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57 ABSTRACT

Techniques are described herein that are capable of perform-
ing transfer-learning for structured data with regard to
journeys defined by sets of actions. A first deep neural
network (DNN) for a first journey is trained using structured
data. Weights of nodes in the first DNN are transferred to
nodes in a second DNN for a second journey using transfer-
learning. An embedding layer replaces a final layer of the
first DNN in the second DNN to provide an output with a
same number of nodes as a pre-final layer of the first DNN.
Weights of the nodes in the embedding layer are initialized
based at least on a probability that a new feature of the

Int. CL second journey co-occurs with each feature in the structured
GO6N 3/08 (2006.01) data. A softmax function is applied on a final layer of the
GO6K 9/62 (2006.01) second DNN to indicate possible next actions of the second
GO6N 3/04 (2006.01) journey.
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Train a first deep neural network, which is associated with a
first set of actions that defines a first journey, by learning
weights of nodes among layers of the first deep neural
network that precede a final layer of the first deep neural
network using structured data

¥ el 204

Transfer the weights from the first deep neural network to
corresponding nodes in a second deep neural network, which
is associated with a second set of actions that defines a second

journey, in accordance with a transfer-learning technique

v - 206

Add an embedding layer in lieu of the final layer of the first
deep neural network in the second deep neural network such
that an output of the embedding layer results in a same
number of nodes as a pre-final layer of the first deep neural
network

v - 208

Initialize weights of the respective nodes in the embedding
layer based at least on a probability that a new feature, which
is associated with the second journey and which is not
included among features in the structured data that are used
o learn the weights in the first deep neural network, co-
occurs with each of the features in the structured data

; - 210

Apply a softmax function on a final layer of the second deep
neural network, the softmax function configured to generate a
probability distribution regarding possible next actions to be
performed in the second journey based at least on the weights
of the respective nodes in the embedding layer and further
based at least on the weights of the respective nodes in the
pre-final fayer, which result from sequenced updating using a
stochastic gradient descent technique
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302

Change an initial version of an entity that is associated with
the second journey to provide a changed version of the entity

é 304

Cause the changed version of the entity to be presented in lieu
of the initial version of the entity to a first subset of users who
are associated with the second journey

k4 Pl 306

Cause the initial version of the entity to be presentedtoa
second subset of the users who are associated with the
second journey

FIG. 3
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TRANSFER-LEARNING FOR STRUCTURED
DATA WITH REGARD TO JOURNEYS
DEFINED BY SETS OF ACTIONS

BACKGROUND

[0001] A journey is a set of actions that are performed to
achieve a goal (e.g., resolve an issue) with regard to an
entity. For instance, the actions of a journey often are
performed in a business context to achieve a business
objective. A deep neural network often is used to determine
a next action (e.g., next best action) to be performed in a
journey. For instance, the next action may be the action that
the deep neural network deems most likely to facilitate
achieving the goal of the journey. A deep neural network is
an artificial neural network that includes multiple layers
between an input layer and an output layer. An artificial
neural network is a system that is inspired by a biological
neural network of an animal brain. For instance, an artificial
neural network may increase accuracy, precision, and/or
efficiency with which the artificial neural network achieves
a goal by considering examples. Each example may include
sample inputs and sample output(s) that result from the
sample inputs. A configuration of a deep neural network
typically is specific to the journey with which the deep
neural network is associated. Accordingly, a new deep
neural network often is constructed from scratch for each
new journey. Generating a new deep neural network from
scratch for each new journey typically consumes a substan-
tial amount of time and resources, especially if an amount of
data regarding the new journey is limited (e.g., non-exis-
tent).

SUMMARY

[0002] A first deep neural network associated with a first
journey can be used to construct a second deep neural
network associated with a second journey based at least on
a similarity between the first and second journeys. Examples
of a journey include but are not limited to a digital buyer
journey, an engineering support journey, a journey of a
compute system (e.g., virtualized storage or virtualized
network) over time, and a journey of a software product over
time. In an example digital buyer journey, a user visits a
website to make a purchase, and a deep neural network
determines the next content to be provided to the user to
facilitate the purchase. In an example engineering support
journey, a user submits an engineering support ticket that
identifies an issue, and a deep neural network determines the
next document (e.g., article) to be provided to the user to
facilitate resolving the issue. In an example journey of a
compute system or a software product, a deep neural net-
work determines a next action (e.g., maintenance action,
upgrade action, or re-configuration) to be performed with
regard to the compute system or the software product. For
instance, in the example journey of the compute system, the
next action may include replacing a failing hard drive or
upgrading or updating a software system or a RAID con-
figuration.

[0003] Transfer-learning can be used to construct the
second deep neural network based at least on the first deep
neural network, even though one or more features associated
with the second journey are not included in structured data
that are used to train the first deep neural network. Transfer-
learning is a process of applying knowledge, which is
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learned with regard to solving a first problem, to solve a
second problem that is different from but related to the first
problem. For instance, information regarding a first journey
that pertains to a first entity may be used to perform a second
journey that pertains to a second entity based at least on a
similarity between the first and second journeys. Examples
of an entity include but are not limited to a compute system,
a software product, and a website. Structured data is data
that has a defined structure. For example, the structured data
may be organized into rows and columns. In accordance
with this example, the rows and columns constitute the
defined structure.

[0004] For example, nodes and corresponding weights in
each layer of the first deep neural network that precedes the
final layer (ak.a. last layer or last used layer) may be
incorporated into the second deep neural network using a
transfer-learning technique. An embedding layer having the
same number of nodes as the pre-final layer of the first deep
neural network may be incorporated into the second deep
neural network in lieu of the final layer of the first deep
neural network. A pre-final layer (a k.a. next-to-last layer) of
a deep neural network is the layer that immediately precedes
the final layer of the deep neural network. Weights of the
nodes in the embedding layer may be established by taking
into consideration the feature(s) not included in the struc-
tured data. A softmax function may be applied on a final
layer of the second deep neural network based at least on the
weights of nodes in the embedding layer and the pre-final
layer. By using the first deep neural network to construct the
second deep neural network in accordance with any one or
more of the example techniques described herein, an amount
of time and/or resources associated with constructing the
second deep neural network is reduced.

[0005] Various approaches are described herein for,
among other things, performing transfer-learning for struc-
tured data with regard to journeys defined by sets of actions.
In an example approach, a first deep neural network, which
is associated with a first set of actions that defines a first
journey, is trained by learning weights of nodes among
layers of the first deep neural network that precede a final
layer of the first deep neural network using structured data.
The weights are transferred from the first deep neural
network to corresponding nodes in a second deep neural
network, which is associated with a second set of actions
that defines a second journey, in accordance with a transfer-
learning technique based at least on a similarity between the
first set of actions and the second set of actions satisfying a
similarity criterion. An embedding layer is added in lieu of
the final layer of the first deep neural network in the second
deep neural network such that an output of the embedding
layer results in a same number of nodes as a pre-final layer
of the first deep neural network. Weights of the respective
nodes in the embedding layer are initialized based at least on
a probability that a new feature co-occurs with each of the
features in the structured data. The new feature is associated
with the second journey and is not included among the
features in the structured data that are used to learn the
weights in the first deep neural network. A sofimax function
is applied on a final layer of the second deep neural network.
The softmax function is configured to generate a probability
distribution regarding possible next actions to be performed
in the second journey based at least on the weights of the
respective nodes in the embedding layer and further based at
least on the weights of the respective nodes in the pre-final
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layer. The weights of the respective nodes in the pre-final
layer result from sequenced updating using a stochastic
gradient descent technique.

[0006] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter. Moreover, it is noted
that the invention is not limited to the specific embodiments
described in the Detailed Description and/or other sections
of this document. Such embodiments are presented herein
for illustrative purposes only. Additional embodiments will
be apparent to persons skilled in the relevant art(s) based on
the teachings contained herein.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

[0007] The accompanying drawings, which are incorpo-
rated herein and form part of the specification, illustrate
embodiments of the present invention and, together with the
description, further serve to explain the principles involved
and to enable a person skilled in the relevant art(s) to make
and use the disclosed technologies.

[0008] FIG. 1 is a block diagram of an example journey-
based transfer-learning system in accordance with an
embodiment.

[0009] FIGS. 2-3 depict flowcharts of example methods
for performing transfer-learning for structured data with
regard to journeys defined by sets of actions in accordance
with embodiments.

[0010] FIG. 4 is a block diagram of an example computing
system in accordance with an embodiment.

[0011] FIG. 5 is a block diagram of an example deep
neural network in accordance with an embodiment.

[0012] FIG. 6 depicts an example computer in which
embodiments may be implemented.

[0013] The features and advantages of the disclosed tech-
nologies will become more apparent from the detailed
description set forth below when taken in conjunction with
the drawings, in which like reference characters identify
corresponding elements throughout. In the drawings, like
reference numbers generally indicate identical, functionally
similar, and/or structurally similar elements. The drawing in
which an element first appears is indicated by the lefimost
digit(s) in the corresponding reference number.

