

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 294 189

(51) Int. Cl.:

C07D 487/04 (2006.01) A61K 31/519 (2006.01) A61P 1/04 (2006.01)

(1	2)
ν.	ン

TRADUCCIÓN DE PATENTE EUROPEA

Т3

- 86 Número de solicitud europea: 02788833 .8
- 86 Fecha de presentación : **13.12.2002**
- 87 Número de publicación de la solicitud: 1454897 87 Fecha de publicación de la solicitud: **08.09.2004**
- (54) Título: Derivados de pirazolopirimidinona que tienen acción inhibidora de PDE7.
- (30) Prioridad: 13.12.2001 JP 2001-380483
- (73) Titular/es: Asubio Pharma Co., Ltd. 9-11 Akasaka 2-chome Minato-ku, Tokyo 107-8541, JP
- Fecha de publicación de la mención BOPI: 01.04.2008
- (72) Inventor/es: Inoue, Hidekazu; Murafuji, Hidenobu y Hayashi, Yasuhiro
- (45) Fecha de la publicación del folleto de la patente: 01.04.2008
- 74) Agente: Ungría López, Javier

ES 2 294 189 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Derivados de pirazolopirimidinona que tienen acción inhibidora de PDE7.

5 Campo técnico

Esta invención se refiere un derivados de pirazolopirimidinona que tienen acción inhibidora de PDE7 (fosfodiesterasa de tipo VII) selectiva, las sales o los solvatos de los mismos, y a inhibidores de PDE7 que los contienen como ingredientes activos. Estos compuestos son eficaces en diferentes campos para la terapia, incluyendo enfermedades alérgicas, y enfermedades inflamatorias o inmunológicas.

Técnica anterior

El AMP cíclico (AMPc) o el GMPc, que es un segundo mensajero intracelular, es descompuesto por las fosfodiesterasas (PDE1~11) para volverlo inactivo. De estas fosfodiesterasas, PDE7 descompone selectivamente el AMPc, y está caracterizada como una enzima que no es inhibida por rolipram, un inhibidor selectivo de PDE4 que descompone AMPc de un modo similar. Se sugiere que PDE7 juega un importante papel en la activación de las células T (Beavo et al., Science 283 (1999) 848). Se sabe que la activación de las células T está implicada en el agravamiento de los estados patológicos en diferentes enfermedades, tales como las enfermedades alérgicas y las enfermedades inflamatorias o inmunológicas, por ejemplo, el asma bronquial, la bronquitis crónica, la enfermedad pulmonar obstructiva crónica, la rinitis alérgica, la psoriasis, la dermatitis atópica, la conjuntivitis, la osteoartritis, la artritis reumatoide, la esclerosis múltiple, el lupus eritematoso generalizado, la enfermedad inflamatoria del intestino, la hepatitis, la pancreatitis, la encefalomielitis, la sepsis, la enfermedad de Crohn, la reacción de rechazo en el trasplante, la enfermedad GVH, y la restenosis tras angioplastia (J Allergy Clin Immunol 2000 Nov; 106(5 Suppl): \$221-6, Am J Respir Crit Care Med 1996 Feb; 153(2): 629-32, Am J Respir Crit Care Med 1999 Nov; 160(5 Pt 2):S33-7, Clin Exp Allergy 2000 Feb; 30(2): 242-54, Hosp Med 1998 Jul: 59(7): 530-3, Int Arch Allergy Immunol 1998 Mar; 115 (3): 179-90, J Immunol 1991 Feb 15; 146(4): 1169-74, Osteoarthritis Cartilage 1999 Jul; 7(4): 401-2, Rheum Dis Clin North Am 2001 May; 27(2): 317-34, J Autoimmun 2001 May; 16(3): 187-92, Curr Rheumatol Rep 2000 Feb; 2(1): 24-31, Trends Immunol 2001 Jan; 22(1): 21-6, Curr Opin Immunol 2000 Aug; 12(4): 403-8, Diabetes Care 2001 Sep; 24(9): 1661-7, J Neuroimmunol 2000 Nov 1; 111(1-2): 224-8, Curr Opin Immunol 1997 Dec; 9(6): 793-9, JAMA 1999 Sep 15; 282(11): 1076-82, Semin Cancer Biol 1996 Apr; 7(2): 57-64, J Interferon Cytokine Res 2001 Apr; 21(4): 219-21). Así, se considera que los inhibidores de PDE7 son útiles en el tratamiento de diferentes enfermedades alérgicas y enfermedades inflamatorias o inmunológicas en las que están implicadas las células T.

Los compuestos hechos públicos como inhibidores selectivos de la enzima incluyen derivados de imidazopiridina (Publicación WO 01/34601), derivados de dihidropurina (Publicación WO 00/68203), derivados de pirrol (Publicación WO 01/32618), y derivados de benzotiopiranoimidazolona (DE19950647), pero sus actividades inhibidoras y selectividades para otras PDE son desconocidas. Los compuestos, cuyas actividades inhibidoras se han hecho públicas, incluyen derivados de guanina (Bioorg. Med. Chem. Lett. 11(2001) 1081), derivados de benzotiadiazina, y benzotienotiadiazina (J. Med. Chem. 43(2000) 683) (Eur. J. Med. Chem. 36(2001) 333). No obstante, sus actividades inhibidoras son débiles, y su selectividad para otras PDE es también baja, de manera que la utilidad práctica de estos compuestos como inhibidores de PED7 es insuficiente.

En cuanto a los compuestos que tienen un esqueleto de pirazolopirimidinona, los compuestos descritos en la Solicitud de Patente Europea Núm. EP463756, la Solicitud de Patente Europea Núm. EP526004, la Solicitud de Patente Europea Núm. EP349239, la Solicitud de Patente Europea Núm. EP636626, la Solicitud de Patente Europea Núm. EP995751, y la Publicación de Patente Japonesa No Examinada Núm. 1996-25384 son conocidos como inhibidores de PDE5 específicos de GMPc, pero no se han sugerido sus actividades inhibidoras de PDE7.

Descripción de la invención

50

La presente invención tiene como objeto la provisión de compuestos novedosos que tienen actividad inhibidora de PDE7, y de inhibidores de PDE7 que contienen estos compuestos como ingredientes activos.

Los compuestos de la presente invención son útiles en el tratamiento de diferentes enfermedades alérgicas y enfermedades inflamatorias o inmunológicas inhibiendo selectivamente PDE7 para aumentar el nivel de AMPc intracelular e inhibir la activación de las células T. Esto es, los compuestos de la presente invención son útiles como agentes preventivos o terapéuticos para enfermedades, tales como el asma bronquial, la bronquitis crónica, la enfermedad pulmonar obstructiva crónica, la rinitis alérgica, la psoriasis, la dermatitis atópica, la conjuntivitis, la osteoartritis, la artritis reumatoide, la esclerosis múltiple, el lupus eritematoso generalizado, la enfermedad inflamatoria del intestino, la hepatitis, la pancreatitis, la encefalomielitis, la sepsis, la enfermedad de Crohn, la reacción de rechazo en el trasplante, la enfermedad GVH, y la restenosis tras angioplastia.

Los autores de la presente invención, llevaron a cabo estudios en profundidad en un intento de desarrollar compuestos que tengan una acción inhibidora de PDE7 excelente. Como resultado, los autores de la presente invención han encontrado que compuestos que tienen un esqueleto de pirazolopirimidinona, representado por las fórmulas generales (IA), (IB), (IA') y (IB') mostradas más abajo, tienen una potente acción inhibidora de PDE7 y excelente selectividad

para la inhibición de PDE7. Este descubrimiento ha llevado a los autores de la presente invención a completar la presente invención:

Realizaciones para llevar a cabo la invención

Según la presente invención, se puede proporcionar una composición farmacéutica y un inhibidor de PDE7 que contiene un derivado de pirazolopirimidinona expresado mediante la siguiente fórmula general (IA) o (IB), o una sal o solvato del derivado, como ingrediente activo:

10

15

20

25

30

35

45

50

65

R² NH NH

(IB)

donde

A representa N o CR⁴

B representa un átomo de hidrógeno o un átomo de halógeno,

R¹ representa cicloalquilo C₃-C₇ sustituido opcionalmente o t-butilo,

R² representa hidrógeno, metilo o etilo,

 R^3 representa a hidrógeno, nitro, ciano o un átomo de halógeno, NR^5R^6 , $C(=X)R^7$, $SO_2NR^5R^6$, OR^8 , NR^8CON R^5R^6 , $NR^8SO_2R^9$, un grupo heteroarilo, o alquilo C_1 - C_3 sustituido opcionalmente,

R⁴ representa hidrógeno, o alcoxi C₁-C₃ sustituido, si se desea, con uno o más átomos de flúor,

 R^5 y R^6 son iguales o diferentes, y representan un átomo de hidrógeno, alquilo C_1 - C_6 sustituido opcionalmente, o acilo sustituido opcionalmente o, junto con el átomo de nitrógeno al que están unidos, forman azetidinilo, pirrolidinilo, piperidinilo, morfolino, tiomorfolino, piperazinilo u homopiperazinilo, estando cada uno de estos grupos sustituido opcionalmente con alquilo C_1 - C_4 sustituido opcionalmente, OH, alcoxi C_1 - C_3 , CO_2 H, o NR^5R^6 ,

R⁷ representa alquilo C₁-C₆ sustituido opcionalmente, OH, OR⁸, o NR⁵R⁶,

R⁸ representa hidrógeno o un grupo alquilo C₁-C₆ sustituido opcionalmente,

R⁹ representa un grupo alquilo C₁-C₆ sustituido opcionalmente, y

X representa O, S o NH.

La descripción mostrada mediante " C_{\circ} - C_{\circ} " en la presente memoria representa el número de átomos de carbono que oscila de \circ a \circ . Por ejemplo, C_1 - C_6 representa el número de átomos de carbono que oscila de 1 a 6.

En la presente invención, los ejemplos del sustituyente relevante para la expresión "sustituido opcionalmente" incluyen un grupo alquilo lineal, ramificado o cíclico sustituido opcionalmente tal como metilo, etilo, propilo o ciclohexilo; un grupo hidroxilo; un grupo ciano; un grupo alcoxi tal como metoxi o etoxi; un grupo amino sustituido opcionalmente tal como amino, metilamino o dimetilamino; un grupo acilo sustituido opcionalmente tal como acetilo o propionilo; un grupo carboxilo; un grupo arilo sustituido opcionalmente tal como fenilo o naftilo; un grupo heteroarilo sustituido opcionalmente tal como piridinilo, tiazolilo, imidazolilo o pirazilo; un grupo heterocicloalquilo saturado o insaturado sustituido opcionalmente tal como piperazinilo o morfonilo; un grupo carbamoilo sustituido opcionalmente; un grupo amido sustituido opcionalmente; un átomo de halógeno tal como cloro, flúor o bromo; un grupo nitro; un grupo sulfona sustituido opcionalmente; un grupo sulfonilamido sustituido opcionalmente; un grupo oxo; un grupo urea; y un grupo alquenilo lineal, ramificado o cíclico sustituido opcionalmente tal como etenilo, propenilo o ciclohexenilo.

En las fórmulas generales (IA) y (IB) de la presente invención, el grupo cicloalquilo C_3 - C_7 sustituido opcionalmente expresado como R^1 incluye, por ejemplo, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo y cicloheptilo. Los ejemplos preferidos son grupos cicloalquilo C_5 - C_7 tales como ciclopentilo, ciclohexilo y cicloheptilo, y los ejemplos particularmente preferidos son ciclohexilo y cicloheptilo.

Los ejemplos de R² son hidrógeno, metilo y etilo, y el ejemplo particularmente preferido es metilo.

Los ejemplos de R^3 son un hidrógeno, nitro, ciano o un átomo de halógeno, NR^5R^6 , $C(=X)R^7$, $SO_2NR^5R^6$, OR^8 , $NR^8CONR^5R^6$, $NR^8SO_2R^9$, un grupo heteroarilo, y alquilo C_1 - C_3 sustituido opcionalmente. Los ejemplos particularmente preferidos son ciano, NR^5R^6 , $C(=X)R^7$, $SO_2NR^5R^6$, OR^8 , $NR^8CONR^5R^6$, $NR^8SO_2R^9$, un grupo heteroarilo, y alquilo C_1 - C_3 sustituido opcionalmente. El átomo de halógeno hace referencia a flúor, cloro, bromo o yodo.

Los ejemplos preferidos del grupo heteroarilo como R³ incluyen un grupo heteroarilo monocíclico de 5 a 7 miembros que tiene de 2 a 8 átomos de carbono y que contiene de 1 a 4 heteroátomos que consisten en átomos de oxígeno, átomos de nitrógeno o átomos de azufre, y un grupo heteroarilo policíclico que comprende dos o más de tales compuestos monocíclicos idénticos o diferentes fusionados entre sí, siendo los ejemplos de los grupos heteroarilo monocíclicos y policíclicos pirrol, furilo, tienilo, imidazolilo, tiazolilo, piridilo, pirazilo, indolilo, quinolilo, isoquinolilo, y tetrazolilo.

Como A, se nombra N o CR⁴. Como ejemplo preferido, se nombra CR⁴.

Los ejemplos preferidos de B son hidrógeno o un átomo de halógeno. El átomo de halógeno hace referencia a flúor, cloro, bromo o yodo. Los ejemplos particularmente preferidos de B son hidrógeno y flúor.

Los ejemplos preferidos de R^4 son hidrógeno, y alcoxi C_1 - C_3 sustituido, si se desea, con uno o más átomos de flúor, tal como metoxi, etoxi, o propiloxi. Los ejemplos particularmente preferidos son los grupos metoxi, etoxi, fluorometoxi y difluorometoxi.

Los ejemplos de R⁵ y R⁶ son grupos que son iguales o diferentes, y que representan un átomo de hidrógeno, alquilo C₁-C₆ sustituido opcionalmente, o acilo sustituido opcionalmente o, junto con el átomo de nitrógeno al que están unidos, puede formar azetidinilo, pirrolidinilo, piperidinilo, morfolino, tiomorfolino, piperazinilo. Estos grupos pueden estar adicionalmente sustituidos opcionalmente con alquilo C₁-C₄ sustituido opcionalmente, OH, alcoxi C₁-C₃, CO₂H, o NR⁵R⁶. Los ejemplos particularmente preferidos son un grupo hidroxilo, un grupo alcoxi, alquilo C₂-C₄ sustituido con un grupo amino sustituido opcionalmente, azetidinilo, pirrolidinilo, piperidinilo, morfolino, piperazinilo, y homopiperazinilo. Cuando sea necesario, estos grupos pueden estar sustituidos adicionalmente con metilo, metoxi, OH, CO₂H, o NR⁵R⁶ sustituido opcionalmente.

Los ejemplos de R^7 son alquilo C_1 - C_6 lineal o ramificado, OH, OR 8 , o NR 5 R 6 sustituido opcionalmente. R 5 y R 6 se definen como antes. Los ejemplos particularmente preferidos son OH y NR 5 R 6 .

Como R^8 , se nombra hidrógeno o un grupo alquilo C_1 - C_6 lineal o ramificado sustituido opcionalmente. Preferiblemente, se citan hidrógeno y alquilo C_1 - C_3 sustituido opcionalmente.

Los ejemplos de R^9 son un grupo alquilo C_1 - C_6 sustituido opcionalmente y, preferiblemente, un grupo alquilo C_1 - C_3 sustituido opcionalmente. Los ejemplos particularmente preferidos son metilo sustituido opcionalmente y etilo sustituido opcionalmente.

Los ejemplos de X son O, S y NH. Un ejemplo particularmente preferido es O.

Según la presente invención, se puede proporcionar un derivado de pirazolopirimidinona expresado mediante la siguiente fórmula general (IA') o (IB'), o una sal o solvato del derivado:

donde

60

65

15

35

A' representa N o CR4',

B' representa un átomo de hidrógeno o un átomo de halógeno,

- R^{1'} representa un grupo cicloalquilo C₃-C₇ sustituido opcionalmente o t-butilo,
- R^{2'} representa hidrógeno, metilo o etilo,

10

15

35

45

- $R^{3'}$ representa NR^5R^6 , $C(=O)R^{7'}$, $SO_2NR^{5'}R^{6'}$, $OR^{8'}$, $NR^{8'}CONR^{5'}R^{6'}$, $NR^{8'}CO_2R^{9'}$, $NR^{8'}SO_2R^{9'}$, alquilo C_1 - C_6 sustituido opcionalmente, alquenilo C_1 - C_6 sustituido opcionalmente, o heterocicloalquilo saturado o insaturado sustituido opcionalmente,
 - R4' representa hidrógeno, o alcoxi C1-C3 sustituido, si se desea, con uno o más átomos de flúor,
 - $R^{5'}$ y $R^{6'}$ son iguales o diferentes, y representan un átomo de hidrógeno, alquilo C_1 - C_6 sustituido opcionalmente, o heterocicloalquilo sustituido opcionalmente o, junto con el átomo de nitrógeno al que están unidos, forman azetidinilo, pirrolidinilo, tiomorfolino, piperazinilo u homopiperazinilo, estando cada uno de estos grupos adicionalmente sustituido con $NR^{9'}C(=0)R^{7'}$, un grupo oxo, o $C(=0)R^{7'}$,
 - R^{7'} representa hidrógeno, alquilo C₁-C₆ sustituido opcionalmente, OH, OR, o NR^{5'}R^{6'},
 - R8' representa hidrógeno, un grupo alquilo C₁-C₆ sustituido opcionalmente, o heterocicloalquilo, y
- 20 R^{9'} representa un grupo alquilo C₁-C₆ sustituido opcionalmente.

En las fórmulas generales (IA') y (IB') de la presente invención, el grupo cicloalquilo C_3 - C_7 sustituido opcionalmente expresado como $R^{1'}$ incluye, por ejemplo, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo y cicloheptilo. Los ejemplos preferidos son los grupos cicloalquilo C_5 - C_7 tales como ciclopentilo, ciclohexilo y cicloheptilo, y los ejemplos particularmente preferidos son ciclohexilo y cicloheptilo.

Los ejemplos de R^{2'} son hidrógeno, metilo y etilo, y el ejemplo particularmente preferido es metilo.

Los ejemplos de $R^{3'}$ son $NR^{5'}R^{6'}$, $C(=O)R^{7'}$, $SO_2NR^{5'}R^{6'}$, $OR^{8'}$, $NR^{8'}CONR^{5'}R^{6'}$, $NR^{8'}CO_2R^{9'}$, $NR^{8'}SO_2R^{9'}$, alquilo C_1 - C_6 sustituido opcionalmente, y heterocicloalquilo saturado o insaturado sustituido opcionalmente. Los ejemplos preferidos son $NR^{5'}R^{6'}$, $SO_2NR^{5'}R^{6'}$, $OR^{8'}$, $NR^{8'}CONR^{5'}R^{6'}$, $NR^{8'}SO_2R^{9'}$, alquilo C_1 - C_6 sustituido opcionalmente, alquenilo C_1 - C_6 sustituido opcionalmente, y heterocicloalquilo saturado o insaturado sustituido opcionalmente.

Los ejemplos preferidos del grupo heterocicloalquilo saturado o insaturado sustituido opcionalmente, como R^{3′}, incluyen un grupo heterocicloalquilo saturado o insaturado monocíclico de 4 a 7 que tiene de 2 a 8 átomos de carbono y que contiene de 1 a 4 heteroátomos que consisten en átomos de oxígeno, átomos de nitrógeno o átomos de azufre, y un grupo heterocicloalquilo saturado o insaturado policíclico que comprende dos o más de tales compuestos monocíclicos idénticos o diferentes fusionados entre sí, siendo los ejemplos de los grupos heterocicloalquilo monocíclicos y policíclicos azetidinilo, pirrolidinilo, piperidinilo, tiomorfolino, piperazinilo, homopiperazinilo, y tetrahidropiridinilo. Como A', se nombra N o CR^{4′}. Como ejemplo preferido, se nombra CR^{4′}.

Los ejemplos preferidos de B' son hidrógeno y un átomo de halógeno. El átomo de halógeno hace referencia a flúor, cloro, bromo o yodo. Los ejemplos particularmente preferidos de B' son hidrógeno y flúor.

Los ejemplos preferidos de $R^{4'}$ son hidrógeno, y alcoxi C_1 - C_3 sustituido opcionalmente, si se desea, con uno o más átomos de flúor, tales como metoxi, etoxi, o propiloxi. Los ejemplos particularmente preferidos son los grupos metoxi y etoxi.

Los ejemplos preferidos de R^{5'} y R^{6'} son los grupos que son iguales o diferentes, y que representan un átomo de hidrógeno, alquilo C₁-C₆ sustituido opcionalmente, o heterocicloalquilo sustituido opcionalmente o, junto con el átomo de nitrógeno al que están unidos, puede formar azetidinilo, pirrolidinilo, piperidinilo, tiomorfolino, piperazinilo u homopiperazinilo. Estos grupos están sustituidos adicionalmente con NR^{9'}C(=O)R^{7'}, un grupo oxo, o C(=O)R^{7'}. Los ejemplos preferidos adicionalmente son los grupos que incluyen un átomo de hidrógeno, metilo, etilo, o heterocicloalquilo sustituido opcionalmente tales como piperidinilo o pirrolidinilo o, junto con el átomo de nitrógeno al que están unidos, forman azetidinilo, pirrolidinilo, piperidinilo, tiomorfolino, piperazinilo u homopiperazinilo, estando estos grupos sustituidos adicionalmente con NR^{9'} C(=O)R^{7'}, un grupo oxo, o C(=O)R^{7'}.

Los ejemplos de R^7 son un átomo de hidrógeno, alquilo C_1 - C_6 lineal o ramificado sustituido opcionalmente, OH, OR^{8} , y $NR^{5'}R^{6'}$. $R^{5'}$ y $R^{6'}$ se definen como antes. Los ejemplos particularmente preferidos son OH y $NR^{5'}R^{6'}$.

Como R^{8'}, se nombran hidrógeno, un grupo alquilo lineal o ramificado sustituido opcionalmente, y heterocicloalquilo sustituido opcionalmente. Los ejemplos del grupo alquilo C₁-C₆ lineal o ramificado sustituido opcionalmente son un grupo carboximetilo, un grupo cianometilo, y un grupo heteroarilmetilo. Los ejemplos preferidos del grupo heterocicloalquilo son un grupo heterocicloalquilo monocíclico de 4 a 7 miembros que tiene de 2 a 8 átomos de carbono y que contiene de 1 a 4 heteroátomos que consiste en átomos de oxígeno, átomos de nitrógeno o átomos de azufre, y un grupo heterocicloalquilo saturado o insaturado policíclico que comprende dos o más tales compuestos monocíclicos idénticos o diferentes fusionados entre sí, siendo los ejemplos de los grupos heterocicloalqui-

lo monocíclicos y policíclicos azetidinilo, pirrolidinilo, piperidinilo, tiomorfolino, piperazinilo, homopiperazinilo, y tetrahidropiridinilo.

Los ejemplos de $R^{9'}$ son un grupo alquilo C_1 - C_6 sustituido opcionalmente y, preferiblemente, un grupo alquilo C_1 - C_3 sustituido opcionalmente. Los ejemplos particularmente preferidos son metilo sustituido opcionalmente y etilo sustituido opcionalmente.

Los compuestos de las fórmulas generales (IA), (IB), (IA') y (IB') pueden estar presentes en forma de tautómeros, y pueden existir como tautómeros individuales, y como mezclas de tautómeros individuales.

Además, los derivados radiomarcados de los compuestos de las fórmulas generales (IA), (IB), (IA') y (IB') están incluidos también en la presente invención.

Los compuestos de la presente invención también incluyen los compuestos que tienen de uno a una pluralidad de átomos de carbono asimétricos, y hay isómeros ópticos (R) y (S), las modificaciones racémicas, y los diastereómeros basados en ello. Por otra parte, dependiendo de los tipos de los sustituyentes, los compuestos tienen enlaces dobles, de manera que también están presentes isómeros geométricos, tales como compuestos (Z) y (E). La presente invención incluye estos isómeros, ya sea separados o mezclados.

15

Los compuestos de la presente invención incluyen aquellos que pueden formar sales con ácidos. Los ejemplos de tales sales son aductos de ácido con ácidos minerales tales como ácido clorhídrico, ácido bromhídrico, ácido yodhídrico, ácido sulfúrico, ácido nítrico, y ácido fosfórico, y ácidos orgánicos tales como ácido fórmico, ácido acético, ácido propiónico, ácido oxálico, ácido malónico, ácido succínico, ácido fumárico, ácido maleico, ácido láctico, ácido málico, ácido cítrico, ácido tartárico, ácido benzoico, ácido pícrico, ácido metanosulfónico, ácido toluenosulfónico, ácido bencenosulfónico, ácido tricloroacético, ácido trifluoroacético, ácido aspártico, y ácido glutámico.

Los compuestos de la presente invención pueden formar adicionalmente sales metálicas farmacéuticamente aceptables con metales, especialmente metales alcalinos o metales alcalinotérreos. Los ejemplos de estas sales son sales de sodio, sales de potasio, y sales de calcio. Los compuestos de la presente invención incluyen adicionalmente hidratos, solvatos con etanol o isopropanol, y sustancias polimórficas.

Los ejemplos particularmente preferidos de los derivados de pirazolopirimidinona de las fórmulas generales (IA), (IB), (IA') y (IB') según la presente invención son los siguientes: 1-ciclohexil-3-metil-5-fenil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-3-metil-5-(4-nitrofenil)-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-(4-aminofenil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; N-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)fenil]acetamida; 1-ciclohexil-5-(2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-3-metil-5-(2-piridinil)-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-3-metil-5-[4-(4-metil-1-piperazinil)fenil]-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(2-metoxi-4-nitrofenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-(4-amino-2-metoxifenil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; N-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]acetamida; 5-(5-amino-2-piridinil)-1-ciclohexil-3-metil-1,6dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; N-[6-(1-ciclohexil-3-metil-7-oxo-1H-pirazolo[4,3-d]pirimidin-5-il)-3-piridinil]acetamida; 1-ciclohexil-5-(2-etoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-(4-hidroxi-1-piperidinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-(4-bromo-2-metoxifenil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-metoxi-4-(4-metil-1-piperazinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-(4-cloro-2-piridinil)-1-ciclohexil-3-metil-1,6dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(5-fluoro-2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo [4,3-d]pirimidin-7-ona; trans-5-(2-metoxifenil)-3-metil-1-(4-metilciclohexil)-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; cis-5-(2-metoxifenil)-3-metil-1-(4-metilciclohexil)-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; trans-3-metil-1-(4-metilciclohexil)-5-[4-(4-metil-1-piperazinil)fenil]-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; cis-3metil-1-(4-metilciclohexil)-5-[4-(4-metil-1-piperazinil)fenil]-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 3-ciclohexil-1-metil-6-fenil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxifenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxifenil)-1-metil-1,5-dihidro-4-ona; 3-ciclohexil-6-(2-metoxifenil)-1-metil-1,5-dihidro-1, dro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-1-metil-6-(2-piridinil)-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 6-(4-bromo-2-metoxifenil)-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,4-dioxa-8-azaespiro[4,5]deca-8-il)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3ciclohexil-6-[2-metoxi-4-(4-oxo-1-piperidinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(4-hidroxi-1-piperidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(2-metoxietoxi)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 6-[4-(benciloxi)-2-metoxifenil]-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(4-hidroxi-2-metoxifenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(2-hidroxietoxi)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-{2-metoxi-4-[(3S)-tetrahidro-3-furaniloxi]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-{2-metoxi-4-[(3R)-tetrahidro-3-furaniloxi]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; [4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenoxi]acetato de metilo; ácido [4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1Ĥ-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenoxi]acético; 3-ciclohexil-6-{2-metoxi-4-[(1-metil-4-piperidinil)oxi]fenil}-1metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-nitrofenil)-1-metil-1,5-dihidro-4Hpirazolo[3,4-d]pirimidin-4-ona; 6-(4-amino-2-metoxifenil)-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]piri-

midin-4-ona; N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil] acetamida; N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-2-metoxiacetamida; 3-ciclohexil-6-[2-metoxi-4-(metilamino)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; cloruro de 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxibencenosulfonilo; 3-ciclohexil-6-{2-metoxi-4-[(4-metil-1-piperazinil)sulfonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3ciclohexil-6-[2-metoxi-4-(4-morfolinilsulfonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-{4-[(4-hidroxi-1-piperidinil)sulfonil]-2-metoxifenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-{[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]sulfonil}-4-piperidinocarboxilato de etilo; ácido 1-{[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]sulfonil}-4-piperidinocarboxílico; 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-N-[2-(dimetilamino)etil]-3-metoxibencenosulfonamida; 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo [3,4-d]pirimidin-6-il)-3-metoxi-N-(2-metoxietil)bencenosulfonamida; 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1Hpirazolo[3,4-d]pirimidin-6-il)-N-(2-hidroxietil)-3-metoxibencenosulfonamida; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-metoxi-1-piperidinil)fenil]-1metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 6-(4-bromo-2-metoxifenil)-3-cicloheptil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-cicloheptil-6-[2-metoxi-4-(4-metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4Hpirazolo[3,4-d]pirimidin-4-ona; ácido 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3metoxibenzoico; 3-ciclohexil-6-{2-metoxi-4-[(4-metil-1-piperazinil)carbonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo [3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonilc d]pirimidin-4-ona; 3-ciclohexil-6-{4-[(4-hidroxi-1-piperidinil)carbonil]-2-metoxifenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-{2-metoxi-4-[(4-metoxi-1-piperidinil)carbonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; éster etílico de ácido {[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo [3,4-d]pirimidin-6-il)-3-metoxibenzoil]amino}acético; ácido {[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxibenzoil]amino)acético; 3-ciclohexil-6-{2-metoxi-4-[(2-metoxietil)(metil)amino]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(5-fluoro-2-metoxifenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-piperazinocarboxilato de etilo; ácido 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-piperazinocarboxílico; 3-cicloheptil-6-[2-metoxi-4-(1-piperazinil)fenil]-1metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-4-oxo-4,5-dihidro-1H-piraz d]pirimidin-6-il)-2-fluoro-5-metoxifenil]-1-piperazinocarboxilato de bencilo; 3-ciclohexil-6-[5-fluoro-2-metoxi-4-(1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[5-fluoro-2-metoxi-4-(4metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-{metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-{metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-{metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-{metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-{metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-{metil-1-piperazinil)fenil-1-metil-[2-(metilamino)etil]amino}fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 6-(4-bromo-2-etoxifenil) 3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona: 3-ciclohexil-6-[2-etoxi-4-(4-metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1Hpirazolo[3,4-d]pirimidin-6-il)-3-etoxifenil]-4-piperidinil(metil)carbamato de bencilo; 3-ciclohexil-6-{2-etoxi-4-[4-(metilamino)-1-piperidinil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(1-ciclohexil-3-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(1-ciclohexil-3-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidi 7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-4-piperidinil(metil)carbamato de bencilo; 1-ciclohexil-5-{2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-[4-(3-cicloheptil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-piperidinil(metil) carbamato de bencilo; 3-cicloheptil-6-{2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-piperidinil(etil)carbamato de bencilo; 3-ciclohexil-6-{2-metoxi-4-[4-(etilamino)-1-piperidinil]fenil}-1metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3d]pirimidin-5-il)-3-metoxifenil]-4-piperidinil(etil)carbamato de bencilo; 1-ciclohexil-5-{2-metoxi-4-[4-(etilamino)-1-piperidinil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-(benciloxi)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(4-hidroxi-2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(2-metoxi-4-{metil[2-(metilamino)etil]amino}fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{4-[(3R)-3-(dimetilamino)pirrolidinil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{4-[(3S)-3-(dimetilamino) pirrolidinil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-{4-([2-(benciloxi)etil](metil) amino]-2-metoxifenil}-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(4-[(2-hidroxietil)(metil)amino]-2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-(4-{4-[(benciloxi) metil]-1-piperidinil}-2-metoxifenil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-3-metil-1,6-dihidro-7-metil-1,6-dihi xil-5-{4-[4-(hidroximetil)-1-piperidinil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(2-metoxi-4-{metil[3-(metilamino)propil]amino}fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-metoxi-4-(4-metil-1,4-diazepan-1-il)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-(4-[[2-(benciloxi)etil](etil)amino]-2-metoxifenil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(4-[(2-hidroxietil)(etil)amino]-2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-(4-bromo-2-etoxifenil-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 3-ciclohexil-6-{2-etoxi-4-[(2-metoxietil)amino]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-4-piperidinil(metil)formamida; N-{1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-4-piperidinil}-N-metilacetamida; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-etoxifenil]-4-piperidinil dinil(metil)carbamato de bencilo; 1-ciclohexil-5-{2-etoxi-4-[4-(metilamino)-1-piperidinil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-(4-hidroxi-1-metil-4-piperidinil)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-metoxi-4-(1-metil-1,2,3,6-tetrahidro-4-piridinil)fe-

nil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-metoxi-4-(1-metil-4-piperidinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-(1,4-diazepan-1-il)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-[4-(4-acetil-1,4-diazepan-1-il)-2-metoxifenil]-1-ciclohexil-3metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-(4-etil-1,4-dlazepan-1-il)-2-metoxifenil]-3metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d d]pirimidin-5-il)-2-fluoro-5-metoxifenil]-4-piperidinil(metil)carbamato de bencilo; 1-ciclohexil-5-(5-fluoro-2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-(4-metil-1,4-diazepan-1-i])-2-etoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 3-ciclohexil-6-[4-[[2-(dimetilamino)etil](metil)amino]-2-metoxifenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,4-diazepan-1-il)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-metil-1,4-diazepan-1-il)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 6-[4-bromo-2-(difluorometoxi)fenil]-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-(difluorometoxi)-4-(4-metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]urea; N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil til-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-N-(metilsulfonil)metanosulfonamida; N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]metanosulfonamida; 3-ciclohexil-6-[2-metoxi-4-(2-oxo-1,3-oxazolidin-3-il)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3ciclohexil-6-[2-metoxi-4-(2-oxo-1-imidazolidinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenilcarbamato de etilo; N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-N-metilacetamida; N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-N-metilmetanosulfonamida; N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-N-morfolinocarboxamida; 3-ciclohexil-6-(2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; N'-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-N-(2hidroxietil)-N-metilurea; 3-ciclohexil-6-[2-metoxi-4-(3-metil-2-oxo-1-imidazolidinil)fenil]-1-metil-1,5-dihidro-4Hpirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-{4-[4-(dimetilamino)-1-piperidinil]-2-metoxifenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil-1-metil-1,5-dihidro-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil-1-metil-1,5-dihidro-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil-1-metil-1,5-dihidro-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil-1-metil-1,5-dihidro-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil-1-metil-1 dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-N-(2-hidroxietil)-3-metoxi-N-metilbencenosulfonamida; 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-N-[2-(dimetilamino)etil]-3-metoxi-N-metilbencenosulfonamida; 4-(3-ciclohexil-1-metil-4oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-N-(3-hidroxipropil)-3-metoxibencenosulfonamida; 3-ciclohexil-6-[4-(1,4-diazepan-1-ilsulfonil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-{2-metoxi-4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3ciclohexil-6-{4-[(3-hidroxi-1-pirrolidinil)sulfonil]-2-metoxifenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-tiomorfolinilsulfonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4ona; 3-ciclohexil-6-[4-(1,4-dioxa-8-azaespiro[4,5]deca-8-ilsulfonil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo [3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-[(4-oxo-1-piperidinil)sulfonil]fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-[[4-(metilamino)-1-piperidinil]sulfonil]fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-[[4-(metilamino)-1-piperidinil]sulfonil]fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-[[4-(metilamino)-1-piperidinil]sulfonil]fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-[[4-(metilamino)-1-piperidinil]sulfonil]fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-[[4-(metilamino)-1-piperidinil]sulfonil]fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-[[4-(metilamino)-1-piperidinil]sulfonil]fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-(2-metoxi-4-[[4-(metilamino)-1-piperidinil]sulfonil]fenil)-1-metil-1,5-dihidro-4-line (1-metoxi-4-[[4-(metilamino)-1-piperidinil]sulfonil]fenil-1-metil-1,5-dihidro-4-line (1-metoxi-4-[1-met dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-{[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]sulfonil}-3-pirrolidinilcarbamato de bencilo; 6-{4-[(3-amino-1-pirrolidinil)sulfonil]-2-metoxifenil}-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 1-{[4-(3-ciclohexil-1-metil-4-oxo-4,5dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]sulfonil}-4-piperidinilcarbamato de bencilo; 6-{4-[(4-amino-1-piperidinil)sulfonil]-2-metoxifenil}-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[2-metoxi-4-(4-tiomorfolinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 6-(4-bromofenil)-3ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-1-metil-6-[4-(4-metil-1-piperazinil)] fenil]-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 6-(4-aminofenil)-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo [3,4-d]pirimidin-4-ona; cloruro de 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)bencenosulfonilo; 3-ciclohexil-6-{4-[(4-hidroxi-1-piperidinil)sulfonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 6-{4-[4-(bencilamino)-1-piperidinil]-2-metoxifenil}-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4d]pirimidin-4-ona; 6-[4-(4-amino-1-piperidinil)-2-metoxifenil]-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-ona; 3-ciclohexil-1-metil-6-{4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-1,5-dihidro-4H-pirazolo[3,4d]pirimidin-4-ona; 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)fenil]-4-piperidinil (metil)carbamato de bencilo; 3-ciclohexil-1-metil-6-{4-[4-(metilamino)-1-piperidinil]fenil}-1,5-dihidro-4H-pirazo-lo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,4-diazepan-1-ilsulfonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-ona; 3-ciclohexil-6-{4-[(1,1-dioxido-4-tiomorfolinil)sulfonil]-2-metoxifenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,1-dioxido-4-tiomorfolinil)-2-metoxifenil]-1-metil-1,5-dihidro-4Hpirazolo[3,4-d]pirimidin-4-ona; 6-(4-bromo-2-metoxifenil)-3-ciclohexil-1-etil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-1-etil-6-[2-metoxi-4-(4-metil-1-piperazinil)fenil]-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4ona; 1-[4-(3-ciclohexil-1-etil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-piperidinil(metil) carbamato de bencilo; 3-ciclohexil-1-etil-6-{2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil}-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; cloruro de 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[3,4-d]pirimidin-5-il)-3metoxibencenosulfonilo; 1-ciclohexil-5-{2-metoxi-4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{4-[(4-hidroxi-1-piperidinil)sulfonil]-2-metoxifenil}-3-metil-1,6dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-N-(2-hidroxietil)-3-metoxibencenosulfonamida; 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d] pirimidin-5-il)-3-metoxi-N-metilbencenosulfonamida; 1-ciclohexil-5-[4-(1,4-diazepan-1-ilsulfonil)-2-metoxifenil]-3metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d] pirimidin-6-il)-3-metoxi-N-metilbencenosulfonamida; 6-(4-amino-2-metoxifenil)-3-ciclohexil-1-etil-1,5-dihidro-4H-

pirazolo[3,4-d]pirimidin-4-ona; cloruro de 4-(3-ciclohexil-1-etil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6il)-3-metoxibencenosulfonilo; 3-ciclohexil-1-etil-6-{4-[(4-hidroxi-1-piperidinil)sulfonil]-2-metoxifenil}-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-1-etil-6-{2-metoxi-4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-1,5dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; 3-ciclohexil-6-[4-(1,4-diazepan-1-ilsulfonil)-2-metoxifenil]-1-etil-1,5dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona; N-(2-aminoetil)-4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo [4,3-d]pirimidin-5-il)-3-metoxi-N-metilbencenosulfonamida; 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo [4,3-d]pirimidin-5-il)-3-metoxi-N-[2-(metilamino)etil]bencenosulfonamida; 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-N-[2-(dimetilamino)etil]-3-metoxibencenosulfonamida; 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-metil-N-[2-(metilamino)etil]bencenosulfonamida; 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-N-(2-hidroxietil)-3-metoxi-N-metilbencenosulfonamida; 1-ciclohexil-5-{2-metoxi-4-[(4-metil-1-piperazinil)sulfonil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-metil-N-[3-(metilamino)propil]bencenosulfonamida; 1-ciclohexil-5-(4-{[4-(2-hidroxietil)-1-piperazinil]sulfonil}-2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-metoxi-4-(1-piperazinilsulfonil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{4-[(4-etil-1-piperazinil)sulfonil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; N-(1-bencil-4-piperidinil)-4-(1-ciclohexil-3metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencenosulfonamida; 4-(1-ciclohexil-3-metil-7oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-(4-piperidinil)bencenosulfonamida; 1-{[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]sulfonil)-4-piperidinil(metil)carbamato de bencilo; 1-ciclohexil-5-(2-metoxi-4-{[4-(metilamino)-1-piperidinil]sulfonil}fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-{4-[(1-bencil-4-piperidinil)amino]-2-metoxifenil}-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-metoxi-4-(4-piperidinilamino)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{2-metoxi-4-[(2-metoxietil)amino]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; (2E)-3-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3metoxifenil]-2-propenato de metilo; ácido (2E)-3-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-2-propénico; 3-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5il)-3-metoxifenil]propanato de metilo; ácido 3-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]propánico; 1-ciclohexil-5-(4-([2-(dimetilamino)etil]amino}-2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-{4-[(1-acetil-4-piperidinil)amino]-2-metoxifenil}-1-ciclohexil-3-metil-1,6dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(2-metoxi-4-[(1-metil-4-piperidinil)amino]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibenzaldehído; 1-ciclohexil-5-{2-metoxi-4-[(4-metil-1-piperazinil)metil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona: 1-ciclohexil-5-[2-metoxi-4-(4-morfolinilmetil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{4-[(4-hidroxi-1-piperidinil)metil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(2-metoxi-4-{[(2-metoxietil)amino]metil}fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxilato de etilo; ácido 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxílico; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxílico; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxílico; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxílico; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxílico; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxílico; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxílico; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxílico; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il]-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il]-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il]-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il]-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il]-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il]-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il]-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il]-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]pirimidin-1H-pirazolo[4,3-d]p 1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencilj-4-piperidinil(metil)carbamato de bencilo; 1-ciclohexil-5-(2-metoxi-4-{[4-(metilamino)-1-piperidinil]metil}fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-metoxi-4-(tetrahidro-2H-piran-4-ilamino)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-(1,4-dioxa-8-azaespiro[4,5]deca-8-il)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-metoxi-4-(4-oxo-1-piperidinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{4-[4-(dimetilamino)-1-piperidinil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-{4-[4-(bencilamino)-1-piperidinil]-2-metoxifenil}-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-[4-(4-amino-1-piperidinil)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-(1,4-dioxa-8-azaespiro[4,5]deca-8-il)-2-etoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3d]pirimidin-7-ona; 1-ciclohexil-5-[2-etoxi-4-(4-oxo-1-piperidinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{4-[4-(dimetilamino)-1-piperidinil]-2-etoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3d]pirimidin-7-ona; 5-{4-[4-(bencilamino)-1-piperidinil]-2-etoxifenil}-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo [4,3-d]pirimidin-7-ona; 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-etoxifenil] 4-piperidinil(etil)carbamato de bencilo; 1-ciclohexil-5-{2-etoxi-4-[4-(etilamino)-1-piperidinil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-(4-amino-2-etoxifenil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d] pirimidin-7-ona; cloruro de 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-etoxibencenosulfonilo; 1-ciclohexil-5-{2-etoxi-4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-3-metil-1,6-dihidro-7H-pirazolo [4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(2-etoxi-4-[(4-hidroxi-1-piperidinil)sulfonil]fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-[(4-hidroxi-1-piperidinil)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; (2E)-3-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil-2-propenonitrilo; 5-[4-(4-amino-1-piperidinil)-2-etoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-etoxi-4-(4-hidroxi-1-piperidinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo [4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[4-(1,4-diazepan-1-il)-2-etoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{2-etoxi-4-[(2-metoxietil)amino]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-etoxi-4-(4-metil-1-piperazinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7ona; 4-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-2-fluoro-5-metoxifenil]-1,4-diazepano-1-carboxilato de bencilo; 1-ciclohexil-5-[4-(1,4-diazepan-1-il)-5-fluoro-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-(2-metoxi-4-[metil(1-metil-piperidinil)amino]fenil)-3-metil-1,6dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-[2-etoxi-4-(1-piperazinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-[4-((3R)-3-{[t-butil(dimetil)silil]oxi}pirrolidinil)-2-metoxifenil]-1-ciclohexil-3-me-

til-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{4-[(3R)-3-hidroxipirrolidinil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-[4-(1-bencil-4-hidroxi-4-piperidinil)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 5-[4-(1-bencil-1,2,3,6-tetrahidro-4-piridinil)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; monohidrocloruro de 1-ciclohexil-5-[2-metoxi-4-(1,2,3,6-tetrahidro-4-piridinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona; 1-ciclohexil-5-{2-metoxi-4-[metil(tetrahidro-2H-piran-4-il)amino]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona.

Los compuestos de fórmula (IA) según la presente invención se pueden sintetizar, por ejemplo, mediante los métodos mostrados más abajo.

donde A, B, R^1 , R^2 y R^3 se definen como antes, L representa un grupo alquilo inferior C_1 - C_3 , e Y representa un grupo hidroxilo o un átomo de halógeno, preferiblemente, un átomo de cloro.

Para llevar a cabo los métodos anteriores, el compuesto (IX) se obtiene a partir del compuesto (X) de acuerdo con un método conocido públicamente. Según esta reacción, el compuesto (XI) en una cantidad de 1 a 2 equivalentes, preferiblemente aproximadamente 1 equivalente, relativa al compuesto (X), se hace reaccionar con el compuesto (X) de la temperatura ambiente a una temperatura de hasta 120°C en una solución acuosa de a un ácido inorgánico, tal como ácido clorhídrico o ácido sulfúrico, un hidrocarburo aromático tal como benceno o tolueno, a un ácido orgánico tal como ácido acético, un alcohol tal como metanol o etanol, o una mezcla de estas sustancias, o en ausencia de un disolvente. Después de completar la reacción, se añade una solución acuosa de una base inorgánica, p. ej. hidróxido de sodio, y la mezcla se extrae con un disolvente orgánico inmiscible con agua. Toda la materia orgánica se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden, y después el disolvente se separa mediante destilación para obtener el compuesto deseado (IX). Si se desea, el producto se puede purificar, por ejemplo, mediante recristalización. En cuanto al compuesto (X), la sustancia de partida, se puede utilizar un compuesto disponible en el

mercado o conocido públicamente. El compuesto (XI) utilizado en esta reacción puede ser un compuesto disponible en el mercado o conocido públicamente, pero es posible utilizar un compuesto que sea fácilmente sintetizado por un método conocido públicamente (por ejemplo, J. Org. Chem., 1981, 46, 5414-5415).

A partir del compuesto (IX), se puede obtener el compuesto (VIII) según un método conocido públicamente. Se hace que actúe un reactivo de halogenación, tal como oxicloruro de fósforo o cloruro de tionilo, en una cantidad de 1 a 5 equivalentes, con respecto al compuesto (IX), sobre el compuesto (IX) de la temperatura ambiente a la temperatura de reflujo en un hidrocarburo aromático tal como tolueno o benceno, o en ausencia de un disolvente. Después de completar la reacción, el disolvente se separa mediante destilación, con lo que se puede obtener el compuesto deseado (VIII).

El compuesto (VIII) resultante puede ser conducido al compuesto (VII) según un método conocido públicamente sin ser purificado. Se utiliza ácido nítrico de -20°C a la temperatura ambiente en ácido sulfúrico concentrado o anhídrido acético. Después de completar la reacción, la mezcla de reacción se vierte sobre hielo, y los sólidos precipitados se recogen mediante filtración, con lo que se puede obtener el compuesto deseado (VII). Si se desea, este compuesto se puede purificar mediante recristalización o similares.

A partir del compuesto (VII), el compuesto (VI) se puede obtener según un método conocido públicamente. A cianuro metálico, tal como cianuro de potasio o cianuro de sodio, se utiliza en una cantidad de 1 a 3 equivalentes de la temperatura ambiente a 120°C en un disolvente polar tal como N,N-dimetilformamida. Después de completar la reacción, se añade agua, y la mezcla se extrae con un disolvente orgánico inmiscible con agua. Después, todo el extracto se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando el disolvente mediante destilación, se puede obtener el compuesto deseado (VI). Si se desea, este compuesto se puede purificar, pongamos por caso, mediante cromatografía en columna.

A partir del compuesto (VI), el compuesto (V) se puede obtener según un método conocido públicamente. Esta reacción es un método para sintetizar un amiduro de ácido mediante hidrólisis del grupo nitrilo, y están disponibles muchos métodos para este propósito. Por ejemplo, se hace que actúe peróxido de hidrógeno de 0°C a la temperatura ambiente en agua, un alcohol tal como metanol o etanol, un éter tal como 1,4-dioxano o tetrahidrofurano, o una mezcla de estas sustancias en presencia de una base tal como hidróxido de sodio o carbonato de potasio. Después de completar la reacción, la mezcla de reacción se diluye con un disolvente orgánico inmiscible con agua. Después, la dilución se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, el compuesto deseado (V) se puede obtener. Si se desea, este compuesto se puede purificar pongamos por caso, mediante recristalización.

A partir del compuesto (V), el compuesto (III) se puede obtener según un método conocido públicamente. Esta reacción es un método para convertir el grupo nitro en un grupo amino mediante una reacción de reducción, y muchos métodos están disponibles para este propósito. Por ejemplo, se hace que actúe dicloruro de estaño en una cantidad de 2 a 10 equivalentes, con respecto al compuesto (V), sobre el compuesto (V) de 0°C a la temperatura de reflujo en un ácido inorgánico tal como ácido clorhídrico. Después de completar la reacción, la mezcla de reacción se neutraliza con una base inorgánica tal como hidróxido de sodio, y se filtra a través Celite. Después, el producto filtrado se extrae con un disolvente orgánico inmiscible con agua. La capa de disolvente orgánico extraída se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto deseado (III). Si se desea, este compuesto se puede purificar, por ejemplo, mediante cromatografía en columna.

A partir del compuesto (III), el compuesto (III) se puede obtener según un método conocido públicamente. Esta reacción es un método para sintetizar un amiduro de ácido a partir del compuesto amínico (III) y un componente ácido carboxílico (IV), y para este propósito están disponibles muchos métodos. Por ejemplo, si Y es un átomo de halógeno (preferiblemente, un átomo de cloro), el compuesto (IV) se utiliza en una cantidad de 1 a 1,5 equivalentes, preferiblemente 1,2 equivalentes, con respecto al compuesto (III), de 0°C a la temperatura ambiente en un disolvente inerte, por ejemplo diclorometano, en presencia de 1 a 5 equivalentes, preferiblemente 2,5 equivalentes, con respecto al compuesto (III), de una amina terciaria, por ejemplo trietilamina, cuando sea necesario, con el uso de un catalizador, por ejemplo, 4-dimetilaminopiridina. Si Y es un grupo hidroxilo, la reacción se realiza utilizando el compuesto (ÎV) en una cantidad de 1 a 1,5 equivalentes, preferiblemente 1,2 equivalentes, con respecto al compuesto (III), de 0°C a la temperatura ambiente en un disolvente inerte, por ejemplo diclorometano, en presencia de 1 a 1,5 equivalentes, preferiblemente 1,2 equivalentes, con respecto al compuesto (III), de un agente condensante, por ejemplo hidrocloruro de 1-etil-3-(3-dimetilaminopropil)carbodiimida, cuando sea necesario, con el uso de un catalizador, por ejemplo, 4-dimetilaminopiridina. Después de completar la reacción, la mezcla de reacción se diluye con un disolvente orgánico inmiscible con agua. Después, la dilución se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto (II) deseado. Si se desea, este compuesto se puede purificar, por ejemplo, mediante cromatografía en columna.

A partir del compuesto (II), el compuesto (IA) se puede obtener mediante el uso de un método de ciclación conocido públicamente en relación con la formación de un anillo de pirimidina (por ejemplo, Bioorg. Med. Chem. Lett., 6, 1996, 1819-1824). Por ejemplo, la ciclación se puede realizar haciendo reaccionar el compuesto (II) de temperatura ambiente a la temperatura de reflujo en un disolvente de etanol-agua con el uso de una base, tal como hidróxido de

11

25

35

sodio o carbonato de potasio, cuando sea necesario, en presencia de peróxido de hidrógeno. Después de completar la reacción, la mezcla de reacción se diluye con un disolvente orgánico inmiscible con agua. Después, la dilución se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto deseado (IA). Si se desea, este compuesto se puede purificar, por ejemplo, mediante cromatografía en columna o recristalización.

Como método alternativo para sintetizar el compuesto (IA), se puede sintetizar este compuesto, por ejemplo, mediante los métodos mostrados más abajo.

donde A, B, R¹, R² y R³ se definen como antes, e Y representa un grupo hidroxilo o un átomo de halógeno, preferiblemente, un átomo de cloro.

A partir del compuesto (VI), el compuesto (XIII) se puede obtener según un método conocido públicamente. Esta reacción es un método para convertir el grupo nitro en un grupo amino mediante una reacción de reducción, y para este propósito están disponibles muchos métodos. Por ejemplo, se hace que actúe dicloruro de estaño en una cantidad de 2 a 10 equivalentes, con respecto al compuesto (VI), sobre el compuesto (VI) de 0°C a la temperatura de reflujo en un ácido inorgánico tal como ácido clorhídrico. Después de completar la reacción, la mezcla de reacción se neutraliza con una base inorgánica tal como hidróxido de sodio, y se filtra a través Celite. Después, el producto filtrado se extrae con un disolvente orgánico inmiscible con agua. El disolvente orgánico extraído se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto deseado (XIII). Si se desea, este compuesto se puede purificar, por ejemplo, mediante cromatografía en columna.

A partir del compuesto (XIII), se puede obtener el compuesto (XII) según un método conocido públicamente. Esta reacción es un método para sintetizar un amiduro de ácido a partir del compuesto amínico (XIII) y un componente ácido carboxílico (IV), y para este propósito están disponibles muchos métodos. Por ejemplo, si Y es un átomo de halógeno (preferiblemente, un átomo de cloro), se utiliza el compuesto (IV) en una cantidad de 1 a 1,5 equivalentes, preferiblemente 1,2 equivalentes, con respecto al compuesto (XIII), de 0°C a la temperatura ambiente en un disolvente inerte, por ejemplo diclorometano, en presencia de 1 a 5 equivalentes, preferiblemente 2,5 equivalentes, con respecto al compuesto (XIII), de una amina terciaria, por ejemplo trietilamina, cuando sea necesario, con el uso de un catalizador, por ejemplo, 4-dimetilaminopiridina. Se puede utilizar piridina como disolvente en lugar de la amina terciaria. Si Y es un grupo hidroxilo, la reacción se realiza utilizando el compuesto (IV) en una cantidad de 1 a 1,5 equivalentes, preferiblemente 1,2 equivalentes, con respecto al compuesto (XIII), de 0°C a la temperatura ambiente en un disolvente inerte, por ejemplo diclorometano, en presencia de 1 a 1,5 equivalentes, preferiblemente 1,2 equivalentes, con respecto al compuesto (XIII), de un agente condensante, por ejemplo hidrocloruro de 1-etil-3-(3-dimetilaminopropil)carbodiimida, cuando sea necesario, con el uso de un catalizador, por ejemplo, 4-dimetilaminopiridina. Después de completar la reacción, la mezcla de reacción se diluye con un disolvente orgánico inmiscible con agua. Después, la dilución se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto deseado (XII). Si se desea, este compuesto se puede purificar, por ejemplo, mediante cromatografía en columna.

A partir del compuesto (XII) resultante, se puede obtener el compuesto (IA) mediante el uso de un método de ciclación conocido públicamente en relación con la formación de un anillo de pirimidina (por ejemplo, J. Med. Chem., 30, 1987, 91-96). Por ejemplo, la ciclación se puede realizar haciendo reaccionar el compuesto (XII) de temperatura ambiente a la temperatura de reflujo en agua o un alcohol tal como etanol, un éter tal como 1,4-dioxano, o una mezcla

disolvente de estos disolventes con el uso de una base, tal como hidróxido de sodio o carbonato de potasio, cuando sea necesario, en presencia de peróxido de hidrógeno. Después de completar la reacción, la mezcla de reacción se diluye con un disolvente orgánico inmiscible con agua. Después, la dilución se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto deseado (IA). Si se desea, este compuesto se puede purificar, por ejemplo, mediante cromatografía en columna o recristalización.

Las reacciones descritas anteriormente son todas completamente generales, y se pueden establecer inmediatamente los reactivos y las condiciones adecuados para la ejecución de estas reacciones mediante la referencia a los libros de texto normalizados y los Ejemplos que se van a describir más adelante. Los métodos alternativos y los métodos modificados, que pueden preparar todos los compuestos definidos como los compuestos (IA), resultan evidentes para cualquier experto normal en la técnica.

Los compuestos de fórmula (IB) según la presente invención se pueden sintetizar, por ejemplo, mediante los métodos mostrados más abajo.

45

donde A, B, R¹, R² y R³ se definen como antes, e Y representa un grupo hidroxilo o un átomo de halógeno, preferiblemente, un átomo de cloro.

Para llevar a cabo los métodos anteriores, el compuesto (XIX) se puede obtener a partir del compuesto (XX) según un método conocido públicamente (por ejemplo, J. Chem. Soc., Perkin Trans. 1, 1996, 1545-1552). Se hace que el compuesto (XXI) en una cantidad de 1 a 1,5 equivalentes, con respecto al compuesto (XX) actúe sobre este, de 0°C a la temperatura ambiente en un hidrocarburo halogenado tal como cloruro de metileno, un hidrocarburo aromático tal como tolueno o benceno, un éter tal como éter dietílico o tetrahidrofurano, o una mezcla de estas sustancias, en presencia de 2 a 2,5 equivalentes, con respecto al compuesto (XX), de un hidruro de metal alcalino, tal como hidruro de sodio o hidruro de potasio, o la misma cantidad de una amina terciaria tal como trietilamina. Después de completar la reacción, la mezcla de reacción se diluye con un disolvente orgánico inmiscible con agua. Después, la dilución se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto deseado (XIX). Si se desea, el producto se puede purificar, por ejemplo, mediante cromatografía en columna.

A partir del compuesto (XIX) resultante, se puede obtener el compuesto (XVIII) según un método conocido públicamente (por ejemplo, J. Chem. Soc., Perkin Trans. 1, 1996, 1545-1552). Para ello se utiliza un reactivo de metilación, tal como ácido dimetilsulfúrico, en una cantidad de 5 a 10 equivalentes, con respecto al compuesto (XIX), de la temperatura ambiente a la temperatura de reflujo en un hidrocarburo aromático tal como tolueno o benceno, un éter tal como tetrahidrofurano o 1,4-dioxano, o una mezcla de estas sustancias. Después de completar la reacción, la mezcla de reacción se diluye con un disolvente orgánico inmiscible con agua. Después, la dilución se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto deseado (XVIII). Si se desea, el producto se puede purificar, por ejemplo, mediante cromatografía en columna.

A partir del compuesto (XVIII) resultante, se puede obtener el compuesto (XVI) según un método conocido públicamente (por ejemplo, J. Chem. Soc., Perkin Trans. 1, 1996, 1545-1552). Para ello se utilizar el compuesto (XVII) en una cantidad de 1 a 1,5 equivalentes, con respecto al compuesto (XVIII), de la temperatura ambiente a la temperatura de reflujo en un alcohol tal como etanol, un éter tal como tetrahidrofurano o 1,4-dioxano, o una mezcla de estas sustancias. Después de completar la reacción, el disolvente se separa mediante destilación, con lo que se puede obtener el compuesto deseado (XVI). Si se desea, el producto se puede purificar, por ejemplo, mediante cromatografía en columna.

A partir del compuesto (XVI), se puede obtener el compuesto (XV) según un método conocido públicamente. Esta reacción es un método para sintetizar un amiduro de ácido mediante hidrólisis del grupo nitrilo, y para este propósito están disponibles muchos métodos. Por ejemplo, se hace que un catalizador tal como ácido sulfúrico o ácido clorhídrico actúe de la temperatura ambiente a 100°C en agua, un alcohol tal como etanol o metanol, un éter tal como éter dietílico, tetrahidrofurano o dioxano, o una mezcla de estas sustancias. Después de completar la reacción, la mezcla de reacción se hace débilmente alcalina, y se diluye con un disolvente orgánico inmiscible con agua. Después, la dilución se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto deseado (XV). Si se desea, este compuesto se puede purificar pongamos por caso, mediante recristalización.

