
(12) United States Patent

US007254586B2

(10) Patent No.: US 7.254,586 B2
Chen et al. (45) Date of Patent: Aug. 7, 2007

(54) SECURE AND OPAQUETYPE LIBRARY 6,668,325 B1* 12/2003 Collberg et al. T13,194
PROVIDING SECURE DATA PROTECTION 2003/00 18608 A1 1/2003 Rice et al. 707/1

OF VARIABLES 2003/0221121 A1* 11/2003 Chow et al. T13/200

(75) Inventors: Yuqun Chen, Bellevue, WA (US);
Ramarathnam Venkatesan, Redmond,
WA (US); Mariusz H. Jakubowski,
Bellevue, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

Ot1Ce: ubject to any d1Sclaimer, the term of this *) Not Subj y disclai h f thi
patent is extended or adjusted under 35
U.S.C. 154(b) by 412 days.

(21) Appl. No.: 10/185,644

(22) Filed: Jun. 28, 2002

(65) Prior Publication Data

US 2004/OOO3278 A1 Jan. 1, 2004

(51) Int. Cl.
G06F 7/00 (2006.01)
G06F II/30 (2006.01)
G06F 2/14 (2006.01)
HO4L 9/32 (2006.01)

(52) U.S. Cl. 707/104; 707/1; 713/190;
713/194

(58) Field of Classification Search 707/104,
707/1; 713/194, 190

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,594,761 B1* 7/2003 Chow et al. T13, 190

* cited by examiner
Primary Examiner—Anthony Knight
Assistant Examiner—Sunray Chang
(74) Attorney, Agent, or Firm—Merchant & Gould P.C.

(57) ABSTRACT

A method, apparatus, and article of manufacture for provid
ing secure and opaque type libraries to automatically pro
vide secure variables within a programming module. A
system for providing secure and opaque type libraries to
automatically provide secure variables within a program
ming module. The system includes an OTL selection mod
ule, an OTL substitution module, an OTL type library
database, a compiler module; and a linker module to create
an executable processing module. The OTL selection mod
ule randomly selects or generates one of the possible vari
able obfuscation functions for each declared secure variable.

The OTL substitution module substitutes the separate
instance of the selected variable obfuscation function for
every reference to the declared secure variable. The OTL
type library database receives queries from the OTL selec
tion module a database to identify of possible variable
obfuscation functions applicable for the variable type cor
responding to the declared secure variables.

28 Claims, 10 Drawing Sheets

03

y- 12 O.Processing
Module

123

s
Executable 8.dll files

e s s 2- 12

U.S. Patent Aug. 7, 2007 Sheet 1 of 10 US 7.254,586 B2

F.G. 1
103

110

Source Code

OTL Processing
Module

Compiler 122
Module

123

s
as c2. 112 3.2%

U.S. Patent Aug. 7, 2007 Sheet 2 of 10 US 7.254,586 B2

COMPUTER 200

VIDEO
ADAPTER

244

OPTICAL CPU
DSK219 2O2

DISPLAY
242

OPTICAL
DISK

DRIVE 218
NETWORK
ADAPTER

252

MAGNETIC
DISK

DRIVE 214
INTF 222

206

HARD DISK
DRIVE 212

REMOTE
COMPUTER

246
MEMORY 204

OPERATING | PROGRAM
SYSTEM 226 MODULE 230

REMOVABLE APPLICATION
STORAGE | PROGRAMS E.

216 228

SERIAL PORT
INTERFACE

Li
INPUT
DEVICE
234

U.S. Patent Aug. 7, 2007 Sheet 3 of 10

Procedure Header

Wariables: Wariable Name: Variable Type 1 321

Main Procedure Begin: 1331

Instruction 1 Referencing Variable Name 1 385

instructionn Referencing Variable Name 1 386

Main PrOCedure End 1 332

Procedure Methods and Functions and Other Code

US 7.254,586 B2

301

302

303

304

U.S. Patent Aug. 7, 2007 Sheet 4 of 10 US 7.254,586 B2

Fig. 4 so

Procedure Header 301

- 421
Variables: Variable Name: Variable Type

Securent 1: S integer; 1422
Secure Int 2: S Integer, 1 423 302
Secure Boolean: S Boolean-1 424

Main Procedure Begin: 1 31

Instruction 1 Referencing Secure Int-1 1 435

Instruction 10 Referencing Secure Int 2 - 436 303

Instruction n Referencing Secure Boolean - 437

instruction mReferencing Secure Int 1 1-438

Main Procedure End 1 ''

Procedure Methods and Functions and Other Code

Function Secure Int 1 1441
Begin Function

End Function
304

Function Secure lint 2 1 442
Begin Function

End Function

Function Secure Boolean-1 443
Begin Function

Arkt

End Function

U.S. Patent Aug. 7, 2007 Sheet 5 of 10 US 7.254,586 B2

Fig. 5 A
Procedure Header 301

Variables: Variable Name: Variable Type - 521 302
Secure int1: S_Integer; -1 i.
Secure int 2: S Integer, -1
Secure Boolean: S Boolean;-1 *

Main Procedure Begin: /- 532 31
Instruction 1 Referencing (Replace Secure Int1} with 1 5

Begin Secure Int 1 Code Block 303
- 533

End Secure Int 1 Code Block)
542

Instruction 10 Referencing {Replace Secure Int 2} with 1 541
Begin Secure int 2 Code Block

re

End Secure Int2 Code Block} 543
a 552 1

instruction in Referencing (Replace Secure Boolean} with 1 55
{Begin Secure Boolean Code Block

te

1 - 553

- 562
Instruction mReferencing (Replace Secure int_1} with 1

{Begin Secure Int-1 Code Block
- 563

End Secure Int 1 Code Block)
Main Procedure End

End Secure Boolean Block}

Procedure Methods and Functions and Other Code 304

U.S. Patent Aug. 7, 2007 Sheet 6 of 10 US 7.254,586 B2

Fig. 6
Variables:

601 602

X:
Y.