DETAILED DESCRIPTION

1. Example Embodiments

[0014] A first deep neural network associated with a first
journey can be used to construct a second deep neural
network associated with a second journey based at least on
a similarity between the first and second journeys. Examples
of a journey include but are not limited to a digital buyer
journey, an engineering support journey, a journey of a
compute system (e.g., virtualized storage or virtualized
network) over time, and a journey of a software product over
time. In an example digital buyer journey, a user visits a
website to make a purchase, and a deep neural network
determines the next content to be provided to the user to
facilitate the purchase. In an example engineering support
journey, a user submits an engineering support ticket that
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identifies an issue, and a deep neural network determines the
next document (e.g., article) to be provided to the user to
facilitate resolving the issue. In an example journey of a
compute system or a software product, a deep neural net-
work determines a next action (e.g., maintenance action,
upgrade action, or re-configuration) to be performed with
regard to the compute system or the software product. For
instance, in the example journey of the compute system, the
next action may include replacing a failing hard drive or
upgrading or updating a software system or a RAID con-
figuration.

[0015] Transfer-learning can be used to construct the
second deep neural network based at least on the first deep
neural network, even though one or more features associated
with the second journey are not included in structured data
that are used to train the first deep neural network. Transfer-
learning is a process of applying knowledge, which is
learned with regard to solving a first problem, to solve a
second problem that is different from but related to the first
problem. For instance, information regarding a first journey
that pertains to a first entity may be used to perform a second
journey that pertains to a second entity based at least on a
similarity between the first and second journeys. Examples
of an entity include but are not limited to a compute system,
a software product, and a website. Structured data is data
that has a defined structure. For example, the structured data
may be organized into rows and columns. In accordance
with this example, the rows and columns constitute the
defined structure.

[0016] Transfer-learning works relatively well for unstruc-
tured datasets (e.g., images) because the unstructured data-
sets typically have a standard representation. For instance,
images typically have an input size of X*Y. When utilizing
transfer-learning, the same architecture is used for the ref-
erence deep neural network and the deriving deep neural
network for most of the consecutive initial input layers. For
instance, language models (e.g., natural language processing
(NLP) models) can be trained to predict the next word in a
given language, and the last couple of layers can be modified
to address the specific problem. A challenge in applying
transfer-learning to structured datasets is that the input
format can be quite different with even one additional
feature. This challenge can be addressed by having a deep
neural network for the additional feature(s) connecting to an
additional node on the pre-final layer of the original deep
neural network.

[0017] Example embodiments described herein are
capable of performing transfer-learning for structured data
with regard to journeys defined by sets of actions. For
example, nodes and corresponding weights in each layer of
the first deep neural network that precedes the final layer
(ak.a. last layer or last used layer) may be incorporated into
the second deep neural network using a transfer-learning
technique. An embedding layer having the same number of
nodes as the pre-final layer of the first deep neural network
may be incorporated into the second deep neural network in
lieu of the final layer of the first deep neural network. A
pre-final layer (a.k.a. next-to-last layer) of a deep neural
network is the layer that immediately precedes the final layer
of the deep neural network. Weights of the nodes in the
embedding layer may be established by taking into consid-
eration the feature(s) not included in the structured data. A
softmax function may be applied on a final layer of the
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second deep neural network based at least on the weights of
nodes in the embedding layer and the pre-final layer.
[0018] Example techniques described herein have a vari-
ety of benefits as compared to conventional techniques for
constructing a deep neural network. For instance, the
example techniques enable transfer-learning at scale for
similar journeys. For example, once a deep neural network
associated with a digital buyer journey for a particular
product, such as Power BI®, the deep neural network can be
used to initialize the parameters of another similar deep
neural network associated with a digital buyer journey for
another product, such as Microsoft Dynamics®, Office
365®, or PowerApps®. In another example, if a deep neural
network associated with an engineering support journey for
a specific enterprise product X is constructed, the deep
neural network can be leveraged to construct another deep
neural network that predicts the next best action for another
enterprise product Y.

[0019] The example techniques enable transfer-learning
for structured datasets. The transfer-learning on the struc-
tured datasets may be enabled by adding an embedding layer
to the deep neural network such that the embedding layer has
the same number of nodes as a pre-final layer of a reference
deep neural network on which the deep neural network is
based. For example, the embedding layer may incorporate
new feature(s), which are not present in structured data that
is used to train the reference deep neural network, into the
features of the structured data.

[0020] The example techniques may initialize weights of
the nodes in the embedding layer based on a probability that
the new feature(s) co-occur with each of the features in the
structured data. The example techniques may increase accu-
racy and/or precision of characteristics of an entity with
regard to which a journey is performed, which may result in
an outcome having a relatively higher value. The example
techniques may optimize assignment of cohort groups
among treatment and control groups. For example, each
cohort group may receive a personalized design variant that
optimizes the outcome a priori. In accordance with this
example, a first cohort group is assigned to a control group
for which the reference deep neural network is utilized, and
a second cohort group is assigned to a treatment group for
which the deep neural network, which is based on the
reference deep neural network, is utilized.

[0021] The example techniques may be capable of increas-
ing accuracy, precision, and/or reliability of predictions of
possible next actions of a journey that are provided by a deep
neural network, for example, by basing the deep neural
network on another deep neural network that is associated
with a similar journey. The example techniques may auto-
mate construction of a deep neural network for which
sample data is relatively sparce by using transfer-learning on
structured data. Accordingly, the amount of time that is
consumed to construct the deep neural network may be
reduced. For instance, the example techniques may auto-
matically construct the deep neural network based on nodes
and corresponding weights in layers of another deep neural
network that is trained on the structured data based at least
on journeys that are associated with the respective deep
neural networks being similar. By automating the construc-
tion of the deep neural network, an efficiency of an infor-
mation technology (IT) professional who would otherwise
be tasked with constructing the deep neural network is
increased. By eliminating a need for the IT professional to
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construct the deep neural network manually, a cost of
constructing the deep neural network may be reduced. For
instance, time spent by the IT professional to manually
construct the deep neural network has an associated cost. By
eliminating the manual construction, the cost of constructing
the deep neural network can be reduced by the labor cost
associated with the IT professional performing the manual
construction.

[0022] The example techniques may reduce an amount of
time and/or resources (e.g., processor cycles, memory, net-
work bandwidth) that is consumed to construct a deep neural
network. For instance, by using a reference deep neural
network to construct the deep neural network in accordance
with any one or more of the example techniques described
herein, an amount of time and/or resources associated with
constructing the deep neural network may be reduced. By
automatically constructing the deep neural network, the time
and/or resources that would have been consumed to manu-
ally construct the deep neural network is reduced. By
reducing the amount of time and/or resources that is con-
sumed by a computing system to facilitate manual construc-
tion of the deep neural network, the efficiency of the
computing system may be increased.

[0023] FIG. 1 is a block diagram of an example journey-
based transfer-learning system 100 in accordance with an
embodiment. Generally speaking, the journey-based trans-
fer-learning system 100 operates to provide information to
users in response to requests (e.g., hypertext transfer proto-
col (HTTP) requests) that are received from the users. The
information may include documents (Web pages, images,
audio files, video files, etc.), output of executables, and/or
any other suitable type of information. In accordance with
example embodiments described herein, the journey-based
transfer-learning system 100 performs transfer-learning for
structured data with regard to journeys defined by sets of
actions. Detail regarding techniques for performing transfer-
learning for structured data with regard to journeys defined
by sets of actions is provided in the following discussion.
[0024] As shown in FIG. 1, the journey-based transfer-
learning system 100 includes a plurality of user devices
102A-102M, a network 104, and a plurality of servers
106 A-106N. Communication among the user devices 102A-
102M and the servers 106A-106N is carried out over the
network 104 using well-known network communication
protocols. The network 104 may be a wide-area network
(e.g., the Internet), a local area network (LLAN), another type
of network, or a combination thereof.

[0025] The user devices 102A-102M are computing sys-
tems that are capable of communicating with servers 106 A-
106N. A computing system is a system that includes a
processing system comprising at least one processor that is
capable of manipulating data in accordance with a set of
instructions. For instance, a computing system may be a
computer, a personal digital assistant, etc. The user devices
102A-102M are configured to provide requests to the servers
106A-106N for requesting information stored on (or other-
wise accessible via) the servers 106 A-106N. For instance, a
user may initiate a request for executing a computer program
(e.g., an application) using a client (e.g., a Web browser,
Web crawler, or other type of client) deployed on a user
device 102 that is owned by or otherwise accessible to the
user. In accordance with some example embodiments, the
user devices 102A-102M are capable of accessing domains
(e.g., Web sites) hosted by the servers 104A-104N, so that
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the user devices 102A-102M may access information that is
available via the domains. Such domain may include Web
pages, which may be provided as hypertext markup lan-
guage (HTML) documents and objects (e.g., files) that are
linked therein, for example.

[0026] Each of the user devices 102A-102M may include
any client-enabled system or device, including but not
limited to a desktop computer, a laptop computer, a tablet
computer, a wearable computer such as a smart watch or a
head-mounted computer, a personal digital assistant, a cel-
Iular telephone, an Internet of things (IoT) device, or the
like. It will be recognized that any one or more of the user
devices 102A-102M may communicate with any one or
more of the servers 106 A-106N.

[0027] The servers 106A-106N are computing systems
that are capable of communicating with the user devices
102A-102M. The servers 106A-106N are configured to
execute computer programs that provide information to
users in response to receiving requests from the users. For
example, the information may include documents (Web
pages, images, audio files, video files, etc.), output of
executables, or any other suitable type of information. In
accordance with some example embodiments, the servers
106A-106N are configured to host respective Web sites, so
that the Web sites are accessible to users of the journey-
based transfer-learning system 100.