A partir del compuesto (XV) resultante, se puede obtener el compuesto (XIV) según un método conocido públicamente. Generalmente, si Y es un átomo de halógeno (preferiblemente, un átomo de cloro), se utiliza el compuesto (IV) en una cantidad de 1 a 2 equivalentes, preferiblemente aproximadamente 1,4 equivalentes, con respecto al compuesto (XV), de 0°C a la temperatura ambiente en un disolvente inerte, por ejemplo diclorometano, en presencia de 1 a 5 equivalentes, preferiblemente aproximadamente 2,5 equivalentes, con respecto al compuesto (XV), de una amina terciaria, por ejemplo trietilamina, cuando sea necesario, con el uso de un catalizador, por ejemplo, 4-dimetilaminopiridina. La piridina se puede utilizar como disolvente en lugar de la amina terciaria. Si Y es un grupo hidroxilo, la reacción se realiza utilizando el compuesto (IV) en una cantidad de 1 a 1,5 equivalentes, preferiblemente aproximadamente 1,2 equivalentes, con respecto al compuesto (XV), de 0°C a la temperatura ambiente en un disolvente inerte, por ejemplo diclorometano, en presencia de 1 a 1,5 equivalentes, preferiblemente aproximadamente 1,2 equivalentes, con respecto al compuesto (XV), de un agente condensante, por ejemplo hidrocloruro de 1-etil-3-(3-dimetilaminopropil)carbodiimida, cuando sea necesario, con el uso de un catalizador, por ejemplo, 4-dimetilaminopiridina. Después de completar la reacción, la mezcla de reacción se diluye con un disolvente orgánico inmiscible con agua. Después de completar la reacción, acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto (XIV) deseado.

El compuesto (XIV) resultante se utiliza sin ser purificado, y el compuesto (IB) se puede obtener mediante el uso de un método de ciclación conocido públicamente en relación con la formación de un anillo de pirimidina (por ejemplo, J. Med. Chem., 39, 1996, 1635-1644). Por tanto, la ciclación se puede realizar haciendo reaccionar el compuesto (XIV) a la temperatura de reflujo en un disolvente de etanol-agua con el uso de una base, tal como hidróxido de sodio o carbonato de potasio, cuando sea necesario, en presencia de peróxido de hidrógeno. Después de completar la reacción, la mezcla de reacción se diluye con un disolvente orgánico inmiscible con agua. Después, la dilución se lava con agua y una solución acuosa saturada de cloruro de sodio por este orden. Separando mediante destilación el disolvente, se puede obtener el compuesto (IB) deseado. Si se desea, este compuesto se puede purificar, por ejemplo, mediante cromatografía en columna o recristalización.

La reacciones anteriormente descritas are todas completamente generales, y se pueden establecer inmediatamente los reactivos y las condiciones de reacción adecuados para la ejecución de estas reacciones mediante la referencia a los libros de texto normalizados y los Ejemplos que se van a describir más adelante. Los métodos alternativos y los métodos modificados, que pueden preparar los compuestos definidos como los compuestos (IB), resultarán evidentes para cualquier experto normal en la técnica.

La presente invención se describirá adicionalmente en detalle mediante la referencia a los Ejemplos de Ensayo, los Ejemplos, y los Ejemplos de producción.

La síntesis de los compuestos de la presente invención, y los intermedios para su uso en la presente se describirán en detalle mediante los Ejemplos y los Ejemplos de Producción que se ofrecerán más adelante. Las estructuras químicas y los datos de identificación de los compuestos de la presente invención y sus intermedios, que fueron producidos en los Ejemplos y los Ejemplos de Producción, se enumeran en las Tablas presentadas después de los Ejemplos. Los compuestos respectivos de los Ejemplos y los Ejemplos de Producción se describen como los Núms. de Ejemplo y los Núms. de Ejemplo de Producción correspondientes en las Tablas.

Ni que decir tiene que el alcance de la presente invención no está restringido por estos Ejemplos de Ensayo, Ejemplos, y Ejemplos de Producción.

Ejemplos de ensayo

55

60

50

La actividad inhibidora, contra PDE7 (fosfodiesterasa de tipo VII), de los compuestos de la presente invención producidos en los siguientes Ejemplos de Producción y en los siguientes Ejemplos se confirmó mediante los Ejemplos de Ensayo mostrados más abajo.

Ejemplo de Ensayo 1

Método de medición de la actividad inhibidora de PDE7

- Para evaluar los compuestos de la presente invención en cuanto a la capacidad para suprimir PDE7 (fosfodiesterasa de tipo VII), se modificó parcialmente el método de Biochemical Pharmacol. 48(6), 1219-1223 (1994) para realizar el siguiente análisis:
- 1) Se obtuvo la fracción activa de PDE7 (fosfodiesterasa de tipo VII). Esto es, se cultivó la cepa de células T de linfoma linfoblastoide agudo humano MOLT-4 (adquirible de ATCC con el Núm. ATCC CRL-1582) en medio RPMI1640 que contenía suero bovino fetal al 10% para obtener 5×10⁸ células MOLT4. Las células se cosecharon mediante centrifugación, y se suspendieron in 10 ml de tampón A (tris-HCl25 mM, 2-mercaptoetanol 5 mM, benzamidina 2 mM, EDTA 2 mM, hidrocloruro de 4-(2-aminoetil)bencenosulfonilo 0,1 mM, pH 7=7,5). Las células se homogeneizaron en un homogeneizador Politron, y se centrifugaron (4°C, 25.000G, 10 min). El sobrenadante se ultracentrifugó adicionalmente (4°C, 100.000G, 60 min), y el sobrenadante resultante se filtró a través de un filtro de 0,2 μm para obtener una fracción soluble.
- 2) Una columna HiTrapQ (5 mlx2) equilibrada con tampón A se cargó con la fracción soluble resultante. La fosfodiesterasa se extrajo utilizando 300 ml de tampón A que contenía una solución en gradiente lineal de cloruro de sodio de 0 a 0,8M para recoger sesenta fracciones de 5 ml. Cada fracción se sometió a ensayo en cuanto a la actividad fosfodiesterasa metabolizadora de AMPc. De las fracciones respectivas, se seleccionaron aquellas fracciones que tenían la actividad de metabolización de AMPc y cuya actividad metabólica no fue eliminada por rolipram 10 μ M (inhibidor selectivo de la fosfodiesterasa de tipo III). De estas fracciones seleccionadas, las fracciones que se extrajeron como picos activos en torno a cloruro de sodio 350 mM se combinaron, y se utilizaron como solución de reserva para someter a ensayo la actividad inhibidora de PDE7.
- 3) Los compuestos de ensayo a las concentraciones deseadas se hicieron reaccionar cada uno durante 2 horas a 25°C en una mezcla de reacción que contenía tris-HCl 20 mM (pH 7,5), MgCl₂ 1 mM, EDTA 100 μ M, 330 μ g/ml de seralbúmina bovina, 4 μ g/ml de 5'-nucleotidasa,AMPc-H³ 0,1 μ Ci (cAMP 0,064 μ M), rolipram 10 μ M, y la solución de reserva de fosfodiesterasa de tipo VII. Se añadió QAE-Sephadex suspendido en HEPES-Na 10 mM (pH 7,0) a la mezcla de reacción, y la mezcla se dejó estar durante 5 minutos. Después, se recuperó el sobrenadante, y se añadió nuevamente QAE-Sephadex, dejando estar después la mezcla durante 5 minutos. Luego, se midió la radiactividad del sobrenadante resultante.
- 4) Se calculó la CI₅₀, como la concentración del compuesto de ensayo que inhibía el 50% de la actividad metabólica de PDE7, para cada uno de los compuestos.

Actividad Inhibidora de PDE7 de cada Compuesto

Los siguientes son los Núms. de Ejemplo de los compuestos cuyos valores de CI_{50} para las actividades inhibidoras de la fosfodiesterasa medidas mediante el método descrito antes fueron 1 μ M o menos:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 24, 25, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 45, 46, 47, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 64, 65, 67, 68, 69, 70, 72, 73, 74, 76, 78, 81, 82, 84, 87, 90, 92, 95, 97, 99, 103, 104, 105, 107, 109, 111, 112, 115, 117, 118, 119, 121, 123, 124, 125, 126, 127, 129, 130, 132, 134, 136, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 152, 154, 155, 156, 158, 159, 161, 163, 164, 165, 169, 172, 175, 176, 179, 185, 189, 191, 192, 194, 196, 198, 199, 200, 201, 203, 204, 207, 208, 209, 210-1, 210-2, 211, 212, 213, 214, 215, 216, 217, 218, 220, 222, 224, 225, 227, 229, 230, 231, 232, 234, 235, 236, 237, 239, 241, 242, 245, 247, 250, 253, 256, 257, 258, 260, 261, 262, 263, 264, 266, 267, 268, 270, 272, 273, 275

De estos compuestos, los compuestos con los siguientes Núms. de Ejemplo mostraron valores de CI_{50} de 0,01 μM o menos:

27, 28, 31, 32, 38, 44, 46, 47, 51, 52, 60, 62, 73, 76, 78, 81, 82, 84, 87, 90, 92, 95, 97, 103, 104, 107, 109, 111, 117, 121, 125, 132, 134, 136, 140, 142, 143, 144, 145, 148, 150, 152, 154, 155, 163, 185, 192, 224, 225, 227, 230, 232, 250, 260, 261, 262, 263

Los ensayos de la actividad inhibidora de la fosfodiesterasa anteriores confirmaron que los derivados de pirazolojo pirimidinona de la presente invención muestran un efecto inhibidor de PDE7 muy satisfactorio.

Los compuestos de la presente invención fueron inhibidores selectivos para PDE7, y mostraron selectividades de 10 veces o más que para otras isozimas de fosfodiesterasa. A partir de estos descubrimientos, se esperan pocos efectos secundarios debidos a otras isozimas.

Como ejemplo, se confirmó la actividad inhibidora, contra PDE4 (fosfodiesterasa de tipo IV), de los compuestos de la presente invención mediante el ensayo mostrado más abajo.

15

_

25

35

Ejemplo de Ensayo 2

25

Método de medición de la actividad inhibidora de PDE4

- Para evaluar los compuestos de la presente invención, que suprimen PDE7, en cuanto a la capacidad para suprimir PDE4, se modificó parcialmente el método de Biochemical Pharmacol. 48(6), 1219-1223 (1994) para realizar el siguiente análisis:
- 1) Se obtuvo la fracción activa de PDE4. Esto es, los hígados obtenidos de tres ratones Balb/c (hembra, 12-semanas de edad) (adquiribles de CLEA JAPAN) se suspendieron en 30 ml de tampón B (bis-tris 20 mM, 2-mercaptoetanol 5 mM, benzamidina 2 mM, EDTA 2 mM, hidrocloruro de 4-(2-aminoetil)bencenosulfonilo 0,1 mM, acetato de sodio 50 mM, pH = 6,5). Los hígados se homogeneizaron en un homogeneizador Polytron, y se centrifugaron (4°C, 25.000G, 10 min). Después, el sobrenadante se sometió a ultracentrifugación adicionalmente (4°C, 100.000G, 60 min), y el sobrenadante resultante se filtró a través de un filtro de 0,2 μm para obtener a una fracción soluble.
 - 2) Una columna DEAE-Sefarosa de 1×10 cm equilibrada con tampón B se cargó con la fracción soluble resultante. La fosfodiesterasa se extrajo utilizando 120 ml de tampón B que contenía una solución en gradiente lineal de acetato de sodio 0.05 a 1M para recoger veinticuatro fracciones de 5 ml. Cada fracción se sometió a ensayo en cuanto a la actividad fosfodiesterasa metabolizadora de AMPc. De las fracciones respectivas, se seleccionaron aquellas fracciones que tenían actividad metabolizadora de AMPc y cuya actividad metabólica era eliminada por rolipram $30~\mu\text{M}$ (inhibidor selectivo de PDE4). De estas fracciones seleccionadas, se combinaron las fracciones extraídas como picos activos principalmente en torno a acetato de sodio 620 mM, y se utilizaron como solución de reserva para someter a ensayo la actividad inhibidora de PDE4.
- 3) Se hicieron reaccionar los compuestos de ensayo a las concentraciones deseadas durante 2 horas a 25°C en una mezcla reaccionante que contenía tris-HCl 20 mM (pH 7,5), MgCl₂ 1 mM, EDTA 100 μ M, 330 μ g/ml de seralbúmina bovina, 4 μ g/ml de 5'-nucleotidasa, AMPc-H³ de 0,1 μ Ci (0,064 μ M cAMP), y la solución de reserva de PDE4. Se añadió QAE-Sephadex suspendido en HEPES-Na 10 mM (pH 7,0) a la mezcla de reacción, y la mezcla se dejó estar durante 5 minutos. Después, el sobrenadante se recuperó, y se añadió nuevamente QAE-Sephadex, dejando estar después la mezcla durante 5 minutos. Después, se midió la radiactividad del sobrenadante resultante.
- 4) La CI₅₀, como concentración del compuesto de ensayo que inhibía el 50% de la actividad metabólica de PDE4, se calculó para cada uno de los compuestos.

Los ensayos anteriores mostraron que los valores de CI₅₀ de los compuestos de la presente invención contra PDE4 fueron 10 veces más débiles o más que las actividades inhibidoras de los mismos compuestos contra PDE7.

Los compuestos de la presente invención inhiben selectivamente PDE7 para aumentar el nivel de AMPc intracelular y adicionalmente inhiben la activación de las células T. Así, estos compuestos son útiles en el tratamiento de
diferentes enfermedades alérgicas y enfermedades inflamatorias o inmunológicas. Esto es, son útiles como agentes
para la prevención o el tratamiento de enfermedades, tales como el asma bronquial, la bronquitis crónica, la enfermedad pulmonar obstructiva crónica, la rinitis alérgica, la psoriasis, la dermatitis atópica, la conjuntivitis, la osteoartritis,
la artritis reumatoide, la esclerosis múltiple, el lupus eritematoso generalizado, la enfermedad inflamatoria del intestino, la hepatitis, la pancreatitis, la encefalomielitis, la sepsis, la enfermedad de Crohn, la reacción de rechazo en el
trasplante, la enfermedad GVH, y la restenosis tras angioplastia.

Para utilizar los ingredientes activos de la presente invención como composiciones farmacéuticas o inhibidores de PDE7, es recomendable preparar composiciones que contengan uno o más de los compuestos de la presente invención y elaborarlos en formas de dosificación adecuadas para el modo de administración según métodos acostumbrados. Por ejemplo, se ilustran formas de dosificación tales como cápsulas, comprimidos, gránulos, gránulos finos, jarabes, y jarabes simples para la administración oral. No sólo se ilustran inyecciones, sino supositorios incluyendo supositorios vaginales, preparaciones transnasales tales como pulverizaciones, y preparaciones absorbibles percutáneamente tales como pomadas y cintas absorbibles transdérmicamente para la administración parenteral.

La dosis del compuesto de la presente invención para su uso clínico difiere según los síntomas del paciente que reciba la administración, la gravedad de la enfermedad, la edad del paciente, y la presencia o ausencia de complicaciones de la enfermedad. La dosis también difiere según el tipo de preparación. Para la administración oral, el compuesto como ingrediente activo se puede administrar usualmente a una dosis diaria, para adultos, de 0,1 a 1.000 mg, preferiblemente de 0,1 a 500 mg, más preferiblemente de 1 a 100 mg. Para la administración parenteral, la dosis puede ser una décima parte o la mitad de la dosis oral. Estas dosis se pueden aumentar o disminuir, según se desee, dependiendo de la edad y los síntomas del paciente.

Además, se espera que los compuestos de la presente invención tengan una baja toxicidad y sean muy seguros.

Ejemplos y Ejemplos de Producción

La síntesis de los compuestos de la presente invención, y de los intermedios para su uso se describirán mediante los Ejemplos y los Ejemplos de Producción que se ofrecen más abajo. Las estructuras químicas y los datos de identificación de los compuestos en los siguientes Ejemplos y Ejemplos de Producción se resumirán en las Tablas presentadas más adelante. Los compuestos de los Ejemplos y de los Ejemplos de Producción se describen como Núms. de Ejemplo y Núms. de Ejemplo de Producción en las Tablas.

10 Ejemplo de Producción 1

2-Ciclohexil-5-metil-2,4-dihidro-3H-pirazol-3-ona

Una mezcla de 14,5 ml (0,134 mol) de acetoacetato de metilo y 20,2 g (0,134 mol) de hidrocloruro de ciclohexilhidrazina se agitó a 120°C durante 2 horas, y después se enfrió. La mezcla de reacción se neutralizó con 30 ml de una solución acuosa 4M de hidróxido de sodio, y se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, se secó sobre sulfato de sodio anhidro, y se destiló a presión reducida para eliminar el disolvente. Se añadió hexano al residuo, y los cristales precipitados se recogieron mediante filtración para obtener 19,0 g (79%) del compuesto del título.

Ejemplo de Producción 2

20

25

5-Cloro-1-ciclohexil-3-metil-4-nitro-1H-pirazol

A 9,3 g (51,6 mmoles) del compuesto obtenido en el Ejemplo de Producción 1, se les añadieron 10 ml (107 mmoles) de oxicloruro de fósforo, y la mezcla se agitó durante 10 horas a 120°C. Después, la mezcla de reacción se llevó a la temperatura ambiente, y el oxicloruro de fósforo en exceso se separó mediante destilación a presión reducida. El residuo se disolvió mediante la adición de 45 ml de anhídrido acético y, a esta solución, se le añadieron gota a gota 9 ml de ácido nítrico humeante enfriando con hielo. Después de agitar la mezcla durante 2 horas a la misma temperatura, la mezcla de reacción se vertió sobre hielo, y los sólidos se recogieron mediante filtración. Los sólidos se disolvieron en diclorometano, y la solución se lavó con una solución acuosa de hidrogenocarbonato de sodio, agua, y una solución acuosa saturada de cloruro de sodio. Después, la solución lavada se secó sobre sulfato de sodio anhidro, y el disolvente se separó mediante destilación a presión reducida. El residuo se recristalizó (hexano) en hexano para su purificación para obtener 6,28 g (50%) del compuesto del título. Asimismo, el producto filtrado se destiló a presión reducida, y el residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 6/1) para obtener

40 Ejemplo de Producción 3

4,21 g (33%) del compuesto del título.

1-Ciclohexil-3-metil-4-nitro-1H-pirazolo-5-carbonitrilo

A una solución en 90 ml de N,N-dimetilformamida de 10,3 g (42,4 mmoles) del compuesto obtenido en el Ejemplo de Producción 2, se le añadieron 4,2 g (84,9 mmoles) de cianuro de sodio, seguido de la agitación de la mezcla durante 1,5 horas a 80°C. Después, la mezcla de reacción se llevó a la temperatura ambiente, se añadió agua a esto, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después, la solución lavada se secó sobre sulfato de sodio anhidro, y el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 6/1) para obtener 9,18 g (93%) del compuesto del título.

Ejemplo de Producción 4

4-Amino-1-ciclohexil-3-metil-1H-pirazolo-5-carbonitrilo

A una suspensión mixta, en 10 ml de metanol y 10 ml de ácido clorhídrico concentrado, de 1,0 g (4,27 mmoles) del compuesto obtenido en el Ejemplo de Producción 3, se le añadieron 1,2 g (21,4 mmoles) de polvo de hierro, seguido de calentamiento de la mezcla a reflujo durante 2 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, se neutralizó con una solución acuosa de hidrogenocarbonato de sodio, y después se filtró a través Celite. El producto filtrado se extrajo con diclorometano, y la capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después, la capa lavada se secó sobre sulfato de sodio anhidro, y el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 7/1) para obtener 0,75 g (87%) del compuesto del título.

Ejemplo de Producción 5

1-Ciclohexil-3-metil-4-nitro-1H-pirazolo-5-carboxamida

A una solución en 25 ml de metanol de 9,0 g (38,5 mmoles) del compuesto obtenido en el Ejemplo de Producción 3, se le añadieron 12 ml de una solución acuosa al 30% de peróxido de hidrógeno y 30 ml de una solución acuosa 3M de hidróxido de sodio, seguido de agitación la mezcla durante 1,5 horas a temperatura ambiente. Después, la mezcla de reacción se diluyó con agua, y se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro. Después, el disolvente se separó mediante destilación a presión reducida para obtener 7,8 g (80%) del compuesto del título.

Ejemplo de Producción 6

15

4-Amino-1-ciclohexil-3-metil-1H-pirazolo-5-carboxamida

A una suspensión en 180 ml ácido clorhídrico concentrado de 7,7 g (30,6 mmoles) del compuesto obtenido en el Ejemplo de Producción 5, se le añadieron 27,6 g (122 mmoles) de dihidrato de dicloruro de estaño, y la mezcla se agitó durante 1,5 horas a 80°C. Después, la mezcla de reacción se llevó a la temperatura ambiente, se neutralizó con una solución acuosa de hidróxido de sodio, y después se filtró a través Celite. El producto filtrado se extrajo con diclorometano, y la capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después, la capa lavada se secó sobre sulfato de sodio anhidro, y el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo) para obtener 6,05 g (89%) del compuesto del título.

Ejemplo de Producción 7

30 N-(5-ciano-1-ciclohexil-3-metil-1H-pirazol-4-il)benzamida

A una solución en 2 ml de piridina de 188 mg (0,92 mmoles) del compuesto obtenido en el Ejemplo de Producción 4, se le añadieron 0,13 ml (1,11 mmoles) de cloruro de benzoilo a 0°C, y la mezcla se agitó durante 3 horas a la misma temperatura. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro. Después, el disolvente se separó mediante destilación a presión reducida, y el residuo se purificó mediante recristalización (etanol) para obtener 141 mg (50%) del compuesto del título.

Ejemplo de Producción 8

 $N\hbox{-}(5\hbox{-}ciano\hbox{-}1\hbox{-}ciclohexil\hbox{-}3\hbox{-}metil\hbox{-}1H\hbox{-}pirazol\hbox{-}4\hbox{-}il)\hbox{-}4\hbox{-}nitrobenzamida$

Se realizó la misma reacción que en el Ejemplo de Producción 7, excepto que se utilizó se utilizó cloruro de p-nitrobenzoilo en lugar de cloruro de benzoilo. De esta manera, se obtuvieron 389 mg (55%) del compuesto del título.

50 Ejemplo de Producción 9

1-Ciclohexil-4-[(2-metoxibenzoil)amino]-3-metil-1H-pirazolo-5-carboxamida

Una solución en 1 ml (13,7 mmoles) de cloruro de tionilo de 136 mg (0,89 mmoles) de ácido o-anísico se calentó a reflujo durante 2 horas. Después, el cloruro de tionilo en exceso se separó mediante destilación a presión reducida para obtener cloruro de ácido o-anísico.

Al cloruro de ácido anterior, se le añadieron una suspensión en 5 ml de diclorometano anhidro de 180 mg (0,81 mmoles) del compuesto obtenido en el Ejemplo de Producción 6, y 0,28 ml (2,03 mmoles) de trietilamina, y la mezcla se agitó durante 30 minutos a temperatura ambiente. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro. Después, el disolvente se separó mediante destilación a presión reducida, y el residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 1/1 - 1/2) para obtener 267 mg (93%) del compuesto del título.

Ejemplo de Producción 10

1-Ciclohexil-4-[(2-etoxibenzoil)amino]-3-metil-1H-pirazolo-5-carboxamida

Se realizó la misma reacción que en el Ejemplo de Producción 9, excepto que se utilizó se utilizó ácido 2-etoxibenzoico en lugar de ácido o-anísico. De esta manera, se obtuvieron 200 mg (99%) del compuesto del título.

Ejemplo de Producción 11

10

20

25

35

55

N-[5-(aminocarbonil)-1-ciclohexil-3-metil-1H-pirazol-4-il]-2-piridinocarboxamida

A una suspensión en 2 ml diclorometano anhidro de 150 mg (0,68 mmoles) del compuesto obtenido en el Ejemplo de Producción 6, se le añadieron 144 mg (0,81 mmoles) de cloruro de ácido 2-picolínico y 0,21 ml (1,49 mmoles) de trietilamina, y la mezcla se agitó durante 30 minutos a temperatura ambiente. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro. Después, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante recristalización (acetato de etilo) para obtener 178 mg (80%) del compuesto del título.

Ejemplo de Producción 12

1-Ciclohexil-3-metil-4-{[4-(4-metil-1-piperazinil)benzoil]amino}-1H-pirazolo-5-carboxamida

A una suspensión en 3 ml diclorometano anhidro de 150 mg (0,68 mmoles) del compuesto obtenido en el Ejemplo de Producción 6, se le añadieron 214 mg (0,81 mmoles) de ácido 4-(4-metil-1-piperazinil)benzoico, 143 mg (0,743 mmoles) de hidrocloruro de 1-etil-3-(3-dimetilaminopropil)carbodiimida, y una cantidad catalítica de 4-dimetilaminopiridina, seguido de agitación la mezcla durante 20 horas a temperatura ambiente. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro. Después, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante recristalización (acetato de etilo-hexano) para obtener 119 mg (42%) del compuesto del título.

Ejemplo de Producción 13

1-Ciclohexil-4-[(2-metoxi-4-nitrobenzoil)amino]-3-metil-1H-pirazolo-5-carboxamida

Se realizó la misma reacción que en el Ejemplo de Producción 9, excepto que se utilizó se utilizó ácido 2-metoxi-4-nitrobenzoico en lugar de ácido o-anísico. De esta manera, se obtuvieron 301 mg (67%) del compuesto del título.

45 Ejemplo de Producción 14

N-[5-(aminocarbonil)-1-ciclohexil-3-metil-1H-pirazol-4-il]-5-nitro-2-piridinocarboxamida

A una suspensión en 5 ml diclorometano anhidro de 500 mg (2,25 mmoles) del compuesto obtenido en el Ejemplo de Producción 6, se le añadieron 453 mg (2,70 mmoles) de ácido 5-nitro-2-piridinocarboxílico y 518 mg (2,70 mmoles) de hidrocloruro de 1-etil-3-(3-dimetilaminopropil)carbodiimida, y la mezcla se agitó durante 20 horas a temperatura ambiente. Después, los sólidos precipitados se recogieron mediante filtración, se lavaron con agua, y después se secaron para obtener 588 mg (70%) del compuesto del título.

Ejemplo de Producción 15

N-[5-(aminocarbonil)-1-ciclohexil-3-metil-1H-pirazol-4-il]4-cloro-2-piridinocarboxamida

A una suspensión en 3 ml de diclorometano anhidro de 500 mg (2,25 mmoles) del compuesto obtenido en el Ejemplo de Producción 6, se le añadieron 426 mg (2,70 mmoles) de ácido 4-cloropicolínico y 518 mg (2,70 mmoles) de hidrocloruro de 1-etil-3-(3-dimetilaminopropil)-carbodiimida mientras se enfriaba con hielo, seguido de agitación la mezcla durante 3 horas a la misma temperatura. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro. Después, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 1/1) para obtener 741 mg (91%) del compuesto del título.

Ejemplo de Producción 16

1-Ciclohexil-4-[(5-fluoro-2-metoxibenzoil)amino]-3-metil-1H-pirazolo-5-carboxamida

Se realizó la misma reacción que en el Ejemplo de Producción 15, excepto que se utilizó ácido 5-fluoro-2-metoxibenzoico en lugar de ácido 4-cloropicolínico. De esta manera, se obtuvieron 272 mg (81%) del compuesto del título.

Ejemplo de Producción 17

10

20

45

50

2-(4-Metilciclohexilideno)hidrazinocarboxilato de t-Butilo

A una solución en 230 ml hexano de 23,6 ml (192 mmoles) de 4-metilciclohexanona, se le añadieron 25,5 g (192 mg) de carbazato t-butilo, seguido de calentamiento de la mezcla a reflujo durante 20 minutos. Después, la mezcla de reacción se llevó a la temperatura ambiente, y los sólidos precipitados se recogieron mediante filtración para obtener 38,7 g (89%) del compuesto del título.

Ejemplo de Producción 18

5-Metil-2-(4-metilciclohexil)-2,4-dihidro-3H-pirazol-3-ona (mezcla cis/trans)

A 35,8 g (158 mmoles) del compuesto obtenido en el Ejemplo de Producción 17, se les añadieron 147 ml de complejo de borano-tetrahidrofurano (1,08 mol/l en tetrahidrofurano 158 mmoles), seguido de agitación la mezcla durante 15 minutos a temperatura ambiente. Después, se añadieron gota a gota 79 ml de ácido clorhídrico 6M, y la mezcla se calentó a reflujo durante 20 minutos. La mezcla de reacción se llevó a la temperatura ambiente, y después se destiló a presión reducida. Después, se añadió tetrahidrofurano al residuo, y la materia insoluble se separó mediante filtración. El producto filtrado se destiló a presión reducida para obtener cristales brutos de hidrocloruro de 1-(4-metilciclohexil)hidrazina. Estos cristales brutos no se purificaron adicionalmente, sino que se utilizaron sin alterar, y su mezcla con acetoacetato de metilo se agitó durante 1 hora a 120°C. Después, la mezcla de reacción se llevó a la temperatura ambiente, se neutralizó con una solución acuosa de hidróxido de sodio, y después se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro. Después, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo) para obtener 13,0 mg (42%) del compuesto del título en forma de una mezcla cis-trans (cis/trans = 1/2).

Ejemplo de Producción 19

40 5-Cloro-3-metil-1-(4-metilciclohexil)-4-nitro-1H-pirazol (mezcla cis/trans)

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 2, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 18 en lugar del compuesto obtenido en el Ejemplo de Producción 1. De esta manera, se obtuvieron 7,15 g (77%) del compuesto del título en forma de una mezcla cis-trans (cis/trans = 1/2).

Ejemplo de Producción 20

3-Metil-1-(4-metilciclohexil)-4-nitro-1H-pirazol-5-carbonitrilo (mezcla cis/trans)

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 3, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 19 en lugar del compuesto obtenido en el Ejemplo de Producción 2. De esta manera, se obtuvieron 5,62 g (88%) del compuesto del título en forma de una mezcla cis-trans (cis/trans = 1/2).

Ejemplo de Producción 21

Trans-3-metil-1-(4-metilciclohexil)-4-nitro-1H-pirazolo-5-carboxamida

Ejemplo de Producción 22

Cis-3-metil-1-(4-metilciclohexil)-4-nitro-1H-pirazolo-5-carboxamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 20 en lugar del compuesto obtenido en el Ejemplo de Producción 3. De esta manera, se obtuvieron 2,03 g (36%) del compuesto de Ejemplo de Producción 21, y 1,31 g (23%) del compuesto de Ejemplo de Producción 22.

Ejemplo de Producción 23

Trans-4-amino-3-metil-1-(4-metilciclohexil)-1H-pirazolo-5-carboxamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 6, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 21 en lugar del compuesto obtenido en el Ejemplo de Producción 5. De esta manera, se obtuvieron 1,41 g (57%) del compuesto del título.

10 Ejemplo de Producción 24

Cis-4-amino-3-metil-1-(4-metilciclohexil)-1H-pirazolo-5-carboxamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 6, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 22 en lugar del compuesto obtenido en el Ejemplo de Producción 5. De esta manera, se obtuvieron 0,78 g (49%) del compuesto del título.

Ejemplo de Producción 25

- -

20

35

40

45

Trans-3-metil-1-(4-metilciclohexil)-4-{[4-(4-metil-1-piperazinil)benzoil]amino}-1H-pirazolo-5-carboxamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 12, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 23 en lugar del compuesto obtenido en el Ejemplo de Producción 6. De esta manera, se obtuvieron 211 mg (57%) del compuesto del título.

Ejemplo de Producción 26

30 Cis-3-metil-1-(4-metilciclohexil)-4-{[4-(4-metil-1-piperazinil)benzoil]amino}-1H-pirazolo-5-carboxamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 12, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 24 en lugar del compuesto obtenido en el Ejemplo de Producción 6. De esta manera, se obtuvieron 196 mg (53%) del compuesto del título.

Ejemplo de Producción 27

Trans-4-[(2-metoxibenzoil)amino]-3-metil-1-(4-metilciclohexil)-1H-pirazolo-5-carboxamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 9, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 23 en lugar del compuesto obtenido en el Ejemplo de Producción 6. De esta manera, se obtuvieron 192 mg (82%) del compuesto del título.

Ejemplo de Producción 28

Cis-4-[(2-metoxibenzoil)amino]-3-metil-1-(4-metilciclohexil)-1H-pirazolo-5-carboxamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 9, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 24 en lugar del compuesto obtenido en el Ejemplo de Producción 6. De esta manera, se obtuvieron 143 mg (61%) del compuesto del título.

55 Ejemplo de Producción 29

2-[Ciclohexil(hidroxi)metileno]malononitrilo

A una solución en 60 ml tetrahidrofurano de 3,96 g (0,06 mol) de malononitrilo, se le añadieron 4,8 g (60% en aceite, 0,12 mol) de hidruro de sodio a 0°C en cuatro porciones divididas, y la mezcla se agitó durante 30 minutos a 0°C. Después, se añadió gota a gota cloruro de ácido ciclohexanocarboxílico, y la mezcla se agitó durante 30 minutos a temperatura ambiente. Después, se añadieron lentamente 150 ml de ácido clorhídrico 1M, y la mezcla se extrajo con acetato de etilo. Después, el extracto se secó sobre sulfato de sodio anhidro, y el disolvente se separó mediante destilación a presión reducida. La recristalización del residuo en éter diisopropílico produjo 8,16 g (77%) del compuesto del título.

Ejemplo de Producción 30

2-[Ciclohexil(metoxi)metileno]malononitrilo

A una solución de 2,64 g (15 mmoles) del compuesto, obtenido en el Ejemplo de Producción 29, en una mezcla de 24 ml de 1,4-dioxano y 4 ml de agua, se le añadieron 10 g de hidrogenocarbonato de sodio a temperatura ambiente. Adicionalmente, se añadieron gota a gota 10 ml de ácido dimetilsulfúrico a lo largo de 5 minutos. Después de calentar la mezcla durante 2,5 horas a 85°C, la mezcla de reacción se devolvió a la temperatura ambiente. Se añadió agua, y la mezcla se extrajo con éter dietílico. El extracto se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 3/1) para obtener 2,35 g (82%) del compuesto del título.

Ejemplo de Producción 31-1

15

5-Amino-3-ciclohexil-1-metil-1H-pirazolo-4-carbonitrilo

A una solución en 20 ml de etanol de 2,3 g (12,1 mmoles) del compuesto obtenido en el Ejemplo de Producción 30, se le añadieron 0,643 ml (12,1 mmoles) de metilhidrazina a temperatura ambiente. La mezcla se calentó a reflujo durante 5 horas. La mezcla de reacción se devolvió a la temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloruro de metileno/metanol = 50/1) para obtener 1,48 g (60%) del compuesto del título.

25 Ejemplo de Producción 31-2

5-Amino-3-ciclohexil-1-metil-1H-pirazolo-4-carbonitrilo

En una corriente de nitrógeno, se añadieron lentamente 20,8 g (suspensión en aceite a aprox. 60%, 520 mmoles) de hidruro de sodio a 0°C a una solución en 260 ml de tetrahidrofurano de 17,2 g (260 mmoles) de malononitrilo. Después, se añadieron gota a gota 35 ml (260 mmoles) de cloruro de ciclohexanocarbonilo a la misma temperatura. Después de la adición gota a gota, la mezcla reaccionante se llevó a la temperatura ambiente, y se agitó durante 1,5 horas. Después, se añadieron 30 ml (312 mmoles) de ácido dimetilsulfúrico a la mezcla de reacción, y la mezcla se calentó a reflujo durante 3 horas. Después, se añadieron 17,4 ml (125 mmoles) de trietilamina y 13,8 ml (260 mmoles) de metilhidrazina enfriando con hielo, y la mezcla se calentó a reflujo durante 1 hora. La mezcla de reacción se llevó a la temperatura ambiente, y se destiló a presión reducida. Después, se añadió agua al residuo, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio. Después, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 30/1~20/1) para obtener cristales brutos. Los cristales brutos se purificaron adicionalmente mediante recristalización (hexano-acetato de etilo) para obtener 20,7 g (39%) del compuesto del título. Asimismo, las aguas madre se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 2/1) para obtener 11,3 g (21%) del compuesto del título.

45 Ejemplo de Producción 32

5-Amino-3-ciclohexil-1-metil-1H-pirazolo-4-carboxamida

A 25,3 g (124 mmoles) del compuesto obtenido en el Ejemplo de Producción 31, se les añadieron 75 ml de ácido clorhídrico concentrado enfriando con hielo. La mezcla se agitó durante 15 minutos a temperatura ambiente, y se agitó adicionalmente durante 1 hora a 60°C. Después, la mezcla de reacción se vertió sobre hielo, se neutralizó con una solución acuosa de hidróxido de sodio, y después se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro. Después, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante recristalización (acetato de etilo) para obtener 20,0 g (73%) del compuesto del título.

Ejemplo de Producción 33

60 4-(4-Hidroxi-1-piperidinil)benzoato de etilo

A una solución en 20 ml de N,N-dimetilformamida de 1,0 g (5,95 mmoles) de 4-fluorobenzoato de etilo, se le añadieron 662 mg (6,54 mmoles) de 4-hidroxipiperidina y 1,23 g (8,92 mmoles) de carbonato de potasio, y la mezcla se agitó durante 24 horas a 120°C. La mezcla de reacción se devolvió a la temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida. Después, se añadió agua al residuo, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio. Después, el disolvente se separó mediante destilación a presión reducida. Se añadió éter dietílico al residuo, y los cristales precipitados se recogieron para obtener 234 mg (16%) del compuesto del título.

Ejemplo de Producción 34

Monohidrocloruro de ácido 4-(4-hidroxi-1-piperidinil)benzoico

A una solución en 1 ml de 1,4-dioxano de 200 mg (0,802 mmoles) del compuesto obtenido en el Ejemplo de Producción 33, se le añadieron 2 ml de ácido clorhídrico 6M, y la mezcla se agitó a 90°C durante 1,5 horas. La mezcla de reacción se devolvió a la temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida para obtener 190 mg (92%) del compuesto del título.

Ejemplo de Producción 35

2-Hidroxi-4-(2-metoxietoxi)benzoato de metilo

A una solución en 50 ml de tetrahidrofurano de 4,0 g (23,8 mmoles) de 2,4-dihidroxibenzoato de metilo, se le añadieron lentamente 7,49 g (28,5 mmoles) de trifenilfosfina, 2,25 ml (28,5 mmoles) de 2-metoxietanol, y 4,5 ml (28,5 mmoles) de azodicarboxilato de dietilo a 0°C. La mezcla se llevó a la temperatura ambiente, y se agitó durante 1 hora. Después, la mezcla de reacción se diluyó con acetato de etilo, y se lavó con agua y una solución acuosa saturada de cloruro de sodio. El sistema lavado se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. Al residuo, se le añadieron 100 ml de una solución de acetato de etilo/hexano (=1/4), y los sólidos insolubles se eliminaron mediante filtración. Después, las aguas madre se concentraron a presión reducida, y el residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 6/1) para obtener 4,71 g (87%) del compuesto del título.

25

Ejemplo de Producción 36

2-Metoxi-4-(2-metoxietoxi)benzoato de metilo

A una solución en 35 ml de N,N-dimetilformamida de 4,51 g (19,9 mmoles) del compuesto obtenido en el Ejemplo de Producción 35, se le añadieron gradualmente 2,48 ml (39,9 mmoles) de yoduro de metilo y 877 mg (suspensión en aceite a aprox. 60%, 21,9 mmoles) de hidruro de sodio a 0°C. La mezcla se agitó a temperatura ambiente durante 2 horas. Después, se añadieron 10 ml de metanol a la mezcla de reacción, y la mezcla se diluyó con acetato de etilo. La dilución se lavó con agua y una solución acuosa saturada de cloruro de sodio. El sistema lavado se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 3/1~2/1) para obtener 4,53 g (95%) del compuesto del título.

40 Ejemplo de Producción 37

Ácido 2-metoxi-4-(2-metoxietoxi)benzoico

A una solución en 41 ml de metanol 4,11 g (17,11 mmoles) del compuesto obtenido en el Ejemplo de Producción 36, se le añadieron 20,5 ml (20,5 mmoles) de una solución acuosa 1M de hidróxido de sodio a temperatura ambiente. La mezcla se agitó a temperatura ambiente durante 1 hora, y a 60°C durante 2 horas. Después, la mezcla de reacción se concentró, y se añadió agua. La capa acuosa se lavó con éter dietílico, y después se añadieron lentamente 21 ml de ácido clorhídrico 2M a la capa acuosa. Los sólidos precipitados se recogieron mediante filtración para obtener 3,42 g (88%) del compuesto del título.

50

Ejemplo de Producción 38

N-benzoil-N-(4-ciano-3-ciclohexil-1-metil-1H-pirazol-5-il)benzamida

A una solución en 10 ml de cloruro de metileno de 400 mg (1,96 mmoles) del compuesto obtenido en el Ejemplo de Producción 31, se le añadieron 409 μ l (2,94 mmoles) de trietilamina, 250 μ l (2,15 mmoles) de cloruro de benzoilo, y 5 mg de 4-dimetilaminopiridina a temperatura ambiente, y la mezcla se agitó a 50°C durante 4 horas. Después, la mezcla de reacción se diluyó con acetato de etilo, y se lavó con agua. El sistema lavado se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 2/1) para obtener 333 mg (41%) del compuesto del título.

Ejemplo de Producción 39

4-Metoxi-1-piperidinocarboxilato de bencilo

A una solución en 20 ml de tetrahidrofurano de 1,87 g (7,95 mmoles) de 4-hidroxi-1-piperidinocarboxilato de bencilo, se le añadieron 413 mg (60% en aceite, 10,33 mmoles) de hidruro de sodio y 792 μl (12,72 mmoles) de yoduro de metilo a 0°C, y la mezcla se agitó a temperatura ambiente durante 16,5 horas. Después, la mezcla de reacción se diluyó con acetato de etilo, y se lavó con agua. El sistema lavado se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 2/1) para obtener 2,08 g (94%) del compuesto del título.

Ejemplo de Producción 40

15

p-Toluenosulfonato de 4-metoxipiperidina

A una solución en 40 ml de metanol de 2,0 g (8,02 mmoles) del compuesto obtenido en el Ejemplo de Producción 39, se le añadieron 1,556 g (8,18 mmoles) de p-toluenosulfónico ácido y 400 mg de paladio sobre carbono al 5%. La mezcla se agitó a temperatura ambiente en atmósfera de hidrógeno durante 3 horas. Después, el catalizador se separó mediante filtración, y el disolvente se separó mediante destilación a presión reducida para obtener 2,36 g (cuantitativo) del compuesto del título.

25 Ejemplo de Producción 41

5-Amino-3-cicloheptil-1-metil-1H-pirazolo-4-carbonitrilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 31-2, excepto que se utilizó cicloheptanocarbonilo cloruro en lugar de ciclohexanocarbonilo cloruro. De esta manera, se obtuvieron 20,83 g (55%) del compuesto del título.

Ejemplo de Producción 42

5-Amino-3-cicloheptil-1-metil-1H-pirazolo-4-carboxamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 32, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 41 en lugar del compuesto obtenido en el Ejemplo de Producción 31. De esta manera, se obtuvieron 16,93 g (92%) del compuesto del título.

Ejemplo de Producción 43

45 4-(4-Bencil-1-piperazinil)-2,5-difluorobenzoato de metilo

A una solución en 30 ml de tetrahidrofurano de 4,25 g (22,35 mmoles) de 2,4,5-trifluorobenzoato de metilo, se le añadieron 3,89 ml (22,35 mmoles) de N-bencilpiperazina enfriando con hielo. La mezcla se agitó a 0°C durante 0,5 hora, y a temperatura ambiente durante 2,5 horas. Después, la mezcla de reacción se diluyó con acetato de etilo, y la dilución se lavó con agua y una solución acuosa saturada de cloruro de sodio por este orden. El sistema lavado se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 2/1) para obtener 2,61 g (34%) del compuesto del título.

Ejemplo de Producción 44

4-(4-Bencil-1-piperazinil)-5-fluoro-2-metoxibenzoato de metilo

A una solución en 20 ml de tetrahidrofurano de 2,46 g (7,10 mmoles) del compuesto obtenido en el Ejemplo de Producción 43, se le añadieron 2,06 g (28% en MeOH, 10,65 mmoles) de metilato de sodio enfriando con hielo. La mezcla se agitó a temperatura ambiente durante 13,5 horas. Después, la mezcla de reacción se diluyó con acetato de etilo, y la dilución se lavó con agua y una solución acuosa saturada de cloruro de sodio por este orden. El sistema lavado se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 1,5/1-1/1) para obtener 2,06 g (81%) de una mezcla 4:1 del compuesto del título y 2-(4-bencil-1-piperazinil)-5-fluoro-4-metoxibenzoato de metilo.

Ejemplo de Producción 45

4-[2-Fluoro-5-metoxi-4-(metoxicarbonil)fenil]-1-piperazinocarboxilato de bencilo

A una solución en 20 ml de 1,2-dicloroetano de 1,37 g (3,82 mmoles) del compuesto obtenido en el Ejemplo de Producción 44, se le añadieron 818 μl (5,73 mmoles) de cloruro de benciloxicarbonilo, y la mezcla se calentó a reflujo durante 2 horas. Después, se añadieron 273 μl (1,91 mmoles) de cloruro de benciloxicarbonilo, y la mezcla se calentó a reflujo durante 1 hora. Adicionalmente, se añadieron 273 μl (1,91 mmoles) de cloruro de benciloxicarbonilo, y la mezcla se calentó a reflujo durante 0,5 horas. Después, la mezcla de reacción se devolvió a la temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 2/1-1,5/1) para obtener 1,20 g (78%) del compuesto del título

15 Ejemplo de Producción 46

Ácido 4-{4-[(benciloxi)carbonil]-1-piperazinil}-5-fluoro-2-metoxibenzoico

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 37, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 45 en lugar del compuesto obtenido en el Ejemplo de Producción 36. De esta manera, se obtuvieron 1,02 g (99%) del compuesto del título.

Ejemplo de Producción 47

25

4-[(Benciloxi)metil]-1-piperidinocarboxilato de t-Butilo

A una solución en 30 ml de N,N-dimetilformamida de 2,4 g (11,15 mmoles) de 4-hidroximetil-1-piperidinocarboxilato de t-butilo, se le añadieron 557 mg (60% en aceite, 13,9 mmoles) de hidruro de sodio y 1,86 ml (15,6 mmoles) de bromuro de bencilo enfriando con hielo. La mezcla se agitó a temperatura ambiente durante 23 horas. Después, la mezcla de reacción se diluyó con acetato de etilo, y la dilución se lavó con agua y una solución acuosa saturada de cloruro de sodio por este orden. El sistema lavado se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 4/1) para obtener 3,5 g (cuantitativo) del compuesto del título.

Ejemplo de Producción 48

⁴⁰ Monohidrocloruro de 4-[(benciloxi)metil]piperidina

A 3,4 g (11,1 mmoles) del compuesto obtenido en el Ejemplo de Producción 47, se le añadieron 11,3 ml de una solución de ácido clorhídrico 4 N/1,4-dioxano, y la mezcla se agitó a temperatura ambiente durante 1,5 horas. Después, se añadió gradualmente éter, y los sólidos precipitados se recogieron mediante filtración para obtener 1,26 g (84%) del compuesto del título.

Ejemplo de Producción 49

⁵⁰ N-[2-(benciloxi)etil]-N-etilamina

A 7,0 g (30 mmoles) de metanosulfonato de 2-(benciloxi)etilo, se le añadió una solución en 75 ml de metanol de etilamina 2M, y la mezcla se calentó a 110°C en un tubo sellado durante 2 horas. Después, la mezcla de reacción se devolvió a la temperatura ambiente, y después se diluyó con cloruro de metileno. La dilución se lavó con una solución acuosa saturada de hidruro de sodio. El sistema lavado se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 4/1) para obtener 3,85 g (72%) del compuesto del título.

60 Ejemplo de Producción 50

Hidrocloruro de N-[2-(benciloxi)etil]-N-etilamina

A una solución en 100 ml de éter de 3,72 g (20,75 mmoles) del compuesto obtenido en el Ejemplo de Producción 49, se le añadieron 6,2 ml de una solución de ácido clorhídrico 4 N/1,4-dioxano. Los sólidos precipitados se recogieron mediante filtración para obtener 4,09 g (91%) del compuesto del título.

Ejemplo de Producción 51

4-{4-[[(Benciloxi)carbonil](metil)amino]-1-piperidinil}-2,5-difluorobenzoato de metilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 43, excepto que se utilizó hidrocloruro de metil(4-piperidinil)carbamato de bencilo en lugar de N-bencilpiperazina. De esta manera, se obtuvieron 2,0 g (68%) del compuesto del título.

10 Ejemplo de Producción 52

4-{4-[(Benciloxi)carbonil](metil)amino]-1-piperidinil}-5-fluoro-2-metoxibenzoato de metilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 44, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 51 en lugar del compuesto obtenido en el Ejemplo de Producción 43. De esta manera, se obtuvieron 0,46 g (24%) del compuesto del título.

Ejemplo de Producción 53

20

Ácido 4-{4-[[(benciloxi)carbonil](metil)amino]-1-piperidinil}-5 fluoro-2-metoxibenzoico

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 37, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 52 en lugar del compuesto obtenido en el Ejemplo de Producción 36. De esta manera, se obtuvieron 0,41 g (cuantitativo) del compuesto del título.

Ejemplo de Producción 54

30 4-Bromo-2-(difluorometoxi)benzoato de metilo

A una solución en 70 ml de dimetilformamida de 5,0 g (21,7 mmoles) de 4-bromo-2-hidroxibenzoato de metilo, se le añadieron 3,4 ml (32,6 mmoles) de clorodifluoroacetato de metilo y 3,0 g (21,7 mmoles) de carbonato de potasio. La mezcla se agitó a 60°C durante 6 horas y a temperatura ambiente durante 60 horas. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con éter. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. El sistema lavado se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 8/1) para obtener 1,4 g (23%) del compuesto del título.

Ejemplo de Producción 55

Ácido 4-bromo-2-(difluorometoxi)benzoico

A una mezcla disolvente de 10 ml metanol/10 ml tetrahidrofurano de 1,36 g (4,84 mmoles) del compuesto obtenido en el Ejemplo de Producción 54, se le añadió una solución acuosa 2M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 3 horas. Después, el disolvente se separó mediante destilación a presión reducida, y el residuo se disolvió mediante la adición de agua. Se añadió una solución acuosa 6M de ácido clorhídrico a la solución. Los sólidos precipitados se recogieron mediante filtración para obtener 1,17 g (91%) del compuesto del título.

Ejemplo de Producción 56

5-Amino-3-ciclohexil-1-etil-1H-pirazolo-4-carbonitrilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 31-2, excepto que se utilizó etilhidrazina en lugar de metilhidrazina. De esta manera, se obtuvieron 2,0 g (18%) del compuesto del título.

Ejemplo de Producción 57

5-Amino-3-ciclohexil-1-etil-1H-pirazolo-4-carboxamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 32, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 56 en lugar del compuesto obtenido en el Ejemplo de Producción 31. De esta manera, se obtuvieron 1,93 g (99%) del compuesto del título.

Ejemplo de Producción 58

2-Fluoro-4-(4-tiomorfolinil)benzoato de metilo

A una solución en 30 ml de dimetilsulfóxido de 3,44 g (20 mmoles) de 2,4-difluorobenzoato de metilo, se le añadieron 1,9 ml (20 mmoles) de tiomorfolina y 2,76 g (20 mmoles) de carbonato de potasio, y la mezcla se agitó a 80°C. Después, la mezcla de reacción se enfrió a temperatura ambiente, se añadió agua, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. El sistema lavado se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 5/1) para obtener 2,96 g (58%) del compuesto del título.

Ejemplo de Producción 59

15

2-Metoxi-4-(4-tiomorfolinil)benzoato de metilo

A una solución en 30 ml tetrahidrofurano de 2,5 g (9,8 mmoles) del compuesto obtenido en el Ejemplo de Producción 59, se le añadieron 12,3 ml (11,8 mmoles) de metóxido de sodio (solución metanólica al 28%), y la mezcla se agitó a 80°C durante 4 horas. Después, la mezcla de reacción se destiló a presión reducida, se añadió agua al residuo, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. El sistema lavado se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 5/1~3/1) para obtener 2,59 g (99%) del compuesto del título.

25

Ejemplo de Producción 60

Ácido 2-metoxi-4-(4-tiomorfolinil)benzoico

A una solución en 30 ml de metanol de 2,47 g (9,3 mmoles) del compuesto obtenido en el Ejemplo de Producción 59, se le añadieron 15 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 3 horas. Adicionalmente, se añadieron 2 ml de una solución acuosa 4M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 12 horas y a 50°C durante 7 horas. Después, la mezcla de reacción se enfrió a temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida. El residuo se disolvió mediante la adición de agua, y la solución se lavó con éter. La capa acuosa se aciduló con una solución acuosa 1M de ácido clorhídrico. Los sólidos precipitados se recogieron mediante filtración, y se secaron para obtener 2,2 g (94%) del compuesto del título.

40

Ejemplo de Producción 61

4-[2,5-Difluoro-4-(metoxicarbonil)fenil]-1,4-diazepano-1-carboxilato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 43, excepto que se utilizó 1-homopiperazinocarboxilato de bencilo de en lugar de N-bencilpiperazina. De esta manera, se obtuvieron 1,31 g (32%) del compuesto del título.

⁵⁰ Ejemplo de Producción 62

4-[2-Fluoro-5-metoxi-4-(metoxicarbonil)fenil]-1,4-diazepano-1-carboxilato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 44, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 61 en lugar del compuesto obtenido en el Ejemplo de Producción 43. De esta manera, se obtuvieron 0,31 g (27%) del compuesto del título.

Ejemplo de Producción 63

Ácido 4-{4-[(bencil)carbonil]-1,4-diazepan-1-il}-5-fluoro-2-metoxibenzoico

Se realizó el mismo procedimiento de reacción que en el Ejemplo de Producción 37, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 62 en lugar del compuesto obtenido en el Ejemplo de Producción 36. De esta manera, se obtuvieron 0,28 g (97%) del compuesto del título.

Ejemplo 1

1-Ciclohexil-3-metil-5-fenil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

A una mezcla disolvente de 4 ml de dioxano/4,6 ml de agua de 150 mg (0,49 mmoles) del compuesto obtenido en el Ejemplo de Producción 7, se le añadieron 0,12 ml de una solución acuosa al 30% de peróxido de hidrógeno y 30 mg (0,75 mmoles) de hidróxido de sodio, y la mezcla se agitó a 80°C durante 2 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida. Después, el residuo se aciduló mediante la adición de ácido acético. Los sólidos precipitados se recogieron mediante filtración para obtener 103 mg (68%) del compuesto del título.

Ejemplo 2

15 1-Ciclohexil-3-metil-5-(4-nitrofenil)-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 1, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 8 en lugar del compuesto obtenido en el Ejemplo de Producción 7. De esta manera, se obtuvieron 273 mg (44%) del compuesto del título.

Ejemplo 3

25

5-(4-Aminofenil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

A una mezcla disolvente, de 4 ml de metanol y 2 ml de N,N-dimetilformamida, de 222 mg (0,63 mmoles) del compuesto obtenido en el Ejemplo 2, se le añadieron 25 mg de paladio sobre carbono al 10%. Después de la sustitución por hidrógeno, la mezcla se agitó durante 2 horas. Después, la mezcla de reacción se filtró a través Celite, y el producto filtrado se destiló a presión reducida. El residuo se disolvió en ácido clorhídrico 6M, y la solución se lavó con éter. La capa acuosa se neutralizó con amoníaco acuoso al 28%, y después se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después, la capa lavada se secó sobre sulfato de sodio anhidro, y el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante recristalización (etanol) para obtener 77 mg (38%) del compuesto del título.

Ejemplo 4

N-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)fenil]acetamida

A una solución en 4 ml de piridina de 110 mg (0,34 mmoles) del compuesto obtenido en el Ejemplo 3, se le añadieron 39 μl (0,41 mmoles) de anhídrido acético enfriando con hielo. La mezcla se agitó a la misma temperatura durante 30 minutos. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después, la capa lavada se secó sobre sulfato de sodio anhidro, y el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante recristalización (etanol) para obtener 43,7 mg (35%) del compuesto del título.

Ejemplo 5

1-Ciclohexil-5-(2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

A una solución en 2 ml de etanol de 100 mg (0,28 mmoles) del compuesto obtenido en el Ejemplo 9, se le añadió 1 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a 90°C durante 10 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, se añadió agua, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 2/1) para obtener 68,5 mg (72%) del compuesto del título.

Ejemplo 6

1-Ciclohexil-3-metil-5-(2-piridinil)-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 11 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 77,8 mg (59%) del compuesto del título.

28

50

Ejemplo 7

1-Ciclohexil-3-metil-5-[4-(4-metil-1-piperazinil)fenil]-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 12 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 59 mg (63%) del compuesto del título.

10 Ejemplo 8

1-Ciclohexil-5-(2-metoxi-4-nitrofenil)-3-metil-1-6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 13 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 171 mg (45%) del compuesto del título.

Ejemplo 9

20

25

35

5-(4-Amino-2-metoxifenil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 3, excepto que se utilizó el compuesto obtenido en el Ejemplo 8 en lugar del compuesto obtenido en el Ejemplo 2. De esta manera, se obtuvieron 52 mg (41%) del compuesto del título.

Ejemplo 10

30 N-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]acetamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 4, excepto que se utilizó el compuesto obtenido en el Ejemplo 9 en lugar del compuesto obtenido en el Ejemplo 3. De esta manera, se obtuvieron 61 mg (cuant.) del compuesto del título.

Ejemplo 11

5-(5-Amino-2-piridinil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

A una suspensión en 6 ml etanol de 500 mg (1,34 mmoles) del compuesto obtenido en el Ejemplo de Producción 14, se le añadieron 3 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a 90°C durante 4 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, se diluyó con agua, y después se extrajo con cloroformo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro. Después, el disolvente se separó mediante destilación a presión reducida para obtener cristales brutos de 1-ciclohexil-3-metil-5-(5-nitro-2-piridinil)-1,6-dihidro-7H-pirazolo[4,3-d]-7-ona. Los cristales brutos no se purificaron, pero se disolvieron en 6 ml de metanol y 5 ml de N,N-dimetilformamida. Después, se añadió paladio sobre carbono al 10%, y la mezcla se sustituyó por hidrógeno, seguido de agitación durante 14 horas. Después, la mezcla de reacción se filtró a través Celite, y el producto filtrado se destiló a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 50/1) para obtener 78,8 mg (18%) del compuesto del título.

Ejemplo 12

55 N-[6-(1-ciclohexil-3-metil-7-oxo-1H-pirazolo[4,3-d]pirimidin-5-il)-3-piridinil]acetamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 4, excepto que se utilizó el compuesto obtenido en el Ejemplo 11 en lugar del compuesto obtenido en el Ejemplo 3. De esta manera, se obtuvieron 40 mg (74%) del compuesto del título.

Ejemplo 13

1-Ciclohexil-5-(2-etoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 10 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 145 mg (90%) del compuesto del título.

29

60

50

Ejemplo 14

1-Ciclohexil-5-[4-(4-hidroxi-1-piperidinil)fenil)]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

A una solución en 4 ml de diclorometano anhidro/2 ml de N,N-dimetilformamida de 150 mg (0,675 mmoles) del compuesto obtenido en el Ejemplo de Producción 6, se le añadieron 174 mg (0,675 mmoles) del compuesto obtenido en el Ejemplo de Producción 34, 155 mg (0,810 mmoles) de hidrocloruro de 1-etil-3-(3-dimetilaminopropil)-carbodiimida, y 68 mg (0,675 mmoles) de trietilamina. La mezcla se agitó a temperatura ambiente durante 2 horas. Después, la mezcla se diluyó con agua, y después se extrajo con cloruro de metileno. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida para obtener una carboxamida intermedia.

Adicionalmente, la carboxamida intermedia sintetizada antes se disolvió en 4 ml de etanol, se añadieron 2 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó durante 24 horas a 90°C. Después, la mezcla de reacción se llevó a la temperatura ambiente, se diluyó con agua, y después se extrajo con cloruro de metileno. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se recristalizó en etanol para obtener 19 mg (7%) del compuesto del título.

20 Ejemplo 15

5-(4-Bromo-2-metoxifenil)1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 14, excepto que se utilizó ácido 4-bromo-2metoxibenzoico en lugar del compuesto obtenido en el Ejemplo de Producción 34. De esta manera, se obtuvieron 545 mg (48%) del compuesto del título.

Ejemplo 16

30

45

50

1-Ciclohexil-5-[2-metoxi-4-(4-metil-1-piperazinil) fenil]-3-metil-1, 6-dihidro-7H-pirazolo [4,3-d] pirimidin-7-onalised for the property of the property of

En una corriente de argón, se añadieron 166 µl (1,50 mmoles) de N-metilpiperazina, 72 mg (0,75 mmoles) de t-butóxido de sodio, 166 mg (0,01 mmoles) de tri-t-butilfosfina, y 1,6 mg (0,008 mmoles) de acetato de paladio(II) a una solución en 2 ml de tolueno solución de 209 mg (0,50 mmoles) del compuesto obtenido en el Ejemplo 15, y la mezcla se agitó a 110°C durante 2 horas. Adicionalmente, se añadieron 166 mg (0,01 mmoles) de tri-t-butilfosfina y 1,6 mg (0,008 mmoles) de acetato de paladio(II), y la mezcla se agitó a 110°C durante 8 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, se diluyó con agua, y después se extrajo con acetato de etilo. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 20/1) para obtener 82 mg (38%) del compuesto del título.