Main Begin

-er
if (X > 0) then

Perform instruction

621
XDefined: /

X-Random Number 1
622

Y Defined: /
YXOR Random Number 2

else
Error - End;

612

if (Y < 0) then /
Perform Instruction

else
Error - End;

Main End

Variables: X: S Int;
Y: S Int;

Main Begin
te

/- 631
if (X > Random Number 1) then

Perform instruction

Error-End; /- 632
if (YXOR Random Number 2 < 0) then

Perform instruction

else

else
Error - End;

Main End

U.S. Patent Aug. 7, 2007 Sheet 7 of 10 US 7.254,586 B2

Fig. 7 110

Source Code

722

Substitution OTL Selection
Module Module

Type
Libraries

OTL Parameter
Module

Compiler Module 723

Linker Module

Additional
Obfuscation Compiler

Module System

Executable & .dll files

U.S. Patent Aug. 7, 2007 Sheet 8 of 10 US 7.254,586 B2

Fig. 8a

OTL-protected API calls
OTL-enabled
Application

Unprotected AP calls

WindoWS OS
OTL-protected API calls

Fig. 8b

Code Group 1 Code Group 2

shared data s -×3
(OTL or Non-OTL)

rerarmer

inserted auxiliary data dependencies'
accesses + integrity verification

He- 4. oupees

Natural data dependencies

U.S. Patent Aug. 7, 2007 Sheet 9 of 10 US 7.254,586 B2

Fig. 9 110

Source Code

Substitution
Module

901

722

OTL Selection
Module

OTL Parameter
Module

Type
Libraries

701

Compiler Module

Linker Module

Additional
Obfuscation Module

713 Compiler
System

714

/-ir

Executable & d files

U.S. Patent Aug. 7, 2007 Sheet 10 of 10 US 7.254,586 B2

Fig. 10
identify Secure Variable 1011

Declaration

1012
Query OTL DB for Possible OTL

Procedures

1013

Randomly Pick Possible
Procedures

1014

Create instance of Procedure for
Secure Wariable

1021

1022
Substitute instance of Procedure
corresponding to Secure Variable

Referenced

1 (24

US 7,254,586 B2
1.

SECURE AND OPAQUETYPE LIBRARY
PROVIDING SECURE DATA PROTECTION

OF VARIABLES

TECHNICAL FIELD

The invention relates generally to a system, method and
article of manufacture to provide secure variables within
programming modules and more particularly to a system,
method and article of manufacture for providing secure and
opaque type libraries to automatically provide secure vari
ables within a programming module.

BACKGROUND

Ever since the days of early IBM PCs and 8-bit machines,
application programmers and crackers have fought a never
ending battle in the field of software protection. Creating
"uncrackable' programs remains a theoretical and practical
open problem, especially against skilled and talented reverse
engineers who devote significant amounts of time and effort
to their job. However, various techniques of obfuscation and
tamper resistance can be useful depending on the models of
piracy in given channels, to deter casual pirates or delay
crackers who attempt to bypass security checks, attach
viruses, patch code and data at runtime, and in general alter
software behavior.

Developers have often treated software security as an
independent feature that can be easily “plugged in once an
application is finished. Indeed, a large number of automatic
“protectors' or "wrappers' are available to encrypt
executables and add layers of anti-hacking code. Unfortu
nately, Such plug-in solutions have typically proven quite
breakable and ineffective, despite continuing upgrades and
improvements to address hacks that appear within days or
even hours. In a certain theoretical models, automatic obfus
cation of programs is not possible. All this provides some
evidence that programmers wishing to create secure soft
ware need to be involved more deeply with protection.

Programmers need to involve themselves in the protection
process from the beginning. A programmer needs to flag
which variables and computations thereof that need be
protected and indicate, whenever possible, degree of pro
tection sought in Some manner. The compiler then may pool
these flagged portions with some variables it generates,
obfuscates and verifies common data types and operation.
One of the goals is to make the accesses to the data types
leak very little information unless the attacker observes for
a significant amount of time across many local sections of
the code as it executes. Tampering a variable without proper
information will lead to inconsistent or incorrect data or
results. The user may also flag variables (e.g. a return
address) as to be tamper evident when it will be appended
with a randomized check Sumakin to a cryptographic check
sum; this if tampered with high probability it will be
detected. OTL both provides protection tools and makes the
programmer pay special attention to security-critical code.
Additionally, OTL can inject “useless” data and code, both
to disguise crucial data and to deflect the crackers attention
away from sensitive data and code; Such “useless' data and
code can be tightly interleaved with the rest of the applica
tion, including OTL-protected parts. To maximize security,
OTL can be combined with other techniques we imple
mented, such as oblivious hashing, code-integrity checks,
piecewise code encryption, anti-debugging, and others.

Software obfuscation is a widely-used method for soft
ware vendors to thwart illegitimate attempts at reverse

10

15

25

30

35

40

45

50

55

60

65

2
engineering their products. Past efforts have focused mostly
on code obfuscation, with data left largely in the clear. The
tools available for hiding and protecting critical data invari
ably follow the decrypt-use-encrypt paradigm, and are gen
erally used manually or semi-automatically by developers
after the software is written. The following example, Sample
1 shows an example of using Such a system. It shows a piece
of code that manages a free-trial period. Every time this code
is invoked, it checks a global variable iTimeLeft; if its value
is zero, the code will ask the user to register the software.

SAMPLE 1

A simple sample code to manage free-trial period.

extern int2 iTimeLeft:
bool bTimeToRegister;
bTimeToRegister = iTimeLeft < 0;
if (bTimeToRegister) {

if ask the user to register

iTimeLeft - - -:

Sample 2 shows the changes from applying a typical
decrypt-use-encrypt method. First, the key variable,
iTimeLeft, is stored in its encrypted (and expanded) form as
a 64-bit integer. A macro is used to decrypt the 64-bit data
into 32-bit clear text. The clear-text time counter is then
checked and decremented before it is re-encrypted and
stored away.