[0028] The first server(s) 106A are shown to include
journey-based transfer-learning logic 108, a first deep neural
network (DNN) 110, and a second DNN 112 for illustrative
purposes. The journey-based transfer-learning logic 108 is
configured to perform transfer-learning for structured data
with regard to journeys defined by sets of actions. For
instance, the journey-based transfer-learning logic 108 may
use the first DNN 110, which is associated with a first
journey and which is trained using structured data, to
construct the second DNN 112, which is associated with a
second journey that is similar to the first journey, in accor-
dance with a transfer-learning technique.

[0029] In an example implementation, the journey-based
transfer-learning logic 108 trains the first DNN 110, which
is associated with a first set of actions that defines a first
journey, by learning weights of nodes among layers of the
first DNN 110 that precede a final layer of the first DNN 110
using structured data. The journey-based transfer-learning
logic 108 transfers the weights from the first DNN 110 to
corresponding nodes in the second DNN 112, which is
associated with a second set of actions that defines a second
journey, in accordance with a transfer-learning technique
based at least on a similarity between the first set of actions
and the second set of actions satisfying a similarity criterion.
The journey-based transfer-learning logic 108 adds an
embedding layer in lieu of the final layer of the first DNN
110 in the second DNN 112 such that an output of the
embedding layer results in a same number of nodes as a
pre-final layer of the first DNN 110. The journey-based
transfer-learning logic 108 initializes weights of the respec-
tive nodes in the embedding layer based at least on a
probability that a new feature co-occurs with each of the
features in the structured data. The new feature is associated
with the second journey and is not included among the
features in the structured data, which are used to learn the
weights in the first DNN 110. The journey-based transfer-
learning logic 108 applies a softmax function on a final layer
of the second DNN 112. The softmax function is configured
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to generate a probability distribution regarding possible next
actions to be performed in the second journey based at least
on the weights of the respective nodes in the embedding
layer and further based at least on the weights of the
respective nodes in the pre-final layer, which result from
sequenced updating using a stochastic gradient descent
technique.

[0030] In an example implementation, the first DNN 110
pertains to a first digital buyer journey regarding a first
software product, and the second DNN 112 pertains to a
second digital buyer journey regarding a second software
product. In another example implementation, the first DNN
110 pertains to a first engineering support journey regarding
a first software product, and the second DNN 112 pertains to
a second engineering support journey regarding a second
software product. In yet another example implementation,
the first journey pertains to a lifecycle of a first compute
system, and the second journey pertains to a lifecycle of a
second compute system. In still another example implemen-
tation, the first journey pertains to a lifecycle of a first
software product, and the second journey pertains to a
lifecycle of a second software product.

[0031] The journey-based transfer-learning logic 108 may
be implemented in various ways to perform transfer-learning
for structured data with regard to journeys defined by sets of
actions, including being implemented in hardware, software,
firmware, or any combination thereof. For example, the
journey-based transfer-learning logic 108 may be imple-
mented as computer program code configured to be executed
in one or more processors. In another example, at least a
portion of the journey-based transfer-learning logic 108 may
be implemented as hardware logic/electrical circuitry. For
instance, at least a portion of the journey-based transfer-
learning logic 108 may be implemented in a field-program-
mable gate array (FPGA), an application-specific integrated
circuit (ASIC), an application-specific standard product
(ASSP), a system-on-a-chip system (SoC), a complex pro-
grammable logic device (CPLD), etc. Each SoC may include
an integrated circuit chip that includes one or more of a
processor (a microcontroller, microprocessor, digital signal
processor (DSP), etc.), memory, one or more communica-
tion interfaces, and/or further circuits and/or embedded
firmware to perform its functions.

[0032] The journey-based transfer-learning logic 108, the
first DNN 110, and the second DNN 112 are shown to be
incorporated in the first server(s) 106A for illustrative pur-
poses and are not intended to be limiting. It will be recog-
nized that the journey-based transfer-learning logic 108 (or
any portion(s) thereof) may be incorporated in any one or
more of the servers 106A-106N, any one or more of the user
devices 102A-102M, or any combination thereof. For
example, client-side aspects of the journey-based transfer-
learning logic 108 may be incorporated in one or more of the
user devices 102A-102M, and server-side aspects of jour-
ney-based transfer-learning logic 108 may be incorporated
in one or more of the servers 106 A-106N. It will be further
recognized that each of the first and second DNNs 110 and
112 (or any portion(s) thereof) may be incorporated in any
one or more of the servers 106A-106N, any one or more of
the user devices 102A-102M, or any combination thereof.

[0033] FIGS. 2-3 depict flowcharts 200 and 300 of
example methods for performing transfer-learning for struc-
tured data with regard to journeys defined by sets of actions
in accordance with embodiments. Flowcharts 200 and 300
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may be performed by the first server(s) 106 A shown in FIG.
1, for example. For illustrative purposes, flowcharts 200 and
300 are described with respect to computing system 400
shown in FIG. 4, which is an example implementation of the
first server(s) 106A. As shown in FIG. 4, the computing
system 400 includes journey-based transfer-learning logic
408. The journey-based transfer-learning logic 408 includes
a first deep neural network (DNN) 410, a second DNN 412,
training logic 422, weight transfer logic 424, layer embed-
ding logic 426, weight initialization logic 428, function
application logic 430, action logic 432, entity changing logic
434, and presentation logic 436. Further structural and
operational embodiments will be apparent to persons skilled
in the relevant art(s) based on the discussion regarding
flowcharts 200 and 300.

[0034] As shown in FIG. 2, the method of flowchart 200
begins at step 202. In step 202, a first deep neural network,
which is associated with a first set of actions that defines a
first journey, is trained by learning weights of nodes among
layers of the first deep neural network that precede a final
layer of the first deep neural network using structured data.
In an example implementation, training logic 422 trains the
first DNN 410, which is associated with a first set of actions
that defines a first journey, by learning weights of nodes
among layers of the first deep neural network 410 that
precede a final layer of the first deep neural network 410
using structured data.

[0035] In an example embodiment, the structured data
includes device features, entity features, and interaction
features. Each device feature represents a respective attri-
bute of a device (e.g., computing system) that interacts with
an entity associated with the first journey. Examples of an
entity include but are not limited to a website and a software
program (e.g., software product). Each entity feature repre-
sents a respective attribute of the entity. Each interaction
feature represents a respective attribute of an interaction
between a device and the entity.

[0036] In the context of a digital buyer journey, examples
of a device feature include but are not limited to hardware
and/or software (e.g., operating system, browser) used by
the device, a configuration of screen resolution, a type of the
device (e.g., mobile device, desktop device, or laptop
device), and a type of search channel used to search for
results. Examples of an entity feature include but are not
limited to a web page, information accessible via the web
page, an action button on the web page (e.g., Free Trial, Buy
Now, Add to Cart), a navigational element (e.g., internal
search, left assisted navigation, top assisted navigation, or
scroll element), and a backend commerce component of the
web page that enables transactions to occur. Examples of an
interaction feature include but are not limited to a previously
visited web page, a behavioral element regarding the pre-
viously visited web page (e.g., time spent performing opera-
tions on the web page, time spent on the visit to the web
page, a number of clicks performed on the web page, a depth
of'a website that was visited, a navigational path through the
web site, an interaction with a navigational element (e.g.,
keyword used in an internal search), a commerce action, and
an interaction with a scroll bar.

[0037] In the context of an engineering support journey,
examples of a device feature include but are not limited to
the age of the device and the type and/or configuration of the
compute, storage, memory, and/or networking employed by
the device. Examples of an entity feature include but are not
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limited to a Knowledge Base (KB) article describing steps to
troubleshoot an issue with which the journey pertains and an
online lab, user manual, and/or whitepaper describing steps
to resolve an issue with which the journey pertains.
Examples of an interaction feature include but are not
limited to a transcript of interactions between the device (or
a user thereof) and the entity (or a representative thereof).
Examples of such an interaction include but are not limited
to a website visit, a mobile application visit, an email
interaction, a chat with a technical support representative, a
call to a technical support representative over the phone,
arranging a site visit, and posting a question on a forum.
[0038] In the context of a journey of a compute system
over time, examples of a device feature include but are not
limited to a number of hard drives in the device, a perfor-
mance metric from the hard drive(s) (e.g., latency, band-
width, or throughput), wear and tear of the hard drive(s), and
a specific configuration used. Examples of an entity feature
include but are not limited to a temperature of the hard
drive(s), a pressure experienced by the hard drive(s), and an
external load of the hard drive(s). Examples of an interaction
feature include but are not limited to a number of requests
serviced during a period of time and an outage error.
[0039] In an example embodiment, input of the deep
neural network is a series of touchpoints between device(s)
and the entity. For instance, each touchpoint may be repre-
sented by a feature vector that includes the device features,
the entity features, and the interaction features.

[0040] At step 204, the weights from the first deep neural
network are transferred to corresponding nodes in a second
deep neural network, which is associated with a second set
of actions that defines a second journey, in accordance with
a transfer-learning technique based at least on a similarity
between the first set of actions and the second set of actions
satisfying a similarity criterion. In an example implementa-
tion, the weight transfer logic 424 transfers the weights from
the first DNN 410 to corresponding nodes in the second
DNN 412, which is associated with a second set of actions
that defines a second journey, in accordance with a transfer-
learning technique based at least on a similarity between the
first set of actions and the second set of actions satisfying a
similarity criterion. For instance, the weight transfer logic
424 may analyze weight information 450, which indicates
the weights from the first DNN 410, to determine the
weights that are to be assigned to the corresponding nodes
in the second DNN 412. Accordingly, the weight transfer
logic 424 assigns transferred weights 460, which are trans-
ferred from the first DNN 410, to the corresponding nodes
in initial layers 454 of the second DNN 412. The initial
layers 454 are the layers of the second DNN 412 that
correspond to the layers of the first DNN 410 that precede
the final layer of the first DNN 410.