Ejemplo 17

5-(4-Cloro-2-piridinil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 15 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 496 mg (75%) del compuesto del título.

Ejemplo 18

55 1-Ciclohexil-5-(5-fluoro-2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 16 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 118 mg (63%) del compuesto del título.

Ejemplo 19

Trans-5-(2-metoxifenil)-3-metil-1-(4-metilciclohexil)-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 27 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 123 mg (86%) del compuesto del título.

Ejemplo 20

Cis-5-(2-metoxifenil)-3-metil-1-(4-metilciclohexil)-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 28 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 88 mg (84%) del compuesto del título.

10 Ejemplo 21

Trans-3-metil-1-(4-metilciclohexil)-5-[4-(4-metil-1-piperazinil)fenil]-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 25 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 116 mg (81%) del compuesto del título.

Ejemplo 22

20

15

Cis-3-metil-1-(4-metilciclohexil)-5-[4-(4-metil-1-piperazinil)fenil]-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 5, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 26 en lugar del compuesto obtenido en el Ejemplo de Producción 9. De esta manera, se obtuvieron 132 mg (92%) del compuesto del título.

Ejemplo 23

3-Ciclohexil-1-metil-6-fenil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 5 ml de 1,4-dioxano de 292 mg (0,708 mmoles) del compuesto obtenido en el Ejemplo 38, se le añadieron 1,9 ml (1,9 mmoles) de una solución acuosa 1M de hidróxido de sodio y 0,5 ml de una solución acuosa al 30% de peróxido de hidrógeno, y la mezcla se agitó a 85°C durante 3,5 horas. Después, la mezcla de reacción se devolvió a la temperatura ambiente, y se diluyó con agua. Después, se añadió 1 ml de ácido clorhídrico 2M, y la mezcla se extrajo con acetato de etilo. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 2/1) para obtener 176 mg (81%) del compuesto del título.

Ejemplo 24

3-Ciclohexil-6-(2-metoxifenil)-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-onalised and the substitution of the properties of th

A una suspensión en 3 ml 1,2-dicloroetano de 181 mg (1,19 mmoles) de ácido o-anísico, se le añadieron 158 μ l (2,16 mmoles) de cloruro de tionilo, y la mezcla se agitó a 85°C durante 1,5 horas. Después, el disolvente se separó mediante destilación a presión reducida para obtener un cloruro de ácido en forma de una materia oleosa incolora.

A una solución en 2 ml piridina del cloruro de ácido sintetizado antes, se le añadió una solución en 2 ml piridina de 240 mg (1,08 mmoles) del compuesto obtenido en el Ejemplo de Producción 32. La mezcla se agitó a 60°C durante 18 horas y a temperatura ambiente durante 2 días. Después, la mezcla de reacción se concentró a presión reducida, se diluyó con agua, y se extrajo con acetato de etilo. La capa orgánica se lavó con una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, seguido de la eliminación del disolvente mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloruro de metileno/metanol = 30/1) para obtener 246 mg (64%) de una carboxamida intermedia (3-ciclohexil-5-[(2-metoxibenzoil)amino]-1-metil-1H-pirazolo-4-carboxamida).

A una solución en 2,2 ml de etanol de 130 mg (0,365 mmoles) de la carboxamida intermedia sintetizada antes, se le añadieron 1,1 ml (1,1 mmoles) de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a 90°C durante 20 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, se diluyó con agua, y se extrajo con cloruro de metileno. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloruro de metileno/metanol = 30/1) para obtener 91 mg (74%) del compuesto del título.

40

50

Ejemplo 25

3-Ciclohexil-1-metil-6-(2-piridinil)-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 8 ml de cloroformo de 261 mg (1,17 mmoles) del compuesto obtenido en el Ejemplo de Producción 32, se le añadieron 409 μ l (2,94 mmoles) de trietilamina, 14 mg (0,117 mmoles) de 4-dimetilaminopiridina, y 251 mg (1,41 mmoles) de cloruro de ácido picolínico, y la mezcla se agitó a 50°C durante 20 horas. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con cloruro de metileno. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida para obtener 315 mg de una carboxamida intermedia en forma de cristales brutos.

A una suspensión en 2 ml etanol de la carboxamida intermedia sintetizada antes, se le añadieron 2 ml (2,0 mmoles) de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a 80°C durante 20 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, se diluyó con agua, y se extrajo con cloruro de metileno. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloruro de metileno/metanol = 50/1) para obtener 109 mg de cristales brutos. Estos cristales brutos se recristalizaron adicionalmente en cloroformo/hexano para obtener 72 mg (20%) del compuesto del título.

Ejemplo 26

6-(4-Bromo-2-metoxifenil)-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una suspensión en 5 ml 1,2-dicloroetano de 500 mg (2,25 mmoles) de ácido 4-bromo-2-metoxibenzoico, se añadieron 328 μl (4,50 mmoles) de cloruro de tionilo, y la mezcla se agitó a 85°C durante 1,5 horas. Después, el disolvente se separó mediante destilación a presión reducida para obtener un cloruro de ácido en forma de un sólido de color amarillo.

A una solución en 1 ml de piridina del cloruro de ácido sintetizado antes, se le añadió una solución en 4 ml de piridina de 500 mg (2,25 mmoles) del compuesto obtenido en el Ejemplo de Producción 32. La mezcla se agitó a temperatura ambiente durante 1 hora y a 60°C durante 2 horas. Después, la mezcla de reacción se concentró a presión reducida, se diluyó con agua, y se extrajo con acetato de etilo. La capa orgánica se lavó con una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, seguido de la eliminación del disolvente mediante destilación a presión reducida. Se obtuvo una carboxamida intermedia (3-ciclohexil-5-[(4-bromo-2-metoxibenzoil) amino]-1-metil-1H-pirazolo-4-carboxamida) mediante esta medida.

A una solución en 13,5 ml de etanol de la carboxamida intermedia sintetizada antes, se le añadieron 6,75 ml (6,75 mmoles) de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó calentando a reflujo durante 12 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, y se diluyó con agua. Después, se añadieron 3,38 ml de ácido clorhídrico 2M, y la mezcla se extrajo con cloruro de metileno. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloruro de metileno/metanol = 40/1), y adicionalmente se cristalizó mediante la adición de éter diisopropílico para obtener 320 mg (34%) del compuesto del título.

Ejemplo 27

50

3-Ciclohexil-6-[2-metoxi-4-(4-metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

En una corriente de argón, se añadieron 207 µl (1,87 mmoles) de N-metilpiperazina, 120 mg (1,25 mmoles) de t-butóxido de sodio, 12,6 mg (0,062 mmoles) de tri-t-butilfosfina, y 7,0 mg (0,031 mmoles) de acetato de paladio(II) a una solución en 8 ml de tolueno solución de 260 mg (0,623 mmoles) del compuesto obtenido en el Ejemplo 26, y la mezcla se calentó a reflujo durante 5 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, se diluyó con agua, y después se extrajo con acetato de etilo. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 20/1) para obtener 230 mg (85%) del compuesto del título.

60 Ejemplo 28

Monometanosulfonato de 3-ciclohexil-6-[2-metoxi-4-(4-metil-1-piperazinil)fenil]-1-metil]-1-,5-dihidro-4H-pirazolo [3,4-d]pirimidin-4-ona

A una mezcla disolvente de 3 ml de tetrahidrofurano/4 ml de dioxano de 450 mg (1,03 mmoles) del compuesto obtenido en el Ejemplo 27, se le añadieron 68,6 μ l (1,05 mmoles) de ácido metanosulfónico, y los sólidos precipitados se recogieron mediante filtración. Los sólidos se purificaron mediante recristalización (etanol) para obtener 364 mg (66%) del compuesto del título.

Ejemplo 29

3-Ciclohexil-6-[4-(1,4-dioxa-8-azaespiro[4,5]deca-8-il)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-dipiri-midin-4-ona]-1-metil-1,5-dipiri-1,5-dipiri-1,5-dipiri-1,5-dipiri-1,5-dipiri-1,5-dipiri-1,5-dipiri-1,5-dipiri-1,5-dipiri-1,5-dipiri-1,5-dip

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó 1,4-dioxa-8-azaes-piro[4,5]decano en lugar de N-metilpiperazina. De esta manera, se obtuvieron 140 mg (81%) del compuesto del título.

Ejemplo 30

3-Ciclohexil-6-[2-metoxi-4-(4-oxo-1-piperidinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una mezcla disolvente de 50 ml acetona/5 ml de agua de 850 mg (1,77 mmoles) del compuesto obtenido en el Ejemplo 29, se le añadieron 405 mg (2,13 mmoles) de monohidrato de ácido p-toluenosulfónico, y la mezcla se calentó a reflujo durante 5 horas. Después, la mezcla de reacción se devolvió a la temperatura ambiente, y se concentró a presión reducida. Se añadió una solución acuosa saturada de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con cloruro de metileno. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida para obtener 827 mg del compuesto del título en forma de cristales brutos.

Ejemplo 31

25

35

3-Ciclohexil-6-[4-(4-hidroxi-1-piperidinil)-2-metoxifenil]-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-onal pirimid

A una suspensión en 30 ml de etanol de 780 mg (1,79 mmoles) del compuesto obtenido en el Ejemplo 30, se le añadieron 81 mg (2,15 mmoles) de borohidruro de sodio, y la mezcla se agitó a temperatura ambiente durante 1,5 horas. Después, se añadió acetona a la mezcla de reacción, y la mezcla se concentró a presión reducida. Se añadió agua al residuo, y la mezcla se extrajo con cloruro de metileno. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio por este orden. Después, la capa lavada se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 40/1) para obtener 606 mg (77%) del compuesto del título.

Ejemplo 32

40 Monometanosulfonato de 3-ciclohexil-6-[4-(4-hidroxi-1-piperidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo [3,4-d]pirimidin-4-ona

Una suspensión en 3 ml de etanol de 100 mg (0,23 mmoles) del compuesto obtenido en el Ejemplo 31 se calentó a 50°C para formar una solución. A esta solución, se le añadieron $15 \,\mu\mathrm{M}$ (0,23 mmoles) de ácido metanosulfónico, y la mezcla se calentó a reflujo durante 10 minutos. Después, la mezcla de reacción se llevó a la temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida. Se añadió éter al residuo, y los sólidos se recogieron mediante filtración para obtener 101 mg (83%) del compuesto del título.

50 Ejemplo 33

Monohidrocloruro de 3-ciclohexil-6-[4-(4-hidroxi-1-piperidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Una suspensión en 2 ml de tetrahidrofurano de 100 mg (0,23 mmoles) del compuesto obtenido en el Ejemplo 31 se calentó a 50°C para formar una solución. A esta solución, se le añadieron 68 μl (0,27 mmoles) de una solución 4M del hidrocloruro en dioxano. Después, la mezcla de reacción se llevó a la temperatura ambiente, y se añadió éter. Los sólidos precipitados se recogieron mediante filtración para obtener 96 mg (88%) del compuesto del título.

Ejemplo 34

3-Ciclohexil-6-[2-metoxi-4-(2-metoxietoxi)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 37 en lugar de ácido 4-bromo-2-metoxibenzoico. De esta manera, se obtuvieron 90 mg (24%) del compuesto del título.

Ejemplo 35

6-[4-(Benciloxi)-2-metoxifenil]-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó ácido 4-benciloxi-2-metoxibenzoico en lugar de ácido 4-bromo-2-metoxibenzoico. De esta manera, se obtuvieron 1,3 g (87%) del compuesto del título.

10 Ejemplo 36

3-Ciclohexil-6-(4-hidroxi-2-metoxifenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una mezcla disolvente de 50 ml de metanol/50 ml de tetrahidrofurano de 1,16 g (2,61 mmoles) del compuesto obtenido en el Ejemplo 35, se le añadieron 300 mg de paladio sobre carbono al 5%. La mezcla se agitó durante 3 horas a temperatura ambiente a presión atmosférica en una atmósfera de hidrógeno. Después, el catalizador se eliminó mediante filtración para obtener 0,92 g (99%) del compuesto del título.

20 Ejemplo 37

3-Ciclohexil-6-[4-(2-hidroxietoxi)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 5 ml de N,N-dimetilformamida de 150 mg (0,423 mmoles) del compuesto obtenido en el Ejemplo 36, se le añadieron 87,7 mg (0,635 mmoles) de carbonato de potasio y 33 μl (0,466 mmoles) de 2-bromoetanol. La mezcla se agitó a 100°C durante 1 hora y a 120°C durante 2 horas. Adicionalmente, se añadieron 16 μl (0,233 mmoles) de 2-bromoetanol, y la mezcla se agitó a 120°C durante 1 hora. Después, la mezcla de reacción se concentró a presión reducida. Se añadió agua al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo), y adicionalmente se recristalizó (tolueno) para obtener 60 mg (36%) del compuesto del título.

Ejemplo 38

35

3-Ciclohexil-6-{2-metoxi-4-[(3S)-tetrahidro-3-furaniloxi]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una suspensión en 10 ml de tetrahidrofurano de 150 ml (0,423 mmoles) del compuesto obtenido en el Ejemplo 36, se le añadieron lentamente 133 mg (0,508 mmoles) de trifenilfosfina, 51 μl (0,635 mmoles) de (R)-(-)-3-hidroxitetrahidrofurano, y 80 μl (0,508 mmoles) de azodicarboxilato de dietilo a temperatura ambiente, y la mezcla se agitó a temperatura ambiente durante 1 hora. Adicionalmente, se añadieron 44 mg (0,169 mmoles) de trifenilfosfina, 17 μl (0,212 mmoles) de (R)-(-)-3-hidroxitetrahidrofurano, y 27 μl (0,169 mmoles) de azodicarboxilato de dietilo, y la mezcla se agitó a temperatura ambiente durante 1,5 horas. Después, la mezcla de reacción se diluyó con acetato de etilo, y la dilución se lavó con agua y una solución acuosa saturada de cloruro de sodio por este orden. El sistema lavado se secó sobre sulfato de sodio, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 1/1~1/2) para obtener 124 mg (69%) del compuesto del título.

Ejemplo 39

 $3-Ciclohexil-6-\{2-metoxi-4-[(3R)-tetrahidro-3-furaniloxi]fenil\}-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 38, excepto que se utilizó (S)-(+)-3-hidroxitetrahidrofurano en lugar de (R)-(-)-3-hidroxitetrahidrofurano. De esta manera, se obtuvieron 77 mg (64%) del compuesto del título.

Ejemplo 40

[4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenoxi]acetato de metilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 37, excepto que se utilizó bromoacetato de metilo en lugar de 2-bromoetanol. De esta manera, se obtuvieron 160 mg (89%) del compuesto del título.

Ejemplo 41

Ácido [4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenoxilacético

A una solución en 2 ml metanol de 127 mg (0,298 mmoles) del compuesto obtenido en el Ejemplo 40, se le añadieron 372 µl (0,372 mmoles) de hidróxido de sodio 1M, y la mezcla se agitó a 50°C durante 1 hora. La mezcla de reacción se devolvió a la temperatura ambiente, y se diluyó con 5 ml de agua. Después, se añadieron lentamente 0,4 ml de ácido clorhídrico 1M. Los sólidos precipitados se recogieron mediante filtración para obtener 85 mg (69%) del compuesto del título.

Ejemplo 42

Monomaleato de 3-ciclohexil-6-{2-metoxi-4[(1-metil-4-piperidinil)oxi]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 38, excepto que se utilizó 4-hidroxi-1-metilpiperidina en lugar de (R)-(-)-3-hidroxitetrahidrofurano. De esta manera, se obtuvieron 62 mg (44%) de 3-ciclohexil-6-{2-metoxi-4-[(1-metil-4-piperidinil)oxi]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona en forma de un compuesto libre. Después, se añadieron 9,6 mg (0,082 mmoles) de ácido maleico a una suspensión en 1 ml de etanol de 62 mg (0,137 mmoles) del compuesto libre, y la mezcla se calentó a reflujo. Después, la temperatura se redujo gradualmente a la temperatura ambiente, y los sólidos precipitados se recogieron mediante filtración. Mediante este procedimiento, se obtuvieron 32 mg (41%) del compuesto del título.

25

Ejemplo 43

3-Ciclohexil-6-(2-metoxi-4-nitrofenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó se utilizó ácido 2-metil-4-nitrobenzoico en lugar de ácido 4-bromo-2-metoxibenzoico. De esta manera, se obtuvieron 2,33 g (40%) del compuesto del título.

35 Ejemplo 44

6-(4-Amino-2-metoxifenil)-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 3, excepto que se utilizó el compuesto obtenido en el Ejemplo 43 en lugar del compuesto obtenido en el Ejemplo 2. De esta manera, se obtuvieron 0,97 g (48%) del compuesto del título.

Ejemplo 45

45

N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]acetamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 4, excepto que se utilizó el compuesto obtenido en el Ejemplo 44 en lugar del compuesto obtenido en el Ejemplo 3. De esta manera, se obtuvieron 79 mg (cuant.) del compuesto del título.

Ejemplo 46

N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-2-metoxiacetamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 12, excepto que se utilizó el compuesto obtenido en el Ejemplo 45 en lugar del compuesto obtenido en el Ejemplo 6, y se utilizó ácido metoxiacético en lugar de ácido 4-(4-metil-1-piperazinil)benzoico. De esta manera, se obtuvieron 82 g (96%) del compuesto del título.

60

50

Ejemplo 47

3-Ciclohexil-6-[2-metoxi-4-(metilamino)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

65

Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó ácido 4-{[(benciloxi) carbonil](metil)amino)-2-metoxibenzoico en lugar de ácido 4-bromo-2-metoxibenzoico. De esta manera, se obtuvieron 500 g (36%) del compuesto del título.

Ejemplo 48

Cloruro de 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxibencenosulfonilo

A una mezcla disolvente de 2,5 ml de ácido clorhídrico concentrado/8,5 ml de ácido acético de 750 mg (2,12 mmoles) del compuesto obtenido en el Ejemplo 44, se le añadió una solución de 220 mg (3,2 mmoles) de nitrito de sodio en 1,5 ml de agua enfriando con hielo. La mezcla se agitó durante 30 minutos a la misma temperatura. A la solución resultante, se le añadieron 87 mg (0,65 mmoles) de dicloruro de cobre y 4,5 ml de una solución en ácido acético al 22% de dióxido de azufre, y la mezcla se agitó a temperatura ambiente durante 6 horas. Después, se añadió agua a la mezcla de reacción, y los sólidos precipitados se recogieron mediante filtración. Los sólidos recogidos se disolvieron de nuevo en diclorometano, y la solución se lavó con agua y una solución acuosa saturada de cloruro de sodio. La solución lavada se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. Se añadió éter al residuo, y la torta se recogió mediante filtración para obtener 673 mg (73%) del compuesto del título.

Ejemplo 49

15

20

3-Ciclohexil-6-{2-metoxi-4-[(4-metil-1-piperazinil)sulfonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 2 ml diclorometano anhidro de 87,2 mg (0,2 mmoles) del compuesto obtenido en el Ejemplo 48, se le añadieron 26,6 μ l (0,24 mmoles) de N-metilpiperazina y 70 μ l (0,5 mmoles) de trietilamina, y la mezcla se agitó a temperatura ambiente durante 20 horas. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = $50/1 \sim 30/1$) para obtener 87 mg (87%) del compuesto del título.

Ejemplo 50

Monocloruro de 3-ciclohexil-6-{2-metoxi-4-[(4-metil-1-piperazinil)sulfonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo [3,4-d]pirimidin-4-ona

A una solución en 2 ml dioxano de 87 mg (0,17 mmoles) del compuesto obtenido en el Ejemplo 49, se le añadieron 0,1 ml (0,4 mmoles) de una solución en dioxano 4M del hidrocloruro. Se añadió éter a la solución resultante, y los sólidos precipitados se recogieron mediante filtración. Los sólidos se purificaron mediante recristalización (etanol) para obtener 52,1 mg (56%) del compuesto del título.

Ejemplo 51

3-Ciclohexil-6-[2-metoxi-4-(4-morfolinilsulfonil)fenil]-1-metil-1, 5-dihidro-4H-pirazolo[3-4-d]pirimidin-4-onalised for the substitution of the

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó morfolina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 66,6 mg (72%) del compuesto del título.

50 Ejemplo 52

45

60

3-Ciclohexil-6-{4-[(4-hidroxi-1-piperidinil)sulfonil]-2-metoxifenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimi-din-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó 4-hidroxilpiperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 84 mg (84%) del compuesto del título.

Ejemplo 53

 $1-\{[4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil] sulfonil\}-4-piperidinocarboxilato de etilo$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó éster etílico de áci-5 do isonipecótico en lugar de N-metilpiperazina. De esta manera, se obtuvieron 104 mg (75%) del compuesto del título.

Ejemplo 54

Ácido 1-{[4-(3-ciclohexil-1-Metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]sulfonil}-4-pi-peridinocarboxílico

A una mezcla disolvente de 2 ml de metanol/3 ml de tetrahidrofurano de 82 mg (0,15 mmoles) del compuesto obtenido en el Ejemplo 53, se le añadió 1 ml (1 mmoles) de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 1 hora. Después, el disolvente se separó mediante destilación a presión reducida, y el residuo se diluyó con agua. La capa acuosa se lavó con éter, después se aciduló con una solución acuosa 2M de ácido clorhídrico, y se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida para obtener 77 mg (99%) del compuesto del título.

15 Ejemplo 55

20

 $\label{lem:constraint} 4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d] pirimidin-6-il)-N-[2-(dimetilamino)etil]-3-metoxibencenosulfonamida$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó N,N-dimetiletilendiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 85 mg (87%) del compuesto del título.

²⁵ Ejemplo 56

Monohidrocloruro de 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4]-d]pirimidin-6-il)-N-[2-(dimetilamino)etil]-3-metoxibencenosulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 50, excepto que se utilizó el compuesto obtenido en el Ejemplo 55 en lugar del compuesto obtenido en el Ejemplo 49. De esta manera, se obtuvieron 57,5 mg (64%) del compuesto del título.

35 Ejemplo 57

4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxi-N-(2-metoxietil) bence no sulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó metoxietilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 79,8 mg (84%) del compuesto del título.

Ejemplo 58

4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-N-(2-hidroxietil)-3-metoxibencenosulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó etanolamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 65,4 mg (71%) del compuesto del título.

Ejemplo 59

55 3-Ciclohexil-6-[2-metoxi-4-(4-morfolinil)fenil]-1-metil-1-5-dihidro-4H-pirazolo [3,4-d] pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó morfolina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 49 mg (32%) del compuesto del título.

Ejemplo 60

60

3-Ciclohexil-6-[2-metoxi-4-(1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó piperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 81 mg (53%) del compuesto del título.

Ejemplo 61

3-Ciclohexil-6-[2-metoxi-4-(4-metoxi-1-piperidinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 40 en lugar de N-metilpiperazina. De esta manera, se obtuvieron 145 mg (89%) del compuesto del título.

10 Ejemplo 62

Monometanosulfonato de 3-ciclohexil-6-[2-metoxi-4-(4-metoxi-1-piperidinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo [3,4-d]pirimidin-4-ona

Una solución suspendida en 1,15 ml de etanol de 115 mg (0,255 mmoles) del compuesto obtenido en el Ejemplo 61 se calentó a 60°C. Al sistema, se le añadieron 17,4 μl (0,267 mmoles) de ácido metanosulfónico, y la temperatura de la mezcla se redujo gradualmente a la temperatura ambiente. Los sólidos precipitados se recogieron mediante filtración para obtener 108 mg (77%) del compuesto del título.

Ejemplo 63

6-(4-Bromo-2-metoxifenil)-3-cicloheptil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 42 en lugar del compuesto obtenido en el Ejemplo de Producción 32. De esta manera, se obtuvieron 2,28 g (80%) del compuesto del título.

30 Ejemplo 64

3-Cicloheptil-6-[2-metoxi-4-(4-metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 63 en lugar del compuesto obtenido en el Ejemplo 26. De esta manera, se obtuvieron 188 mg (90%) del compuesto del título.

Ejemplo 65

Ácido 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxibenzoico

En una corriente de nitrógeno, se añadieron gota a gota 1,6 ml de n-butil litio (solución 1,56 M en hexano, 2,5 mmoles) a -78°C a una solución en 10 ml de tetrahidrofurano de 500 mg (1,20 mmoles) del compuesto obtenido en el Ejemplo 26. La mezcla se agitó a la misma temperatura durante 30 minutos, y después se hizo pasar por la mezcla de reacción gas dióxido de carbono durante 45 minutos. Adicionalmente, la mezcla de reacción se agitó a -78°C durante 2 horas, y después se llevó a la temperatura ambiente. La mezcla de reacción se alcalinizó mediante la adición de una solución acuosa 1M de hidróxido de sodio, y se lavó con diclorometano. La capa acuosa se aciduló con una solución acuosa 6M de ácido clorhídrico, y los sólidos precipitados se recogieron mediante filtración, obteniéndose 200 mg (44%) del compuesto del título.

Ejemplo 66

55 3-Ciclohexil-6-{2-metoxi-4-[(4-metil-1-piperazinil)carbonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una suspensión en 2 ml de diclorometano de 86 mg (0,23 mmoles) del compuesto obtenido en el Ejemplo 65, se le añadieron 31 μ l (0,28 mmoles) de N-metilpiperazina y 53 mg (0,28. mmoles) de hidrocloruro de 1-etil-3-(3-dimetilaminopropil)carbodiimida, y la mezcla se agitó a temperatura ambiente durante 18 horas. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = $20/1 \sim 10/1$) para obtener 80 mg (75%) del compuesto del título.

Ejemplo 67

 $Monometanosulfonato\ de\ 3-ciclohexil-6-\{2-metoxi-4-[(4-metil-1-piperazinil)carbonil] fenil\}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-ona$

A una mezcla disolvente de 1 ml de metanol/1 ml de tetrahidrofurano de 45 mg (0,097 mmoles) del compuesto obtenido en el Ejemplo 66, se le añadieron 6,4 μ l (0,098 mmoles) de ácido metanosulfónico, y la mezcla se agitó a temperatura ambiente durante 10 minutos. Se añadió éter a la solución resultante, y los sólidos precipitados se recogieron mediante filtración, obteniéndose de ese modo 43,9 mg (81%) del compuesto del título.

Ejemplo 68

3-Ciclohexil-6-[2-metoxi-4-(4-morfolinilcarbonil)fenil] 1-metil-1, 5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-onally and a substitution of the contraction of the con

Se realizó el mismo procedimiento de reacción que en el Ejemplo 66, excepto que se utilizó morfolina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 84,3 mg (85%) del compuesto del título.

Ejemplo 69

15

25

30

40

 $3-Ciclohexil-6-\{4-[(4-hidroxi-1-piperidinil)carbonil]-2-metoxifenil\}-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 66, excepto que se utilizó 4-hidroxilpiperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 57 mg (47%) del compuesto del título.

Ejemplo 70

3-Ciclohexil-6-{2-metoxi-4-[(4-metoxi-1-piperidinil)carbonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimi-din-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 66, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 40 en lugar de N-metilpiperazina. De esta manera, se obtuvieron 68,7 mg (65%) del compuesto del título.

Ejemplo 71

Ester etílico de ácido {[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxibenzoil] amino}acético

Se realizó el mismo procedimiento de reacción que en el Ejemplo 66, excepto que se utilizó hidrocloruro de éster etílico de glicina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 75 mg (73%) del compuesto del título.

Ejemplo 72

⁵⁰ Ácido{(4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxibenzoil]amino]acético

A una mezcla disolvente de 1 ml de metanol/3 ml de 1,4-dioxano de 60 mg (0,13 mmoles) del compuesto obtenido en el Ejemplo 71, se le añadió 1 ml de una solución acuosa 1M de hidróxido de sodio a temperatura ambiente, y la mezcla se agitó a la misma temperatura durante 1 hora. Después, el disolvente se separó mediante destilación a presión reducida, y el residuo se diluyó con agua, seguido de lavado la dilución con éter. La capa acuosa se aciduló con una solución acuosa 2M de ácido clorhídrico, y después se extrajo con cloroformo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida para obtener 53 mg (93%) del compuesto del título.

Ejemplo 73

60

65

 $3-Ciclohexil-6-\{2-metoxi-4-[(2-metoxietil)(metil)amino]fenil\}-1-metil-1, \\5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó N-(2-metoxietil) metilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 182 mg (86%) del compuesto del título.

Ejemplo 74

- 3-Ciclohexil-6-(5-fluoro-2-metoxifenil)-1-metil-1,5 dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona
- Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó 5-fluoro-2-metoxibenzoico ácido en lugar de 4-bromo-2-metoxibenzoico ácido. De esta manera, se obtuvieron 244 mg (76%) del compuesto del título.
- 10 Ejemplo 75
 - 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-piperazinocarboxilato de etilo
- Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó etilo 4-piperidinocarboxilato de en lugar de N-metilpiperazina. De esta manera, se obtuvieron 28 mg (14%) del compuesto del título
- 20 Ejemplo 76
 - Ácido 1-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil)-4-piperazino-carboxílico
- Se realizó el mismo procedimiento de reacción que en el Ejemplo 41, excepto que se utilizó el compuesto obtenido en el Ejemplo 75 en lugar del compuesto obtenido en el Ejemplo 40. De esta manera, se obtuvieron 40 mg (cuant.) del compuesto del título.
- 30 Ejemplo 77
 - 3-Cicloheptil-6-[2-metoxi-4-(1-piperazinil)fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona
- Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 63 en lugar del compuesto obtenido en el Ejemplo 26, y piperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 156 mg (77%) del compuesto del título.
- Ejemplo 78
 - Monometanosulfonato de 3-cicloheptil-6-[2-metoxi-4-(1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona
- Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 77 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 108 mg (72%) del compuesto del título.
- Ejemplo 79
 - 1-[4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-2-fluoro-5-metoxifenil]-1-piperazinocarboxilato de bencilo
- Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 46 en lugar de ácido 4-bromo-2-metoxibenzoico. De esta manera, se obtuvieron 366 mg (40%) del compuesto del título.
- Ejemplo 80
 - 3-Cicloheptil-6-[5-fluoro-2-metoxi-4-(1-piperazinil)fenil]-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-onalised by the contraction of th
- Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 79 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 144 mg (63%) del compuesto del título.

Ejemplo 81

Monometanosulfonato de 3-cicloheptil-6-[5-fluoro-2-metoxi-4-(1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo [3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 80 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 62 mg (85%) del compuesto del título.

Ejemplo 82

15

30

50

55

60

3-Ciclohexil-6-[5-fluoro-2-metoxi-4-(4-metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 2 ml de etanol/1 ml de agua de 65 mg (0,15 mmoles) del compuesto obtenido en el Ejemplo 80, se le añadieron $500 \,\mu$ l de formalina y 1 ml de ácido fórmico, y la mezcla se calentó a reflujo durante 4 horas. Después, se añadió a la mezcla de reacción una solución acuosa de hidrogenocarbonato de sodio, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = $30/1 \sim 20/1$) para obtener 37 mg (55%) del compuesto del título.

₂₅ Ejemplo 83

3-Ciclohexil-6-(2-metoxi-4-{metil[2-(metilamino)etil]amino}fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó N,N'-dimetiletilendiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 123 mg (71%) del compuesto del título.

Ejemplo 84

Monometanosulfonato de 3-ciclohexil-6-(2-metoxi-4-{metil[2-(metilamino)etil]amino}fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 83 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 93 mg (71%) del compuesto del título.

Ejemplo 85

45 6-(4-Bromo-2-etoxifenil)-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó ácido 4-bromo-2-etoxibenzoico en lugar de ácido 4-bromo-2-metoxibenzoico. De esta manera, se obtuvieron 3,79 g (93%) del compuesto del título.

Ejemplo 86

3-Ciclohexil-6-[2-etoxi-4-(4-metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 85 en lugar del compuesto obtenido en el Ejemplo 26. De esta manera, se obtuvieron 159 mg (76%) del compuesto del título.

Ejemplo 87

Monometanosulfonato de 3-ciclohexil-6-[2-etoxi-4-(4-metil-1-piperazinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 86 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 83 mg (50%) del compuesto del título.

Ejemplo 88

1-[4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-etoxifenil]-4-piperidinil(metil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 85 en lugar del compuesto obtenido en el Ejemplo 26, e hidrocloruro de metil(4-piperidinil)carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 234 mg (77%) del compuesto del título.

Ejemplo 89

15

20

25

35

45

50

55

 $3-Ciclohexil-6-\{2-etoxi-4-[4-(metilamino)-1-piperidinil]fenil\}-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 88 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 46 mg (32%) del compuesto del título.

Ejemplo 90

Monometanosulfonato de 3-ciclohexil-6-{2-etoxi-4-[4-(metilamino)-1-piperidinil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 89 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 18 mg (38%) del compuesto del título.

Ejemplo 91

1-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-4-piridinil(metil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó hidrocloruro de metil (4-piperidinil)carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 330 mg (94%) del compuesto del título.

Ejemplo 92

 $1-Ciclohexil-5-\{2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil\}-1-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 91 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 322 mg (89%) del compuesto del título.

Ejemplo 93

1-[4-(3-Cicloheptil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-piperidinil(metil) carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 63 en lugar del compuesto obtenido en el Ejemplo 26, e hidrocloruro de metil(4-piperidinil)carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 179 mg (52%) del compuesto del título.

Ejemplo 94

3-Cicloheptil-6-{2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 93 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 124 mg (cuant.) del compuesto del título.

Ejemplo 95

 $Monometanosulfonato\ de\ 3-cicloheptil-6-\{2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil\}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 94 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 112 mg (81%) del compuesto del título.

Ejemplo 96

15

20

25

30

35

40

45

50

1-[4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-piperidinil(etil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó hidrocloruro de etil (4-piperidinil)carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 195 mg (54%) del compuesto del título.

Ejemplo 97

 $3-Ciclohexil-6-\{2-metoxi-4-[4-(etilamino)-1-piperidinil]fenil\}-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 96 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 108 mg (79%) del compuesto del título.

Ejemplo 98

1-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-4-piperidinil(etil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó hidrocloruro de etil (4-piperidinil)carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 272 mg (76%) del compuesto del título.

Ejemplo 99

 $1-Ciclohexil-5-\{2-metoxi-4-[4-(etilamino)-1-piperidinil]fenil\}-3-metil-1, 6-dihidro-7H-pirazolo [4,3-d]pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 98 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 131 mg (72%) del compuesto del título.

Ejemplo 100

1-Ciclohexil-5-[4-(benciloxi)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 14, excepto que se utilizó ácido 4-(benciloxi)-2-metoxibenzoico en lugar del compuesto obtenido en el Ejemplo de Producción 34. De esta manera, se obtuvieron 1,37 g (77%) del compuesto del título.

60 Ejemplo 101

1-Ciclohexil-5-(4-hidroxi-2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 100 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 1,08 g (99%) del compuesto del título.

Ejemplo 102

1-Ciclohexil-5-(2-metoxi-4-metil[2-(metilamino)etil]amino}fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó N,N'-dimetiletilendiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 107 mg (62%) del compuesto del título.

10 Ejemplo 103

Monofumarato de 1-ciclohexil-5-(2-metoxi-4-{metil[2-(metilamino)etil]amino}fenil)-3-metil-1,6-dihidro-7H-pirazolo [4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 102 en lugar del compuesto obtenido en el Ejemplo 61, y ácido fumárico en lugar de ácido metanosulfónico. De esta manera, se obtuvieron 96 mg (75%) del compuesto del título.

20 Ejemplo 104

 $1-Ciclohexil-5-\{4-[(3R)-3-(dimetilamino)pirrolidinil\}-2-metoxifenil\}-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó (3R)-(dimetilamino) pirrolidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 244 mg (75%) del compuesto del título.

30 Ejemplo 105

 $1-Ciclohexil-5-\{4-[(3S)-3-(dimetilamino)pirrolidinil\}-2-metoxifenil\}-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó (3S)-(dimetilamino) pirrolidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 80 mg (49%) del compuesto del título.

Ejemplo 106

40

50

60

5-{4-[[2-(Benciloxi)etil](metil)amino]-2-metoxifenil}-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó N-[2-(benciloxi) etil]-N-metilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 80 mg (49%) del compuesto del título.

Ejemplo 107

 $1-Ciclohexil-5-\{4-[(2-hidroxietil)(metil)amino]-2-metoxifenil\}-3-metil-1-6-dihidro-7H-pirazolo[4,3-d] pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 106 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 82 mg (64%) del compuesto del título.

Ejemplo 108

 $5-(4-\{4-[(Benciloxi)metil]-1-piperidinil\}-2-metoxifenil)-1-ciclohexil-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 48 en lugar de N-metilpiperazina. De esta manera, se obtuvieron 150 mg (66%) del compuesto del título.

Ejemplo 109

1-Ciclohexil-5-{4-[4-(hidroximetil)-1-piperidinil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 108 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 75 mg (77%) del compuesto del título.

Ejemplo 110

15

20

25

30

40

50

55

1-Ciclohexil-5-(2-metoxi-4-{metil[3-(metilamino)propil]amino}fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimi-din-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó N,N'-dimetil-1,3-propanodiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 95 mg (53%) del compuesto del título.

Ejemplo 111

 $Monofumarato\ de\ 1\text{-}ciclohexil-5\text{-}(2\text{-}metoxi\text{-}4\text{-}[metil[3\text{-}(metilamino)propil]amino})fenil)\text{-}3\text{-}metil\text{-}1,6\text{-}dihidro\text{-}7H\text{-}pirazolo[4,3\text{-}d]pirimidin\text{-}7\text{-}ona}$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 110 en lugar del compuesto obtenido en el Ejemplo 61, y ácido fumárico en lugar de ácido metanosulfónico. De esta manera, se obtuvieron 92 mg (84%) del compuesto del título.

Ejemplo 112

1-Ciclohexil-5-[2-metoxi-4-(4-metil-1,4-diazepan-1-il)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó N-metilhomopiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 159 mg (98%) del compuesto del título.

Ejemplo 113

5-{4-[[2-(Benciloxiloxi)etil](etil)amino]-2-metoxifenil}-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimi-din-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 50 en lugar de N-metilpiperazina. De esta manera, se obtuvieron 188 mg (87%) del compuesto del título.

Ejemplo 114

1-Ciclohexil-5-{4-[(2-hidroxietil)(etil)amino]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 113 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 120 mg (81%) del compuesto del título.

Ejemplo 115

60 Monohidrocloruro de 1-ciclohexil-5-{4-[(2-hidroxietil)(etil)amino]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo [4-3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 114 en lugar del compuesto obtenido en el Ejemplo 61, y una solución en ácido clorhídrico 4N/1,4-dioxano en lugar de ácido metanosulfónico. De esta manera, se obtuvieron 104 mg (87%) del compuesto del título.

Ejemplo 116

5-(4-Bromo-2-etoxifenil-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 14, excepto que se utilizó ácido 4-bromo-2etoxibenzoico en lugar del compuesto obtenido en el Ejemplo de Producción 34. De esta manera, se obtuvieron 2,16 g (cuant.) del compuesto del título.

10 Ejemplo 117

15

20

3-Ciclohexil-6-{2-etoxi-4-[(2-metoxietil}amino]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 85 en lugar del compuesto obtenido en el Ejemplo 26, y 2-metoxietilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 46 mg (31%) del compuesto del título.

Ejemplo 118

1-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-4-piperidinil(metil) formamida

A una solución en 3 ml cloruro de metileno de 96 mg (0,21 mmoles) del compuesto obtenido en el Ejemplo 92, se le añadieron 16 µl (0,43 mmoles) de ácido fórmico, 119 µl (0,85 mmoles) de trietilamina, y 100 µl de anhídrido de ácido propanofosfónico (solución en acetato de etilo al 25%), y la mezcla se agitó a temperatura ambiente durante 1 hora. Adicionalmente, se añadieron tres veces 16 µl (0,43 mmoles) de ácido fórmico, 119 µl (0,85 mmoles) de trietilamina, y 100 µl de anhídrido de ácido propanofosfónico (solución en acetato de etilo al 25%), y después la mezcla se agitó a temperatura ambiente durante 14,5 horas. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con diclorometano. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 60/1) para obtener 92 mg (90%) del compuesto del título.

Ejemplo 119

 $N-\{1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-4-piperidinil\}-N-metilacetamida$

A una solución en 4 ml cloruro de metileno de 105 mg (0,23 mmoles) del compuesto obtenido en el Ejemplo 92, se le añadieron $33 \mu l$ (0,35 mmoles) de anhídrido acético y $33.7 \mu l$ (0,47 mmoles) de piridina, y la mezcla se agitó a temperatura ambiente durante 1 hora. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con diclorometano. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 60/1) para obtener 92 mg (80%) del compuesto del título.

Ejemplo 120

50

1-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-etoxifenil-4-piperidinil(metil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo 116 en lugar del compuesto obtenido en el Ejemplo 15, e hidrocloruro de metil(4-piperidinil) carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 176 mg (75%) del compuesto del título.

60 Ejemplo 121

 $1-Ciclohexil-5-\{2-etoxi-4-[4-(metilamino)-1-piperidinil]fenil\}-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 120 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 97 mg (82%) del compuesto del título.

Ejemplo 122

1-Ciclohexil-5-[4-(4-hidroxi-1-metil-4-piperidinil)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

En atmósfera de argón, se añadieron gota a gota 0,95 ml de n-butil litio (1,59M/solución en hexano, 1,51 mmoles) a -78°C a una solución en 10 ml de tetrahidrofurano anhidro de 300 mg (0,72 mmoles) del compuesto obtenido en el Ejemplo 15. La mezcla se agitó a -78°C durante 30 minutos, y después se añadieron 133 μ l (1,08 mmoles) de 1-metil-4-piperidona, seguido de calentamiento de la mezcla gradualmente a 0°C durante el curso de 1 hora. Después, se añadió agua a la mezcla de reacción, y después la mezcla se extrajo con acetato de etilo. El extracto se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 100/1) para obtener 179 mg (55%) del compuesto del título.

Ejemplo 123

20

40

45

50

1-Ciclohexil-5-[2-metoxi-4-(1-metil-1,2,3,6-tetrahidro-4-piridinil) fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d] piri-midin-7-ona

A una solución en 10 ml tolueno de 160 mg (0,35 mmoles) del compuesto obtenido en el Ejemplo 122, se le añadieron 135 mg (0,71 mmoles) de monohidrato de ácido p-toluenosulfónico, y la mezcla se calentó a reflujo durante 22 horas con el uso de un deshidratador Dean-Stark. La mezcla de reacción se devolvió a la temperatura ambiente, y se lavó con una solución acuosa saturada de hidrogenocarbonato de sodio. El sistema se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 30/1) para obtener 78 mg (51%) del compuesto del título.

30 Ejemplo 124

1-Ciclohexil-5-[2-metoxi-4-(1-metil-4-piperidinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 123 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 32 mg (62%) del compuesto del título.

Ejemplo 125

1-Ciclohexil-5-[4-(1,4-diazepan-1-il)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó homopiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 286 mg (91%) del compuesto del título.

Ejemplo 126

5-[4-(4-Acetil-1,4-diazepan-1-il)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 119, excepto que se utilizó el compuesto obtenido en el Ejemplo 125 en lugar del compuesto obtenido en el Ejemplo 92. De esta manera, se obtuvieron 286 mg (91%) del compuesto del título.

Ejemplo 127

1-Ciclohexil-5-[4-(4-etil-1-4-diazepan-1-il)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

A una solución en 4 ml N,N-dimetilformamida de 102 mg (0,23 mmoles) del compuesto obtenido en el Ejemplo 125, se le añadieron 49 μl (0,35 mmoles) de trietilamina y 23 μl (0,29 mmoles) de yoduro de etilo a temperatura ambiente, y la mezcla se agitó durante 3 horas. Se añadió acetato de etilo a la mezcla de reacción, y la mezcla se lavó con agua y una solución acuosa saturada de cloruro de sodio por este orden. El sistema lavado se secó sobre sulfato de sodio anhidro, y después el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloruro de metileno/metanol = 20/1~10/1) para obtener 65 mg (60%) del compuesto del título.

Ejemplo 128

1-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-2-fluoro-5-metoxifenil]-4-piperidinil (metil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 14, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 53 en lugar del compuesto obtenido en el Ejemplo de Producción 34. De esta manera, se obtuvieron 257 mg (48%) del compuesto del título.

Ejemplo 129

15

 $1-Ciclohexil-5-\{5-fluoro-2-metoxi-4-[4-(metilamino)-1-piperidinil] fenil\}-3-metil-1, 6-dihidro-7H-pirazolo [4,3-d] piri-midin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 128 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 129 mg (71%) del compuesto del título.

Ejemplo 130

1-Ciclohexil-5-[4-(4-metil-1,4-diazepan-1-il)-2-etoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo 116 en lugar del compuesto obtenido en el Ejemplo 15, y metilhomopiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 94 mg (58%) del compuesto del título.

30 Ejemplo 131

 $3-Ciclohexil-6-\{4-[[2-(dimetilamino)etil](metil)amino]-2-metoxifenil\}-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó N,N,N'-trimetiletilendiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 174 mg (79%) del compuesto del título.

Ejemplo 132

40

60

 $Monometanosulfonato\ de\ 3-ciclohexil-6-\{4-[[2-(dimetilamino)etil](metil)amino]-2-metoxifenil\}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Una solución suspendida en 2 ml de metanol de 130 mg (0,30 mmoles) del compuesto obtenido en el Ejemplo 131 se calentó a 50°C. Al sistema, se le añadieron 20 µl (0,30 mmoles) de ácido metanosulfónico, y la temperatura de la mezcla se redujo gradualmente a la temperatura ambiente. Después, el disolvente se separó mediante destilación a presión reducida, y el residuo se disolvió mediante la adición de acetato de etilo. Se añadió éter a la solución resultante, y los sólidos precipitados se recogieron mediante filtración para obtener 89 mg (55%) del compuesto del título.

Ejemplo 133

3-Ciclohexil-6-[4-(1-4-diazepan-1-il)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó homopiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 165 mg (76%) del compuesto del título.

Ejemplo 134

Monometanosulfonato de 3-ciclohexil-6-[4-(1,4-diazepan-1-il)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 2 ml de metanol de 74 mg (0,17 mmoles) del compuesto obtenido en el Ejemplo 133, se le añadieron 11,2 μl (0,17 mmoles) de ácido metanosulfónico, y la mezcla se calentó a reflujo durante 10 minutos. Después, la temperatura de la mezcla de reacción se redujo gradualmente a la temperatura ambiente. Se añadió éter a la solución resultante, y los sólidos precipitados se recogieron mediante filtración para obtener 62 mg (69%) del compuesto del título.

Ejemplo 135

3-Ciclohexil-6-[2-metoxi-4-(4-metil-1,4-diazepan-1-il)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una mezcla disolvente de 2 ml etanol/2 ml de agua de 60 mg (0,14 mmoles) del compuesto obtenido en el Ejemplo 133, se le añadieron 30 mg de paraformaldehído y 1 ml de ácido fórmico, y la mezcla se calentó a reflujo durante 24 horas. Después, la mezcla de reacción se llevó a la temperatura ambiente, se añadió una solución acuosa de hidrogenocarbonato de sodio, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 10/1) para obtener 53 mg (84%) del compuesto del título.

15 Ejemplo 136

Monometanosulfonato de 3-ciclohexil-6-[2-metoxi-4-(4-metil-1,4-diazepan-1-il)fenil]-1-metil-1,5-dihidro-4H-pirazo-lo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 134, excepto que se utilizó el compuesto obtenido en el Ejemplo 135 en lugar del compuesto obtenido en el Ejemplo 133. De esta manera, se obtuvieron 31 mg (60%) del compuesto del título.

25 Ejemplo 137

20

35

6-[4-Bromo-2-(difluorometoxi)fenil]-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 55 en lugar de ácido 4-bromo-2-metoxibenzoico. De esta manera, se obtuvieron 231 mg (16%) del compuesto del título.

Ejemplo 138

 $3-Ciclohexil-6-[2-\{difluorometoxi)-4-(4-metil-1-piperazinil\}fenil]-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 137 en lugar del compuesto obtenido en el Ejemplo 26. De esta manera, se obtuvieron 90 mg (58%) del compuesto del título.

Ejemplo 139

45

 $Monometanosulfonato\ de\ 3\text{-}ciclohexil-6\text{-}[2\text{-}(difluorometoxi)\text{-}4\text{-}(4\text{-}metil\text{-}1\text{-}piperazinil})fenil]\text{-}1\text{-}metil\text{-}1,5\text{-}dihidro\text{-}4H-pirazolo}[3,4\text{-}d]pirimidin\text{-}4\text{-}ona$

Una solución suspendida en 2 ml de metanol de 65 mg (0,138 mmoles) del compuesto obtenido en el Ejemplo 138 se calentó a 50°C. Al sistema, se le añadieron 9,1 µl (0,14 mmoles) de ácido metanosulfónico, y después la mezcla se calentó a reflujo durante 15 minutos. Después, la mezcla de reacción se llevó a la temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida. El residuo se recristalizó en acetato de etilo-etanol para obtener 16 mg (20%) del compuesto del título.

Ejemplo 140

N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]urea

A una solución en 2 ml de agua/4 ml de ácido acético de 200 mg (0,567 mmoles) del compuesto obtenido en el Ejemplo 44, se le añadieron 377 mg (4,65 mmoles) de cianato de potasio, y la mezcla se agitó a temperatura ambiente durante 3 horas. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con cloroformo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 10/1) para obtener 126 mg (56%) del compuesto del título.

Ejemplo 141

N-14-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d] pirimidin-6-il)-3-metoxifenil]-N-(metilsulfonil) metanosulfonamida

A una solución en 6 ml de tetrahidrofurano de 114 mg (0,323 mmoles) del compuesto obtenido en el Ejemplo 44, se le añadieron 49 μ l (0,63 mmoles) de cloruro de metanosulfonilo y 90 μ l (0,65 mmoles) de trietilamina, y la mezcla se agitó a temperatura ambiente durante 1 hora. Después, se añadieron adicionalmente 23μ l (0,3 mmoles) de cloruro de metanosulfonilo a la mezcla de reacción, y la mezcla se agitó a temperatura ambiente durante 1 hora. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con cloroformo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 30/1) para obtener 123 mg (75%) del compuesto del título.

Ejemplo 142

15

20

N-[4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]metanosulfonamida

A una solución en 2 ml de metanol de 100 mg (0,20 mg) del compuesto obtenido en el Ejemplo 141, se le añadió 1 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 3 horas. Después, la mezcla de reacción se diluyó con agua, y la dilución se lavó con diclorometano. La capa acuosa se aciduló con una solución acuosa 2M de ácido clorhídrico, y los sólidos precipitados se recogieron mediante filtración, seguido de secado y recristalización para obtener 19 mg (22%) del compuesto del título.

Ejemplo 143

3-Ciclohexil-6-[2-metoxi-4-(2-oxo-1,3-oxazolidin-3-il)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 6 ml de tetrahidrofurano de 150 mg (0,425 mmoles) del compuesto obtenido en el Ejemplo 44, se le añadieron 79 μ l (0,765 mmoles) de cloroformiato de 2-cloroetilo y trietilamina, y la mezcla se agitó a temperatura ambiente durante 20 horas. Adicionalmente, se añadieron 30 μ l (0,29 mmoles) de cloroformiato de 2-cloroetilo, y la mezcla se agitó a temperatura ambiente durante 4 horas. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con cloroformo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. A una solución en 2 ml de etanol del residuo, se le añadió 1 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 5 horas. Después, la mezcla de reacción se neutralizó con una solución acuosa 1M de ácido clorhídrico, y se extrajo con cloroformo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se recristalizó en etanol para obtener 116 mg (65%) del compuesto del título.

45 Ejemplo 144

3-Ciclohexil-6-[2-metoxi-4-(2-oxo-1-imidazolidinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 4 ml de tetrahidrofurano de 150 mg (0,425 mmoles) del compuesto obtenido en el Ejemplo 44, se le añadieron 71 μ l (0,829 mmoles) de isocianato de 2-cloroetilo, y la mezcla se agitó a temperatura ambiente durante 20 horas. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con cloroformo. La capa orgánica se lavó con una solución acuosa saturada de cloruro de sodio, y después se secó sobre sulfato de sodio anhidro, seguido de la eliminación del disolvente mediante destilación a presión reducida. Al residuo, se le añadieron 4 ml de etanol y 2 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 15 horas. Después, la mezcla de reacción se neutralizó con una solución acuosa 1M de ácido clorhídrico, y se extrajo con cloroformo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 1/1) para obtener 95 mg (53%) del compuesto del título.

Ejemplo 145

4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenilcarbamato de etilo

A una suspensión en 6 ml de tetrahidrofurano de 100 mg (0,283 mmoles) del compuesto obtenido en el Ejemplo 44, se le añadieron 48 μ l (0,50 mmoles) de clorocarbonato de etilo y 98 μ l (0,707 mmoles) de trietilamina, y la mezcla se agitó a temperatura ambiente durante 3 horas. Adicionalmente, se añadieron 48 μ l (0,50 mmoles) de clorocarbonato

de etilo y 1 ml de piridina, y la mezcla se agitó a temperatura ambiente durante 18 horas. Después, se añadió una solución acuosa 1M de hidróxido de sodio a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo/hexano = 1/1~2/1) para obtener 68 mg (57%) del compuesto del título.

Ejemplo 146

10

30

35

45

50

N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-d]hidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-N-metilacetamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 4, excepto que se utilizó el compuesto obtenido en el Ejemplo 47 en lugar del compuesto obtenido en el Ejemplo 3. De esta manera, se obtuvieron 94 mg (92%) del compuesto del título.

Ejemplo 147

N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-N-metilmetanosulfonamida

A una solución en 3 ml de piridina de 91,8 mg (0,25 mmoles) del compuesto obtenido en el Ejemplo 47, se le añadieron 23,2 μ l (0,3 mmoles) de cloruro de metanosulfonilo, y la mezcla se agitó a temperatura ambiente durante 20 horas. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo/hexano = 2/1-sólo acetato de etilo) para obtener 97,2 mg (87%) del compuesto del título.

Ejemplo 148

N-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-morfolinocarboxa-mida

A una suspensión en 3 ml de diclorometano de 100 mg (0,283 mmoles) del compuesto obtenido en el Ejemplo 44, se le añadieron 28 mg (0,0944 mmoles) de trifosgeno y 79 μ l (0,566 mmoles) de trietilamina, y la mezcla se agitó a temperatura ambiente durante 15 minutos. Después, se añadieron 25 μ l (0,283 mmoles) de morfolina a la mezcla de reacción, y la mezcla se agitó a temperatura ambiente durante 4 horas. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 15/1) para obtener 95 mg (72%) del compuesto del título.

Ejemplo 149

3-Ciclohexil-6-{2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 4 ml 1,2-dicloroetano de 200 mg (0,46 mmoles) del compuesto obtenido en el Ejemplo 30, se le añadieron $100 \,\mu$ l (0,92 mmoles) de metilamina (solución metanólica al 30%), 146 mg (0,69 mmoles) de triacetoxiborohidruro de sodio, y 26 μ l de ácido acético, y la mezcla se agitó a temperatura ambiente durante 6 horas. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con cloroformo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo/cloroformo/metanol = 10/10/1) para obtener $176 \, \text{mg}$ (85%) del compuesto del título.

Ejemplo 150

 $Monometanosulfonato\ de\ 3-ciclohexil-6-\{2-metoxi-4-[4-(metilamino)-1-piperidinil]fenil\}-1-metil-1,5-dihidro-4H-pi-razolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 149 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 38 mg (55%) del compuesto del título.

Ejemplo 151

N'-[4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-N-(2-hidroxietil)-N-metilurea

Se realizó el mismo procedimiento de reacción que en el Ejemplo 148, excepto que se utilizó se utilizó 2-(metilamino)etanol en lugar de morfolina. De esta manera, se obtuvieron 162 mg (42%) del compuesto del título.

Ejemplo 152

15

3-Ciclohexil-6-[2-metoxi-4-(3-metil-2-oxo-1-imidazolidinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una suspensión en 3 ml de tetrahidrofurano de 114 mg (0,25 mmoles) del compuesto obtenido en el Ejemplo 151, se le añadieron 52 mg (0,30 mmoles) de 1,1'-azobis(N,N-dimetilformamida) y 75 μ l (0,30 mmoles) de n-tributilfosfina, y la mezcla se agitó a temperatura ambiente durante 20 horas. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo) para obtener 71,6 mg (66%) del compuesto del título.

25 Ejemplo 153

3-Ciclohexil-6-{4-[4-(dimetilamino)-1-piperidinil]-2-metoxifenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 135, excepto que se utilizó el compuesto obtenido en el Ejemplo 149 en lugar del compuesto obtenido en el Ejemplo 133. De esta manera, se obtuvieron 68,3 mg (74%) del compuesto del título.

35 Ejemplo 154

 $Monometano sulfonato\ de\ 3-ciclohexil-6-\{4-[4-(dimetilamino)-1-piperidinil]-2-metoxifenil\}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

A una solución en 1 ml de etanol de 50 mg (0,108 mmoles) del compuesto obtenido en el Ejemplo 153, se le añadieron 7,1 ml (0,110 mmoles) de ácido metanosulfónico, y la mezcla se calentó a reflujo durante 10 minutos. Después, la mezcla de reacción se enfrió a temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante recristalización (acetato de etilo-etanol) para obtener 28 mg (46%) del compuesto del título.

Ejemplo 155

3-Ciclohexil-6-[4-(1,1-dioxido-2-isotiazolidinil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en 2 ml de piridina de 100 mg (0,280 mmoles) del compuesto obtenido en el Ejemplo 44, se le añadieron 85,2 μ l (0,700 mmoles) de cloruro de 3-cloropropanosulfonilo, y la mezcla se agitó a temperatura ambiente durante 8 horas. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y después se secó sobre sulfato de sodio anhidro, seguido de la eliminación del disolvente mediante destilación a presión reducida. Al residuo, se añadieron 2 ml de etanol y una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 48 horas. Después, la mezcla de reacción se neutralizó con una solución acuosa 1M de ácido clorhídrico, y se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio. Después de secar la capa lavada sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo) para obtener 68 mg (53%) del compuesto del título.

65

Ejemplo 156

4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-N-(2-hidroxietil)-3-metoxi-N-metilbence no sulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó se utilizó 2-(metilamino)etanol en lugar de N-metilpiperazina. De esta manera, se obtuvieron 54 mg (57%) del compuesto del título.

Ejemplo 157

 $4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,\underline{4}-d]pirimidin-6-il)-N-(2-(dimetilamino)etil)-3-metoxi-N-metilbence no sulfonamida$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó N,N,N'-trimetiletilendiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 56 mg (56%) del compuesto del título.

20 Ejemplo 158

15

Monometanosulfonato de 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-N-(2-(dimetilamino)etil)-3-metoxi-N-metilbencenosulfonamida

A una solución en 1 ml de etanol de 44 mg (0,0876 mmoles) del compuesto obtenido en el Ejemplo 157, se le añadieron 5,8 μl (0,0894 mmoles) de ácido metanosulfónico, y la mezcla se calentó a reflujo durante 10 minutos. Después, la mezcla de reacción se enfrió a temperatura ambiente, y se añadió éter a la mezcla de reacción. Los sólidos precipitados se recogieron mediante filtración. Los sólidos se purificaron mediante recristalización (acetato de etiloetanol) para obtener 22 mg (42%) del compuesto del título.

Ejemplo 159

4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-N-(3-hidroxipropil)-3-metoxibenceno-sulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó n-propanolamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 148 mg (54%) del compuesto del título.

Ejemplo 160

40

50

60

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó homopiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 115 mg (50%) del compuesto del título.

Ejemplo 161

 $Monometanosulfonato\ de\ 3-ciclohexil-6-[4-(1,4-diazepan-1-ilsulfonil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 160 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 15 mg (36%) del compuesto del título.

Ejemplo 162

 $3-Ciclohexil-6-\{2-metoxi-4-[(4-metil-1-4-diazepan-1-il)sulfonil] fenil\}-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 135, excepto que se utilizó el compuesto obtenido en el Ejemplo 160 en lugar del compuesto obtenido en el Ejemplo 133. De esta manera, se obtuvieron 47,6 mg (77%) del compuesto del título.

Ejemplo 163

Monometanosulfonato de 3-ciclohexil-6-{2-metoxi-4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 154, excepto que se utilizó el compuesto obtenido en el Ejemplo 162 en lugar del compuesto obtenido en el Ejemplo 153. De esta manera, se obtuvieron 20 mg (46%) del compuesto del título.

Ejemplo 164

10

15

3-Ciclohexil-6-{4-[(3-hidroxi-1-pirrolidinil)sulfonil]-2-metoxifenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimi-din-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó 3-pirrolidinol en lugar de N-metilpiperazina. De esta manera, se obtuvieron 85 mg (76%) del compuesto del título.