SAMPLE 2

The traditional decrypt-use-encrypt approach.

extern inté4 iTimeLeft:
int32 iTemp:
bool bTimeToRegister;
iTemp = DECRYPT AND CHECK MAC INT32
(iTimeLeft, MY KEY);
bTimeToRegister = iTimeLeft < 0;
if (bTimeToRegister) {

if ask the user to register

iTimeLeft - - -:

The decrypt-use-encrypt approach has two weaknesses.
First, the protected variables appear in plaintext between the
decryption and encryption stages. An attacker can discover
what the program is doing by setting appropriate breakpoints
and checking register contents. Though DRM systems often
employ some form of anti-debugging, Such measures his
torically have been easy tinot so hard to defeat; also, pow
erful debuggers, simulators, and in-circuit emulators can
render the entire system at the attacker's disposal.

Second, data security tends to be applied as an after
thought; the developers explicitly insert macros or library
function calls. There is no guarantee that accesses to secure
data are always bracketed by decryption and encryption
macros. As a matter of fact, bugs have arisen because
developers forgot to apply decryption macros before
manipulating the secure data. Due to its manual nature,
decrypt-use-encrypt processing is applied to only a few key
variables in a program.
A systematic approach is needed to data hiding and

protection, which can meet the following criteria:
A non-intrusive methodology for annotating the Software

during its development cycle so that it can be adopted easily
by developers and employed efficiently. The underlying
mechanisms & algorithms of Supporting the indicated pro

US 7,254,586 B2
3

tection can be developed independently in a modular way
and made available for use as a programming language tools
and transformations (e.g. compilers.)

Protected data objects are seldom manipulated in clear
text form.

Breaking data protection for one data object does not lead
to cracking of other protected objects.

There are no automated tools to reverse engineer our data
protection mechanisms. In particular traditional program
flow analysis tools should not be able to discover the details
of the exact protection mechanism used in a given copy of
the protected application. The attacker has to work through
the entire program laboriously (many times) to uncover the
original data objects.

Oblivious (i.e., unobvious and well-disguised) compari
son of data (e.g. Is A=B?) and oblivious return of results
(e.g. If A-B return the result in a probabilistic fashion in a
variable C; if C does not have the right properties it will
corrupt some protected data variable and lead to incorrect
operation).

SUMMARY

The present invention relates to a method, apparatus, and
article of manufacture to provide secure variables within
programming modules and more particularly to a system,
method and article of manufacture for providing secure and
opaque type libraries to automatically provide secure vari
ables within a programming module.
One aspect of the present invention is a system for

providing secure and opaque type libraries to automatically
provide secure variables within a programming module. The
system includes an OTL selection module, an OTL substi
tution module, an OTL type library database, a compiler
module; and a linker module to create an executable pro
cessing module. The OTL selection module randomly
selects or generates one of the possible variable obfuscation
functions for each declared secure variable. The OTL sub
stitution module Substitutes the separate instance of the
selected variable obfuscation function for every reference to
the declared secure variable. The OTL type library database
receives queries from the OTL selection module a database
to identify possible variable obfuscation functions appli
cable for the variable type corresponding to the declared
secure variables.

Another aspect of the present invention is a method, and
corresponding computer data product for providing secure
and opaque type libraries to automatically provide secure
variables within a programming module. The method iden
tifies secure variable declaration statements within a source
code module, queries a database for identification of pos
sible variable obfuscation functions applicable for the vari
able type corresponding to the secure variable declaration
statement, randomly selects or generates one of the possible
variable obfuscation functions returned in response to the
database query, creates a separate instance of the selected
variable obfuscation function corresponding to the Secure
variable declaration, and Substitutes the separate instance of
the selected variable obfuscation function for every refer
ence to the declared secure variable. The variable declara
tion statement comprises a variable type declaration used to
select the variable obfuscation function.

These and various other advantages and features of nov
elty which characterize the invention are pointed out with
particularity in the claims annexed hereto and form a part
hereof. However, for a better understanding of the invention,
its advantages, and the objects obtained by its use, reference

5

10

15

25

30

35

40

45

50

55

60

65

4
should be made to the drawings which form a further part
hereof, and to accompanying descriptive matter, in which
there are illustrated and described specific examples of an
apparatus in accordance with the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a computing system to create secure
variables using Opaque Type Libraries according to one
embodiment of the present invention.

FIG. 2 illustrates an exemplary computing system that
may be used to Support various computing system that are
part of example embodiments of the present invention.

FIG. 3 illustrates a block diagram for a program module
using OTL Variables according to an embodiment of the
present invention.

FIG. 4 illustrates a block diagram for a program module
using OTL Variables calling procedures according to an
embodiment of the present invention.

FIG. 5 illustrates a block diagram for a program module
using OTL variables in which OTL procedures are substi
tuted into the programming module according to an embodi
ment of the present invention.

FIG. 6 illustrates a block diagram for a program module
using OTL variables in which OTL procedures are substi
tuted into the secure variable references according to an
embodiment of the present invention.

FIG. 7 illustrates a processing system for generating
executable program modules using OTL modules according
to one possible embodiment of the present invention.

FIGS. 8a and b Illustrate additional obfuscation process
ing that may be included within an OTL process according
to yet another example embodiment of the present invention.

FIG. 9 illustrates a processing system for generating
executable program modules using OTL modules according
to another possible embodiment of the present invention.

FIG. 10 illustrates an operational flow for generating
executable program modules using OTL modules according
to yet another example embodiment of the present invention.

DETAILED DESCRIPTION

The present invention relates to a system, method and
article of manufacture for providing secure and opaque type
libraries to automatically provide secure variables within a
programming module.

FIG. 1 illustrates a computing system to create secure
variables using Opaque Type Libraries (OTL) according to
one embodiment of the present invention. An OTL is a
collection of data types (e.g., C++ classes). Each data type
directs the compiler to generate an individualized imple
mentation for each protected data object. One can loosely
think of OTL as MFC for data security. By using OTL, the
developers conveniently specify which data objects to pro
tect during the design and coding stages. This seemingly
simple step has the immediate benefit of involving the
developers in thinking about data protection from Day One
of software design. This simple step is illustrated by the
following example, Sample 3. It shows how the trial period
test code is easily transformed: The developer needed only
to change the type declaration for iTimeLeft from int32 to
SInt32. In addition, the result of testing iTimeLeft is
assigned to a secure Boolean bTimeToRegister. The use of
a secure Boolean variable in the IF statement instructs the
compiler to obfuscate and protect the branch.

