the checkerboard layout of

green. On one line the green is every odd pixel, and on the next line the green is every even pixel. Thus

alternate lines of the green plane represent odd and even pixels within the CFA image. Thus the green

planar image is 750 χ 1000 pixels. This has ramifications for the resampling process (see “Resample

64” on page 28 below).

3.1.4 Stored Image 42

Each color plane of the linearized RGB image is written to memory for temporary storage.

The memory should be Flash 11 so that the image is retained after the power has been shut off.

The total amount of memory required for the planarized linear RGB image is 1,500,000 bytes

(approximately 1.5 MB) arranged as follows:

• R: 750 χ 500 =375,000 bytes

• B: 750 χ 500 =375,000 bytes ·

• G: 750 χ 1000 =750,000 bytes

3.2 Print Chain

The Print Chain is concerned with taking an existing image from memory 42 and printing it to

a Memjet printer 2. An image is typically printed as soon as it has been captured, although it can also

be reprinted (i.e. without recapture).

There are a number of steps required in the image processing chain in order to produce high

quality prints from CFA captured images. Figure 18 illustrates the Print Chain. The chain is divided into

3 working resolutions. The first is the original image capture space 50 (the same space as the CFA),

the second is an intermediate resolution 51 (lines of 1280 continuous tone pixels), and the final

resolution is the printer resolution 52, with lines of 6400 bi-level dots.

3.2.1 Input Image

The input image is a linearized RGB image 42 stored in planar form, as stored by the Image

Capture Chain described in Section 3.1.4.

3.2.2 Gather Statistics 60

A number of statistics regarding the entire image need to be gathered before processes like

white balance and range expansion can be performed. These statistics only need to be gathered once

for all prints of a particular captured image 42, and can be gathered separately from the red, green, and

blue planar images.

a s

WO 01/20549 PCT/AU0O/O1O75

-22-
3.2.2.1 Build Histogram

The first step is to build a histogram for each 8-bit value of the color plane. Each 1500 χ 1000

CFA image contains a total of:

• 375,000 red pixels (min 19-bit counter required)

• 375,000 blue pixels (min 19-bit counter required)

• 750,000 green pixels (min 20-bit counter required)

Therefore a single 256 χ 20 bit table is required to hold the histogram.

The process of building the histogram is straightforward, as illustrated by the following

pseudocode:

For I = 0 to 255

Entry [I] = 0

EndFor

For Pixel = Imagestart to ImageEnd

p = Image[Pixel]

Entry[p] = Entry [p]+l

EndFor

3.2.2.2 Determine High and Low Thresholds

Once the histogram has been constructed for the color plane, it can be used to determine a

high and low threshold. These thresholds can be used for automating later white balance and range

expansion during the print process.

Basing the thresholds on the number of pixels from the histogram, we consider the n%

darkest pixels to be expendable and therefore equal. In the same way, we consider the n% lightest

pixels to be expendable and therefore equal. The exact value for n is expected to be about 5%, but will

depend on the CFA response characteristics.

The process of determining the n% darkest values is straightforward. It involves stepping

through the color plane’s histogram from the count for 0 upwards (i.e. 0,1, 2, 3 etc.) until the n% total is

reached or we have travelled further than a set amount from 0. The highest of these values is

considered the low threshold of the color plane. Although there is a difference between these darkest

values, the difference can be considered expendable for the purposes of range expansion and color

balancing.

The process of determining the n% lightest values is similar. It involves stepping through the

color plane’s histogram from the count for 255 downwards (i.e. 255, 254,253 etc.) until the n% total is

WO 01/20549 PCT/AU00/01075

-23-
reached or until we have travelled further than a set amount from 255. The lowest of these values is

considered the high threshold of the color plane. Although there is a difference between these lightest

values, the difference can be considered expendable for the purposes of range expansion and color

balancing.

The reason for stopping after a set distance from 0 or 255 is to compensate for two types of

images:

• where the original dynamic range is low, or

• where there is no white or black in an image

In these two cases, we don’t want to consider the entire n% of upper and lower values to be

expendable since we have a low range to begin with. We can safely set the high 73 and low 72

thresholds to be outside the range of pixel values actually sampled. The exact distance will depend on

the CFA, but will be two constants.

A sample color range for a color plane is shown in Figure 19. Note that although the entire 0­

255 range is possible for an image color plane’s pixels, this particular image has a smaller range. Note

also that the same n% histogram range 70, 71 is represented by a larger range in the low end 70 than

in the high end 71. This is because the histogram must contain more pixels with high values closer

together compared to the low end.

The high 73 and low 72 thresholds must be determined for each color plane individually. This

information will be used to calculate range scale and offset factors to be used In the later white balance

and range expansion process.

The following pseudocode illustrates the process of determining either of the two thresholds

(to find the low threshold, startposition = 255, and Delta = 1. To find the high threshold,

startposition = o and Delta = -1). The pseudocode assumes that Threshold is an 8-bit value that

wraps during addition.

Threshold = Startposition

Total = 0

TotalDelta = 0

While ((TotalDelta < MaxDelta) AND {Total < MaxPixels))

Threshold = Threshold + Delta

Total = Total + Entry[Threshold]

TotalDelta = TotalDelta + 1

Endwhile

Return Threshold

WO 01/20549 PCT/AU00/01075

-24-
3.2.3 Rotate Image 61

Rotation of the image 61 is an optional step on both the Capture and Print and Reprint

processes.

Different print formats require the image to be rotated either 0 or 90 degrees relative to the

CFA orientation, as shown in Figure 13. The rotation amount depends on the currently selected print

format. Although the direction of rotation is unimportant (it can be clockwise or counter-clockwise since

the new orientation is only facilitating the printhead width), the rotation direction will affect the relative

registration of the 3 color planes. Table 7 summarizes the rotation required for each print format from

the original CFA orientation.

Table 7. Rotations from CFA orientation for Print Formats

Print Format Rotation
Standard 30 90
Passport 31 90
Panoramic 33 90
Thumbnail 32 0

Since we are rotating only by 0 or 90 degrees, no information is lost during the rotation

process. For a rotation of 0, the image can be read row by row, and for a rotation of 90, the image can

be read column by column. Registration of the 3 color planes must take the rotation direction into

account.

3.2.4 White Balance 62 and Range Expansion 63

A photograph is seldom taken in ideal lighting conditions. Even the very notion of “perfect

lighting conditions" is fraught with subjectivity, both in terms of photographer and subject matter.

However, in all cases, the subject matter of a photograph is illuminated by light either from a light

source (such as the sun or indoor lighting), or its own light (such as a neon sign).

In most lighting conditions, what may appear to the photographer as “white" light, is usually

far from white. Indoor lighting for example, typically has a yellow cast, and this yellow cast will appear

on an uncorrected photograph. To most people, the yellow cast on the final uncorrected photograph is

wrong. Although it may match the viewing conditions at the time the photograph was taken, it does not

match the perceived color of the object. It is therefore crucial to perform white balance on a photograph

before printing it out.

In the same way, an image can be perceived to be of higher quality when the dynamic range

of the colors is expanded to match the full range in each color plane. This is particularly useful to do

before an image is resampled to a higher resolution. If the dynamic range is higher, intermediate values

WO 01/20549 PCT/AU00/01075

-25-
can be used in interpolated pixel positions, avoiding a stepped or blocky image. Range expansion is

designed to give the full 256 value range to those values actually sampled. In the best case, the lowest

value is mapped to 0, and the highest value is mapped to 255. All the intermediate values are mapped

to proportionally intermediate values between 0 and 255.

Mathematically, the operation performed is a translation of LowThreshold 72 to 0 followed by

a scale. The formula is shown here:

Pixel? = (Pixel - LowThreshold) x RangeScaleFactor

256where RangeScaleFactor = ————------ -——— ---- —------ -——
(HighThreshold - LowThreshold)

RangeScaleFactor should be limited to a maximum value to reduce the risk of expanding the

range too far. For details on calculating LowThreshold, 72 see Section 3.2.2 “Gather Statistics”. These

values (LowThreshold and RangeScaleFactor) will be different for each color plane, and only need to

be calculated once per image.

Both tasks can be undertaken simultaneously, as shown in Figure 20:

Since this step involves a scaling process, we can be left with some fractional component in

the mapped value e.g. the value 12 may map to 5.25. Rather than discard the fractional component, we

pass a 10 bit result (8 bits of integer, 2 of fraction) on to the next stage of the image processing chain.

We cannot afford the memory to store the entire image at more than 8-bits, but we can make good use

of the higher resolution in the resampling stage. Consequently the input image is 8-bits, and the output

image has 10-bits per color component The logical process is shown in Figure 21.

It is important to have a floor of 0 during the subtraction so that all values below

LowThreshold 72 to be mapped to 0. Likewise, the multiplication must have a ceiling of 255 for the

integer portion of the result so that input values higher than HighThreshold 73 will be mapped to 255.

3.2.5 Resample 64

The CFA only provides a single color component per pixel (x,y) coordinate. To produce the

final printed image we need to have the other color component values at each pixel. Ultimately we need

cyan, magenta, and yellow color components at each pixel, but to arrive at cyan, magenta, and yellow

we need red, green and blue. With our one-color-per-pixel, we may have the red component for a

particular position, but we need to estimate blue and green. Or we may have green, and need to

estimate red and blue.

Even if we did have the full red, green, and blue color components for each CFA resolution

pixel, the CFA resolution image is not the final output resolution. In addition, although the output format

ι·
WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-26-
varies, the physical width of the printed image is constant (4 inches at 1600 dpi). The constant width of

the printhead is therefore 6400 dots. .

There are two extreme cases to consider:

• Interpolate to CFA resolution (minimal interpolation), and then perform sharpening, color

conversion. Finally scale up to the print resolution. This has the advantage of a constant

sharpening kernel and color conversion at the low resolution. However it has the disadvan­

tage of requiring more than 8-bits per color component to be stored for the interpolated

image or intermediate values will be incorrectly interpolated during the final scale-up to print

resolution. It also has the disadvantage of requiring a scale-up unit that is capable of produc­

ing 1 print-res interpolated value per cycle.

• Interpolate to the print resolution, then perform sharpening and color conversion. This has

the advantage of only one resampling process, providing maximum accuracy. However it has

the disadvantage of requiring a scale-up unit that is capable of producing 1 bi-cubic interpo­

lated value per cycle as well as performing sharpening and color conversion, all on an aver­

age of a single cycle. The sharpening kernel must be large enough to apply the CFA-res

kernel to the high-res image. Worse still, for sharpening, there must be at least 3 windows

kept onto the output image (each containing a number of 6400 entry lines) since on a single

print cycle, the cyan, magenta, and yellow dots represent dots from 6 different lines.

Neither of these cases take into account the fact that the final print output is bilevel rather

than contone. Consequently we can strike a middle ground with regards to resampling, and achieve the

best from both methods.

The solution is to interpolate to an intermediate resolution. Sharpening and color conversion

occur at the intermediate resolution, followed by a scale-up to print resolution. The intermediate

resolution must be low enough to allow the advantages of small sharpening kernel size and color

conversion timing. But the intermediate resolution must be high enough so that there is no loss of

quality scaling up to the print resolution bi-level image. The effect must be the same as if there was a

single interpolation to the print resolution (rather than two).

Since the print image is printed as 1600 dpi dithered bi-level dots, it can be safely

represented by a 320 dpi contone image. Consequently an intermediate resolution of 1280 contone

pixels provides no perceived loss of quality over 6400 bi-level dots. The later scaling from 1280 to 6400

is therefore an exact scaling ratio of 1:5.

To decide how best to resample, it is best to consider each color plane in relation to the CFA

resolution. This is shown in Figure 22 for a rotation of 0.

WO 01/20549 PCT/AUOO/01075

-27­
3.2.5.1 Red 45 and Blue 47

Looking at the red 45 and blue 47 planes, the full CFA resolution version of the color plane

can be created by scaling up the number of sampled pixels in each dimension by 2. The intermediate

pixels can be generated by means of a reconstruction filter (such as a Lanczos or Exponential filter).

Only one dimension in the kernel is required, since the kernel is symmetric. Since red and blue have

different offsets in terms of their initial representation within the CFA sample space, the initial positions

in the kernel will be different.

The mapping of output coordinates (in 1280 space) to input coordinates depends on the

current rotation of the image, since the registration of pixels changes with rotation (either 0 or 90

degrees depending on print format). For red and blue then, the following relationship holds:

where

x,y = coordinate in medium res space

x'y’ = coordinate in input space

mps = medium res pixels per input space sample

ki£ = {0, -0.5} depending on rotation

This means that given a starting position in input space, we can generate a new line of

medium resolution pixels by adding a Ax and Ay of 1/mps and 0 respectively 1279 times. The fractional

part of x and y in input space can be directly used for looking up the kernel coefficients for image

reconstruction and resampling.

(»
WO 01/20549 PCT/AU00/01075

-28-
Note that and k2 are 0 and -0.5 depending on whether the image has been rotated by 0 or

90 degrees. Table 8 shows the values for kj and k2 in the red and blue planes, assuming that the

rotation of 90 degrees is anti-clockwise.

5

10

15

20

25

Table 8. Effect of Rotation on k1 and k2 (rotation is anti-clockwise)

Format
Rotation From Original

CFA

Red Blue

*1 *2 *1 k2

Standard 30 90 0 -0.5 -0.5 0
Passport 31 90 0 -0.5 -0.5 0
Panoramic 33 90 0 -0.5 -0.5 0
Thumbnail 32 0 0 0 -0.5 -0.5

The number of medium res pixels per sample, mps, depends on the print format. Given that

the planarized RGB image has the following red and blue planar resolutions when unrotated: R: 750 χ

500, B: 750 χ 500, the scale factors for the different output formats (see Figure 13 on page 17) are

shown in Table 9. Note that with the Passport image format, the entire image is resampled into 1/4 of

the output space.

Table 9. Red and Blue Scale Factors for Image Formats

Format Mapping mps 1/mps
Standard 30 500 1280 2.56 0.390625
Passport 31 500 => 640 1.28 0.78125
Panoramic 33 250 1280 5.12 0.1953125
Thumbnail 32 750 =2» 1280 1.71 0.5848

As can be seen in Table 9, the red and blue images are scaled up for all image formats.

Consequently there will not be any aliasing artifacts introduced by the resampling process.

3.2.5.2 Green 46

The green plane 46 cannot be simply scaled up in the same way as red or blue, since each

line of the green plane represents different pixels - either the odd or even pixels on alternate lines.

Although in terms of the number of pixels it is representative to say the green image is 750 χ 1000, the

image could equally be said to be 1500 χ 500. This confusion arises because of the checkerboard

nature of the green pixels, where the distance between pixels is not equal in x and y dimensions, and

does not map well to image reconstruction or resampling. The number of interpolation methods used by

other systems for green plane reconstruction is testimony to this - from nearest neighbor replication to

linear interpolation to bi-linear interpolation and heuristic reconstruction.

The mapping of output coordinates (in 1280 space) to input coordinates is conceptually the

same for green as it is for red and blue. The mapping depends on the current rotation of the image,

WO 01/20549 PCT/AU00/01075

-29-
since the registration of pixels changes with rotation (either 0 or 90 degrees depending on print format).

For the green plane the following relationship holds:

5

10

15

20

25

where

x,y = coordinate in medium res space

x'y' = coordinate in input space

mps = medium res pixels per input space sample

k12 = (°. *θ·5) depending on rotation

As with the red 45 and blue 47 planes, the number of medium res pixels per sample, mps,

depends on the print format. Given that the planarized RGB image has the following planar resolutions

when unrotated: R: 750 χ 500, B: 750 χ 500, G: 750 x 1000, the scale factors for the different output

formats (see Figure 13) are shown in Table 10. Note that with the Passport image format, the entire

image is resampled into 1/4 of the output space.

Table 10. Green Plane Scale Factors for Image Formats

Format Mapping mps 1/mps
Standard 30 1000 => 1280 1.28 0.78125
Passport 31 1000 640 0.64 1.5625
Panoramic 33 500 =x> 1280 2.56 0.390625
Thumbnail 32 1500 => 1280 0.85 1.17648

These scale factors allow the mapping of coordinates between CFA resolution input space

and medium res space. However, once we have a coordinate in CFA resolution input space, we cannot

perform image reconstruction and resampling on the samples in the same way as red or blue due to the

checkerboard nature of the green plane 46.

Instead, for the purposes of high quality image reconstruction and resampling, we can

consider the green channel to be an image rotated by 45 degrees. When we look at the pixels in this

light, as shown in Figure 23, a high quality image reconstruction and resampling method becomes

clear.

WO 01/20549 PCT/AU00/01075

-30-
Looking at Figure 23, the distance between the sampled pixels in the X and Y directions is

now equal. The actual distance between sampled pixels is , as illustrated in Figure 24.

The solution for the green channel then, is to perform image reconstruction and resampling

in rotated space. Although the same reconstruction filter is used as for resampling red and blue, the

kernel should be different. This is because the relationship between the sampling rate for green and the

highest frequency in the signal is different to the relationship for the red and blue planes. In addition, the

kernel should be normalized so that the /2 distance between samples becomes 1 as far as kernel

coordinates go (the unnormalized distances between resampling coordinates must still be used to

determine whether aliasing will occur however). Therefore we require two transformations:

• The first is to map unrotated CFA space into rotated CFA space. This can be accomplished

by multiplying each ordinate by 1//2, since we are rotating by 45 degrees (cos45 = sin45 =

1//2).

• The second is to scale the coordinates to match the normalized kernel, which can be accom­

plished by multiplying each ordinate by 1//2.