20 Ejemplo 165

3-Ciclohexil-6-[2-metoxi-4-(4-tiomorfolinilsulfonil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó tiomorfolina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 86,3 mg (75%) del compuesto del título.

Ejemplo 166

3-ciclohexil-6-[4-(1,4-dioxa-8-azaespiro[4,5]deca-8-ilsulfonil)-2-metoxifenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó 1,4-dioxa-8-azaespiro[4,5]decano en lugar de N-metilpiperazina. De esta manera, se obtuvieron 254 mg (68%) del compuesto del título.

Ejemplo 167

40 3-Ciclohexil-6-{2-metoxi-4-[(4-oxo-1-piperidinil)sulfonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 30, excepto que se utilizó el compuesto obtenido en el Ejemplo 166 en lugar del compuesto obtenido en el Ejemplo 29. De esta manera, se obtuvieron 182 mg (99%) del compuesto del título.

Ejemplo 168

50 3-Ciclohexil-6-(2-metoxi-4-{[4-(metilamino)-1-piperidinil]sulfonil}fenil)-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 149, excepto que se utilizó el compuesto obtenido en el Ejemplo 167 en lugar del compuesto obtenido en el Ejemplo 30. De esta manera, se obtuvieron 92 mg (60%) del compuesto del título.

Ejemplo 169

60 Monometanosulfonato de 3-ciclohexil-6-(2-metoxi-4-{[4-(metilamino)-1-piperidinil]sulfonil}fenil)-1-metil-1,5-dihi-dro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 154, excepto que se utilizó el compuesto obtenido en el Ejemplo 168 en lugar del compuesto obtenido en el Ejemplo 153. De esta manera, se obtuvieron 30,5 mg (43%) del compuesto del título.

Ejemplo 170

 $1-\{[4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil] sulfonil\}-3-pirrolidinilcarbamato de bencilo$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó monohidrocloruro de 3-pirrolidinilcarbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 108 mg (76%) del compuesto del título.

Ejemplo 171

15

20

25

30

35

40

45

50

55

60

 $6-\{4-[(3-Amino-1-pirrolidinil)sulfonil]-2-metoxifenil)-3-ciclohexil-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 170 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 48 mg (76%) del compuesto del título.

Ejemplo 172

 $Monometanosulfonato\ de\ 6-\{4-[(3-amino-1-pirrolidinil)sulfonil]-2-metoxifenil\}-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 154, excepto que se utilizó el compuesto obtenido en el Ejemplo 171 en lugar del compuesto obtenido en el Ejemplo 153. De esta manera, se obtuvieron 37 mg (90%) del compuesto del título.

Ejemplo 173

1-[(4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]sulfonil}-4-piperidinilcarbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó monohidrocloruro de 3-piperidinilcarbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 202 mg (93%) del compuesto del título.

Ejemplo 174

 $6-\{4-[(4-Amino-1-piperidinil)sulfonil]-2-metoxifenil\}-3-ciclohexil-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 173 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 94 mg (78%) del compuesto del título.

Ejemplo 175

Monometanosulfonato de 6-{4-[(4-amino-1-piperidinil)sulfonil]-2-metoxifenil}-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3-4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 174 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 60 mg (63%) del compuesto del título.

Ejemplo 176

3-Ciclohexil-6-[2-metoxi-4-(4-tiomorfolinil)fenil]-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 60 en lugar de ácido 4-bromo-2-metoxibenzoico. De esta manera, se obtuvieron 126 mg (18%) del compuesto del título.

Ejemplo 177

6-(4-Bromofenil)-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirinidin-4-ona

A una solución en 30 ml de piridina de 2,2 g (10 mmoles) del compuesto obtenido en el Ejemplo 32, se le añadieron 2,8 g (13 mmoles) de cloruro de p-bromobenzoilo, y la mezcla se agitó a temperatura ambiente durante 3 horas. Adicionalmente, se añadieron 1,0 g (4,5 mmoles) de cloruro de p-bromobenzoilo, y la mezcla se agitó a temperatura ambiente durante 4 horas. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y después se secó sobre sulfato de sodio anhidro, seguido de la eliminación del disolvente mediante destilación a presión reducida. Al residuo, se le añadieron 80 ml de etanol y 40 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se calentó a reflujo durante 8 horas. Después, la mezcla de reacción se enfrió a temperatura ambiente, y se añadió ácido acético. Los sólidos precipitados se recogieron mediante filtración, los sólidos obtenidos se disolvieron en cloroformo, y la solución se lavó con hidrogenocarbonato de sodio, agua y una solución acuosa saturada de cloruro de sodio por este orden. Después de secar la capa orgánica sobre sulfato de sodio anhidro, el disolvente se separó mediante destilación a presión reducida. El residuo se recristalizó (etanol) para obtener 590 mg (15%) del compuesto del título.

20 Ejemplo 178

3-Ciclohexil-1-metil-6-[4-(4-metil-1-piperazinil)fenil]-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 177 en lugar del compuesto obtenido en el Ejemplo 26. De esta manera, se obtuvieron 143 mg (77%) del compuesto del título.

Ejemplo 179

30

Monometanosulfonato de 3-ciclohexil-1-metil-6-[4-(4-metil-1-piperazinil)fenil]-1,5-dihidro-4H-pirazolo[3,4-d1]piri-midin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 62, excepto que se utilizó el compuesto obtenido en el Ejemplo 178 en lugar del compuesto obtenido en el Ejemplo 61. De esta manera, se obtuvieron 106 mg (86%) del compuesto del título.

Ejemplo 180

6-(4-Aminofenil)-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una solución en piridina de 2,2 g (10 mmoles) del compuesto obtenido en el Ejemplo 32, se le añadieron 2,2 g (13 mmoles) de cloruro de p-nitrobenzoilo, y la mezcla se agitó a temperatura ambiente durante 1,5 horas. Después, la mezcla de reacción se destiló a presión reducida, y se añadió una solución acuosa de hidrogenocarbonato de sodio al residuo, seguido de extracción de la mezcla con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y después se secó sobre sulfato de sodio anhidro, seguido de la eliminación del disolvente mediante destilación a presión reducida. Al residuo, se le añadieron 30 ml de metanol y 400 mg de paladio sobre carbono al 10%. La mezcla se agitó durante 8 horas en una atmósfera de hidrógeno a temperatura ambiente y a presión atmosférica. Después, el catalizador se eliminó mediante filtración, y el producto filtrado se destiló a presión reducida. Al residuo, se le añadieron 80 ml de etanol y 40 ml de una solución acuosa 1M de hidróxido de sodio, seguido de calentamiento de la mezcla a reflujo durante 5 horas. Después, la mezcla de reacción se enfrió a temperatura ambiente, se diluyó con agua, y se extrajo con cloroformo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y después se secó sobre sulfato de sodio anhidro, seguido de la eliminación del disolvente mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 30/1) para obtener 960 mg (30%) del compuesto del título.

60 Ejemplo 181

Cloruro de 4-(3-ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)bencenosulfonilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 48, excepto que se utilizó el compuesto obtenido en el Ejemplo 180 en lugar del compuesto obtenido en el Ejemplo 44. De esta manera, se obtuvieron 743 mg (65%) del compuesto del título.

Ejemplo 182

- 3-Ciclohexil-6-{4-[(4-hidroxi-1-piperidinil)sulfonil]fenil}-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona
- Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 181 en lugar del compuesto obtenido en el Ejemplo 48, y 4-hidroxipiperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 72 mg (62%) del compuesto del título.
- 10 Ejemplo 183
 - $6-\{4-[4-(Bencilamino)-1-piperidinil]-2-metoxifenil\}-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$
- Se realizó el mismo procedimiento de reacción que en el Ejemplo 149, excepto que se utilizó bencilamina en lugar de metilamina. De esta manera, se obtuvieron 236 mg (90%) del compuesto del título.

Ejemplo 184

20

35

45

55

6-[4-(4-amino-1-piperidinil)-2-metoxifenil]-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 183 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 126 mg (76%) del compuesto del título.

Ejemplo 185

30 Monometanosulfonato de 6-[4-(4-amino-1-piperidinil)-2-metoxifenil]-3-ciclohexil-1-metil-1,5-dihidro-4H-pirazolo [3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 154, excepto que se utilizó el compuesto obtenido en el Ejemplo 184 en lugar del compuesto obtenido en el Ejemplo 153. De esta manera, se obtuvieron 53 mg (43%) del compuesto del título.

Ejemplo 186

40 3-Ciclohexil-1-metil-6-{4-[{4-metil-1,4-diazepan-1-il)sulfonil]fenil}-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 181 en lugar del compuesto obtenido en el Ejemplo 48, y N-metil-1,4-diazacicloheptano en lugar de N-metilpiperazina. De esta manera, se obtuvieron 110 mg (45%) del compuesto del título.

Ejemplo 187

Monometanosulfonato de 3-ciclohexil-1-metil-6-[4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-1,5-dihidro-4H-pirazo-50 lo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 154, excepto que se utilizó el compuesto obtenido en el Ejemplo 186 en lugar del compuesto obtenido en el Ejemplo 153. De esta manera, se obtuvieron 75 mg (72%) del compuesto del título.

Ejemplo 188

1-[4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)fenil]-4-piperidinil(metil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 177 en lugar del compuesto obtenido en el Ejemplo 26, y metil(4-piperidinil)carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 255 mg (71%) del compuesto del título.

Ejemplo 189

Monometanosulfonato de 3-ciclohexil-1-metil-6-{4-[4-(metilamino)-1-piperidinil]fenil}-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una suspensión en 5 ml de metanol del compuesto obtenido en el Ejemplo 188, se le añadieron paladio sobre carbono al 10% y $27~\mu$ l (0,41 mmoles) de ácido metanosulfónico. La mezcla se agitó durante 72 horas en atmósfera de hidrógeno a temperatura ambiente y a presión atmosférica. Después, el catalizador se eliminó mediante filtración para obtener 221 mg (cuant.) del compuesto del título.

Ejemplo 190

15

20

2.5

35

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 181 en lugar del compuesto obtenido en el Ejemplo 48, y homopiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 64 mg (37%) del compuesto del título.

Ejemplo 191

 $3-Ciclohexil-6-\{4-[(1,1-dioxido-4-tiomorfolinil)sulfonil]-2-metoxifenil\}-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d]piri-midin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó monohidrocloruro de 1,1-dioxido de tiomorfolina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 124 mg (67%) del compuesto del título.

Ejemplo 192

3-Ciclohexil-6-[4-(1,1-dioxido-4-tiomorfolinil)-2-metoxifenil]-1-metil-1, 5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó monohidrocloruro de 1,1-dioxido de tiomorfolina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 69 mg (41%) del compuesto del título.

Ejemplo 193

6-(4-Bromo-2-metoxifenil)-3-ciclohexil-1-etil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 26, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 57 en lugar del compuesto obtenido en el Ejemplo de Producción 32. De esta manera, se obtuvieron 523 mg (53%) del compuesto del título.

50 Ejemplo 194

3-Ciclohexil-1-etil-6-[2-metoxi-4-(4-metil-1-piperazinil)fenil]-1, 5-dihidro-4H-pirazolo[3,4-d] pirimidin-4-onally and a substitution of the property of the

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 193 en lugar del compuesto obtenido en el Ejemplo 26. De esta manera, se obtuvieron 62 mg (41%) del compuesto del título.

Ejemplo 195

60

1-[4-(3-Ciclohexil-1-etil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxifenil]-4-piperidinil(metil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 27, excepto que se utilizó el compuesto obtenido en el Ejemplo 193 en lugar del compuesto obtenido en el Ejemplo 26, y monohidrocloruro de metil(4-piperidinil) carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 215 mg (90%) del compuesto del título.

Ejemplo 196

3-ciclohexil-1-etil-6-{2-metoxi-4-(4-metilamino)-1-piperidinil}fenil}-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 195 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 130 mg (cuant.) del compuesto del título.

10 Ejemplo 197

Cloruro de 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencenosulfonilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 48, excepto que se utilizó el compuesto obtenido en el Ejemplo 9 en lugar del compuesto obtenido en el Ejemplo 44. De esta manera, se obtuvieron 1,01 g (91%) del compuesto del título.

Ejemplo 198

20

30

40

50

1-Ciclohexil-5-{2-metoxi-4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimi-din-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y N-metil-1,4-diazacicloheptano en lugar de N-metilpiperazina. De esta manera, se obtuvieron 146 mg (83%) del compuesto del título.

Ejemplo 199

1-Ciclohexil-5-{4-[(4-hidroxi-1-piperidinil)sulfonil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4-3-d]pirimi-din-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y 4-hidroxipiperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 145 mg (84%) del compuesto del título.

Ejemplo 200

4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-N-(2-hidroxietil)-3-metoxibence no sulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y etanolamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 113 mg (71%) del compuesto del título.

Ejemplo 201

4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-metilbence no sulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y metilamina (30% etanol solución) en lugar de N-metilpiperazina. De esta manera, se obtuvieron 88 mg (60%) del compuesto del título.

Ejemplo 202

60 1-Ciclohexil-5-[4-(1,4-diazepan-1-ilsulfonil]-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y homopiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 141 mg (82%) del compuesto del título.

Ejemplo 203

 $Monometano sulfonato\ de\ 1-ciclohexil-5-[4-(1,4-diazepan-1-ilsulfonil)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo [4,3-d] pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 154, excepto que se utilizó el compuesto obtenido en el Ejemplo 202 en lugar del compuesto obtenido en el Ejemplo 153. De esta manera, se obtuvieron 24 mg (40%) del compuesto del título.

Ejemplo 204

4-(3-Ciclohexil-1-metil-4-oxo-4,5-dihidro-1H-pirazolo[3,4-d]pirimidin-6-il)-3-metoxi-N-metilbencenosulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó metilamina (30% etanol solución) en lugar de N-metilpiperazina. De esta manera, se obtuvieron 102 mg (69%) del compuesto del título

20 Ejemplo 205

6-(4-Amino-2-metoxifenil)-3-ciclohexil-1-etil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

A una suspensión en 10 ml de 1,2-dicloroetano de 1,2 g (6,06 mmoles) de ácido 2-metoxi-4-nitrobenzoico, se le añadieron 0,88 ml (12,1 mmoles) de cloruro de tionilo, y la mezcla se calentó a reflujo durante 1,5 horas. La mezcla de reacción se enfrió a temperatura ambiente, y después se destiló a presión reducida para obtener un cloruro de ácido.

A una solución en 10 ml de piridina del cloruro de ácido sintetizado antes, se le añadieron 1,1 g (4,66 mmoles) del compuesto obtenido en el Ejemplo de Producción 57. La mezcla se agitó a temperatura ambiente durante
5 horas. Después, la mezcla de reacción se destiló a presión reducida, se añadió una solución acuosa de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y
una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, seguido de la eliminación del disolvente mediante destilación a presión reducida. Se obtuvo una carboxamida intermedia mediante este
procedimiento.

A una mezcla disolvente de 30 ml de metanol/10 ml de N,N-dimetilformamida de la carboxamida intermedia anterior, se le añadieron 170 mg de paladio sobre carbono al 5%, y la mezcla se agitó durante 18 horas en una atmósfera de hidrógeno a temperatura ambiente y a presión atmosférica. Después, el catalizador se eliminó mediante filtración, y el producto filtrado se destiló a presión reducida para obtener una amina intermedia.

A la amina intermedia anterior, se le añadieron 19 ml de etanol y 38 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se calentó a reflujo durante 24 horas. Después, la mezcla de reacción se enfrió a temperatura ambiente, se diluyó con agua, y se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, después de lo cual el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (cloroformo/metanol = 30/1) para obtener 996 mg (58%) del compuesto del título.

50 Ejemplo 206

Cloruro de 4-(3-ciclohexil-1-etil-4-oxo-4,5-dihidro-1H-azolo[3,4-d]pirimidin-6-il}-3-metoxibencenosulfonilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 48, excepto que se utilizó el compuesto obtenido en el Ejemplo 205 en lugar del compuesto obtenido en el Ejemplo 44. De esta manera, se obtuvieron 940 g (83%) del compuesto del título.

Eiemplo 207

60

 $3-Ciclohexil-1-etil-6-\{4-[(4-hidroxi-1-piperidinil)sulfonil]-2-metoxifenil\}-1, \\5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 206 en lugar del compuesto obtenido en el Ejemplo 48, y 4-hidroxipiperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 155 mg (91%) del compuesto del título.

Ejemplo 208

3-Ciclohexil-1-etil-6-{2-metoxi-4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-1,5-dihidro-4H-pirazolo[3,4-d]pirimi-din-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 206 en lugar del compuesto obtenido en el Ejemplo 48, y N-metil-1,4-diazacicloheptano en lugar de N-metilpiperazina. De esta manera, se obtuvieron 129 mg (74%) del compuesto del título.

Ejemplo 209

3-Ciclohexil-6-[4-(1,4-diazepan-1-ilsulfonil)-2-metoxifenil]-1-etil-1,5-dihidro-4H-pirazolo[3,4-d]pirimidin-4-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 206 en lugar del compuesto obtenido en el Ejemplo 48, y homopiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 100 mg (59%) del compuesto del título.

20 Ejemplo 210

N-(2-aminoetil)-4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-metilbence-nosulfonamida (210-1)

25 4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-[2-(metilamino)etil]bence-nosulfonamida (210-2)

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y N-metiletilendiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 139 mg (59%) de N-(2-aminoetil)-4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-metilbencenosulfonamida, y 39 mg (16%) de 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-[2-(metilamino)etil]-bencenosulfonamida.

Ejemplo 211

35

45

50

55

60

 $\label{lem:constraint} 4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-N-[2-(dimetilamino)etil]-3-metoxibence no sulfonamida$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y N,N-dimetiletilendiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 95,4 mg (85%) del compuesto del título.

Ejemplo 212

4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4-3-d]pirimidin-5-il)-3-metoxi-N-metil-N-[2-(metilamino)etil]bencenosulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y N,N'-dimetiletilendiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 82 mg (73%) del compuesto del título.

Ejemplo 213

 $\label{lem:constraint} 4- (1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-N- (2-hidroxietil)-3-metoxi-N-metilbencenosulfonamida$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y 2-(metilamino)etanol en lugar de N-metilpiperazina. De esta manera, se obtuvieron 70 mg (64%) del compuesto del título.

Ejemplo 214

1-Ciclohexil-5-{2-metoxi-4-[(4-metil-1-piperazinil)sulfonil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48. De esta manera, se obtuvieron 69 mg (60%) del compuesto del título.

Ejemplo 215

15

2.5

4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-metil-N-[3-(metilamino) propil] bencenosulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y N,N'-dimetil-1,3-propanodiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 36 mg (31%) del compuesto del título.

Ejemplo 216

1-Ciclohexil-5-(4-{[4-(2-hidroxietil)-1-piperazinil]sulfonil}-2-metoxifenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y 1-piperazinoetanol en lugar de N-metilpiperazina. De esta manera, se obtuvieron 79 mg (65%) del compuesto del título.

Ejemplo 217

1-Ciclohexil-5-[2-metoxi-4-(1-piperazinilsulfonil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y piperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 34 mg (30%) del compuesto del título.

40 Ejemplo 218

1-Ciclohexil-5-{4-[(4-etil-1-piperazinil)sulfonil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y N-etilpiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 90 mg (76%) del compuesto del título.

50 Ejemplo 219

N-(1-bencil-4-piperidinil)-4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencenosulfonamida

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y 4-amino-1-bencilpiperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 39 mg (29%) del compuesto del título.

60 Ejemplo 220

 $Monohidroc loruro\ de\ 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxi-N-(4-pi-peridinil) bencenosul fonamida$

A una solución en 2 ml de diclorometano de 30 mg (0,05 mmoles) del compuesto obtenido en el Ejemplo 219, se le añadieron $11 \mu l$ (0,101 mmoles) de cloroformiato de 1-cloroetilo, y la mezcla se agitó a temperatura ambiente durante 3 horas. Después, la mezcla de reacción se destiló a presión reducida, se añadieron al residuo 2 ml de metanol, y la mezcla se calentó a reflujo durante 3 horas. La mezcla de reacción se enfrió a temperatura ambiente, y el disolvente

se separó mediante destilación a presión reducida. El residuo se recristalizó en etanol para obtener 12 mg (45%) del compuesto del título.

5 Ejemplo 221

1-{[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]sulfonil}-4-piperidinil (metil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 197 en lugar del compuesto obtenido en el Ejemplo 48, y monohidrocloruro de metil(4-piperidinil) carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 125 mg (84%) del compuesto del título.

15

Ejemplo 222

 $1-Ciclohexil-5-(2-metoxi-4-\{[4-(metilamino)-1-piperidinil] sulfonil\} fonil)-3-metil-1, 6-dihidro-7H-pirazolo [4,3-d] pirimidin-7-ona$

20

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 221 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 62 mg (86%) del compuesto del título.

25

Ejemplo 223

5-{4-[(1-Bencil-4-piperidinil)amino]-2-metoxifenil}-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

30

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó 4-amino-1-bencilpiperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 148 mg (78%) del compuesto del título.

35 Ejemplo 224

1-Ciclohexil-5-[2-metoxi-4-(4-piperidinilamino)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

A una solución en 3 ml de diclorometano de 120 mg (0,228 mmoles) del compuesto obtenido en el Ejemplo 223, se le añadieron 50 μl (0,456 mmoles) de cloroformiato de 1-cloroetilo, y la mezcla se agitó a temperatura ambiente durante 4 horas. Adicionalmente, se añadieron 50 μl (0,456 mmoles) de cloroformiato de 1-cloroetilo y 3 ml de 1,2-dicloroetano, y la mezcla se calentó a reflujo durante 5 horas. Después, la mezcla de reacción se destiló a presión reducida, se añadieron 3 ml de metanol al residuo, y la mezcla se calentó a reflujo durante 1,5 horas. La mezcla de reacción se enfrió a temperatura ambiente, y el disolvente se separó mediante destilación a presión reducida. Se añadió una solución acuosa de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, después de lo cual el disolvente se separó mediante destilación a presión reducida. El residuo se purificó cromatografía en columna alcalina de gel de sílice (diclorometano/metanol = 20/1) para obtener 62 mg (62%) del compuesto del título.

50

Ejemplo 225

1-Ciclohexil-5-[2-metoxi-4-[(2-metoxietil)amino]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

55

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó metoxietilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 63 mg (43%) del compuesto del título.

60 Ejemplo 226

(2E)-3-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-2-propenato de metilo

A una solución en 2 ml de N,N-dimetilformamida de 150 mg (0,36 mmoles) del compuesto obtenido en el Ejemplo 15, se le añadieron 8 mg (0,036 mmoles) de acetato de paladio, 22 mg (0,072 mmoles) de tri-o-tolilfosfina, 0,15 ml (1,08 mmoles) de trietilamina, y 97 μl (1,08 mmoles) de acrilato de metilo, y la mezcla se agitó a 115°C en un tubo sellado durante 15 horas. Después, la mezcla de reacción se enfrió a temperatura ambiente, se añadió agua, y la mezcla

se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, después de lo cual el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 2/1) para obtener 130 mg (85%) del compuesto del título.

Ejemplo 227

Ácido (2E)-3-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-2-propéni-

A una suspensión en 1 ml de metanol de 45 mg (0,107 mmoles) del compuesto obtenido en el Ejemplo 226, se le añadió 1 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 2 horas. Después, la mezcla de reacción se diluyó con agua, y la capa acuosa se lavó con éter. La capa acuosa se aciduló con una solución acuosa 2M de ácido clorhídrico, y los sólidos precipitados se recogieron mediante filtración para obtener 39 mg (89%) del compuesto del título.

Ejemplo 228

20

3-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]propanato de metilo

A una solución en 2 ml de tetrahidrofurano de 63 mg (0,15 mmoles) del compuesto obtenido en el Ejemplo 226, se le añadieron 6 mg de óxido de platino, y la mezcla se agitó durante 3,5 horas en una atmósfera de hidrógeno a temperatura ambiente y presión atmosférica. Después, el catalizador se eliminó mediante filtración, y el producto filtrado se destiló a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo/hexano = 1/1) para obtener 52 mg (82%) del compuesto del título.

30 Ejemplo 229

Ácido 3-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]propánico

Se realizó el mismo procedimiento de reacción que en el Ejemplo 227, excepto que se utilizó el compuesto obtenido en el Ejemplo 228 en lugar del compuesto obtenido en el Ejemplo 226. De esta manera, se obtuvieron 32 mg (71%) del compuesto del título.

Ejemplo 230

 $1-Ciclohexil-5-(4-\{[2-(dimetilamino)etil]amino\}-2-metoxifenil)-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó N,N-dimetiletilendiamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 91 mg (50%) del compuesto del título.

Ejemplo 231

5-{4-[(1-Acetil-4-piperidinil)amino]-2-metoxifenil}-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó 1-acetil-4-piperidinilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 69 mg (60%) del compuesto del título.

Ejemplo 232

1-Ciclohexil-5-{2-metoxi-4-[(1-metil-4-piperidinil)amino]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó 1-metil-4-piperidinilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 76 mg (70%) del compuesto del título.

65

Ejemplo 233

4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibenzaldehído

A una solución en 3 ml de tetrahidrofurano de 150 mg (0,36 mmoles) del compuesto obtenido en el Ejemplo 15, se le añadieron gota a gota 0,45 ml de n-butil litio (solución en hexano 1,59M, 0,72 mmoles) a -78°C. Después de agitar la mezcla a la misma temperatura durante 30 minutos, se añadieron gota a gota 33,4 µl (0,43 mmoles) de N,N-dimetilformamida a la mezcla de reacción, seguido de agitación la mezcla a -78°C durante 2 horas. Después, se añadió una solución acuosa de amonio cloruro a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, después de lo cual el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano/acetato de etilo = 2/1) para obtener 73 mg (55%) del compuesto del título.

15

Ejemplo 234

1-Ciclohexil-5-{2-metoxi-4-[(4-metil-1-piperazinil)metil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

20

A una solución en 2 ml de 1,2-dicloroetano de 61 mg (0,166 mmoles) del compuesto obtenido en el Ejemplo 233, se le añadieron 37 μ l (0,332 mmoles) de N-metilpiperazina, 10 μ l de ácido acético, y 53 mg (0,252 mmoles) de triacetoxiborohidruro sodio, y la mezcla se agitó a temperatura ambiente durante 1 hora. Después, se añadió una solución acuosa de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, después de lo cual el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (diclorometano/metanol = 10/1) para obtener 57 mg (76%) del compuesto del título.

30

Ejemplo 235

1-Ciclohexil-5-[2-metoxi-4-(4-morfolinilmetil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 234, excepto que se utilizó morfolina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 72 mg (cuant.) del compuesto del título.

Ejemplo 236

40

 $1-Ciclohexil-5-\{4-[(4-hidroxi-1-piperidinil)metil]-2-metoxifenil\}-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d] pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 234, excepto que se utilizó 4-hidroxipiperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 65 mg (88%) del compuesto del título.

Ejemplo 237

50 1-Ciclohexil-5-(2-metoxi-4-{[(2-metoxietil)amino]metil}fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 234, excepto que se utilizó metoxietilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 66 mg (95%) del compuesto del título.

55

Ejemplo 238

1-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinocarboxilato de etilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 234, excepto que se utilizó isonipecotato de etilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 57 mg (69%) del compuesto del título.

Ejemplo 239

Ácido 1-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il]-3-metoxibencil]-4-piperidino-carboxílico

A una solución en 1 ml de etanol de 43 mg (0,0848 mmoles) del compuesto obtenido en el Ejemplo 238, se le añadió 1 ml de una solución acuosa 1M de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 2 horas. Después, la mezcla de reacción se destiló a presión reducida, y el residuo se disolvió en agua. Se añadió ácido acético, y los sólidos precipitados se recogieron mediante filtración para obtener 21 mg (52%) del compuesto del título.

Ejemplo 240

15 1-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxibencil]-4-piperidinil(metil) carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 234, excepto que se utilizó monohidrocloruro de metil(4-piperidinil)carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 92,5 mg (64%) del compuesto del título.

Ejemplo 241

25 1-Ciclohexil-5-(2-metoxi-4-{[4-(metilamino)-1-piperidinil]metil}fenil)-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]piri-midin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 240 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 52 mg (cuant.) del compuesto del título.

Ejemplo 242

35 1-Ciclohexil-5-[2-metoxi-4-(tetrahidro-2H-piran-4-ilamino)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

A una solución en 5 ml de 1,2-dicloroetano de 250 mg (0,71 mmoles) del compuesto obtenido en el Ejemplo 9, se le añadieron 25 μl de ácido acético y 66 μl (0,71 mmoles) de tetrahidro-4H-piran-4-ona, y la mezcla se agitó durante 30 minutos. Después, se añadieron 226 mg (1,07 mmoles) de triacetoxiborohidruro de sodio, y la mezcla se agitó a temperatura ambiente durante 20 horas. Adicionalmente, se añadieron 32 μl (0,35 mmoles) de tetrahidro-4H-piran-4-ona y 100 mg (0,45 mmoles) de triacetoxiborohidruro de sodio. La mezcla se agitó a 60°C durante 6 horas y después se agitó a temperatura ambiente durante 20 horas. Después, se añadió una solución acuosa saturada de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, después de lo cual el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (acetato de etilo/hexano = 2/1) para obtener 151 mg (49%) del compuesto del título.

⁵⁰ Ejemplo 243

1-Ciclohexil-5-[4-(1,4-dioxa-8-azaespiro[4,5]deca-8-il)-2-metoxifenil]-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]piri-midin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó 1,4-dioxa-8-azaespiro [4,5]decano en lugar de N-metilpiperazina. De esta manera, se obtuvieron 459 mg (80%) del compuesto del título.

Ejemplo 244

1-Ciclohexil-5-[2-metoxi-4-(4-oxo-1-piperidinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 30, excepto que se utilizó el compuesto obtenido en el Ejemplo 243 en lugar del compuesto obtenido en el Ejemplo 29. De esta manera, se obtuvieron 399 mg (cuant.) del compuesto del título.

Ejemplo 245

1-Ciclohexil-5-{4-[4-(dimetilamino)-1-piperidinil]-2-metoxifenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 234, excepto que se utilizó el compuesto obtenido en el Ejemplo 244 en lugar del compuesto obtenido en el Ejemplo 233, y monohidrocloruro de dimetilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 32,9 mg (42%) del compuesto del título.

Ejemplo 246

15

20

 $5-\{4-[4-(Bencilamino)-1-piperidinil]-2-metoxifenil\}-1-ciclohexil-3-metil-1, 6-dihidro-7H-pirazolo [4,3-d] pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 234, excepto que se utilizó el compuesto obtenido en el Ejemplo 244 en lugar del compuesto obtenido en el Ejemplo 233, y bencilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 115 mg (91%) del compuesto del título.

Ejemplo 247

5-[4-(4-Amino-1-piperidinil)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 246 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 70 mg (84%) del compuesto del título.

30 Ejemplo 248

1-Ciclohexil-5-[4-(1,4-dioxa-8-azaespiro[4,5]deca-8-il)-2-etoxifenil]-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]pirimi-din-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo 116 en lugar del compuesto obtenido en el Ejemplo 15, y 1,4-dioxa-8-azaespiro[4,5]decano en lugar de N-metilpiperazina. De esta manera, se obtuvieron 416 mg (70%) del compuesto del título.

40 Ejemplo 249

1-Ciclohexil-5-[2-etoxi-4-(4-oxo-1-piperidinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 30, excepto que se utilizó el compuesto obtenido en el Ejemplo 248 en lugar del compuesto obtenido en el Ejemplo 29. De esta manera, se obtuvieron 160 mg (40%) del compuesto del título.

Ejemplo 250

50

60

 $1-Ciclohexil-5-\{4-[4-(dimetilamino)-1-piperidinil]-2-etoxifenil\}-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d] pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 234, excepto que se utilizó el compuesto obtenido en el Ejemplo 249 en lugar del compuesto obtenido en el Ejemplo 233, y dimetilamina monohidrocloruro en lugar de N-metilpiperazina. De esta manera, se obtuvieron 46 mg (78%) del compuesto del título.

Ejemplo 251

 $5-\{4-[4-(Bencilamino)-1-piperidinil]-2-etoxifenil\}-1-ciclohexil-3-metil-1-6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 234, excepto que se utilizó el compuesto obtenido en el Ejemplo 249 en lugar del compuesto obtenido en el Ejemplo 233, y bencilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 86 mg (cuant.) del compuesto del título.

Ejemplo 252

1-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-etoxifenil]-4-piperidinil(etil)carbamato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo 116 en lugar del compuesto obtenido en el Ejemplo 15, y monohidrocloruro de etil(4-piperidinil) carbamato de bencilo en lugar de N-metilpiperazina. De esta manera, se obtuvieron 134 mg (47%) del compuesto del título.

Ejemplo 253

15

 $1-Ciclohexil-5-\{2-etoxi-4-[4-(etilamino)-3-piperidinil] fenil\}-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d] pirimidin-7-onalised for the property of the property$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 252 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 61 mg (69%) del compuesto del título.

Ejemplo 254

5-(4-amino-2-etoxifenil)-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 205, excepto que se utilizó se utilizó 2-etoxi-4nitrobenzoico ácido en lugar de ácido 2-metoxi-4-nitrobenzoico, y el compuesto obtenido en el Ejemplo de Producción 6 en lugar del compuesto obtenido en el Ejemplo de Producción 57. De esta manera, se obtuvieron 1,19 g (65%) del compuesto del título.

Ejemplo 255

Cloruro de 4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-etoxibencenosulfonilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 48, excepto que se utilizó el compuesto obtenido en el Ejemplo 254 en lugar del compuesto obtenido en el Ejemplo 44. De esta manera, se obtuvieron 1,05 g (91%) del compuesto del título.

40 Ejemplo 256

1-Ciclohexil-5-{2-etoxi-4-[(4-metil-1,4-diazepan-1-il)sulfonil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimi-din-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 255 en lugar del compuesto obtenido en el Ejemplo 48, y N-metil-1,4-diazacicloheptano en lugar de N-metilpiperazina. De esta manera, se obtuvieron 145 mg (83%) del compuesto del título.

50 Ejemplo 257

1-Ciclohexil-5-{2-etoxi-4-[(4-hidroxi-1-piperidinil)sulfonil]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 49, excepto que se utilizó el compuesto obtenido en el Ejemplo 255 en lugar del compuesto obtenido en el Ejemplo 48, y N-hidroxipiperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 147 mg (86%) del compuesto del título.

60 Ejemplo 258

1-Ciclohexil-5-[4-(4-hidroxi-1-piperidinil)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 31, excepto que se utilizó el compuesto obtenido en el Ejemplo 244 en lugar del compuesto obtenido en el Ejemplo 30. De esta manera, se obtuvieron 115 mg (cuant.) del compuesto del título.

Ejemplo 259

(2E)-3-[4-(1-ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-3-metoxifenil]-2-propenonitrilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 226, excepto que se utilizó acrilonitrilo en lugar de acrilato de metilo. De esta manera, se obtuvieron 89 mg (48%) del compuesto del título.

Ejemplo 260

10

20

2.5

5-[4-(4-Amino-1-piperidinil)-2-etoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo [4,3-dipirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 251 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 29 mg (50%) del compuesto del título.

Ejemplo 261

1-Ciclohexil-5-[2-etoxi-4-(4-hidroxi-1-piperidinil)fenil]-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d] pirimidin-7-onal and the property of the p

Se realizó el mismo procedimiento de reacción que en el Ejemplo 31, excepto que se utilizó el compuesto obtenido en el Ejemplo 249 en lugar del compuesto obtenido en el Ejemplo 30. De esta manera, se obtuvieron 117 mg (89%) del compuesto del título.

Ejemplo 262

1-Ciclohexil-5-[4-(1,4-diazepan-1-il)-2-etoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo 116 en lugar del compuesto obtenido en el Ejemplo 15, y homopiperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 97 mg (62%) del compuesto del título.

35 Ejemplo 263

1-Ciclohexil-5-{2-etoxi-4-[(2-metoxietil)amino]fenil}-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo 116 en lugar del compuesto obtenido en el Ejemplo 15, y metoxietilamina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 55 mg (37%) del compuesto del título.

Ejemplo 264

45 1-Ciclohexil-5-[2-etoxi-4-(4-metil-1-piperazinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo 116 en lugar del compuesto obtenido en el Ejemplo 15. De esta manera, se obtuvieron 115 mg (73%) del compuesto del título.

Ejemplo 265

4-[4-(1-Ciclohexil-3-metil-7-oxo-6,7-dihidro-1H-pirazolo[4,3-d]pirimidin-5-il)-2-fluoro-5-metoxifenil]-1,4-diazepa-no-1-carboxilato de bencilo

Se realizó el mismo procedimiento de reacción que en el Ejemplo 14, excepto que se utilizó el compuesto obtenido en el Ejemplo de Producción 63 en lugar del compuesto obtenido en el Ejemplo de Producción 34. De esta manera, se obtuvieron 152 mg (38%) del compuesto del título.

Ejemplo 266

1-Ciclohexil-5-[4-(1,4-diazepan-1-il)-5-fluoro-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 36, excepto que se utilizó el compuesto obtenido en el Ejemplo 265 en lugar del compuesto obtenido en el Ejemplo 35. De esta manera, se obtuvieron 181 mg (76%) del compuesto del título.

69

50

Ejemplo 267

 $1-Ciclohexil-5-\{2-metoxi-4-[metil(1-metil-4-piperidinil)amino]fenil\}-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona$

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó 1-metil-4-(metilamino) piperidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 181 mg (cuant.) del compuesto del título.

10 Ejemplo 268

1-Ciclohexil-5-[2-etoxi-4-(1-piperazinil)fenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó el compuesto obtenido en el Ejemplo 116 en lugar del compuesto obtenido en el Ejemplo 15, y piperazina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 86 mg (57%) del compuesto del título.

Ejemplo 269

20

30

5-[4-((3R)-3-{[t-Butil-(dimetil)silil]oxi}pirrolidinil)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó (3R)-3-{[t-butil(di-25 metil)silil]oxi}pirrolidina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 263 mg (82%) del compuesto del título.

Ejemplo 270

 $1-Ciclohexil-5-\{4-[(3R)-3-hidroxipirrolidinil]-2-metoxifenil\}-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d] pirimidin-7-onalised and the substitution of the property of the prope$

A una solución en 3 ml de tetrahidrofurano de 243 mg (0,452 mmoles) del compuesto obtenido en el Ejemplo 269, se le añadieron 0,54 ml de fluoruro de tetrabutilamonio (solución 1,0M en tetrahidrofurano, 0,54 mmoles), y la mezcla se agitó a temperatura ambiente durante 2 horas. Después, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con diclorometano. La capa orgánica se lavó con agua y una solución acuosa saturada de cloruro de sodio, y se secó sobre sulfato de sodio anhidro, después de lo cual el disolvente se separó mediante destilación a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (diclorometano/metanol = 30/1~20/1) para obtener 191 mg (cuant.) del compuesto del título.

Ejemplo 271

5-[4-(1-Bencil-4-hidroxi-piperidinil)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 122, excepto que se utilizó 1-bencil-4-piperidona en lugar de 1-metil-4-piperidona. De esta manera, se obtuvieron 162 mg (43%) del compuesto del título.

Ejemplo 272

5-[4-(1-Bencil-1,2,3,6-tetrahidro-4-piridinil)-2-metoxifenil]-1-ciclohexil-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]piri-midin-7-ona

Se realizó el mismo procedimiento de reacción que en el Ejemplo 123, excepto que se utilizó el compuesto obtenido en el Ejemplo 271 en lugar del compuesto obtenido en el Ejemplo 122. De esta manera, se obtuvieron 92 mg (68%) del compuesto del título.

Ejemplo 273

Monohidrocloruro de 1-ciclohexil-5-[2-metoxi-4-(1,2,3,6-tetrahidro-4-piridinil)fenil]-3-metil-1,6-dihidro-7H-pirazo-lo[4,3-d]pirimidin-7-ona

A una solución en 10 ml de 1,2-dicloroetano de 80 mg (0,16 mmoles) del compuesto obtenido en el Ejemplo 272, se le añadieron 25,4 μ l (0,24 mmoles) de cloroformiato de 1-cloroetilo, y la mezcla se calentó a reflujo durante 40 minutos. Después, la mezcla de reacción se devolvió a la temperatura ambiente, y se concentró a presión reducida.

70

60

55

45

50

Se añadió metanol (10 ml) al residuo, y la mezcla se calentó a reflujo durante 20 minutos. La mezcla de reacción se devolvió a la temperatura ambiente, y se concentró a presión reducida. Los sólidos precipitados se lavaron con metanol/éter = 1/4 para obtener 43 mg (60%) del compuesto del título.

5

Ejemplo 274

 $1-Ciclohexil-5-\{2-metoxi-4-(metil(tetrahidro-2H-piran-4-il)amino-fenil\}-3-metil-1, 6-dihidro-7H-pirazolo[4,3-d]piri-midin-7-ona$

10

Se realizó el mismo procedimiento de reacción que en el Ejemplo 16, excepto que se utilizó hidrocloruro de N-metiltetrahidro-2H-piran-4-amina en lugar de N-metilpiperazina. De esta manera, se obtuvieron 124 mg (76%) del compuesto del título.

15

20

Ejemplo 275

1-Ciclohexil-5-[4-(etilamino)-2-metoxifenil]-3-metil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona

En las reacciones del Ejemplo 242, se obtuvieron 58 mg (21%) del compuesto del título como subproducto.

Aplicabilidad industrial

30

25

Los derivados de pirazolopirimidinona de la presente invención tienen la acción de inhibir selectivamente PDE7, incrementando de ese modo el nivel de AMPc intracelular e inhibiendo la activación de las células T. De este modo, son útiles para la prevención y el tratamiento de diferentes enfermedades alérgicas y enfermedades inflamatorias o inmunológicas. Puesto que inhiben selectivamente PDE7, por otra parte, ejercen una influencia mínima sobre otras PDE. Así, se espera que disminuyan los efectos secundarios cuando se usen como fármacos.

35

(Tabla pasa a página siguiente)

40

45

50

55

60

5	MS (FAB) (M+1) ⁺	309	354	324
10		2H, m),), 2,57 59 (3H, (1H, m	2H, m),), 2,60 50 (4H,	49 (2H, 6H, m), 67 (2H, m)
15		m), 1,42-1,55 (2H, m), 1,89-2,14 (6H, m), 2,57 (1H, m), 7,51-7,59 (3H, m) 10,69-10,88 (1H, m	(1H, m), 1,39-1,56 (2H, m), 1,92-2,12 (6H, m), 5,11 (1H, m), 8,38-8,50 s ancho)	1,30 (1H, m), 1,32-1,49 (1H, m), 1,80-2,00 (6H, 4,86- 4,99 (1H, m), 5,67 (2H, m), 7,78-7,84 (2H, m)
20	RMN H ¹	(1H, m), m), 1,89-2 5,10 (1H,) (2H, m) 1	(1H, m), m), 1,92-2 5,11 (1H, s	L,30 (1H, m (1H, m), 1 4,86- 4,99 (2H, m), 7,78
25			1-1,37 (1 (1H, m) 5,00-5, (1H, s a	6 1,16-1,30 ,65-1,74 (1F 3H, s), 4,8 57-6,63 (2H,
30		CDCl ₃ 1,25-1,37 1,72-1,80 (1H, (3H, s), 4,99- m), 8,06-8,13 ancho)	CDCl ₃ 1,21-1,37 1,78-1,88 (1H,) (3H, s), 5,00- m), 12,12 (1H, s	DMDO-d6 1,16-3m), 1,65-1,74 2,38 (3H, s), s), 6,57-6,63
35	o G ()		amarillo (amarillo I
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	to incoloro 236-237	color >300 tanol)	de color ame claro 260,3-262,8 (Etanol)
45	Pro Punto d (Disc Recris	Sólido 236	Sólido de (E	Sólido de 260 (1
50	.m.ca		N 00	NH ₂
55	Estructura Química	Z O	Z Z O	Z Z O
60	Estru	∠z.Ž	\(\frac{1}{2}\)	ZZ
65	Núm. de Ej.		7	М

5	MS (FAB) (M+1)+	9 e 3 e	6 E E	0 H 0
10		3 (2H, m), m), 2,09 (1H, m), m), 10,18	(2H, m), m), 2,56 (1H, m), m), 7,44-	(2H, m), m), 2,57 7,47 (1H, (1H, m),
15		2-1,48 (6H, -4,99 (2H,	45-1,59 12 (6H, 98-5,08 8 (1H, m), 10	43-1,60 2 (6H, 7,40- 8,54 s anch
20	RMN H1	,30 (1H, m), 1,3 m), 1,79-2,00 (3H, s), 4,88 m), 8,00-8,09 12,27 (1H, s and	H, m) 1,8' 1,8' 7,11	3, H
25		18-1,3 (1H, 2,41 (2H, ho), 1	1-1,40 (1H, 14,04 4,04 (1H, mm), 8,	1,24-1,39 (1H, -1,79 (1H, m), s), 5,02-5,13 7,82-7,9 (1H, m
30		DMDO-d6 1, 1,62-1,73 (3H, s), 7,66-7,75 (1H, s anc	CDCl ₃ 1,2, 1,70-1,79 (3H, s), 7,01-7,08 7,51 (1H, ancho)	CDCl ₃ 1,24-1,39 1,69-1,79 (1H, (3H, s), 5,02-5 m), 7,82-7,9 (1 8,60-8,65 (1H, m)
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	do de color lo claro >300 (Etanol)	Sólido incoloro 169,5-170,8 Acetato de etilo- Hexano)	Sólido incoloro 191-192 Acetato de etilo- Hexano)
45	Prop Punto de (Diso Recrist	Sólido amarillo (Eta	Sólido inco 169,5-17((Acetato de Hexano)	Sólido inco 191-193 (Acetato de Hexano
50	Química)=0 IZ)=\	~ -6	Z
60	Estructura Química	T = 0	z = 0	Z =0
65	Núm. de Ej.	4.	R	C

5	MS(FAB) (M+1)+	407	384	い n) 44
10		(2H, m), m), 2,36 (4H, m), m), 6,98-	(2H, m), m), 2,57 (1H, m), m), 8,65-	(2H, m), m), 2,53 4,95-5,06 8 (1H, m),
15		8 . 7 0	H, m), 1,45-1,61 1,87-2,11 (6H, s), 4,94-5,08 7,97-8,03 (1H, m (1H, s ancho)	,42-1,60 12 (6H, (2H, s), 6,41-6,4
20	RMN H1	¹⁴⁴ ∼ m . 1	(1H, m), n), 1,87-2 (3H, s), 4 (1), 7,97-8, 66 (1H, s	1H, m), 1 , 1,85-2, s), 4,03 (1H, m), 10,77 (1H
25		5-1,39 (1H, 2,55 (4H, r m), 7,	3-1,39 (1H, r 4,17 ((1H, m	(1H, m) (1H, m) (3,98 (3H, 6,27-6,31
30		CDCl ₃ 1,26 1,69-1,79 (3H, s), 3,30-3,40 7,06 (2H, ancho)	CDCl ₃ 1,23 1,70-1,80 (3H, s), 7,91-7,95 8,71 (1H,	CDCl ₃ 1,22-1,38 (1H, m), 1,69-1,79 (1H, m), (3H, s), 3,98 (3H, 4) (1H, m), 6,27-6,31 8,28-8,33 (1H, m),
35	_	Φ	I	l
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	Sólido incoloro 280,1-282,3 Etanol-Acetato de etilo)	Sólido de color amarillo 245-246 Acetato de etilo· Hexano)	incoloro 225,8 de etilo
45	Prop. Punto de (Disol	Sólid 280 (Etanol	Sólid am 2 (Acetat H	Sólido 223- (Acetato Hex
50)uímica	z- _z	0 N -0	N H
55	Estructura Química		z =0	T Z Z
	Ħ	<u> </u>		
65	Núm. de Ej.	<u></u>	ω	(n

5	MS (FAB) (M+1)+	ω σ π	0 0 5 5	367
10		0 (2H, m), , m), 2,22 s), 4,97- 7,36 (1H, m), 10,80	1 (2H, m), , m), 2,54 1 (1H, m), m), 8,24-	2 (2H, m), , m), 2,27 1H, m),7,49 8,46-8,51 72 (1H, s
15		1,41-1,60 -2,11 (6H, 4,05 (3H, (1H, m),	1,42-1,61 2,11 (6H, 5,01-5,11 8,05 (1H, ancho)	m), 1,42-1,62 (2H, 1,86-2,12 (6H, m),), 5,01-5,11 (1H, m), -8,32 (1H, m), 8,46- (1H, m), 10,72 (1H,
20	RMN H1	(1H, m), m), 1,84 (3H, s), 4 6,82-6,89 s), 8,39-8	(1H, m), 1,42 m), 1,85-2,11 (2H, s), 5,01 m), 8,00-8,05 0,68 (1H, s ancl	(1H, m), m), 1,86- 8H, s), 5,6 8,23-8,32 8,69 (1H,
25		-1,38 (1H, 2,54 m), (1H,	3-1,38 (1H, 4,03 (1H, m), 1C	3-1,39 (1H, 2,56 (3 cho), 8,64-
30		CDCl ₃ 1,21 1,68-1,78 (3H, s), 2 5,08 (1H, s), 7,90 (1H, s ancl	CDC13 1,2 1,69-1,79 (3H, s), 7,04-7,11 8,29 (1H,	CDCl ₃ 1,23 1,69-1,80 (3H, s), 7 (1H, s an (1H, m), ancho)
35	edades Fusión(°C) vente de lización)	coloro 95,9 tato de)	color claro 03	incoloro 5-260,5 , de etilo)
40	Propi nto de (Disol ecrista	Sólido incolor 294,8-295,9 Etanol-Acetato etilo)	Sólido de co amarillo cl 202-203	Sólido incol 259,5-260, Acetato de et
45	ਮੂ ਹ ਲ	Ι)		7)
50	Química	rz -/	Z HZ	rz Z
55	Estructura	$\begin{array}{c} \frac{1}{z} \\ z \\ \end{array} = 0$	Z = 0	T Z Z Z
60	e m	C	1	~
65	Núm. de Ej.		H	7

5	MS (FAB) (M+1)+	 	408	417
10	The second of th	(2H, m), (1H, m), (2H, c, J 7,05 (1H, m), 8,46-	(4H, m), 2,39 (3H, (3H, m), 6,95-7,01	(2H, m), 2,55 (3H, 7,19-7,32 s ancho)
15		1H, m), 1,42-1,56 7,0 Hz), 1,68-1,77 2,56 (3H, s), 4,29 07 (1H, m), 7,00- m), 7,40-7,48 (1H,	1,35-1,49 8 (8H, m), 3,64-3,72	1,42-1,60 (6H, m), (1H, m), 10,64 (1H,
20	RMN H1	cl ₃ 1,23-1,38 (1H, m), 1,42-1, 61 (3H, t, J = 7,0 Hz), 1,68-1 85-2,10 (6H, m), 2,56 (3H, s), 4 7,0 Hz), 4,97-5,07 (1H, m), 7,0 7,10-7,16 (1H, m), 7,40-7,48 (51 (1H, m), 11,13 (1H,s ancho)	DMSO-d ₆ 1,17-1,30 (1H, m), 1, 1, 64-1,72 (1H, m), 1,77-1,98 (s), 2,94-3,04 (2H, m), 3,4,68-4,71 (1H, m), 4,87-4,97 (2H, m), 7,94-7,99 (2H, m)	(1H, m), 1,42-1, n), 1,85-2,08 (6H, m s) 4,96-5,06 (1H, m
25		23-1,38 (t, J = (6H, m),), 4,97-5, 7,16 (1H, m), 11,11	(1H, m), (3,04 (1H, m), (1H, m), 7,94-7,99	23-1,38 (3 (1H, m), (3H, s) 8,31-8,36
35		CDC13 1,5 1,61 (3H, 1,85-2,10 = 7,0 Hz m), 7,10- 8,51 (1H,	DMSO-d ₆ 1 1,64-1,72 s), 2,94 4,68-4,71 (2H, m),	CDCl ₃ 1,23-1,38 (1,69-1,78 (1H, m), s), 4,05 (3H, s) (2H, m), 8,31-8,36
40	copiedades de Fusión(°C) solvente de istalización)	ido incoloro 160-162	incoloro	incoloro 218- tato de etilo)
45	Propiedades Punto de Fusión (Disolvente c Recristalizaci	Sólido 160	Sólido	Sólido in 223 (Aceta
50	Química	O-C	H _O	OWe Br
60	Estructura (TZ = O		Z Z O
65	Núm. de Ej.	E E	T 4	rù Li

5	MS (FAB) (M+1)+	437	344	ઇ. ૧.
10		(2H, m), m), 2,37 (4H, m), 96- 5,06 8 (1H, m)	(2H, m), m), 2,57 7,43 (1H,	(2H, m), m), 2,56 (1H, m), m), 8,18-
15		42-1,61 99 (6H, 55-2,61 H, s) 4, 6,63-6,66	,44-1,61 10 (6H, 1), 7,40-7 (1H, s ar	,43-1,58 10 (6H, ,97.5,08 19 (1H, m
20	RMN H1	H, m), 1,83- 1, s), 4,02 (1H, m) 10,82 (m), 1,88- (1H,	m), 1,85-2 s), 7,11-7 (1H, d
25		11,39 (1H, m 2,53 ((4H, m ,43-6,4	23-1,39 ((1H, m) 5,03- 5, 8,55 (2H,	3-1,39 (1H, m 4,04 ((1H, m
30 35		CDCI ₃ 1,21- 1,67-1,76 (3H, s), 3,30-3,37 (1H, m), 6 8,31-8,36 (CDCl ₃ 1,23- 1,70-1,79 (3H, s), 5 m), 8,51-8,	CDCl3 1,2 1,69-1,78 (3H, s), 6,94-7,02 8,25 (1H,
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	de color o pálido	o incoloro 40-241 to de etilo- tanol)	Sólido incoloro 205,5-207 Hexano-Acetato de etilo)
45	Propi Punto de (Disolv Recrista	Sólido amarill	Sólido inc 240-24 (Acetato de Etanol	Sólido 205, (Hexano-F
50	ıímica	Z- - Z	ō-√z	u-√
55	Estructura Química	N O W		z z z
60		~z.~\)	~	:
65	Núm. de Ej.	19	17	ස ස

5	MS(FAB) (M+1)+	ი ა ა	353	4. 1.
10		3-1,28 (2H, m), 2,00- s), 4,97- 1-7,20 (1H, m), 10,80	1,61-1,88 (6H, (2H, m), 2,56 (1H, m), 7,00-353 7,43-7,51 (1H, s ancho)	1,14-1,29 (2H, (2H, m), 2,01-(3H, s), 2,56-4,97-5,08 (1H, (2H, m), 10,33
15		1,13 (2H, (3H, 7,13	,61-,(2H, 1H, 353	z), 1,14- 92 (2H, ,55 (3H, n), 4,97- 01 (2H,
20	RMN H1	= 6,5 Hz), 1,80-1,90 H, S), 4,04 08 (1H, m), 8,42-8,49	J = 7,1 Hz), 1 m), 2,21-2,35 s), 4,92-5,03 (1-7,19 (1H, m), 10,81 (1H, m)	, J = 6,5 Hz), , m), 1,82-1,92 6 (3H, s), 2,55 1-3,38 (4H, m), , 7,93-8,01
25	LL,	H, d, J = (1H, m), 2,56 (3H, 7,03-7,08 (1H, m),	d, 1H 3H, 7, 1	(1H (1H 2,3 3,3 (2H
30		CDCl ₃ 0,96 (3H, m), 1,44-1,59 (1 2,12 (4H, m), 2, 5,08 (1H, m), 7, m), 7,43-7,52 (1 (1H, s ancho)	CDCl ₃ 1,16 (3H, m), 1,90-2,01 (3H, s), 4,04 (7,07 (1H, m), (1H, m), 8,42-8,	cl ₃ 0,96 (3H , 1,47-1,59 12 (4H, m), 62 (4H, m), , 6,98-7,01 H, s ancho)
35		CDC13 m), 3 2,12 5,08 m), (1H,	CDC1 ₃ m), (3H, 7,07 (1H,	CDC13 m), 2,12 2,62 m), (1H,
40	oppiedades de Fusión(°C) solvente de stalización)	ncoloro 5-159 cetato de 10)	oloro ,5 .ato de	ido incoloro 296-298 (Etanol)
45	Propiedades Punto de Fusión((Disolvente de Recristalizació	Sólido incolor 158,5-159 (Hexano-Acetato etilo)	Sólido inco 152-152 (Hexano-Acet etilo)	Sólido 296- 296- (Eta
50				
60	Estructura Química	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		
65	Núm. de Ej.	6	0	ri N

5	MS (FAB) (M+1)+	421	90 S	6 E E
10		66-1,90 (6H, 32 (2H, m), 57-2,65 (4H,)8 (1H, m), , m), 10,81	(2H, m), m), 1,92- 3,75 (3H, (1H, m),	(5H, m), m), 3,98 (1H, m), m), 8,48-
15		Hz), 1,66-7 2,18-2,32 s), 2,57-2 4,98-5,08 8,01 (2H, m	m), 1,50-1,66 1,80-1,88 (2H, n 2,77 (1H, m), m), 7,59-7,66 ,11 (1H, s ancho)	1,69-1,88 2-3,13 (1H, 1 7,05-7,10 -7,57 (1H, m s ancho)
20	RMN H1	= 7, 1 m), (3H, m), 7,94-	1 0	1, m), 3,02 , s), 7,48,
25		,10 (3H, d, J 91-2,01 (1H, 3H, s), 2,56 30-3,41 (4H, 03 (2H, m), ancho)	-1,45 (1H, m m), 2, ',56 (5-1,51 (2H, 14,06 (1H, rm), 10,
30		CDCl ₃ 1,10 (m), 1,91-2, 2,37 (3H, s m), 3,30-3, 6,97-7,03 ((1H, s anchc	CDCl ₃ 1,21-1,68-1,77 2,00 (2H, s), 7,48-7	CDCl ₃ 1,26 1,97-2,04 (3H, s), 7,14-7,20 8,52 (1H,
35	edades Fusión(°C) vente de lización)	incoloro 5-266 Acetato de ilo)	color pálido 1,5	incoloro 5-190
45	Propiedades Punto de Fusión (Disolvente o Recristalizaci	Sólido incolo 265-266 (Etanol-Acetat etilo)	Sólido de amarillo 190-19	Sólido in 188,5-
50				₩ _O
55	Estructura Química			
65	Núm. de Ej.	2 2 2 3	23	S &

5	MS (FAB) (M+1)+	310	417	45 C
10		(5H, m), 4,01 (3H, (1H, m), m), 10,66	(5H, m), 3,97 (3H, 7,28-7,36	(5H, m), 5-2,60 (4H, 4,03 (3H, m), 8,37-
15		58-1,90 1H, m), 37-7,93 (1H,	1,68-1,89 4 (1H, m), 5 (1H, m), 10,59 (1H,	,88 2,55 5),(5),((1H,)
20	RMN H1	(3H, m), 1,6), 3,08-3,18 ((1H, m), 7,8 m), 8,65-8,69	H, m), 3,04-3,1 7,21-7,29 (1H, m),	(3H, m), 2,37 (3H H, m), 3,9 m), 6,61 73 (1H, s
30	ŧ	8-1,53 (2H, m) 7,51 (1H, m	(2H, m) (3H, s), (35-8,4)	8-1,51 (2H, m) 3,10 (1 6,45 (1H m), 10,
35	"Seccional depositivo video ad Alle Proprio disconnece Margar	CDCl ₃ 1,28 1,99-2,07 s), 7,45- 8,49-8,53 (1H, s anc	CDCl ₃ 1,3C 1,96-2,04 s), 4,07 (1H, m), 8	CDCl ₃ 1,2 1,96-2,04 m), 3,01- s), 6,40- 8,41 (1H,
40	ropiedades de Fusión(°C) isolvente de istalización)	ido incoloro 217-219 HCl3-hexano)	ido incoloro 194-196 (EtOH)	de color lo pálido 8-190
45	Propiedade Punto de Fusió (Disolvente Recristalizac	Sólido 217 (CHCl3-	Sólido 194 (Ef	Sólido amariil 188
50	Química	₹ z	OMe	\ z -\
55	Estructura Quí	Z = 0		N O HU
60				-z. _z -
65	Núm. de Ej.	25	2 6	2.7