US 7,254,586 B2
5

SAMPLE 3

The OTL approach to data protection and obfuscation.

extern SInt32 iTimeLeft:
SBool bTimeToRegister;
bTimeToRegister = iTimeLeft <= 0;
if (bTimeToRegister) {

i? fire up the registration stuff

The bulk of the OTL system resides in or used by the
compiler (or OTL backend). It can be plugged into the
compilation pipeline to transform the intermediate represen
tation or byte code. Its main task is to generate individual
ized representations and implementations for OTL objects.
This is achieved by developing a library of meta-implemen
tations of OTL data types that can be parameterized to yield
diverse-looking implementations of OTL objects. For
example, an integer with a small range can be implemented
using homomorphism, graph properties, and bit count in a
vector. If the OTL backend chooses homomorphisms as a
meta-implementation, it still has the freedom to choose the
exact homomorphism from a set of many, using a random
key. In general, integer-value properties about any data
structures can be used to represent integers. Data encryption
can simply be done with homomorphism, in which addition
and subtraction take the form of multiplication and division,
respectively.
The meta-implementations in the OTL backend allow

manipulation of protected objects in their obfuscated form.
For example, a meta-implementation of the OTL character
string simply encrypts the string using a symmetric cipher.
In order to append another OTL string to this one, it is
necessary only to change the encryption of the other string,
character-by-character in an arbitrary order.

In one embodiment, OTL utilizes a library of secure 32-bit
and 64-bit integers with addition, multiplication, and com
parison operations, secure strings with concatenation and
character search operations, and secure Booleans. The com
piler analysis of operations used on a given OTL Variable is
crucial for achieving strong protection. For example, blindly
applying Homomorphic Encryption to protect OTL integers
is insufficient to hide the true value of the data. If multipli
cation, addition, Subtraction, and comparison operators are
provided, the attacker can use binary search to figure out a
true value of an OTL integer. However this may not be
possible to efficiently carry out this attack, if no comparison
operator is given. Thus Supporting a full set of operations
needs care and Switching between different types of homo
morphisms in a hidden manner. Therefore, some Sophisti
cation is required to generate obfuscated and individualized
operators that are tailored to each protected variable. For
example, only addition operators are generated for offset
variables, increment and test-for-equality operators for the
loop counters, etc.
A salient feature of OTL is complete obfuscation of

operations on protected data. In the above example, the
comparison operator (<) and the decrement operator ()
on the SInt32 variable iTimeLeft work directly in the
obfuscated domain. In addition, the result of the comparison
operator will be represented as an obfuscated Boolean value,
for which many values map to True and many others map to
False. Representations of Booleans can vary with time and
program state (a.k.a. Time-Varying OTL), so that a value
representing True at one point may represent False later, and

10

15

25

30

35

40

45

50

55

60

65

6
Vice versa. Original, plaintext data values never or seldom
appear in the program's execution.
An important application of Time-Varying OTL is authen

ticated function call. In this model, a function can be
annotated as call-by-authentication; parameters passed to
this function, as well as the return value, are protected using
Time-Varying OTL, which varies from machine to machine
and from time to time. A virus that is injected into a remote
client machine will have no easy way to figure out the
encoding scheme used at the time and hence is prevented
from using OTL-protected internal functions to cause dam
ageS.
The partition of our OTL system into a relatively static

type interface and compile-time instantiation stage offers
two benefits. First, the developers can work with a stable
interface and worry less about keeping up with upgrades.
Second, the OTL compiler component is free to choose
(using a random key) whichever meta-implementation is
available for a given OTL type and individualize the type
instantiation on a per-object basis.
OTL is a language-level concept. OTL is platform inde

pendent, whereas most software protection tools to-date are
tied to a particular machine platform. Unlike existing soft
ware protection tools, type safety in an OTL-enabled pro
gram is automatically guaranteed by the compiler, thus,
many program bugs can be avoided. (We should point out
that with explicit decrypt-encrypt macros, one can also build
a data-flow analysis tool to enforce the decrypt-use-encrypt
rule. Such a tool, however, is unavailable as of yet.)
OTL is tightly integrated into the programming environ

ment either through a rich class hierarchy in the model of
MFC and ATL, or by augmented C/C++/C# languages and
compilers. It is relatively straightforward for developers to
specify variables and static constants that need be protected.
A compile-time switch (or macro definition) enables/dis
ables OTL. This allows the same program to be compiled
with or without data obfuscation, making it easier to debug
the application code.

Data obfuscation alone is typically insufficient to protect
software. Very often, our ultimate goal is to forestall ille
gitimate tampering of the Software either by pirates or by
agents trying to attack the security of computer systems by
exploiting loopholes to access and modify data (e.g. return
addresses) to usurp control of the system and its resources.
Tampering often takes one of two forms (or both): patching
the software binary and altering the data. Data obfuscation
makes it difficult for the attacker to guess the proper values
for OTL-protected data objects within the program. Further
more, each OTL object has built-in mechanism for integrity
verification, which makes it even harder for the attacker to
alter data: even if the attacker knows how to exactly to
modify a given variable to effect his attack, he or she may
not know how to exactly represent it without suitable keys.

Unable to patch program data, the attacker may attempt to
patch the binary to remove some critical code from the
execution path. Since current instruction set architectures
use binary conditions to trigger branches, an OTL Boolean
object will eventually be resolved into a single bit to be used
by machine code. This will be an attractive place for the
attacker to alter the machine registers to bypass a critical
code segment. Although code-integrity verification and
Oblivious Hashing are effective ways to detect and thwart
Such attacks, our OTL system can offer additional and new
ways of protection in conjunction with these methods. For
example, OTL offers a good way of hiding the variables in
a way that it is not clear that they are being protected.
Another issue is that one can automatically generate a

US 7,254,586 B2
7

number of homomorphic encryption schemes and Switch
between them as needed in a hidden fashion. For example,
one may employ one-time-pad encryptions during compari
son and use encryptions based on addition and multiplica
tion for checking for equality and switch between the two:
One may use a program analysis tool one can automatically
effect this. A number of homomorphic encryption systems
have been conceived in the cryptographic literature but here
we do not necessarily need Such ciphers of high Strength. It
is known how (by carefully composing elementary arith
metic operations with random constants) to generate authen
tication tag generation mechanisms (reversible and non
reversible) randomly and they may be used here to auto
matically choose encryption and authentication mecha
nisms. One of our ideas is to transform an OTL Boolean
object that serves as a branch condition into a number of
objects, which are further checked by code in both targets of
the branch. There are exponential number of ways to obfus
cate a Boolean variable and branch conditions. OTL allows
compiler-time individualization of branch protection that is
transparent to developers.