These two transformations combine to create a multiplication factor of 1/2. Consequently, as

we advance in unrotated CFA space x by k, we increase by k/2 in kernel x, and decrease by k/2 in

kernel y. Similarly, as we advance in y by k, we increase by k/2 in kernel x and increase by k/2 in kernel

y·

The relationships between these different coordinate systems can be illustrated by

considering what occurs as we generate a line of medium resolution pixels from a CFA space input

image. Given a starting y ordinate in CFA input space, we begin at x=0, and advance 1280 times by

1/mps, generating a new pixel at each new location. The movement in unrotated CFA space by 1/mps

can be decomposed into a movement in x and a movement in y in rotated CFA space. The process is

shown in Figure 25.

Since cos45 = sin45 = 1//2, movement in unrotated CFA space by 1/mps equates to equal

movement in x and y by 1/(mps/2). This amount must now be scaled to match the normalized kernel.

The scaling equates to another multiplication by 1//2. Consequently, a movement of 1/mps in unrotated

WO 01/20549 PCT/AU00/01075

-31 -
CFA space equates to a movement of 1/2mps in kernel x and kernel y. Table 11 lists the relationship

between the three coordinate systems for the different formats:.

5

10

15

20

25

Table 11. Green Plane Kernel Δ Values for Image Formats

Format Scale Factor
(mps)

Unrotated
CFA space Δ

1
mps

Rotated
CFA Space Δ

1
mps-jl

Kernel Δ
1

Imps

Standard 1.28 0.78125 0.552 0.391
Passport 0.64 1.5625 1.105 0.781
Panoramic 2.56 0.391 0.276 0.195
Thumbnail 0.85 1.17648 0.832 0.601

Table 11 shows that movement in kernel space is always by a number less than 1, but in

rotated CFA space, only the Passport image has a A value of greater than 1. As a result, aliasing will

occur for the Passport print format, but not for any of the others. However, given that the Δ is almost 1,

and that each of the 4 images is only 1/4 size, aliasing will not be noticeable, especially since we

assume ideal low pass filtering on the green during image capture.

3.2.5.3 Reconstruction Filter for Red, Blue and Green

The exact reconstruction filter to be used will depend on a number of issues. There is always

a trade off between the number of samples used in constructing the original signal, the time taken for

signal reconstruction, and quality of the resampled image. A satisfactory trade-off in this case is 5 pixel

samples from the dimension being reconstructed, centered around the estimated position X i.e. X-2, X­

1, X, X+1, X+2. Due to the nature of reconstructing with 5 sample points, we only require 4 coefficients

for the entry in the convolution kernel.

We create a kernel coefficient lookup table with n entries for each color component. Each

entry has 4 coefficients. As we advance in output space, we map the changes in output space to

changes in input space and kernel space. The most significant bits of the fractional component in the

current kernel space are used to index into the kernel coefficients table. If there are 64 entries in the

kernel table, the first 6 fraction bits are used to look up the coefficients. 64 entries is quite sufficient for

the resampling in Printcam.

3.2.6 Sharpen 65

The image captured by the CFA must be sharpened before being printed. Ideally, the

sharpening filter should be applied in the CFA resolution domain. However, at the image capture

resolution we do not have the full color information at each pixel. Instead we only have red, blue or

green at a given pixel position. Sharpening each color plane independently gives rise to color shifts.

WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-32-
Sharpening should instead be applied to the luminance channel of an image, so that the hue and

saturation of a given pixel will be unchanged.

Sharpening then, involves the translation of an RGB image into a color space where the

luminance is separated from the remainder of the color information (such as HLS or Lab) 80. The

luminance channel 81 can then be sharpened 82 (by adding in a proportion of the high-pass-filtered

version of the luminance). Finally, the entire image should be converted back to RGB 83 (or to CMY

since we are going to print out in CMY). The process is shown in Figure 26.

However we can avoid much of the color conversion steps if we consider the effect of adding

a high-passed-filtered L back into the image - the effect is a change in the luminance of the image. A

change In the luminance of a given pixel can be well-approximated by an equal change in linear R, G,

and B. Therefore we simply generate L, high-pass-filter L, and apply a proportion of the result equally to

R, G, and B.

3.2.6.1 Convert RGB to L 80

We consider the CIE 1976 L*a*b* color space, where L is perceptually uniform. To convert

from RGB to L (the luminance channel) we average the minimum and maximum of R, G, and B as

follows:

L = MIN(R, G, B) + MAX(R, G, B)
2

3.2.6.2 High Pass Filter L 84

A high pass filter 84 can then be applied to the luminance information. Since we are filtering

in med-res space rather than CFA resolution space, the size of the sharpening kernel can be scaled up

or the high pass result can be scaled appropriately. The exact amount of sharpening will depend on the

CFA, but a 3x3 convolution kernel 85 will be sufficient to produce good results.

If we were to increase the size of the kernel, Table 12 shows the effective scaling 86 required

for a 3 x 3 convolution in CFA space as applied to 1280 resolution space, using the green channel as

the basis for scaling the kernel. From this table it is clear that a 7x7 sized kernel applied to the medium

resolution space will be adequate for all sharpening.

Table 12. Scale Factors for Convolution Filter

Format Scale 3x3 Kernel in Med-res (1280) Space
Standard 30 1.28 3.84 3x3 or 5x5
Passport 31 0.64 1.92 none, or 3x3
Panoramic 33 2.56 7.68 7x7
Thumbnail 32 0.85 2.55 none, or 3x3

WO 01/20549 PCT/AUOO/01075

5

10

15

20

25

-33-
If a 3 x 3 filter 85 were applied on the med-res image, the result will be scaled 86 according to

the scale factor used in the general image scale operation. Given the amounts in Table 12 (particularly

the Standard print format), we can use a 3 χ 3 filter 85, and then scale the results. The process of

producing a single filtered L pixel is shown in Figure 27.

The actual kernel used can be any one of a set of standard highpass filter kernels. A basic

but satisfactory highpass filter is shown in this implementation of the PCP in Figure 50.

3.2.6.3 Add Filtered L to RGB

The next thing to do is to add some proportion of the resultant high pass filtered luminance

values back to the luminance channel. The image can then be converted back to RGB (or instead, to

CMY). However, a change in luminance can be reasonably approximated by an equal change in R, G,

and B (as long as the color space is linear). Consequently we can avoid the color conversions

altogether by adding an equal proportion of the high pass filtered luminance value to R, G, and B. The

exact proportion of the high-pass-filtered image can be defined by means of a scale factor.

If L is the high-pass-filtered luminance pixel, and k is the constant scale factor, we can define

the transformation of sharpening R, G, and B as follows:

/?' = R + kL
G' = G + kL\ (limited to 255 each)

= B + kL

Of course, the scale factor applied to L can be combined with the scale factor in the highpass

filter process (see Section 3.2.6.2) for a single scale factor.

Once the sharpening has been applied to the RGB pixel, the image can be converted to CMY

83 in order to be printed out.

3.2.7 Convert to CMY 83

In theoretical terms, the conversion from RGB to CMY is simply:

C = 1-R
M= \-G
Y = 1-B

However this conversion assumes that the CMY space has a linear response, which is

definitely not true of pigmented inks, and only partially true for dye-based inks. The individual color

profile of a particular device (input and output) can vary considerably. Consequently, to allow for

WO 01/20549 PCT/AU0O/O1O75

-34-
accurate conversion, as well as to allow for future sensors, inks, and printers, a more accurate model is

required for Printcam.

The transformations required are shown in Figure 28. Lab is chosen because it is

perceptually uniform (unlike XYZ). With regards to the mapping from the image sensor gamut to the

printer gamut, the printer gamut is typically contained wholly within the sensor gamut.

Rather than perform these transformations exhaustively, excellent results can be obtained

via a tri-linear conversion based on 3 sets of 3D lookup tables. The lookup tables contain the resultant

transformations for the specific entry as indexed by RGB. Three tables are required: one table 90

mapping RGB to C, one table 91 mapping RGB to M, and one table 92 mapping RGB to Y. Tri-linear

interpolation can be used to give the final result for those entries not included in the tables. The process

is shown in Figure 29.

Tri-linear interpolation requires reading 8 values from the lookup table, and performing 7

linear interpolations (4 in the first dimension, 2 in the second, and 1 in the third). High precision can be

used for the intermediate values, although the output value is only 8 bits.

The size of the lookup table required depends on the linearity of the transformation. The

recommended size for each table in this application is 17x17x171, with each entry 8 bits. A 17 χ 17 x

17 table is 4913 bytes (less than 5KB).

To index into the 17-per-dimension tables, the 8-bit input color components are treated as

fixed-point numbers (4:4). The 4 bits of integer give the index, and the 4 bits of fraction are used for

interpolation.

3.2.8 Up Interpolate 67

The medium resolution (1280 wide) CMY image must now be up-interpolated to the final print

resolution (6400 wide). The ratio is exactly 1:5 in both dimensions.

Although it is certainly possible to bi-linearly interpolate the 25 values (1:5 in both X and Y

dimensions), the resultant values will not be printed contone. The results will be dithered and printed bi­

level. Given that the contone 1600 dpi results will be turned into dithered bi-level dots, the accuracy of

bi-linear interpolation from 320 dpi to 1600 dpi will not be visible (the medium resolution was chosen for

this very reason). Pixel replication will therefore produce good results.

Pixel replication simply involves taking a single pixel, and using it as the value for a larger

area. In this case, we replicate a single pixel to 25 pixels (a 5 χ 5 block). If each pixel were contone, the

l. Although a 17 χ 17 χ 17 table will give excellent results, it may be possible to get by with only a 9 x 9 x 9 conversion table
(729 bytes). The exact size can be determined by simulation. The 5K conservative-but-definite-results approach was cho­
sen for the purposes of this document.

1·
WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-35-
result may appear blocky, but since the pixels are to be dithered, the effect is that the 25 resultant bi­

level dots take on the contone value. The process is shown in Figure 30.

3.2.9 Halftone 68

The printhead 2 is only capable of printing dots in a bi-level fashion. We must therefore

convert from the contone CMY to a dithered CMY image. More specifically, we produce a dispersed dot

ordered dither using a stochastic dither cell, converting a contone CMY image into a dithered bi-level

CMY image.

The 8-bit 1600 dpi contone value is compared to the current position in the dither cell 93. If

the 80-bit contone value is greater than the dither cell value, an output bit of 1 is generated. Otherwise

an output bit of 0 is generated. This output bit will eventually be sent to the printhead and control a

single nozzle to produce a single C, M, or Y dot. The bit represents whether or not a particular nozzle

will fire for a given color and position.

The same position in the dither cell 93 can be used for C, M, and Y. This is because the

actual printhead 2 produces the C, M, and Y dots for different lines in the same print cycle. The

staggering of the different colored dots effectively gives us staggering in the dither cell.

The half-toning process can be seen in Figure 31.

The size of the dither cell 93 depends on the resolution of the output dots. Since we are

producing 1600 dpi dots, the cell size should be larger than 32 χ 32. In addition, to allow the dot

processing order to match the printhead segments, the size of the dither cell should ideally divide

evenly into 800 (since there are 800 dots in each segment of the printhead).

A dither cell size of 50 χ 50 is large enough to produce high quality results, and divides

evenly into 800 (16 times). Each entry of the dither cell is 8 bits, for a total of 2500 bytes (approximately

1.5 KB).

3.2.10 Reformat for Printer 69

The final process before being sent to the printer is for the dots to be formatted into the

correct order for being sent to the printhead. The dots must be sent to the printhead in the correct order

- 24 dots at a time as defined in Section 2.2.1.

if the dots can be produced in the correct order for printing (i.e. the up-interpolate and dither

functions generate their data in the correct order), then those dot values (each value is 1 bit) can simply

be collected, and sent off in groups of 24. The process is shown in Figure 32.

The 24 bit groups can then be sent to the printhead 2 by the Memjet Interface 15.

WO 01/20549 PCT/AU0O/O1O75

-36­

4 CPU CORE AND MEMORY

4.1 CPU Core 10

The PCP 3 incorporates a simple micro-controller CPU core 10 to synchronize the image

capture and printing image processing chains and to perform Printcam’s general operating system

duties including the user-interface. A wide variety of CPU cores are suitable: it can be any processor

core with sufficient processing power to perform the required calculations and control functions fast

enough to met consumer expectations.

Since all of the image processing is performed by dedicated hardware, the CPU does not

have to process pixels. As a result, the CPU can be extremely simple. However it must be fast enough

to run the stepper motor during a print (the stepper motor requires a 5KHz process). An example of a

suitable core is a Philips 8051 micro-controller running at about 1 MHz.

There is no need to maintain instruction set continuity between different Printcam models.

Different PCP chip designs may be fabricated by different manufacturers, without requiring to license or

port the CPU core. This device independence avoids the chip vendor lock-in such as has occurred in

the PC market with Intel.

Associated with the CPU Core is a Program ROM 13 and a small Program Scratch RAM 14.

The CPU 10 communicates with the other units within the PCP 3 via memory-mapped I/O.

Particular address ranges map to particular units, and within each range, to particular registers within

that particular unit. This includes the serial and parallel interfaces.

4.2 Program ROM 13

A small Program Flash ROM 13 is incorporated into the PCP 3. The ROM size depends on

the CPU chosen, but should not be more than 16-32KB.

4.3 Program RAM 14

Likewise, a small scratch RAM area 14 is incorporated into the PCP 3. Since the program

code does not have to manipulate images, there is no need for a large scratch area. The RAM size

depends on the CPU chosen (e.g. stack mechanisms, subroutine calling conventions, register sizes

etc.), but should not be more than about 4 KB.

4.4 CPU Memory Decoder 16

The CPU Memory Decoder 16 is a simple decoder for satisfying CPU data accesses. The

Decoder translates data addresses into internal PCP register accesses over the internal low speed bus,

and therefore allows for memory mapped I/O of PCP registers.

<*
WO 01/20549 PCT/AUOO/01075

5

10

15

20

25

-37­

5 COMMUNICATION INTERFACES

5.1 USB Serial Port Interface 17

This is a standard USB serial port, connected to the internal chip low-speed bus 18. The USB

serial port is controlled by the CPU 10. The serial port allows the transfer of images to and from the

Printcam, and allows DPOF (Digital Print Order Format) printing of transferred photos under external

control.

5.2 QA Chip Serial Interface 19

This is two standard low-speed serial ports, connected to the internal chip low-speed bus 18.

The CPU-mediated protocol between the two is used to authenticate the print roll [1,2] and for the

following functions:

• Acquire ink characteristics

• Acquire the recommended drop volume

• Track the amount of paper printed and request new print roll when there is insufficient paper

to print the requested print format.

The reason for having two ports is to connect to both the on-camera QA Chip 4 and to the

print roll’s QA Chip 5 using separate lines. The two QA chips are implemented as Authentication Chips

[2]. If only a single line is used, a clone print roll manufacturer could usurp the authentication

mechanism [1).

5.2.1 Print Roll’s QA Chip 5

Each print roll consumable contains its own QA chip 5. The QA chip contains information

required for maintaining the best possible print quality, and is implemented using an Authentication

Chip[2]. The 256 bits of data are allocated as follows:

Table 13. Print roil’s 256 bits (16

M[n] Access Description
0 ROa Basic Header, Flags etc. (16 bits)

1 RO Serial number (16 bits)
2 RO Batch number (16 bits)
3 DOb Paper remaining in mm(16 bits)

4 RO Cyan ink properties (32 bits)
5 RO
6 RO Magenta ink properties (32 bits)
7 RO

WO 01/20549 PCT/AU00/01075

-38-
Table 13. Print roll’s 256 bits (16

M[n] Access Description
8 RO Yellow ink properties (32 bits)
9 RO
10-12 RO For future expansion = 0 (48 bits)
13-15 RO Random bits, different in each chip (48 bits)

a. Readonly

b. Decrement Only

Before each print, the amount of paper remaining is checked by the CPU to ensure that there

is enough for the currently specified print format. After each print has started, the amount of paper

remaining must be decremented in the print roll’s QA chip by the CPU.

5.3 Parallel Interface 6

The parallel interface 6 connects the PCP 3 to individual static electrical signals. The CPU is

able to control each of these connections as memory-mapped I/O via the low-speed bus. (See Section

4.4 for more details on memory-mapped I/O).

Table 14 shows the connections to the parallel interface.

Table 14. Connections to Parallel Interface

Connection Direction Pins
Paper transport stepper motor Out 4
Guillotine motor . Out 1
Focus Motor Out 1
Capping solenoid Out 1
Flash trigger Out 1
Status LCD segment drivers Out 7
Status LCD common drivers Out 4
Paper pull sensor In 1
Buttons In 4

TOTAL 24

5.4 JTAG Interface 7

A standard JTAG (Joint Test Action Group) Interface 1 is included in the PCP 3 for testing

purposes. Due to the complexity of the chip, a variety of testing techniques are required, including BIST

(Built In Self Test) and functional block isolation. An overhead of 10% in chip area is assumed for

overall chip testing circuitry.

WO 01/20549 PCT/AU0O/O1O75

-39-

6 IMAGE RAM 11

The Image RAM 11 is used to store the captured image 42. The Image RAM is multi-level

Flash (2-bits per cell) so that the image is retained after the power has been shut off.

The total amount of memory required for the planarized linear RGB image is 1,500,000 bytes

(approximately 1.5 MB) arranged as follows:
5 · R: 750 x 500 =375,000 bytes

• B: 750 x 500 =375,000 bytes

• G: 750 x 1000 =750,000 bytes

The image is written by the Image Capture Unit, and read by both the Image Histogram Unit

8 and the Print Generator Unit 99. The CPU 10 does not have direct random access to this image

memory. It must access the image pixels via the Image Access Unit.

10 7 IMAGE CAPTURE UNIT 12

The Image Capture Unit contains all the functionality required by the Image Capture Chain,

as described in Section 3.1. The Image Capture Unit accepts pixel data via the Image Sensor Interface

98, linearizes the RGB data via a lookup table 96, and finally writes the linearized RGB image out to

RAM in planar format. The process is shown in Figure 33.

7.1 Image Sensor Interface 98
15

The Image Sensor Interface (ISI) 98 is a state machine that sends control information to the

CMOS Image Sensor, including frame sync pulses and pixel clock pulses in order to read the image.