5	MS(FAB) (M+1)+	437(libre)	480	44 (U 7)
10	(1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984)	60-2,11 (7H, m), 3,01-3,93 (9H, 1, s), 6,46-6,49 8,41-8,47 (1H,	(3H, m), 1,68-1,92 (9H, m), m), 3,02-3,12 (1H, m), 3,48-3,95 (3H, s), 3,97-4,04 (7H, 1H, m), 6,62-6,67 (1H, m), m), 10,73 (1H, s ancho)	(5H, m), m), 3,03- (3H, m), m), 8,43-
15		1,60-2,11 s), 3,01-: (3H, s), m), 8,41-	1,68-1,92 (93,12 (14, m), 3,97-4,66,67 (14, s ancho	,70-1,92 66 (4H, 5), 4,06 70 (1H, ancho)
20	RMN H1	m), 3H, 04	(3H, m), m), 3,02-3 3,95 (3H, (1H, m), 6 m), 10,73 (5 (3H, m), 1 m), 2,60-2, 3,56 (3H, m), 6,65-6, 10,70 (1H, s
30		CDCl ₃ 1,28-1,53 (3H, 2,83 (3H, s), 2,98 (m), 3,95 (3H, s), 4, (1H, m), 6,62-6,69 (m), 10,66 (1H, s ancher	CDCl ₃ 1,27-1,50 1,97-2,05 (2H, m 3,54 (4H, m), 3, m), 6,42-6,45 (3 8,37-8,41 (1H, m)	-1,55 (2H, m m), 3 (1H, m m), 10
35	A constitution of the School Stage (MAS) in the School Stage (MAS) is a constitution of the School Stage (MAS) in the School Stage (MAS) is a constitution of the School Stage (MAS) in the School Stage (MAS) is a constitution of the School Stage (MAS) in the School Stage (MAS) i	CDCl3 1,28 2,83 (3H, m), 3,95 (1H, m), m), m), 10,66	CDC13 1 1,97-2, 3,54 (4 m), 6,4	CDC13 1,32 1,92 1,96 1,96 1,48,64 6,47 8,48 (1H,
40	Propiedades to de Fusión(°C) (Disolvente de cristalización)	Sólido incoloro 270 Descomp. (Etanol)	eite de color arillo pálido	to de color 110 pálido 28-133
45	Proj Punto da (Disc Recris	Sólid 270 (E	Aceite amarill	Sólido amazill 128
50	Química	م می)) , ,	O SW
55	Estructura (Z Z Z	NO HAN OW	
65	Núm. de Ej.	- V	29	000

			er i variga i sapaja negari nggarag tagang a garag maganan negarag tagangan mendanan negaraga tangga tangga ta	gravitation for the contract of the contract o
5	MS (FAB) (M+1)+	438	438(libre)	(23 (11bro)
10		(7H, m), m), 3,68- (3H, m), m), 8,38-	(11H, m), 3,42-3,58 (3H, s), 7,18-7,24 8,68 (1H,	(5H, m), m), 3,03- 3,79-3,92 c), 1,27- 8,09-8,20 60 (1H, s
15		3-1,86 (3H, 4,02 (1H,	1,70-2,67 (1H, m), s), 4,00 (1H, m), m), m), m),	1,69-1,90 (2H, m), 3 (2H, m), 3 ,16 (3H, c) (1H, m), 8 m), 10,60
20	RMN H1	m), 3,03-3 (3H, 6,62-6 (1H, s	m), -3,18 (2H, -4,35 (1H,	, m), 1, 2, 2, 71-2, -3, 51 (5), (7, 32 (1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H,
25		4-1,50 (3H, m), (4H, m), m), 3,94 (1H, m), m), m), m), m), m), m),	9-1,54 s), 3,78- s), 7,70- (1H,	(4H, m), 3,03 m), 8,57.
30 35		CDCl ₃ 1,24-1,50 (3 1,93-2,05 (4H, m) 3,76 (2H, m), 3,9 6,40-6,43 (1H, m), 8,42 (1H, m), 10,7	CDCl ₃ 1,29 2,89 (3H, (2H, s), 4,19 (3H, (1H, m), m), 10,67	CDCl ₃ 1,28 1,98-2,18 3,18 (1H, (2E, m), 4,35 (1H, (1H, m), ancho)
40	Propiedades unto de Fusión(°C) (Disolvente de Recristalización)	incoloro 3-246	o de color 11o claro Descomp.	de color lo cluro 7-249
45	Propi Punto de (Disol ^x Recrista	Sólido 243	Sólido de amarillo 230 Deso	Sólido de martilo 247-2
50	Química	, N	HO ON HOUSE	D +
60	Estructura Química	N N N N N N N N N N N N N N N N N N N	Z = 0	
65	Núm. de Ej.	E TE	8 8	m m

5	MS(FAB) (M+1)+	413	445	3 5 5
10		CDCl ₃ 1,28-1,51 (3H, m), 1,69-1,98 (5H, m), 1,96-2,05 (2H, m), 3,03-3,12 (1H, m), 3,47 (3H, s), 3,76-3,80 (2H, m), 3,96 (3H, s), 4,02 (3H, s), 4,19-4,23 (2H, m), 6,64 (1H, d, J = 2,2 Hz), 6,69 (1H, dd, J = 2,2 y 8,9 Hz), 8,47 (1H, d, J = 8,9 Hz), 10,69 (1H, s ancho)	3 (5H, m), m), 3,96 s), 6,65 J = 2,1 Y 1H, d, J =	(5H, m), T,, 3,83 (2H, m), s ancho)
15		(69-1,98 (11, 11, 1), 3,96 (m), 6,6 (J = 2,2)	(14, dd, 8,47 (1)	1,58-1,81,97,97,(1H,
20	RMN H1	H, m), 1, 3,03-3, 0 (2H, m-4,23 (2H, dd, (1H, dd, 1), 1), 1	,50 (3H, m), 1,69-1,88 (5H, m) 2H, m), 3,03-3,12 (1H, m), 3,9 01 (3H, s), 5,16 (2H, s), 6,6 2,1 Hz), 6,75 (1H, dd, J = 2,1 3-7,45 (5H, m), 8,47 (1H, d, J 68 (1H, s ancho)	(3H, m), 1,58 (), 2,80-2,97 3H, S), 6,49- 8,4 Hz), 11,29
25		8-1,51 (3 (2H, m) 3,76-3,8 s), 4,19.2), 6,69 d, J = 8,	-1 (2 1, 3 ', 3	20-1,39 (ZH, M) 3,86 (3H) d, J = 8,
30		CDCl ₃ 1,28 1,96-2,05 (3H, s), 1,02 (3H, T = 2,2 H; 3,47 (1H,	CDCl ₃ 1,30-1,5(1,97-2,04 (2H, (3H, s), 4,01 (1H, d, J = 2, 8,9 Hz), 7,33- 8,9 Hz), 10,68	DMSO-dx 1,20-1,39 (3H, m), 1, 1,86-1,34 (ZH, m), 2,86-2,9 (3H, s), 3,86 (3H, s), 6,4 7,79 (1H, d, J = 8,4 Hz), 11,
35	es ón(°C) e de ción)))	O RO	0
40	Propiedades Punto de Fusión((Disolvente de Recristalizació	do incol 162-163 Pr ₂ O/EtOf	incol -184	lido incolor
45	Pr Punto (Di: Recri	\$611; (i.	Sólido 182	S 60 11,
50	ıímica	OMe	ОМе	HO WO
55	Estructura Química	WO HN	T O	T O
60	Estr	-z, _z	-z.z	- ¹² ·z
65	Núm. de Ej.	3.4	 S	\(\theta \)

5	MS (FAB) (M+1)+	თ თ ო	4. 2. 3.	425
10		(5H, m), m), 3,71- (3H, s), m), 6,66- Hz), 11,44	(5H, m), m), 3,03- 3,96 (3H, m), 6,56 J = 2,1 y 10,66 (1H,	(5H, m), m), 3,03- 3,96 (3H, m), 6,56 J = 2,1 y 10,67 (1H,
15		1,59-1,8C 97 (1H, s), 3,90 33 (t H, J = 8,6 l	(9-1,88 (2H,m), (1H, (1H,dd,Hz),	0-1,88 (2H, rm), (1H, i, ad, Hz), 1
20	RMN H1	3H, m), 2,88-2, 3 (3H, 4,88-4, (1H, d,	m), 2,12-2, -4,06 (5,00-5, 6,62	m), 2,13-2,-4,05 (5,00-5,6,62,1, J = 5
25		17-1,41 (2H, m m), 3 (2H, m m), 7,6	(2H, m) (2H, m) (3H, s) (3H, s) = 2,1 H 8,47 (1H,	0-1,50 (2H, m), 3, (3H, s)
30		DMSO-d ₆ 1, 1,85-1,93 7,77 (2H, 4,05-4,11 6,73 (2H, (1H, s anc)	CDCl ₃ 1,30-1 1,97-2,04 (3,12 (1H, n s), 4,03 ((1H, d, J = 9,0 Hz), 8,9	CDCl ₃ 1,3(1,98-2,04 3,12 (1H, s), 4,02 (1H, d, J 9,0 Hz), 8
35	O O	0	0	
40	edades Fusión(7ente de lizació	ido incoloro 215-216,5 (tolueno)	do incoloro 220-221	ólido incoloro 216-218
45	Propi Punto de (Disolv Recrista	Sólido 215 (to	Sólido 22	Sólic
50	Química	HO O		, o
55	Estructura Q	N N O	NH OM	TZ Z O
UU	[F] (A)	-2,2	-Z.z.	z
65	Núm. de Ej.	3.7	& M	<u>б</u>

5	MS(FAB) (M+1)+	427	413	452 (libre)
10		.88 (5H, (1H, m), (3H, s), 2 y 9, 0, 48 (1H, s)	,82 (5H, (1H, m), (2H, s), (2H, s), 6,63 J = 8,8	1,89 (5H, (4H, m), (1H, m), s), 4,05 (2H, m),
15		1,70-1,88 (5H 03-3,12 (1H, m)), 4,03 (3H, s) (d, J = 2,2 y 9, 2 Hz), 8,48 (1H, , s ancho)	1,60-1 8-3,00 4,79 8,8 H;	1,68-1,89 07-2,28 (4F)- 3,10 (1H (3H, s), 81-6,65 (2F
20	RMN H1	(3H, m), H, m), 96 (3H, s 61 (1H, o , J = 2, 10,65 (1H)	* THE P.	(3H, m), 1, m), 2, 10), 3,00, 10), 3,92 1, s), 6, 8,6 Hz)
25		Cl ₃ 1,30-1,50 (3H, m), 1,70-1,8 1,97-2,04 (2H, m), 3,03-3,12 (84 (3H, s), 3,96 (3H, s), 4,03 (72 (2H, s), 6,61 (1H, dd, J = 2,), 6,67 (1H, d, J = 2,2 Hz), 8, J = 9,0 Hz), 10,65 (1H, s ancho)	1,18-1,42 -1,96 (21,75), 3,8,1 dd, J J = 2,2 l 50 (1H, s	28-1,52 -2,00 (21 1, s anch 7 (4H, 6,25 (21 7 d, J =
30		CDCl ₃ 1, 1, 97 3, 84 (3H 4,72 (2H Hz), 6,6	DMSO-d ₆ 1,18-1,42 (3H m), 1,88-1,96 (2H, m) 3,83 (3H, s), 3,88 (3 6,65 (1H, dd, J = 2,2 Hz), Hz), 11,50 (1H, s anch	CD ₃ OD 1,28-1,52 (3H, m), 1,68-1,8 m), 1,93-2,00 (2H, m), 2,07-2,28 (2,89 (3H, s ancho), 3,00-3,10 (3,27-3,47 (4H, m), 3,92 (3H, s) (3H, s), 6,25 (2H, s), 6,81-6,65 (8,29 (1H, d, J = 8,6 Hz)
35	edades Fusión(°C) 7ente de lización)	loro)
40	Propiedades Punto de Fusión(° (Disolvente de Recristalización	Sólido inco 200-201,	Sólido incoloro >250	Sólido incolo 203,5-205 (EtOH/iProH
45	Punt (gg til til til kan	kiin dagaginahanin kalikiiji dhakiin diga kaasaan kalin kaga kajadajing waxaa masar waasaasaa	TO AN AND THE REAL PROPERTY OF
50	Química	CO ₂ Me	0 CO2H	ie maleato
55	Estructura Q	N O O O O O	NH OM	Z N O O O O O O O O O O O O O O O O O O
60	EST	, z, z	-ź.z	2 2
65	Núm. de Ej.	0 4	다	

5	MS (FAB) (M+1)+	38.4	ы 4.2	9 6 8
10		(5H, m), m), 4,01 m), 7,99- 62 (1H, s	(5H, m), m), 3,94 6,26-6,30 8,35 (1H,	DMSO-d ₆ 1,16-1,43 (3H, m), 1,60-1,82 (5H, m), 1,86-1,98 (2H, m), 2,09 (3H, s), 2,88-2,99 (1H, m), 3,84 (3H, s), 3,85 (3H, s), 7,20-7,28 (1H, m), 7,75-7,80 (1H, m), 1,75-7,80 (1H, m), 1,75-7,80 (1H, m), 10,24 (1H, s ancho), 11,50 (1H, s ancho)
15		**		1,60-1,82 3H, s), (3H, s), 7,75-7,80 1H, s anch
20	RMN H1	H,m), 1, 3,03-3,), 7,92-7 8,72 (1H,	1, m), 1 3,00-3, s), 4,15 (1H, m),	3H, m), 2,09 (3), 3,85 (1H, m), 11,50 (1
25		-1,51 (3 (ZH, m), 18 (3H, s m), 8,68-	27-1,50 (3H, m), 1,68-1,88 (2H, m), 3,00-3,12 (1H, 3,99 (3H, s), 4,15 (2H, s), 6,40-6,46 (1H, m), 8,31- (1H, s ancho)	(2H, m), (2H, m), (84 (3H, (57-7,60), s ancho),
30		CDCl ₃ 1,29-1,51 (3H,m), 1,69-1,89 1,97-2,07 (ZH, m), 3,03-3,16 (1H, (3H, s) 4,18 (3H, s), 7,92-7,96 (1H, 8,04 (1H, m), 8,68-8,72 (1H, m), 1C ancho)	CDCl ₃ 1,27-1,50 (3H, 1,94-2,06 (2H, m), 3, (3H, s), (3H, m), 6,40-6,46 (1, m), 10,70 (1H, s ancho)	MSO-d ₆ 1,1,86-1,98 1H, m), 3 1H, m), 7,0,24 (1H,
35	Spanning with the State Louise, managenings data and depth canadra for	and the confined contraction of the contraction of		Balance and the control of the contr
40	Propiedades ito de Fusión(°C) (Disolvente de cristalización)	Cristales de color amarillo claro (Acetato de etilo)	ales de color naranja ato de etilo- Etanol)	tales incoloros >300 nol-Acetato de etilo)
45	Propiedades Punto de Fusión (Disolvente d Recristalizaci	Cristales amarill	Cristales de naranja (Acetato de E	Cristales / (Etanol-, et.
50	ro	ория (при при при при при при при при при при	de princes prince e militar e en de la serva de la serva de la serva de la menumenta de la serva de la serva d	distribute menunggigipi kanakatan jara jara jara jara jara jara jara ja
55	Estructura Química	N N N N N N N N N N N N N N N N N N N	HN H	TZ TO
65	Núm. de Ej.	4. E)	4. 4.	4. n.

5	MS (FAB) (M+1)+	426	3 6 8	C. C. C.
10	A Section of the sect	(5H, m), m), 3,54 4,08 (3H,	8 (5H, m), = 5,0 Hz), 02 (3H, s), 6,10- 6,15 39 (1H, m),	(5H, m), m), 4.01 (1H, m), m), 10,57
15		1,70-1,91 3,14 (1H, 06 (2H, s), 7,85-7,90	3H, m), 1,68-1,88 2,93 (3H, d, J = 3,94 (3H, s), 4,02 , J = 5,0 Hz), 6, (1H, m), 8,32-8,39	3,04-3,16 (IH, s), 7,65-7,70 8,68-8,75 (IH, I
20	RMN H1	m), 3,02- , 4,0 m), (1H,	3H, m), 2,93 (31, 3,94 (3H, m), (1H, m),	(3H, m), m), 3,04-3 (3H, s), m), 8,68-8,
25		29-1,52 (3H, 1 (2H, m), 3,97 (3H, s) 1-7,05 (1H, 1 (2H, 10,75	CDCl ₃ 1,28-1,51 (3H, m), 1,68-1,88 1,96-2,07 (2H, m), 2,93 (3H, d, J = 3,00-3,11 (1H, m), 3,94 (3H, s), 4,0; 4,30 (1H, d ancho, J = 5,0 Hz), 6 (1H, m), 6,31-6,37 (1H, m), 8,32-8,36 10,74 (1H, s ancho)	2-1,53 (2H, 4,19 (1H, (
30		CDCl ₃ 1,29-1,52 1,98-2,08 (2H, 13H, s), 3,97 (3H, s), 6,99-7,05 (8,41-8,53 (2H, 10	CDCl ₃ 1,, 1,96-2,07 3,00-3,11 4,30 (1H, m), 10,74 (1F)	CDCl ₃ 1,32 .,97-2,08 (3H, s), 7,78-7,86 (1H, s anc
35 40	edades Fusión(°C) vente de lización)	oloros to de	coloro 28 e etilo)	color claro 80,1
45	Propiedades Punto de Fusión(°C (Disolvente de Recristalización)	Cristales incol 257-258 (Etanol-Acetat etilo)	Sólido incoloro 227-228 (Acetato de etilo	Sóildo de co amarillo cla 227-230,1
50	mica	0	IZ /	o Ö
55	Estructura Química	IZ O IZ O		O HZ
60	Estr	22		, ^z . _z ′ ()
65	Núm. de Ej.	4 6	T 4	4.4.

5	MS (FAB) (M+1)+	501	501(libre)	Δ 8 8
10		(5H, m), 2,45-2,57 (3H, s), 7,48-7,53	1 (2H, m), 4,00 (3H, m), 7,47- 10,56 (1H,	(5H, m), m), 3,74- (3H, s), m), 8,65-
15	Formula of the control of the contro	1,69-1,91 (3H, s), m), 4,00 (1H, m), m), 1058	1,97-2,11 (9H, m), ' ',42 (1H, r) (1H, m), l	70-1,93 8 (5H,), 4,14 4 (1H, ancho)
20	RMN H1	m), 2,28 (4H, 7,43	H, m), 1-3,99 7,39-7	3 (3H, m), 1, m), 3,05-3,1 4,00 (3H, s m), 7,50-7,5
25		-1,52 (2H, 3,08- s), 8,60-	.29-1,91 H, s), 4 (3H, H, m),	32-1,50 8 (2H, 7 m), 4 (1H, 7 m),
35		CDCl ₃ 1,22 1,97-2,09 (4H, m), 4,13 (3H, (1H, m), ancho)	CDC13 1, 2,81 (3 s), 4,1 7,52 (1 s ancho	CDCl ₃ 1, 2, 00-2, C 3, 3: (3: 7, 4) 7, 41-7, 4
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	Sólido incoloro 211-213 (Etanol)	do incoloro 238–239 (Etanol)	Sólido de color amarillo claro 224-224,5 cetato de etilo- Hexano)
45	Pro Punto d (Disc Recris	Sólid 2 (1	Sólido 238 (Eta	Sólido de amarillo 224-224 (Acetato de Hexano
50	Química		0 ± 0 ±	O N N
55	Estructura (Z Z Z	O HZ O	7-0 HZ Z
65	Núm. de Ej.	0,4	0 0	

5	MS (FAB) (M+1)+	502	ა ა ა	23.0
10		(7H, m), m), 3,29- 4,00 (3H, 7,50-7,55 8 (1H, s	(4H, m), m), 3,03- 0 (3H, s), s), 7,41- 8,59-8,66	(11H, m), m), 3,05- 3,99 (3H, 7,47-7,53 5 (1H, s
15	to the second se	1, m), 1,63-1,90 2,08-3,15 (3H, m - 3,91 (1H, m), 4 ,41-7,44 (1H, m), 7 7 (1H, m), 10,58	m), 1,94-2,06 (2,58-2,67 (2H, m), 4,00 Hz), 4,13 (3H, s), 17,52 (1H, m), 8 (ancho)	,69-2,12 73 (2H, (2H, m), (1H, s), m), 10,8
20	RMN H1	(4H, m),), 2,08-3, 80-3,91 7,41-7,44	P . W. L. F. A.	
25		E 0 (8	(3H, 1,90 (1H, m), 3 c, J s),	(1H, m (1H, m), 3, (3H, s), (3H, s),
30		CDCl ₃ 1,30-1,52 1,92-2,08 (4H, 3,39 (2H, m), s), 4,13 (3H, s) (1H, m), 8,60- ancho)	CDCl ₃ 1,23 m), 1,68- 2,23-2,36 3,15 (1H, 1 4,12 (2H, 7,45 (1H, m), 1)	CDC13 1,28 2,31-2,42 3,18 (1H, s); 4,10 ((1H, m), ancho)
35		ik ilikurer ku merimuk serik s Sikerikeranenan ili austidatung diga demokr		
40	Propiedades ito de Fusión(°C) (Disolvente de scristalización)	do incoloro 210-212 ato de etilo'	o incoloro ,2-184,5	ido incoloro 268-269 ato de etilo Etanol)
45	Propi Punto de (Disol' Recrista	Sólido 210 (Acetato	S6lido 183,	Sólido 268 (Acetato Eta
50	ímica	¥		⋄ .₹
55	Estructura Química	O TO THE O		O TY O
60	Estr	-Z-Z	2,2	, Z z
65	Núm. de Ej.	η 2	23	T S

5	MS(FAB) (M+1)+	4. 8. 9.	4 8 9	6 L4 6 L4
10		(5H, m), (2H, t, J (3H, s), :-8,70 (1H,	(5H, m), 3,15 (1H, 4,20 (3H, s), 8,55-	0 (5H, m), , 3,16-3,22 t, J = 5,0)3 (1H, t, J 8-7,64 (1H, ancho)
15		1,69-1,93 s), 2,38 m), 4,00 m), 8,62	1,70-1,91 (5H, 1, s), 3,01-3,15 9 (3H, s), 4,20 1-7,83 (1H, s), 8 ancho)	68-1,90 (1H, m), (2H, t, (2), 5,03 s), 5,03), 7,58- (1H, s an
20	RMN H1	(6н, (3н, (2н,	3-1,52 (3H, m), 1,70-(2H, m), 2,93 (6H, s), 3,43 (4H, m), 3,99 (3H, 7), 11 (1H, m), 7,80-7,83 m), 10,64 (1H, s ancho)	H, m), 3,02-3,1 s), 3, 4,13 (3H, 57 (1H, m), 10,6
25		8-1,52 (2H, m) , 3,000- s), 7,5 (1H, s	3-1, E (2H, 3, 43) m),	-1,53 (2H, m 3,30 (3H, s 7,53
30 35		CDCl ₃ 1,28-1,99-2,08 (= 5,9 Hz),4,14 (3H, sm),10,64 (CDCl ₃ 1,28 1,97-2,09 m), 3,30- s), 7,65-7 8,63 (1H,	CDCl ₃ 1,30 1,97-2,07 (2H, m), 3 Hz), 4,00 = 5,8 Hz), m), 8,61-8,
40	Propiedades nto de Fusión(°C) (Disolvente de scristalización)	Sólido incoloro 169-170,5 (Etanol)	Sólido incoloro 203,5-205 (Etanol)	Sólido incoloro 175-176 Acetato de etilo- Hexano)
45	Propi(Punto de 1 (Disolv Recrista	Sólido 169 (E:	Sólido 203 (Et	Sólido 17 (Acetato
50 55	Química	O ZI		o zr
60	Estructura Química	Z Z	Z Z O	O TZ
65	Núm. de Ej.	ហ	5.6	57

5	MS(FAB) (M+1)+	4, 5, 5,	424	4 2 2 3
10		(5H, m), 3,16-3,23 s), 4,13 7,58-7,68 s ancho)	(5H, m), 3,31-3,36 s), 4,04 6,65 (1H, J = 9,0	(5H, m), 3,31-3,37 6,42 (1H, 2,0 y 9,0 74 (1H, s
15		1,68-1,90 14 (1H, m), , 3,99 (3H, = 5,9 Hz), 10,63 (1H,	3,03-3,13 (1H, m), (4H, m), 3,95 (3H, d, d, J = 2,0 Hz), hz), g,43 (1H, d, ancho)	(5H, m), (3H, s), dd, J = Hz), 10,
20	RMN H1	3,03-3,7 (2H, m) t, J =	(3H, m), (3H, m), (31 (4H, m), (1H, d, J = 9,0 Hz), 8,4	m), ,03-3,113 s), 4,03 55 (1H, T = 9,0
30		7-1,50 (3H, m) 3,71-3,7 5,29 (1	2-1,51 (2H, 13,87-3 3,87-3 6,44 2,0 y	8-1,51 (2H, m), 3,95 (3H, 0 Hz), (1H, d,
35		CDC13 1,27 1,97-2,07 (2H, m), 3 (3H, s), 3 (2H, m), 8	CDCl ₃ 1,32 1,97-2,05 (4H, m), 3 (3H, m), (dd, J = 2 Hz), 10,73	CDCl ₃ 1,2 1,97-2,05 (4H, m), d, J = 2, Hz), 8,40 ancho)
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	Sólido incoloro 211-222 (Acetato de etilo)	lido incoloro 249-250,5 (Tolueno)	de color pardo pálido 187-190
45	Propi Punto de (Disol Recrista	Sólido 211 (Acetato	Sólide 249 (TC	Sólido de pál 187
50	Química	HO NET TO SEE TO	N N N N N N N N N N N N N N N N N N N	HA
60	Estructura Química	Z = 0		TZ Z
65	Núm. de Ej.	O	o)	

5	MS(FAB) (M+1)+	4 2 2 2	452 (libre)	431
10		(7H, m), 3,14-3,21 m), 3,62- , s), 6,42 J = 2,3 y	(2H, m), 2,33 (3H, m), 3,29 3 (2H, m), 3 (1H, m), 9,0 Hz),	(2H, m), 3,97 (3H, 1,5 Hz), (1H, d, J
15		5-1,88 H, m), 11 (1H, 03 (3H, ' dd, 'z), 10	(3H, m), 1,47-1,56 1,87-1,96 (4H, m), 2 m), 3,08-3,17 (2H, 3) (1H, m), 3,65-3,73 5 (3H, s), 6,61-6,63	
20	RMN H1	3H, m), 3,01-3,12 s), 3,42- (3H, s), (3H, s), c), 6,64 d, J = 9,	(3H, m), 1,87-1,96 m), 3,08. (1H, m), (3H, s), 7,94 (1H, m)	7-1,74 (6H, m), 1,78-1,87 (4H, m), 3,21-3,30 (1H, m), (3H, s), 7,22 (1H, d, J = dd, J = 1,5 y 8,6 Hz), 8,38 10,60 (1H, s ancho)
25		51 ₃ 1,23-1,50 (3H, m), 1,6 95-2,03 (4H, m), 3,01-3,12 (1 H, m), 3,39 (3H, s), 3,42-3,5 71 (2H, m), 3,95 (3H, s), 4, H, d, J = 2,3 Hz), 6,64 (1H 50 Hz), 8,38 (1H, d, J = 9,0 Hz)	(5H, m), 2,96 (1H, 3,37-3,48 s), 3,95 (1H, m), s ancho)	7-1,74 (6 (4H, m), (3H, s), dd, J = 1, 10,60 (11)
30 35		CDCl ₃ 1, 1,95-2,03 (2H, m), 3,71 (2H, (1H, d, 9,0 Hz), ancho)	DMSO-d ₆ 1,20-1,42 (1,60-1,82 (5H, m), s), 2,87-2,96 (1H, 3H, s), 3,37-3,48 (3H, s), 3,95 (6,68-6,73 (1H, m), 11,12 (1H, s ancho)	CDCl ₃ 1,57-1,74 1,92-2,06 (4H, m) s), 4,06 (3H, s) 7,30 (1H, dd, J = 8,6 Hz), 10,60
40	Propiedades to de Fusión(°C) Disolvente de tristalización)	to de color 110 pálido 79-182	Sólido incoloro 209 (Descomp.) (Tolueno)	de color lo pálido 3-190
45	Propi Punto de (Disol ⁻ Recrista	Sólido e amarillo 179	Sólido 209 (I	Sólido c amarillo 180-
50	Química	OMe	WsOH	OM6
60	Estructura Química	Ž Z Z Z Z	N O W	Z = 0
65	Núm. de Ej.	61	85	93

5	MS(FAB) (M+1)+	4. 15.1	8 8 8	4 65
10		(2H, m), -2,61 (4H, m), 3,94 J = 2,0 8,40 (1H,	9 (7H, m), 1 (3H, s), :-7,80 (1H,	(5H, m), 3,03-3,17 (2H, m), (2H, m), ; ancho)
15		m), 1,77-1,87 (3H, s), 2,55- 3,34-3,40 (4H, 6,42 (1H, d, 2,0 y 9,0 Hz), 1H, s ancho)	1,60-1,9,3,9,3,9,7,7,7,7,7,7,7,84 (1H, s	1,69-1,91 60 (7H, m),), 3,74-3,90), 7,09-7,19 10,67 (1H, s
20	RMN H1	(6H, m), , 2,37 (3H, 1, m), 3,34 3H, s), 6,4 1, J = 2,0 y	3 (3H, m), , 3,84 (3H, 9-7,69 (2H, ancho), 13,3	(2H, m), (2H, m) (3H, s)
30		CDCl ₃ 1,57-1,73 (6H, m), 1,77-1,87 (2H, 1,92-2,06 (4H, m), 2,37 (3H, s), 2,55-2,61 m), 3,19-3,27 (1H, m), 3,34-3,40 (4H, m), (3H, s), 4,03 (3H, s), 6,42 (1H, d, J = Hz), 6,64 (1H, dd, J = 2,0 y 9,0 Hz), 8,40 d, J = 9,0 Hz), 10,75 (1H, s ancho)	16-1,43 (1H, m) s), 7,5 (1H, s	24-1,5 (2H, 3,38- s), d, J
35		CDC1 ₃ 1,92-2,(m), 3,11 (3H, s) Hz), 6,6	DMSO-d6 1, 2,90-3,02 4,03 (3H, 8 m), 11,97	CDC13 1,2 1,98-2,09 (1H, m), 3,99 (3H, 8,54 (1H,
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	do de color illo pálido 30-181,5 Etanol)	Sólido incoloro 290 (Descomp.) (Acetato de etilo- Etanol)	ido incoloro 224-225 (Etanol)
45	Propiedades Punto de Fusión((Disolvente de Recristalizació	Sólido de col amarillo páli 180-181,5 (Etanol)	Sólido 290 (D (Acetato Eta	Sólido 224 (Et
50	ıímica	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	—————————————————————————————————————	Z O=
55	Estructura Química	N HW O	N N O N O N O N O N O N O N O N O N O N	N OW
60	*** *** **** **************************	. 2	2	-2,2
65	Núm. de Ej.	64	65	9

5	MS (FAB) (M+1)+	465 (libre)	452	99
10		(5H, m), (3H, s), m), 3,84 m), 7,74 o), 11,90	(5H, m), m), 3,39- (3H, s), = 8,1 Hz),	5 (1H, m), m), 3,62- 7,10-7,19 10,68 (1H,
15		m), 1,60-1,85 (5H, 3 (3H, s), 2,84 (3H, 03-3,63 (8H, m), 7,10-7,24 (2H, m), 81 (1H, s ancho), 1	-1,91 (1H, 4,09	3,03-3,15 ,54 (1H, m (8H, m), '8,4 Hz), 1C
20	RMN H1	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	H, m), 3,03-	H, m), 3,40-3 4,28 4,28
25		(2H, m), (1H, m), (1H, m), 3,89 (3H, = 7,8 Hz)	-1,55 (2H, m), 2H, s an	0-2,15 (1H, n m), 3 8,54 (11
30 35	The state of the s	DMSO-d6 1,19-1,43 (3 1,89-1,99 (2H, m), 2 2,90-3,01 (1H, m), (3H, s), 3,89 (3H, s (1H, d, J = 7,8 Hz), (1H, s ancho)	CDC13 1,29- 1,98-2,10 3,91 (8H, 7,11-7,21 (10,66 (1H,	CDCl ₃ 1,30 3,18-3,35 3,79 (1H, (2H, m), 8
40	ades sión(°C) nte de zación)	loro		incoloro .5-227 de etilo)
45	Propiedades Punto de Fusión((Disolvente de Recristalizació	Sólido inco 235-240	Sólido incoloro 225-226 (Etanol)	Sólido inc 225,5-2 (Acetato de
50		/- _× σ φ	$\langle \rangle$	Ę
55	Estructura Química	N WO HN.	O HN	O=(
60	Estruc	z'	2 2	z = 0
65	Núm. de Ej.		8 %	(i) (i)

5	MS (FAB) (M+1)+	0 8 8	4 6 8	440
10		5 (1H, m), 3,47-3,70 1-7,19 (2H,	(5H, m), m), 3,99 (4H, m), H, d, J = 1, J = 8,2	4 (5H, m), (1H, m), H, d, J = 7,81 (1H, 94 (1H, s
15		3,02-3,15 (3H, s), m), 7,11- Hz), 10,	m), 1,70-1,91 3,07-3,19 (1H, s), 4,22-4,35 6 Hz), 7,47 (1H, s), 8,57 (1H, d,	1,61-1,8 2,91-3,1 3,97 (2), 7,74- HZ), 11,
20	RMN H1	(14H, m), m), 3,38 4,15 (7H, d, J = 8,5	(6H (), 3H, = 4, H, an	(3H, m) (2H, m (3H, s 8 (2H,
30		CDCl ₃ 1,29-2,09 (3,18-3,32 (1H, m(3H, m), 3,95-4 m), 8,53 (1H, d, ancho)	1,30-1,52 09 (2H,), 4,12 1H, t, J), 7,64 (DMSO-d6 1,20-1,45 (1,89-267-269 2,00 (3,84 3H, s), 3,92 5,7 Hz), 7,57-7,68 m), 9,02 (1H, t, Jancho)
35		CDCl ₃ 3,18-3 (3H, m m), 8,	CDC13 1,97-2, (3H, s 6,78 (8,2 Hz) Hz), 10	DMSO-d6 1,89-267-3,84 3H,5,7 Hz),m),9,02
40	Propiedades nto de Fusión(°C) (Disolvente de ecristalización)	Sólido incoloro 202-203,5 Acetato de etilo Hexano)	Sólido incoloro 219-220 (Etanol)	Sólido incoloro 219-220 (Etanol)
45	Propie Punto de F (Disolve Recristal	Sólido inc 202-203 (Acetato de Hexano	Sólid 2 (I	Sólid 2 (F
50	Química	N ON ON	ZI O= O=	N.T.
60	Estructura Química	NO HN O	ewo Hu	N HN N O
		z V	-z _z -	-z.z/
65	Núm. de Ej.	70	7.1	72

5	MS (FAB) (M+1)+	426	357	4 9 4
10		(5H, m), m), 3,37 s), 4,03 6,47 (1H,	(5H, m), m), 3,99 1, J = 9,2 25 (1H, d, s ancho)	-1,52 (3H, (4H, m), (4H, m), 3,76-, 5), 4,17 = 2,0 Hz), 38 (1H, d,
15	to a manufacture of contraction and contraction of the contraction of	1,68-1,89 3,15 (4H, 3,94 (3H, = 2,3 Hz), 8,38 (1H, d	m), 1,70-1,90 (3,01-3,14 (1H, m)s), 7,04 (1H, dd, 7,29 (1H, m), 8,25 Hz), 10,81 (1H, s	z), 1,27 95-2,07 11 (3H, 4,03 (3H H, d, J Hz), 8,3
20	RMN H1	H, m), 3,00-3 (4H, m), d, J = 3 Hz), 8	H . 62	J = 7 m) 2,91, (3H, '6,4
25		0-1,51 (2H, 1 3,56-3,6 6,25 (1) ,1 Hz y ,1 Hz y	9-1,5% (2H, C2H, O5 Hz), 2 Hz	t, (7F m) m) 3,95
35 35		CDCl ₃ 1,3 1,97-2,08 (3H, s), (3H, s), dd, J = 9 Hz), 10,7	CDCl ₃ 1,29 1,96-2,08 (3H, s), Hz y 4,17 dd, J = 9,	CDCl ₃ 1,28 (3H, m), 1,68-1,91 2,50-2,59 (1H, 3,85 (2H, m), (2H, c, J = 7, 6,63 (1H, dd, J = 9,0 Hz), 1C
40	edades Fusión(°C) 7ente de lización)	de color o pálido -155 de etilo- ano)	oro to de	color pálido
45	Propiedades Punto de Fusión (Disolvente o Recristalizaci	Sólido de amarillo p 154-15 (Acetato de Hexano	Sólido incol 211-212 (Hexano-Aceta etilo)	Espuma de amarillo
50	nica		u_√=0 0	
5560	Estructura Química	-Z WO TZ Z -O TZ -O	u -	N N N N N N N N N N N N N N N N N N N
65	Núm. de Ej.	7.33	4.	75

5	MS(FAB) (M+1)+	466	437	4 3 7
10		,67 (1H, m), 3,95 J = 2,0 Hz), 8,37	(2H, m), m), 3,19- 4 (3H, s), Hz), 6,64 Hz), 0,6	s), 3,10- 3,53-3,59 6,68 (1H, 2,0 y 8,9
15		4H, m), 2,56-2,67 , 3,79-3,89 (2H, m), s), 6,42 (1H, d, J = J = 2,0 y 9,0 Hz), 10,79 (1H, s ancho)	1,77-1,87 08 (4H, m m), 3,94 J = 2,1 H . 8,40 (1H,	(3H, m), (3H, s), (3H, s), ad, J = Hz), 8,
20	RMN H1	Tê,,	(6H, m), 1,77-1,87 (2H, m), 3,02-3,08 (4H, m), 3,31-3,37 (4H, m), 3,94 (3H, 6,42 (1H, d, J = 2,1 Hz), 1 Y 9,0 Hz), 8,40 (1H, d, (1H, s ancho)	12H, m), 23-3,29 s), 3,95 ,73 (1H, J = 8,9
25		,26-2,13 (34, m 4,03 (34, dd, dd, dd, dd, dz),	51-1,75 (6 (4H, m), m), m), 3,31- (s), 6,42 J = 2,1 y 10,76 (1H,	de 1,46-1,98 ((1H, m), 3,2 m), 3,83 (3H, = 2,0 Hz), 6 7,91 (1H, d,
30 35		CDCl ₃ 1,26-2,13 m),3,00-3,14 (3H, (3H, s), 4,03 (3H, Hz), 6,64 (1H, dd (1H, d, J = 9,0 Hz)	CDCl ₃ 1,51-1,75 (6H, 1,92-2,06 (4H, m), 3,31-3,3 3,28 (1H, m), 3,31-3,3 4,03 (3H, s), 6,42 (1 (1H, dd, J = 2,1 y 9, 9,0 Hz), 10,76 (1H, s 8	DMSO-d ₆ 1,46-1,98 3,19 (1H, m), 3 (4H, m), 3,83 (3H d, J = 2,0 Hz), Hz), 7,91 (1H, c ancho), 11,23 (1H
40	Propiedades nto de Fusión(°C) (Disolvente de ecristalización)	color pardo 145-149	. color pálido	istales incoloros 270 (Descomp.) (Etanol)
45	Propie Punto de F (Disolve Recristal	Sólido de pálido	Espuma de amarillo	Cristales 270 (Des (Etar
50	Química	N N N	T. N. W.	MsOH
60	Estructura Química	N N N N N N N N N N N N N N N N N N N	z'=0	N N N N N N N N N N N N N N N N N N N
65	Núm. de Ej.	76	77	78

5	MS(FAB) (M+1)+	გ 27 ა	4. L	44.1
10		(5H, m),), 3,18- (3H, s), 2), 6,47 m), 8,21	(5H, m),), 3,19- s), 6,48 J = 14,5	(5H, m), 2,89-3,00 (4H, m), 1, d, J = 8,69 (1H,
15		2 (1H, m), 2 (1H, m), 3,96 (J = 5,8 Hz, 41 (5H, m)	m ,	-1,82 s), j-3,42 '5 (1F
20	RMN H1	m), 1 3,01-3,1 .75 (4H, .2H, d, .7,26-7), 1, 5-3,1 s), (8,19	m), ,30 , m), H, s)
25		m) m) 3,688 4,70 4,70 Hz,2 Hz,	(33) m), 96, 1 H) IO T
30		CDCl ₃ 1,25-1,50 1,97-2,04 (2H, 3,25 (4H, m), 3, 4,03 (3H, s), 4,1, d, J = 6,5 (1H, d, J = 6,5 (1H, d, J = 14,2	1,25- 2,06 (4H, m d, J d, J	DMSO-d ₆ 1,18-1,43 1,87-1,95 (2H, m) (1H, m), 3,26-3,32 3,84 (3H, s), 3,96 7,3 Hz), 7,71 (1H, s ancho), 11,45 (11
35		000 3,7 4,0 11:	CDC1 ₃ 1,98-2 3,28 (1H,	DMS 1,88 3,88 8,7,3
40	Propiedades to de Fusión(°C) Disolvente de cristalización)	a incolora	incoloro 203- 208	do incoloro 228- (Metanol-Éter)
45	Propi Punto de (Disolv Recrista	Espuma	Sólido i	Sólido ir 238 (Met
50	C)	ğ,	#	
55 60	Estructura Química	MO HN N	L N N N N N N N N N N N N N N N N N N N	HO W W W W W W W W W W W W W W W W W W W
65	Núm. de Ej.	79	0	 L1

5	MS(FAB) (M+1)+	4 5 5	425	4 2 5
10		(5H, m), -2,65 (4H, m), 3,96 J = 7,1	(5H, m), 5-2,90 (2H, 3,55-3,60 6,26 (1H, 2,2 y 9,1 75 (1H, s	(5H, m), -2,65 (2H, 3,10-3,18 s), 3,98 6,54 (1H, J = 9,0 ancho)
15		1,65-1,89 s),2,59 -3,34 (4H, 8 (1H, d, Hz), 10,	1,66-1,86 s), 2,85 (3H, s), (3H, s), dd, J = Hz), 10,	1,57-1,79 s),2,60- (3H,s), 3,82 (3H, 2,0 Hz), 9 (1H, d,
20	RMN H1	3H, m), 2,37 (3H, m), 3,27. [, s), 6,4 J = 14,5	3H, m), 2,50 (3H, 1), 3,09 s), 4,03 ,50 (1H, J = 9,1	3H, m), 2,31 (3H, m), 3,03 (2H, m), d, J = Hz), 7,
30		25-1,51 (2H, m), 5 (2H, m), -3,12 (1H, 4,04 (3H, d,	-1,52 ((2H, m), 3,131H, ,94 (3H, 2 Hz), (1,15-1,40 3 (2H, m) -2,95 (1H 3,66-3, 6,36 (1 2,0 y 9
35		CDC13 1, 1,97-2,06 m), 3,03- (3H, s), Hz), 8,1 ancho)	CDC13 1,20 1,96-2,04 m), 3,03-3 (2H, m), 3 d, J = 2, Hz), 8,38 ancho)	DMSO-d ₆ 1 1,85-1,93 m), 2,85- (3H, m), (3H, s), dd, J = Hz), 8,39
40	Propiedades o de Fusión(°C) isolvente de cistalización)	de color o pálido -182	de color o pálido	ldo de color rillo pálido 125-140 ropanol-Éter)
45	Propi Punto de (Disolv Recrista	Sólido de amarillo 175-1	Espuma e amarill	Sólido de amarillo 125-1 (Isopropan
50	mica	\z\	ZI	NS HOSP
55	Estructura Química	MO HV	-Z WO HN Z' =0	N N N N N N N N N N N N N N N N N N N
60	Estruc)=(_z,_z	-Z-z	-Z-Z-
65	Núm. de Ej.	80	M Θ	CO A1

5	MS(FAB) (M+1)+	431	451	451
10		J = 7,0 (2H, m), (2H, c, J 7,29 (1H, J = 8,6	J = 7,0 m), 2,37 (1H, m), (2H, c, J 6,54 (1H, J = 9,0	m), 2,29 (4H, m), 4,11 (2H, H, d, J = Hz), 8,00
15		(3H, t, 18-2,05), 4,29,8 Hz), (1H, d,	(3H, t, ,03 (2H, ,00-3,10), 4,27 ,1 Hz), (1H, d,	2 (3H, t ,92 (2H, ,03-3,18), 4,05- 6,69 (1) y 8,9
20	RMN H1	(3H, m), 1,64 (5H, m), 1,9 , 3,98 (3H, s (1H, d, J = 1 ,6 Hz), 8,40 ancho)	(, m), 1,6 m), 1,95. (4H, m), 3,95 (3H, H, d, J = Hz), 8,4	34, m), 1,84 m), 1,84 (44, m), 3,83 (34, = 7,0 Hz) dd, J = 2 dd, 11,28 (1
30		1,26-1,51 (3H, 1,72-1,90 (5H, 3,12 (1H, m), 3 Hz), 7,21 (1H, = 1,8 y 8,6	7-1,68 (3H -1,88 (5H, 2,55-2,60 (4H, m), 6,42 (11) 2,1 y 9,0	1,16-1,38 (58-1,80 (5H, ,2,85-2,95 56 (2H, m), 4 (2H, c, J ,6,74 (1H, J = 8,9 Hz),
35	Company of the Control of the Contro	CDC13 1,2 Hz), 1,7 3,02-3,12 = 7,0 Hz) dd, J = Hz), 10,8	CDCl ₃ 1,27-1, Hz), 1,70-1,8 (3H, s), 2,5 3,35-3,40 (4H = 7,0 Hz), 6 dd, J = 2,1 Hz), 11,04 (1	DMSO-d ₆ 1, Hz), 1,58 (3H, s), 3,50-3,56 m), 4,24 2,0 Hz), (1H, d, J
40	Propiedades o de Fusión(°C) Nisolvente de ristalización)	de color o pálido 175	ss de color pálido 185- 187 iter)	tales incoloros 70 (Isopropanol- Éter)
45	Propi Punto de (Disol ¹ Recrista	Sólido amarill 165	Cristales amarillo p 18 (Ét	Cristales 166-170 (I Ét
55	Química	a oet	Z	WSOH
60	Estructura	Z = 0		Z Z Z
65	Núm. de Ej.	ω 5	Θ	8 7

5	MS(FAB) (M+1)+	υ ο	4 6 5	6 7
10		(2H, m), m), 3,91- 2H, c, J = 7 (2H, s 53 (1H, dd, 8,41 (1H,	s), 2,59- -2,86 (2H, -7,0 Hz), d, J = 2,0 11,04 (1H,	(5H, m), (5H, m), 2,28 (3H, m), 3,83 1, c, J = 6,71 (1H, J = 9,0 ancho)
15		,96-2,05 4,26 (3 1, 5,1, 1, 5,1, 1, 6,6 (5H, m),	(3H, 2,78 J = 1H, d	13 (3H, t 61-1,81 (2H, m), 2,95 (3H, 1,25 (2E, 0 Hz), (1H, d,
20	RMN H1	5H, m), 2,90-3), 3H, s) 37 (1H, 4, J = 2,(7,30-7,43)	m), 09 (3H 26 (2 Hz), 6	2,066 2,85 2,85 m), = 8,0
25		7-1,89 s anc m), 3 4,25- 42 (1H 9,1 Hz	3-2,05 (1m), 2,91 (3H, s), d, J = 2 (8,40 (1	9-1,3 -1,59 (2H, m 3H, s ',00-4 ',62 (
30 35		CDCl ₃ 1,27 2,82 (3H, 4,00 (2H, 7,0 Hz), ancho), 6, J = 2,0 y d, J = 9,1	CDCl ₃ 1,28-2,68 (1H, 1m), 2,98 (6,42 (1H, cy 9,1 Hz), s ancho)	DMSO-d ₆ 1,1 Hz), 1,45- 1,85-1,92 s), 2,58 (3 (3H, s), 4 6,9 Hz), 6,9 Hz), 6 dd, J = 2, Hz), 8,39
33	(D) (u	11.0		
40	Propiedades o de Fusión(° Disolvente de ristalización	na de color. Llo pálido	ia de color llo pálido	o incoloro 45-150
45	Pro Punto o (Dis Recris	Espuma amaríl	Espuma d amarillo	Sólido 141
50	Química	Z QO.	IZ II	MSOH MSOH
55	Estructura	January State of the state of t	Z = 0	Z Z O
60	Núm. de Ej.	88 88	66	0
65	N.	∞	ω	06

5	MS(FAB) (M+1)+	8 8 5	4. 10. 11.	6 6 0
10		(11H, m), 2,92-3,03 s), 4,25- 7 (2H, s (1H, dd, 8,34 (1H,	(8H, m), (1H, m), 4,02 (3H, J = 2,1 8,34 (1H,	(4H, m), 3,30 (1H, 4,03 (3H, tho), 6,42 T = 2,0 Y T = 2,0 Y
15		69-2,10 (1 ancho), 2, 1, 02 (3H, s), 5,17 Hz), 6,65 (5H, m), 8, ancho)	-2,08 (4-2,65 ,m), 4 H, d, Hz), 8	3-2,06 , 3,20-3 H, m), 4 , s anch , dd, J
20	RMN H1	m), 1, (3H, s 1, 4 05 (1H, 1 1, 4 2) 11, 42 (1H, 1 1, 4 2) 11, 4 2	s), 1, 2, 2, 3, 95 (6, 46, 1), 8 a.	m), 1 5 (2H, 5-4,02 5,17 (6,64 (H, m),
25	L	58 (3H, 2,83 -3,96 (2 4,95-5 (1H, d, Hz), 7,	77 (66 2,54 m), 3 (1H, dd, 3	87 (12) 2,92-3 s), 3, (1H, m 2,0 Hz)
30		(3H, s m), 3,8 (1H, m 5), 6,45 2,1 y 9,	Cl ₃ 1,22-1,7 49 (3H, s), 90-3,00 (2H, 4,95-5,06), 6,65 (1H, J = 8,9 Hz)	1,55-1, (3H, s), 3,94 (3H, 1,23-4,50 d, J = Hz), 7,3
35		CDC13 2,54 (2H, 4,38 anchc d d d	0 2 2 2 B B B B B B B B B B B B B B B B	CDC1. 2,83 m), s), (1H, 9,1
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	. de color lo pálido	ólido incoloro 197-198 (Éter)	incolora
45	Propi Punto de (Disol Recrista	Espuma amaril	Sólido 197 (色	Espuma
50	ímica	-X -X	12/	- Sp.
55	Estructura Química	N N N N N N N N N N N N N N N N N N N	WHO HANDO	WO HW OW
60	Estr	√z'z ∕	12 2 V	-22
65	Núm. de Ej.	60	COLOR	©

5	MS(FAB) (M+1)+	4 6 5	465	رن و و
10		(2H, m), 2,70 (1H, m), 3,81- s), 6,42 J = 2,2 y 75 (1H, s	7-2,62 (3H, m), 3,20- m), 3,20- s), 4,01- Hz), 6,70 1H, d, J = 11 (1H, s)	(9H, m), 3,16-3,29 s), 4,03 s), 6,42 J = 1,9 Y H, d, J =
15		1,78-1,88 (2H, s), 2,60-2,70 -3,28 (1H, m), 3 4,03 (3H, s), (1H, dd, J = 2 (1H, dd, J = 2 9 Hz), 10,75 (1	,82-1,95 1), 2,57- 17 (1H, 95 (3H, = 2,0 7,93 (1H)	(3H, m), (3H, m), 3,95 (3H, 5,17 (2H, 1H, dd, 7,39 (1H
20	RMN H1	75 (8H, m), 1,78- m), 2,49 (3H, s), (2H, m), 3,19-3,28 3,94 (3H, s), 4,03 ,2 Hz), 6,64 (1H, (1H, d, J = 8,9 Hz)	(10H, m), 1, 8 2,29 (3H, s) m), 3,07-3,1 (3H, s), 3,9 2 (1H, d, J y 8,9 Hz), 7 H, s ancho)	H, m 2,90- (2H, (1H,), 6, (5H, s and
25		3 1,43-1,75 (8H, m), 1, -2,07 (6H, m), 2,49 (3H, 2,95-3,04 (2H, m), 3,19-3, (2H, m), 3,94 (3H, s), 4 d, J = 2,2 Hz), 6,64 (1 Hz), 8,39 (1H, d, J = 8,9	4SO-d ₆ 1,45-1,78 (10H, m), 1, 01-2,09 (2H, m), 2,29 (3H, s), 2,87-2,97 (2H, m), 3,07-3, 35 (1H, m), 3,81 (3H, s), 3,10 (2H, m), 6,62 (1H, d, J, dd, J = 2,0 y 8,9 Hz), 9 Hz), 8,41 (2H, s anchouch)	0-1,51 (2H, m), 3,90-4,0C 1,14-4,3C = 1,9 F 7,28-7,4
35 35		CDCl ₃ 1, 1,94-2,0 m), 2,95- 3,89 (2H, (1H, d, 8,9 Hz), ancho)	DMSO-d ₆ 1 2,01-2,09 m), 2,87- 3,35 (1H, 4,10 (2H (1H, dd, 8,9 Hz), ancho)	CDCl ₃ 1,1(1,96-2,04 (2H, m), 3 (3H, s), 4 (1H, d, J 9,0 Hz), 7
40	Propiedades nto de Fusión(°C) (Disolvente de ecristalización)	do de color illo pálido 85-90	istales incoloros 238-241 (Etanol-Éter diisopropílico)	a incolora
45	Propie Punto de J (Disolv Recrista	Sólido amaril 83	Cristal 2 (Eta diiso	Espuma
50	Química	I N N N N N N N N N N N N N N N N N N N	Wso H	N N N N N N N N N N N N N N N N N N N
55	Estructura	Z = 0	Z = 0	NO N
65	Núm. de Ej.	<u>ሪ</u> ፊ	ഗ	90
00				

5	MS(FAB) (M+1)+	4 6 5	ى ق ق	465
10		1,29-1,62 2,06 (4H, 2,79 (1H, (2H, m), H, d, J = 9,0 Hz), 5 (1H, s	(3H, m), 2,89-3,01 4,06 (2H, m), 4,97- H, d, J = 8,9 HZ), 8,9 HZ),	1,25-1,61 -2,10 (8H, m), 2,91- 4,02 (3H, 1, J = 2,2 Hz), 8,33 ncho)
15		Hz), 1 1,97-2 1,97-2 2-3,90 5,43 (1H 2,0 y	3-1,58 3,88-4 (1H, m 1,9 y d, J =	Hz), 1,86- (3H, m), (1H, c Y 8,9
20	RMN H1	J = 7, (5H, m) = 7,1 Hz) m), 3,8 (3H, s), dd, J = 9,0 Hz)	2,54 (2H, 18-4,18-4 (2H, s) dd, J	J = 7, (1H, m) 2,70-2,86 -2,86 (2F) m), 6,45 J = 2,2 J = 2,2
25		5 (3H, t, 1,71-1,89 (2H, c, J 3,13 (3H, s), 4,03 6,64 (1H, d, J =	0-1,19 (3H, (11H, m), 3,18-3,39 (3H, s), 4, m), 5,17 (6,64 (1H, (5H, m), 8 s ancho)	(3H, t, 67-1,76 H, s), 2,78,), 2,78,)6 (1H, 1H, dd, 8,9 Hz),
30	The state of the s	CDCl ₃ 1,15 (SH, m), m), 2,73 (M), 2,94-3 3,95 (3H, 2,0 Hz), 6 8,38 (1H, ancho)	CDC13 1,10-1,62-2,10 (2H, m), 3 m), 4,02 (5,06 (1H, r), 9 Hz), 6 7,29-7,40 10,81 (1H,	CDCl ₃ 1,15 (5H, m), 1, m), 2,54 (3 3,00 (2H, m s), 4,95-5, CHz), 6,65 (1H, d, J =
35			D T D E O T C T	and the second of the second o
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	s incoloros 30 (Éter)	incolora	s incoloros -185,5 (ter)
45	Propiedades Punto de Fusiór (Disolvente Recristalizaci	Cristales 179-180	Espuma	Cristales 184-5 (Ét
50	ímica	rz	_ * 0 -≠ -	IZ
55	Estructura Química	NO HY		NHO WHO OWN
60		-2,2		
65	Núm. de Ej.	76	8	თ თ

5	MS(FAB) (M+1)+	4. 4. 7.	355	. 4 2 5
10		(2H, m), m), 2,55 (1H, m), Hz), 6,75 7,46 (5H, 74 (1H, s	,45 (2H, (6H, m), 1,95 (1H, = 2,0 y 7,55 (1H, 5), 11,64	(1H, m), 2,53 (3H, s), 3,55- 5,06 (1H, (1H, dd,
15		-1,59 (6H, -5,06 = 2,0 7,33-	1,32-1,98 4,85-4 dd, J dd, J ancho	-1,76 s), 2 (3H, s 4,95-5 6,50 a, U =
20	RMN H1	m), 1,85-2 s), (1H, d, 8,9 H	(1H, m), (3H, (3H, 6,47 d, J	H, m), 2,50 m), 3 2 (3H, 1 = 2,2 8,32 (
30		3-1,38 (1H, 1 4,00 (s), 6, J = 2, J = 2, (1H, d,	1,73 (1H s),3,8 (2H, s), 5,51 (1H, 4 Hz), 1	3-1,56 (3 (6H, m), 2,90 (2H, m), 4,0 (1H, d, c 9,0 Hz), s ancho
35		CDCl ₃ 1,2 1,69-1,78 (3H, s), 5,15 (2H, (1H, dd, m), 8,42 ancho)	DMSO-d6 1 m), 1,64- 2,36 (3H, m), 5,15 8,4 Hz), (d, J = 8, (1H, s and	CDCl ₃ 1,23 1,82-2,10 s), 2,84- 3,60 (2H, m), 6,27 J - 2,2 y 10,84 (1H,
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	incoloro 1-192	Sólido incoloro >270	de color .o pálido
45	Propiedade Punto de Fusió (Disolvente Recristalizao	Sólido 19	Sólido >	Espuma c amarillo
50	ímíca	ОМе	OMe	ŻΙ
55	Estructura Química			-Z S O I Z Z
60		~z.z.()	~z.z.().	\(\frac{1}{2}\).
65	Núm. de Ej.	100	101	102

			ng in announcement of the control of	
5	MS(FAB) (M+1)+	425	451	. 4 5 1
10		,71 (1H, s), 2,88- 3,66 (2H, m), 6,35 m), 7,73	(2H, m), m), 2,21- (3H, s), m), 3,37- 4,03 (3H, l, J = 2,0 Hz), 8,34 ncho)	3 (2H, m), m); 2,21- (3H, s), m), 3,37- 4,03 (3H, 2, J = 2,0 Hz), 8,34
15		1,62-1 (3H, s 3,59-3 5 (1H,	4-1,58 (7H, m 2,54 (1H, m (1H, d, (1H, d, y 9,0 H	1-1,58 (7H, m 2,54 (1H, m m), 4 (1H, d, (1H, d,
20	RMN H1	(3H, m), m), 2,37 (3H, s), 4,85-4,95	m), 1, 1,86-2,1 (6H, s) 3,20-3,2 3,61 (2H) 1), 6,05 J = 2,0 10,87 (m), 1, 1,86-2,1 (6H, s) 3,20-3,2 3,61 (2H) 1), 6,05 0 = 2,0 10,87 (
25		46 (6H, 3,00 s), Hz),	,38 (1H H, m),), 2,34 H, m), 3,52-), 3,52-), 3,52-), 3,64, 1H, dd, 9,0 Hz),	-1,38 (1H, m), m), 2,34 (1H, m), 3,52-n07 (1H, n), 1H, n, n), 2,67 (1H, n) = 9,0 Hz),
30		0-d ₆ 1, 1,79- 5 (2H, 3,91 d, J	13 1,24 9-1,78 0 (1H, 5-2,95 5 (1H, 4,98-5, 6,31	9-1,78 9-1,78 0 (1H, 5-2,95 5 (1H, 4,98-5, 6,31
35	n (°C) de	And the second s	CDC 1,6 1,6 2,3 3,4; 3,4; (s), Hz),	Dardo 2,3 9,4 3,4 5), Hz)
40	des Fusión(°C) nte de lización)	les incoloros 211-213 (Etanol)	color lido 5-179	color lido -181
45	Propiedades Punto de (Disolvente Recristaliz	Cristales 211. (Eta	Sólido de pá 177,	Sólido de pá 178
50	ıca	N N Numaiate	Š	*
55	tura Química	N N N N N N N N N N N N N N N N N N N	N O O	N N N N N N N N N N N N N N N N N N N
60	Estructura	√z²√)	\z'\z'\	12 2 C
65	Núm. de Ej.	103	104	105