[0041] In an example embodiment, the weight transfer
logic 424 receives journey information 444, which indicates
the first set of actions that defines the first journey and the
second set of actions that defines the second journey. In
accordance with this embodiment, the weight transfer logic
424 analyzes the journey information 444 to determine the
similarity between the first set of actions and the second set
of actions. In an aspect of this embodiment, the weight
transfer logic 424 compares each action in the second set of
actions to each action in the second set of actions to
determine whether the respective action in the first set is
similar to any one or more of the actions in the second set.
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An action in the first set may be deemed to be similar to an
action in the second set based on the action in the first set
being the same as the action in the second set, the action in
the first set being categorized into the same category in
which the action in the second set is categorized, a result of
the action in the first set having a result that is substantially
the same as the action in the second set, a probability of the
action in the first set corresponding to the action in the
second set being greater than or equal to a probability
threshold, and/or a confidence in the aforementioned prob-
ability being greater than or equal to a confidence threshold.
In another aspect of this embodiment, the weight transfer
logic 424 transfers the weights from the first DNN 110 to the
corresponding nodes in the second DNN 112 based at least
on cumulative similarities between the first set of actions
and the second set of actions being greater than or equal to
a cumulative similarity threshold.

[0042] At step 206, an embedding layer is added in lieu of
the final layer of the first deep neural network in the second
deep neural network such that an output of the embedding
layer results in a same number of nodes as a pre-final layer
of'the first deep neural network. It will be recognized that the
pre-final layer of the first deep neural network is the layer of
the first deep neural network that immediately precedes the
final layer of the first deep neural network. In an example
implementation, the layer embedding logic 426 adds an
embedding layer 456 in lieu of the final layer of the first
DNN 410 in the second DNN 412 such that an output of the
embedding layer 456 results in a same number of nodes as
a pre-final layer of the first DNN 410. For instance, the layer
embedding logic 426 may analyze node information 442,
which indicates the number of nodes in the pre-final layer of
the first DNN 410, to determine the number of nodes to be
included in the embedding layer 456.

[0043] In an example embodiment, adding the embedding
layer in the second deep neural network at step 206 includes
concatenating the new feature from the second deep neural
network with the features in the structured data that are used
to learn the weights in the first deep neural network. For
instance, the layer embedding logic 426 may establish nodes
in the embedding layer 456 such that the nodes represent a
concatenation of the new feature and the features in the
structured data 440.

[0044] At step 208, weights of the respective nodes in the
embedding layer are initialized based at least on a probabil-
ity that a new feature, which is associated with the second
journey and which is not included among features in the
structured data that are used to learn the weights in the first
deep neural network, co-occurs with each of the features in
the structured data (e.g., in a common user session). In an
example implementation, the weight initialization logic 428
initializes the weights of the respective nodes in the embed-
ding layer 456 to provide respective initialized weights 462
based at least on the probability that the new feature, which
is not included among features in the structured data 440,
co-occurs with each of the features in the structured data
440. In an example embodiment, the weight initialization
logic 428 analyzes feature information 446, which indicates
the features that are associated with the first journey and the
features that are associated with the second journey. It will
be recognized that the features in the structured data 440 are
associated with the first journey. The weight initialization
logic 428 may analyze the feature information 446 by
comparing the features that are associated with the first
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journey and the features that are associated with the second
journey to determine that the features that are associated
with the second journey include the new feature and that the
features that are associated with the first journey do not
include the new feature. Based on a determination of the
new feature, the weight initialization logic 428 calculates the
probability of co-occurrence of the new feature with each of
the features that are associated with the first journey.
[0045] Inanexample implementation, assume that the first
DNN 410 has two click actions: “Buy Now” and “Free
Trial.” In this implementation, the second journey has an
additional click action “Renew.” The value of “Renew” in
the embedding layer 456 can be learned from the second
DNN 412 based at least on the probability of co-occurrence
of “Renew” with the existing features in the first journey in
the same visiting session.

[0046] At step 210, a softmax function is applied on a final
layer of the second deep neural network. The softmax
function is configured to generate a probability distribution
regarding possible next actions to be performed in the
second journey based at least on the weights of the respec-
tive nodes in the embedding layer and further based at least
on the weights of the respective nodes in the pre-final layer,
which result from sequenced updating using a stochastic
gradient descent technique. In an example implementation,
the function application logic 430 applies a softmax function
438 on the final layer 458 of the second DNN 412. The
softmax function 438 is configured to generate a probability
distribution 464 based at least on the initialized weights 456
of the respective nodes in the embedding layer 456 and
further based at least on the weights of the respective nodes
in the pre-final layer, which are included among the trans-
ferred weights 460.

[0047] In an example embodiment, the set of actions that
defines the first journey is associated with a first software
program, and the set of actions that defines the second
journey is associated with a second software program that is
different from the first software program. For instance, the
set of actions that defines the first journey may be performed
with regard to (e.g., on) the first software program, and the
set of actions that defines the second journey may be
performed with regard to (e.g., on) the second software
program. In a first aspect of this embodiment, the possible
next actions include respective remedial actions regarding a
technical issue associated with the second software program.
In a second aspect of this embodiment, the possible next
actions include offering respective sets of terms regarding a
purchase of the second software program. For instance,
offering the sets of terms may include applying respective
discounts to a purchase price of the second software pro-
gram. In a third aspect of this embodiment, the possible next
actions include presenting respective documents regarding
the second software program via a user interface (e.g., web
interface).

[0048] In another example embodiment, transferring the
weights from the first deep neural network to the corre-
sponding nodes in the second deep neural network at step
204 is performed as a result of a number of features that are
associated with the second journey being different from a
number of features that are associated with the first journey.
In accordance with this embodiment, the embedding layer
maps the number of features that are associated with the
second journey into the number of features that are associ-
ated with the first journey. In an aspect of this embodiment,
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the embedding layer maps the number of features that are
associated with the second journey into a number of features
represented by the nodes in the second deep neural network
that precede the embedding layer.

[0049] In some example embodiments, one or more steps
202, 204, 206, 208, and/or 210 of flowchart 200 may not be
performed. Moreover, steps in addition to or in lieu of steps
202, 204, 206, 208, and/or 210 may be performed. For
instance, in an example embodiment, the method of flow-
chart 200 further includes identifying a next action to be
performed in the second journey based at least on the next
action having a probability in the probability distribution
that is greater than a probability of each of the other possible
next actions in the probability distribution. For example, the
next action may be identified based on the probabilities in
the probability distribution at a specified time instance in the
second journey. In another example, the next action may be
predicted as a multi-class problem. In an example imple-
mentation, the action logic 432 identifies a next action 466
to be performed in the second journey based at least on the
next action 466 having a probability in the probability
distribution 464 that is greater than a probability of each of
the other possible next actions in the probability distribution
464.

[0050] In another example embodiment, the method of
flowchart 200 further includes one or more of the steps
shown in flowchart 300 of FIG. 3. As shown in FIG. 3, the
method of flowchart 300 begins at step 302. In step 302, an
initial version of an entity that is associated with the second
journey is changed to provide a changed version of the
entity. In an example implementation, the entity change
logic 434 changes the initial version of the entity that is
associated with the second journey to provide the changed
version of the entity. For example, the entity change logic
434 may receive initial entity information 448, which indi-
cates (e.g., describes) the initial version of the entity. The
initial entity information 448 may identify attributes of the
initial version of the entity. In accordance with this example,
the entity change logic 434 may analyze the initial entity
information 448 to determine the initial version of the entity.
The entity change logic 434 may change one or more of the
attributes of the initial version of the entity to provide the
changed version of the entity. In accordance with this
implementation, the entity change logic 434 generates
changed entity information 452, which indicates the
changed version of the entity. The changed entity informa-
tion 452 may identify attributes of the changed version of the
entity.

[0051] At step 304, the changed version of the entity is
caused to be presented in lieu of the initial version of the
entity to a first subset of users who are associated with the
second journey based at least on a prediction that presenta-
tion of the changed version to the users in the first subset is
more likely than presentation of the initial version to the
users in the first subset to cause the second journey for the
users in the first subset to have a designated result. In an
example implementation, the presentation logic 436 causes
the changed version of the entity to be presented in lieu of
the initial version of the entity to the first subset of the users.
For instance, the presentation logic 452 may generate a first
presentation instruction 468, which indicates that the
changed version of the entity is to be presented to the first
subset of the users. The presentation logic 452 may specity
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the attributes of the changed version of the entity, as
indicated by the changed entity information 452.

[0052] At step 306, the initial version of the entity is
caused to be presented to a second subset of the users who
are associated with the second journey. For instance, causing
the initial version of the entity to be presented to the second
subset of the users at step 306 may be performed based at
least on a prediction that presentation of the changed version
to the users in the second subset is not more likely than
presentation of the initial version to the users in the second
subset to cause the second journey for the users in the second
subset to have the designated result. The first subset of the
users and the second subset of the users are mutually
exclusive. In an example implementation, the presentation
logic 436 causes the initial version of the entity to be
presented to the second subset of the users. For instance, the
presentation logic 452 may generate a second presentation
instruction 470, which indicates that the initial version of the
entity is to be presented to the second subset of the users.
The presentation logic 452 may specify the attributes of the
initial version of the entity, as indicated by the initial entity
information 448.