Most of the ISI is likely to be a sourced cell from the image sensor manufacturer. The ISI is itself

controlled by the Image Capture Unit State Machine 97.

7.1.1 Image Sensor Format

Although a variety of image sensors are available, we only consider the Bayer color filter
2θ array (CFA). The Bayer CFA has a number of attributes which are defined here.

The image captured by the CMOS sensor (via a taking lens) is assumed to have been

sufficiently filtered so as to remove any aliasing artifacts. The sensor itself has an aspect ratio of 3:2,

with a resolution of 1500 χ 1000 samples. The most likely pixel arrangement is the Bayer color filter

array (CFA), with each 2x2 pixel block arranged in a 2G mosaic as shown in Figure 15:

Each contone sample of R, G, or B (corresponding to red, green, and blue respectively) is

25 10-bits. Note that each pixel of the mosaic contains information about only one of R, G, or B. Estimates

of the missing color information must be made before the image can be printed out.

V» ι.»
WO 01/20549 PCT/AUOO/01075

5

10

15

20

25

-40-
The CFA is considered to perform some amount of fixed pattern noise (FPN) suppression.

Additional FPN suppression may required.

7.2 Lookup Table 96

The lookup table 96 is a ROM mapping the sensor’s RGB to a linear RGB. It matches the

Linearize RGB process 40 described in Section 3.1.2. As such, the ROM is 3 KBytes (3 χ 1024 χ 8-

bits). 10 bits of address come from the ISI, while the 2 bits of TableSelect are generated by the Image

Capture Unit's State Machine 97.

7.3 State Machine 97

The Image Capture Unit's State Machine 97 generates control signals for the Image Sensor

Interface 1, and generates addresses for linearizing the RGB 40 and for planarizing the image data 41.

The control signals sent to the ISI 98 inform the ISI to start capturing pixels, stop capturing

pixels etc.

The 2-bit address sent to the Lookup Table 96 matches the current line being read from the

ISI. For even lines (0, 2, 4 etc.), the 2-bit address is Red, Green, Red, Green etc. For odd lines (1, 3, 5

etc.), the 2-bit address is Green, Blue, Green, Blue. This is true regardless of the orientation of the

camera.

The 21-bit address sent to the Image RAM 11 is the write address for the image. Three

registers hold the current address for each of the red, green, and blue planes. The addresses

increment as pixels are written to each plane.

7.3.1 Registers

The Image Capture Unit contains a number of registers:

Table 15. Registers in Image Capture Unit

Name Bits Description
MaxPixels 12 Number of pixels each row
MaxRows 12 Number of rows of pixels in image
CurrentPixel 12 Pixel currently being fetched
CurrentRow 12 Row currently being processed
NextR 21 The address in Image RAM to store the next Red pixel. Set to start

address of red plane before image capture. After image capture, this
register will point to the byte after the red plane.

NextG 21 The address in Image RAM to store the next Green pixel. Set to start
address of green plane before image capture. After image capture,
this register will point to the byte after the green plane.

ι»
WO 01/20549 PCT/AU0O/01075

-41 -

5

10

15

20

25

Table 15. Registers in Image Capture Unit

Name Bits Description
NextB 21 The address in Image RAM to store the next Blue pixel. Set to start

address of blue plane before image capture. After image capture, this
register will point to the byte after the blue plane.

EvenEven 2 Address to use for even rows / even pixels
EvenOdd 2 Address to use for even rows / odd pixels
OddEven 2 Address to use for odd rows / even pixels
OddOdd 2 Address to use for odd rows / odd pixels
Go 1 Writing a 1 here starts the capture. Writing a 0 here stops the image

capture. A 0 is written here automatically by the state machine after
MaxRows of MaxPixels have ben captured.

In addition, the Image Sensor Interface 98 contains a number of registers. The exact

registers will depend on the Image Sensor 1 chosen.

8 IMAGE ACCESS UNIT 9

The Image Access Unit 9 produces the means for the CPU 10 to access the image in

ImageRAM 11. The CPU 10 can read pixels from the image in ImageRAM 11 and write pixels back.

Pixels could be read for the purpose of image storage (e.g. via the USB) 17, or for simple

image processing. Pixels could be written to ImageRAM 11 after the image processing, as a previously

saved image (loaded via USB), or images for test pattern purposes. Test patterns could be synthetic

images, specific test images (loaded via the USB) or could be 24-bit nozzle firing values to be directly

loaded into the printhead via the test mode of the Print Generator Unit 99.

The Image Access Unit 9 is a straightforward access mechanism to ImageRAM 11, and

operates quite simply in terms of 3 registers as shown in Table 16.

Table 16. IAU Registers

Name Bits Description
ImageAddress 21 Address to read or write in ImageRAM
Mode 3 0 = Read from ImageAddress into Value.

1 = Write Value to ImageAddress.
Value 8 Value stored at ImageAddress (if Mode = Read)

Value to store at ImageAddress (if Mode = Write)

The structure of the Image Access Unit is very simple, as shown in Figure 35.

The State Machine 101 simply performs the read/write from/to ImageRAM 11 whenever the

CPU 10 writes to the Mode register.

C*
WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-42­

9 IMAGE HISTOGRAM UNIT 8

The Image Histogram Unit (IHU) 8 is designed to generate histograms of images as required

by the Print Image Processing Chain described in Section 3.2.2. The IHU only generates histograms for

planar format images with samples of 8 bits each.

The Image Histogram Unit 8 is typically used three times per print. Three different histograms

are gathered, one per color plane. Each time a histogram is gathered, the results are analyzed in order

to determine the low and high thresholds, scaling factors etc. for use in the remainder of the print

process. For more information on how the histogram should be used, see Section 3.2.2.2 and Section

3.2.4.

9.1 Histogram RAM 102

The histogram itself is stored in a 256-entry RAM 102, each entry being 20 bits. The

histogram RAM is only accessed from within the IHU. Individual entries are read from and written to as

20-bit quantities.

9.2 State Machine and Registers 103

The State Machine 103 follows the pseudocode described in Section 3.2.2.1. It is controlled

by the registers shown in Table 17.

Table 17. Registers in Image Histogram Unit

Name Bits Description
TotalPixels 20 The number of pixels to count (decrements until 0)
StartAddress 21 Where to start counting from
PixelsRemaining 20 How many pixels remain to be counted
PixelValue 8 A write to this register loads PixelCount with the PixelValue

entry from the histogram.
PixelCount 20 The number of PixelValue pixels counted in the current his­

togram. It is valid after a write to PixelValue.
ClearCount 1 Determines whether the histogram count will be cleared at

the start of the histogram process. A 1 causes the counts to
be cleared, and a 0 causes the counts to remain untouched
(i.e. the next histogram adds to the existing counts).

Go 1 Writing a 1 here starts the histogram process. Writing a 0
here stops the histogram process. A 0 is written here auto­
matically by the state machine after TotalPixels has counted
down to 0.

The typical usage of the registers is to set up TotalPixels with the total number of pixels to

include in the count (e.g. 375,000 for red), StartAddress with the address of the red plane, ClearCount

iw®?®

WO 01/20549 PCT/AU00/01075

-43-
with 1, and write a 1 to the Go register. Once the count has finished, the individual values in the

histogram can be determined by writing 0-255 to PixelValue and reading the corresponding PixelCount.

10 PRINTH EAD INTERFACE 105

The Printhead Interface (PHI) 105 is the means by which the PCP 3 loads the Memjet

printhead 2 with the dots to be printed, and controls the actual dot printing process. The PHI is a logical

wrapper for a number of units, namely:

• a Memjet Interface (MJI) 15, which transfers data to the Memjet printhead, and controls the

nozzle firing sequences during a print.

• a Print Generator Unit (PGU) 99 is an implementation of most of the Print Chain described in

Section 3.2 on page 24, as well as providing a means of producing test patterns. The PGU

takes a planarized linear RGB obtained from a CFA format captured image from the Imag-

eRAM 11, and produces a 1600 dpi dithered CMY image in real time as required by the

Memjet Interface 15. In addition, the PGU has a Test Pattern mode, which enables the CPU

10 to specify precisely which nozzles are fired during a print.

The units within the PHI are controlled by a number of registers that are programmed by the

CPU.

The internal structure of the Printhead Interface is shown in Figure 37.

10.1 Memjet Interface 15

The Memjet Interface (MJI) 15 connects the PCP to the external Memjet printhead, providing

both data and appropriate signals to control the nozzle loading and firing sequences during a print.

The Memjet Interface 15 is simply a State Machine 106 (see Figure 38) which follows the

printhead loading and firing order described in Section 2.2, and includes the functionality of the Preheat

cycle and Cleaning cycle as described in Section 2.4.1 and Section 2.4.2.

The MJ115 loads data into the printhead from a choice of 2 data sources:

• All 1s. This means that all nozzles will fire during a subsequent Print cycle, and is the stan­

dard mechanism for loading the printhead for a Preheat or Cleaning cycle.

• From the 24-bit input held in the Transfer register of the PGU 99. This is the standard means

of printing an image, whether it be a captured photo or test pattern. The 24-bit value from the

PGU is directly sent to the printhead and a 1 -bit ‘Advance* control pulse is sent to the PGU.

At the end of each line, a 1 -bit ‘AdvanceLine* pulse is also sent to the PGU.

The MJI 15 must be started after the PGU 99 has already prepared the first 24-bit transfer

value. This is so the 24-bit data input will be valid for the first transfer to the printhead.

WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-44-
The MJI 15 is therefore directly connected to the Print Generator Unit 99 and the external

printhead 2. The basic structure is shown in Figure 38.

10.1.1 Connections to Prn.crt£ad

The MJI 15 has the following connections to the printhead 2, with the sense of input and

output with respect to the MJ115. The names match the pin connections on the printhead (see Section

2)-

Table 18. Printhead Connections

Name #Pins I/O Description
Chromapod­
Select

4 o Select which chromapod will fire (0-9)

NozzleSelect 4 0 Select which nozzle from the pod will fire (0-9)
AEnable 1 o Firing pulse for phasegroup A
BEnable 1 0 Firing pulse for phasegroup B
CDataln(0-7] 8 0 Cyan output to cyan shift register of segments 0-7
MDataln[0-7] 8 0 Magenta input to magenta shift register of segments 0-7
YDataln[0-7] 8 o Yellow input to yellow shift register of segments 0-7
SRCIock 1 o A pulse on SRCIock (ShiftRegisterClock) loads the current

values from CDataln[0-7], MDataln[0-7] and YDataln[0-7]
into the 24 shift registers of the printhead

PTransfer 1 0 Parallel transfer of data from the shift registers to the print­
head's internal NozzleEnable bits (one per nozzle).

SenseSeg-
Enable

1 o A pulse on SenseSegEnable ANDed with data on
CDatalnjn] selects the sense lines for segment n.

Tsense 1 I Temperature sense
Vsense 1 I Voltage sense
Rsense 1 I Resistivity sense
Wsense 1 I Width sense
TOTAL 41

10.1.2 Firing Pulse Duration

The duration of firing pulses on the AEnable and BEnable lines depend on the viscosity of

the ink (which is dependent on temperature and ink characteristics) and the amount of power available

to the printhead. The typical pulse duration range is 1.3 to 1.8 ps. The MJI therefore contains a

programmable pulse duration table, indexed by feedback from the printhead. The table of pulse

durations allows the use of a lower cost power supply, and aids in maintaining more accurate drop

ejection.

The Pulse Duration table has 256 entries, and is indexed by the current Vsense and Tsense

settings. The upper 4-bits of address come from Vsense, and the lower 4-bits of address come from

ι·
WO 01/20549 PCT/AUQ0/01075

5

10

15

20

25

-45-
Tsense. Each entry is 8 bits, and represents a fixed point value in the range of 0-4ps. The process of

generating the AEnable and BEnable lines is shown in Figure 39.

The 256-byte table is written by the CPU 10 before printing the photo. Each 8-bit pulse

duration entry in the table combines:

• Brightness settings

• Viscosity curve of ink (from the QA Chip) 5

• Rsense

• Wsense

• Tsense

• Vsense

10.1.3 Dot Counts

The MJI 15 maintains a count of the number of dots of each color fired from the printhead 2.

The dot count for each color is a 32-bit value, individually cleared under processor control. Each dot

count can hold a maximum coverage dot count of 69 6-inch prints, although in typical usage, the dot

count will be read and cleared after each print.

While in the initial Printcam product, the consumable contains both paper and ink, it is

conceivable that a different Printcam model has a replaceable ink-only consumable. The initial

Printcam product can countdown the amount of millimeters remaining of paper (stored in the QA chip 5

- see Section 5.2) to know whether there is enough paper available to print the desired format. There is

enough ink for full coverage of all supplied paper. In the alternative Printcam product, the dot counts

can be used by the CPU 10 to update the QA chip 5 in order to predict when the ink cartridge runs out

of ink. The processor knows the volume of ink in the cartridge for each of C, M, and Y from the QA chip

5. Counting the number of drops eliminates the need for ink sensors, and prevents the ink channels

from running dry. An updated drop count is written to the QA chip 5 after each print. A new photo will

not be printed unless there is enough ink left, and allows the user to change the ink without getting a

dud photo which must be reprinted.

The layout of the dot counter for cyan is shown in Figure 40. The remaining 2 dot counters

(MDotCount and YDotCount, for magenta and yellow respectively) are identical in structure.

10.1.4 Registers

The CPU 10 communicates with the MJ115 via a register set. The registers allow the CPU to

parameterize a print as well as receive feedback about print progress. '

ο
WO 01/20549 PCT/AU00/01075

-46-
The following registers are contained in the MJI:

5

10

15

20

25

Table 19. Memjet Interface Registers

Register Name Description
Print Parameters
NumTransfers The number of transfers required to load the printhead (usually 800). This

is the number of pulses on the SRCIock and the number of 24-bit data
values to transfer for a given line.

PulseDuration Fixed point number to determine the duration of a single pulse on the Col­
orEnable lines. Duration range = 0 - 6 ps.

NumLines The number of Load/Print cycles to perform.
Monitoring the Print
Status The Memjet Interface's Status Register
LinesRemaining The number of lines remaining to be printed. Only valid while Go=1.

Starting value is NumLines.
TransfersRemain-
ing

The number of transfers remaining before the Printhead is considered
loaded for the current line. Only valid while Go=1.

SenseSegment The 8-bit value to place on the Cyan data lines during a subsequent feed­
back SenseSegSelect pulse. Only 1 of the 8 bits should be set, corre­
sponding to one of the 8 segments.

SetAIINozzles If non-zero, the 24-bit value written to the printhead during the LoadDots
process is all 1s, so that all nozzles will be fired during the subsequent
PrintDots process. This is used during the preheat and cleaning cycles.
If 0, the 24-bit value written to the printhead comes from the Print Gener­
ator Unit. This is the case during the actual printing of the photo and any
test images.

Actions
Reset A write to this register resets the MJI, stops any loading or printing pro­

cesses, and loads all registers with 0.
SenseSegSelect A write to this register with any value clears the Feedback bit of the Sta­

tus register, and sends a pulse on the SenseSegSelect line if the Load­
ingDots and PrintingDots status bits are all 0. If any of the status bits are
set, the Feedback bit is cleared and nothing more is done.
Once the various sense lines have been tested, the values are placed in
the Tsense, Vsense, Rsense, and Wsense registers, and then the Feed­
back bit of the Status register is set. The feedback continues during any
subsequent print operations.

Go A write of 1 to this bit starts the LoadDots / PrintDots cycles. A total of
NumLines lines are printed, each containing NumTransfers 24-bit trans­
fers. As each line is printed, LinesRemaining decrements, and Transfer-
sRemaining is reloaded with NumTransfers again. The status register
contains print status information. Upon completion of NumLines, the load-
ing/printing process stops and the Go bit is cleared. During the final print
cycle, nothing is loaded into the printhead.
A write of 0 to this bit stops the print process, but does not clear any other
registers.

WO 01/20549 PCT/AU0O/O1O75

-47-
Table 19. Memjet Interface Registers

Register Name Description
ClearCounts A write to this register clears the CDotCount, MDotCount, and YDot­

Count, registers if bits 0,1, or 2 respectively are set. Consequently a
write of 0 has no effect.

Feedback
Tsense Read only feedback of Tsense from the last SenseSegSelect pulse sent

to segment SenseSegment. Is only valid if the FeedbackValid bit of the
Status register is set.

Vsense Read only feedback of Vsense from the last SenseSegSelect pulse sent
to segment SenseSegment. Is only valid if the FeedbackValid bit of the
Status register is set.

Rsense Read only feedback of Rsense from the last SenseSegSelect pulse sent
to segment SenseSegment. Is only valid if the FeedbackValid bit of the
Status register is set.

Wsense Read only feedback of Wsense from the last SenseSegSelect pulse sent
to segment SenseSegment. Is only valid if the FeedbackValid bit of the
Status register is set.

CDotCount Read only 32-bit count of cyan dots sent to the printhead.
M DotCount Read only 32-bit count of magenta dots sent to the printhead.
YDotCount Read only 32-bit count of yellow dots sent to the printhead.

The MJI’s Status Register is a 16-bit register with bit interpretations as follows:

Table 20. MJI Status Register

Name Bits Description
LoadingDots 1 If set, the MJI is currently loading dots, with the number of dots

remaining to be transferred in TransfersRemaining.
If clear, the MJI is not currently loading dots

PrintingDots 1 If set, the MJI is currently printing dots.
If clear, the MJI is not currently printing dots.

PrintingA 1 This bit is set while there is a pulse on the AEnable line
PrintingB 1 This bit is set while there is a pulse on the BEnable line
FeedbackValid 1 This bit is set while the feedback values Tsense, Vsense,

Rsense, and Wsense are valid.
Reserved 3 -
PrintingChromapod 4 This holds the current chromapod being fired while the Printing­

Dots status bit is set.
PrintingNozzles 4 This holds the current nozzle being fired while the PrintingDots

status bit is set.