5	MS (FAB) (M+1)+	502	. 21	542
10		(3H, (3H, 4,53, (1, J = Hz), (12),	(, m), 2,54 m), 5,05 (1H,	(2H, (2H, 4,53. (1, J = Hz), Hz),
15	;	3), 3,0 (3H, s) (3H, s) (26 (1H, 2,3 y 8, 3, J = 8,	43-1,61 (2H, 0 (6H, m), 57-3,63 (2H, s), 4,96- 1 Hz), 6,51 (1H, d, J =	69-1,77 (1H 10 (9H, m), 3,35-3,41 2 (3H, s), 6,44 (1H, d 2,1 y 9,0 d, J = 9,0
20	RMN H1	m), 2,69 2,54 (3H, m), 3,96 1H, m), 6, dd, J = ,32 (1H, c	1, 1, 3, 5-2, 1 3, 3, 3, 3, 1 1 = 2, 8, 33	m), 1,65 1,85-2,10 (2H, m), m), 4,02 1H, m), 6 dd, J -
25		m), (4H, (5,06((1H, m)), m), m)	m), (3H, m), m), (1H, 9,0 F	59 (5H, 1-2,95 (2H, (2H, (2H, (1H, m), 8
30		1,23- 1,23- 3,61-3, s), 4, Hz), 6, -7,38 (1,24-1 1,76 (2 s), 3, 3,91 (2 m), 6,3 [= 2,1	1,21-1 (5,10 (5), 2, 3, 82-3, 83), 4,9 (11, 8, 11, 8, 11, 8, 11, 8, 11, 8
35	3	CDC13 1,85- s), (2H, 2,3 H 7,26- 10,85	CDC13 1,64- (3H, 3,85- (1H, dd, J	CDC13 1,86-2 (3H, m), 3 (2H, s 2,1 H 7,28-7 10,84
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	viscoso oloro	incoloro -157	incoloro 141,5
45	Propi Punto de (Disola Recrista	Sólido inco	Sólido 155	Sólido 140-
50		08 0	₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩	6 0
55	ra Química	N OM®	-Z WO HU	N HN.
60	Estructura	z = 0 z z	Z-Z	z = 0
65	Núm. de Ej.	106	107	108

5	MS(FAB) (M+1)+	4, C C	439	. 4 8 8 9
10		(10H, m), 3,54-3,60 (3H, s), 2,1 Hz), 8,33 (1H,	s), 2,54. (3H, s), 4,96-5,06 6,46 (1H,	1,71 (1H, s), 2,78- 3,50 (2H, m), 6,31 7,74 (1H,
15		9-2,08 (1, m), 3, 4,03 d, J = 9 Hz), 8 ancho)	45 (3H, , 3,03 4, s), 0 Hz), (1H, d	1,63- (3H, 3,43- (1H, , m),
20	RMN H1	m), -2,94 (2H, 5,46 ((2H, (2H, 4, 02); J, J = z), 8, cho)	(3H, m) m), 2, (3H, s 4,84-4,
30		3,85- (1H, dd, dd,	-2,10 2,61-; (2H, 5,25 ()-d ₆ 1,14-1,46 1,76-1,95 (8H, (2H, m), 2,98 3,91 (3H, s), s ancho), 6,4C = 8,8 Hz),
35	:	CDCl ₃ 1,23- 2,54 (3H, (2H, m), 4,96-5,06 6,66 (1H, d, J = 8,9	CDCl ₃ 1,21 (3H, s), 3,46-3,52 (1H, m), 6 dd, J = 2, Hz), 10,86	DMSO-d ₆ m), 1,76 2,83 (2H m), 3,91 (1H, s a d, J = 8,
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	ales incoloros 217-218,5 ato de etilo- Éter)	viscoso de rillo pálido	les incoloros 205-207 anol-Éter)
45	Propi Punto de (Disol Recrista	Cristales 217- (Acetato Éte	Sólido vi.	Cristales 20% (Etano
50	Química	4	IZ	fumalate / N
55	Estructura Quí	NO HA	-X WO HZ Z	NH OM®
60	Estru	\(\int_{z}^{\text{Z}}\))=(z.z.	ZZ
65	Núm. de Ej.	109	110	111

5	MS (FAB) (M+1)+	4 13 14	516	426
10		s), 2,54 ,76 (2H, (2H, m), ,21 (1H, ,2 y 9,0	1,23-1,60 2,08 (64, = 7,1 Hz), m), 3,93 (1H, m), ', dd, J = 8,30 (1H,	1,23-1,36 1,77 (1H, s), 3,49 (2H, m), 4,95-5,05 (1H, d, J
15		0 (3H, 2,72-2 1-3,66 m),6 ,J = 2),10,8	Hz), 1,85- c, J = [(2H, 5-5,04 44 (1H, ' m), ancho)	HZ), 1,68- 1,68- 2-3,57 5-3,57 6,47 6,47
20	RMN H1	2H, m), 3 (2H, r), m), 3 5-5,04 (46 (1H, J = 9,0	J = 7 (1H, m 3,49 (2H) 3,66-3, 4,2 Hz), 6-7,38 (J = 7 (2H, m m), 2, Hz), 3, 4,00 (s ancho H, d, J
25		-2,10 (1 2,55-2,5 3,59 (2H s), 4,9 Hz), 6,	1 (3H, t, 1,68-1,77 (3H, s), 3, (2H, m), 4,54 (2H, d, J = 2,2 Hz), 7,26- 1 Hz), 10,8	21 (3H, t, 1,43-1,56 1,43-1,56 1,2,09 (6H, J = 7,1 8 (2H, m), 6,30 (1H, 9, 8,30 (1H,
30 35		CDCl ₃ 1,24- (3H, s), m), 3,54-3 4,02 (3H, d, J = 2,2 Hz), 8,32 ancho)	CDCl ₃ 1,2 (3H, m), m), 2,54 3,57-3,62 (3H, s), 6,26 (1H, 2,2 y 9,1 d, J = 9,2	CDCl ₃ 1,21 (1H, m), m), 1,85-2 (2H, c, J 3,83-3,88 (1H, m), 6 = 9,0 Hz), (1H, s ancl
40	opiedades de Fusión(°C) solvente de stalización)	pardo	scoso de 110 pálido	do viscoso ncoloro
45	Propiedade Punto de Fusió (Disolvente Recristalizac	Espuma de pá.	Sólido vi color amari	Sólido
50		2	5 0	#O
60	Estructura Química	WO HA	N HN O O	N N N N N N N N N N N N N N N N N N N
		z V	~z²√	~ z-Z-
65	Núm. de Ej.	112	113	114

5	MS(FAB) (M+1)+	4 2 8	4 6 1	426
10		Hz), 1,16-1,29 1,63-1,71 (1H, (3H, s), 3,42- m), 3,90 (3H, (1H, s ancho), d, J = 8,9 Hz)	(2H, m), (6H, m), 7,1 Hz), o), 7,25- 8,5 Hz),	H, t, J = (21, 05 (21, 05 (21, 05)) (21, 05), (31, 05), (31, 05), (4, 57 (11, 04), (6 (11, 04), 05), (
15		= 7,0 Hz), m), 1,63- 2,39 (3H, (2H, m), 6,35 (1H,	1,42-1,63 (2,10,86-2,10 (6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	m), 1,62 (3H, m), 1,96-2, 3,34-3,40 (2H, m), 3 Hz), 4,52-4, 9 Hz), 6,36 (1H, d, J =
20	RMN H1	(2H, m), -3,61 m),	1, m), 1 Hz), 8 (2H, 7,19 (1	1, m) (5H, m), -3,66 7,0 = 1,8
30		1,13 (;), 1,32- 30-1,97 1H, m), 35-4,95	H, t, J = H, t, J = H, m), H, m H, m), H, s anc	33-1,50 1,68- -3,10 s), (2H, (1H, '8,9 H
35		DMSO-d ₆ (1H, m) 1,8 3,51 (4 8) 4,8 8),4,6 6,42-6,	CDC13 1, 1, 62 (3, 2, 55 (3, 4, 97-5, 10, 95 (CDC13 1,3 7,0 Hz), m), 3,00 3,42 (3H, s), 4,23 m), 6,17 J = 1,9 y
40	ropiedades de Fusión(°C) isolvente de istalización)	ido de color amarillo 110-114 (Éter)	es de color 10 pálido 18-200	de color lo pálido ,5-186
45	Propiedade Punto de Fusió (Disolvente Recristalizao	Sólido de amaril 110-1 (Éter	Cristales amarillo 198-	Sólido amaril 184
50	ıímica		ğ O-Çe	T W O W
55	Estructura Química	HN N N N N N N N N N N N N N N N N N N	T = 0	NH OF THE
			- 0	
65	Núm. de Ej.	115	116	117

5	MS(FAB) (M+1)+	479	6 4 E	0 0 0
10		3 (2H, m), s), 2,84 -3,06 (2H, 3 (3H, m), m),6,45-	(0,9H, m), (0,9H, s), (0,9H, s), (3,70-3,80 (3,3,4, s), (1H, m), (1H, m), (1H, m),	(3H, S), (3H, S), m), 3,87- 7,0 Hz), m), 5,17 6,65 (1H, (5H, m), 2 (1H, S
15		(3H, s (3H, s 2,92-3)2-4,03 06 (1H, m), 8,0	1,43-1,59 2 (2,1H, s , 2,84 (0, (2H, m), 3) m), 4,03 4,95-5,05 5,65-6,70 (10,82 (1H, r)	(3H, 2,55 (2H, m J = (1H, Hz), é 7,40 11,12
20	RMN H1	m), 2,5 3H, 8 m), 4,95- 70 (1	m), 1 3H, s), 1-3,05 0 (2H, m), 4, 4936,	m), (11H, 2,86-3,86-3, (2H, 4,95-5, , J = Hz), 9,0 H
25		1,38 (1 (11H, 2,87 (61 (0,54, m), 6,655 (7,54, s)), 6,655	38 (114, 2,54 3),2,89-4 (0,7H H, n	3-1,56 (3H, 1,69-2,08 (s ancho),
30		CDC1 ₃ 1,22- 1,69-2,10 (1,5H, s), m), 3,47-3, 4,45-4,57 6,50 (1H, n	CDC13 1,25- 1,69-2,10 (0,9H, s), 2,87 (2,1H, (0,3H, m), 4,69- 4,79 (6,45-6,50 (8,32-8,39 (CDCl ₃ 1,23-1, 7,0 Hz), 1,6 2,83 (3H, s = 3,96 (2H, m) 4,23- 4,35 (CH, s), 6,44 dd, J = 2,0 8,36 (1H, d, ancho)
35	() (u		w	
40	edades Fusión(vente de	Sólido incoloro 120,5-122,5 (Éter)	ales incoloro 204-206 ato de etilo)	do de color illo pálido 172-173
45	Propi Punto de (Disol Recrista	Sólio 120	Cristales 204 (Acetato	Sólid amari 1
50) Juímica	-z = 0	>=0 -z -z	- Cobz
55	Estructura Química	N N N N N N N N N N N N N N N N N N N	ewo H	iii o
60	E S	- 'z' \	, s	~z²()
65	Núm. de Ej.	1 1 8	119	120

5	MS (FAB) (M+1)+	4. 70	4 5 2	434
10		2,10 (8H, 2,55-2,65 3,85 (2H, -5,05 (1H, (1H, dd,	(3H, s), , m), 8,42 ancho)	(2H, m), m), 2,44 (4H, m), 1,96-5,06 -7,06 (1H, Hz), 8,41 ncho)
15		1,61 (3H 1), 1,87- 3H, s), 1), 3,75- 2), 4,95- Hz), 6,65 H, d, J =	1H, m), 4,05 7,22-7,30 (2H, 10,79 (1H, s ar	4-1,63 (6H, 3-2,72 s), (7,03-
20	RMN H1	5H, m), 7 (1H, 2,55 9 (2H, = 7,0 J = 2,0 8,36 ((21H, m) m), 7,22-7 Hz), 10,79	(1H, m), 1,4 m), 1,85-2,10 (3H, s), 2,55 m), 4,06 (3H, (1H, s ancho), da, J = 1,3 y Hz), 10,84 (1
30		,22-1,65 ,2-69- ,3-69- ,2,88- ,2,88- ,2,88- ,3-6,14, ,4-6,0 ,4-7,	1,23-2,50 ,07 (1H, n , J = 8,3 E	23-1,38 (1H, 2,56 9 (2H, n 6,20 (1H, d
35		CDCl ₃ 1,2 7,0 Hz), m), 2,49 (1H, m), m), 4,25 m), 6,45 J = 2,0 y 11,15 (1H	CDC1 ₃ 4,98-5, (1H, d,	CDCl ₃ 1, 2 1, 69-1, 70 (3H, s), 3, 14-3, 19 (1H, m), m), 7, 17 (1H, d, d, d,
40	Propiedades co de Fusión(°C) Disolvente de cristalización)	do de color illo pálido 149-152 (Éter)	do incoloro 108-112	do de color illo pálido 214-217
45	Pr Punto (Dis Recri	Sólido de amarillo) 149-1 (Éter	8 0 1 1	Sólido c amarillo 214-
50	Química	ız/ 	N HO WWO	NO NO
60	Estructura	Z = 0	z = 0	Z' = 0
65	Núm. de Ej.	121	122	123

5	MS(FAB) (M+1)+	436	437	478
10		(2H, m), m), 2,35 .3,04 (2H, m), 6,91 Hz), 8,37 ncho)	3 (2H, m), 2,82-2,88 -3,68 (4H, m), 6,22 2,2 y 8,9 ,83 (1H, s	(1H, m), 3,38-3,51 (3H, s), o), 6,45- 0,78 (1H,
15		4-1,64 (12H, 2,95- 3 (1H, j=8,1 H, s a	1,42-1,58 (3H, s), m), 3,58-2 5,06 (1H, J = 1H, J = 11, J = 10,8	58-1,77 H, S), , 4,02 s anch m), 1
20	RMN H1	H, m), 1,4, 1,80-2,13 (4H, m), 4,98-5,08 2 (1H, d,	m), 1 2,54 (2H, m (2H, m 1,96-5, 6,46 (m), 2,54 (6H, ,24 (1)
25		1-1,39 (1H, (1H, m), 1 2,52-2,62 (3H, s), 4 cho), 7,02 = 8,1 Hz),	(9H, m), (9H, m), 3,04-3,09 (3H, s), = 2,2 Hz), (1H, d, J	3-1,58 (3H, m), (11H, m), 3,61-3,82 (1H, m), 6 m), 8,31-8
30		CDCl ₃ 1,24 1,69-1,76 (3H, S), m), 4,03 (1H, S and	DCL ₃ 1,23 ,70-2,09 2H, m),), 4,01 1H, d, J z), 8,31 ncho)	DCI ₃ 1,25 ,85-2,12 2H, m), ,95-5,06 ,51 (1H, ancho)
35	() (;		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
40	Propiedades o de Fusión(° Disolvente de ristalización	o incoloro 4,5-216	do espumoso a amarillo pál	o incoloro 5,5-187
45	Prop: Punto de (Disol Recrista	Sólido 214	Sólido color am	Sólid 18
50	uímica	Ž	_ <u>z</u>	**************************************
55	Estructura Química	N N N N N N N N N N N N N N N N N N N	2 - O	owo Z
60	Н О П	2	~z.²-()	√z²√)
65	Núm. de Ej.	124	125	126

5	MS(FAB) (M+1)+	4 6 5	° 0 9	4, Q
10), 1,22-1,38 68-1,75 (1H, H, s), 2,55-), 3,58 (2H,), 4,02 (3H, 'd, J = 2,2 'd, J = 2,2 '9 Hz), 8,32	(11H, m), 3,65-3,72 (1H, m), 6,50 (1H, 8,17 (1H,	3 (3H, m), , m), 2,49 3 (1H, m), , m), 4,02 111, d, J- Hz), 10,87
15		1 HZ 1, 1, 4 (31) 2H, m (1H, Y 8 Y 8	1,69-2,08 (5H, m), 3 4,19-4,33 (2H, s), 6 (2H, s), 6 (5H, m), 8 H, s ancho)	43-1,6 19 (9H 54-2,6 56 (2H 6,51 (
20	RMN H1	= 7 1, m 2, 2, 66 6,2 6,2 = 2, ,84	, 4 , L 4 T	m) L,8 S) S,5 H,
25		m), 1,44-1,60 (2F 1,84-2,08 (8H, m), (4H, m), 2,75-2,8 1 = 6,3 Hz), 3,61-3, 4,94-5,04 (1H, m), 6,46 (1H, dd, J = d, J = 8,9 Hz), 10	s), 4,02 (1H, 0 Hz), 2 Hz),	,23-1,38 (1H, 77 (1H, m), 1, 2,55 (3H, 92 (2H, m), 4,95-5,06 (1H, 8,16 (1H, ancho)
30 35		CDCl ₃ 1,0 (1H, m), m), 1,84- 2,65 (4H, t, J = 6, s), 4,94- Hz), 6,46 Hz), 6,46	CDCl ₃ 1,25 2,55 (3H, (2H, m), 4,86-5,06 d, J = 7,0	CDCl ₃ 1,2 1,68-1,77 (3H, s), 2,83-2,92 (3H, s), 7,1 Hz), (1H, s and
40	ropiedades de Fusión(°C) solvente de istalización)	s de color o pálido 139,5 de etilo)	de color lo pálido	incoloros -179
45	Propiedac Punto de Fusi (Disolvent Recristaliza	Cristales amarill 138-	Espuma amarill	Cristales 178
50	Química		76 -z	
55	Estructura Qu	N N N N N N N N N N N N N N N N N N N	n – N – O – O – O – O – O – O – O – O – O	u → N → N → N → N → N → N → N → N → N →
60				√z.ż. (
65	Núm. de Ej.	127	128	1 2 9

5	MS(FAB) (M+1)+	ል 6 የጋ	439	439 (libre)
10		(2H, m), 2,54 (3H, (2H, m), (2H, m), (2H, m), (1H, m), dd, J = 9,0 Hz),	2,51 (2H, 3,54 (2H, 5 (3H, s), Hz), 6,45 1H, d, J =	(5H, m), 2,93 (6H, s), 3,22 4,02 (2H, (1H, d, J y 9,0 Hz), y 9,0 Hz),
15		1,42-1,60 1,66-1,76 (3H, s), 2 2,70-2,75 3,60-3,65 4,95-5,05 6,45 (1H, d, J =	68-1,9(H, s), 4H, m), s), 3,9 T = 2,1 8,38 (1,68-1,90 (5H, (3H, s), 2,93 (3H, s), 4,02 (4 (3H, s), 6,38 (1H, J = 2,1 y 9,0 Hz), 10,72 (1H
20	RMN H1	, m 2,4 2,4 m)	H, m 2,3 01-3, 94 (11, 9,1	2,85 m), 3,94 , 3,94 9 (3H, 1, dd, 1, dd,
25		, 38 J J J J J J J	28-1,53 (3H) 8 (2H, m), ,5 Hz), 3,0 7,5 Hz), 3,5 7,5 Hz), 3,5 1,5 Hz), 3,1 10,74 (1H,	29-1,53 8 (2H, 3,18 J = 7,4 ,4 Hz), ,), 6,47 4, d,
30 35		CDC13 1,23-1,62 (3H, t 1,85-2,11 s), 2,55-2,3 3,55 (2H, t 4,23 (2H, c 6,20 (1H, c 6,20 11,15 (1H,	CDCl ₃ 1,28-1 1,99-2,08 (2 t, J = 7,5 H t, J = 7,5 4,03 (3H, s) (1H, dd, J = 9,1 Hz), 10,	CDC13 1,29 1,96-2,08 s), 3,01- (2H, t, J t, J = /,4 = 2,1 Hz), 8,42 (1H, ancho)
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	es de color 11o pálido 16-147 Éter)	Sólido de color amarillo claro 165-166 Acetato de etilo- Hexano)	Sólido incoloro 207-209
45	Prop Punto de (Diso) Recrist	Cristales de amarillo p 146-14 (Éter	Sólido de amarillo o 165-16 (Acetato de Hexano	Sólido 20
50)uímica	(2)	N OMe	N N N N N N N N N N N N N N N N N N N
5560	Estructura Química			WO HX
65	Núm. de Ej.	130	131	132

5	MS(FAB) (M+1)+	437	437 (libre)	451
10		(9H, m), m). 3,59- (3H, s), dd, J = 9,1 Hz),	(5H, m), m), 2,71 ,31 (2H, (2H, m), ,04 (3H, (1H, dd, 9,0 Hz),	0 (5H, m), 2,53-2,62 1-3,13 (1H, 5), 4,02 6,46 (1H, 1H, d, J =
15), 1,65-2,08 1-3,15 (3H, m H, s), 4,02 z), 6,47 (1H, (1H, d, J =	-1,90 (2H, 3,21-3 3,75 s), 4 6,46 i, J =	0-1,90 3,00-3 (3H, 9 (HZ), 6
20	RMN H1	EOWH)	m), 2,30-, (1H, 3), 3 1,3 1,3 1,3	m), 2,40 (2H, 1) m), 3 d, J = d, J = i,1 Hz),
25		-1,53 (2H, m m), 3 d, J = Hz), s anch	(2H, m) 3,01-3,1 3,49 (2H, m), (2H, m), (1H, d, 9,0 Hz), s ancho	1,52 (3 (4H, m) ,70-2,8 ,71 (4H, 20 (1H, 1 Hz y
30 35		CDC13 1,30-2,82-2,92 3,73 (4H,6,22 (1H,2,2,2,2,9,1)	CDCl ₃ 1,29 1,97-2,08 (3H, s), m), 3,39- 3,85-3,98 s), 6,23 J = 1,3 Y 10,68 (1H,	CDCl ₃ 1,29-1,96-2,11 (2H, m), 2 (2H, m), 3,52-3 (3H, s), 6, dd, J = 2,9,1 Hz), 10
40	iedades Fusión(°C) vente de alización)	color verde aro -193,5 de etilo- ano)	incoloro 257,5	oloro 57 etilo-
45	Propiedades Punto de Fusión (Disolvente de Recristalizaci	Sólido de color claro 192,5-193,5 (Acetato de et Hexano)	Sólido in 255-25	Sólido inco 154,5-19 (Acetato de Hexano)
50	i, Ca	₹~ ·	HO S	
5560	Estructura Química	N N O N N O N N N N N N N N N N N N N N	HN N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
65	Núm. de Ej.	133	4 E L 3 A A A A A A A A A A A A A A A A A A	1 3 5

5	MS (FAB) (M+1)+	451 (libre)	4. c.	C7 C7
10		0 (5H, m), m), 2,71- (3H, d, J = 72 (3H, m), m), 3,95 m), 3,95 H (3H, s), H, dd, J = 9,0 Hz), ancho)	(5H, m), m), 3,97 Hz), 7,46- 7 Hz y 8,5 ,33 (1H, s	(5H, m), 2,51-2,63 3,44 (4H, 1,8 HZ), dd, J = 9,0 HZ),
15		(1H, m (1H, m ,96 (3H - 3,72 (1H, r 4,04 4,04 15 (1H, d, J =	5-1,90 (1H, 1) 11,8 Hz = 1,7), 10,3	69-1,90 H, s), , 3,32- d, J = 6,85 (1H
20	RMN H1	m), ,30-,31, m), m), m), Hz, Hz, 11,	, m), 1 3,00-3, t, J = (1H, dd,	(m), 2,37 (1H, 5,62 (,5 Hz)
25 .		0-1,51 (3 (2H, m), m), 2,85 4-3,15 (3 (1H, m), 4,05-4,1 d, J = 2 d, J = 2	(2H, n (2H, n 6,68 (m), 7,	~ F
30		CDC13 1,3C 1,99-2,10 2,90 (1H, 4,7), 2,94 3,8D-3,89 (3H, s), 6,22 (1H, 2,0 Hz Y 10,67 (1H,	CDCl ₃ 1,22 1,95-2,05 (3H, s), (7,51 (1H, Hz), 8,06 ancho)	CDCl ₃ 1,28-1,51 1,96-2,09 (2H, I (4H, M), 3,00-3 M), 3,95 (3H, S) 6,64 (1H, t, J = 1,8 Hz y 9,0 Hz) 9,85 (1H, s anch
35	ô ~			1717
40	dades usión(° ente de ización	do de color rillo claro 146-150	do incoloro 232-233 (Etanol)	ido de color arillo claro 262-263,5 (Etanol)
45	Propie Punto de F (Disolve Recristal	Sólido de amarillo 146-15	Sólido 23% (Et	Sólido de amarillo 262-263 (Etano
50)uímica	Z Z Z	m L	Z- Z II _ II
55	Estructura Química	N Z		Z =0
UU	EJ AJ			
65	Núm. de Ej.	H 3 6 6	137	88 F1

5	MS(FAB) (M+1)+	473 (libre)	397	
10	70 10 10 10 10 10 10 10 10 10 10 10 10 10	-1,83 (5H, 's), 2,87 2-3,25 (4H, s), 3,91- 6,97-7,02 Hz), 7,64 s ancho),	1,82 (5H, 3,00 (1H, 03 (2H, s)) (1H, m),	(5H, m), m), 3,45 s), 7,03 J = 1,8 8,5 Hz),
15		1,59 3,02 3,02 (3H, 1, m), 73,8 (1H,	1,59-2,88-3 2,88-3 5), 6, 43-7,45 2), 8,5	69-1,90 14 (1H, 0 (3H, (1H, dd, d, J =
20	RMN H1	(3H, m), 2, (1H, m), 3, 3, 10-6,86 (4, J, Hz), 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	3 (3H, m), (2H, m), 3,87 (3H, (1H, m), 7, = 8,6 Hz 1, s ancho)	- N1 (A)
30		-d ₆ 1,17-1,44 1,87-1,97 (2H, s), 2,90-3,01 3,39-3,63 (2H, (2H, m), 6,80-m), 7,22 (1H, d, J = 8,7 H 8 (1H, s ancho)	17-1,4 -1,97 3H, s), -7,08 d, J	(2H, 52, 98 3, 98 J = 1, 53, 10 Hz), 1, s ar
35		DMSO-d ₆ m), 1,87 (3H, s), m), 3,39 4,13 (2H,13 (2H, m), (1H, d, 11,88 (11)	DMSO-d ₆ 1, m), 1,88- m),3,84 (3 ancho)7,00 7,81 (1H, ancho), 11	CDCl ₃ 1,2 1,98-2,08 (6H, S), (1H, d, Y Hz y 8,5 10,54 (1H
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	do incoloro 220-222 ato de etilo- Etanol)	ido de color amarillo >300 (Etanol)	o de color illo claro 68-270
45	Propiedade Punto de Fusió (Disolvente Recristalizac	Sólido incolo 220-222 (Acetato de et Etanol)	Sólido de amaril. >300 (Etano	Sólido amaril. 268
50	uímica	0 5 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	HN >= 0	028-X
55	Estructura Química		N N N N N N N N N N N N N N N N N N N	O THE
	<u>ក</u> េ	V	, z, O	
65	Núm. de Ej.	139	140	141

5	MS(FAB) (M+1)+	4 28 2	424	423
10		90 (5H, m), H, m), 3,11 , s), 6,83- 9 Hz), 8,50 ancho)	9 (5H, m), m), 3,97 9 (2H, m), J = 2,0 Hz Hz), 8,53 ancho)	(5H, m), 1), 3,60- 10 (2H, 1,7 Hz y 3,46 (1H,
15		,70-1,90 15 (1H, 3 37 (3H, s J = 1,9 H (1H, s and	1,69-1,89 (2-3,12 (1H, m 4,10-4,19 (3) (1H, dd, J = 2,0 Hz) (1, J = 2,0 Hz) (1, J = 2,0 Hz)	,69-1,90 15 (1H, m), 3,99-4 dd, J = 1,7 Hz), 8
20	RMN H1	3H, m), 1,70-1,90 (5H, 1), 3,04-3,15 (1H, m), 3, 4,07 (3H, s), 6,84 (1H, d, J = 1,9 Hz), 8, 2), 10,63 (1H, s ancho)	(3H, m), 1 m), 3,02-3, (3H, s), 4, m), 6,89 (1 2 (1H, d, J	3H, m), 1 , 3,02-3,)7 (3H, s 6,83 (1H, d, J = 1),86 (1H,
25		3 1,30-1,51 (3H, -2,08 (2H, m), 3 s), 3,97 (3H, s (2H, m), 7,04 (1 d, J = 8,6 Hz),	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	CDCl ₃ 1,27-1,51 (3H, m), 1,69-1,90 (5H, 1,98-2,09 (2H, m), 3,02-3,15 (1H, m), 3,71 (2H, m), 3,97 (3H, s), 3,99-4,10 m), 4,04 (3H, s), 6,83 (1H, dd, J = 1,7 8), 8,8 Hz), 7,98 (1H, d, J = 1,7 Hz), 8,46 d, J = 8,8 Hz), 10,86 (1H, s ancho)
30 35		CDCl ₃ 1, 1,99-2,0 (3H, s), 6,93 (2H (1H, d,	CDCl ₃ 1,28-1, 1,98-2,07 (21) (3H, S), 4,0 4,5,1-4,61 (2) Y 8,9 Hz), 7 (1H, d, J = 8	CDCl ₃ 1, 1,98-2,0 3,71 (2H m), 4,04 8,8 H2), d, J = 8
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	Sólido incoloro 286,5-288 (Etanol)	ido incoloro 262-263,5 (Etanol)	Sólido de color amarillo claro 266-269 (Acetato de etilo)
45	Prop Punto de (Diso. Recrist	Sólide 28(Sólido 262- (Et	Sólido amari 20 (Acetat
50	Química	TX O O O	O O O O O O O O O O O O O O O O O O O	Ž V)— §
55	Estructura Química	Z = 0		
		2	m	7
65	Núm. de Ej.	142	143	1.44

		The second secon		Control for the property of the control of the cont
5	MS(FAB) (M+1)+	426	410	446
10		2,08 (2H, s), 4,07 (6,84 (1H, s) 8,45 (1H, s)	(5H, m), m), 3,33 6,89-6,97 Hz y 8,4 61 (1H, s	0 (5H, m), 3,03-3,13 , s), 4,08 y 8,6 Hz), 1H, d, J =
15		1), 1,34 (3H, 1, m), 1,98-2, 3,96 (3H, s) 1 = 7,1 Hz), 6,88 = 1,9 Hz), 8, 1H, s ancho)	1,70-1,91 -3,16 (1H, (3H, s), (4 Hz), 10,6	70-1,9 3H, s), 98 (3H 1,9 Hz 8,52 (
20	RMN H1	1, m (5F m) c, c	3,04- 4,07 1H, dd = 8,4	H, m), 2,89 (, s), dd, J 1,9 Hz)
25		1,70-1, 1,70-1, -3,13 (1 4,26 (2F 1,9 Hz 1,64 (1H,	-1,52 (3 (5H, m) 3,99 (3H) 7,02 1H, d,	3-1,51 (2H, 3,40 (7,08 (1) d, J
35		CDCl ₃ 1,2 7,1 Hz), m), 3,02- (3H, s), dd, J = ancho), 7 d, J = 8,	CDCl ₃ 1,28-1,97-2,12 (3H, s), 3 (1H,s), m) Hz),8,55 (ancho)	CDC13 1,28 1,98-2,07 (1H, m), (3H, s), 7,24 (1H, 8,6 Hz),
40	des ión(°C) ce de ación)	claro claro 146 ol)	oloro 8 1)	incoloro 5-239
45	Propiedades Punto de Fusión (Disolvente o Recristalizaci	Sólido de co amarillo cl 244-246 (Etanol)	Sólido incoloro 236-238 (Etanol)	Sólido inc 237,5-2
50	μ.	Surgery, recommended in Administration to the Arthurs Arthurs	≥ 0) S S
55	Estructura Química	HN WO HN O	-V OWO HN V	-Z O W O HZ
60	Estru	-Z.z	-Z, Z	-ż.z.
65	Núm. de Ej.	14 3	146	147

5	MS (FAB) (M+1)+	467	451	451 (libre)
10		(5H, m),), 3,49- ,96 (3H, o), 6,80 (1H, d, (1H, d,	1,69-1,90 (5H, m), (3H, s), 2,58-2,68 m), 3,80-3,89 (2H, H, s), 6,43 (1H, d, J = 2,1 Hz y 9,1 Hz), 10,74 (1H, s	1,83 (7H, (2H, m), (2H, m), s), 3,96 (3H, d, J = 1H, d, J = Y 8,9 Hz), s3 (2H, s)
15		9-1,91 (1H, m m), 3 s anch), 7,73	69-1,90 (1, s), 2, 3,80-3, s), 6,43 J = 2,1 H z), 10,74	,48- 2,11 2,86- 34, 54 (HZ 8,4
20	RMN H1	n), 32-3, 83 (35 (35 (4), d,	m), 2,48 (3H, 02 (3H, 1H, dd	3H, 1 m), (3H, m), 2H, m 2H, m a, J 8,9
25	щ	H, m), 3,74 1, s), 1,8 H 8,43	3,13,11 (%), (%),	-1,42 7 (2H, 2,60 3 (1H, 2-4,11 1 (1H, 1, J = 5 (1H, :
30		13 1,28- 3-2,09 9 (4H, 4,05 (dd, J dd, J 1,8 Hz	1,2% 2,09 m), ,94 ,1 H ,1 H ,1 H	-d ₆ (31,88) (33,2(5), (1),(1)
35		CDC1; 1,98; 3,59 3,59 s), (1H,	CDC13 1,97- (1H, m), 3 J = 2 Hz), ancho	DMSO. m), 2,31 m), (3H, 1,6 7,94 ancho
40	opiedades de Fusión(°C) solvente de stalización)	do incoloro 214-215 ato de etilo- Hexano)	do incoloro 172-173 ato de etilo- Hexano)	do incoloro 251-254 (Etanol)
45	Propiedades Punto de Fusión (Disolvente o Recristalizaci	Sólido 214 (Acetato Hex	Sólido 172 (Acetato Hex	Sólido 251 (Et
50	ø U		ŦZ_	12 0 %
55	Estructura Química	IN N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	O N N N N N N N N N N N N N N N N N N N
65	Núm. de Ej.	148	L1 Q	150

5	MS (FAB) (M+1)+	ል የህ የህ	437	д. Ю П)
10		(5H, m), 3,03-3,13 3,98 (2H, 5,69 (1H, 1, d, J = 8,38 (1H,	(5H, m), 3,02-3,14 -3,92 (2H, 6,79 (1H, H, d, J = 12), 10,79	(2H, m), m), 2,29- 2,98 (2H, (2H, m), H, d, J = 7,9,0 Hz), 5 (1H, s
15		s), 88- (1), (1), z),	S), (83- (1), (11) 8 H	7-1,67 (4H, 2,85- 3,99 ,43 (1)
20	RMN H1	m), 3H, 3H, 99 (Hz), J = S anc	(3H, m), 1 m), 2,94 (3,60 (2H, m, s), 4,07 (3 y 8,8 Hz), y 8,8 Hz), (1H, d, J	H, m), 1,91-2 2 (6H, m), 3 (3H, s dd, J
30		DCl ₃ 1,28-1,51 (3H, ,97-2,09 (2H, m), 3,1 1H, m), 3,44-3,58 (3), 3,94 (3H, s), 3 d, J = 1,7 Hz y 8,7 ,7 Hz), 8,31 (1H, d, ancho), 10,78 (1H,	1,000000	1,52 (5H, 1) m), 2 12 (1), 4,
35	(0)	CDC13 1,97-2 (1H, 7-2 (1H, 3, 4), 3, dd, J 1,7 Hz	CDC1 1,98 (1H, m), dd, 2,0	CDC1 1,70 2,42 m), 3,95 - 2,0 8,38 anch
40	iedades Fusión(° vente de alización	to incoloro 19-202	do incoloro 38-239,5 Etanol)	ido incoloro 173-174,5 ato de etilo Hexano)
45	Prop Punto de (Disol Recrist	Sólido 11	Sólido 3 238-2 (Eta	Sólido 173- (Acetato
50	Química	IX =0 HO	OM6	-×
55	Estructura	N N N N N N N N N N N N N N N N N N N	Z = 0	Z = 0
	e் ம.≟	21	25	E
65	Núm. de Ej.	F 5 -	152	r S

5	MS(FAB) (M+1)+	465 (libre)	4, 3, 8	9 7 8
10		-1,82 (7H, 4 (2H, m), 1-2,99 (3H, , s), 3,96 1-6,66 (1H, 9 (1H, m), nncho)	(5H, m), m), 3,02- Hz), 3,87 4,07 (3H, Hz), 7,07	(5H, m), 3,04-3,18 3,82 (2H, (3H, s), m), 10,58
15		m), 1,58-1,82 2,02-2,14 (2H s), 2,81-2,95 3,83 (3H, s), m), 6,61-6,66 7,90-7,99 (1H, s ancho)	70-1,92 7 (2H, d=7,4 3H, s), z y 8,8 d, J =	1,70-1,91 (3H, s), 3 5,2 Hz), 3 s), 4,14 s), 70 (1H, m)
20	RMN H1		- m	H, m), 2,92 t, J = .00 (3H, 8,62-8
30		1,17-1,42 7-1,97 (2H, 5), 2,78 7-3,46 (1H, 4,08-4,19 6,79 (1H, s ancho),	0-1,51 (2H, m m), 3 = 6,5 (1H, dd = 2,0)	1-1,52 (3H, m) (3H, m) 3,27 (2H, 2 Hz), 4 (2H, m)
35		DMSO-d ₆ 1 m), 1,87- 2,30 (3H, m), 3,32- (3H, s), m), 6,70- 9,41 (1H,	CDC1 ₃ 1,3(1,97-2,10 3,15 (1H, (2H, t, J s), 6,82 (1H, d, J 10,68 (1H,	CDCl ₃ 1,37 1,95-2,10 (1H, m), c, J = 5, 7,50-7,62 (1H, s and
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	incoloro 3-246 Acetato de ilo)	de color lo claro ,5-289 o de etilo)	Sólido de.color amarillo claro 199-203 Acetato de etilo- Hexano)
45	Propiedade Punto de Fusió (Disolvente Recristalizac	Sólido 243 (Etanol- et	Sólido de amarillo 287,5-2 (Acetato de	Sólido de.cc amarillo cl 199-203 (Acetato de e Hexano)
50	nica	-z 0 %		40 5 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10
5560	Estructura Química	N N N N N N N N N N N N N N N N N N N	WO HN O	O N N N O N N N N N N N N N N N N N N N
	ETJ O	* V	<u> </u>	72"()
65	Núm. de Ej.	. 154	155	156

5	MS(FAB) (M+1)+	ო O თ	503	476
10		(5H, m), 51 (2H, 17 (1H, (3H, s),	1,82 (5H, s), 2,78 (1H, m), 3,95 (3H, m), (1H, m), (10), 12,09	(8H, m), m), 3,21 J = 5,2 5,26 (1H, 7,60-7,66
15		1,70-1,90 (5H, (6H, s), 2,51 s), 3,04-3,17 Hz), 4,00 (3H, (2H, m), 8,60-10)	1,60-1 (3H, -3,02 s), :-7,59	3-1,91 (1H, C2H, CS), m),
20	RMN H1	, m), 2,26 7 (3H, = 6,8 -7,60 s anch	(3H, m), s), 3,84 m), 9,36	m), 3,06-7 3,7 4,13 7,59 (1H,
25)-1,52 (2H, m 9 Hz), (2H, t, s), 7	-d ₆ 1,19-1,43 1,88-1,98 (2H, s), 287 (6H, -3,45 (4H, m), 7,41-7,46 (1H, -7,90 (1H, m), s ancho)	-1,51 (2H, n = 6,0 (3H, s ,0), 7,
30		CDCl ₃ 1,3(1,99-2,08 t, J = 6, m), 3,21 4,13 (3H, m),	DMSO-de 1, m), 1,88- (3H, s), 3,30-3,45 s), 7,41- 7,85-7,90 (1H, s anc	CDCl ₃ 1,32. 1,98-2,07 (2H, c, J Hz), 4,00 t, J = 6, (1H, m), ancho)
35	des ión(°C) re de ación)	color claro 83 etilo-	-0	olor
40	Propiedades Punto de Fusión(° (Disolvente de Recristalizaciór	ido de arillo 182-1: tato de Hexan	Sólido incoloro 234-237,5 Acetato de etilo Etanol)	Sólido de color amarillo 208-209,5 (Etanol)
45	Punto (D: Recr	Sól ama (Acet	Sól	and agrammatic of the state of
50	Juímica	- N	O S HO	но Д., о.,s
55	Estructura Química	WO HA	Z O	N N N N N N N N N N N N N N N N N N N
60	Est	-2,2	~z^()	-2240
65	Núm. de Ej.	157	158	159

5	MS(FAB) (M+1)+	501	501 (libre)	ი ე ა
10		(2H, m),), 3,32- (3H, s),), 10,60	1,85 (5H, s), 2,93-3,44 (3H, s), 7,50-7,56	(7H, m), 2,59-2,71 3,50 (4H, 7,47-7,57 8 (1H, s
15	The state of the s	8-2,09 (1H, m 4,13 (1H, m	1,60-1, (3H, s 4, m), 3,83 3,83 (, m), 7	-1,92 s), 2 3,39-3 s), 7
20	RMN H1	m), 1 ,05-3,1 3H, s)	3H, m) m), 2, 3,28 (2H, r 7,46 (1H, ancho)	m), 2,36 (1H, 4,13
25		-1,92 (10H, (4H, m), 3, 3) (m), 3,99 (2H, m), 8,	1,20-1,44 (3-2,02 (4H, 1, m), 3,15- 3,53-3,60 1, s), 7,41- 1, s), 7,82-7,89 12,07 (1H, s	-1,51 (3H, (2H, m), (2H, m), 3,05-3,16 (3H, s), 8,60-8,68
30		CDCl ₃ 1,32-1,92 2,90-3,02 (4H, 3,49 4H, m), 7,50-7,61 (2H, (1H, s ancho)	DMSO-d ₆ 1, m), 1,88-2 3,03 (1H, (2H, m), 3,94 (3H, (1H, m), ancho), 12,	CDCl ₃ 1,29-1,51 1,96-2,07 (2H, (4H, m), 3,05- m), 3,99 (3H, (2H, m), 8,60-8 ancho)
35		D 0 m r -		
40	ropiedades de Fusión(°C Isolvente de istalización)	ido incoloro 159-160,5 (Etanol)	ido incoloro 152-154 (Etanol)	do incoloro 92,5-194 (Etanol)
45	Propie Punto de 1 (Disolv Recrista:	Sólido 159- (Et	Sólido 152 (Et	Sólido 192, (Et
50	ď		\rangle \frac{1}{\frac{1}{2}} \text{o } \text{Q}	**************************************
55 60	Estructura Química	ON NHW NHW NHW NHW NHW NHW NHW NHW NHW NH	N N N N N N N N N N N N N N N N N N N	O S HN C
	Estr	-2.2	-2,2	-22
65	Núm. de Ej.	160	1,61	L1 62 22

				American resolution and supplied of the following the commender of the supplied to the contract of the contrac
5	MS(FAB) (M+1)+	515	488	504
10		81 (5H, s), 2,85 ,61 (8H, ',41-7,47 ,89 (1H, ancho)	(10H, m), m), 3,97 (1H, m), dd, J = 8,4 Hz),	0 (5H, m), m), 3,04- 4,00 (3H, = 1,2 Hz), Hz), 8,66 ancho)
15		m), 1,60-1,81 2,30 (3H, s), m), 3,12-3,61 (3H, s), 7,41- m), 7,80-7,89 2,06 (1H, s anch	m), 1,69-2,09 (3,29-3,56 (4H, s), 4,41-4,49 2 Hz), 7,60 (1H, d, J = 8,63 (1H, d, J =	1,69-1,90 -2,80 (4H, m (4H, m), 4 (1H, d, J = Hz y 8,4 H
20	RMN H1	(3H, m), (1H, 3,94 (1H, 10), 1		1, m), 2,70. 3-3,50 7,43 1,2
25		2,20 (2,20 (3,90-3) (3H, 8) (3H, 8) (1H, 8)	8-1,51 (3H, m), 4,13 (3H, d, J = 1 d, J = 1 8,4 Hz), 1, s ancho	-1,'(2H, m),'(3H, dd,
30		DMSO-d ₆ 1 m), 1,86- (3H, s), m), 3,83 (1H, m), m), 9,52	CDCl ₃ 1,28-1,51 3,02-3,13 (1H, (3H, s), 4,13 7,53 (1H, d, J = 1,2 Hz y 8,4 Hz 10,59 (1H, s anc	CDCl ₃ 1,29 1,98-2,09 3,15 (1H, s), 4,14 7,50 (1H, (1H, d, J
35	(°C) (e 5n)	oloro .5 etilo- ol)		O H
40	Propiedades unto de Fusión(°C) (Disolvente de Recristalización)	incc 203, de pan	Sólido incoloro 246-247 (Etanol)	ido incoloro 226-227,5 (Etanol)
45	Propi Punto de (Disol Recrista	Sólido 201 (Acetato Isopro	S 611.	Sólido 226- (Etc
50	Química	NO N	OMe OH	O NO
55	Estructura	Z = 0		Z Z Z
60	田	z	- 0	
65	Núm. de Ej.	163	164	165

		турга такий	and a supplication of the	on the second
5	MS (FAB) (M+1)+	5 4 4	200	515
10		(9H, m), m), 3,20- (3H, s), Hz), 7,52 64 (1H, d,	(5H, m), 6,1 Hz), 6,1 Hz), 1, d, J = 8,3 Hz), (1H, S	1,71-2,07 (9H,.m), (3H, s), 2,62-2,71 m), 3,61-3,70 (2H, (3H, s), 7,43-7,48 m), 8,62-8,68 (1H,
15	TORRES WIFE LINEARING THE COLUMNICAL CONTROL	-1,91 (1H, 4,00 = 1,0 = 1,0	69-1,90 t, J = 1,4 J = 7,48 (1F)	71-2,07 8H, S), 2 , 3,61-3 H, S), 7
20	RMN H1	52 (3H, m), 1,69 H, m), 3,04-3,17 , 3,91 (4H, s), , 7,44 (1H, d, J = 1,0 Hz y 8,2 Hz) 10,57 (1H, s anch	(S) (S)	m), 2,38 (1H, 4,13 (1H,
		0-1,52 (31 (2H, m), m), 3,9; s), 7,44 J = 1,0 H	, 52 H, H, 4 5 (4	8,00
30		CDCl ₃ 1,30-1,52 1,98-2,08 (2H, m 3,30 (4H, m), 3 4,12 (3H, s), 7, (1H, dd, J = 1,C) J = 8,2 Hz), 10,	CDCl ₃ 1,29-1 1,96-2,07 (2 3,05-3,18 (1 3,99 (3H, s) 1,2 Hz), 7,5 8,67 (1H, c	CDCl ₃ 1,29-1,65 2,36-2,47 (1H, (2H, m), 3,03- m), 4,00 (3H, (1H, m), 7,51- m), 10,54 (1H,
35	Security and the transfer transfer to the control of the control o	mana i i i i i i i i i i i i i i i i i i	an mana namananan para a ragge	H
40	Propiedades ito de Fusión(°C) (Disolvente de scristalización)	Sólido incoloro 270,5-272 Etanol-Acetato de etilo)	lido incoloro 249-251 (Etanol)	Sólido incoloro 241,5-242,5 (Etanol)
45	Propiedades Punto de Fusión (Disolvente o Recristalizaci	Sólido 270 (Etanol.	Sólido 24 (E	Sólido 241, (Et
50	ımıca	O, N	Q ZZ	o' xı
55	Estructura Química	N O O O O O O O O O O O O O O O O O O O	NA OWN	O HN C
60		-ź.z-\	-2,2	-z.z
65	Núm. de Ej.	166	167	1, 68

5	MS(FAB) (M+1)+	ਨ ਜ	621	487
10		,82 (7H, (2H, m), ,52 (3H, (2H, m), ,40 (1H, ho)	(6H, m), 3,29- 3,98 (3H, 5), 4,69 7,21-7,39 8,70 (1H,	(3H, m), m), 4,00 (2H, m),
15		m), 1,47-1,82 2,00-2,10 (2H, (2H, m), 2,52 3,70-3,85 (2H, s), 7,34-7,40 7,79-7,88 (1H,	0-1,92 (1H, m), (3H, m), (3H, m),	1,99-2,14 (37,53-7,68 (21H, sancho)
20	RMN H1	H, (n), (60, 3H, 3H, n), (n), (2,06	2 (3H, m), 1,7 m), 3,05-3,18 3,41-3,56 (2H, (1H, m), 4,13 4,97-5,14 (2H, -7,61 (2H, m), s ancho)	H, m), , 3,32- 1, s), 10,60
25		D-d ₆ 1,18-1,41 (3 1,87-1,96 (2H, r 0 (3H, s), 2,39-2 2,90-3,08 (2H, m 2 (3H, s), 3,93 (7,41-7,50 (1H, r 6 (1H, s ancho), 1:	-1,52 (3H, m), ,23 (ho), ,46-(1H,	0-1,93 (2H, 4,14 (1H,
30 35		DMSO-d ₆ m), 1,8' 2,30 (3F s), 2,9C 3,82 (3F m), 7,4'	CDCl ₃ 1,30. 1,99-2,20 3,39 (2H, s), 4,08-4 (1H, s anc (5H, m), m), 10,56	CDCl ₃ 1,3 2,99-3,17 (3H, s), 8,64-8,71
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	Sólido incoloro 212-215 cetato de etilo- Etanol)	Sólido incoloro 230-232 (Metanol-Etanol)	Sólido incoloro 239-240 (Etanol)
45	Pro Punto d (Disc Recris	Sólid 2 (Acetat	Sólíd 2 (Metar	Sólid 2 (E
50) Juimica	O O O O O O O O O O O O O O O O O O O		O N H
55	Estructura Química	WO HN O	N N N N N N N N N N N N N N N N N N N	o Transport
65	Núm. de Ej.	169	170	171

5	MS(FAB) (M+1)+	4. F.	6 3.5	5 01
10		2,00 (8H, s), 2,90-3,70-3,80 s), 7,39-7,81-7,91 08 (1H, s	1 (5H, m), m), 3,05- 3,68-3,81 s), 4,64 8-7,41 (5H, 1H, dd, J = = 8,3 Hz),	0 (2H, m), m), 3,07- 4,00 (3H, J = 1,4), Hz), 8,64 ancho)
15		1,60- 3 (3H, H, m), 4 (3H, H, m),	-1,91 (2H,m), (3H,7,28-	1,99-2,1 80 (1H, 2H, m), 1H, d, y 8,3 y 8,3 (1H, s
20	RMN H1	(3H, m), 18-3,5 1, s), 50-7,6	H, m), 2,56-2 8-3,60 (, s), 7 (2H, = 1,0), 8,65 (1)	H, m), 2,70-2 3-3,78 7,45 1,4 E
25		17-1, 2,19 m), 3,82 m), 8,00	-1,63 (4H, m), ,00 ho), ho), 1H, c	-1,96 (2H, m), (3H, dd,
35		DMSO-d ₆ 1, m), 2,02-2 3,01 (1H, (1H, m), 7,48 (1H, (1H, m), ancho)	CDCl ₃ 1,30-1,99-2,11 3,18 (1H, (2H, m), 4 (1H, s anc m), 7,43 (1 1,0 Hz y 8 10,57 (1H,	CDCl ₃ 1,29 2,53-2,65 3,18 (1H, s), 4,13 7,52 (1H, (1H, d, J
40	Propiedades ito de Fusión(°C) (Disolvente de cristalización)	o incoloro 05-209	o incoloro 23-226	ólido incoloro 196-197,5 (Etanol)
45	Propie Punto de F (Disolve Recristal	Sólido 20	Sólido 22	Sólido 190 (E
50	Química	OMe NH2	0=/ 0=/ ZI	NH ₂
55	Estructura (Z = O	N N N N N N N N N N N N N N N N N N N	O HN O HN
60		- 🗸	-1.2	z V
65	Núm. de Ej.	172	173	174

5	MS (FAB) (M+1)+	501 (libre)	440	387
10		s), 2,44- 3,05-3,16 (3H, s), 7,41-7,49	0 (5H, m), m), 3,01- 3,95 (3H, J = 2,1), Hz), 8,40 ancho)	[(2H, m), m), 3,05- -7,72 (2H, s ancho)
15	And of the second secon	1,50- (3H, " m), 3,82 " m),	,69-1,90 (5 79 (4H, m), 1H, m), 3,9 1H, d, J = and8,9 Hz) (1H, s anche	,39-1,51 (2H, 1), 3, 10 (2H, m), 3, 1, 7,65-7,72 (3) (1H, s ancho)
20	RMN H1	3H, rm), 2 3,01 (2H, 7,48	52 (3H, m), 1,69-1,90 (, m), 2,70-2,79 (4H, m) 3,73-3,83 (4H, m), 3, s), 6,38 (1H, d, J J = 2,1 Hz and8,9 Hz 9 Hz), 10,71 (1H, s anc	5 (1H, m), 1,39-1,51 (2Hm), m), 2,00-2,10 (2H, m), 4,01 (3H, s), 7,65-7,77 (2H, m), 12,03 (1H, s and
25		1,19-1,43 (3-2,04 (4H, 1, m), 2,92- 3,67-3,78 1, s), 7,39- 1, s), 7,39-	m), (2H, (3H, dd, dd,	21-1,35 () 3 (5H, m) 1, m), 4,6,
30 35		DMSO-d ₆ 1 m), 1,88- 2,59 (2H, (1H, m), 3,93 (3H, (1H, m), ancho)	CDCl ₃ 1,29 1,97-2,08 3,12 (1H, s), 4,03 6,59 (1H, (1H, d, J	CDCl ₃ 1,21-1,35 1,70-1,93 (5H, m 3,17 (1H, m), 4 m), 8,11-8,19 (2
40	copiedades de Fusión(°C) solvente de istalización)	do incoloro 135-140 (Etanol)	Sólido de color amarillo claro 132,5-134 (Etanol)	Sólido incoloro 267-269 (Etanol)
45	Propiedades Punto de Fusión((Disolvente de Recristalizació	Sólido 139 (Et	Sólido amaril 132 (Et	Sólido 26 (Et
50	uímica	S COH	N N N N N N N N N N N N N N N N N N N	ii ii
5560	Estructura Química	NO THE POST OF THE		Z =0
65	Núm. de Ej.	175	176	177

5	MS(FAB) (M+1)+	407	407 (libre)	32.4
10		2,58 (4H, 2,58 (4H, m), 3,38 6,95-7,04	-1,80 (5H, s), 2,86 -3,27 (4H, s), 3,92- 8,08-8,18 92 (1H, s	55 (2H, m), m), 1,91- , 3,73 (3H, 6 (2H, m),
15	And the state of t	1,92 s), 1H, 1H, s),	,54- (3H, 3,01 (3H, m),	1,51-1,65 ,89 (2H, m (1H, m), 3 5,68-6,76 H, s ancho
25	RMN H1	(3H, m), a), 2,37 , 3,09- 3 Hz), 3,98	(3H, m), 99 (1H, m), 1, m), 1, s,	44 (3H, m), 1,51-1,65 , m), 1,80-1,89 (2H, m) 2,65- 2,77 (1H, m), 3 s ancho), 6,68-6,76 , m), 7,84 (1H, s ancho)
30		1,27-1,52 ,11 (2H, = 5,0 Hz , J = 5,0 m), 8,11-	1,17-1, 36-1,96 , 2,89-2 10-3,63 (2H, m),	CDCl ₃ 1,20-1,44 1,69-1,77 (1H, m 2,01 (2H, m), 2, s), 4,16 (2H, s 7,70-7,79 (2H, m
35	(C)	CDC1 ₃ 2,01-2 t, J t, J de (4H, t (2H, t	DMSO-d ₆ m), 1, 8 (3H, s) m), 3, 4 4,20 (2 (2H, m) ancho)	CDC1 ₃ 1,69-1 2,01 (S), 4,
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	Sólido incoloro 275-278 Etanol-Acetato d etilo)	Sólido incoloro >300 (Etanol-Agua)	ido incoloro 22 330 (Etanol)
45	Proj Punto da (Disc Recris	Sólida 2 (Etanol	Sólide (Etar	Sólido i 330
50	Química	\z\ \z _=\	Z O B	NH NH
60	Estructura Química	Z = 0 - Z - Z - Z - Z - Z - Z - Z - Z - Z -	Z = 0	Z =0
65	Núm. de Ej.	178	179	180

5	MS(FAB) (M+1)+	4 0 7	4 7 2	527
10		4 (2H, m), , m), 3,76	'9 (5H, m), m), 2,91- 3,76 (3H, 9 (2H, m),	,90 (5H, m), H, m), 2,96-), 3,87 (2H, 6,43 (1H, d, ,1 Hz y 9,1 , d, J = 9,1
15		1,49-1,64 (,81 (1H, m),8,94	1,59-1,79 2,80 (1H, m) (2H, m), 3, 7,82-7,89 (72-1 5 (1 6 (1, m, s), s), = 2
20	RMN H1	(3H, m), 1,49-1,64 m), 2,64-2,81 (1H, 8,28 (4H, m), 8,9	m), 68-, 33, 1),	(5H, m), 1,72 m), 2,77-2,85 3,79-3,90 (2H, 1), 4,03 (3H, s) (1H, dd, J = (5H, m), 8,38 s ancho)
30		(5H, m) 8,14-8	(6H, m), (6H, m), (m), 3,24 -3,86 (1H),	-1,64 (4H, m), 3H, s 6,64 6,64 7,39
35		CDCl ₃ 1,20-1,45 1,69-2,02 (5H, (3H, s), 8,14- ancho)	CDCl ₃ 1,21-1,45 (3H, 1,80-2,01 (6H, m), 2, 3,01 (2H, m), 3,24-3 s), 3,78-3,86 (1H, m 8,02-8,09 (2H, m), 8,6	CDCl ₃ 1,30-1,98-2,10 3,12 (3H, s), 3,95 (3 J = 2,1), Hz), 7,23-1
40	Propiedades unto de Fusión(°C) (Disolvente de Recristalización)	Sólido de color amarillo 182-187	Sólido de color amarillo claro 188-193 (Acetato de etilo- Hexano)	ido incoloro 161-162 (Etanol)
45	Propi Punto de (Disolv Recrista	Sólido amarill	Sólido amaril 188 (Acetato He>	Sólído 161 (Et
50	1mica	o, 5	, Z-	± **
55	Estructura Química	Z = 0		N N N N N N N N N N N N N N N N N N N
60			-z _{-z} -	-2,2
65	Núm. de Ej.	8 H	182	183

5	MS(FAB) (M+1)+	437	437	4 8 5
10		(5H, m), m), 3,79- (3H, s), 1, J = 2,2 9,0 Hz),	1,82 (7H, s), 2,85-3,82 (3H, m), 6,62 = 1,8 Hz y (1H, d, J	53-1,66 (2H, m), 11 (4H, m), 1,94- 2,55-2,68 (4H, 36-3,48 (4H, m), H, m), 8,00-8,08
15		9-1,89 (4H, 4,03 1H, dc	,49- 3H, m), (2H,	1,53-1,66 .,91 (4H, m s), 2,55-2 3,36-3,48 (2H, m), 8
20	RMN H1	1, m), 2,89-3 3 (3H, 2), 6,6	11, 2, 1, 36 (2, 98-4, 98-4, 98-4) ancho	m), ,81-1 (3H, n),
25	The state of the s	3-1,65 (4H, m), d, J Hz),	-d ₆ 1,15-1,41 (3 1,86-2,01 (4H, m (3H, m), 3,22-3 3,94 (3H, s), 3 d, J = 1,8), 6,7 Hz), 7,83 (3H, s 9 Hz), 11,12 (1H,	1,46 (1H, m), (80,80)
30 35		CDCl ₃ 1,28 1,90-2,08 3,89 (2H, 6,43 (1H, Hz y 9,0 10,74 (1H,	DMSO-d ₆ 1,15-1 m), 1,86-2,01 3,00 (3H, m), s), 3,94 (3H, (1H, d, J = 1,8 8,9 Hz), 7,83 = 8,9 Hz), 7,83	CDC13 1,22-1,79 (2,02 (2H, 1) 2,70-2,3,76 (3H, (2H, m))
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	Sólido de color amarillo claro 152-155 Acetato de etilo- Hexano)	de color pardo- amarillo 124-127 ropanol-Acetato de etilo)	Sólido incoloro 181,5-182,5 (Etanol)
45	Prop Punto de (Diso) Recrist	Sólido amaril 15 (Acetato He	Sólido de ame 12 (Isoprope	Sólido 181, (Et
50	Química	HN HN	N. O. S. O. O. S. O. O. O. S. O.	Q Z Y
60	Estructura Química	N O N O N O N O N O N O N O N O N O N O	N N O N O N O N O N O N O N O N O N O N	Z = 0
65	Núm. de Ej.	Н 8 4	1 8 5	186