[0053] In an example digital buyer journey implementa-
tion of this embodiment, the journey-based transfer-learning
logic 408 predicts which web visitors will purchase a
product based on visitor and website characteristics and a
series of visitor-website interactions. The owner of the
product is to optimize the website or tech support portal with
a personalized experience that can increase the success rate
of purchase conversion on each individual visitor. It is often
difficult to design an A/B/N test with various treatments and
match each design variant to a different cohort or journey.
The journey-based transfer-learning logic 408 provides
auto-matching to optimize the assignment of each user to
either a treatment group or a control group based on the
cohort group in which the user is classified by the journey-
based transfer-learning logic 408. Accordingly, each cohort
group receives a personalized design variant that optimizes
the outcome a priori, and two random samples of the entities
are taken from the cohort. A first random sample receives the
design variant (i.e., the second DNN 412), and the second
random sample receives the original design (i.e., the first
DNN 410). For example, a treatment in which the purchase
button is moved to the top of the site may lead to fewer
mouse-scrolling events (i.e., a lower mouse-scrolling event
count). In accordance with this example, the treatment may
be paired to the cohort whose feature value on mouse-
scrolling event count negatively correlates with the purchase
conversion.

[0054] It will be recognized that the computing system
400 may not include one or more of the journey-based
transfer-learning logic 408, the first DNN 410, the second
DNN 412, the training logic 422, the weight transfer logic
424, the layer embedding logic 426, the weight initialization
logic 428, the function application logic 430, the action logic
432, the entity changing logic 434, and/or the presentation
logic 436. Furthermore, the computing system 400 may
include components in addition to or in lieu of the journey-
based transfer-learning logic 408, the first DNN 410, the
second DNN 412, the training logic 422, the weight transfer
logic 424, the layer embedding logic 426, the weight ini-
tialization logic 428, the function application logic 430, the
action logic 432, the entity changing logic 434, and/or the
presentation logic 436.
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[0055] FIG. 5 is a block diagram of an example deep
neural network (DNN) 500 in accordance with an embodi-
ment. Any one or more aspect of the DNN 500 may be
incorporated into the first DNN 110 and/or the second DNN
112 shown in FIG. 1 and/or the first DNN 410 and/or the
second DNN 412 shown in FIG. 4. It will be recognized that
the DNN 500 can be modified to include an embedding layer
(e.g., embedding layer 456 of FIG. 4) to incorporate func-
tionality of any one or more of the embodiments described
herein. For instance, incorporating an embedding layer into
the DNN 500 may enable any organization to map its
features to generic features on the input side.

[0056] The DNN 500 processes an input dataset 502 to
determine a next best action 542. The number of inputs of
the DNN 500 is the same as the number of features that are
extracted from the input dataset 502. As shown in FIG. 5, the
DNN 500 includes a first fully connected hidden layer 510,
a second fully connected hidden layer 520, and an output
layer 530. The first fully connected hidden layer 510
includes a linear layer 512, a non-linear activation layer 514,
and a dropout layer 516. The linear layer 512 performs an
affine transformation, and the non-linear activation layer 514
performs a non-linear transformation using a non-linear
activation function 518, which is referred to herein as
“LeakyReLU.” The second fully connected hidden layer 520
includes a linear layer 522, a non-linear activation layer 524,
and a dropout layer 526. The linear layer 522 performs an
affine transformation, and the non-linear activation layer 524
performs a non-linear transformation using the non-linear
activation function 518 (i.e., LeakyReL.U). Accordingly, the
architectures of the respective first and second connected
hidden layers 510 and 520 are the same. The output layer
530 includes a linear layer 532 and a softmax layer 540. The
output layer 530 has the same number of nodes as the set of
possible actions.

[0057] The loss between the layers 510, 520, and 530 is
referred to as the “CrossEntropy loss.” The weights of the
different layers are initialized randomly and then calculated
using a classic stochastic gradient descent technique through
multiple passes over the observations (1 full pass=1 epoch).
Each pass involves multiple batches (1 epoch=N batches,
where N determines the size of the dataset and the batch
size). If K is the number of observations, K/N+1 is the
number of batches. The forward pass involves application of
the affine and non-linear transformations from the input
layer (i.e., the first fully connected hidden layer 510 in this
example) to the output layer 530. The loss is computed at the
output layer 530. The loss is then back-propagated back to
the input layer by differentiating the loss with respect to each
of the unknowns. The gradients are then subtracted from the
unknowns so that the loss is decreases in the next iteration.
This process is repeated until the loss on the validation set
starts to increase, at which time the training is “early
stopped.” The equations utilized by the DNN 500 are listed
below.

[0058] An API may be configured to enable users to
choose an architecture of the DNN 500 from multiple
possible architectures. The DNN 500 is shown to include
two hidden layers for illustrative purposes and is not
intended to be limiting. It will be recognized that the DNN
500 may include any suitable number of hidden layers (e.g.,
2,3, 5, or 10). The architecture of the DNN 500 in terms of
the number of layers, the number of nodes in each hidden
layer, the hyper-parameters to train the DNN 500 (e.g.,
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learning rate, dropout rates, and weight decay) may be
selected based on the performance on the holdout dataset
with an objective to learn the unknown weights in such a
way that the overall error of the DNN 500 is minimized. A
weight matrix and an input matrix (i.e., outputs of the
previous hidden layer) are received at each of the first and
second fully connected hidden layers 510 and 520. The
outputs of the respective linear layers 512 and 522 are
represented by the following equation, where b, is the bias
of the hidden layer H:

OutpUt i ear=WerkXer 1405

[0059] The non-linear activation function 518 is repre-
sented by the following equation:

(Equation 1)

X=LeakyReLU(x)
The function LeakyRelLU has the following form:
X=LeakyReLU(x)=x if x>0,else0.01x

[0060] Each of the first and second fully connected hidden
layers 510 and 520 randomly turns off activations as defined
by the dropout probability set by the respective dropout
layers 516 and 526. The size of the last hidden layer (i.e., the
second fully connected hidden layer 520 in this example) is
fixed to include the same number of nodes as the number of
potential output actions. The softmax function 540 at the
output ensures that the best action (i.e., the possible action
with the highest probability) is chosen from the various
possible actions.

[0061] Equations 4-7 below represent the transformations
through the architecture of the DNN 500:

X;=dropout, (LeakyReLU(W *Xy+b,))

(Equation 2)

(Equation 3)

(Equation 4)

Xo=dropout, (LeakyReLU(W, *X | +b,)) (Equation 5)

X=W3*X, (Equation 6)

output=softmax(X3)

[0062] The example embodiments may provide output
instrumentation that can be used by users to configure the
architecture of the DNN 500.

[0063] Although the operations of some of the disclosed
methods are described in a particular, sequential order for
convenient presentation, it should be understood that this
manner of description encompasses rearrangement, unless a
particular ordering is required by specific language set forth
herein. For example, operations described sequentially may
in some cases be rearranged or performed concurrently.
Moreover, for the sake of simplicity, the attached figures
may not show the various ways in which the disclosed
methods may be used in conjunction with other methods.

[0064] Any one or more of the journey-based transfer-
learning logic 108, the first DNN 110, the second DNN 112,
the journey-based transfer-learning logic 408, the first DNN
410, the second DNN 412, the training logic 422, the weight
transfer logic 424, the layer embedding logic 426, the weight
initialization logic 428, the function application logic 430,
the action logic 432, the entity changing logic 434, the
presentation logic 436, the DNN 500, the first fully con-
nected hidden layer 510, the linear layer 512, the non-linear
activation layer 514, the dropout layer 516, the second fully
connected hidden layer 520, the linear layer 522, the non-
linear activation layer 524, the dropout layer 526, the output
layer 530, the linear layer 532, the softmax layer 540,

(Equation 7)
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flowchart 200, and/or flowchart 300 may be implemented in
hardware, software, firmware, or any combination thereof.
[0065] For example, any one or more of the journey-based
transfer-learning logic 108, the first DNN 110, the second
DNN 112, the journey-based transfer-learning logic 408, the
first DNN 410, the second DNN 412, the training logic 422,
the weight transfer logic 424, the layer embedding logic 426,
the weight initialization logic 428, the function application
logic 430, the action logic 432, the entity changing logic
434, the presentation logic 436, the DNN 500, the first fully
connected hidden layer 510, the linear layer 512, the non-
linear activation layer 514, the dropout layer 516, the second
fully connected hidden layer 520, the linear layer 522, the
non-linear activation layer 524, the dropout layer 526, the
output layer 530, the linear layer 532, the softmax layer 540,
flowchart 200, and/or flowchart 300 may be implemented, at
least in part, as computer program code configured to be
executed in one or more processors.