With reference to FIG. 2, an exemplary computing system
for embodiments of the invention includes a general purpose
computing device in the form of a conventional computer
system 200, including a processor unit 202, a system
memory 204, and a system bus 206 that couples various
system components including the system memory 204 to the
processor unit 200. The system bus 206 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus and a local bus using
any of a variety of bus architectures. The system memory
includes read only memory (ROM) 208 and random access
memory (RAM) 210. A basic input/output system 212
(BIOS), which contains basic routines that help transfer
information between elements within the computer system
200, is stored in ROM 208.
The computer system 200 further includes a hard disk

drive 212 for reading from and writing to a hard disk, a
magnetic disk drive 214 for reading from or writing to a
removable magnetic disk 216, and an optical disk drive 218
for reading from or writing to a removable optical disk 219
such as a CD ROM, DVD, or other optical media. The hard
disk drive 212, magnetic disk drive 214, and optical disk
drive 218 are connected to the system bus 206 by a hard disk
drive interface 220, a magnetic disk drive interface 222, and
an optical drive interface 224, respectively. The drives and
their associated computer-readable media provide nonvola
tile storage of computer readable instructions, data struc
tures, programs, and other data for the computer system 200.

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 216, and a
removable optical disk 219, other types of computer-read
able media capable of storing data can be used in the
exemplary system. Examples of these other types of com
puter-readable mediums that can be used in the exemplary
operating environment include magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges,
random access memories (RAMS), and read only memories
(ROMs).
A number of program modules may be stored on the hard

disk, magnetic disk 216, optical disk 219, ROM 208 or
RAM 210, including an operating system 226, one or more
application programs 228, other program modules 230, and
program data 232. A user may enter commands and infor
mation into the computer system 300 through input devices
such as a keyboard 234 and mouse 236 or other pointing
device. Examples of other input devices may include a

10

15

25

30

35

40

45

50

55

60

65

8
microphone, joystick, game pad, satellite dish, and Scanner.
For hand-held devices and tablet PC devices, electronic pen
input devices may also be used. These and other input
devices are often connected to the processing unit 202
through a serial port interface 240 that is coupled to the
system bus 206. Nevertheless, these input devices also may
be connected by other interfaces, such as a parallel port,
game port, or a universal serial bus (USB). A monitor 242 or
other type of display device is also connected to the system
bus 206 via an interface, such as a video adapter 244. In
addition to the monitor 242, computer systems typically
include other peripheral output devices (not shown). Such as
speakers and printers.
The computer system 200 may operate in a networked

environment using logical connections to one or more
remote computers, such as a remote computer 246. The
remote computer 246 may be a computer system, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer system
200. The network connections include a local area network
(LAN) 248 and a wide area network (WAN) 250. Such
networking environments are commonplace in offices, enter
prise-wide computer networks, intranets, and the Internet.
When used in a LAN networking environment, the com

puter system 200 is connected to the local network 248
through a network interface or adapter 252. When used in a
WAN networking environment, the computer system 200
typically includes a modem 254 or other means for estab
lishing communications over the wide area network 250,
such as the Internet. The modem 254, which may be internal
or external, is connected to the system bus 206 via the serial
port interface 240. In a networked environment, program
modules depicted relative to the computer system 200, or
portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network
connections shown are exemplary, and other means of
establishing a communication link between the computers
may be used.

FIG. 3 illustrates a block diagram for a program module
using OTL Variables according to an embodiment of the
present invention. For several examples discussed below, the
structure of a programming module illustrated in FIG. 3 is
utilized. In the example, a programming module 300 con
sists of a set of sections that include a header 301, a variable
declaration section 302, a main procedure section 303, and
a methods and functions section 304. The header section 301
may be used to provide needed declarations and metadata
needed to specify the compile-time and run-time parameters
of the programming module once an executable module is
created from a source code file. The variable declaration
section 302 allows for the declaration of any variables,
especially secure variable that may utilize OTL libraries
according to the present invention. The main procedure
module 303 provides the set of instructions that are per
formed when the programming module is run. Within the
main procedure module, various instructions 335-336 may
reference variables declared in the variable declaration sec
tion. Finally, the methods and functions section 304 provides
any additional set of functions and methods that may be
utilized by the instructions within the main procedure mod
ule 303 as defined by a programmer.

FIG. 4 illustrates a block diagram for a program module
using OTL Variables calling procedures according to an
embodiment of the present invention. As noted above, the
example in FIG. 4 contains the four sections of a program
ming module discussed within FIG. 3 above. In this par

US 7,254,586 B2
9

ticular example, a set of three secure variables are declared
in addition to any other declared variables. These secure
variables include two secure integers, Secure Int 1422 and
Secure Int 2 423, and a secure Boolean variable, Secure
Boolean 424. The OTL processing of this program module
300 will create a separate instance of a function that will
obfuscate the contents of these secure variables. For any
given type of variable, i.e., integer, float, character, Boolean,
etc., a set of possible functions may be included within a
library for use at compile time. Alternately, these functions
may be generated on-the-fly during compile time.

In this example, each of the two secure integers will cause
a separate instance of a function to be created. These
functions may be entirely different operations to obfuscate
an integer. For example, Secure Int 1 may add a random
offset to the run-time value of the variable where Secure
Int 2 may XOR a random bit pattern with its runtime value.
For both of these instances, a separate random value param
eter may also be selected for each variable to further
obfuscate the data contained therein.
The secure Boolean variable, Secure Boolean 424, may

use an entirely different set of functions to obfuscate the
contents of the variable as to prevent hackers from discov
ering its contents at runtime. One skilled in the art will
recognize that any number of possible obfuscation functions
may exist for use with various variable types without
deviating from the spirit and scope of the present invention
as recited in the attached claims. In addition, the complexity
of the obfuscation function may be varied as a programmer
decides how much effort should be applied to obfuscate a
particular variable in light of the processing overhead that
may be imposed with increasing complex obfuscation pro
cedures. However, hackers may be hindered in their ability
to decipher the operation of obfuscated variables since each
secure variable is treated independently and may use differ
ent obfuscation functions and obfuscation parameters.