10.1.5 Preheat and Cleaning Cycles

The Cleaning and Preheat cycles are simply accomplished by setting appropriate registers:

• SetAIINozzles = 1

WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-48-

• Set the PulseDuration register to either a low duration (in the case of the preheat mode) or to

an appropriate drop ejection duration for cleaning mode.

• Set NumLines to be the number of times the nozzles should be fired

• Set the Go bit and then wait for the Go bit to be cleared when the print cycles have com­

pleted.

10.2 Print Generator Unit 99

The Print Generator Unit (PGU) 99 is an implementation of most of the Print Chain described

in Section 3.2, as well as providing a means of producing test patterns.

From the simplest point of view, the PGU provides the interface between the Image RAM 11

and the Memjet Interface 15, as shown in Figure 41. The PGU takes a planarized linear RGB obtained

from a CFA format captured image from the ImageRAM, and produces a 1600 dpi dithered CMY image

in real time as required by the Memjet Interface. In addition, the PGU 99 has a Test Pattern mode,

which enables the CPU 10 to specify precisely which nozzles are fired during a print. The MJI 15

provides the PGU 99 with an Advance pulse once the 24-bits have been used, and an AdvanceLine

pulse at the end of the line.

The PGU 99 has 2 image processing chains. The first, the Test Pattern mode, simply reads

data directly from Image RAM 11, and formats it in a buffer ready for output to the MJI. The second

contains the majority of Print Chain functions (see Section 3.2). The Print Chain shown in Fig. 18

contains the functions:

• Gather Statistics 60

• Rotate Image 61

• White Balance 62

• Range Expansion 63

• Resample 64

• Sharpen 65

• Convert to CMY 66

• Up-lnterpolate 67

• Halftone 68

• Reformat for Printer 69

The PGU 99 contains all of these functions with the exception of Gather Statistics 60. To

perform the Gather Statistics step, the CPU 10 calls the Image Histogram Unit 8 three times (once per

color channel), and applies some simple algorithms. The remainder of the functions are the domain of

the PGU 99 for reasons of accuracy and speed: accuracy, because there would be too much memory

WO 01/20549 PCT/AU00/01075

-49-

required to hold the entire image at high accuracy, and speed, because a simple CPU 10 cannot keep

up with the real-time high-speed demands of the Memjet printhead 2.

The PGU 99 takes as input a variety of parameters, including RGB to CMY conversion

tables, constants for performing white balance and range expansion, scale factors for resampling, and

image access parameters that allow for rotation.

The two process chains can be seen in Figure 20. The most direct chain goes from the

Image RAM 11 to Buffer 5 via the Test Pattern Access process110. The other chain consists of 5

processes, all running in parallel. The first process 111 performs Image Rotation, White Balance and

Range Expansion. The second process 112 performs Resampling. The third process 65 performs

sharpening, the fourth process 66 performs color conversion. The final process 113 performs the up-

interpolation, halftoning, and reformatting for the printer. The processes are connected via buffers, only

a few bytes between some processes, and a few kilobytes for others.

We look at these processes and buffers in a primarily reverse order, since the timing for the

printhead drives the entire process. Timings for particular processes and buffer size requirements are

then more apparent. In summary however, the buffer sizes are shown in Table 21.

Table 21. Buffer sizes for Print Generator Unit

Buffer
Size

(bytes) Composition of Buffer
Buffer 1 188 Red Buffer = 6 lines of 6 entries @ 10-bits each = 45 bytes

Blue Buffer = 6 lines of 6 entries @ 10-bits each = 45 bytes
Green Buffer = 13 lines of 6 entries @ 10-bits each = 97.5 bytes

Buffer 2 24 6 χ 4 RAM
3 lines of 4 entries of L @ 8-bits each = 12 bytes
3 colors χ 4 entries @ 8-bits each = 12 bytes

Buffer 3 3 3 colors(RGB) @ 8-bits each
Buffer 4 23,040 3 colors(CMY) χ 6 lines χ 1280 contone pixels @ 8-bits each
Buffer 5 9 3 χ 24 bits
TOTAL 23,264

Apart from a number of registers, some of the processes have significant lookup tables or

memory components. These are summarized in Table 22.

Table 22. Memory requirements within PGU Processes

Unit
Size

(bytes) Composition of Requirements
Rotate/ White Balance / Range
Expand

0

Resample / Convert to L 1,152 3 kernels, each 64x4x12-bits
Sharpen 0

WO 01/20549 PCT/AU0O/O1O75

-50-
Table 22. Memory requirements within PGU Processes

Unit
Size

(bytes) Composition of Requirements
Convert to CMY 14,739 3 conversion tables, each 17x17x17x8-bits
Uplnterpolate / Halftone / Reformat 2,500 Dither Cell, 50x50x8-bits
Test Pattern Access 0
TOTAL 18,391

10.2.1 Test Pattern Access

The Test Pattern Access process 110 is the means by which test patterns are produced.

Under normal user circumstances, this process will not be used. It is primarily for diagnostic purposes.

The Test Pattern Access 110 reads the Image RAM 11 and passes the 8-bit values directly

to Buffer 5 118 for output to the Memjet Interface. It does not modify the 8-bit values in any way. The

data in the Image RAM 11 would be produced by the CPU 10 using the Image Access Unit 9.

The data read from Image RAM 11 is read in a very simple wraparound fashion. Two

registers are used to describe the test data: the start address of the first byte, and the number of bytes.

When the end of the data is reached, the data is read again from the beginning.

The structure of the Test Pattern /''"•ess Unit 110 is shown in Figure 43.

As can be seen in Figure 43, the Test Pattern Access Unit 110 is little more than an Address

Generator 119. When started, and with every AdvanceLine signal, the generator reads 3 bytes,

produces a TransferWriteEnable pulse, reads the next 3 bytes, and then waits for an Advance pulse. At

the Advance pulse, the TransferWriteEnable pulse is given, the next 3 bytes are read, and the wait

occurs again. This continues until the AdvanceLine pulse, whereupon the process begins again from

the current address.

In terms of reading 3 bytes, the Address Generator 119 simply reads three 8-bit values from

ImageRAM 11 and writes them to Buffer 5118. The first 8-bit value is written to Buffer 5’s 8-bit address

0, the next is written to Buffer 5’s 8-bit address 1, and the third is written to Buffer 5’s 8-bit address 2.

The Address Generator 119 then waits for an Advance pulse before doing the same thing again.

The addresses generated for the Image RAM 11 are based on a start address and a byte

count as shown in Table 23.

Table 23. Test Pattern Access Registers

Register Name Description
TestModeEnabled If 1, TestMode is enabled.

If 0, TestMode is not enabled.

WO 01/20549 PCT/AU00/01075

-51 -
Table 23. Test Pattern Access Registers

Register Name Description
DataStart Start Address of test data in Image RAM
DataLength Number of 3 bytes in test data

The following pseudocode illustrates the address generation. The AdvanceLine and Advance

pulses are not shown.

Do Forever

Adr - DataStart

Remaining = DataLength

Read Adr into Buffer 5 (0), Adr=Adr+l

Read Adr into Buffer 5 (1), Adr=Adr+l

Read Adr into Buffer 5 (2) , Adr=Adr+l

Remaining = Remaining-1

if (Remaining = 0)

Remaining = DataLength

EndDo

It is the responsibility of the CPU 10 to ensure that the data is meaningful for the printhead 2.

Byte 0 is the nozzle-fire data for the 8 segments of cyan (bit 0 = segment 0 etc.). Byte 1 is the same for

magenta, and Byte 2 for yellow. Alternate sets of 24 bits are for odd/even pixels separated by 1

horizontal dot line.

10.2.2 Buffer 5118

Buffer 5 118 holds the generated dots from the entire Print Generation process. Buffer 5

consists of a 24-bit shift register to hold dots generated one at a time from the UHRU 113

(Uplnterpolate-Halftone and Reformat Unit), 3 8-bit registers to hold the data generated from the TPAU

(Test Pattern AccessUnit), and a 24-bit register used as the buffer for data transfer to the MJI (Memjet

Interface). The Advance pulse from the MJI loads the 24-bit Transfer register with all 24-bits, either

from the 3 8-bit registers or the single 24-bit shift register.

Buffer 5 therefore acts as a double buffering mechanism for the generated dots, and has a

structure as shown in Figure 44.

10.2.3 Buffer 4 117

Buffer 4 117 holds the calculated CMY intermediate resolution (1280-res) contone image.

Buffer 4 is generated by the Color Conversion process 66, and accessed by the Up-lnterpolate,

Halftone and Reformat process 113 in order to generate output dots for the printer.

WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-52-
The size of the Contone Buffer is dependent on the physical distance between the nozzles

on the printhead. As dots for one color are being generated for one physical line, dots for a different

color on a different line are being generated. The net effect is that 6 different physical lines are printed

at the one time from the printer - odd and even dots from different output lines, and different lines per

color. This concept is explained and the distances are defined in Section 2.1.1.

The practical upshot is that there is a given distance in high-res dots from the even cyan dots

through the magenta dots to the odd yellow dots. In order to minimize generation of RGB and hence

CMY, the medium res contone pixels that generate those high-res dots are buffered in Buffer 4.

Since the ratio of medium-res lines to high-res lines is 1:5, each medium res line is sampled

5 times in each dimension. For the purposes of buffer lines, we are only concerned with 1 dimension,

so only consider 5 dot lines coming from a single pixel line. The distance between nozzles of different

colors is 4-8 dots (depending on Memjet parameters). We therefore assume 8, which gives a

separation distance of 16 dots, or 17 dots in inclusive distance. The worst case scenario is that the 17

dot lines includes the last dot line from a given pixel line. This implies 5 pixel lines, with dot lines

generated as 1, 5, 5, 5,1, and allows an increase of nozzle separation to 10.

To ensure that the contone generation process writing to the buffer does not interfere with

the dot generation process reading from the buffer, we add an extra medium-res line per color, for a

total of 6 lines per color.

The contone buffer is therefore 3 colors of 6 lines, each line containing 1280 8-bit contone

values. The total memory required is 3 χ 6 χ 1280 = 23040 bytes (22.5 KBytes). The memory only

requires a single 8-bit read per cycle, and a single 8-bit write every 25 cycles (each contone pixel is

read 25 times). The structure of Buffer 4 is shown in Figure 45.

Buffer 4 can be implemented as single cycle double access (read and write) RAM running at

the nominal speed of the printhead dot generation process, or can be implemented as RAM running 4%

faster with only a single read or write access per cycle.

Buffer 4 is set to white (all 0) before the start of the print process.

10.2.4 Uplnterpolate, Halftone, and Reformat For Printer

Although the Up-lnterpolate, Halftone, and Reformat For Printer tasks 113 are defined as

separate tasks by Section 3.2.8, Section 3.2.9 and Section 3.2.10 respectively, they are implemented

as a single process in the hardware implementation of the PCP 3.

The input to the Up-interpolate, Halftone and Reformat Unit (UHRU) 113 is the contone

buffer (Buffer 4) 117 containing the pre-calculated CMY 1280-res (intermediate resolution) image. The

output is a set of 24-bit values in the correct order to be sent to the Memjet Interface 15 for subsequent

ί»
WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-53-
output to the printhead via Buffer 5118. The 24 output bits are generated 1 bit at a time, and sent to the

24-bit shift register in Buffer 5118.

The control of this process occurs from the Advance and AdvanceLine signals from the MJI

15. When the UHRU 113 starts up, and after each AdvanceLine pulse. 24 bits are produced, and are

clocked into the 24-bit shift register of Buffer 5 by a ShiftWriteEnable signal. After the 24th bit has been

clocked in, a TransferWriteEnable pulse is given, and the next 24 bits are generated. After this, the

UHRU 113 waits for the Advance pulse from the MJI. When the Advance pulse arrives, the

TransferWriteEnable pulse is given to Buffer 5 118, and the next 24 bits are calculated before waiting

again. In practice, once the first Advance pulse is given, synchronization has occurred and future

Advance pulses will occur every 24 cycles thereafter.

The Uplnterpolate, Halftone and Reformat process can be seen in Figure 46.

The Halftone task is undertaken by the simple 8-bit unsigned comparator 120. The two inputs

to the comparator come from the Staggered Dither Cell 121 and Buffer 4 117. The order that these

values are presented to the Unsigned Comparator 120 is determined by the Address Generator State

Machine 122, which ensures that the addresses into the 1280-res image match the segment-oriented

order required for the printhead. The Address Generator State Machine 122 therefore undertakes the

Up-Interpolation and Reformatting for Printer tasks. Rather than simply access an entire line at a time

at high resolution, and then reformat the line according to the printer lookup requirements (as described

in Section 3.2.10), the reformatting is achieved by the appropriate addressing of the contone buffer

(Buffer 4) 117, and ensuring that the comparator 120 uses the correct lookup from the dither cell 121 to

match the staggered addresses.

The Halftoning task is the same as described by Section 3.2.9. However, since the dot

outputs are generated in the correct order for the printhead, the size of the Dither Cell 121 is chosen so

that it divides evenly into 800. Consequently a given position in the dither cell for one segment will be

the same for the remaining 7 segments. A 50x50 dither cell provides a satisfactory result. As described

in Section 3.2.9, the same position in the dither cell can be used for different colors due to the fact that

different lines are being generated at the same time for each of the colors. The addressing for the dither

cell is therefore quite simple. We start at a particular row in the Staggered Dither cell (e.g. row 0). The

first dither cell entry used is Entry 0. We use that entry 24 times (24 cycles) to generate the 3 colors for

all 8 segments, and then advance to Entry 1 of row 0. After Entry 49, we revert back to Entry 0. This

continues for all 19,200 cycles in order to generate all 19,200 dots. The Halftone Unit then stops and

waits for the AdvanceLine pulse which causes the address generator to advance to the next row in the

dither cell.

The Staggered Dither cell 121 is so called because it differs from a regular dither cell by

having the odd and even lines staggered. This is because we generate odd and even pixels (starting

w WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-54-
from pixel 0) on different lines, and saves the Address Generator 122 from having to advance to the

next row and back again on alternative sets of 24 pixels. Figure 25 shows a simple dither cell 93, and

how to map it to a staggered dither cell 121 of the same size. Note that for determining the “oddness” of

a given position, we number the pixels in a given row 0,1, 2 etc.

The 8-bit value from Buffer 4 117 is compared (unsigned) to the 8-bit value from the

Staggered Dither Cell 121. If the Buffer 4 pixel value is greater than or equal to the dither cell value, a

“1" bit is output to the shift register of Buffer 5 118. Otherwise a “0” bit is output to the shift register of

Buffer 5.

In order to halftone 19,200 contone pixels, 19,200 contone pixels must be read in. The

Address Generator Unit 122 performs this task, generating the addresses into Buffer 4 117, effectively

implementing the Uplnterpolate task. The address generation for reading. Buffer 4 is slightly more

complicated than the address generation for the dither cell, but not overly so.

The Address Generator for reading Buffer 4 only begins once the first row of Buffer 4 has

been written. The remaining rows of Buffer 4 are 0, so they will effectively be white (no printed dots).

Each of the 6 effective output lines has a register with an integer and fractional component.

The integer portion of the register is used to select which Buffer line will be read to effectively

upinterpolate the color for that particular color's odd and even pixels. 3 pixel counters are used to

maintain the current position within segment 0, and a single temporary counter P_ADR (pixel address)

is used to offset into the remaining 7 segments.

In summary then, address generation for reading Buffer 4 requires the following registers, as

shown in Table 24.

Table 24. Registers Required for Reading Buffer 4

Register Name Size
CyanEven 6 bits (3:3)
CyanOdd 6 bits (3:3)
MagentaEven 6 bits (3:3)
MagentaOdd 6 bits (3:3)
YellowEven 6 bits (3:3)
YellowOdd 6 bits (3:3)
Cyan P ADR 14 bits (11:3
Magenta P ADR 14 bits (11:3
Yellow P ADR 14 bits (11:3
P ADR 11 bits (only holds integer portion of X P ADR)

The initial values for the 6 buffer line registers is the physical dot distance between nozzles

(remember that the fractional component is effectively a divide by 5). For example, if the odd and even

ι»
WO 01/20549 PCT/AUOO/01075

-55-
output dots of a color are separated by a distance of 1 dot, and nozzles of one color are separated from

the nozzles of the next by 8 dots, the initial values would be as shown in First Line column in Table 25.

Once each set of 19,200 dots has been generated, each of these counters must increment by 1

fractional component, representing the fact that we are sampling each pixel 5 times in the vertical

dimension. The resultant values will then be as shown in Second Line column in Table 25. Note that 5:4

+ 1 = 0:0 since there are only 6 buffer lines.
5

10

15

20

25

Table 25. Example Inital Setup and Second Line Values for the 6 Buffer Line Registers

Name Calculation

First Line Second Line

Value Buff Value Buff
CyanEven Initial Position 0:0 0 0:1 0
CyanOdd CyanEven+0:1 0:1 0 0:2 0
MagentaEven CyanOdd+1:3 (8) 1:4 1 2:0 2
MagentaOdd MagentaEven+0:1 2:0 2 2:1 2
YellowEven MagentaOdd+1:3 (8) 3:3 3 3:4 3
YellowOdd YellowEven+0:1 3:4 3 4:0 4

The 6 buffer line registers then, determine which of the buffer lines is to be read for a given

color’s odd or even pixels. To determine which of the 1280 medium res pixels are read from the specific

line of Buffer 4, we use 3 Pixel Address counters, one for each color, and a single temporary counter

(P_ADR) which is used to index into each segment. Each segment is separated from the next by 800

dots. In medium res pixels this distance is 160. Since 800 is divisible exactly by 5, we only need use the

integer portion of the 3 Pixel Address counters. We generate the 8 addresses for the even cyan pixels,

then the 8 addresses for the even magenta, and finally the 8 addresses for the even yellow. We then do

the same for the odd cyan, magenta, and yellow pixels. This process of two sets of 24 bits - 24 even

then 24 odd, is performed 400 times. We can then reset the Pixel Address counters (X_P_ADR) to 0

and advance the 6 buffer line registers. Every 5 line advances, the next buffer line is now free and

• ready for updating (by the Convert to CMY process). Table 26 lists the steps in a simple form.