[0066] In another example, any one or more of the jour-
ney-based transfer-learning logic 108, the first DNN 110, the
second DNN 112, the journey-based transfer-learning logic
408, the first DNN 410, the second DNN 412, the training
logic 422, the weight transfer logic 424, the layer embedding
logic 426, the weight initialization logic 428, the function
application logic 430, the action logic 432, the entity chang-
ing logic 434, the presentation logic 436, the DNN 500, the
first fully connected hidden layer 510, the linear layer 512,
the non-linear activation layer 514, the dropout layer 516,
the second fully connected hidden layer 520, the linear layer
522, the non-linear activation layer 524, the dropout layer
526, the output layer 530, the linear layer 532, the sofimax
layer 540, flowchart 200, and/or flowchart 300 may be
implemented, at least in part, as hardware logic/electrical
circuitry. Such hardware logic/electrical circuitry may
include one or more hardware logic components. Examples
of a hardware logic component include but are not limited to
a field-programmable gate array (FPGA), an application-
specific integrated circuit (ASIC), an application-specific
standard product (ASSP), a system-on-a-chip system (SoC),
a complex programmable logic device (CPLD), etc. For
instance, a SoC may include an integrated circuit chip that
includes one or more of a processor (e.g., a microcontroller,
microprocessor, digital signal processor (DSP), etc.),
memory, one or more communication interfaces, and/or
further circuits and/or embedded firmware to perform its
functions.

II. Further Discussion of Some Example
Embodiments

[0067] (Al) An example system (FIG. 1, 102A-102M,
106A-106N; FIG. 4, 400; FIG. 6, 600) comprises memory
(FIG. 6, 604, 608, 610) and a processing system (FIG. 6,
602) coupled to the memory. The processing system is
configured to train (FIG. 2, 202) a first deep neural network
(FIG. 1, 110; FIG. 4, 410), which is associated with a first
set of actions that defines a first journey, by learning weights
of nodes among layers of the first deep neural network that
precede a final layer of the first deep neural network using
structured data (FIG. 4, 440). The processing system is
further configured to transfer (FIG. 2, 204) the weights from
the first deep neural network to corresponding nodes in a
second deep neural network (FIG. 1, 112; FIG. 4, 412),
which is associated with a second set of actions that defines
a second journey, in accordance with a transfer-learning
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technique based at least on a similarity between the first set
of actions and the second set of actions satistying a simi-
larity criterion. The processing system is further configured
to add (FIG. 2, 206) an embedding layer (FIG. 4, 456) in lieu
of the final layer of the first deep neural network in the
second deep neural network such that an output of the
embedding layer results in a same number of nodes as a
pre-final layer of the first deep neural network. The process-
ing system is further configured to initialize (FIG. 2, 208)
weights of the respective nodes in the embedding layer
based at least on a probability that a new feature, which is
associated with the second journey and which is not
included among features in the structured data that are used
to learn the weights in the first deep neural network, co-
occurs with each of the features in the structured data. The
processing system is further configured to apply (FIG. 2,
210) a softmax function (FIG. 4, 438) on a final layer (FIG.
4, 458) of the second deep neural network. The softmax
function is configured to generate a probability distribution
regarding possible next actions to be performed in the
second journey based at least on the weights of the respec-
tive nodes in the embedding layer and further based at least
on the weights of the respective nodes in the pre-final layer,
which result from sequenced updating using a stochastic
gradient descent technique.

[0068] (A2) In the example system of Al, wherein the
structured data comprises: a plurality of device features,
each device feature representing a respective attribute of a
device that interacts with an entity associated with the first
journey; a plurality of entity features, each entity feature
representing a respective attribute of the entity; and a
plurality of interaction features, each interaction feature
representing a respective attribute of an interaction between
a device and the entity.

[0069] (A3) In the example system of any of Al-A2,
wherein the set of actions that defines the first journey is
associated with a first software program; wherein the set of
actions that defines the second journey is associated with a
second software program that is different from the first
software program; and wherein the possible next actions
include respective remedial actions regarding a technical
issue associated with the second software program.

[0070] (A4) In the example system of any of Al-A3,
wherein the set of actions that defines the first journey is
associated with a first software program; wherein the set of
actions that defines the second journey is associated with a
second software program that is different from the first
software program; and wherein the possible next actions
include offering respective sets of terms regarding a pur-
chase of the second software program.

[0071] (AS) In the example system of any of Al-A4,
wherein the set of actions that defines the first journey is
associated with a first software program; wherein the set of
actions that defines the second journey is associated with a
second software program that is different from the first
software program; and wherein the possible next actions
include presenting respective documents regarding the sec-
ond software program via a user interface.

[0072] (A6) In the example system of any of Al-AS,
wherein the processing system is configured to: transfer the
weights from the first deep neural network to the corre-
sponding nodes in the second deep neural network is per-
formed as a result of a number of features that are associated
with the second journey being different from a number of
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features that are associated with the first journey; and
wherein the embedding layer maps the number of features
that are associated with the second journey into the number
of features that are associated with the first journey.
[0073] (A7) In the example system of any of Al-A6,
wherein the processing system is configured to: add the
embedding layer by concatenating the new feature from the
second deep neural network with the features in the struc-
tured data that are used to learn the weights in the first deep
neural network.

[0074] (A8) In the example system of any of Al-A7,
wherein the processing system is further configured to:
change an initial version of an entity that is associated with
the second journey to provide a changed version of the
entity; cause the changed version of the entity to be pre-
sented in lieu of the initial version of the entity to a first
subset of users who are associated with the second journey
based at least on a prediction that presentation of the
changed version to the users in the first subset is more likely
than presentation of the initial version to the users in the first
subset to cause the second journey for the users in the first
subset to have a designated result; and cause the initial
version of the entity to be presented to a second subset of the
users who are associated with the second journey.

[0075] (B1) An example method is implemented by a
computing system (FIG. 1, 102A-102M, 106A-106N; FIG.
4, 400; FIG. 6, 600). The method comprises training (FIG.
2,202) a first deep neural network (FIG. 1, 110; FIG. 4, 410),
which is associated with a first set of actions that defines a
first journey, by learning weights of nodes among layers of
the first deep neural network that precede a final layer of the
first deep neural network using structured data (FIG. 4, 440).
The method further comprises transferring (FIG. 2, 204) the
weights from the first deep neural network to corresponding
nodes in a second deep neural network (FIG. 1, 112; FIG. 4,
412), which is associated with a second set of actions that
defines a second journey, in accordance with a transfer-
learning technique based at least on a similarity between the
first set of actions and the second set of actions satisfying a
similarity criterion. The method further comprises adding
(FIG. 2, 206) an embedding layer (FIG. 4, 456) in lieu of the
final layer of the first deep neural network in the second deep
neural network such that an output of the embedding layer
results in a same number of nodes as a pre-final layer of the
first deep neural network. The method further comprises
initializing (FIG. 2, 208) weights of the respective nodes in
the embedding layer based at least on a probability that a
new feature, which is associated with the second journey and
which is not included among features in the structured data
that are used to learn the weights in the first deep neural
network, co-occurs with each of the features in the struc-
tured data. The method further comprises applying (FIG. 2,
210) a softmax function (FIG. 4, 438) on a final layer (FIG.
4, 458) of the second deep neural network. The sofimax
function is configured to generate a probability distribution
regarding possible next actions to be performed in the
second journey based at least on the weights of the respec-
tive nodes in the embedding layer and further based at least
on the weights of the respective nodes in the pre-final layer,
which result from sequenced updating using a stochastic
gradient descent technique.

[0076] (B2) In the method of B1, wherein the structured
data comprises: a plurality of device features, each device
feature representing a respective attribute of a device that
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interacts with an entity associated with the first journey; a
plurality of entity features, each entity feature representing
a respective attribute of the entity; and a plurality of inter-
action features, each interaction feature representing a
respective attribute of an interaction between a device and
the entity.

[0077] (B3) In the method of any of B1-B2, wherein the
set of actions that defines the first journey is associated with
a first software program; wherein the set of actions that
defines the second journey is associated with a second
software program that is different from the first software
program; and wherein the possible next actions include
respective remedial actions regarding a technical issue asso-
ciated with the second software program.

[0078] (B4) In the method of any of B1-B3, wherein the
set of actions that defines the first journey is associated with
a first software program; wherein the set of actions that
defines the second journey is associated with a second
software program that is different from the first software
program; and wherein the possible next actions include
offering respective sets of terms regarding a purchase of the
second software program.

[0079] (BS) In the method of any of B1-B4, wherein the
set of actions that defines the first journey is associated with
a first software program; wherein the set of actions that
defines the second journey is associated with a second
software program that is different from the first software
program; and wherein the possible next actions include
presenting respective documents regarding the second soft-
ware program via a user interface.

[0080] (B6) In the method of any of B1-BS5, wherein
transferring the weights from the first deep neural network
to the corresponding nodes in the second deep neural
network is performed as a result of a number of features that
are associated with the second journey being different from
a number of features that are associated with the first
journey; and wherein the embedding layer maps the number
of features that are associated with the second journey into
the number of features that are associated with the first
journey.

[0081] (B7) In the method of any of B1-B6, wherein
adding the embedding layer comprises: concatenating the
new feature from the second deep neural network with the
features in the structured data that are used to learn the
weights in the first deep neural network.

[0082] (B8) In the method of any of B1-B7, further
comprising: changing an initial version of an entity that is
associated with the second journey to provide a changed
version of the entity; causing the changed version of the
entity to be presented in lieu of the initial version of the
entity to a first subset of users who are associated with the
second journey based at least on a prediction that presenta-
tion of the changed version to the users in the first subset is
more likely than presentation of the initial version to the
users in the first subset to cause the second journey for the
users in the first subset to have a designated result; and
causing the initial version of the entity to be presented to a
second subset of the users who are associated with the
second journey.