Within the main procedure section 303, various instruc
tions 435-438 will reference the secure variables 422-424
declared above. In one embodiment, these variables may
utilize references to secure functions 441–443 to process the
secure variables from a secure state to a plain text state for
use in the main procedure section 303. As discussed below,
this embodiment may present needless creation of a plain
text version of the secure variable that may be observed by
hackers at run time.

FIG. 5 illustrates a block diagram for a program module
using OTL variables in which OTL procedures are substi
tuted into the programming module according to an embodi
ment of the present invention. Rather than utilizing the
secure functions of FIG. 4, another embodiment of the
present invention will substitute the code for the secure
function directly into the in-line code of the main procedure
section 303. For example, Secure Int 1522 is referenced
within Instruction 1 531 and within Instruction m 561.
Similarly, Secure Int 2523 is referenced within Instruction
10 541 and Secure Boolean 524 is referenced within
Instruction in 551.
When the Source code is processed as part of a compila

tion of the processing module 300, the secure variable
declaration statements 522-524 will cause instances of the
secure functions to be generated as discussed above. For
each variable type, a particular instance of an obfuscation
function is randomly selected or generated, as are any
parameters utilized by the selected function. When the main
procedure section 303 is processed, these instances of obfus
cation functions are Substituted into the particular instruc
tions that reference a particular secure variable. For

10

15

25

30

35

40

45

50

55

60

65

10
example, Both Instruction 1 531 and Instruction m 561
contain a reference to Secure Int 1 522. When these
instructions are processed, the particular references to
Secure Int1 532, 562 are replaced with a copy of the
instance of the obfuscation function 533,563 created for use
in processing references to Secure Int 1522. Unlike the
example in FIG. 4, separate insertions of the in-line code for
this obfuscation function are needed; however the in-line
substitution will eliminate the call operation to the function
itself to further obfuscate the variable to hackers. Similar
substitutions of function code 543, 553 are made for refer
ences 542,552 to other secure variables 523,524 used in the
main procedure section 303.

FIG. 6 illustrates a block diagram for a program module
using OTL variables in which OTL procedures are substi
tuted into the secure variable references according to an
embodiment of the present invention. One possible addi
tional advantage of using the Substitution of code discussed
above is that various operations to obfuscate contents of
variables may be combined with other operations specified
by a programmer. FIG. 6 illustrates an example of two Such
substitutions for secure integers X and Y in the source code
601 created by a programmer. In this example, the program
mer specifies a test operation 611 on Xd-0 and specifies a
similar operation 612 YCO in his or her code 601. Within the
two obfuscation functions specified in a particular instance
of an OTL library 602, X is defined as X minus a Random
Number 1 621. Similarly, Y is defined in a particular
instance 622 of the library as Y XOR Random Number 2.
When these functions are substituted into the user's code
601, the user specified instructions may be optimized in the
form of X-Random Number 1631. As such, the plain text
version of X is never actually created in the runtime version
of the code generated pursuant to the present invention.
Thus, a hacker may never be in a position to decipher the
value of X as well and its operation and use.

FIG. 7 illustrates a processing system for generating
executable program modules using OTL modules according
to one possible embodiment of the present invention. In a
preferred embodiment, the OTL processing will be included
within a compiler system 701. This compiler system 701
accepts source code files 110 to generate executable files
(e.g., EXEs and DLLs). The compiler system 701 includes
a substitution module 711, a compiler module 712, a linker
module 713 and possibly a set of additional obfuscation
modules 714. In addition, the substitution module uses an
OTL selection module 722 and an OTL parameter module
723 that both utilize a type library database 721.
The substitution module 711 generates the obfuscation

function code for each declared secure variable using the
OTL selection module 722 and the OTL parameter module
723. The OTL selection module 722 Selects or builds on-the
fly a particular obfuscation function for each declared secure
variable based upon the type of secure variable and any input
selection parameters. The OTL parameter module 723 gen
erates any random parameters needed by the selected obfus
cation function for each declared secure variable.
The compiler module 712 processes the source code

following the OTL code substitution operation to generate
object code that is combined with other executable modules
by the linker module 713 to generate an executable process
ing module.
The set of additional obfuscation modules 714 imple

ments additional obfuscation operations that may be utilized
to make the operation of the processing module more secure.
Past experience shows that attackers can often bypass the
Software protection mechanisms by Snooping on the inter

US 7,254,586 B2
11

action between Software and the underlying operating sys
tem. In particular, the arguments passed in Windows API
calls are plaintext. An attacker has little difficulty intercept
ing API calls and changing their arguments arbitrarily. An
obvious cure of this problem is to push data obfuscation
deep into the OS. If the data is temporarily de-obfuscated
right before its use—for example, an encrypted Song is
decrypted right before its sent to the sound driver, or an
encrypted file name is decrypted inside the file system
module the attacker will have much more difficulty in
intercepting and modifying critical plaintext data.
No matter how much data obfuscation is put into a

conventional PC operating system, it is still possible for
attackers to reverse engineer the entire OS. Hardware
assisted secure PC is one way to forestall any software
based attacks. The Trusted Windows (TW) Initiative within
Microsoft offers an excellent opportunity for data protection.
On the TW platform, the trusted mini-OS is protected by
hardware mechanisms that disallow any users from exam
ining the memory content of the mini-OS and from debug
ging it by pure Software means. Due to resource constraints
and engineering complexity, the protection is limited only to
the mini-OS; the bulk of the application software still runs
in the untrusted domain. This problem can be alleviated by
using OTL, as described in the following.
ATW application written with OTL is compiled into two

components: the application binary and an OTL object
decoder (OTL decoder) as shown in FIG. 8a. The OTL
decoder contains necessary information for someone to
de-obfuscate the OTL objects for this application. It is
encrypted with the public key for the Trusted Windows PC
that this application is licensed to. When the application is
loaded on the TW PC, the corresponding OTL decoder is
loaded into the mini-OS. All Subsequent communication
between the application and the mini-OS uses the OTL
objects in their obfuscated form. We thus eliminate a com
mon vulnerability present in current PCOS.
The use of OTL in securing API calls comes at no extra

cost to the developers. All they need to do is to pass a SInt32
(or SBool, etc.) in the API call instead of int32 (or BOOL,
etc.) The OTL decoder, to be run in the mini-OS, can be
automatically generated by the OTL compiler middleware.