Table 26. Address Generation for Reading Buffer 4

Address Calculation Comment
P_ADR =
Cyan_P_ADR
Cyan_P_ADR += 1
(mod5)

Generate address for even pixel in
Cyan segment 0 and advance to next
pixel for cyan

1 CyanEven:P ADR P ADR +=160 Advance to segment 1 (cyan)
2 CyanEven:P ADR P ADR+= 160 Advance to segment 2 (cyan)
3 CyanEven:P ADR P ADR +=160 Advance to segment 3 (cyan)
4 CyanEven:P ADR P ADR +=160 Advance to segment 4 (cyan)
5 CyanEven:P ADR P ADR += 160 Advance to segment 5 (cyan)

WO 01/20549 PCT/AU00/01075

-56-
Table 26. Address Generation for Reading Buffer 4

Address Calculation Comment
6 CyanEven:P ADR P ADR += 160 Advance to segment 6 (cyan)
7 CyanEven:P ADR PADR += 160 Advance to segment 7 (cyan)
8 CyanEven:P_ADR P_ADR =

Magenta_P_ADR
Magenta_P_ADR += 1
(mod5)

Generate address for even pixel in
Magenta segment 0 and advance to
next pixel for magenta

9 MagentaEven:P ADR P ADR +=160 Advance to segment 1 (magenta)
10 MagentaEven:P ADR P ADR += 160 Advance to segment 2 (magenta)
11 MagentaEven:P ADR P ADR += 160 Advance to segment 3 (magenta)
12 MagentaEven:P ADR P ADR += 160 Advance to segment 4 (magenta)
13 MagentaEven:P ADR P ADR += 160 Advance to segment 5 (magenta)
14 MagentaEven:P ADR P ADR +=160 Advance to segment 6 (magenta)
15 MagentaEven:P ADR P ADR += 160 Advance to segment 7 (magenta)
16 MagentaEvenzPADR P ADR =

Yellow_P_ADR
Yellow_P_ADR += 1
(mod 5)

Generate address for even pixel in
Yellow segment 0 and advance to next
pixel for yellow

17 YellowEven:P ADR P ADR += 160 Advance to segment 1 (yellow)
18 YellowEven:P ADR P ADR +=160 Advance to segment 2 (yellow)
19 YellowEven:P ADR P ADR += 160 Advance to segment 3 (yellow)
20 YellowEven:P ADR P ADR += 160 Advance to segment 4 (yellow)
21 YellowEven:P ADR P ADR += 160 Advance to segment 5 (yellow)
22 YellowEven.PADR P ADR += 160 Advance to segment 6 (yellow)
23 YellowEven :P ADR P ADR += 160 Advance to segment 7 (yellow)
24 YellowEven:P_ADR P_ADR =

CyanPADR
Cyan_P_ADR += 1
(mod5)

Generate address for even pixel in
Cyan segment 0 and advance to next
pixel for cyan

25 CyanOdd:P ADR P ADR += 160 Advance to segment 1 (cyan)
etc.

The pseudocode for generating the Buffer 4 117 addresses is shown here. Note that it is

listed as a sequential set of steps. Table 26 shows a better view of the parallel nature of the operations

during the address generation.

% Calculate start positions

CyanEven = 0:0

CyanOdd = CyanEven + 0:1

MagentaEven = CyanOdd + 1:3

MagentaOdd = MagentaEven + 0:1

YellowEven = MagentaOdd + 1:3

WO 01/20549 PCT/AU00/01075

-57-
YellowOdd = YellowEven + 0:1

Do N times (depends on print size)

Cyan_P_ADR = 0

Magenta_P_ADR = 0

Yellow_P_ADR = 0

Do 400 times

% generate the even pixels for the first set of 24 bits

p_adr = Integer portion of Cyan_P_ADR

Cyan_P_ADR += 0:1

Do 8 times

ReadBuffer4(line=CyanEven, pixel=P_ADR)

P_ADR += 160

EndDo

P_ADR = Integer portion of Magenta_P_ADR

Magenta_p_Adr += 0:1

Do 8 times

■ ReadBuffer4(line=MagentaEven, pixel=P_ADR)

P_ADR += 160

EndDo

P_ADR = Integer portion of Yellow_P_ADR

Yellow_P_Adr += 0:1

Do 8 times

ReadBuffer4(line=YellowEven, pixel=P_ADR)

PADR += 160

EndDo

% generate the odd pixels for the first set of 24 bits

P_ADR = Integer portion of Cyan_P_ADR

Cyan_P_ADR += 0:1

Do 8 times

ReadBuffer4(line=CyanOdd, pixel=P_ADR)

P_ADR += 160

EndDo

P_ADR = Integer portion of Magenta_P_ADR

Magenta_P_Adr += 0:1

Do 8 times

ReadBuffer4(line=MagentaOdd, pixel=P_ADR)

P_ADR += 160

EndDo

(< WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-58-
P_ADR = Integer portion of Yellow_p_ADR

Yellow_P_Adr += 0:1

Do 8 times

ReadBufferi(line=YellowOdd, pixel=P_ADR)

P_ADR += 160

EndDo

% Now can advance to next “line*

CyanEven += 0:1

CyanOdd ♦= 0:1 '

MagentaEven += 0:1

MagentaOdd += 0:1

YellowEven += 0:1

YellowOdd += 0:1

EndDo

EndDo

10.2.5 Buffer 3 116

Buffer 3 is a straightforward set of 8-bit R, G, B values. These RGB values are the sharpened

medium res (1280-res) pixels generated by the Sharpen process 65, and read by the Convert to CMY

process 66.

It is not necessary to double buffer Buffer 3 116. This is because the read (Convert to CMY)

process 66 only requires the RGB values for the first 39 cycles, while the write (Sharpen) process 65

takes 49 cycles before being ready to actually update the RGB values.

10.2.6 Convert to CMY 68

The conversion from RGB to CMY is performed in the medium resolution space (1280-res)

as described in Section 3.2.7.

The conversion process 66must produce the contone buffer pixels (Buffer 4) 117 at a rate

fast enough to keep up with the Uplnterpolate-Halftone-Reformat process 113. Since each contone

value is used for 25 cycles (5 times in each of the x and y dimensions), the conversion process can take

up to 25 cycles. This totals 75 cycles for all 3 color components.

The process as described here only requires 14 cycles per color component, with the input

RGB values actually freed after 39 cycles. If the process is implemented with logic that requires access

to the input RGB values for more than 49 cycles, then Buffer 3 116 will require double-buffering, since

they are updated by the Sharpening process 65 after this time.

WO 01/20549 PCT/AUOO/01075

-59-
The conversion is performed as tri-linear interpolation. Three 17x17x17 lookup tables are

used for the conversion process: RGB to Cyan 90, RGB to Magenta 91, and RGB to Yellow 92.

However, since we have 25 cycles to perform each tri-linear interpolation, there is no need for a fast tri-

linear interpolation unit. Instead, 8 calls to a linear interpolation process 130 is more than adequate.

Address generation for indexing into the lookup tables is straightforward. We use the 4 most

significant bits of each 8-bit color component for address generation, and the 4 least significant bits of

each 8-bit color component for interpolating between values retrieved from the conversion tables. The

addressing into the lookup table requires an adder due to the fact that the lookup table has dimensions

of 17 rather than 16. Fortunately, multiplying a 4-bit number X by 17 is an 8-bit number XX, and

therefore does not require an adder or multiplier, and multiplying a 4 bit number by 172 (289) is only

slightly more complicated, requiring a single add.

Although the interpolation could be performed faster, we use a single adder to generate

addresses and have a single cycle interpolation unit. Consequently we are able to calculate the

interpolation for generating a single color component from RGB in 14 cycles, as shown in Table 27. The

process must be repeated 3 times in order to generate cyan, magenta, and yellow. Faster methods are

possible, but not necessary.

Table 27. Trlllnear interpolation for color conversion

Cycle Load Effective Fetch Adjust ADR register Interpolate
1 ADR = 289R
2 ADR=ADR+17G
3 ADR = ADR + B
4 P1 RGB ADR = ADR + 1
5 P2 RGB+1 ADR = ADR+16
6 P1 RG+1B ADR = ADR + 1 P3 = P1 to P2 by B
7 P2 RG+1B+1 ADR = ADR + 271
8 P1 R+1GB ADR = ADR + 1 P4 = P1 to P2 by B
9 P2 R+1GB+1 ADR = ADR + 16 P5 = P3 to P4 by G
10 P1 R+1G+1B ADR = ADR + 1 P3 = P1 to P2 by B
11 P2 R+1G+1B+1
12 P4 = P1 to P2 by B
13 P6 = P3 to P4 by G
14 V = P5 to P6 by R

As shown in Table 27, a single ADR register and adder can be used for address generation

into the lookup tables. 6 sets of 8-bit registers can be used to hold intermediate results - 2 registers hold

values loaded from the lookup tables, and 4 registers are used for the output from the interpolation unit.

Note that the input to the linear interpolation unit is always a pair of 8-bit registers P1/P2, P3/P4, and

WO 01/20549 PCT/AU00/01075

-60-
P5/P6. This is done deliberately to reduce register selection logic. In cycle 14, the “V” register 131 holds

the 8-bit value finally calculated. The 8-bit result can be written to the appropriate location in Buffer 4

117during the next cycle.

A block diagram of the Convert to CMY process 66 can be seen in Figure 48.

Assuming the process is first run to generate cyan, the resultant cyan contone pixel is stored

into the cyan 1280-res contone buffer. The process is then run again on the same RGB input to

generate the magenta pixel. This magenta contone pixel is stored into the magenta 1280-res contone

buffer. Finally, the yellow contone pixel Is generated from the same RGB input, and the resultant yellow

pixel is stored into the yellow 1280-res contone buffer).

The address generation for writing to the contone buffer (Buffer 4) 117 is straightforward. A

single address (and accompanying ColorSelect bits) is used to write to each of the three color buffers.

The Cyan buffer is written to on cycle 15, the Magenta on cycle 30, and Yellow on cycle 45. The pixel

address is incremented by 1 every 75 cycles (after all 3 colors have been written). The line being

written to increments with wrapping once every 5 AdvanceLine pulses. The order of lines being written

to is simply 0-1-2-3-4-5-0-1-2-3 etc... Thus the writes (25 χ 1280 χ 3) balance out with the reads (19200

x 5).

10.2.7 Buffer 2 115

Buffer 2 accepts the output from the Resample-CreateLuminance process 112, where a

complete RGB and L pixel is generated for a given pixel coordinate. The output from Buffer 2 115 goes

to the Sharpen process 65, which requires a 3 χ 3 set of luminance values 135 centered on the pixel

being sharpened.

Consequently, during the sharpening process 65, there is need for access to the 3 χ 3 array

of luminance values, as well as the corresponding RGB value 136for the center luminance pixel. At the

same time, the next 3 luminance values and the corresponding RGB center value must be calculated

by the Resample-CreateLuminance process 112. The logical view of accesses to Buffer 2 115 is shown

in Figure 49.

The actual implementation of Buffer 2 115 is simply as a 4 χ 6 (24 entry) 8-bit RAM, with the

addressing on read and write providing the effective shifting of values. A 2-bit column counter can be

incremented with wrapping to provide a cyclical buffer, which effectively implements the equivalent of

shifting the entire buffer’s data by 1 column position. The fact that we don't require the fourth column of

RGB data is not relevant, and merely uses 3 bytes at the saving of not having to implement complicated

shift and read/write logic. In a given cycle, the RAM can either be written to or read from. The read and

write processes have 75 cycles in which to complete in order to keep up with the printhead.

ς·
.1/ WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-61 -
10.2.8 Sharpen

The Sharpen Unit 65 performs the sharpening task described in Section 3.2.6. Since the

sharpened RGB pixels are stored into Buffer 3 116, the Sharpen Unit 65 must keep up with the Convert

to CMY process 66, which implies a complete RGB pixel must be sharpened within 75 cycles.

The sharpening process involves a highpass filter of L (a generated channel from the RGB

data and stored in Buffer 2) and adding the filtered L back into the RGB components, as described in

Table 12 within Section 3.2.6.2 on page 35. The highpass filter used is a basic highpass filter using a

3x3 convolution kernel, as shown in Figure 50.

The high pass filter is calculated over 10 cycles. The first cycle loads the temporary register

140 with 8 times the center pixel value (the center pixel shifted left by 3 bits). The next 8 cycles subtract

the remaining 8 pixel values, with a floor of 0. Thus the entire procedure can be accomplished by an

adder. Cycle 10 involves the multiplication of the result by a constant 141. This constant is the

representation of 1/9, but is a register to allow the amount to altered by software by some scale factor.

The total amount is then added to the R, G, and B values (with a ceiling of 255) and written to

Buffer 3 during cycles 72, 73, and 74. Calculating/writing the sharpened RGB values during the last 3

cycles of the 75 cycle set removes the need for double buffering in Buffer 3.

The structure of the Sharpen unit can be seen in Figure 51.

The adder unit 142 connected to Buffer 2 115 is a subtractor with a floor of 0, TMP 140 is

loaded with 8 χ the first L value during cycle 0 (of 75), and then the next 8 L values are subtracted from

it. The result is not signed, since the subtraction has a floor of 0.

During the 10th cycle (Cycle 9), the 11 bit total in TMP 140 is multiplied by a scale factor

(typically 1/9, but under software control so that the factor can be adjusted) and written back to TMP

140. Only 8 integer bits of the result are written to TMP (the fraction is truncated), so the limit from the

multiply unit is 255. If a scale factor of 1/9 is used, the maximum value written will be 226 (255 χ 8 / 9).

The scale factor is 8 bits of fraction, with the high bit representing 1/8. The variable scale factor can

take account of the fact that different print formats are the result of scaling the CFA image by a different

amount (and thus the 3x3 convolution will produce correspondingly scaled results).

The sharpened values for red, green, and blue are calculated during Cycle 72, Cycle 73, and

Cycle 74, and written to the R, G, and B registers of Buffer 3 116, one write per cycle. The calculation

performed in these 3 cycles is simply the addition of TMP to Buffer 2’s R, G, and B corresponding to the

center pixel.

Address Generation is straightforward. Writing to Buffer 3 116 is simply R, G, and B in cycles

72,73, and 74 respectively. Reading from Buffer 2 115 makes use of the cyclical nature of Buffer2. The

WO 01/20549 PCT/AU00/01075

-62-
address consists of a 2-bit column component (representing which of the 4 columns should be read),

and a 3-bit value representing L1, L2, L3, R, G, or B. The column number starts at 1 each line and

increments (with wrapping) every 75 cycles. The order of reading Buffer 2 is shown in Table 28. The C

register is the 2-bit column component of the address. All addition on C is modulo 4 (wraps within 2

bits).

Table 28. Read Access to Buffer 2 during 75 Cycle set

Cycle Address Update C
0 C, L2 C=C-1

1 C, L1
2 C, L2
3 C, L3 C=C+1
4 C, L1
5 C, L3 C=C+1
6 C, L1
7 C, L2
8 C, L3 C=C-1

9-71 No access
72 C, R
73 C.G
74 C, B C=C-1

After Cycle 74, the C register holds the column number for the next calculation set, thus

making the fetch during the next Cycle 0 valid.

Sharpening can only begin when there have been sufficient L and RGB pixels written to

Buffer 2 (so that the highpass filter is valid). The sharpen process must therefore stall until the Buffer 2

write process has advanced by 3 columns.

10.2.9 Buffer 1114

Buffer 1 holds the white-balanced and range-expanded pixels at the original capture spatial

resolution. Each pixel is stored with 10 bits of color resolution, compared to the image RAM image

storage color resolution of 8 bits per pixel.

Buffer 1 is arranged as 3 separately addressable buffers - one for each color plane of red

145, green 146, and blue 147. A simple overview of the buffers is shown in Figure 52.

During the course of 75 cycles, 16 entries are read from each of the 3 buffers 3 times by the

Resampling process 112, and up to 29 new values are written to the 3 buffers (the exact number

depends on the scale factor and the current sub-pixel position during resampling).

1« (· WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-63-
The buffers must be wide enough so that the reading and writing can occur without

interfering with one another. During the read process, 4 pixels are read from each of 6 rows. If the scale

factor is very large (e.g. we are scaling up to Panoramic), the same input pixels can be read multiple

times (using a different kernel position for resampling). Eventually, however, the next pixels will be

required. If we are not scaling up so much, the new pixels may be required before the next pixel

generation cycle (i.e. within 75 clock cycles).

Looking at the scale factors in Table 9 and Table 11, the worst case for scaling is the

Passport format 31:

• The green plane has a Δ value for Passport of 1.5625, indicating that 4 locations can be con­

tained within 6 CFA pixel positions. However, each row of green samples only holds every

alternate pixel. This means that only 4 samples are required per row (worst case is 4, not 3,

due to a worst case initial position). Movement in Y indicates the requirement of an additional

sample column, making 5. Finally, an additional sample column is required for writing. This

gives a total of 6 samples per row. 7 rows are required for a single sample. To generate the 3

sets of RGB pixels for each x position, the maximum movement in y will be 4 rows (3.125 = 2

x 1.5625). Movement X adds one sample row above and below. Consequently a total of 13

rows are required. For more details see Section 10.2.10.

• The red and blue planes have a Δ value for Passport of 0.78125, indicating that 4 locations

can be contained within 4 samples. An additional sample is required for writing while the

remaining 4 are being read. This gives a total of 5 samples per row, which is further

increased to 6 samples to match the green plane (for startup purposes). 6 rows are required

to cater for movement in y. For more details see Section 10.2.10.