[0083] (C1) An example computer program product (FIG.
6, 618, 622) comprising a computer-readable storage
medium having instructions recorded thereon for enabling a
processor-based system (FIG. 1, 102A-102M, 106A-106N;
FIG. 4, 400; FIG. 6, 600) to perform operations. The
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operations comprise training (FIG. 2, 202) a first deep neural
network (FIG. 1, 110; FIG. 4, 410), which is associated with
a first set of actions that defines a first journey, by learning
weights of nodes among layers of the first deep neural
network that precede a final layer of the first deep neural
network using structured data (FIG. 4, 440). The operations
further comprise transferring (FIG. 2, 204) the weights from
the first deep neural network to corresponding nodes in a
second deep neural network (FIG. 1, 112; FIG. 4, 412),
which is associated with a second set of actions that defines
a second journey, in accordance with a transfer-learning
technique based at least on a similarity between the first set
of actions and the second set of actions satistying a simi-
larity criterion. The operations further comprise adding
(FIG. 2, 206) an embedding layer (FIG. 4, 456) in lieu of the
final layer of the first deep neural network in the second deep
neural network such that an output of the embedding layer
results in a same number of nodes as a pre-final layer of the
first deep neural network. The operations further comprise
initializing (FIG. 2, 208) weights of the respective nodes in
the embedding layer based at least on a probability that a
new feature, which is associated with the second journey and
which is not included among features in the structured data
that are used to learn the weights in the first deep neural
network, co-occurs with each of the features in the struc-
tured data. The operations further comprise applying (FIG.
2, 210) a softmax function (FIG. 4, 438) on a final layer
(FIG. 4, 458) of the second deep neural network. The
softmax function is configured to generate a probability
distribution regarding possible next actions to be performed
in the second journey based at least on the weights of the
respective nodes in the embedding layer and further based at
least on the weights of the respective nodes in the pre-final
layer, which result from sequenced updating using a sto-
chastic gradient descent technique.

II1. Example Computer System

[0084] FIG. 6 depicts an example computer 600 in which
embodiments may be implemented. Any one or more of the
user devices 102A-102M and/or any one or more of the
servers 106A-106N shown in FIG. 1 and/or computing
system 400 shown in FIG. 4 may be implemented using
computer 600, including one or more features of computer
600 and/or alternative features. Computer 600 may be a
general-purpose computing device in the form of a conven-
tional personal computer, a mobile computer, or a worksta-
tion, for example, or computer 600 may be a special purpose
computing device. The description of computer 600 pro-
vided herein is provided for purposes of illustration, and is
not intended to be limiting. Embodiments may be imple-
mented in further types of computer systems, as would be
known to persons skilled in the relevant art(s).

[0085] As shown in FIG. 6, computer 600 includes a
processing unit 602, a system memory 604, and a bus 606
that couples various system components including system
memory 604 to processing unit 602. Bus 606 represents one
or more of any of several types of bus structures, including
a memory bus or memory controller, a peripheral bus, an
accelerated graphics port, and a processor or local bus using
any of a variety of bus architectures. System memory 604
includes read only memory (ROM) 608 and random access
memory (RAM) 610. A basic input/output system 612
(BIOS) is stored in ROM 608.

Apr. 4,2024

[0086] Computer 600 also has one or more of the follow-
ing drives: a hard disk drive 614 for reading from and
writing to a hard disk, a magnetic disk drive 616 for reading
from or writing to a removable magnetic disk 618, and an
optical disk drive 620 for reading from or writing to a
removable optical disk 622 such as a CD ROM, DVD ROM,
or other optical media. Hard disk drive 614, magnetic disk
drive 616, and optical disk drive 620 are connected to bus
606 by a hard disk drive interface 624, a magnetic disk drive
interface 626, and an optical drive interface 628, respec-
tively. The drives and their associated computer-readable
storage media provide nonvolatile storage of computer-
readable instructions, data structures, program modules and
other data for the computer. Although a hard disk, a remov-
able magnetic disk and a removable optical disk are
described, other types of computer-readable storage media
can be used to store data, such as flash memory cards, digital
video disks, random access memories (RAMs), read only
memories (ROM), and the like.

[0087] A number of program modules may be stored on
the hard disk, magnetic disk, optical disk, ROM, or RAM.
These programs include an operating system 630, one or
more application programs 632, other program modules 634,
and program data 636. Application programs 632 or pro-
gram modules 634 may include, for example, computer
program logic for implementing any one or more of (e.g., at
least a portion of) the journey-based transfer-learning logic
108, the first DNN 110, the second DNN 112, the journey-
based transfer-learning logic 408, the first DNN 410, the
second DNN 412, the training logic 422, the weight transfer
logic 424, the layer embedding logic 426, the weight ini-
tialization logic 428, the function application logic 430, the
action logic 432, the entity changing logic 434, the presen-
tation logic 436, the DNN 500, the first fully connected
hidden layer 510, the linear layer 512, the non-linear acti-
vation layer 514, the dropout layer 516, the second fully
connected hidden layer 520, the linear layer 522, the non-
linear activation layer 524, the dropout layer 526, the output
layer 530, the linear layer 532, the softmax layer 540,
flowchart 200 (including any step of flowchart 200), and/or
flowchart 300 (including any step of flowchart 300), as
described herein.

[0088] A user may enter commands and information into
the computer 600 through input devices such as keyboard
638 and pointing device 640. Other input devices (not
shown) may include a microphone, joystick, game pad,
satellite dish, scanner, touch screen, camera, accelerometer,
gyroscope, or the like. These and other input devices are
often connected to the processing unit 602 through a serial
port interface 642 that is coupled to bus 606, but may be
connected by other interfaces, such as a parallel port, game
port, or a universal serial bus (USB).

[0089] A display device 644 (e.g., a monitor) is also
connected to bus 606 via an interface, such as a video
adapter 646. In addition to display device 644, computer 600
may include other peripheral output devices (not shown)
such as speakers and printers.

[0090] Computer 600 is connected to a network 648 (e.g.,
the Internet) through a network interface or adapter 650, a
modem 652, or other means for establishing communica-
tions over the network. Modem 652, which may be internal
or external, is connected to bus 606 via serial port interface
642.
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[0091] As used herein, the terms “computer program
medium” and “computer-readable storage medium” are used
to generally refer to media (e.g., non-transitory media) such
as the hard disk associated with hard disk drive 614,
removable magnetic disk 618, removable optical disk 622,
as well as other media such as flash memory cards, digital
video disks, random access memories (RAMs), read only
memories (ROM), and the like. A computer-readable storage
medium is not a signal, such as a carrier signal or a
propagating signal. For instance, a computer-readable stor-
age medium may not include a signal. Accordingly, a
computer-readable storage medium does not constitute a
signal per se. Such computer-readable storage media are
distinguished from and non-overlapping with communica-
tion media (do not include communication media). Com-
munication media embodies computer-readable instructions,
data structures, program modules or other data in a modu-
lated data signal such as a carrier wave. The term “modu-
lated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media includes wireless media
such as acoustic, RF, infrared and other wireless media, as
well as wired media. Example embodiments are also
directed to such communication media.

[0092] As noted above, computer programs and modules
(including application programs 632 and other program
modules 634) may be stored on the hard disk, magnetic disk,
optical disk, ROM, or RAM. Such computer programs may
also be received via network interface 650 or serial port
interface 642. Such computer programs, when executed or
loaded by an application, enable computer 600 to implement
features of embodiments discussed herein. Accordingly,
such computer programs represent controllers of the com-
puter 600.

[0093] Example embodiments are also directed to com-
puter program products comprising software (e.g., com-
puter-readable instructions) stored on any computer-useable
medium. Such software, when executed in one or more data
processing devices, causes data processing device(s) to
operate as described herein. Embodiments may employ any
computer-useable or computer-readable medium, known
now or in the future. Examples of computer-readable medi-
ums include, but are not limited to storage devices such as
RAM, hard drives, floppy disks, CD ROMs, DVD ROMs,
zip disks, tapes, magnetic storage devices, optical storage
devices, MEMS-based storage devices, nanotechnology-
based storage devices, and the like.

[0094] It will be recognized that the disclosed technolo-
gies are not limited to any particular computer or type of
hardware. Certain details of suitable computers and hard-
ware are well known and need not be set forth in detail in
this disclosure.

IV. Conclusion

[0095] The foregoing detailed description refers to the
accompanying drawings that illustrate exemplary embodi-
ments of the present invention. However, the scope of the
present invention is not limited to these embodiments, but is
instead defined by the appended claims. Thus, embodiments
beyond those shown in the accompanying drawings, such as
modified versions of the illustrated embodiments, may nev-
ertheless be encompassed by the present invention.
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[0096] References in the specification to “one embodi-
ment,” “an embodiment,” “an example embodiment,” or the
like, indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-
thermore, when a particular feature, structure, or character-
istic is described in connection with an embodiment, it is
submitted that it is within the knowledge of one skilled in the
relevant art(s) to implement such feature, structure, or
characteristic in connection with other embodiments
whether or not explicitly described.

[0097] Descriptors such as “first”, “second”, “third”, etc.
are used to reference some elements discussed herein. Such
descriptors are used to facilitate the discussion of the
example embodiments and do not indicate a required order
of the referenced elements, unless an affirmative statement is
made herein that such an order is required.

[0098] Although the subject matter has been described in
language specific to structural features and/or acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts
described above are disclosed as examples of implementing
the claims, and other equivalent features and acts are
intended to be within the scope of the claims.