To protect data-access patterns in a program, we propose
to inject auxiliary data and fake data accesses to both
program data and auxiliary data. The injection is done by the
OTL compiler. We partition the software into many code
groups, each containing some global data, either OTL-based
or non-OTL, shared among some groups. By inserting
accesses to shared data and to auxiliary data in other code
groups, artificial dependencies may be created among code
groups. These extra data accesses are not to be deemed
extraneous by simple data analysis tools. The result is a
piece of Software whose various components make seem
ingly random accesses to the heap. Furthermore, a tradi
tional tree-like data dependency among the code groups may
look like a complete graph as illustrated in FIG. 8b.

FIG. 9 illustrates a processing system for generating
executable program modules using OTL modules according
to another possible embodiment of the present invention. In
a second embodiment, the OTL processing of the Source
code 110 occurs within a separate pre-pre-processing mod
ule 901 where the output of the pre-processor is passed into
the compiler system 701. In such an embodiment, the
operations of the pre-processor 901 and the compiler 701 are
identical to the processing discussed above; however the
OTL pre-processor 901 may be used with existing compiler
systems without requiring the modification of the compiler

5

10

15

25

30

35

40

45

50

55

60

65

12
itself. Such an arrangement may require additional data
storage as a new set of Source code is created. However, the
possible use of the OTL system with existing compilers may
justify the added storage and overhead requirements of Such
an embodiment.

FIG. 10 illustrates an operational flow for generating
executable program modules using OTL modules according
to yet another example embodiment of the present invention.
The processing begins 1001 and the input source code is
processed by module 1011 to identify a secure variable
declaration. Once a secure variable declaration is found,
module 1012 queries an OTL database for possible OTL
procedures for use an a instance of the variable. The query
may return either a pre-stored procedure or one generated on
the fly. The possible procedures returned by the query will
depend upon the type of secure variable referenced in the
declaration statement.
From the query results, module 1013 randomly selects or

generates a single procedure for use in this particular
instance of a declared secure variable. Module 1014 then
creates an instance for this declared secure variable and
defines any random parameters that may be needed by the
procedure.

Test module 1015 determines if any additional secure
variables exist within the source code. If additional secure
variable declarations are found the processing returns to
module 1011 to process the next secure variable declaration.
If test module 1015 determines no additional secure vari
ables are to be processed, the processing continues with
module 1021 that locates the next reference to a declared
secure variable in the Source code.
When module 1021 finds a reference, module 1022 sub

stitutes the previously created instance of the obfuscation
function for the referenced secure variable into the source
code. Test module 1023 determines if any additional secure
variables references exist within the source code. If addi
tional Secure variable references are found the processing
returns to module 1021 to process the next secure variable
reference. If test module 10223 determines no additional
secure variables references are to be processed, the process
ing continues with module 1024 to optimize, compile, link
and further obfuscate the variables as discussed above. Once
the executable processing module is created, the processing
ends 1002.

FIG. 2 illustrates an example of a suitable operating
environment 200 in which the invention may be imple
mented. The operating environment is only one example of
a suitable operating environment 200 and is not intended to
Suggest any limitation as to the scope of use or functionality
of the invention. Other well known computing systems,
environments, and/or configurations that may be suitable for
use with the invention include, but are not limited to,
personal computers, server computers, held-held or laptop
devices, multiprocessor systems, microprocessor-based sys
tems, programmable consumer electronics, network PCs,
minicomputers, mainframe computers, distributed comput
ing environments that include any of the above systems or
devices, and the like.
The invention may also be described in the general

context of computer-executable instructions, such as pro
gram modules, executed by one or more computers or other
devices. Generally, program modules include routines, pro
grams, objects, components, data structures, etc., that per
form particular tasks or implement particular abstract data
types. Typically the functionality of the program modules
may be combined or distributed as desired in various
embodiments.

US 7,254,586 B2
13

A computing system 200 typically includes at least some
form of computer readable media. Computer readable media
can be any available media that can be accessed by the
system 200. By way of example, and not limitation, com
puter readable media may comprise computer storage media
and communication media. Computer storage media include
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information Such as computer readable instructions, data
structures, program modules or other data. Computer storage
media include, but are not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD
ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which
can be used to store the desired information and which can
be accessed by the computer 200.

Communication media typically embody computer read
able instructions, data structures, program modules or other
data in a modulated data signal Such as a carrier wave or
other transport mechanism and include any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in Such a manner as to encode information in the
signal. By way of example, and not limitation, communi
cation media include wired media Such as a wired network
or direct-wired connection, and wireless media Such as
acoustic, RF, infrared and other wireless media. Combina
tions of any of the above should also be included within the
Scope of computer readable media.