Each sub-buffer is implemented as a RAM with decoding to read or write a single 10-bit

sample per cycle. The sub-buffers are summarized in Table 29, and consume less than 200 bytes.

Table 29. Sub-Buffer Summary

Buffer Composition Bits
Red Buffer 6 rows x 6 samples χ 10-bits 360
Blue Buffer 6 rows χ 6 samples χ 10-bits 360
Green Buffer 13 rows χ 6 samples χ 10 bits 780

TOTAL 1500

10.2.10 Resample and Create Luminance Channel

The Resample and Create Luminance Channel process 112 is responsible for generating the

RGB pixel value in medium resolution space by appropriate resampling the white-balanced and range-

expanded R, G, and B planar images, as described in Section 3.2.5 on page 28. In addition, the

1»

£1
{»

* WO 01/20549 PCT/AU00/01075

5

10

15

20

25

- 64 -
luminance values for the given RGB pixel, as well as the luminance values for the pixel above and

below the RGB pixel must be generated for use in the later sharpening process.

The time allowed for producing the RGB value and 3 L values is 75 cycles. Given that L is

simply the average of the minimum and maximum of R, G, and B for a given pixel location (see Section

3.2.6.1), we must effectively produce RGB values for 3 pixel coordinates - the pixel in question, and the

pixel above and below. Thus we have 75 cycles in which to calculate the 3 medium res RGB samples

and their corresponding L values.

Buffering L values (and hence RGB values) to save recalculation requires too much memory,

and in any case, we have sufficient time to generate the RGB values. Buffer 4 117 contains medium res

pixels, but cannot be used since it holds sharpened CMY pixels (instead of unsharpened RGB pixels).

10.2.10.1 Resampling

The resampling process can be seen as 3 sets of RGB generation, each of which must be

completed within 25 cycles (for a total maximum elapsed time of 75 cycles). The process of generating

a single RGB value can in turn be seen as 3 processes performed in parallel: the calculation of R, the

calculation of G, and the calculation of B, all for a given medium resol : pixel coordinate. The theory

for generating each of these values can be found in Section 3.2.5, but the upshot is effectively running

three image reconstruction filters, one on each channel of the image. In the case of the PCP, we

perform image reconstruction with 5 sample points, requiring 4 coefficients in the convolution kernel

(since one coefficient is always 0 and thus the sample point is not required).

Consequently, calculation of the medium resolution R pixel is achieved by running an image

reconstruction filter on the R data. Calculation of the medium resolution G pixel is achieved by running

an image reconstruction filter on the G data, and calculation of the medium resolution B pixel is

achieved by running an image reconstruction filter on the B data. Although the kernels are symmetric in

x and y, they are not the same for each color plane. R and B are likely to be the same kernel due to

their similar image characteristics, but the G plane, due to the rotation required for image

reconstruction, must have a different kernel. The high level view of the process can be seen in Figure

53. Address generation is not shown.

The resampling process can only begin when there are enough pixels in Bufferl for the

current pixel line being generated. This will be the case once 4 columns of data have been written to

each of the color planes in Buffer 1114. The Resampling process 112 must stall until that time.

To calculate a given color plane's medium resolution pixel value, we have 25 cycles

available. To apply the kernel to the 4x4 sample area, we apply the 1D kernel (indexed by x) on each of

the 4 rows of 4 input samples. We then apply the 1D kernel (indexed by y) on the resultant 4 pixel

values. The final result is the output resampled pixel. Applying a single coefficient each cycle gives a

WO 01/20549 PCT/AUQ0/01075

-65-
total of 16 cycles to generate the 4 intermediate values, and 4 cycles to generate the final pixel value,

for a total of 20 cycles.

With regards to precision, the input pixels are each 10 bits (8:2), and kernel coefficients are

12 bits. We keep 14 bits of precision during the 4 steps of each application of the kernel (8:6), but only

save 10 bits for the result (8:2). Thus the same convolve engine can be used when convolving in x and

y. The final output or R, G, or B is 8 bits.

The heart of the resampling process is the Convolve Unit 150, as shown in Figure 54.

The process of resampling then, involves 20 cycles, as shown in Table 30. Note that the Row

1, Pixel 1 etc. refers to the input from Buffer 1114, and is taken care of by the addressing mechanism

(see below).

Table 30. The 20 Cycle Resample

Cycle Kernel Apply Kernel to: Store Result In
1 X[1] Row 1, Pixel 1 TMP
2 X[2] Row 1, Pixel 2 TMP
3 X[3] Row 1, Pixel 3 TMP
4 X[4] Row 1, Pixel 4 TMP, V1
5 X[1] Row 2, Pixel 1 TMP
6 X[2] Row 2, Pixel 2 TMP
7 X[3] Row 2, Pixel 3 TMP
8 X[4] Row 2, Pixel 4 TMP, V2
9 X[1] Row 3, Pixel 1 TMP
10 X[2] Row 3, Pixel 2 TMP
11 X[3] Row 3, Pixel 3 TMP
12 X[4] Row 3, Pixel 4 TMP, V3
13 X[1] Row 4, Pixel 1 TMP
14 X[2] Row 4, Pixel 2 TMP
15 X[3] Row 4, Pixel 3 TMP
16 X[4] Row 4, Pixel 4 TMP, V4
17 Y[1] V1 TMP
18 Y[2] V2 TMP
19 Y[3] V3 TMP
20 Y[4] V4 TMP (for output)

10.2.10.2 Generation of L 8­

As described in Section 3.2.6.1, we must convert 80 from RGB to L for the subsequent

sharpening process. We consider the CIE 1976 L*a*b* color space, where L is perceptually uniform. To

1»
<>

(«

WO 01/20549 PCT/AU00/01075

-66-

convert from RGB to L (the luminance channel) we average the minimum and maximum of R, G, and B

as follows:

L _ MIN(R, G, B) + MAX(R, G, B)
2

5

10

15

20

25

The generation of a given pixel's R, G, and B values is performed in parallel, taking 20

cycles. The total time for the generation of L as described here, is 4 cycles. This makes the total time of

generating an RGBL pixel set 24 cycles, with 1 cycle to spare (since the process must be completed

within 25 cycles).

The value for L can thus be safely written out to Buffer 2 115 in the 25th cycle. Address

generation is described below.

A single 8-bit comparator can produce 3 bits in 3 cycles, which can subsequently be used for

selecting the 2 inputs to the adder, as shown in Table 31. The division by 2 can simply be incorporated

in the adder.

Table 31. Selection of Min and Max based on 3 comparisons

MIN MAX R>G G>B R>B
R B 1 1 xa
R G 1 0 1
G R 0 1 0
G B 0 1 1
B R 0 0 X
B G 1 0 0

a. Don't care state

Since the add merely adds the minimum to the maximum value, the order is unimportant.

Consequently, of the 2 inputs to the adder, Inputl can be a choice between R and G, while Input2 is a

choice of G and B. The logic is a minimization of the appropriate bit patterns from Table 31.

10.2.10.3 Address Generation for Buffer 2

The output from the Resampler is a single RGB pixel, and 3 luminance (L) pixels centered

vertically on the RGB pixel. The 3 L values can be written to Buffer2, one each 25 cycles. The R, G, and

B values must be written after cycle 45 and before cycle 50, since the second pixel generated is the

center pixel whose RGB values must be kept. The Buffer2 address consists of a 2-bit column

component (representing which of the 4 columns is to be written to), and a 3 bit value representing L1,

L2, L3, R, G, or B. The column number starts at 0 each line, and increments (with wrapping) every 75

cycles (i.e. after writing out L3).

WO 01/20549 PCT/AU00/01075

-67­
10.2.10.4 Address Generation for Kernel Lookup

The method of calculating the kernel address is the same as described at the end of Section

3.2.5 on page 28. Each kernel is 1 dimensional, with 64 entries in the table. The 6 most significant bits

(truncated) of the fractional component in the current kernel space are used to index into the kernel

coefficients table. For the first 16 cycles, the X ordinate is used to index the kernel, while in the next 4

cycles, the Y ordinate is used. Since the kernel is symmetric, the same kernel can be used for both X

and Y.

For each of the 1280 resampled values, we need to produce 3 pixels - the pixel in question

161, and the pixels above 160 and below 162 that pixel. Rather than generate a center pixel and then

move up and down from that center pixel, we generate a pixel 160 and generate the two pixels 161,

162 below it. The second pixel 161 generated is taken to be the center pixel. We then return to the

original row and generate the next 3 pixels in the next output position. In this way, as shown in Figure

55, we generate 3 pixels for each of the 1280 positions.

Thus we have a current position in kernel space. As we advance to the next pixel in X or Y in

original input space, we add appropriate delta values to these kernel coordinates. Looking at Figure 56,

we see the two cases for rotated and unrotated input space.

We consider the movement in X and Y as ΔΧ and AY, with their values dependent on the

print format, and hence the value of mps (see Section 3.2.5). For the green channel, ΔΧ = ΔΥ = 1/2mps.

For the red and blue channels, ΔΧ = 1/mps and AY = 0. See Table 9 and Table 11 for appropriate

values of AX and ΔΥ.

We can now apply the ΛΧ and ΔΥ values to movement within the kernel. Consequently, when

we advance in X, we add ΔΧ to X and subtract ΔΥ from Y. In the unrotated case, this merely subtracts

0 from Y. Likewise, when we advance in Y, we add ΔΥ to X and ΔΧ to Y. We can do this because

movement in X and Y differs by 90 degrees.

The address generation for kernel lookup assumes a starting position set by software, and

two deltas ΔΧ and ΔΥ with respect to movement in Y in kernel space. The address generation logic is

shown in the following pseudocode:

ColumnKemelY = StartKemelY

ColutnnKernelX = StartKernelX

Do NLines times (however many output lines there are to process)

KernelX = ColumnKernelX

KernelY = ColumnKemelY

Do 1280 times

GeneratePixel

WO 01/20549 PCT/AU0O/O1O75

Kemelx = Kerneix DeltaY

KernelY = KernelY Deltax

-68-
(movement

(movement

in

in

Y)

Y)

+

+

Generate Pixel

+KernelX = KernelX DeltaY (movement in Y)

KernelY = KernelY DeltaX (movement in Y)+

GeneratePixel

KernelX = ColumnKernelX + DeltaX (movement in X)

KernelY = ColumnKernelY - DeltaY (movement in X)

EndDo

ColumnKernelY = ColumnKernelY + DeltaX (movement in Y)

ColumnKernelX = ColumnKernelX + DeltaY (movement in Y)

EndDo

As shown in the pseudocode, the generation of 3 pixels occurs 1280 times. Associated with

the generation of each pixel is 2 additions, which can be performed during the course of the

GeneratePixei 25 cycle task. Each GeneratePixei task is 25 cycles, consisting of 4 sets of 4 cycles

indexing the kernel via Kerneix (coefficients 0, 1,2, 3), followed by 4 cycles indexing the kernel via

KernelY (coefficients 0,1,2, 3), followed by 9 wait cycles.

Note that all values are positive and fractional only. The two carry outs from the updating of

the X and Y kernel values are output to the address generation of Buffer 1 (see Section 10.2.10.5 on

page 71 below). These carry out flags simply indicate whether or not the particular ordinates for the

kernel wrapped during the mathematical operation. Wrapping can be either above 1 or below 0, but the

result is always positive.

The two carry out bits are also sent to the Rotate/WhiteBalance/RangeExpansion Unit for

use in determining the relative input lines from the image.

10.2.10.5 Address Generation for Buffer 1

The Resampler 112 reads from Bufferl 114, which consists of 3 individually addressable

buffers 145, 146 and 147 - one for each color plane. Each buffer can either be read from or written to

during each cycle. £ _ MIN(R, G, B) + MAX(R, G, B)
2

The reading process of 75 cycles is broken down into 3 sets of 25 cycles, one set of 25

cycles for the generation of each pixel. Each 25 cycle set involves 16 reads from Buffer 1 followed by 9

cycles with no access. Buffer 1 is written to during these 9 cycles. The 16 reads from Buffer 1 114 are

effectively 4 sets of 4 reads, and coincide with 4 groups of 4 reads to the kernel for each color plane.

WO 01/20549 PCT/AU00/01075

-69-
The address generation then, involves generating 16 addresses for calculating the first pixel

(followed by 9 wait cycles), generating 16 addresses for calculating the second pixel (followed by 9 wait

cycles), and finally generating the 16 addresses for the third pixel (followed by 9 wait cycles).

Each color plane has its own starting Bufferl address parameters. As the 3 sets of 16

addresses are generated for each of the 1280 positions along the line, and as the sampler advances

from one line of 1280 samples to the next, the two carry out bits from the Kernel Address Generation

Unit are used to update these Buffer 1 address parameters.

10.2.10.6 Green buffer 146

Address generation for the green sub-buffer 146 within Buffer 1 114 is more complicated

than the red sub-buffer 145 and blue sub-buffer 147 for two main reasons:

• the green channel represents a checkerboard pattern in the CFA. Alternate lines consist of

odd or even pixels only. To resample the green channel, we must effectively rotate the chan­

nel by 45 degrees.

• there are twice as many green pixels than red or blue pixels. Resampling means the reading

of more samples in the same amount of time - there are still 16 samples read to generate

each pixel in medium res space, but there is a higher likelihood of advancing the buffer each

time. The exact likelihood depends on the scale factor used.

However, the same concept of using a RAM as a cyclical buffer is used for the green

channel. The green sub-buffer is a 78 entry RAM with a logical arrangement of 13 rows, each

containing 6 entries. The relationship between RAM address and logical position is shown in Figure 57.

The samples in Buffer 1 146 represent a checkerboard pattern in the CFA. Consequently,

samples in one row (e.g. addresses 0,13,26,39, 52,65) may represent odd or even pixels, depending

on the current line within the entire image, and whether or not the image had been rotated by 90

degrees or not. This is illustrated in Figure 58.

Consequently, when we map a 4x4 sampling area onto the buffer, there are two possibilities

for the interpretation of the samples. As a result there are two types of addressing, depending on

whether the current line is represented by odd or even pixels. This means that even rows with image

rotation 0 will have the same addressing as odd rows with image rotation 90 since they both hold odd

pixels. Likewise, the odd rows with image rotation 0 will have the same addressing as even rows with

image rotation 90 since they both hold even pixels. The decision is summarized in Table 32.

Table 32. Determining Sampling Type

Rotation Current Line Pixels Type
0 Even Line 8 Odd Type 2
0 Odd Line 8 Even Type 1

WO 01/20549 PCT/AU00/01075

-70-
Table 32. Determining Sampling Type

Rotation Current Line Pixels Type
90 Even Line 8 Even Type 1
90 Odd Line 8 Odd Type 2

5

10

15

20

25

The actual 4x4 sampling window is the way we effectively rotate the buffer by 45 degrees.

The 45 degree rotation is necessary for effective resampling, as described in Section 3.2.5.

Assuming for the moment that we only need to generate a single resample, we consider the

buffer addressing by examining the two types of 4x4 sampling windows as shown in Figure 59.

Although the two 4x4 sampling types look similar, the difference comes from the way in

which the 4x4 mapping is represented in the planar image. Figure 60 illustrates the mapping of the

Type 1 4x4 sampling to the green sub-buffer. Only the top 7 rows and right-most 4 columns are shown

since the 4x4 sample area is contained wholly within this area.

The mapping of buffer pixels to sample rows for the Type 2 sampling process is very similar,

and can be seen in Figure 61.

In both Type 1 and Type 2 addressing of the 16 samples there are two ways of processing a

row. Processing of Rows 1 and 3 of Type 1 addressing is the same (relatively speaking) as processing

rows 2 and 3 of Type 2. Likewise, processing rows 2 and 4 of Type 1 is the same (relatively speaking)

as processing rows 1 and 3 of Type 2. We will call these row addressing methods Type A170 and Type

B 171, as shown in Figure 62.

Given a starting position for the 4x4 window (windowstartAdr) and a starting type

(windowstartType), we can generate the addresses for the 16 samples by means of an 8 entry table

(for traversing the two sets of 4 samples). When we read the first sample value we add an offset from

the table to arrive at the next sample position. The offset will depend on the type (A, B = 0, 1). The

offset from the fourth sample is the amount needed to arrive at the first sample point for the next line

(and must take account of the number of sample columns). After generating each row of 4 samples, we

swap between TypeA and TypeB. The logic for generating the addresses for a single set of 16 samples

is shown in the following pseudocode. The addition modulo 78 caters for the cyclical buffer.

Adr = WindowstartAdr

TypeAB = WindowstartType

Do 4 times

For N = 0 to 4

Fetch Adr

Adr = (Adr + Table[TypeAB,N]) mod 78

EndFor

WO 01/20549 PCT/AU0O/O1O75

TypeAB = NOT TypeAB

EndDo

The lookup table consists of 8 entries - 4 for Type A170, and 4 for Type B 171 address offset

generation. The offsets are all relative to the current sample position (Adr).

Table 33. Offset Values for 16-Sample Address Generation

TypeAB N Offset
0 0 14
0 1 1
0 2 14
0 3 37
1 0 1
1 1 14
1 2 1
1 3 37

At the end of the 16 reads, the TypeAB bit will be the same as the original value (loaded from
WindowStartType).

Reading a single set of 16 samples is not enough. Three sets of 16 samples must be read

(representing 3 different positions in Y in unrotated input space). At the end of the first and second set

of 16 samples, the kernel positions are updated by the kernel address generator. The carry bits from

this update are used to set the window for the next set of 16 samples. The two carry bits index into a

table containing an offset and a 1 -bit flag. The offset is added to the windowstartAdr, and the flag is

used to determine whether or not to invert WindowStartType. The values for the table are shown in

Table 34.