What is claimed is:
1. A system comprising:
memory; and
a processing system coupled to the memory, the process-
ing system configured to:
train a first deep neural network, which is associated
with a first set of actions that defines a first journey,
by learning weights of nodes among layers of the
first deep neural network that precede a final layer of
the first deep neural network using structured data;
transfer the weights from the first deep neural network
to corresponding nodes in a second deep neural
network, which is associated with a second set of
actions that defines a second journey, in accordance
with a transfer-learning technique based at least on a
similarity between the first set of actions and the
second set of actions satistying a similarity criterion;
add an embedding layer in lieu of the final layer of the
first deep neural network in the second deep neural
network such that an output of the embedding layer
results in a same number of nodes as a pre-final layer
of the first deep neural network;
initialize weights of the respective nodes in the embed-
ding layer based at least on a probability that a new
feature, which is associated with the second journey
and which is not included among features in the
structured data that are used to learn the weights in
the first deep neural network, co-occurs with each of
the features in the structured data; and
apply a softmax function on a final layer of the second
deep neural network, the softmax function config-
ured to generate a probability distribution regarding
possible next actions to be performed in the second
journey based at least on the weights of the respec-
tive nodes in the embedding layer and further based
at least on the weights of the respective nodes in the
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pre-final layer, which result from sequenced updat-
ing using a stochastic gradient descent technique.

2. The system of claim 1, wherein the structured data
comprises:

a plurality of device features, each device feature repre-
senting a respective attribute of a device that interacts
with an entity associated with the first journey;

a plurality of entity features, each entity feature repre-
senting a respective attribute of the entity; and

a plurality of interaction features, each interaction feature
representing a respective attribute of an interaction
between a device and the entity.

3. The system of claim 1, wherein the set of actions that
defines the first journey is associated with a first software
program;

wherein the set of actions that defines the second journey
is associated with a second software program that is
different from the first software program; and

wherein the possible next actions include respective reme-
dial actions regarding a technical issue associated with
the second software program.

4. The system of claim 1, wherein the set of actions that
defines the first journey is associated with a first software
program;

wherein the set of actions that defines the second journey
is associated with a second software program that is
different from the first software program; and

wherein the possible next actions include offering respec-
tive sets of terms regarding a purchase of the second
software program.

5. The system of claim 1, wherein the set of actions that
defines the first journey is associated with a first software
program;

wherein the set of actions that defines the second journey
is associated with a second software program that is
different from the first software program; and

wherein the possible next actions include presenting
respective documents regarding the second software
program via a user interface.

6. The system of claim 1, wherein the processing system

is configured to:

transfer the weights from the first deep neural network to
the corresponding nodes in the second deep neural
network is performed as a result of a number of features
that are associated with the second journey being
different from a number of features that are associated
with the first journey; and

wherein the embedding layer maps the number of features
that are associated with the second journey into the
number of features that are associated with the first
journey.

7. The system of claim 1, wherein the processing system

is configured to:

add the embedding layer by concatenating the new feature
from the second deep neural network with the features
in the structured data that are used to learn the weights
in the first deep neural network.

8. The system of claim 1, wherein the processing system

is further configured to:

change an initial version of an entity that is associated
with the second journey to provide a changed version
of the entity;

cause the changed version of the entity to be presented in
lieu of the initial version of the entity to a first subset
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of users who are associated with the second journey
based at least on a prediction that presentation of the
changed version to the users in the first subset is more
likely than presentation of the initial version to the
users in the first subset to cause the second journey for
the users in the first subset to have a designated result;
and

cause the initial version of the entity to be presented to a
second subset of the users who are associated with the
second journey.

9. A method implemented by a computing system, the

method comprising:

training a first deep neural network, which is associated
with a first set of actions that defines a first journey, by
learning weights of nodes among layers of the first deep
neural network that precede a final layer of the first
deep neural network using structured data;

transferring the weights from the first deep neural network
to corresponding nodes in a second deep neural net-
work, which is associated with a second set of actions
that defines a second journey, in accordance with a
transfer-learning technique based at least on a similar-
ity between the first set of actions and the second set of
actions satisfying a similarity criterion;

adding an embedding layer in lieu of the final layer of the
first deep neural network in the second deep neural
network such that an output of the embedding layer
results in a same number of nodes as a pre-final layer
of the first deep neural network;

initializing weights of the respective nodes in the embed-
ding layer based at least on a probability that a new
feature, which is associated with the second journey
and which is not included among features in the struc-
tured data that are used to learn the weights in the first
deep neural network, co-occurs with each of the fea-
tures in the structured data; and

applying a softmax function on a final layer of the second
deep neural network, the softmax function configured
to generate a probability distribution regarding possible
next actions to be performed in the second journey
based at least on the weights of the respective nodes in
the embedding layer and further based at least on the
weights of the respective nodes in the pre-final layer,
which result from sequenced updating using a stochas-
tic gradient descent technique.

10. The method of claim 9, wherein the structured data

comprises:

a plurality of device features, each device feature repre-
senting a respective attribute of a device that interacts
with an entity associated with the first journey;

a plurality of entity features, each entity feature repre-
senting a respective attribute of the entity; and

a plurality of interaction features, each interaction feature
representing a respective attribute of an interaction
between a device and the entity.

11. The method of claim 9, wherein the set of actions that
defines the first journey is associated with a first software
program;

wherein the set of actions that defines the second journey
is associated with a second software program that is
different from the first software program; and

wherein the possible next actions include respective reme-
dial actions regarding a technical issue associated with
the second software program.
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12. The method of claim 9, wherein the set of actions that
defines the first journey is associated with a first software
program;
wherein the set of actions that defines the second journey
is associated with a second software program that is
different from the first software program; and

wherein the possible next actions include offering respec-
tive sets of terms regarding a purchase of the second
software program.
13. The method of claim 9, wherein the set of actions that
defines the first journey is associated with a first software
program;
wherein the set of actions that defines the second journey
is associated with a second software program that is
different from the first software program; and

wherein the possible next actions include presenting
respective documents regarding the second software
program via a user interface.

14. The method of claim 9, wherein transferring the
weights from the first deep neural network to the corre-
sponding nodes in the second deep neural network is per-
formed as a result of a number of features that are associated
with the second journey being different from a number of
features that are associated with the first journey; and

wherein the embedding layer maps the number of features

that are associated with the second journey into the
number of features that are associated with the first
journey.

15. The method of claim 9, wherein adding the embedding
layer comprises:

concatenating the new feature from the second deep

neural network with the features in the structured data
that are used to learn the weights in the first deep neural
network.

16. The method of claim 9, further comprising:

changing an initial version of an entity that is associated

with the second journey to provide a changed version
of the entity;

causing the changed version of the entity to be presented

in lieu of the initial version of the entity to a first subset
of users who are associated with the second journey
based at least on a prediction that presentation of the
changed version to the users in the first subset is more
likely than presentation of the initial version to the
users in the first subset to cause the second journey for
the users in the first subset to have a designated result;
and

causing the initial version of the entity to be presented to

a second subset of the users who are associated with the
second journey.

17. A computer program product comprising a computer-
readable storage medium having instructions recorded
thereon for enabling a processor-based system to perform
operations, the operations comprising:

training a first deep neural network, which is associated

with a first set of actions that defines a first journey, by
learning weights of nodes among layers of the first deep
neural network that precede a final layer of the first
deep neural network using structured data;
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transferring the weights from the first deep neural network
to corresponding nodes in a second deep neural net-
work, which is associated with a second set of actions
that defines a second journey, in accordance with a
transfer-learning technique based at least on a similar-
ity between the first set of actions and the second set of
actions satisfying a similarity criterion;

adding an embedding layer in lieu of the final layer of the
first deep neural network in the second deep neural
network such that an output of the embedding layer
results in a same number of nodes as a pre-final layer
of the first deep neural network;

initializing weights of the respective nodes in the embed-
ding layer based at least on a probability that a new
feature, which is associated with the second journey
and which is not included among features in the struc-
tured data that are used to learn the weights in the first
deep neural network, co-occurs with each of the fea-
tures in the structured data; and

applying a softmax function on a final layer of the second
deep neural network, the softmax function configured
to generate a probability distribution regarding possible
next actions to be performed in the second journey
based at least on the weights of the respective nodes in
the embedding layer and further based at least on the
weights of the respective nodes in the pre-final layer,
which result from sequenced updating using a stochas-
tic gradient descent technique.

18. The computer program product of claim 17, wherein

the structured data comprises:

a plurality of device features, each device feature repre-
senting a respective attribute of a device that interacts
with an entity associated with the first journey;

a plurality of entity features, each entity feature repre-
senting a respective attribute of the entity; and

a plurality of interaction features, each interaction feature
representing a respective attribute of an interaction
between a device and the entity.

19. The computer program product of claim 17, wherein
the set of actions that defines the first journey is associated
with a first software program;

wherein the set of actions that defines the second journey
is associated with a second software program that is
different from the first software program; and

wherein the possible next actions include respective reme-
dial actions regarding a technical issue associated with
the second software program.

20. The computer program product of claim 17, wherein
the set of actions that defines the first journey is associated
with a first software program;

wherein the set of actions that defines the second journey
is associated with a second software program that is
different from the first software program; and

wherein the possible next actions include offering respec-
tive sets of terms regarding a purchase of the second
software program.
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