5	MS (FAB) (M+1)+	485 (libre)	ເງ ເນ ເກ	421
10		1,42 (2H, (1H, m), m), 2,06- -2,73 (1H, -3,59 (5H, m), 7,99- 9,44-9,58	(9H, m), 2,90-3,06 4,07 (2H, m), 7,27 m), 7,27 7,45 (5H,	(3H, s), 3,16-3,29 (2H, m), m), 8,42
15), 1,29- ,64-1,72 01 (3H, s), 2,62- z), 3,14 95 (3H, m), s ancho)	1,70-1,92 (9H, (3H, s), 2,90-m), 3,91-4,07 4,41 (1H, m), 7,29-7,45 10,69-10,87 (1	m), 2,30 (3H, m), 3,96-4,13 -8,18 (2H, s ancho)
20	RMN H1	H, m), 1,85-2 31 (3H, J = 4,5 3,71-3 19-8,27	m), 2,82 (1H, 1,20- (2H, m),	1 (14H, m, 80-3,04 3H, m), 3 1), 8,01-8
30		13-1,2 1,59 ((2H, m m), 2 3H, d, (3H, s m), 8 m), 8	9-1,54 (2H, 3,10- (3H, 6,96- 8,20	DMSO-d ₆ 1,17-2,11 (14H, 12,58 (3H, s), 2,80-3,04 (1H, m), 3,84 (3H, m), 6,98-7,14 (2H, m), 8,01-8 (2H, s ancho),11,85 (1H, s
35		DMSO-d ₆ 1, m), 1,45- 1,73-1,81 2,18 (1H, m), 2,83 (m), 3,69 8,07 (2H, (1H, m ano	CDCl ₃ 1,29 2,01-2,12 (2H, m), m), 3,98 (2H, m), m), 8,09- ancho)	DMSO-d ₆ 2,58 (3 (1H, m) 6,98-7, (2H, s
40	Propiedades nto de Fusión(°C) (Disolvente de scristalización)	do incoloro 24-127	Sólido incoloro 225,5-226,5 (Etanol)	Sólido incoloro >300 (Descomp.) (Etanol-Aqua)
45	Propi Punto de (Disolv Recrista	Sólido 12	Sólió 225 (1	Sólid >300 (Eta
50	Química	A S	0 0 -z	TX O'N
60	Estructura Química	Z = 0		Z = 0
65	Núm. de Ej.	187	1888	189

5	MS(FAB) (M+1)+	471	536	472
10		7 (2H, m), m), 1,92- 2,89-3,04 (3H, s),	(5H, m), 1), 3,69- (3H, s), dd, J = 8,3 Hz),	(5H, m), m), 3,96 (3H, s), dd, J = 8,9 Hz);
15		2-1,67 (4H, m), 3,76 (2H, n	,69-1,90 34 (5H, m s), 4,15 7,53 (1H,	22 (5H, 22 (5H, 1), 4,05 6,65 (1H,
20	RMN H1	H, m), 1,81-1 8-2,80 6 (4H, 8,02-8,	8-1,51 (3H, m), 1,69-1,90 (5H, (2H, m), 3,04-3,34 (5H, m), 3 m), 4,00 (3H, s), 4,15 (3H, d, J = 1,4 Hz), 7,53 (1H, dd, 8,3 Hz), 8,68 (1H, d, J = 8,3 , s ancho)	3H, m), 1, 3,01-3, 3 (4H, m), 2,1 Hz), 8,46 (1H)
30		1,4%(1H, m), m,32-	13 1,28-1,51 (3F 7-2,07 (2H, m), 2 (4H, m), 4,00 5 (1H, d, J = 1 Hz y 8,3 Hz), 52 (1H, s ancho)	-1,52 (2H, 3,98- d, J ,9 Hz
35		CDCl ₃ 1,21-1,79 2,04 (2H, m), 3 7,88-7,94 (CDCl ₃ 1,28-1,97-2,07 3,82 (4H, 7,45 (1H, 1,4 Hz y 8 10,52 (1H,	CDCl ₃ 1,28- 1,97-2,09 (3H, s), 6,46 (1H, 2,1 Hz y 8 10,62 (1H,
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	do incoloro 113-118	Sólido incoloro 260-261 (Etanol- Tolueno)	ido incoloro >300 anol-Tolueno)
45	Prop Punto de (Diso. Recrist	Sólido 11	Sólido 260-261 Tol	Sólido (Etanol
50	Química	O. S.	o x _ v = 0	O-10/2
55	Estructura Qu	o T	O HU O	WO HAN
60	Est	-ż.z.\	-ż.z/\)	-2,2
65	Núm. de Ej.	1 90	о П	192

5	MS(FAB) (M+1)+	4 3 1	4. 13.	S 90
10		t, J = 1,05 (2H, 39) (2H, 39) (1H, s)	1, t, J = -2,05 (2H, m), 3,01-4,03 (3H, d, J Hz y 8,9 71 (1H, s	H, t, J = -2,05 (2H, m), 3,91-4,40 (1H, 7) (2H, s), H, dd, J = m), 8,38
15		1 (3H, 1,96-2 (3H, 1H, d, Hz y 10,57	,50 (3H, t, 1,96-2,05 2 (4H, m), H, m), 4,03), 6,43 (1H, = 2,2 Hz z), 10,71 (3	50 (3H, m 1,97-2 (3H, m 4,28-4)), 5,17 (5H, 11, 3 (5H, 11), 5 (1H, s and
20	RMN H1	(5H, m), (5H, m), 4, m), 7,23	(3H, m), 1,5 89 (5H, m), 2,54-2,62 33-3,42 (4H, J = 7,2 Hz), (1H, dd, J = J = 8,9 Hz)	(9H, m), (2,90-3, (3H, s = 7,2 l 0 Hz), 7,30-7
25		29-1,54 (3H, 1,69-1,89 1-3,12 (1H, 1) J = 7,3 Hz) 30 (1H, dd, H, d, J =	9-1,52 (3H 1,69-1,89 (3H, s), m), 3,33 (2H, c, J ', 6,65 (1)	30-1,52 (3H 1,69-1,90 3 (3H, s), 1, m), 4,03 (2H, c, J (2H, c, J 1, d, J - 2, y 8,9 Hz), y 8,9 Hz),
30		CDC1 ₃ 1,29 7,3 Hz), m), 3,01-3 CH, c, J Hz), 7,30 8,36 (1H, ancho)	CDCL3 1,29 7,2 Hz), m), 2,37 3,12 (1H, s), 4,37 = 2,2 Hz) Hz), 8,39 ancho)	CDCl ₃ 1,3(7,2 Hz), m), 2,83 4,00 (2H, m), 4,37 6,43 (1H, 2,0 Hz y (1H, d, J
35	ades sión(°C) nte de zación)			- 0
45	Propiedades nto de Fusión((Disolvente de	olido incoloro 230-231 (Etanol)	Sólido incoloro 218-220 (Etanol)	Sólido incolorc 136-137,5 Acetato de etil Etanol)
50	Punto (D Recz	8	S .	Sól (Acet
55	Química	Me Eq.	~)
60	Estructura	TN PO		N N N N N N N N N N N N N N N N N N N
		ž	_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
65	Núm. de Ej.	193	194	195

5	MS (FAB) (M+1)+	4 6 5	437	515
10		t J = 7,2 (4H, m), 2,92-3,12 (3H, s), 1, d, J = 1, d, J = 9,0 Hz), 2 (1H, s	(2H, m), m), 2,57 (1H, m), dd, J = 8,5 Hz),	(2H, m), m), 2,36 (4H, m), s), 4,99- Hz), 7,52 (0 (1H, d,
15	Addition of the American compared program (processing)	(3H, 5-2,10 m), 4,03 43 (1H 9 Hz y 10,7;	1,43-1,60 2,12 (6H, 4,97-5,10 7,81 (1H, H, d, J =	1,65 (8H, 2,74 3H, s 1,3 8,6(
20	RMN H1	(2H, (2H, (2H, (2H, (2H, (2H, (2H, (2H,	m), 1,88-2 s), 6 Hz), 8,71 (1	m, 1,84-2, s), 2,), 4,1 (1H, d, z y 8,3 (1H, s a
25	Commence of the Commence of th	2,61 2,61 2,61 -3,90 1 = 7 (1H,	1,39 (11, m) ,18 (3) , J = 5 Hz),	22-1,39 (1H, 0 (1H, m), 2,56 (3H, ,52 (4H, m), ,m), 7,47 (J = 1,3 Hz Hz), 10,65 (1
30		l ₃ 1,30 , 1,63-) (3H, , m), , (2H, Hz), 6 , (1H,)	CDCl ₃ 1,23-7.70-1,80 (3H, s), 4,7,67 (1H, d),6 Hz y 8,10,67 (1H, s)	3 1,22 -1,80 s), 39-3,5 (1H, dd, J
35		CDC HZ) 2,5(3H,37 1,9 8,33	CD 1, 1, 10	CDC1 1,70 (3H, 3,3. 5,10 (1H, U = 1
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	do incoloro 176-177 ito de etilo)	do de color lo claro 235 escomp.)	do incoloro 191-192 (Etanol)
45	Propiedade Punto de Fusió (Disolvente Recristalizac	Sólido 176 (Acetato	Sólido amarillo (Des	Sólido 191 (Ett
50	ď			
55	Estructura Química	N N N N N N N N N N N N N N N N N N N	O SO HN O NO	O S O HN O HN O N O N O N O N O N O N O N O
65	Núm. de Ej.	7 0 0	197	L Q S

5	MS (FAB) (M+1)+	502	462	4, 8, 9,
10		H, d, J = 1,80 (3H, s), 2,94-3,89 (1H, m), m), ancho)	2 (2H, m), = 5,0 Hz), 3,12-3,21 8 (3H, s), = 1,5 Hz), Hz), 8,61 ancho)	(2H, m), m), 2,57 l,13 (3H, 5,09 (1H, (1H, dd, J = 8,4
15		,41 (1H, ,1,65- 6 (3H, 3 , m), 3 98-5,10 55 (1H,	43-1,62 t, J = 1, s), 4,13 d, J = Y 8,3 1H, s al	3-1,59 (6H, Hz), 4 4,99-5 7,60 (1H, d,
20	RMN H1	H, m), (2H, m), 2m), 2m, 2m, 2m, 2m, 7, 49-7, 610, 6	m), 2,84 (2,56 (2H, 7,57 (1,5 H	(m), 1, 1, 89-2, d, J = 5 = 5, 2 Hz = 1,5 Hz z), 8,62 ncho)
25		(1), 42-1, 61 1,42-1, 61 2,11 (8H, m), 3,29- 4,12 (3H, (1H, m), = 8,3 Hz)	26-1,40 (1H, 9 (1H, m), 1 1 (6H, m), 3,70-3,79 3 (2H, m), 7 4, dd, J = 1, dd, J =	1,39 (1 (1H, m) ,74 (3H, 1H, c, C 1H, d, '
30		DCl ₃ 1,21 ,9 Hz),), 1,89-2, ,08 (2H, 1H, m), ,40-7,46	CDCl ₃ 1,26 1,71-1,79 1,88-2,11 (2H, m), 4,98-5,13 7,62 (1H, (1H, d, J	CDC1 ₃ 1,23-1,70-1,80 (3H, s), 2, s), 4,48 (1) (m), 7,55 (1) J = 1,5 Hz Hz), 10,66
35	property of the state of the st	OWEWALA	0447467	OHOREDE
40	Propiedades o de Fusión(°C) isolvente de cistalización)	ido incoloro 227-228,5 (Etanol)	incoloro ,5-222 de etilo)	ido incoloro 259-260 (Etanol)
45	Propie Punto de l (Disolv Recrista	Sólido 227- (Et	Sólido 220, (Acetato	Sólido 25; (Et
50	n C C	E S	A	O ZI
55	Estructura Química	O WO HIN O	MO HAN O	WO HANDOW
	EB	√z.ż√		z 🔾
65	Núm. de Ej.	1 9 9	200	201

5	MS (FAB) (M+1)+	ი ი ი	501 (libre)	4 28 2
10		2 (2H, m), m), 2,56 -3,48 (4H, m), 7,49 d, J = 1,4 d, J = 1,4	1,48 (2H, (8H, m), -3,25 (4H, (2H, m), 7,41 (1H, 1,3 Hz y 8,66 (1H,	(5H, m), = 5,2 Hz), 4,14 (3H, (1H, d, J Hz y 8,4 61 (1H, s
15		1,41-1,62 2,10 (8H, m), 3,33-3 5,10 (1H, 5,10 (1H, dd, d, J =	1,31- 0-2,00 3,13- 0-3,59 , m), d, J =	1,70-1,91 (3H, d, J = 0 (3H, s), '2 Hz), 7,58 1d, J = 1,4 3,4 Hz), 10,6
20	RMN H1	m), 1,81- (4H, ,99- ,7,5	(7-1,29 (1H, m), 1,8 s), 2,37 (3H, s), 41 (2H, m), 3,5 s), 4,89-5,00 (1H Hz), 7,48 (1H, d 77 (1H, d, J = 8, 2,28 (1H, s ancho)	(3H, m), 1 m), 2,75 (3H m), 4,00 (3 , J = 5,2 Hz 2 (1H, dd, d, J = 8,4
25		-1,39 (1H, 2,90-3 (3H, s = 1,4 Hz), s anc	1,17-1,29 3-1,73 (1H H, S), 2,3' 3-3,41 (2H H, S), 4,8' 1,3 Hz), 7,7' 7,77 (1H,	13 1,29-1,51 (3H, m), 8-2,08 (2H, m), 2,75 (5-3,17 (1H, m), 4,00 4,59 (1H, c, J = 5,2 ,4 Hz), 7,62 (1H, dd, , 8,65 (1H, d, J = 8,4
30		CDCl ₃ 1,25. 1,70-1,79 (3H, s), m), 4,12 (1H, d, J Hz y 8,2 10,66 (1H,	DMSO-d ₆ 1,1' m), 1,63-1, 2,29 (3H, s m), 3,33-3, 3,91 (3H, s d, J = 1,3 8,0 Hz), 7,7 s ancho), 12	CDCl ₃ 1,29 1,98-2,08 3,05-3,17 s), 4,59 = 1,4 Hz) Hz), 8,65 ancho)
35				
40	Propiedades to de Fusión(°C) (Disolvente de cristalización)	do incoloro 180-181 ato de etilo)	o incoloro 51-154	do incoloro 242-243 (Etanol)
45	Prop Punto de (Diso Recrisi	Sólido 180 (Acetato	Sólido 15	Sólido 2,
50	mica	T Z	ON TO ON TO	O ZI
55	Estructura Química	N N N N N N N N N N N N N N N N N N N	NH OM	O H H W O H O H O H O H O H O H O H O H O H O H
60	Estruc	Z.Z.	z z	-2,2
65	Núm. de Ej.	20 2	203	204

5	MS (FAB) (M+1)+	8 9 E	45.1	516
10		t, J = 2,05 (2H, s), 4,13 (7,3 Hz), dd, J = 8,6 Hz),	(3H, t, J = 97-2,09 (2H, 3H, s), 4,43 d, J = 1,7 s y 8,4 Hz), y 8,4 Hz),	H, t, J = -2,07 (2H, m), 4,41 (2H, Hz), Hz), 8,63 ancho)
15		1,49 (3H, m), 1,96-2 4,00 (3H, c, J = ', 6,42 (1H, 1H, d, J =	, 53 , 1, 19 ((1H, 7 Hz7	1,52 (3H), 1,93-31-3,40 3H, s), d, J = Y 8,3 (1H, s at
20	RMN H1	3H, m), 9 (5H, m), 36 (2H), 2,0 Hz), 8,33 (9 (3H, m), 1 -1,90 (5H, m), 4, (1H, m), 4, ,2 Hz), 7,69 , dd, J = 1, J = 8,4 Hz	H, m), (5H, m), 4,13,45 (11,3
30		0-1,55 1,69-1 -3,11 (ncho), d, J = 8,6 Hz)	28-1,5 1,70- -3,17 J = 7 3 (1H,	1,57 ,66-1, .14 (3 1H, m Hz), dd, J
35		CDCl ₃ 1, 3 7, 3 Hz), m), 3,00- (2H, s a. 6,28 (1H, 2,0 Hz y 10,68 (1H	CDCl ₃ 1, 2 7, 2 Hz), m), 3,03 (2H, c, Hz), 7,8 8,72 (1H ancho)	CDCl ₃ 1,29-7,2 Hz), 1 m), 2,98-3, 3,80-3,90 (c, J = 7,2 7,52 (1H, d, J =
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	Sólido de color amarillo claro 222,5-223,5 (Etanol)	ldo de color naranja 175,5-179	ido incoloro 192-193,5 (Etanol)
45	Propie Punto de 1 (Disolv Recrista	Sólido amaril 222, ⁽	Sólido nai 175,	Sólido 192 (E
50	uímica	OM6	OM8	O'N'
55	Estructura Química	T Z Z Z Z		O HA NO HA O We
65	Núm. de Est Ej.	205	200	\z'.z\
	źч		2	2

5	MS(FAB) (M+1)+	529	5.1.5 5.	475
10		t, J = 2,06 (2H, n), 3,02-1,13 (3H, d, J Hz y 8,3 57 (1H, s)	t, J = 12 (5H, 12), 4,40 J = 1,3 H, 13 H, 15, (1H, s)	(3H, m), (2,83 (3H, (2H, m), 7,48 (1H, 1,4 Hz y Hz), 10,62
15		52 (3H, 1,97-2 (4H, r (m), '7,48 = 1,4	1,51 (3H, t, m), 2,92-3,12 4,13 (3H, s), 50 (1H, d, J = 1,4 Hz y 8,2 Hz), 10,58 (1	3,17 m),
20	RMN H1	m), 1 (7H, m), 59-2,7 3,50 (4 7,2 Hz dd, dd,	(9H, m) (9H, m) m), 4,3), 7,50 J = 1, 8,2 Hz	m), 2,56 m), -5,10 53 (1H,
25		4 (; s), s), 3,4 c, J c, d,	29-1,57 (3H, 1,70-2,07 (9 5-3,49 (4H, m) J = 7,2 Hz), 54 (1H, dd, J H, d, J = 8,	1 m (N)
30		13 1,3C Hz), 2,36 4 (1H, 4,41 (,4 Hz) , 8,62 ho)	CDCl ₃ 1,29-7,2 Hz), 1 m), 3,36-3 (2H, c, J Hz), 7,54 8,61 (1H, ancho)	Cl ₃ 1, 87-2,1 , 2,86 13 (3H J = 7 3 Hz), H, s a
35	***************************************	CDC 7,2 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 %	CD 7, (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	1, 0 (2, 0 (1, 0 (1, 0
40	Propiedades hto de Fusión(°C) (Disolvente de ecristalización)	Sólido de color amarillo claro 163,5-165 Acetato de etilo- Hexano)	lido de color naranja 179-185 tato de etilo- Hexano)	Sólido incoloro 115-118 Acetato de etilo- Hexano)
45	Propi Punto de (Disolv Recrista	Sólido de amarillo c 163,5-1 (Acetato de Hexano	Sólido de naran 179-18 (Acetato de Hexano	Sólido 115. (Acetato Hex
50	ímica	ر ک ^ر ور ک ^ر	Q Z	0, 3-
55	Estructura Química	N N N N N N N N N N N N N N N N N N N	N N O O	N = 0
60	E S T T	\z_z_\	\zz\	\(\frac{1}{2}\cdot\)
65	Núm. de Ej.	208	209	210-1

5	MS (FAB) (M+1)+	475	4 9 9	44 Ø QJ
10		(2H, m), m), 2,32 (2H, m), ,99-5,09 7,61 (1H,	(2H, m), m), 2,11 (3H, s), 4,99-5,09 7,62 (1H, H, d, J =	(2H, m), m), 2,48 ;, J = 6,1 = 6,1 Hz), 7,48 (1H,
15		1-1,58 (6H, -2,72 s), 4, Hz), 7	42-1,60 09 (6H,), 2,57 H, s), ,5 Hz), ,62 (11	1,59 (6H, H, t J = J = (Z)
20	RMN H1	H, m), 1,89- 1,89, 4,13 d, J d, J 8,3 Hz	(2H, (2H, 4,13 d, J = (3 Hz), s anch	1, m), 1,87- s), 2, 3,18 (9-5,09 54 (1H
30		(6-1,39 (1H, m), 2,57 (3H, m), 4 (2H, m), 4 (7,57 (1H, d), 1,3 Hz y 8,	(11, 39 ((11, m) 2,32-2, (21, m) 7,57 (111,57 (111,57)	5-1,39 (1H, m), 2,56 (3H, s), 3 (3H, s), 3, 4,99-7, 3 (3H, d), 7,55 (8H, d)
35		CDCl ₃ 1,26-1, 1,70-1,78 (1 (3H, s), 2,5 3,01-3,09 (21 (1H, m), 7,5 dd, J = 1,3 8,3 Hz)	CDCl ₃ 1,22-1,39 1,70-1,80 (1H, (6H, s), 2,32- 2,99-3,07 (2H, (1H, m), 7,57 (dd, J = 1,5 Hz 8,3 Hz), 10,69	CDCl ₃ 1,25-1 1,70-1,80 (3 (3H, s), 2,5 Hz), 2,84 (3 4,12 (3H, s d, J = 1,3 8,6 Hz), 8,6
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	Sólido incoloro 143,5-145 Acetato de etilo- Hexano)	ido incoloro 182-183 (Etanol)	ido incoloro 198-199,5 (Etanol)
45	Propi Punto de (Disolv Recrista	Sólido 143, (Acetato Hex	Sólido 182 (Eta	Sólido 198- (Eta
50	ímica	IX SIX	-z'	IZ O Z
55	Estructura Química	NH OW	N HN O	N HW C
		1220	_z.\z	\(\frac{1}{2}\)
65	Núm. de Ej.	210-2	2.1.1	212

5	MS(FAB) (M+1)+	476	501	50
10		(2H, m), 2,56 (2H, m), ,99-5,09 7,55 (1H, H, d, J =	(2H, m), m), 2,28 (3H, s), 4,99-5,09 7,50 (1H,	(2H, m), m), 2,44 ', J = 6,8 = 6,8 Hz), 7,46 (1H, 1,4 Hz y
15		2-1,60 (7H, 1) 1-3,28 s), 4, 1 Hz), 7,62 (1H,	-1,61 (7H, 2,57 s), Hz),	3-1,59 (6H, (2H, t t, J = m), , J = Hz)
20	RMN H1	m), 1,88- s), s), 1,13 , J = 3 Hz	m), 1, 1,88-2,1 (4H, m) 4,12 (3 4,12 (3 3, J = 1, 2 Hz), s ancho)	m), 1,88- 5), 2, 14 (5,09 2 (1H
25	Η	H, m), 91 (3H, H, m), 9 (1H, Hz y 8 64 (1H,	(1 m), 2,52,52 m), 1H, Y {	2,56 (3H, s), 2,56 (3H, s), 3(3H, s), 3(3H, s), 4,99-4 Hz), 7,5
30		13 1,22 0-1,79 , s), 8-3,94 , m), 7 , J = 1 HZ), 1	l ₃ 1,2,2 0-1,79 s), 6-3,19 m), U = 1 Hz),	CDCl ₃ 1,22-1,38 1,70-1,80 (3H, 1) (3H, s), 2,56 (3H, s) Hz), 2,80 (3H, s) 4,12 (3H, s), 4 d, J = 1,4 Hz), d, J = 1,8 61 (1
35		CDC1 1,70 (3H, 3,78 (1H, dd,	CDC. (3H, 7() (3H, 7() () () () () () () () () () () () () (1, 1, 3, 4, 4, 4, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
40	Propiedades unto de Fusión(°C) (Disolvente de Recristalización)	Sólido incoloro 183-184 (Etanol)	Sólido incoloro 188-189 (Etanol)	Sólido incoloro 177,5-178,5 (Etanol)
45	Propiedades Punto de Fusión (Disolvente d Recristalizació	Sólido 18 (E	Sólido 18 (E:	Sólido 177, (E
50	límica		\(\frac{-z'}{2}\)	ZI
55	Estructura Química	N HN N	N OWO	N N N N N N N N N N N N N N N N N N N
60	Est	12.2	\z.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12.20
65	Núm. de Ej.	213	214	215

5	MS (FAB) (M+1)+	531	487	515
10		2 (2H, m), m), 2,23- 1, m), 2,56 8-3,62 (2H, m), 7,42 d, J = 1,4 = 8,2 Hz),	(2H, m), m), 2,57 3,11 (4H, m), 7,41 J = 1,4 8,4 Hz),	1,24-1,39 0-1,80 (1H, c, J = 7,2 s), 3,07- 9-5,09 (1H, 51 (1H, dd, d, J = 8,3
15	The second secon	3-1,62 (6H, (6H, 3,58- (1H, H, dd,	-1,60 (6H, 3,02-3 (1H, H, dd,	HZ) 1,7 2H, (3H, (3H, 4,9 7,
20	RMN H1	m), 1 1,89-2, 2,51-2 (4H, m 4,99-5,), 7,51 3 (1H,	m), 1,44 m), 1,90-2,11 -2,99 (4H, m), s), 4,99-5,10 4 Hz), 7,50 (1 8,63 (1H, d,	t, J = 7,2 50 (2H, m), ' m), 2,41 (H, m), 2,56 12 (3H, s), J = 1,4 Hz), Hz), 8,63 (ancho)
25		1-1,35 (1H, m an 3,06- (3H, = 1, Hz),	5-1,39 (1H, 2,90- (3H,) = 1, Hz), s ar	3H, t (3-1,6 (6H, 50 (4F) (4,1 (4,1 (4,2 (8,3 (H, s
30 35		CDCl ₃ 1,24 1,71-1,79 2,31 (1H, (3H, s), m), 4,13 (1H, d, J Hz y 8,2 10,63 (1H,	CDCl ₃ 1,25 1,70-1,80 (3H, s), m), 4,12 (1H, d, J Hz y 8,4 10,65 (1H,	CDCl ₃ 1,04 ((1H, m), 1,4 m), 1,89-2,1 Hz), 2,48-2, 3,19 (4H, m) m), 7,41 (1H J = 1,4 Hz y Hz), 10,66 (1
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	incoloro -133 anol)	Sólido incoloro 220-222 (Etanol)	incoloro 5-236 anol)
45	Propiedade Punto de Fusió (Disolvente Recristalizac	Sólido incol 129-133 (Etanol)	Sólido 220 (Eta	Sólido 235 (Ets
50	Química	~ \ \ \ \ \ \ \	O N	\(\frac{z}{z}\)
55	Estructura Qu	ON NOW NO	O HA O O	N H N H O N N H O N N H O N N H O N
	H Q		, Z. ()	-\frac{1}{2}.\frac{1}{2}
65	Núm. de Ej.	216	217	218

5	MS (FAB) (M+1)+	5.91	501 (libre)	6 4 9
10		(4H, m), m), 2,56 3,30 (1H, 53 (1H, d m), 7,21- Hz), 7,61 50 (1H, d,	1,49 (2H, s), 2,83- 3,29-3,41 (1H, m), = 7,8 Hz),	(2H, m), m), 2,55 (3H, m), 5,11 (2H, 1, J = 1,3 8,3 Hz), 8,3 Hz),
15		43-1,62 1 (8H, 3,19- s), 4, 19 (1H, r = 1,4 z), 8,6 cho)	33- H, (I), (I), (I), (I), (I), (I), (I), (I)	41-1,60 50 (2H, 80-4,07 H, m), (1H, c 3 Hz y), 10,6
20	RMN H1	m), 1 1,88-2, (2H, m, 12 (3H, 4,99-5, (1H, d, y, 8,3	(1H, m), -3,21 s), 7,73	1, m), 2,34- s), 9-5,09 m), 7, J = 8,3
25		5-1,3 (3H) 2,69 (2H, = 7,9 m), U =	6 1,20-1,30 (52-1,99 (11H, 2H, m), 3,11-10, 3,88 (3H, 52 (2H, m), 71H, d ancho, J	-1,39 (11H, 2,81 (s), 4 ,39 (5 (1H, d, J
35 35		CDCl ₃ 1,2(1,71-1,82 (3H, s), m), 3,45 ancho, J 7,32 (5H, dd, IH, dd, J = 8,3 Hz	DMSO-d ₆ 1, m), 1,52-1 2,95 (2H, (1H, m), 7,48-7,52 8,15 (1H,	CDCl ₃ 1,23 1,70-2,11 (3H, s), 4,12 (3H, s), 7,24-7 Hz), 7,50 8,63 (1H, ancho)
40	Propiedades unto de Fusión(°C) (Disolvente de Recristalización)	do incoloro 31,5-203 Etanol)	do incoloro 55-168,5 Etanol)	Sólido incoloro 200-201 (Etanol)
45	Propiedade Punto de Fusió (Disolvente Recristalizao	Sólido 201, (Eta	Sólido : 165-; (Eta	Sólido 200
50	Química	\(\begin{align*} \frac{2}{3} \\ \fra	O NH NH HG!	z-(°
55	Estructura Q	o swo	O N O N O N O N O N O N O N O N O N O N	O HN O
	ন ১	\rac{1}{2}	, , , , , , , , , , , , , , , , , , ,	ž
65	Núm. de Ej.	219	220	2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5	MS (FAB) (M+1)+	515	527	437
10		(8H, m), 2,57 (3H, (2H, m), 7,43 (1H, 1,3 Hz y	(4H, m), m), 2,15- 2,92 (2H, s), 3,94- 5,07 (1H, (1H, dd, (5H, m), 9 (1H, s	(8H, m), 3,10-3,21 1,05 (1H, m), 6,16 J = 1,8 8,8 Hz),
15		1,88-2,11 3H, s), ,61-3,71 1H, m), dd, J =	2-1,61 (8H, 2,81- (2H, 4,94- 6,34 6,34), 1,86-2,15 (8H, m), 3,10-3, 1, m), 3,93-4,05 (1,6-5,07 (1H, m), 6,5,36 (1H, dd, J = 1,1H, d, J = 8,8 Hz
20	RMN H1	13 1,23-1,81 (6H, m), 3-2,44 (1H, m), 2,38 (2,59-2,69 (2H, m), 3 (3H, s,. 5,00-5,09 (J = 1,3 Hz), 7,51 (1H, d, J = 8	9 (1H, m), 1,42 m), 1,87-2,11 2,53 (3H, s), (1H, m), 3,55 3,98 (3H, s), d, J = 2,0 Hz), 8,8 Hz), 7,22 J = 8,8 Hz),	1, m 9-2,8 (1) (1) 4,9 (1), (6)
25		1,23-1,81 ,44 (1H, m ,59-2,69 (2 (3H, s,. 5, = 1,3 Hz),), 8,61 (1H)	-1,3 (1H,m), m), 3,45 m), (1H, Hz y	1,23-1,79 (6F (3H, s), 2,75 10, 3,40-3,51 99 (3H, s), 1, J = 1,8 Hz 8,8 Hz), 8,3 (1H, s ancho)
30 35		CDCl ₃ 1,23 2,33-2,44 s), 2,59- 4,12 (3H, d, J = 1, 8,3 Hz), 8	CDCl ₃ 1,22 1,70-1,78 2,28 (2H, m), 3,31-3 4,06 (1H, m), 6,14 J = 2,0 H 8,29 (1H, ancho)	CDCl ₃ 1,23 2,54 (3H, (2H, m), m), 3,99 (1H, d, J Hz y 8,8 10,80 (1H,
40	Propiedades nto de Fusión(°C) (Disolvente de ecristalización)	do incoloro 7,5-248,5	ido incoloro 231-233	Sólido incoloro 37-238,5 (Etanol)
45	Propi Punto de (Disol ⁾ Recrista	Sólido 247,5	S 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S61;do 237-238,
50	Química	O N N N N N N N N N N N N N N N N N N N	IZ S	N N N N N N N N N N N N N N N N N N N
55	Estructura		WO HAN DO NOT THE PARTY OF THE	
60	Mark 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (<u> </u>	- \	
65	Núm. de Ej.	222	223	22.4

5	MS(FAB) (M+1)+	4 12	423	409
10		(2H, m), m), 2,54 (3H, s), 47 (1H, t m), 6,20 J = 2,1 8,7 Hz),	(2H, m), m), 2,56 s), 5,00- 16,1 Hz), dd, J = 16,1 Hz), 0 (1H, s)	-1,49 (2H, 9 (6H, m), 3-5,00 (1H, 7,32-7,40 1-7,69 (2H, 1, s ancho)
15		1,58 (6H, 3,42 ', 4', (1H,	(6H, (6H, (3H, J = 2 (1H J = 10,8	1,32-1 79-1,99 4,89- 1 nz), 7,60-
20	RMN H1	1,85-2, (2H, m (2H, m 4,00 (3H, 97-5), 6,38	m), 1,88- s), 4 (1H, 8 Hz), 70 (1	(1H, m), (3H, J = (1H, cho),
25		3-1,39 (1H, (1H, m), 3,33-3,40 (2H, m), 4, = 5,1 Hz), = 2,1 Hz), Hz), 8,31 s ancho)	(39 (19, m)) (19, m) (19, e),	9, C 8, D 1, 2
30		CDCl ₃ 1,23-1,69-1,78 (3H, s), 3,60-3,68 ancho, J = 4z y 8,7 10,81 (1H,	CDCl ₃ 1,23-1 1,70-1,79 (1,34,8),3,5,09 (1H, m,7,16 (1H, d,0,8 Hz y 8,28,51 (1H, d,0,8,51 (1H, d,0))	ISO-d ₆ 1, 1,62- 37 (3H, , 6,69 H, m), , 12,04
35		THUR 3 CHU	D 1 - 0 6 8 8	Q E 2 E C E
40	ropiedades de Fusión(°C) isolvente de istalización)	incoloro 5-167 anol)	de color 10 claro 2-204	ido incoloro >300
45	Propi Punto de (Disol ¹ Recrista	Sólido 165, (Eta	Sólido amaril 202	Sólide
50	mica	<u>\</u>	o=/	o≓ }
55	Estructura Química	IN HO	N N O HN	N N OW
60	Estru	Z.Z.)=(z ² -()
65	Núm. de Ej.	225	226	227

5	MS (FAB) (M+1)+	425	411	425
10		9 (2H, m), m), 2,55 3,02 (2H, 14 (3H, s), = 0,7 Hz), Hz), 8,37 ancho)	1,48 (2H, (6H, m), Hz), 2,88 s), 4,89-7,08 (z), 11,91	(2H, m), m), 2,28 (2H, m), 80 (1H, t m), 6,19 J = 2,0 8,7 Hz),
15		1,43-1,59 10 (6H, 7,6 HZ), S), 4,04 H, d, J = H, d, J = Y 8,1	m), 1,31-1, 1,80-2,00 (c, J = 7,6 Hz 3,82 (3H, s) (1H, m), 7, J = 7,7 Hz) s ancho)	(2-1,59 (6H, 5-2,62 s), 4, 18 (1H, 11, dd,
20	RMN H1	H, m), 1,88 t, J t, J 6,90 6,90 e,90),10,7	(1H, Im), (2H, t (2H, t (1z), 3)-6,95 d, J	H, m), 1,85- 2), 4,00 , 4,96 , 4,96 , 2), 6,
30		1,25-1,39 (1 1,79 (1H, m), s), 2,68 (2H, = 7,6 Hz), 3, 5,09 (1H, m), (1H, dd, J = 4, J = 8,1 Hz	1,15-1, 2-1,72 1, s), 2 J = 7 H, m), '7,52	(1H, 12, 54 (1H, m) (2H, m) (2
35		CDC13 1,70-1, (3H, s) t, J = 4,99-5, (6,99 (1H, d,	DMSO-d ₆ m), 1,62 2,36 (3H, t, (2H, t, 4,98 (1H, m), (1H, s all	CDC13 1,23 1,69-1,77 (6H, s), 3,18-3,26 ancho, J = (1H, d, J Hz y 8,7 10,83 (1H,
40	Propiedades to de Fusión(°C) (Disolvente de cristalización)	Sólido incoloro 139-140 (Etanol)	ido incoloro 290-295	do incoloro 68-169,5 (Etanol)
45	Propied Punto de Fu (Disolver Recristali	Sólic J	Sólic	Sólido i 168-1 (Eta:
50	Química	OM®	HO OWO	IZ WO
55	Estructura			Z = 0
65	Núm. de Ej.	8 8 7 7	22.9	230

5	MS(FAB) (M+1)+	479	4 6 4	367
10		8 (1H, m), 2,54 (3H, 1 (1H, m), m), 3,95- 1-4,57 (1H, d, J = 1,9 y 8,7 Hz), 76 (1H, s	.65 (4H, m), 2,32 89 (2H, m), .H, m), 3,99 (1H, d, J = z y 8,8 Hz), 0,79 (1H, s	(2H, m), m), 2,58 (1H, m), dd, J = 8,0 Hz),
15		s), s), 4,488 1H, Hz	42-1, 2 (1(79-2,)2 (1 6,15 2,0 H	1,44-1,60 8-2,11 (6H, 4,99-5,10 3), 7,64 (1H, d, J = 1, s ancho)
20	RMN H1	2,13 m), 3,80- (3H, m), 6	m), 1,87- s), 3,96- (1H, n	1,8 2), 1 HZ 1 HZ 9 (1F
25		1,64 (5 (8H, m), ,96 (1H, m), 3,99 (1H, dd	3-1,39 (1H, (1H, m), 2,53 (3H, (1H, m), 4,96-5,07 (6,35 (1H, d	23-1,39 (1H, 9 (1H, m), 4,14 (3H, d, J = 1,1 '8,0 Hz), 8, H, s), 10,79
30		CDCl ₃ 1,21-1,85-2,21 s), 2,83-2 3,53-3:66 4,02 (1H, m), 4,93-5, Hz), 6,37 8,31 (1H, ancho)	CDC1 ₃ 1,23- 1,69-1,78 (3H, s), 2 3,32-3,42 (3H, s), 4, 2,0 Hz), 6, 8,30 (1H,	CDCl ₃ 1,23- 1,70-1,79 (3H, s), 7,59 (1H, 1,1 Hz y 8 10,07 (1H,
35	Û ^	04 014 4 5 7 7 10	0,4 = 1,7 = 1,4 & 10	((
40	Propiedades ito de Fusión(°. (Disolvente de cristalización	ido incoloro 230-231,5 (Etanol)	Sólido incoloro 247-249 (Etanol)	Sólido de color amarillo claro 213-215,5 Acetato de etilo
45	Prop Punto de (Diso] Recrist	Sólic 23	Sólic	Sólic amar 27 (Aceta
50	ıímica	>=0 -z -z	TZ m	OM O
55	Estructura Química	N O HW	Z HV	
60	Estr	Z.Z.	√z.²√	~ Z-Z-()
65	Núm. de Ej.	231	23.22	2 3 3

5	MS (FAB) (M+1)+	451	4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	45.2
10	A Community Controller	(2H, m), m), 2,30 (3H, s), 5,09 (1H,	(2H, m), m), 2,42- (2H, s), 4,99-5,08	8 (4H,m), m), 2,13- 2,81 (2H, m), 4,05 7,11 (2H, 81 (1H, S
15		42-1,58 11 (6H,), 2,56 , 4,99-	,43-1,61 0 (6H,), 3,55 3H, s), 8,39 (0 (8H, 2,71- 0 (1H, 0 (1H, 7,05- 1z), 10,
20	RMN H1	(, m), 1 1,86-2, (8H, m (3H, s) m), 8,3 ancho)	(2H, m), 1 (3H, s 4,05 (2H, m) s ancho	1,86-2 (3H, 3,70-3, (1H,
25		22-1,39 (1H, m), 9 (1H, m), 2,32-2,67 (, s), 40,5 -7012 (2H, ,80 (1H, s	5-1,39 (1H, m m), 3 (4H, 7,08-7,	2-1,38 (11 (11, m), m), 2,56 (2H.s), 4,99-5,09 (1H, d, J
30		CDC13 1,22 1,69-1,79 (3H, s), 3,56 (2H, m), 7,04-7	CDCl ₃ 1,25 170-1,79 2,51 (4H, 3,70-3,78 (1H, m), 7,9 Hz),	CDCl ₃ 1,2 1,70-1,78 2,25 (2H, m), 3,55 (3H, s), m), 8,38 ancho)
35				
40	ropiedades de Fusión(°C isolvente de istalización)	do incoloro 170-171	ido incoloro 190-192 (Etanol)	do incoloro 27-228,5 (Etanol)
45	Propi Punto de (Disol ¹ Recrista	Sólid 1	S6lid	Sólido 227- (Eta
50	Química	_z_\right\	Z_)	Z-
55	Estructura Qu	NH OM8	MO HN O	WO HA
60	Est T	2.2	Z.Z.	Z-Z-()
65	Núm. de Ej.	234	235	236

5	MS(FAB) (M+1)+	426	50 08	4 8 0
10		m), 2,56 3,38 (3H, 9 (2H, s), 7,06-7,12 Hz), 10,83	t, J = 12 (13H, 3), 2,80- (3H, s), (1W. m), 8,0 Hz),	(a) (2H, m), m), m), 2,45- (b) (2H, m), s), 4,07 (c) (c) (d) (d), d) = 8,0
15		43-1,5% 10 (6H, 1 HZ), 2), 3,8 H, m), = 8,0	1,26 (3H,), 1,69-2,1 56 (3H, s) s), 4,05 (4,99-5,09 H, d, J = {	.41-1,5 3 (10H, 7,2,6(21 (2H, 1 (1H,
20	RMN H1	1,87-2, t, J = 5,1 F = 5,1 P = 6, J	1H, m), (2H, m, 2, m), 2, (3 (2H, 1 Hz), 8, 37 (1)	, m), 1,87-2 (3H, m), (1H, m), 8, ncho)
25		(1H, m) (1H, m) 2,83 (2H, t, (2H, t, s), 4, 8,40 (1	1,42-1, 2,37 (1 m), 3, c, J = (2H, m) s anch	3-1,39 (1H, m), 3,30 4,98-9
30 35		CDCl ₃ 1,23 1,70-1,80 (3H, s), s), 3,54 4,06 (3H, (2H, m), (1H, s and	CDCl ₃ 1,21 7,1 Hz), m), 2,27-2 2,90 (2H, 4,14 (2H, 7,04-7,12 10,80 (1H,	CDC13 1,23 1,70-1,80 2,58 (1H, m), 3,20- (3H, s), m), 7,57- Hz), 10,93
40	ropiedades de Fusión(°C) Isolvente de istalización)	incoloro 1-105	lido incoloro 117-118 Éter-Hexano)	incoloro)-164
45	Propiedade Punto de Fusió (Disolvente Recristalizao	Sólido i 104-	Sólido i 117- (Éter-H	Sólido i 160-
50	ímica	o Zr	Z-))-ō
55	Estructura Química	NO HA	NH OMe	MO HN N
60	Est1	\(\frac{1}{z} \frac{1}{z} \)	Z.Z.	\(\frac{1}{z}^{\text{Z}} \cdot \)
65	Núm. de Ej.	237	238	239

5	MS (FAB) (M+1)+	5 0 0	465	4 3 8
10		8 (4H, m), m), 2,56 9 (2H, m), 4,05 (3H, s), 7,02- 8,38 (1H,	16 (1H, m), 10-2,90 (2H, 10-2,10 10-2,10 11-2, J =	62 (4H, m), 1, m), 2,54 7-4,08 (3H, H, m), 6,17 dd, J = 2,0 = 8,8 Hz),
15	Annual St. Communication and the second	,44-1,6 19 (8H ,90-2,99 (H, m), 15 (2H, 5H, m), s ancho	,34-2,4), 2,80 3H, s), 8,37	43-1, 11 (8H) 7, 3,9 06 (11) (1H, (1H, (1H, (1H, (1H, (1H, (1H, (1H,
20	RMN H1	m), 1,88- s), 4,14 m), 7,42	(16H, m), 2 2,56 (3H, s s), 4,04 (3	1, m), 1,87-2 (3H, m 4,97-5 (37, 6,37 (1H,
25		,40 3H, m 85 (3, 3, 9 (1)	1,26-2,12 (1 (3H, s), 2,5 3,55 (2H, s) m), 7,04-7,11 z);	3,50- (3H, (3H, = 2, Hz),
30		CDCl ₃ 1,23-1 1,70-1,84 (3 (3H, s), 2, 3,54 (2H, s s), 4,98-5,0 7,12 (2H, m d, J = 8,1 H	CDCl ₃ 1,2 2,44 (3H m), 3,55 (1H, m), 7,9 Hz)	CDCl ₃ 1,23 1,69-1,78 (3H, s), m), 3,99 (1H, d, J Hz y 8,8 10,78 (1H,
35	(C) ~		1	
40	edades Fusión(° <i>r</i> ente de lización	o incoloro 43-144	ido incoloro 177-180 ato de etilo Hexano)	do incoloro 1,5-245,5 Etanol)
45	Propi Punto de (Disol ¹ Recrista	Sólido 14	Sólid 1 (Acetat	Sólido 244,º (Et
50	Química	z_ o \	ZI Z	TZ P
55	Estructura Qu	WO HN O	HZ Z O	N N N N N N N N N N N N N N N N N N N
60		\z,\z\	Z.Z.	~z~~
65	Núm. de Ej.	240	241	242

5	MS(FAB) (M+1)+	480	436	4 65
10		(4H, m), m), 2,54 (4H, s), 6,47 (1H, 2,2 Hz y 1z), 10,82	(2H, .m), m), 2,55 -3,80 (4H, m), 6,48 (, J = 2,2 9,0 Hz),	(5H, m), m), 2,32 (2H, m), 95-5,08 6,66 (1H,
15		2-1,60 (10H, 4,01 m), d, J = 9,0 F	1,42-1,59 2,11 (6H,) m), 3,71-3 5,08 (1H, 6d,) d, J =	2-1,78 (1H, (-2,93 s), 4, Hz), 6
20	RMN H1	m), 1 .81-2, .4H, m ,07 ((1H,), 37- 14, 7- 11,	s), 4,02 (d, J = 0,0 Hz), 0 Hz)
25		,23-1,39 (1H, 78 (1H, m), 1, 1, 3,45-3,52 (3H, s), 4,97-5 2,2 Hz), 6,67 1, 8,34 (1H, ancho)	3-1,39 (1H, m (1H, m), 1,8 (2,59-2,67 (4H) (3H, s), 4,99 (3H, s), 4,99 (4H), 1 = 2,2 Hz), 1 = 2,2 Hz), 1 Hz), 8,40 (1, s ancho)	3-1,39 (1 (8H, m), 2,54 (3F, (2H, m), 6,46 (1H, 7,2 Hz y 10,83 (1H
30		CDCl ₃ 1,23 1,69-1,78 (3H, s), 4,02 (3H, d, J = 2,3 9,0 Hz), (1H, s and	CDCl ₃ 1,23-1,69-1,78 (3H, s), 2 (3H, d, J H, d, J Hz y 9,0 10,78 (1H, d, Hz y 9,0	CDCl ₃ 1,25 1,85-2,10 (6H, S), 3,82-3,92 (1H, M), dd, J = 2 9,0 HZ),
35	6			
40	ropiedades de Fusión(°C) isolvente de istalización)	lido incoloro 230-231,5 Etanol)	ido incoloro 206-207 tato de etilo)	ido incoloro 218-219 (Etanol)
45	Pro Punto d (Disc Recris	S61id 23 E	Sólid 2 (Acetat	SÓlid 2 (I
50	Química	\		-z′
55	Estructura Qu	N HW O	N N N N N N N N N N N N N N N N N N N	NO HA
60		~z²()	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	122 C
65	Núm. de Ej.	243	244	245

5	MS (FAB) (M+1)+	527	437	4 9 4
10		9 (5H, m), 2,72-2,83 7-3,86 (2H, 4,98-5,09 6,65 (1H, 6,65 (1H, 84 (1H, s)	(5H, m), 2,88-3,00 (3H, m), 2,2 Hz), 8,34 (1H,	54 (2H, m), 77 (1H, m), 3,42-3,50 c, J = 7,0 d, J = 2,2 9 Hz), 8,36 ancho)
15		1,42-1,79 (3H, s), 2 m), 3,77-3 (3H, s), 4 (3H, s), 6 7,23-7,40 Hz), 10,84	1,40-1,78 (3H, s), 2 m), 4,02 1H, d, J = 8,9 Hz), 8	1-1,54 58-1,77 , s), (2H, c, (1H, d, y 8,9 H, H, s an
20	RMN H1	m), 2,54 (2H, 1,02 , J = HZ), 9,1	m), 2,54 (2H, 6,45 (1 2,2 y 33 (1H,	m), 0 Hz), 2,54 s), 4, m), 6, J = 2, 11,13
30		1-1,3 (8H, 2,81 (2H, (2H, 5,45 1,45 d,	(8H, (8H, 3, 77. (1H, dd, dd, Hz).	-1,36 t, J = (10H, ,01 (45,06 (1H, (1H, (1H, (1H, (1H, (1H, (1H, (1H,
35		CDC1 ₃ 1,23 1,88-2,10 (1H, m), m), 3,87 (1H, m), 6 dd, J = 2, 8,34 (1H, ancho)	CDCl ₃ 1,23 1,86-2,10 (3H, m), 4,97-5,08 6,66 (1H, d, J = 8,9	CDCl ₃ 1,23-1,61 (3H, 1,80-2,10 (4H, m), 4 Hz), 4,96-Hz), 6,66 (1H, d, J = 1,1, d, J = 1,23-1,1, d, J = 1,23-1,23-1,1, d, J = 1,23-1,23-1,23-1,23-1,23-1,23-1,23-1,23-
40	Propiedades o de Fusión(°C) Disolvente de ristalización)	do incoloro 4,5-175,5 (Etanol)	incoloro 1-219,5 o de etilo)	lido incoloro 144-146 (Etanol)
45	Propi Punto de (Disol ¹ Recrista	Sólido 174,5 (Etc	Sólido i 218-2 (Acetato	Sólido 14 (E:
50	ímica		₹ Z	Ço Ç
5560	Estructura Química	Z NO	WO HA O	Z O
	r] O	^z ^{.z} - (, 5, ()	· V
65	Núm. de Ej.	246	247	248

			A CONTRACTOR OF THE PROPERTY O	
5	MS(FAB) (M+1)+	450	_ር ር ሴ	541
10		(2H, m), 2,60 (4H, 2,60 (4H, 6,1 Hz), 8 (1H, m), 1, dd, J = 8,9 Hz),	(2H, m), (11 (11H, n), 2,54 93 (2H, 08 (1H, (1H, dd, 9,0 Hz),	63 (4H, m), 77 (1H, m), 77 (1H, m), 7, 2,71-2,80 71-3,81 (2H, 5 = 6,9 Hz), 5 = 2,1 Hz), 7,21-7,39 Hz), 11,15
15		, 77 , 00, 11 (11)	,55 1H, n 1H, n 84-3, 96-5 7,65	HZ 3, 1
20	RMN H1	m), 1,40-1 2,55 (3H, S-1 2,55 (3H, S-1 74 (4H, t, S-1 9 HZ), 4,96-5 3 HZ), 6,69	38 (1H, m), 1,41-1 J = 6,9 Hz), 1,6 2,48-2,59 (1) 2-2,93 (2H, m), 3, c, J = 6,9 Hz), 4, d, J = 2,2 Hz), 6 Hz), 8,37 (1H, d,	m), 1 Hz), 15,55 ((2H, m 26 (2F, 44 (1), 1 y (1), 1 y (1)
25	Ľ	H H	3-1,38 (1H, t, J = 6 (6H, s), 2,82-2,93 (2H, c, J = (1H, d, J g), 0 Hz), s ancho)	38 (1 m) (1
30		$^{-3}$ 1, 22 $^{(3H)}$ (3H, $^{(3-2)}$ 11 $^{(3-2)}$ 6, 4 $^{(3-2)}$ (2H, $^{(3-2)}$ 4 8, 9, 9, 9, 9, 114,	CDCl ₃ 1,23- 1,62 (3H, t m), 2,41 (3H, s), 2, (3H, s), 2, m), 4,26 (2 m), 6,45 (1 J = 2,2 y 9 11,13 (1H, s)	3, 1,22 (3H, -2,11 m), 3,87 -5,07 (1H, m),
35	anakan ta hamamanna era era	CDC1 1,63 1,85 t, 2 6,48 6,48 11,0	CDC 1, (6 1), (3), (3), (3), (3), (4), (4), (4), (4), (4), (4), (4), (4	CDC1. 1,82. 1,82. (1H, m), 4,96,65,65,65,65,1H,
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	Sólido incoloro 230-231,5 Acetato de etilo)	incoloro 17-149	do incoloro 56-167,5 Etanol)
45	Prop. Punto de (Disol Recrist	Sólido 230 (Acetato	Sólido 14	Sólido j 166-7 (Eta
50	a O		-z	Q
55	Estructura Química			IX V III V V V V V V V V V V
65	Núm. de Ej.	249	250	251

5	MS (FAB) (M+1)+	613	479	368
10		9 (1H, m), = 6,9 Hz), , m), 2,55 -3,31 (2H, 1 (1H, m), 77 (1H, m), 9 Hz), 6,65 7,28-7,40 Hz), 11,12	1,22-1,57 1,68-1,78 (3H, s), 7,1 Hz), m), 4,26 m), 6,45 y) J = 2,2 9,0 Hz),	4 (2H, m), 9 (1H, m), ,02 (2H, s 4,97-5,08 6,42 (1H, d, J = 8,5
15		,22-1,39 , t, J = 11 (10H, , 3,17-19-4,31 ,96-5,07 J = 1,9 0 Hz),	1 H2), 0 H2), 1, 2,54 1, 2,54 1,08 (1H, dc) 1,0, J 2,4, dc)	(3H, 1,41-1,54 (2) (3H, s), 4,02 = 6,9 Hz), 4,9 = 2,1 Hz), 6,4 8,31 (1H, d, J
20	RMN H1	(3H, m), 1,2 1), 1,62 (3H, n), 1,79-2,11 ,00 (2H, m), (2H, m), 4,1 = 6,9 Hz), 4, 44 (1H, d, J ,9 Hz y 9,0 (1H, d, J =	Cl ₃ 1,15 (3H, t, J = 7,1 H: H, m), 1,61 (3H, t, J = 7,0 H: H, m), 1,82-2,10 (8H, m), 2,73 (2H, c, 89-2,99 (2H, m), 3,75-3,85 (H, c, J = 7,0 Hz), 4,96-5,08 H, c, J = 7,0 Hz), 4,96-5,08 H, d, J = 2,2 Hz), 6,65 (1H, d, J = 2,2 Hz), 8,36 (1H, d,	, m) 9 Hz 2,54 2, J 3, J d, J
30		13 1,10-1,19 (3H, 1-1,55 (2H, m), 1 (9-1,77 (1H, m), 3,87-3,97 (2H, 5) (2H, 5), 6,44 (2H, 5), 6,44 (4H, 5), 8,36 (1H, 6), 8,36 (1H, 6)	15 (3H, 1,61 (3H) 1,82-2, 7 (1H, m) 9 (2H, m) J = 7,0 H J = 2,2 0 Hz), 8 H, s anch	22-1,3 , t, J 2 (6H, 4,21 (6,26 6,26 2,2 y 09 (1H
35		CDC13 1,10 1,41-1,55 1,69-1,77 (3H, s), m), 3,87-; 4,25 (2H, 5,17 (2H, (1H, dd, (5H, m), (1H, s anc	CDCl ₃ 1,15 (5H, m), 1 (1H, m), 2,66-2,77 2,89-2,99 (2H, c, J (1H, d, J Hz y 9,0 11,15 (1H,	CDC13 1, 1,60 (3H 1,88-2,1 ancho), (1H, m), dd, J = Hz), 11,
40	Propiedades nto de Fusión(°C) (Disolvente de ecristalización)	o incoloro 8,5-140 r-Hexano)	Sólido incoloro 160-161,5 (Etanol)	ido de color amarillo 206-207,5 (Etanol)
45	Propi Punto de (Disola Recrista	Sólido i 138,5 (Éter-F	Sólido 160 (E	Sólido de amaril 206-207 (Etano
50	Química	2	_ <u>₹</u>	And Same Same Same Same Same Same Same Same
55	Estructura Q	N N N N N N N N N N N N N N N N N N N	Z Z O	Z Z Z
			~	
65	Núm de Ej.	252	25 3	254

5	MS (FAB) (M+1)+	451	57 Q Q	516
10		(3H, m), (6H, m), 7,0 Hz), = 1,7 Hz), 8,75 (1H,	(2H, m), 2,57 (3H, (4H, m), (4H, m), (1H, m), 1, dd, 8,4 95 (1H, s	(2H, m), 2,94-3,02 3,88 (1H, -5,09 (1H, dd,
15		H, m), 1,41-1,80 ,0 Hz), 1,89-2,11 12 (2H, c, J = 7,65 (1H, d, J = 1,7 y 8,4 Hz), 8	1,42-1,56 1,69-1,73 3H, s), ,39-3,49 4,98-5,10 7,51 (1H	1,59 J = 5 79- 1,98- 7,49
25	RMN H1	(1H, m), = 7,0 Hz), 4,42 (2H, m), 7,65 (1 J = 1,7 Y 8	(1H, m), = 7,0 Hz), m), 2,36 (4H, m), 3 = 7,0 Hz), = 1,3 Hz), J = 8,4	1, m), 1,65 2,57 (2H, = 7,(= 1, 8,65
30		(3H, t, J = (3H, t, J = (3H, s), 4), 4), 5,09 (1H, m) (1H, dd, J = 8,4 Hz),	CDCl ₃ 1,23-1,39 1,64 (3H, t, J = 1,83-2,11 (8H, n s), 2,59-2,70 (4,36 (2H, c, J = 7,45 (1H, d, J = Hz), 8,64 (1H, and J = ncho)	1 10 1 1
35		CDC13 1,68 (2,57 4,96-5 7,79 (d,J =	CDC13 1,64 1,83-2 5), 2, 4,36 (7,45 (Hz), ancho)	CDC13 1, 62-1, 1, 88-2, (2H, m) m), 4, 3 m), 7, 4 U = 1, 4 10,92 (10,92)
40	Propiedades Punto de Fusión(°C) (Disolvente de Recristalización)	Sólido de color amarillo 205-207	Sólido incoloro 189,5-191 (Etanol)	ido incoloro 252-253,5 (Etanol)
45	Propie Punto de F (Disolve Recristal	Sólidc am 20	Sólido 189	Sólido 252- (Ett
50	Química	SOZOG	OE CO	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
60	Estructura Química	Z = 0		ZZZ
65	Núm. de Ej.	N N N N N N N N N N N N N N N N N N N	, S S S	257

5	MS (FAB) (M+1)+	4 3 8	0 8 8	4.15.1
10		1 (3H, m), m), 2,54 5-3,75 (2H, s), 4,97- 2 Hz), 6,66 (1H, d, J =	(2H, m), m), 2,56 (1H, m), H, d, J = 8,3 Hz), H, d, J =	(4H, m), (1H, m), 2,87-3,00 H, c, J = H, d, J = 8,9 Hz), 4 (1H, s
15		43-1,61 11 (8H, , 3,66- 2 (3H, J = 2,2 8,35 (1	(6H, (6H, -5,10 07 (1H 2 Hz y 54 (1H	39-1,57 ,68-1,78 H, s), 4,27 (2 6,45 (1
20	RMN H1	1, m), 1, 1, 84-2, (2H, m) m), 4, C (1H, d, 9, 0 Hz), s ancho	H, m), 1, 1,88-2, s), 4, 6,7 Hz), dd, J = 6,7 Hz), s ancho	(2 Hz), 2,55 (2H, m) (1H, m) dd, J dd, J 8,9 H
25		3-1,38 (1H (3H, m), 3,05-3,16 -3,99 (1H, m), 6,46 J = 2,2 y 10,82 (1H,	(1H, m) (1H, m) 4,10 (3 d, J = 7,26 (1H d, J = d, J = 10,74 (11)	7.22-1,38 (1H, 3H, t, J = 7,0 10 (8H, m), 7.3,75-3,84 (7.4,96-5,08 (7.6,66 (1H, 1H, d, J =
30		CDCl ₃ 1,23-1,3 1,64-1,79 (3H (3H, s), 3,05 m), 3,90-3,99 5,06 (1H, m), (1H, dd, J = 3 9,0 Hz), 10,82	CDCl ₃ 1,22 1,70-1,79 (3H, s), 5,99 (1H, 1,2 Hz), 7,43 (1H, 8,3 Hz), 1	CDCl ₃ 1,2; 1,62 (3H, 1,84-2,10 (3H, m), 7,0 Hz), 2,1 Hz), 8,36 (1H, ancho)
35	6		v erde	A 10
40	oiedades • Fusión(°C) Ivente de :alización)	Sólido incoloro 213,5-215 (Etanol)	de color ve claro >300 (Etanol)	o incoloro 85-188
45	Propie Punto de l (Disolv Recrista	Sólido 213 (Et	Sólido de c	Sólido 18
50	Química	Ťo	NO CA	AHV
55	Estructura Q1	THE CONTRACT OF THE CONTRACT O	NO THE CONTRACT OF THE CONTRAC	EN SECONDARIAN SEC
60	ED S T	z U	z V	2.7
65	Núm. de Ej.	258	0 0 0	260