Table 34. Updating WindowstartAdr and WindowStartType

KemelX
CarryOut

KernelY
CarryOut Offset* Type

0 0 0 No change
0 1 1 Invert
1 0 14 Invert
1 1 2 No change

At the end of the third set of 16 samples, the kernel positions are updated to compensate for

advancement in X in unrotated input space. This time, a different motion direction is produced, so a

different offset/TypeAB modifying table is used. We cannot add these offsets to the current

WindowstartAdr value, because that represents a position two movements in Y away from where we

want to start the movement. Consequently we load windowstartAdr and WindowStartType from

WO 01/20549 PCT/AUOO/01075

-72-
another set of variables: TopstartAdr and TopstartAdr, representing the first entry in the current line

of 1280. The two carry out flags from the Kernel address generator are used to lookup Table 35 to

determine the offset to add to TopStartAdr and whether or not to invert TopStartType. As before, the

addition is modulo 78 (the size of the green RAM). The results are copied to windowStartAdr and

windowstartType for use in generating the next 3 sets of 16 samples.

5

10

15

20

25

Table 35. Updating TopstartAdr and TopStartType

KerneIX
CarryOut

KemelY
CarryOut Offset4 Type

0 0 0 No change
0 1 12 Invert
1 0 14 Invert
1 1 13 No change

After processing the 1280 sets of 3 sets of 16 samples, the next line of 1280 begins.

However the address of the first sample for position 0 within the next line must be determined. Since

the samples are always loaded into the correct places in Buffer 1, we can always start from exactly the

same position in Bufferl (i.e. TopstartAdr can be loaded from a constant PositionOAdr). However,

we must worry about which type we are dealing with, since the type depends on how much we

advanced. Consequently we have an initial PositionOType which must be updated depending on the

carry out flags from the kernel address generator. Since we are moving in unrotated Y input space, the

logic used is the same as for updating windowstartType, except that it is performed on

PositionOType instead. The new value for PositionOType is copied into TopStartType, and

windowStartAdr to begin sampling of the first position of the new line.

The sampling process for a given 1280 position line cannot begin until there are enough

entries in Buffer 1, placed there by the Rotate/WhiteBalance/RangeExpansion Unit. This will occur 128

cycles after the start of each new line (see Section 10.2.11).

10.2.10.7 Red and Blue buffers

Buffer 1’s red sub-buffer 145 and blue sub-buffer 147 are simply 2 RAMs accessed as

cyclical buffers. Each buffer is 30 bytes, but has a logical arrangement of 6 rows, each containing 6

entries. The relationship between RAM address and logical position is shown in Figure 63.

For red and blue, the first 16 samples to be read are always the top 4x4 entries. The

remaining two columns of samples are not accessed by the reading algorithm at this stage.

The address generation for these first 16 samples is simply a starting position (in this case 0)

followed by 16 steps of addition modulo 36, as shown in the following pseudocode:

ADR = StartADR

ΒΝυΜΜΜίββΐίΐΐ

WO 01/20549 PCT/AU0O/O1O75

-73-
Do 4 times

Do 4 times

ADR = ADR + 6 MOD 36

End Do

ADR = ADR + 13 MOD 36

End Do

5

10

15

20

25

However, this address generation mechanism is different from the green channel. Rather

than design two addressing mechanisms, it is possible to apply the green addressing scheme to the red

and blue channels, and simply use different values in the tables. This reduces design complexity. The

only difference then, becomes the addition modulo 36, instead of addition modulo 78. This can be

catered for by a simple multiplexor.

Looking at the various address generation tables for green, and considering them as applied

to red and blue, it is apparent that there is no requirement far a Type, since both the red and the blue

channels do not need to be rotated 45 degrees. So that we can safely ignore the Type value, the

red/blue equivalent of Table 33, shown in Table 36, has two sets of identical 4 entries.

Table 36. Offset Values for 16-Sample Address Generation (Red/Blue)

TypeAB N
J

Offset
0 0 6
0 1 6
0 2 6
0 3 13
1 0 6
1 1 6
1 2 6
1 3 13

As with green address generation, we move twice in Y before advancing to the next entry of

1280. For red and blue there is no scaling between movement in kernel space and movement in the

input space. There is also no rotation. As we move in Y, the ΔΥ of 0 is added to Kerneix (see kernel

address generation in Section 10.2.10.4 on page 69). As a result, the carry out from Kerneix will never

be set. Looking at Table 34, the only possible occurrences are Kerneix/KernelY values of 00 or 01. In

the case of 00, the green solution is no change to either WindowStartAdr or WindowStartType, so this

is cored for red and blue also. In the case of 01, we want to add 1 to WindowStartAdr, and don't care

about WindowStartType. The green values can therefore be safely used for red and blue. The worst

case is advancement by 1 in address both times, resulting in an overlapping worst case as shown in

Figure 65.

1' WO 01/20549 PCT/AU0O/O1O75

-74-
At the end of the third set of 16 samples, TopstartAdr and TopstartType must be updated.

Since we are moving in X (and adding AY=0 to KernelY), the carry out from KernelY will always be 0.

The red/blue equivalent of Table 35 is shown here in Table 37. Note that there is no Type column, since

Type is not important for Red or Blue.

5

10

15

20

25

Table 37. Updating TopStartAdr and TopstartType (Red/Blue)

KerneIX
CarryOut

KernelY
CarryOut Offset*

0 0 0
0 1 -
1 0 6
1 1 -

The process of advancing from one line of 1280 sets of 3 pixels to the next is the same as for

green. The PositionOAdr will be the same for the first set of 16 samples for a given line

(positionOAdr = 0 for red and blue), and Type is irrelevant. Generation of the next line cannot begin

until there are enough samples in Bufferl. Red and blue generation must start at the same time as

green generation, so cannot begin until 128 cycles after the start of a new line (see Section 10.2.11).

10.2.11 Rotate, White Balance and Range Expansion 111

The actual task of loading Bufferl 114 from the Image RAM 11 involves the steps of rotation,

white balance, and range expansion 111, as described by Section 3.2.3 and Section 3.2.4. The pixels

must be produced for Bufferl fast enough for their use by the Resampling process 112. This means

that during a single group of 75 cycles, this unit must be able to read, process, and store 6 red pixels, 6

blue pixels, and 13 green pixels.

The optional rotation step is undertaken by reading pixels in the appropriate order. Once a

given pixel has been read from the appropriate plane in the image store, it must be white balanced and

its value adjusted according to the range expansion calculation defined in Section 3.2.4. The process

simply involves a single subtraction (floor 0), and a multiply (255 ceiling), both against color specific

constants. The structure of this unit is shown in Figure 66.

The red, green and blue low thresholds 72, together with the red, green, and blue scale

factors 173 are determined by the CPU 10 after generating the histograms for each color plane via the

Image Histogram unit 8 (see Section 9).

Depending on whether the current pixel being processed in the pipeline is red, green, or blue,

the appropriate low threshold and scale factor is multiplexed into the subtract unit and multiply unit, with

the output written to the appropriate color plane in Buffer 1.

»· WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-75-

The Subtract unit 172 subtracts the 8-bit low Threshold value from the 8-bit Image RAM pixel

value, and has a floor of 0. The 8-bit result is passed on to the specialized 8x8 multiply unit, which

multiplies the 8-bit value by the 8-bit scale factor (8 bits of fraction, integer=1). Only the top 10 bits of

the result are kept, and represent 8 bits of integer and 2 bits of fraction. The multiplier 174 has a result

ceiling of 255, so if any bit higher than bit 7 would have been set as a result of the multiply, the entire 8-

bit integer result is set to 1s, and the fractional part set to 0.

Apart from the subtraction unit 172 and multiply unit 174, the majority of work in this unit is

performed by the Address Generator 175, which is effectively the state machine for the unit. The

address generation is governed by two factors: on a given cycle, only one access can be made to the

Image RAM 11, and on a given cycle, only one access can be made to Buffer 1 114. Of the 75 available

cycles, 3 sets of 16 cycles are used for reading Buffer 1. The actual usage is 3 sets of 25 cycles, with

16 reads followed by 9 wait cycles. That gives a total of 27 available cycles for 25 writes (6 red, 6 blue,

6 green). This means the two constraints are satisfied if the timing of the writes to Bufferl coincide with

the wait cycles of the Resampler 112.

10.2.11.1 Address Generation for Bufferl

Once the resampling process is running, we are only concerned with writing to Bufferl during

the period when the Resampler 112 is not reading from it. Since the Resampler has 3 sets of 16 reads

each 75 cycle period, there are 27 cycles available for writing. When the resampler is not running, we

want to load up Bufferl as fast as possible, which means a write to Bufferl 114 each cycle. Address

Generation for Bufferl consequently runs off a state machine that takes these two cases into account.

Whenever a value is loaded from ImageRAM 11, the adjusted value is written to the appropriate color in

Bufferl one cycle later.

Address Generation for Bufferl therefore involves a single address counter for each of the

red, blue and green sub-buffers. The initial address for RedAdr, BlueAdr and GreenAdr is 0 at the start

of each line in each case, and after each write to Bufferl, the address increments by 1, with wrapping at

36 or 78, depending on whether the buffer being written to is red, green or blue. Not all colors are

written each 75-cycle period. A column of green will typically require replenishing at twice the rate of red

or blue, for example.

The logic is shown in the following pseudocode:

If the color to write is Red

write to Red Bufferl at RedAdr

RedAdr = RedAdr + 1 mod 36

Else

If the color to write is Blue

WO 01/20549 PCT/AU0O/O1O75

-76-
Write to Blue Bufferl at BlueAdr

BlueAdr = BlueAdr + 1 mod 36

Else

If the color to write is Green

Write to Green Bufferl at GreenAdr

GreenAdr = GreenAdr + 1 mod 78

Endlf

10.2.11.2 Address Generation for Image RAM

Each plane can be read in one of two orientations - rotated by 0 or 90 degrees (anti­

clockwise). This translates effectively as row-wise or column-wise read access to the planar image. In

addition, we allow edge pixel replication or constant color for reads outside image bounds, as well as

image wrapping for such print formats as Passport 31.

At the start of each print line we must read the ImageRAM 11 to toad up Bufferl 114 as fast

as possible. This equates to a single access to a sample each cycle. Resampling can only occur once

5 columns have been loaded, which means 5 columns of 6,6, and 13 samples, for a total of 125 cycles.

Plus an extra cycle for the final value to be written out to Bufferl 114 after being loaded from

ImageRAM 11. To make the counting easier, we round up to 128 cycles.

After the first 128 cycles, the checking for the requirement to load the next column of

samples for each of the 3 colors occurs each 75 cycles, with the appropriate samples loaded during the

subsequent 75 cycles. However, the initial setting of whether to load during the first set of 75 cycles is

always 1 for each color. This enables the final 6th column of each color within Buffer 1 to be filled.

At the end of each 75 cycle period, the KemeixcarryOut flag from each color plane of the

Kernel Address Generator in the Resampler 112 is checked to determine if the next column of samples

should be read. Similarly, an AdvanceLine pulse restarts the process on the following line if the

KernelYCarryOut flag is Set.

Since each ‘read’ effectively becomes 6 or 13 reads to fill a column in Bufferl, we keep a

starting position in order to advance to the next ’read’. We also keep a coordinate value to allow the

generation of out-of-bounds coordinates to enable edge pixel replication, constant color, and image

wrap.

We consider the active image 180 as being within a particular bounds, with certain actions to

be taken when coordinates are outside the active area. The coordinates can either be before the

image, inside the image, or after the image, both in terms of lines and pixels. This is shown in Figure

67, although the space outside the active area has been exaggerated for clarity:

.»

WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-77-
Note that since we use (0, 0) as the start of coordinate generation, MaxPixel and MaxLine

are also pixel and line counts. However, since address generation is run from kernel carry outs and

AdvanceLine pulses from the MJI 15, these outer bounds are not required. Address generation for a

line simply continues until the AdvanceLine pulse is received, and may involve edge replication,

constant colors for out of bounds, or image pixel wrapping.

If we have an address, Adr, of the current sample, and want to move to the next sample,

either on the next line or on the same line, the sample’s coordinate will change as expected, but the

way in which the address changes depends on whether we are wrapping around the active image, and

must produce edge pixel replication when needed.

When there is no wrapping of the image (i.e. all print formats except Passport 31), we

perform the actions in Table 38 as we advance in line or pixel. To rotate an image by 90 degrees, the

CPU 10 simply swaps the ALine and APixel values.

Looking at Table 38, the only time that adr changes is by APixel when PixelSense is 0, and

by ALine when LineSense is 0. By following these simple rules Adr will be valid for edge pixel

replication. Of course, if a constant color is desired for out of bounds coordinates, that value can be

selected in instead of the value stored at the appropriate address.

.To allow wrapping, we simply compare the previous sense (-.0,+) for Line and Pixel with the

Table 38. Actions to Perform when Advancing in Pixel or Line

Line® Pixel” Pixel Change Line Change
- -
- 0 Adr = Adr + APixel
- +
0 - Adr = Adr +ALine
0 0 Adr = Adr + APixel Adr = Adr +ALine
0 + Adr = Adr +ALine
+ -
+ 0 Adr = Adr + APixel
+ +

a. We compare the current Line ordinate with ActiveStartLine and ActiveEndLine.
If Line < ActiveStartLine, we call the value
If ActiveStartLine ί Line < ActiveEndLine, we call the value “0”.
If ActiveEndLine Line, we call the value “+”.

b. We compare the cunent Pixel ordinate with ActiveStartPixel and ActiveEndPixel.
If Pixel < ActiveStartPixel, we call the value
If ActiveStartPixel 2 Line < ActiveEndPixel, we call the value “(Τ’.
If ActiveEndPixel £ Pixel, we call the value"+".

new sense. When the sense is we use the advancement as described in Table 38, but when the

ordinate becomes out of bounds (i.e. moving from 0 to +), we update the Adr with a new value not

WO 01/20549 PCT/AU00/01075

-78-
based on a delta. Assuming we keep the start address for the current line so that we can advance to

the start of the next line once the current line has been generated, we can do the following:

• If a change is in Pixel, and the pixel sense changes from 0 to + (indicating we have gone past

the edge of the image), we replace Adr with the LineStartAdr and replace Pixel with Active-

StartPixel. Line remains the same.

• If a change is in Line, and the line sense changes from 0 to + (indicating we have gone past

the edge of the image), we subtract DeltaColumn from Adr and replace Line with ActiveStart-

Line. Pixel remains the same. DeltaColumn is the address offset for generating the address

of (Pixel, ActiveStartLine) from (Pixel, ActiveEndLine-1).

The logic for loading the set number of samples (either 6 or 13, depending on color) is shown

in the following pseudocode:

line = FirstSampleLine

pixel = FirstSamplePixel

adr = FirstSampleAdr

Do N times (6 or 13)

oldPixelSense = PixelSense(pixel)

oldLineSense = LineSense(gLine)

inActive = ((oldLineSense == InActive) AND (oldPixelSense == InActive))

If ((NOT inActive) AND Useconstant)

Sample = Constantcolor

else

Sample = Fetch(adr)

Endlf

line = line + 1

If ((LineSense(line) == *+*) AND wraplmage)

adr = adr - Deltacolumn

line = ActiveStartLine

Elself ((LineSense(line) == "O') AND ((oldLineSense == "0"))

adr = adr + DeltaLine

Endlf

EndDo

The setting for such variables as FirstSampleLine, FirstSamplePixel, and

FirstSampleAdr is in the address generator section that responds to carry out flags from the Kernel

Address Generator, as well as AdvanceLine pulses from the MJI. The logic for this part of the address

generation is shown in the following pseudocode:

WO 01/20549 PCT/AU00/01075

-79-

5

10

15

20

25

FirstSamplePixel = 0

FirstSampleLine = 0 .

FirstSampleAdr = FirstLineSampleAdr = ActiveStartAddress

count = 0 .

Do Forever

If ((KemelXCarryOut) OR (AdvanceLine AND KernelYCarryOut) OR (count < 5))

Do N Samples for this color plane (see pseudocode above)

Endlf

oldPixelSense = pixelsense(FirstSamplePixel)

oldLineSense = LineSense(FirstSampleLine)

If (AdvanceLine AND KernelYCarryOut)

count = 0

FirstSampleLine = FirstSampleLine + 1

FirstSamplePixel = 0

If ((LineSense(FirstSampleLine) == "+") AND wrapimage)

FirstLineSampleAdr = StartAddress

FirstSampleLine = ActiveStartLine

Elself ((LineSense(FirstSampleLine) == *0') AND (oldLineSense == "0"))

FirstLineSampleAdr = FirstLineSampleAdr + DeltaLine

Endlf

FirstSampleAdr = FirstLineSampleAdr

Elself (KemelXCarryOut OR (count < 5)) ■

FirstSamplePixel = FirstSamplePixel + 1

count = count + 1 .

If ((PixelSense(FirstSamplePixel) == ”+") AND wrapimage)

FirstSampleAdr = FirstLineSampleAdr

FirstSamplePixel = ActiveStartPixel

Elself ((PixelSense(FirstSamplePixel) == ”0") AND (oldPixelSense ==

•O'))

FirstSampleAdr = FirstSampleAdr + DeltaPixel

Endlf

Endlf

EndDo

V

WO 01/20549 PCT/AUOO/01075

-80­
10.2.11.3 Register Summary

There are a number of registers that must be set before printing an image. They are

summarized here in Table 39. To rotate an image by 90 degrees, simply exchange the DeltaLine and

DeltaPixel values, and provide a new DeltaColumn value.

5

10

15

20

25

Table 39. Registers Required to be set by Caller before Printing

Register Name Description
Image Access Parameters
Wrapimage Tile image reads to replicate image when out of image bounds
UseConstant If 0, image edge replication or wrapping occurs on reads out of image

bounds.
If 1, a constant color is returned.