While the above embodiments of the present invention
describe a processing system for altering an image displayed
to a user, one skilled in the art will recognize that the various
computing architectures may be used to implement the
present invention as recited within the attached claims. It is
to be understood that other embodiments may be utilized
and operational changes may be made without departing
from the scope of the present invention.
The foregoing description of the exemplary embodiments

of the invention has been presented for the purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible in
light of the above teaching. It is intended that the scope of
the invention be limited not with this detailed description,
but rather by the claims appended hereto. Thus the present
invention is presently embodied as a method, apparatus,
computer storage medium or propagated signal containing a
computer program for providing a method, apparatus, and
article of manufacture for providing secure and opaque type
libraries to automatically provide secure variables within a
programming module.
What is claimed is:
1. A system for providing secure and opaque type libraries

to automatically provide secure variables within a program
ming module, the system comprising:

an OTL selection module, the OTL selection module
randomly generating one of the possible variable obfus
cation functions for each declared secure variable in a
secure variable declaration statement of a source code
module, the secure variable declaration statement com
prising a variable type declaration for each declared
secure variable;

an OTL substitution module, the OTL substitution module
Substituting a separate instance of a selected variable
obfuscation function applicable for every reference to
each declared secure variable;

10

15

25

30

35

40

45

50

55

60

65

14
an OTL type library database, the OTL type library

database receiving queries from the OTL selection
module and identifying possible variable obfuscation
functions applicable for the variable type declaration
corresponding to each declared secure variable;

a compiler module; and
a linker module to create an executable processing mod

ule.
2. The system according to claim 1, wherein the system

further comprises an additional obfuscation processing mod
ule to apply additional obfuscation operations to protect
data-memory access patterns.

3. The system according to claim 2, wherein the OTL
substitution module optimizes the substituted variable
obfuscation function with related instructions to further
obfuscate the contents of the secure variable.

4. The system according to claim 1, wherein the variable
type declaration comprises secure integers, secure floating
point variables, secure boolean variables, secure characters,
secure strings, secure structures, and secure versions of all
other data types.

5. The system according to claim 1, wherein the OTL
selection module randomly generates one of the possible
variable obfuscation functions by randomly selecting a
variable obfuscation function from a pre-defined library of
functions.

6. The system according to claim 5, wherein the OTL
selection module, the OTL substitution module, and the
OTL type library database are located in a pre-processor
module.

7. The system according to claim 1, wherein the OTL
selection module randomly generates one of the possible
variable obfuscation functions by randomly generating a
variable obfuscation function using a pre-defined library of
functions operators.

8. The system according to claim 1, wherein each separate
instance of the selected variable obfuscation function uti
lizes one or more parameters.

9. The system according to claim 8, wherein the one or
more parameters comprise randomly generated values.

10. A method for providing secure and opaque type
libraries to automatically provide secure variables within a
programming module, the method comprising:

identifying secure variable declaration statements within
a source code module, each of the Secure variable
declaration statements comprising a declared secure
variable and a variable type declaration;

querying a database for identification of possible variable
obfuscation functions applicable for the variable type
declaration corresponding to each of the secure variable
declaration statements;

randomly generating one of the possible variable obfus
cation functions returned in response to the database
query;

creating a separate instance of a selected variable obfus
cation function corresponding to each of the secure
variable declaration statements; and

Substituting the separate instance of the selected variable
obfuscation function for every reference to each
declared secure variable.

11. The method according to claim 10, wherein the
method further comprises optimizing the Substituted vari
able obfuscation function with related instructions to further
obfuscate the contents of the secure variable.

12. The method according to claim 11, wherein the
method further comprises: compiling the Source code:

US 7,254,586 B2
15

linking the Source code with additional processing mod
ules; and

applying additional obfuscation processing to protect
data-memory access patterns.

13. The method according to claim 12, wherein the
method further comprises generation and injection of "use
less' but potentially tightly integrated code designed to
disguise the secure variable and deflect the attacker's atten
tion away from sensitive data and code.

14. The method according to claim 10, wherein the
variable type declaration comprises secure integers, secure
floating point variables, secure boolean variables, secure
characters, secure strings, secure structures, and secure
versions of all other data types.

15. The method according to claim 14, wherein the secure
Boolean variables correspond to time-varying secure Bool
ean variables.

16. The method according to claim 15, wherein the
time-varying secure Boolean variables are utilized to per
form an authenticated function call.

17. The method according to claim 10, wherein the
separate instance of a variable obfuscation functions are
selected, created, and Substituted into the source code in a
pre-processor module.

18. The method according to claim 10, wherein the
randomly generating one of the possible variable obfusca
tion functions randomly selects a variable obfuscation func
tion from a pre-defined library of functions.

19. The method according to claim 10, wherein the
randomly generating one of the possible variable obfusca
tion functions randomly generates a variable obfuscation
function using a pre-defined library of functions operators.

20. A computer program data product readable by a
computing system and encoding instructions implementing
a method for providing secure and opaque type libraries to
automatically provide secure variables within a program
ming module, the method comprising:

identifying secure variable declaration statements within
a source code module, each of the Secure variable
declaration statements comprising a declared secure
variable and a variable type declaration;

querying a database for identification of possible variable
obfuscation functions applicable for the variable type
declaration corresponding to each of the secure variable
declaration statements;

randomly selecting or generating on-the-fly one of the
possible variable obfuscation functions returned in
response to the database query;

10

15

25

30

35

40

45

16
creating a separate instance of a selected variable obfus

cation function corresponding to each of the secure
variable declaration statements; and

Substituting the separate instance of the selected variable
obfuscation function for every reference to each
declared secure variable.

21. The computer program data product according to
claim 20, wherein the method further comprises optimizing
the substituted variable obfuscation function with related
instructions to further obfuscate the contents of the secure
variable.

22. The computer program data product according to
claim 21, wherein the method further comprises:

compiling the Source code:
linking the Source code with additional processing mod

ules; and
applying additional obfuscation processing to protect

data-memory access patterns.
23. The computer program data product according to

claim 22, wherein the method further comprises generation
and injection of “useless' but potentially tightly integrated
code designed to disguise the secure variable and deflect the
attackers attention away from sensitive data and code.

24. The computer program data product according to
claim 20, wherein the variable type declaration comprises
secure integers, secure floating point variables, secure bool
ean variables, secure characters, secure strings, secure struc
tures, and secure versions of all other data types.

25. The computer program data product according to
claim 24, wherein the secure Boolean variables correspond
to time-varying secure Boolean variables.

26. The computer program data product according to
claim 25, wherein the time-varying secure Boolean variables
are utilized to perform an authenticated function call.

27. The computer program data product according to
claim 20, wherein the separate instance of a variable obfus
cation functions are selected, created, and Substituted into
the source code in a pre-processor module.

28. The computer program data product according to
claim 20, wherein the computer program data product cor
responds to a computer readable storage medium.