		The second of the Sp. 1 chairs without the annual are presented to the second state second se		
5	MS(FAB) (M+1)+	4 5 2	4 5 1	4. 2. 3.
10		2,10 (8H, m), 2,10 (8H, m), m), 3,63-3,73 6 (2H, c, J = 6 (1H, d, J = 3 y 9,0 Hz), 11,14 (1H, s	t, J = (1, 3, 01, 3, 01, 3, 01, 1), 3, 01, 1), 5, 20 (11, 5, 3, 4, 9, 1), 2, 3, 4, 9, 1	2 (2H, m), 74 (1H, m), 3,30-3,37 4 (2H, m), H, t ancho, 17 (1H, d, 2,0 y 8,8 1,10 (1H, s
15		1,41-1,78 88-2,10 2H, m), 3 4,26 (2F 6,46 (1F 6,46 (1F) 1,11,14	, 60 (3H, 1,83-2 15 (2H, m H, m), 4 1H, m), 6 dd, J = 2 dd, J = 2 Hz), 11,1	0-1,5 55-1, , s), 0-3,6 12 (1 12 (1 ,) 1
20	RMN H1	(38 (1H, m), 1,41-1,78 (= 7,0 Hz), 1,88-2,10 (8B) (3,04-3,15 (2H, m), 3,6 (3-3,99 (1H, m), 4,26 (2H, 5-5,06 (1H, m), 6,46 (1H, 6), 6,14 (1H, 4), 6,14 (1H, 4), 1,14 (1H, 4)	H, m), 1 (1H, m) 2,80-2,8 5-3,68 (4 93-5,02 (4 45 (1H, e) J = 9,1	m), Hz), 2,52 s), Hz), 14 (1
25		,22-1,38 (1 t, J = 7,(H, s), 3,0, ,3,89-3,99 ,4,95-5,06 ,6,66 (1H,	-1,58 (3 1,65-1,73 (3H, s), m), 3,56 Hz), 4, ⁹ 3 Hz), 6, ¹ (1H, d,	(1) m), m), (3H (3H (3H), 36,
30		DCl ₃ 1,22 ,623H, t, ,55 (3H, 2H, m), 3 ,0 Hz), 4 ,3 Hz), (,37 (1H, incho)	CDCl ₃ 1,20-1,58 (3H, m), 1,60 (3H, t, J, O Hz), 1,65-1,73 (1H, m), 1,83-2,08 (8 m), 2,52 (3H, s), 2,80-2,85 (2H, m), 3,06 (2H, m), 3,56-3,68 (4H, m), 4,23 (3, J = 7,0 Hz), 4,93-5,02 (1H, m), 6,20 (d, J = 2,3 Hz), 6,45 (1H, dd, J = 2,3 YHz), 8,32 (1H, d, J = 9,1 Hz), 11,12 (1H ancho)	CDCl ₃ 1,20-1,36 1,59 (3H, t, J = 1,81-2,09 (6H, (2H, m), 3,40 4,21 (2H, c, J = 5,4 Hz), 4,9 J = 5,4 Hz), 4,9 J = 2,0 Hz), 6 Hz), 8,31 (1H, dancho)
35	n(°C) de	0 H 0 - N 0 H 0	OVEWODHE	
40	es e Fusión(°C) te de ización)	to incoloro 08-210 (EtOH)	Cristales de color pardo pálido 172-176 (Acetato de etilo)	ido incoloro 141-142 (Etanol)
45	Propiedade: Punto de (Disolvente Recristali	Sólido 208 (E	Crista par (Aceta	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
50		ŧ 	([±])	IZ
55	oura Química	T Z Z Z Z Z Z O	Ž Ž Ž Ž	N N N N N N N N N N N N N N N N N N N
60	Estructura	\z'z\	√z Ż (2.2
65	Núm. de Ej.	261	262	7.63

5	MS(FAB) (M+1)+	4 4 1	တ ထ တ	4 3 3
10		(2H, m), (1H, m), ,53 (3H, (4H, m), dd, J = 9,0 Hz),	(2H, m), m), 2,53 y y 3,95 5 (1H, m), H, dd, J = 8,11 (1H,	(2H, m), m), 2,52 3,11 (2H, s), 4,95- Hz), 8,10 ancho)
15		1,40-1,54), 1,66-1,76 5 (3H, s), 2 3,29-3,38), 4,94-5,05), 6,64 (1H, 1H, d, J =	(41-1,59 09 (8H, m), 3,5 95-5,09 6,33 (1 6,33 (1 8H, m),	41-1,56 3 (8H, 3,06- 8 (3H, J = 7,5 (1H, s
20	RMN H1	H, m) ,0 Hz ,2,35 ,m), ,0 Hz ,0 Hz ,2,1 Hz ,36 (5 (1H, m), 1 m), 1,85-2, 7-3,75 (8H, la uno s), 4, = 21,2 Hz), 7,21-7,33 (5), 1,10,82 (1H,	1H, m), , 1,85- ,5 (2H, , m), 3 3 (1H, d) 1z), 10,8
25		-1,37 t, J (6H, 2,60 c, J d, J Hz),	(1H, m (1H, m 3,47-3, cada 1 d, J = Hz),7,	21-1,35 2,90-2, -3,63 (4, m), 6, J = 15,9
35		CDCl ₃ 1,20 1,56 (3H, 1,82-2,10 s), 2,54- 4,25 (2H, 6,43 (1H, 2,1 y 9,0	CDCl ₃ 1,21-1,67-1,75 (3H, s), (total 3H, 5,09 (2H, c),4 y 13,1 d, d J = 15,8	CDCl ₃ 1,27 1,67-1,74 (3H, s), m), 3,55- 5,05 (1H, d, J
40	Propiedades o de Fusión(°C) Disolvente de :ristalización)	do de color cillo claro 207-208 (Etanol)	incolora	incoloros -157 de etilo- er)
45	Propie Punto de J (Disolv Recrista	Sólido de co amarillo cl 207-208 (Etanol)	Espuma	Cristales 154- (Acetato Éte
50	Química	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	28 	₹ Z
55	Estructura Qu	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	mo HN O
60	EI ON	~z~()	^z²√	Z' V
65	Núm. de Ej.	264	265	266

5	MS (FAB) (M+1)+	465	437	538
10		(2H, m), m), 2,12- (3H, s), 3,63-3,75 3,63-3,75 H, dd, J = H, dd, J = H, dd, J =	1,55 (2H, m), -1,75 (1H, m), s), 3,00-3,09 25 (2H, c, J = 43 (1H, d, J = ,2 y 8,9 Hz), 11,13 (1H, s	8 (2H, m), 1, m), 2,54 9-3,46 (1H, 5), 4,53- 6,05 (1H, 6,05 (1H, 1,9 y 8,9 0,87 (1H, s
15		.41- .99 () .94- .94- 6,51	10 2.0	3H, s) 41-1,5 19 (8F) , 3,3 3 (3H, m), H, m), Ad, J
20	RMN H1	(1H, m), 1,41 m), 1,82-2,09 2,39 (3H, s), 3,00-3,11 (2H, (3H, s), 4,94 = 2,2 Hz), 6,5 8,32 (1H, d,	1H, m), 1,40 7,0 Hz), 1,61 2,53 (3H, 0 (4H, m), 4, 1 (1H, m), 6, H, dd, J = = 8,9 Hz),	s), 0,11 (3 (1H, m), 1, m), 1,83-2, 3,27 (1H, m), 4,0 (2H, m), 4,0 (4,95-5,06 (1 6,30 (1H, d), J = 8,9 d)
30		1,38 (3H, m), s), s), old d, J Hz), s an	1,21-1,37 (1H, m), 3H, t, J = 7,0 Hz), 10 (6H, m), 2,53), 3,21-3,30 (4H, 1), 4,94-5,04 (1H, dd,), 6,64 (1H, dd,), 6,64 (1H, dd, 1H, d, J = 8,9	(3H, 38 11H, 11H, 119-60), Hz), Hz),
35		CDCl ₃ 1,21- 1,67-1,81 2,28 (2H, 2,89 (3H, (2H, m), 4 6,25 (1H, 6,25 (1H, 6),27 (1H, 6)	CDCl ₃ 1,21-1,60 (3H, t),82-2,10 (4H, m),3,7,0 Hz),4,2,2 Hz),68,37 (1H, ancho)	CDCl ₃ 0,10 s), 1,23-1, 1,68-1,77 ((3H, s), 3, m), 3,50-3, 4,60 (1H, m d, J = 1,9 Hz), 8,34 (; ancho)
40	ropiedades de Fusión(°C) isolvente de istalización)	incoloro -153,5	lido incoloro 202-204 (Etanol)	incolora
45	Proprious de (Disol Recrista	Sólido 151	Sólido 20°	Espuma
50	Química		₹->	0. <u>a</u>
55	Estructura Quí	N. HOMe	Z DO	N O W
60	Estru		\(\frac{1}{2}\)	
65	Núm. de Ej.	267	268	269

5	MS (FAB) (M+1)+	4 4 4	5 2 8 8	510
10		(2H, m), m), 2,52 3,49 (1H, s), 4,61- 6,03 (1H, 2,0 Hz y z), 10,86	(2H, m), m), 2,12- 2,54 (3H, (2H, m), 7,20-7,38 (z), 10,79	(2H, m), m), 2,53 -2,77 (2H, (2H, m), 6,17-6,21 (1H, m), = 8,4 Hz),
15		3 (9H, 3, 40-3 (3H, 8), (M), (M), (M), (M), (M), (M), (M), (M	2-1,61 (6H, m (m), 2 3-3,63 (m), (m),	40-1,57 08 (6H, 7,2,71-2 63-3,67 H, m), (14-7,18 14-7,18
20	RMN H1	m), 1 1,83-2, (1H, m m), 3, m), 3, 25,03 (m), 1,85-2,50 2,50 m), m), d, J	m), 1,85- (2H, m), 5,07 s),
25)-1,35 (1H, 3,30- 3,61 m), 0 Hz) 8,33	,21-1,36 (1H,75 (3H,m),2,45-80-2,87 (2H,3H,s),4,97-97-97-97-97-97-97-97-97-97-97-97-97-9	1-1,36 (11H, m 2,56-2, 3,24 (2 s), 4, 7,01 (5H, m) 1, s anc
35		CDCl ₃ 1,20- 1,66-1,75 (3H, s), m), 3,51-3 4,69 (1H, d, J = 2,0 9,0 Hz), (1H, s anc)	CDCl ₃ 1,21 1,67-1,75 2,23 (2H, s), 2,80-2 4,04 (3H, (7H, m), 3 (1H, s anc)	CDC13 1,27 1,68-1,75 (3H, S), m), 3,19- 4,03 (3H, (1H, m), 7,25-7,40
35 40	des ión(°C) e de ación)	203,5-	incoloro	de color o pálido Descomp.)
45	Propiedades Punto de Fusión (Disolvente o Recristalizaci	incol 05 (Et	Sólido inc	olido de arillo -193 (D
50	Pur	-0+ Sólido 2	σ 	S S S S S S S S S S S S S S S S S S S
55	Estructura Química	NH OM8	N OWO HN	NH OMe
60	Estruc	z. ²	z = 0 z · 2 · 0	z'=0 =- z'-z
65	Núm. de Ej.	270	271	272

5	MS(FAB) (M+1)+	4 2 0	4 5 5	3 8 2
10		1,31-1,45 1,78-1,96 8-2,75 (2H, 4-3,79 (2H, 96 (1H, m), 16 (2H, m), 9,01 (2H, s)	-1,59 (2H, 2,09 (8H, s), 3,46- m), 4,02 4,92-5,05 2,2 Hz), Hz), 8,33 2 (1H, s	1,29 (3H, t, J (2H, m), 1,68- 9 (6H, m), 2,52 m), 3,95-4,06 4,93-5,02 (1H, 2,0 Hz), 6,34 Hz), 8,28 (1H, 1H, s ancho)
15	Н1	m),	m), 1,41-1,59 (1), 1,81-2,09 (89 (3H, s), 3 (95 (1H, m), 4,92-4) (2H, m), 4,92-4 (2H, m), 4,92-2 (2 y 8,9 Hz), 2), 10,82 (1Hz), 2)	() H () () () () () () () () () () () () ()
20	RMN F	,28 (3H, (2H, s), m),	3. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	7 (1) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
25		m), 1, 6 m), 1, 6 m), 2, 3 3, 26-3, 3 3, 88 (33 3, 88 (34) 1, 14, d, (1H, d, (5)), 11, 9	1,21 ,65- 52 (2H, s), m), (1H,	1,7 1 H (1H) (1H) s), m), m), dd, dd,
30	<u> </u>	DMSO- (2H, (6H, m), m), (6,32- (6,32- 7,60	CDCl ₃ m), 1, m), 2, 3,57 3,57 (3H, 5 (1H, 1) 6,55 (1H, 1) ancho)	CDC1: = 7, 1,77 (3H, (1H, m), (1H,
35	Propiedades to de Fusión(°C) (Disolvente de cristalización)	do incoloro	Sólido incoloro 179-181 (Etanol)	Sólido incoloro 208,5-210,5 (Etanol)
40	Propi Punto de (Disol Recrista	S 6 1 i.c		\$61ic 208 ,
45	Química	TZ ÖH	-z -w ewo	IN
50	Estructura Q	Z 0		
55	Esti	~z²()	\z.\\2\\	Z'Z
60	Núm. de Ej.	273	274	275
65	Ž			

5	MS (FAB) (M+1) ⁺	181	244	235
10		1,39-1,52 m), 2,09 3,95-4,02	1,70-1,79 m), 2,54	1,39-1,54 m), 1,91- s), 4,32-
15	H 1	(1H, m), 1,98 (7H, (2H, s),	3H, m), 01 (6H, (1H, m)	m), (1H, (3H,
20	RMN	m), 1,21-1,36 (m), 1,71- 1, s), 3,20 (m)	s 1,22-1,50 (3H, m), m), 1,88-2,01 (6H, s), 4,23-4,33 (1H, m)	1,22-1,37 (1H, m), 1,72-1,82 (6H, m), 2,58 (1H, m)
30		CDCl ₃ l, (2H, m), (3H, s) (1H, m)	CDCl3 1, (1H, m) (3H, s),	CDCl ₃ 1, (2H, m), 2,10 (6H, 4), 43 (1H, 4)
35	Propiedades Punto de Fusión (°C) (Disolvente de Recristalización)	Sólido incoloro 147,6-150,4	Sólido incoloro 104,8-105,2 (Hexano)	Sólido incoloro 109,0-110,2 (Hexano-Acetato de elilo)
40	Punto (Di Recr	S 6 1	S 6 1	S61 1 (Hexe
50	tura Quimica	Z-Z	NO TO	NO2 NO2 NO3
55	Estructura			
60 65	Núm. de Ej. de Producción	1	2	C
0.5	, R			

5	MS(FAB) (M+1)+	205	2 5 3	223
10		1, m), 1,32-1,48 (1H, m), 1,79- 5 (3H, s), 3,33 4,14 (1H, m)	1,64-1,77 m), 2,52 m), 6,04 ancho)	1,38-1,52 m), 1,79- s), 2,80
15	Н1	1H, m), 5 5 (1H, m 16 (3H, 2-4,14 (1H	3H, m), 17 (6H, 1 54 (1H, s	1H, m), 4 (1H, m 21 (3H, (1H, m)
20	RMN	1,18-1,31 (1H, m), 1,32-m), 1,66-1,75 (1H, m), (6H, m), 2,16 (3H, s), s ancho), 4,02-4,14 (1H, m)	3 1,19-1,48 (3H, m), m), 1,84-2,07 (6H, s), 4,41-4,54 (1H, s ancho), 6,77 (1H, s	3 1,18-1,31 (1H, m), m), 1,63-1,74 (1H, 1 (6H, m), 2,21 (3H, s), 5,18·5,29 (1H, m)
30		CDCl ₃ 1, (2H, m), 2,03 (6H, s an	CDCl ₃ 1, (1H, m), (3H, s), (1H, s an	CDCl ₃ 1, (2H, m), 2,01 (6H, S),
35	Propiedades into de Fusión (°C) (Disolvente de Recristalización)	Sólido de color amarillo claro 85,5-87,0 (Hexano)	Sólido incoloro 148,1-149,0 Acetato de etilo- Hexano)	Sólido incoloro 193-194 Acetato de etilo)
40	Propie Punto de F (Disolv Recrista	Sólido amarill 85,5	Sólido 148,1. (Acetato Hex	Sólido 193 (Acetato
45	Química	N N N	, NO ₂ CONH ₂	-NH ₂ CONH ₂
50	Estructura Qu	, z	z 00	z oo
55	taggioni (i i i paga amanani 1997 ma 1			
60	m. de Ej. de Producción	4	ហ	9
65	Núm. Pro			

5	MS(FAB) (M+1)+	о О М	E 4.7 4.7	357
10		1,35-1,51 m), 1,88- s), 4,22- (4H, m),	1,37-1,52 m), 1,85- s), 4,22- lo), 8,02-	(1), 1,35-1,50 (1, m), 1,81- (1, m), 1,81- (1, m), 5,54 (1, m), 5,54 (10, (1H, m), 51-7,59 (1H, m), 8,21-8,28
15	1 H.1	1, m), (1H, (3H, 6-7,64	1, m (11 (11 (3) s s s m)	1H, m 73 (1H) 21 (3 83 (1 83 (1) , 05-7, (n), 7, ancho
20	RMN	-1,32 1,70-1, m), 2, m), 2	1-1,33 1,70-1, m), 2, 7,6 (1 8,40 (2F	(0-1,33 1,62-1 m), 4,71-4 ancho), 19 (1H, (1H, s
30		CDCl ₃ 1,20. (2H, m), 2,12 (6H, 4,33 (1H, 7,88-7,93 (CDCl ₃ 1,2: (2H, m), 2,11 (6H, 4,34 (1H, 8,11 (2H,	CDCl ₃ 1,2 (2H, m), 2,09 (6H, (3H, s), (1H, s a 7,11-7,1 m), 7,67 (1H, m),
35	Propiedades Punto de Fusión (°C) (Disolvente de Recristalización)	Sólido incoloro 187,5-188,5 (Etanol)	Sólido incoloro 214,2-216,1	Sólido incoloro 239,8-241,0 (Acetato de etilo- Etanol)
40	Punto (D. Recr	.0 .0		Sól (Ace
45 50	a Química	IZ Z	NO ₂	H N OO O
55	Estructura	Z.Z	Z. Z	Z.Z
60	m. de Ej. de Producción		©	on.
65	Núm. Pro			

5	MS (FAB) (M+1)+	371	328	425
10		1,35-1,50 7,0 Hz), ,98 (4H, (3H, s), ,73-4,82 5), 7,01- (1H, m), (1H, s),	1,37-1,51 m), 1,82- s), 4,72- s ancho), 1 (1H, s 8,21-8,28 m), 9,46	1,32-1,49 m), 1,80- s), 2,36 m), 3,31- (1H, m), 6 (1H, s
15	T H	1, m), t, J = 1,83-1 1,83-1 m), 2,22 0 Hz), 4 s ancho 19-7,16 ' 7,98 ' 7,98	(1H, (3H, (3H, (1H, 7,6 H, m),	m), (1H, (3H, (4H, 4,78 7,3 m)
20	RMN	7,35 11H 11H 10 10 10 10 10 10 10 10 10 10 10 10 10	0 H 5 C C C C C C C C C C C C C C C C C C	1,30 (1 1,63-1,73 m), 2,3 2,53-2,63 m), 4, (2H, m
25		CDC13 1,20-1 (2H, m), 1,5 1,65-1,75 (m), 2,01-2,0 4,30 (2H, c, (1H, m), 5, 7,07 (1H, 1) 7,48-7,53 (ancho), 8,23	CDCl ₃ 1,20-1,34 (2H, m), 1,65-1, 2,11 (6H, m), 2, 4,83 (1H, m), 5, 7,50-7,56 (1H, ancho), 7,89-7,97 (1H, m), 8,62-8, (1H, s ancho)	CDCl ₃ 1,18- (2H, m), 2,07 (6H, (3H, s), 3,39 (4H, 6,90-6,97 ancho), 7,7
30	(C) (U	(2) (2) (3) (3) (4) (4) (5) (5) (6) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	Q 7 4 4 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
35	ropiedades de Fusión (solvente de istalizació	Sólido incoloro 163-164	Sólido incoloro 209-211 Acetato de etilo)	Sólido incoloro 262-263,5 (Etanol-Acetato de etilo)
40	Punto (Di Recri	\$61	Sóla	Sól (Eta
45	Química	S GE	Z Z Z	Z
50	Estructura (IZ Z	Z. Z	Z CONH2
55	H ts		\bigvee	
60	Núm. de Ej. de Producción	0 T	T	17
	ž			

5	MS(FAB) (M+1)+	402	373	3 8 8
10		1,35-1,50 m), 1,82- s), 4,17 m), 5,57 s ancho), 3,48 (1H,	1,28-1,41 m), 1,73- s), 4,57- s ancho), -8,37 (1H, 9,41-9,45	1,35-1,50 m), 1,82- s), 4,70- (1H, m),
15	H1	(1H, 1) (3H, (3H, (1H, (1H, (1H, (1H, (1H, (1H, (1H, (1	H, m), (1H, m) (3H, s) (1H, s) (1H, s) (1), m),	m), (1H, (3H, 7,56 8,52-
20	RMN	1,20-1,31 (1H, 1), 1,65-1,73 (6H, m), 2,21 s), 4,68-4,78 ancho), 7,51 ,02 (2H, m), 02 (2H, m),	1,13-1,25 (1 1,61-1,71 1,m),2,04 1,m),7,66 1,sancho), 9-8,84 (1H, 10,38 (1H,s	1,20-1,32 (1H, n), 1,67-1,73 (6H, m), 2,21 ((1H, m), 7,52- ,27 (1H, m), 7,53-
25		CDCl ₃ 1,20 (2H, m), 2,09 (6H, (3H, s), (1H, s and 7,90-8,02 m), 9,07 (DMSO-d6 1, (2H, m), 1,95 (6H, 4,68 (1H, 7,72 (1H, m), 8,79-(1H, m), 1	CDCl ₃ 1,20 (2H, m), 2,11 (6H, 4,82 (1H, 8,25-8,27 m), 9,35 (
30			U > 1 4 L E >	0 0 0 4 8 8
35 40	Propiedades Punto de Fusión (°C) (Disolvente de Recristalización)	Sólido incoloro 248,2-250 (Etanol-Acetato de etilo)	Sólido incoloro 260-262	Sólido incoloro 182,2-183,1 (Acetato de etilo- Hexano)
45	general programment of the State of the Stat	o Q Q	O N.	
50 55	Estructura Química	IZ OO O NEW TO SERVICE A S	IZ OOO Z Z Z	Z N N N N N N N N N N N N N N N N N N N
	Frrd			
60	Núm. de Ej. de Producción	13	41	1.5
65	Núm			

				er communication de de la plantación de la destación de la contraction de la contrac
5	MS(FAB) (M+1)+	375	227	195
10		1,36-1,50 m), 1,82- (2H, m), s), 4,69- s ancho), 7,29 (1H, 7,99	z), 1,07- (), 1,59- (3H, m),	1,03-1,13 1,03-1,13 0,7H, m), -1,99 (1H, (0,7H, s),
15	H1	m), (1H, m 2,09 (3H, s (1H, s 7,21-7 ;ho), incho)	6,6 H (9H, m 1,93	Hz), 1, 1, 46 (0,7Hz), 46 (0,7Hz), 3,1B (0,7Hz), 1,84-1,9
20	RMN H	-1,33 (1H, 1,65-1,74 m), 1,99- s), 4,03 m), 5,56 (1H, m), (1H, s anc	(3H, d, J = m), 1,50 m), 1,80-(1H, m), H, s ancho)	(2H, d, J J, 33-1, (6H, m), (3H, s), s), 3,91
25		13 1,20 (4H, (3H, 11 (1H, 9-7,07 7,75 m), 9	Cl ₃ 0,95 (30 (2H, r 74 (1H, 15- 2,27	13 0,90 3H, m), 0-1,81 2,09 (9 (1,3H,
30		CDCJ (2H, 97, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	СО п),	CDC (1H (1, 1,5, m),
35	Propiedades o de Fusión (°C) Disolvente de ristalización)	Sólido incoloro 251-252 Hexano-Acetato de etilo)	do incoloro 10,5-112	lido incoloro 137,1-138,0 tato de etilo)
40	Pro Punto d (Dis Recri:	Sólic (Hexan	Sólido 110	Sólido 137, (Acetato
45	uímica	п—С ₂)	o
50	Estructura Química	IZ OO	IZ O	Z.Z
55	[1]			
60	Núm. de Ej. de Producción	1 6	17	1.8
65	Nú			

5	MS (FAB) (M+1)+	25 8 8	2 0 0	267
10		5 Hz), 1,07 1,04-1,21 (0,7H, m), 1,83-2,03 m), 2,54 4,20-4,35	5,5 Hz), 1,07), 1,11-1,28 (0,74, m), 79-2,10 (54,), 2,58 (24,	5 Hz), 1,02- 3 (1H, m), 1-2,07 (4H, 51 (1H, m), (1H,
15	H.1	= 6,5 Hz), 57 (0 m), L (1H, s),	= 6,5 Hz), ,58 (0 ,1,79- ,m),	J = 6,5 40-1,53 1,39-4, 6,77
20	RMN	5 (2H, d, J J = 7,1 1), 1,44-1, (2,7H, ,2,07-2,21 2,55 (1H,	(2H, d, J = 7, 1,45, (1,3H, 2,28 (0,	(3H, c m), (2H, 3H, s)
30		CDCl ₃ 0,96 (1H, d, (1,3H, m) 1,63-1,77 (4,3H, m), (2H, s), (1H, m)	CDCl ₃ 0,97 (1H, d, d, 1,81, m) 1,65-1,74 m), 2,13-2 s), 2,59 (CDCl ₃ 0,93 1,18 (2H, 1,78-1,88 m), 2,52 (6,05 (1H,
	les ón (°C) e de ición)	oloro 2)	oloro ,0 ato de	oloro 4,5 ato de
35 40	Propiedades Punto de Fusión (°. (Disolvente de Recristalización)	Sólido incoloro 62,9-64,2 (Hexano)	Sólido incoloro 99,0-110,0 (Hexano-Acetato c etilo)	Sólido incoloro 182,2-184,5 (Hexano-Acetato c etilo)
45	Química	S 20	0 0 2 2	, NO ₂ CONH ₂
50	Estructura Q	z ō	Z Z Z	Z.Z.
55	1 - - 	Control of the contro		
60	Núm. de Ej. de Producción	19	20	21
65	N		Table of	

5	MS(FAB) (M+1)+	267	237	237
10		2), 1,59- (2H, m), 13 (2H, (1H, m),	z), 1,10- (1H, m), ,99 (4H,	Hz), 1,54- (1H, m), (3H, s), -5,23 (1H,
15	H1	J = 7,1 Hz 71-1,81 2,09-2, 1,43-4,55 6,76 (1H,	d, J = 6,5 Hz), 1, 1,41-1,51 (1H, m), 1,85-1,99 (, s), 2,80 (2H, 27 (1H, m)	J = 7,2 Hz 88-1,98 , 2,22), 5,11-5
20	RMN	(3H, d, em), 1, (1H, m) (3H, s), 4 s ancho),	(3H, m), (2H, (3H	(3H, d, J = 7,2 H m), 1,88-1,98 (2H, m), 2,22 s ancho), 5,11-
25		CDCl ₃ 1,06 (3H, d, J = 7,1 Hz), 1,59-1,68 (4H, m), 1,71-1,81 (2H, m), 1,89-2,00 (1H, m), 2,09-2,13 (2H, m), 2,53 (3H, s), 4,43-4,55 (1H, m), 6,08 (1H, s ancho), 6,76 (1H,	CDCl ₃ 0,92 1,22 (2H, 1,73-1,83 m), 2,21 ancho), 5,1	CDCl ₃ 1,05 1,81 (6H, 2,00-2,13 2,82 (2H, m)
30	(°C) e on)	-00	e	O T
35	iedades Fusión vente d	Sólido incoloro 1,0-162,2 (Hexano- cetato de etilo)	Sólido incoloro 171,4-173,2 (Hexano-Acetato c etilo)	Sólido incoloro 130,7-131,9 (Hexano-Acetato c etilo)
40	Prop: Punto de (Disol Recrista	Sólido in 161,0-162,2 Acetato de	Sólid 171 (Hexand	Sólid 130 (Hexand
45	Química	√NO ₂ CONH ₂	√NH₂ CONH₂	∕ NH₂ CONH₂
50	Estructura	Z.Z	Z.Z.	Z.Z
	[7]			Nation - 1996 for the 2018 and 1976 billion for dependence of the Control of the
60	m. de Ej. de Producción	22	23	24
65	Núm. Pro			

5	MS(FAB) (M+1)+	4 8 9	4, 6, 0,	371
10	e de la companya de	3 (1H, m), 3-2,05 (4H, 6 (3H, s), 1-3,43 (4H, 6,89-6,98 cho), 7,79-	Hz), 1,57- (1H, m), (3H, s), (4H, m), -4,76 (1H,	5 HZ), 1,08- (1H, m), 1-2,10 (4H, 4 (3H, s), 57 (1H, s ' 7,12-7,19 ' m), 7,88 9 (1H, m),
15	Н1	= 6,5 1,88 1,88 2,3(2,3(m), s an	7,1 1,99 2,19 2,62 2,62 1,67 m)	= 6,5 1,93 1,91 4,0,5, H, m)
20	RMN H	(3H, d, J (2H, m), (3H, s), (4H, m), (4H,	(3H, d, J = m), 1,88- (2H, m), 2,53- s), 2,53- (4H, m), 98 (2H, m)	2 (3H, d, J m), 1,41. 3 (2H, m), (3H, s), (1H, m), 7,05-7,10 (11) 7,52-7,61 ancho), 8,23
25		-3 0,91 (2H, 1-1,86 2,19 2-2,63 4,62 m),	CDCl ₃ 1,05 (6H, 2,07-2,18 2,36 (3H, 3,32-3,41 m), 6,90-6, ancho), 7,8	CDCl ₃ 0,92 (1,2 (2H,1,77-1,88 m), 2,21 4,70-4,81 ancho), 7,0 (1H, m), (1H, s ancho), 7,0 (1H, s ancho), 7,
30	Ô .	CDC] 1,2(1,7(1,7(m), m), (2H, 7,8(a m 3 , () ()	OCD 1, (a m) (1 (1 (1 (1 (1 (1 (1 (1 (1 (
35	ropiedades de Fusión (° solvente de istalización	ido incoloro 228-242 ato de etilo- Etanol)	incoloro -281 de etilo nol)	ido incoloro 250-251,5 cato de etilo- Etanol)
40	Punto (Di Recr	Sólido 228 (Acetato Eta	Sólido 279 (Acetato Eta	Sólido 250- (Acetato Etai
45	Química	z- -z	Z- 	Q-6 4
50	Estructura Q	N N CONH ₂	CONHAZ	IZ OON
55	E S S T T	Z.Z.	Tz.ż	\\'''n
60 65	m. de Ej. de Producción	2 5	2 6	27
	Núm. Pro		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

5	MS(FAB) (M+1)+	371	177	F-1 5) F-1
10	and have about the house of the second of th	2H, m), 2D (2H, 3H, s), (1H, s ,11-7,19 (1), 7,88 (1H, m),	1,45-1,58 m), 2,77-	1,66-1,85 m), 4,34
15	H	= 7,2 Hz 7-1,86 2,09-2, 4,04 (5,56 H, m), 7 (1H, m	m), (EH, I	m), (1H,
20	RMN H1	3H, d, J m), 1,7 1H, m), (3H, s), (1H, m), (1H, m), (1-7,09 (1), 52-7,60 ho), 8,2	1,41 (3H,	1,51 (5H,
25		CDCl ₃ 1,07 (3H, d, J = 7,2 Hz), 1,58-1,75 (4H, m), 1,77-1,86 (2H, m), 1,88-1,99 (1H, m), 2,09-2,20 (2H, m), 2,21 (3H, s), 4,04 (3H, s), 4,72-4,82 (1H, m), 5,56 (1H, sancho), 7,04-7,09 (1H, m), 7,11-7,19 (1H, m), 7,52-7,60 (1H, m), 7,88 (1H, sancho), 8,23-8,30 (1H, m), 9,21 (1H, sancho)	CDCl ₃ 1,12-1,41 ((2H, m), 1,68-1,8 2,86 (1H, m)	CDCl ₃ 1,12-1,51 (5H, m), 2,77- (1H, s)
30		CDC 11, 8 m), 4 m, 7 m, 1	CD0 (21 2,8	CD0 (51
35	Propiedades into de Fusión (°C) (Disolvente de Recristalización)	Sólido incoloro 243,5-244,8 (Acetato de etilo- Etanol)	o de color 11o pálido 24-129	Sólido de color amarillo pálido 58-59
40	Prop. Punto de (Disol Recrista	Sólidd 243 (Acetat Et	Sólido de c amarillo pá 124-129	Sólide amari
45	Química	€ F	Z Z	N N
50	Estructura Q	T Z O O N HZ	₽ 1	
55	Est:	~ '		
60	m. de Ej. de Producción	28	5 8	0 E
65	Núm. Pro			

5	MS(FAB) (M+1)+	205	223	250
10		1,48-1,62 m), 1,77- (2H, m), (3H, s),	1,52-1,66 m), 1,83- (2H, m), (3H, s),	z), 1,58- (2H, m), 75 (2H, 2 (2H, c, (2H, m),
15	H1	m), (1H, -1,97 3,58	m), (1H, -2,06 3,56	t, J = 7,1 Hz), 1 1,95-2,05 (2H, m), 3,66-3,75 (1H, m), 4,32 (2H, 6,83-6,91 (2H,
20	RMN	-1,41 (1,65-1, m), 1 (1H, (1H, s ancho)	1,20-1,40 (3H, n), 1,71-1,78 (2H, m), 1,98- 63 (1H, m), (2H, s ancho),	(3H, m), (2H, 3,95 Hz), (2H, n
25		CDCl ₃ 1,20-(2H, m), 1 1,85 (2H, 2,57-2,66	CDCl ₃ 1,20 (2H, m), 1,92 (2H, 2,54-2,63 5,30 (2H, ancho)	CDCl ₃ 1,35 1,70 (2H, 3,03-3,14 m), 3,85- J = 7,1 7,87-7,95
30	O _	0 ~ 4 4	0 ~ 4 2 2 4	
35	ropiedades de Fusión (° Isolvente de istalización)	lido incoloro 139-141	lido incoloro 172-173,5	o de color pardo pálido 97-100
40	Punto (D) Recr	861	861	Sólido
45	Química	ON /2	V NH₂ CONH₂	
50	Estructura Ç	-z	-z	ğ. Ö-(-)-zö
55	Ħ			STREET,
60	Núm. de Ej. de Producción	31	3.2	e e
65	Ž			

5	MS (FAB) (M+1)+	222(libre)	226	22 14 11
10		1,75-1,83 m), 3,64- (2H, m),	H, t, J = 4 (2H, t, (2H, m), 1, s)	H, t, J = (3H, s), 6,47 6,52
15		(2H, m), 7 (2H, п	3,75 (21 s), 4,1' 45-6,51 10,95 (1F	3,76 (21 s),3,88 4,6 Hz),
20		DMSO-d ₆ 1,35-1,47 (2H, m), (2H, m), 2,98-3,07 (2H, 3,73 (3H, m), 6,92-6,98 7,71-7,77 (2H, m)	CDCl ₃ 3,45 (3H, s), 3,75 (2H, t, 4,6 Hz), 3,91 (3H, s), 4,14 (2H, J = 4,6 Hz), 6,45-6,51 (2H, 7,71-7,77 (1H, m), 10,95 (1H, s)	CDCl ₃ 3,46 (3H, s), 3,76 (2H, t, J = 4,6 Hz), 3,85 (3H, s), 3,88 (3H, s), 4,17 (2H, t, J = 4,6 Hz), 6,47 6,52 (1H, m), 6,55-6,58 (1H, m), 7,82-7,86 (1H, m)
30	RMN H1		CDCl ₃ 3,4 4,6 Hz), J = 4,6 7,71-7,77	CDCl ₃ 3,4 4,6 Hz), 4,17 (2H, (1H, m), 7,86 (1H,
35	lades sión (°C) nte de zación)	color pardo lido (Descomp.)	incoloro	incoloro
40	Propiedades Punto de Fusión (°C) (Disolvente de Recristalización)	Sólido de colo pálido 238-243 (Desc	Aceite in	Aceite in
45	Química	D T	- Te	6 6
50	Estructura (\$\\ \tag{\frac{1}{2}} - z \tag{\frac{1}{2}}	COZMe	CO ₂ Me OMe
55	d e			
60	Núm. de Ej. Producción	. 34	3. 5.	დ ო

5	MS(FAB) (M+1)+	227	412	250
10		1, t, J = (2H, t, (2H, m),	m), 1,46-1,58 m), 1,77- 7 (2H, m), 71 (3H, s), 8-7,55 (2H,	1,79-1,92 3,35 (3H, 3,76-3,85 10), 7,29-
15	ΙΉ	(3H, s), 4,20 (3H, s), 4,20 (3H, s), 6,60-6,67 (2H, m)	3 (1H, 88-1, 988-1, 93, 7, 4 m)	2H, m), 1,7 (2H, m), 3,3,3,4,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
20	RMN	(3H, 03 Hz)	1,41 1,66-1 m), 4 (1H, (4H,	50-1,63 (3,18-3,26 (6-3,42 (15,12 (2E) (2E) (2E) (2E) (2E) (2E) (2E) (2E
30		CDCl ₃ 3,46 4,5 Hz), J = 4,5 8,01-8,07	CDCl ₃ 1,21- (2H, m), 1,85 (2H, 2,65- 2,74 7,36-7,44 m), 7,75-7,	CDCl ₃ 1,50-1,63 (2H, m), 1 (2H,m), 3,18-3,26 (2H,m), 3), 3,36-3,42 (1H,m), 3(2H,m), 5,12 (2H,s ancho7,38 (5H,s)
35	dades sión (°C) nte de ización)	ido incoloro 105-107	e color pálido	incoloro
40	Propiedades Punto de Fusión (°. (Disolvente de Recristalización)	Sólido i 105-	Espuma de amarillo	Aceite i
45	Química	н Оме		- A
50	Estructura Q		z o z o o o o o o o o o o o o o o o o o	O N O
55		Mangangan manan manga bandanahan manan mila ki ki kamata ki mila ki		
60	Núm. de Ej. de Producción	37	38	6 E
65	Núm P			

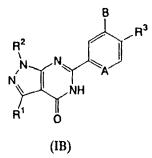
5	MS(FAB) (M+1)+	116 (libre)	219	237
10		1,87-1,96 2,91-3,00 m), 3,25 m), 7,11 (2H, d, J	1,72-1,84 2,75-2,83 14 (2H, s), 1,75-1,87 n), 2,75-2,83 5,29 (2H, s
15		m), s), 2H, 1H, ,48	m), m),	(6H, m), 1 08 (2H, m), 2 (3H, s), 5,29 H, s ancho)
20	RMN H1	1,58-1,69 (2H, 2,29 (3H, 3), 3,08-3,18 (7), 3,38-3,46 (7), 5 = 8,0 Hz), 7 = 8,0 Hz), 7 = 8,15-8,45 (2H, 2)	7-1,71 (6H, ,92-2,00 (2H, 3,57 (3H, s	1,71 (6H 3-2,08 (2 55 (3H, 7 (2H, s
25		-de m m s d,	CDCl ₃ 1,47-1,7 (4H,m), 1,92-2 (1H, m), 3,57 ancho)	CDCl ₃ 1,45-1,71 (6H (4H,m), 2,00-2,08 (2 (1H, m), 3,55 (3H, ancho), 5,37 (2H, s
30		DMS0 (2H, (2H, (3H, (2H,	(41) an on o	CDC (41) (11)
35	Propiedades nto de Fusión (°C) (Disolvente de ecristalización)	incoloro	Sólido incoloro 135-136 (Tolueno-Éter diisopropílico)	de color 10 pálido 1-135
40	Propiedades Punto de Fusión ((Disolvente de Recristalización	Aceite	Sólido 13 (Tolu diisop	Sólido de c amarillo pá 134-135
45	Química	So ₃ H	CN VH2	^ NH₂ CONH₂
50	Estructura Q	NI N	-z	-z
55				
60	Núm. de Ej. de Producción	0 4	4 1	4 2
65	Núm. P1		gra	

		The state of the s	gr - 1900 at 1	Caramar Caracana and Control of Caraman and Control of Caracana Ca
5	MS(FAB) (M+1)+	347	359	403
10		4H, m), 3,21-3,28 s), 3,88 (3H, s), = 6,5 y 12,7 Hz),), 7,55 (1H, dd, J	3,21-3,29 4 (3H, s), 1, J = 7,1 7,54 (1H,	3,62-3,71 (3H, s), , J = 7,0 7,56 (1H,
15	H1	(4H, m), 2H, s), 3,88 J = 6,5 y 1 m), 7,55 (1	1H, m), s), 3,8 c (1H, d	m), 3,87 H, d, m),
20	RMN .	2,64 (57,24, dd, J (54, m. 6 Hz),	2,61-2,69 (4 m),3,58 (2H, (3H, s), 6,41 7,28-7,41 (5 = 13,7 Hz)	m), 3,85 (3H, s), (2H, s), 6,41 (17,28-7,39 (5H, = 13,5 Hz)
30		CDCl ₃ 2,57-(4H, m), 3, 6,56 (1H, c) 7,25-7,37 = 6,8 y 13,0	CDCl ₃ 2,6 (4H, m), 3,87 (3H, Hz), 7,28 d, J = 13,	CDCl ₃ 3,1 (4H, m), 5,17 (2H, 7,28 Hz), 7,28 d, J = 13,
30	° C)			
35	Propiedades to de Fusión (°((Disolvente de cristalización)	e de color 110 pálido	e de color. 110 pálido	es incoloros 18-120
40	Propi Punto de F (Disolv Recrista	Aceite de amarillo	Aceit	Cristales 118
45	Química		J	Į.
50	Estructura	2 z-5	~~~ z~= ±	2 z - 8
55	EJ O	any diagonalego escribigipos compressor es com response escribidade escribidade escribidade escribidade escrib		month and which the process of the contract of
60	m. de Ej. de Producción	4 8	4 4 4 4	4 5
65	Núm. Pro			

	get et in tre en en en et tre trette hettelsenenden versit set	To another Statement Report of the control of the C		Commission of the Commission o
5	MS(FAB) (M+1)+	თ დ ც	306	206
10	The state of the s	s), 5,17 (2H, s), 7 Hz), 7,30-7,41 , J = 13,3 Hz)	1,46 (9H, 2,65-2,76 = 6,2 Hz), (2H, s),	1,72-1,90 a), 3,16- J = 6,2 7,37 (5H,
15	H.1	1, m), 3 s), 5,17 7 Hz), 7	m), m), J =	H, m), (2H, n) (2H, d, 7,22-7
20	RMN F	-3,25 (4H, 04 (3H, s), 1, J = 6,7 79 (1H, d,	1,10-1,30 (2H, ,70-2,85 (3H,), 3,32 (2H, d, 4,14 (2H, m), ,41 (5H, m)	1,31-1,45 (2H, r, 2,73-2,88 (2H, r), 3,28 (2H, r), 3,28 (2H, r), 7,45 (2H, s), 7,8 (1H, s ancho),
25		CDCl ₃ 3,19-3,25 (4H, m), 4,04 (3 6,43 (1H, d, J = (5H, m), 7,79 (1H, d)	COCL ₃ 1,10-1,30 s), 2,70-2,85 (2H, m), 3,32 (2 4,03- 4,14 (2H, 7,29-7,41 (5H, m)	5-d ₆ 1 , m), 3 (2H, 4,4! 8,78
30			00 (8) 7,	NAMES OF STREET, STREE
35	Propiedades into de Fusión (°C) (Disolvente de Recristalización)	s incoloros 2-126	incoloro	s incoloros 5-158
40	Propiedades Punto de Fusión (Disolvente de Recristalizació	Cristales 122-	Aceite	Cristales 155-
45	ımıca			
50	Estructura Química	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	N-NO NO N	OBn H
55	$w_{2}(x_{1})(x_{2})=x_{1}+x_{2}(x_{2})(x_{1})+x_{2}(x_{2})(x_{2})+x_{2}(x_{2})+x_$			
60	m. de Ej. de Producción	46	47	4 8
65	Núm. de Ej Producci			

	saida commissiones tratalablements ar			g/ www.ng.schigledelelelelelelene/www.mercontrol/1974/11 Schieble for 50 50 50 50 50 50 50 50 50 50 50 50 50
5	MS(FAB) (M+1)+	180	180	419
10	t est um - u du volatilitée du us us est touche de la comme de	Hz), 2,66 (2H, t, J 5,2 Hz), m)	7,2 Hz), 3,12 (2H, 1, J = 5,2 7,41 (5H,	1,84-1,97 m), 2,86 m), 3,89 m), 5,17 = 7,1 y m), 7,57
15	T	J = 7,1), 2,82 , t, J = 7,38 (5H,	J = Hz), (2H, t	m), (2H, (2H, (1H, dd, J (5H, (5H,
20	RMN	(3H, t, = 7,1 Hz 3,61 (2Hs), 7,25-	1,19 (3H, t, 1, c, J = 7,0 5,2 Hz), 3,69 54 (2H, s), (2H, s ancho	1,75-1,82 (2H, m), 2,82-2,92 s), 3,66-3,74 s), 4,19-4,32 s), 6,59 (1H, tz), 7,30-7,41 d, J = 6,7 y 13
25		CDCl ₃ 1,12 (2H, c, J = 5,2 Hz), 4,54 (2H,	DMSO-d ₆ 1,1 2,95 (2H, c t, J = 5,2 Hz), 4,54 m), 8,74 (21	CDCl ₃ 1,75 (2H, m), (3H, s), (3H, s), (2H, s), 12,6 Hz), (1H, dd, J
30	ΰ (and the second s		
35	Propiedades to de Fusión (°. (Disolvente de cristalización)	te incoloro	Sólido incoloro 99-102	e íncoloro
40	Propied Punto de Fus (Disolver Recristali	Aceit	SÓLLÍÓS	Aceite
45	Química	OBn.	an IO	/ \
50	Estructura (Ĭ-\	H HG!	
55	刊 வ			
60	Núm. de Ej. de Producción	<u>a</u> 2	O. O	5.1
65	Núm. P1			

5	MS(FAB) (M+1)+	431	417	281
10	Anna Marian	1,85-1,99 m), 2,87 m), 3,85 4,19-4,32 3 (1H, d, m), 7,55	1,85-1,99 2,85-2,95 m), 4,04 m), 5,17 6,7 Hz), H, d, J =	lH, t, J = m), 7,79
15	H1	(2H, (2H, s), s), 6,4	m), s), (2H, (1H, , J = 78 (1	s), 6,57 (1H, 3-7,52 (2H, m Hz)
20	RMN 1	,82 (80-2,9 (64-3,199 (199 (17) (2H,7) 7,29-13,6 H.13,6 H.13,6 H.13,180 (180 (180 (180 (180 (180 (180 (180 ((3,7) (3,7) (1H, m), m),	(3H, 7,4 8,3
25		Cl ₃ 1,74 H, m), H, s), H, m), H, m), = 7,1 Hz	CDCl ₃ 1,75-1,83 (2H, m), 2,87 (2H, m), 3,70- (3H, s), 4,19- (2H, s), 6,45 7,30-7,42 (5H, 13,4 Hz), 10,52	CDCl ₃ 3,92 74,1 Hz), (1H, d, J =
30				74 (1
35	Propiedades Punto de Fusión (°C) (Disolvente de Recristalización)	es incoloros ,5-92,5	na incolora	to incoloro 5 (Hexano)
40	Pro Punto de (Dise Recris	Cristales 91,5	Espuma	Sólido 64-65
45	uímica			СО₂Ме
50	Estructura Química		To do the second	
55	E S t			Ŗ
60	Núm. de Ej. de Producción	ω N	r) C)	7.7. 4.4.
65	Nún E			and the second s


	a and the second second second			
5	MS (FAB) (M+1)+	267	219	237
10		3,6 Hz), d, J =	1,49-1,63 m), 1,75- (2H, m), (2H, c, J =	1,52-1,68 m), 1,81- (2H, m), 2H, c, J = cho), 5,38
15	H 1	J = 73,6 7,92 (1H, d	H, m), 1 (1H, m) (1H, m) (18-1,98 (2H 3,89 (2H s ancho)	(1H, (1H, 7-2,07 3,89 (3
20	RMN H1	(1H, t,	1,20-1,42 (6H, m), 1, m), 1,66-1,73 (1H, m), (2H, m), 1,88-1,98 (2 2,68 (1H, m), 3,89 (2H, z), 4,14 (2H, s ancho)	-1,43 m), m), (1H,
25		CDCl ₃ 6,60 (1H, t 7,45-7,67 (2H, m), 8,3)	CDCl ₃ 1,20-(2H, m), 1 1,85 (2H, 2,57-2,68 7,3 Hz), 4,3	CDCl ₃ 1,22-1, (2H, m), 1, 1,91 (2H, m 2,52-2,63 (1 7,3 Hz), 5,3 (2H, s ancho)
30		0 / 0		
35	Propiedades to de Fusión (°C) (Disolvente de cristalización)	Sólido incoloro 124-129	Sólido incoloro 166-167 (Acetato de etilo- Hexano)	Sólido incoloro 127,5-128,5 Acetato de etilo- Hexano)
40	Propiedades Punto de Fusión (Disolvente d Recristalizació	Sólidc 12	Sólidc 16 (Acetati He	Sólido inco 127,5-12 (Acetato de Hexano
45	Química	°CO₂H	CN NH2	NH2 CONH2
50	Estructura Q		Z Z	N N N N N N N N N N N N N N N N N N N
55	an and the control of			
60	Núm. de Ej. de Producción	r) C)	56	7-5-7
65	Núm. Pr			

				er y ny poniune y monane honel accanoniala coppania and demand (Archine) mility (ny fisid re neclassic).
5	MS(FAB) (M+1)+	256	268	254
10	magi (Maurica, and Adharde) Magin (Magina) and Adharde (Adharde) a	3,72-3,81 5 (1H, dd, 7 (1H, dd, 8 (1H, dd,	(3H, s), (1H, 1H,	,74-3,82 (1H, d, J = 2,2 J = 9,0
15	T H	m), 6,46	i, m), 3,69-3 s), 3,89 (3H, 1 Hz), 6,41 (9 Hz), 7,80 ((1H, dd, (1H, dd, cho)
20	Ę	2,73 (4H, 8), 88 (3H, 8), Y 14,7 HZ), Y 9,0 HZ), Y 9,0 HZ),	-2,76 (4H 84 (3H, s 3, J = 2, 1 Hz y 8, Hz)	2,76 (4H) 04 (3H,), 6,53 z), 8,02 (1H, s an
25		CDCl ₃ 2,65-2,73 (4H, m), 3,88 (3H) J = 2,5 Hz y 14,7 J = 2,5 Hz y 9,0 J = 8,8 Hz y 9,0	Cl ₃ 2,69- H, m), 3, 32 (1H, c), J = 2, J = 8,9	CDCl ₃ 2,69-2,76 (4H, m), 3,74-3,82 (4H, m), 4,04 (3H, s), 6,32 (1H, d, J) = 2,2 Hz), 6,53 (1H, dd, J = 2,2 Hz y 9,0 Hz), 8,02 (1H, d, J = 9,0 Hz), 10,45 (1H, s ancho)
30		0 - v v v	CD (4 6, dd	CD CA CA H Z
35 40	Propiedades Punto de Fusión (°C) (Disolvente de Recristalización)	lido incoloro 78-80	Aceite incoloro	Sólido incoloro 154-155
40	Sunto (D Rec	SÓJ	AO	S O
45		F CO ₂ M¢	O →CO ₂ Me	H ² CO2+
50	Estructura Química	Z	2	Z
55	ES S	(w)	(m)	\w\
60	m. de Ej. de Producción	© LJ	Q.	09
65	Núm. Pro	W-100 - 100		

	j		- Performance of the property	
5	MS(FAB) (M+1)+	405	417	403
10		3,42-3,70 .0 (2H, d, (1H, m), 6 (1H, m)	3,42-3,72 1 (3H, s), 6,23-6,31 m), 7,53	,87-1,95 (1H, m), 1,98-2,05), 3,45-3,75 (8H, m), 3,95 ,3,96 (3H, s), 5,08 (2H, d, 0 Hz), 6,25 (1H, dd, J = 7,0 Hz), 7,21-7,35 (5H, m), 7,71 J = 15,1 Hz)
15	H1	2H, m), s), 5,10 36-6,46 7,45-7,56	(2H, m), , s), 3,84 19,7 Hz), ,36 (5H, 1	LH, m), 5 (8H, 1 5), 5,08 (1H, dd, ,35 (5H,
20	RMN	1,88-2,03 (2H, m), 3,42-3 m), 3,86 (3H, s), 5,10 (2H, 17,1 Hz), 6,36-6,46 (1H, 7,36 (5H, m), 7,45-7,56 (1H,	1,88-2,05 (2H, m), n), 3,82 (3H, s), 3,84 (2H, d, J = 19,7 Hz), m), 7,24-7,36 (5H, id, J = 2,3 y 15,2 Hz)	1,87-1,95 (1 m), 3,45-3,7 (1), 3,96 (3H, 9,0 Hz), 6,25 (1 Hz), 7,21-7 (1 Hz), 7,21-7
25		CDCl ₃ 1,8 (8H, m), J = 17,1 7,23-7,36	CDCl3 1,8 (8H, m), 5,10 (2H, m), (1H, m), (1H, dd, c)	CDCl ₃ 1,87 (1H, m), (3H, s), 3 , 3 , 5 , 4 , 5 , 5 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7
30	des Lón (°C) ce de ación)			
35	ieda Fus: vent	ite incoloro	ite incoloro	Sólido viscoso incoloro
40	Prop. Punto de (Disol	Aceite	Aceite te	S61
45	Química	, u	o >= <	, o z
50	Estructura	O Z Z Z		0 Z Z
55	Ф Ф			
60	Núm. de Ej. c Producción	61	62	e 9
65	NO			

REIVINDICACIONES

1. Un derivado de pirazolopirimidinona expresado mediante la siguiente fórmula general (IA) o (IB), o una sal o solvato del mismo:

²⁰ donde

25

45

60

A representa N o CR⁴,

B representa un átomo de hidrógeno o un átomo de halógeno,

R¹ representa cicloalquilo C₃-C₇ sustituido opcionalmente o t-butilo,

R² representa hidrógeno, metilo o etilo,

- R³ representa a hidrógeno, nitro, ciano o un átomo de halógeno, NR⁵R⁶, C(=X)R⁷, SO₂NR⁵R⁶, OR⁸, NR⁸CON R⁵R⁶, NR⁸SO₂R⁹, un grupo heteroarilo, o alquilo C₁-C₃ sustituido opcionalmente
 - R⁴ representa hidrógeno, o alcoxi C₁-C₃ sustituido, si se desea, con uno o más átomos de flúor,
- R⁵ y R⁶ son iguales o diferentes, y representan un átomo de hidrógeno, alquilo C₁-C₆ sustituido opcionalmente, o acilo sustituido opcionalmente o, junto con el átomo de nitrógeno al que están unidos, forman azetidinilo, pirrolidinilo, piperidinilo, morfolino, tiomorfolino, piperazinilo u homopiperazinilo, estando cada uno de estos grupos sustituido opcionalmente con alquilo C₁-C₄ sustituido opcionalmente, OH, alcoxi C₁-C₃, CO₂H, o NR⁵R⁶,
- R⁷ representa alquilo C₁-C₆ sustituido opcionalmente, OH, OR⁸, o NR⁵R⁶,
 - R⁸ representa hidrógeno o un grupo alquilo C₁-C₆ sustituido opcionalmente,
 - R⁹ representa un grupo alquilo C₁-C₆ sustituido opcionalmente, y
 - X representa O, S o NH.
 - 2. Un compuesto según la reivindicación 1, que está expresado por la fórmula general (IA).
- 3. Un compuesto según la reivindicación 1, que está expresado por la fórmula general (IB).
 - 4. Un compuesto según la reivindicación 1, 2 o 3, donde R1 es cicloalquilo C5-C7.
- 5. Un compuesto según la reivindicación 4, donde cicloalquilo C₅-C₇ se selecciona del grupo que consiste en ciclopentilo, ciclohexilo y cicloheptilo.
 - 6. Un compuesto según una cualquiera de las reivindicaciones 1 a 5, donde A es CR⁴.
 - 7. Un compuesto según la reivindicación 6, donde R⁴ es metoxi o etoxi.
 - 8. Un compuesto según una cualquiera de las reivindicaciones 1 a 7, donde B es hidrógeno o flúor.
 - 9. Un compuesto según una cualquiera de las reivindicaciones 1 a 8, donde R² es metilo.
- 10. Un compuesto según una cualquiera de las reivindicaciones 1 a 9, donde R³ es un sustituyente distinto de hidrógeno.

- 11. Un compuesto según la reivindicación 10, donde
- R³ es un grupo seleccionado del grupo que consiste en NR⁵R⁶, C(=X)R⁷, SO₂NR⁵R⁶, OR⁸, NR⁸CONR⁵R⁶. NR⁸SO₂R⁹, y un grupo heteroarilo,
- R⁵ y R⁶ son grupos que, junto con el átomo de nitrógeno al que están unidos, forman azetidinilo, pirrolidinilo, piperidinilo, morfolino, tiomorfolino, piperazinilo u homopiperazinilo, estando estos grupos adicionalmente sustituidos opcionalmente con alquilo C₁-C₄ sustituido opcionalmente, OH, alcoxi C₁-C₃, CO₂H, o NR⁵R⁶,
- 10 R⁷ es alquilo C₁-C₆ lineal o ramificado sustituido opcionalmente, OH, OR⁸, o NR⁵R⁶, donde R⁵ y R⁶ se definen como antes,
 - R⁸ es hidrógeno o un grupo alquilo C₁-C₆ lineal o ramificado sustituido opcionalmente
- 15 R⁹ es un grupo alquilo C₁-C₃ sustituido opcionalmente,

X es O o S, y

- el grupo heteroarilo se selecciona del grupo que consiste en pirrol, furilo, tienilo, imidazolilo, tiazolilo, piridilo, pirazilo, indolilo, quinolilo, isoquinolilo, y tetrazolilo sustituidos opcionalmente.
 - 12. Un derivado de pirazolopirimidinona expresado mediante la siguiente fórmula general (IA') o (IB'), o una sal o solvato del mismo:

25

30

35

45

50

60

65

R², NH NH R¹.

(IA')

R², NH NH R³

(IB')

donde

40 A' representa N o CR⁴′,

B' representa un átomo de hidrógeno o un átomo de halógeno,

R^{1'} representa cicloalquilo C₃-C₇ sustituido opcionalmente o t-butilo,

R^{2'} representa hidrógeno, metilo o etilo,

R^{3'} representa NR^{5'}R^{6'}, C(=O)R^{7'}, SO₂NR^{5'}R^{6'}, OR^{8'}, NR^{8'}CONR^{5'}R^{6'}, NR^{8'}CO₂R^{9'}, NR^{8'}SO₂R^{9'}, alquilo C₁-C₃ sustituido opcionalmente, alquenilo C₁-C₆ sustituido opcionalmente, o heterocicloalquilo saturado o insaturado sustituido opcionalmente,

R^{4'} representa hidrógeno, o alcoxi C₁-C₃ sustituido, si se desea, con uno o más átomos de flúor,

- $R^{5'}$ y $R^{6'}$ son iguales o diferentes, y representan un átomo de hidrógeno, alquilo C_1 - C_6 sustituido opcionalmente, o heterocicloalquilo sustituido opcionalmente o, junto con el átomo de nitrógeno al que están unidos, forman azetidinilo, pirrolidinilo, piperidinilo, tiomorfolino, piperazinilo u homopiperazinilo, estando cada uno de estos grupos adicionalmente sustituido con $NR^{9'}C(=O)R^{7'}$, un grupo oxo, o $C(=O)R^{7'}$,
 - R^{7'} representa hidrógeno, alquilo C₁-C₆ sustituido opcionalmente, OH, OR^{8'}, o NR^{5'}R^{6'},

 $R^{8'}$ representa hidrógeno, un grupo alquilo C_1 - C_6 sustituido opcionalmente, o heterocicloalquilo sustituido opcionalmente, y

R^{9'} representa un grupo alquilo C₁-C₆ sustituido opcionalmente.

13. Un compuesto según la reivindicación 12, que está expresado por la fórmula general (IA').

186

- 14. Un compuesto según la reivindicación 12, que está expresado por la fórmula general (IB').
 15. Un compuesto según la reivindicación 12, 13 o 14, donde R¹' se selecciona del grupo que consiste en ciclopentilo, ciclohexilo y cicloheptilo.
 - 16. Un compuesto según una cualquiera de las reivindicaciones 12 a 16, donde A es CR^{4'} y R⁴' es metoxi o etoxi.
 - 17. Un compuesto según una cualquiera de las reivindicaciones 12 a 17, donde R^{2'} es metilo.

18. Un inhibidor de PDE7 que contiene un compuesto según una cualquiera de las reivindicaciones 1 a 17 como ingrediente activo.