Red
ActiveStartAddressR The address of red sample (ActiveStartPixel, ActiveStartLine) in

ImageRAM
ActiveStartLineR The first valid line for the image in red space (in relation to line 0)
ActiveEndLineR The first line out of bounds for the image in red space
ActiveStartPixeIR The first valid pixel for the image in red space (in relation to pixel 0)
ActiveEndPixel R The first pixel out of bounds for the image in red space
DeltaLineR The amount to add to the current address to move from one line to the

next in red space
DeltaPixeIR The amount to add to the current address to move from one pixel to

the next on the same line in red space
DeltaColumnR The amount to add to the current address to move from a pixel in the

last line of the Active image area to the same pixel on the first line of
the Active image area in red space.

ConstantColorR Red color value to use if address out of bounds and UseConstant=1
Green
ActiveStartAddressG The address of green sample (ActiveStartPixel, ActiveStartLine) in

ImageRAM
ActiveStartLineG The first valid line for the image in green space (in relation to line 0)
ActiveEndLineG The first line out of bounds for the image in green space
ActiveStartPixelG The first valid pixel for the image in green space (in relation to pixel 0)
ActiveEndPixelG The first pixel out of bounds for the image in green space
DeltaLineG The amount to add to the current address to move from one line to the

next in green space
DeltaPixelG The amount to add to the current address to move from one pixel to

the next on the same line in green space
DeltaColumnG The amount to add to the current address to move from a pixel in the

last line of the Active image area to the same pixel on the first line of
the Active image area in green space.

ConstantColorG Green color value to use if address out of bounds and UseConstant=1
Blue

WO 01/20549 PCT/AU0O/O1O75

-81 -
Table 39. Registers Required to be set by Caller before Printing

Register Name Description
ActiveStartAddressB The address of blue sample (ActiveStartPixel, ActiveStartLine) in

ImageRAM
ActiveStartLineB The first valid line for the image in blue space (in relation to line 0)
ActiveEndLineB The first line out of bounds for the image in blue space
ActiveStartPixelB The first valid pixel for the image in blue space (in relation to pixel 0)
ActiveEndPixelB The first pixel out of bounds for the image in blue space
DeltaLineB The amount to add to the current address to move from one line to the

next in blue space
DeltaPixelB The amount to add to the current address to move from one pixel to

the next on the same line in blue space
DeltaColumnB The amount to add to the current address to move from a pixel in the

last line of the Active image area to the same pixel on the first line of
the Active image area in blue space.

ConstantColorB Blue color value to use if address out of bounds and UseConstant=1
White Balance and Range Expansion Parameters
RedLowThreshold 8-bit value subtracted from red input values
GreenLowThreshold 8-bit value subtracted from green input values
BlueLowThreshold 8-bit value subtracted from blue input values
RedScaleFactor 8-bit scale factor used for range expansion of red pixels
GreenScaleFactor 8-bit scale factor used for range expansion of green pixels
BlueScaleFactor 8-bit scale factor used for range expansion of blue pixels

15

11 REFERENCES
[1] Silverbrook Research, 1998, A uthentication of Consumables.
[2] Silverbrook Research, 1998, Authentication Chip.

Although the invention has been described with reference to specific examples, it will be

appreciated, by those skilled in the art, that it may be embodied in many other forms. The following

numbered paragraphs provide the addressee with a further indication of the scope of the invention,

although other novel and inventive features and combination of features will also be dear from the

disclosure therein.

WO 01/20549 PCT/AU00/01075

-82-
Weclaim:

1. A method of providing an image for printing at a predetermined bi4evel dot resolution

which corresponds to a predetermined continuous tone resolution, the method including the steps of:

receiving a first data set indicative of the image, the data set being in a Bayer format of

a first resolution;

converting the first data set into a second data set of the predetermined continuous

tone resolution;

converting the second data set into a third data set of the predetermined bi-level dot

resolution; and

making the third data set available to a printer at the predetermined bi-level dot

resolution.

2. A method according to claim 1 wherein the first resolution matches the predetermined

bi-level dot resolution.

3. A method according to claim 1 wherein the first resolution is greater than the

predetermined bi-level dot resolution.

4. A method according to claim 1 wherein the first resolution is less than the

predetermined bi-level dot resolution.

5. A method according to claim 1 wherein the first data set is in a red, green and blue

(RGB) format and the printer is responsive to a cyan, magenta and yellow (CMY) format, and the

method includes the additional step of converting the third data set from an RGB format to a CMY

format.

6. A method according to claim 1 including the step of sharpening the second data set.

7. A method according to claim 1 including the step of sharpening the first data set.

8. A method according to claim 1 wherein the first data set is obtained from a sensor

device and the method includes the step of compensating the first data set for non-linearities in the

sensor device.

9. A method according to claim 8 wherein the step of compensating includes converting

the first data set from a plurality of x bit samples to a plurality of y bit samples, where x > y.

10. A method according to claim 8 where x = 10andy = 8.

11. A method according to claim 1 including the step of planarising the first data set into a

red plane, a green plane and a blue plane.

12. A method according to claim 1 including the further steps of:

WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-83-
determining for the first data set the m% of darkest pixels and the n% of the lightest pixels;

adjusting the first data set to equate the m% of darkest pixels; and

adjusting the first data set to equate the n% of lightest pixels.

13. A method according to claim 1 including the additional step of adjusting the first data

set to provide a predetermined white balance.

14. A method according to claim 1 including the additional step of adjusting the first data

set to provide a predetermined range expansion.

15. A method according to claim 13 or claim 14 wherein the color resolution of the first

data set is increased while maintaining the same spatial resolution.

16. A method according to claim 1 wherein the first data set is selectively adjusted for

providing the image in a predetermined rotational orientation.

17. An apparatus for providing an image for printing at a predetermined bi-level dot

resolution which corresponds to a predetermined continuous tone resolution, the apparatus including:

input means for receiving a first data set indicative of the image, the data set being in a

Bayer format of a first resolution;

sampling means for converting the first data set into a second data set of the

predetermined continuous tone resolution;

processing means for converting the second data set into a third data set of the

predetermined bi-level dot resolution; and

making the third data set available to a printer for printing at the predetermined bi-level

dot resolution.

18. An apparatus according to claim 17 wherein the first resolution matches the

predetermined bi-level dot resolution.

19. An apparatus according to claim 17 wherein the first resolution is greater than the

predetermined bi-level dot resolution.

20. An apparatus according to claim 17 wherein the first resolution is less than the

predetermined bi-level dot resolution.

21. An apparatus according to claim 17 wherein the first data set is in a red, green and

blue (RGB) format and the printer is responsive to a cyan, magenta and yellow (CMY) format, the

processing means converting the third data set from an RGB format to a CMY format.

22. An apparatus according to claim 17 including the step of sharpening the second data

set.

WO 01/20549 PCT/AU00/01075

5

10

15

20

25

-84-
23. An apparatus according to claim 17 including the step of sharpening the first data set.

24. An apparatus according to claim 17 wherein the first data set is obtained from a sensor

device and the input means compensates the first data set for non-linearities in the sensor device.

25. An apparatus according to claim 24 wherein the compensation for non-linearities

includes converting the first data set from a plurality of x bit samples to a plurality of y bit samples,

where x > y.

26. An apparatus according to claim 25 where x = 10 and y = 8.

27. An apparatus according to claim 17 wherein the input means planarises the first data

set into a red plane, a green plane and a blue plane.

28. An apparatus according to claim 17 wherein the input means:

determines for the first data set the m% of darkest pixels and the n% of lightest pixels;

adjusts the first data set to equate the m% of darkest pixels; and

adjusts the first data set to equate the n% of lightest pixels.

29. An apparatus according to claim 17 wherein the input means adjusts the first data set

to provide a predetermined white balance.

30. An apparatus according to claim 17 wherein the input means adjusts the first data set

to provide a predetermined range expansion.

31. An apparatus according to claim 29 or claim 30 wherein the input means increases the

color resolution of the first data set while maintaining the same spatial resolution.

32. An apparatus according to claim 17 wherein the input means selectively adjusts the

first data set for providing the image in a predetermined rotational orientation.

33. A camera including:

a CCD array for providing a Bayer image;

a printer for selectively providing a printed image; and

an apparatus according to claim 17 for receiving the Bayer image and providing the

printer with the third data set such that the printed image is produced.

WO 01/20549 PCT/AU0O/O1O75

1/43

FIG. 1

Paper Direction

FIG. 4

f

FIG. 2

N)

ω

W
O

 01/20549
PC

T/A
U

00/01075

13

1O

Program b:
KOM

CPU core ii Static
5 KAM

Crystal

Clock
PLL

n
JTAG

Interface

99 15

&
Area CMOS

Image Sensor
I

sxt=I
Λ.
V

Decoder

Paper pull sensor ~~|

Paper stepper motor |

Guillotine motor |

3
Universal Serial

Bus port

_ „ 5 it
QA Chip\ QA chip[^ USB Port\

Focus motor |

Capping solenoid ~~|

Flash trigger ~|

Status LCD |
QA Chip
Interface

12MBit
Flash Memory

Printhead

Buttons 1 03

ω

W
O

 01/20549
PC

T/A
U

00/01075

4

1 segment
= 0.5 inch

= 12700 μη

FIG. 5

W
O

 01/20549
PC

T/A
U

00/01075

WO 01/20549 PCT/AUOO/01075

5/43

FIG. G

FIG. 7

WO 01/20549 PCT/AU00/01075

6/43

FIG. 3

C=Cyan

25

24 24 24 24 24
c1 c1

0 12 3 4

V/ M // ^ //~^~// M // M //

V/ γ /7 γ // γ // γ // Y //5 chromap°ds
i. — — — — — — — — — —_ __ __ ____ __ __ __ -/

M=magenta

Y=Yellow

FIG. 9

WO 01/20549 PCT/AU00/01075

7/43

¢:

21

oo

ω

C=Cyan
M=Magenta
Y=Yellow

FIG. 11

W
O

 01/20549
PC

T/A
U

0O
/O

1O
7525

9/43

WO 01/20549 PCT/AU00/01075

AEnable

BEnable

: Nominal : : \
I Nominal '· ·

2jxs______ ■<- 2 ps
<*

6
in

ch
es

I ■ CF

A
I

FIG. 12

FIG. 15

WO 01/20549 PCT/AU0O/O1O75

10/43

FIG. 14

R G

G B

2x2 pixel block
in sensor

R G R G R G

G B G B G B

R G R G R G

G B G B G B

Bayer mosaic of several
2x2 pixel blocks

FIG. 15

40

R G R G R G

G B G B G B

R G R G R G

G B G B G B

10 bits

Input pixels from Bayer CFA
(each sample is 10 bits)

) Blue

Green

Red
Lookup Table
(1024x8 bits)

Ro Go Ri Gi r2 g2

g3 Bo g4 Bi G5 b2

r3 g6 r4 g7 r5 g8
G9 b3 G10 b4 G11 b5

Linearized RGB image
(each sample is 8 bits)

A
GJ

FIG. 16

W
O

 01/20549
PC

T/A
U

00/01075

41

Ro Go Ri G1 r2 g2

g3 B0 G4 Bi G5 b2

r3 G6 r4 G7 r5 G8

g9 b3 G10 b4 G11 b5

Qi

Linearized RGB image
(each sample is 8 bits)

¢1

Φ
c
Q.
Φ

J3
CO

(1) c ra
Q.

NJ

c*>

FIG. 17

W
O

 01/20549
PC

T/A
U

O
O

/01075

WO 01/20549 PCT/AU00/O1075

13/43

52
I
I
I
I
I
I
I
I
I
I
I
I

o
co w­
o
<0
Φ
c

FIG. 13

WO 01/20549 PCT/AU0O/O1075

14/43

Entire 256 Range ►
Image Histogram Range

FIG. 19

FIG. 20

WO 01/20549 PCT/AU0O/O1O75

15/43

FIG. 21

G
re

en
 p

la
ne

46

Full CFA res Green plane
(captured pixels are
marked)

FIG. 25

WO 01/20549 PCT/AUOO/01075

16/43

G
re

en
 pl

an
e

Bl
ue

 p
la

ne

Re
d

pl
an

e

FIG. 22

WO 01/20549 PCT/AU00/01075

FIG. 24

7Ϊ pixel

1
mpsj2

FIG. 25

65

I
I
I

I
I
I
I
I

30

'1' Sharpened
image output

I
I
I
I

31 33

FIG. 26

I
I
I
I
I
I
I
I

I

00

ω

W
O

 01/20549
PC

T/A
U

00/01075

3x3 array of
input L pixels

centered on the
desired pixel

35

FIG. 27

Filtered
pixel

co

ω

&3

I---J

FIG. 23

W
O

 01/20549
PC

T/A
U

00/01075

33

L

R G B

Γ

I
I
I

90

I
I
I Tri-linear

Interpolate

I
I
I
I
I
I
I

ro o
co

I

M Y

FIG. 29

W
O

 01/20549
PC

T/A
U

00/01075

WO 01/20549 PCT/AUOO/01075

21/43

P

P P P P P

P P P P P

P P P P P

P P P P P

CL P P P P

FIG. 30

Input

FIG. 31

WO 01/20549 PCT/AU00/01075

22/43

r

1

/ Collect

1
1 24
! /

/ F 24 bits 1 Z
1
1
jL

FIG. 52

12

I I

FIG. 55

WO 01/20549 PCT/AU0O/O1O75

23/43

u J

9

FIG. 35

I . I
L___ J

FIG. 36

WO 01/20549 PCT/AU0O/O1O75

24/43

99 1°5

FIG. 37

I__ I

FIG. 38

11 15

FIG. 4!

99

Load Table

FIG. 39

Vsense

ear)

ΓΟ
cn
ω

SRCIock ClearCount

CDataln[0-7]

FIG. 40

W
O 01/20549

PC
T/A

U
00/01075

FIG. 42

Μ σ>
ω

W
O

 01/20549
PC

T/A
U

00/01075

WO 01/20549 PCT/AU00/01075

27/43

Advance &
AdvanceLine

FIG. 43

from UHRUfrom TPAU

I
L·

FIG. 44

From Convert to CMY
Process

FIG. 45

To Up-lnterpolate,
Halftone and
Reformat Unit ro oo

ω

W
O

 01/20549
PC

T/A
U

00/01075

WO 01/20549 PCT/AU0O/O1O75

29/43

2

FIG. 4G

Original Dither Cell

A B c D E F

G H I J K L

M N o P Q R

S T u V W X

>=>

Stagger
Odd Columns

by 1 Row

A H C J E L

G N I P K R

M T 0 V Q X

S B U D W F

Staggered Dither Cell

FIG. 47

ω ο
ω

F\G.

W
0 01/20549

PC
T/A

U
0O

/O
1O

75

WO 01/20549 PCT/AU00/01075

31/43

Written To

135

FIG. 49

1
9

-1 -1 -1

-1 8 -1

-1 -1 -1

FIG. 50

65

JL

FIG. 51
OJ
hj

ω

From
Rotate- WhiteBalance -

RangeExpand

114

146 To Resample-
Create Luminance

W
O 01/20549

PC
T/A

U
00/01075

FIG. 52

145

I
1
I
I
I
I
I
I
I

146 147

L

Convert
RGB to L

■60

co
ω
ω

L RGB
I
I

J

> 115

FIG. 53

W
O

 01/20549
PC

T/A
U

O
O

/01075

Γ

I

I
Input pixel valuel 10✓

from Bufferl 1 Z F

1 --------- ►

1
[/

I
I

K
er

ne
l

co
ef

fid
en

t

> x
▼

14
7^

Sub-total 8
7^

I
I
I
I
I
I Pixel resampled in X 10

7^

/14

—► TMP

/ ' 1

-► V1 -►\
-> V2

-> V3
V4 /

“I

I
I Result

Ί—►
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J

ω •U
GJ

W
O

 01/20549
PC

T/A
U

00/01075

150

FIG. 54

WO 01/20549 PCT/AU0O/O1O75

35/43

160

162

FIG. 55

0 13 26 39 52 65

1 14 27 40 53 66

10 23 36 49 62 75

11 24 37 50 63 76

12 25 38 51 64 77

FIG. 56 g
co

G

G

Even rows have samples at odd pixels

Odd rows have samples at even pixels

G

G

Even rows have samples at even pixels

Odd rows have samples at odd pixels

Basic 2x2 CFA Cell (rotation = 0) Basic 2x2 CFA Cell (rotation = 90)

W
O

 01/20549
PC

T/A
U

00/01075

FIG. 53

4x4 sampling Green sampling Type 2

G G G

G G

G / G

G G

G G

G G

G G G

ω -4

ω

FIG. 59

W
O

 01/20549
PC

T/A
U

O
O

/01075

WO 01/20549 PCT/AU0O/O1O75

38/43

4x4 green sampling Type 1

FIG. eo

WO 01/20549 PCT/AU00/01075

39/43

4x4 green sampling Type 2

G G G

G G

G G

G G

G G

G G

G G G

FIG. 01

40/43

WO 01/20549 PCT/AU00/01075

Type A

1

2

3

4

170
Type B

1

2

3

4

171

FIG. 62

0 6 12 18 24 30

1 7 13 19 25 31

2 8 14 20 26 32

3 9 15 21 27 33

4 10 16 22 28 34

5 11 17 23 29 35

FIG. 65

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

FIG. 64

16 samples read for 1 st Pixel)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

FIG. 65

A

ω

W
O

 01/20549
PC

T/A
U

0O
/O

1O
75

111

FIG. 66

·£■
Μ

ω

W
O

 01/20549
PC

T/A
U

00/01075

WO 01/20549 PCT/AU00/01075

43/43

130

(0, MaxLine)

(ActiveStartPixel,
ActiveStartLine)

(ActiveStartPixel,
ActiveEndLine)

(MaxPixel, 0)

(MaxPixel, MaxLine)

(ActiveEndPixel,
ActiveEndLine)

(ActiveEndPixel,
ActiveStartLine)

Total Coordinate
Space

FIG. 67

