
(19) United States
(12) Reissued Patent

Shemla et al.
(10) Patent Number:
(45) Date of Reissued Patent:

USOORE43 058E

US RE43,058 E
*Jan. 3, 2012

(54) SWITCHINGETHERNET CONTROLLER

(75) Inventors: David Shemla, Kfar Ha Vradim (IL);
Avigdor Willenz, Kamun (IL)

(73) Assignee: Marvel Israel (M.I.S.L.) Ltd., Yokneam
(IL)

(*) Notice: This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 11/469,807

(22) Filed: Sep. 1, 2006
Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 5,923,660
Issued: Jul. 13, 1999
Appl. No.: 08/790,155
Filed: Jan. 28, 1997

U.S. Applications:
(63) Continuation of application No. 10/872,147, filed on

Jun. 21, 2004, now Pat. No. Re. 39,514, which is a
continuation of application No. 09/903,808, filed on
Jul. 12, 2001, now Pat. No. Re. 38,821.

(30) Foreign Application Priority Data

Jan. 31, 1996 (IL) .. 116989

(51) Int. Cl.
H04L 2/28 (2006.01)
HO4L 2/56 (2006.01)

(52) U.S. Cl. 370/402; 370/389; 370/401; 370/412:
709/238; 711/216

(58) Field of Classification Search 370/402,
370/389, 412,401; 709/238-242; 711/216

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,464,713 A 8, 1984 Benhase et al.

(Continued)

OTHER PUBLICATIONS

Ralston and Reilly, Encyclopedia of Computer Science, (third edi
tion), pp. 1185-11911, 1995.

(Continued)

Primary Examiner — John Pezzlo

(57) ABSTRACT

An Ethernet controller, for use within an Ethernet network of
other Ethernet controller connected together by a bus, is pro
vided. The Ethernet controller includes a plurality of ports
including at least one bus port associated with ports con
nected to other switching Ethernet controllers, a hashtable for
storing addresses of ports within the Ethernet network, a hash
table address control, a storage buffer including a multiplicity
of contiguous buffers in which to temporarily store said
packet, an empty list including a multiplicity of single bit
buffers, a packet storage manager, a packet transfer manager
and a write-only bus communication unit. The hash table
address control hashes the address of a packet to initial hash
table location values, changes the hash table location values
by a fixed jump amount if the address values stored in the
initial hash table location do not match the received address,
and provides at least an output port number of the port asso
ciated with the received address. The packet storage manager
associates the state of the bit of a single bit buffer with the
empty or full state of an associated contiguous buffer and
generates the address of a contiguous buffer. The packet
transfer manager directs the temporarily stored packet to the
port determined by said hash table control unit. The write
only bus communication unit is activated by the packet trans
fer manager, for transferring the packet out of the bus port by
utilizing the bus for write only operations.

30 Claims, 10 Drawing Sheets

MAC
ADDRESS

ASH IABE
OCATION ESR 214

TABLE LOCATION

228

US RE43,058 E

4,663,706
4,680,700
4,996,663
5,005,121
5,032,987
5,101,348
5,222,064
5,226,039
5,274,631
5,287.499
5,307.464
5,351,299
5,412,805
5,414,704
5.440,552
5,479,628
5,521,913
5,563,950
5,581,757
5,590,320
5,623,644
5,632,021
5,633,858
5,634,138
5,649,141
5,664,224
5,671,357
5,715,395
5,724,529
5,734,824
5,740, 175

U.S. PATENT DOCUMENTS

5, 1987
7, 1987
2, 1991
4, 1991
7, 1991
3, 1992
6, 1993
7, 1993

12, 1993
2, 1994
4, 1994
9, 1994
5, 1995
5, 1995
8, 1995

12, 1995
5, 1996

10, 1996
12, 1996
12, 1996
4, 1997
5, 1997
5, 1997
5, 1997
7, 1997
9, 1997
9, 1997
2, 1998
3, 1998
3, 1998
4, 1998

Allen et al.
Hester et al.
Nemes
Nakada et al.
Broder et al.
Arrowood et al.
Sagawa
Frank et al.
Bhardwaj
Nemes
Akao et al.
Matsuzaki et al.
Jordan et al.
Spinney
Sugita
Olson et al.
Gridley
Easter et al.
Maxey
Maxey
Selfetal.
Jennings et al.
Chang et al.
Ananthan et al.
Yamazaki
Davis
Humblet et al.
Brabson et al.
Smith et al.
Choi
Wakeman et al.

Page 2

5,740,468 A 4/1998 Hirose
5,754,791 A 5/1998 Dahlgren et al.
5,761431 A 6/1998 Gross
5,764,895 A * 6/1998 Chung 709/250
5,764,996 A 6/1998 Armstrong et al.
5,781,549 A 7, 1998 Dai
5,784,373 A 7/1998 Satake et al.
5,852,607 A 12, 1998 Chin
5,914,938 A 6/1999 Brady et al.
5,930,261 A 7/1999 Shemia et al.
5,946,679 A 8/1999 Ahuja et al.
5.948,069 A 9, 1999 Kitai et al.
5.999,981 A 12/1999 Willenz et al.
6,084,877 A 7/2000 Egbert et al.
6,223,270 B1 4/2001 Chesson et al.
6,240,065 B1 5, 2001 Medina et al.
6,292.483 B1 9, 2001 Kerstein

OTHER PUBLICATIONS

Dr. Dobb's Journal, “Essential Books on Algorithms and Data Struc
tures”, CD-Rom Library, Section 9.31 and 9.34, 1995.
Black's Law Dictionary, http://wablinks.westlaw.com/Search/
defa.=ptobleaks%2D 1 OO1&RS=WEBL1%2EO&VR=1%2EO,
West 2002, pp. 1-3.
G. Hicks, User FTP Documentation, RFC412, Nov. 27, 1972, pp. 1-7.
K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, “Modal Interfer
ence in a Short Fiber Section: Fiber Length, Splice Loss, Cutoff, and
Wavelength Dependences,” Journal of Lightwave Technology, vol.
10, No. 4, Apr. 1992, pp. 401–406.

* cited by examiner

US RE43,058 E

9.

Sheet 1 of 10 Jan. 3, 2012 U.S. Patent

Z !

!” || I HO ||MS ! |×JOMIEN!
|

r | | |

| |

| |

|----|----
| WHOWBW |------- HOSS?008d |

|-– – –] TV?,

U.S. Patent Jan. 3, 2012 Sheet 2 of 10 US RE43,058 E

PCE BUS

28A 28B
PC TO PCI
BRIDGE

PC TO PC
BRIDGE

12 12
switch switch - switch switch
8 PORTS 8 PORTS 8 PORTS 8 PORTS

FIG 1B

U.S. Patent Jan. 3, 2012 Sheet 3 of 10 US RE43,058 E

14

38
PC BUS INTERFACE

-
6O 62 64 66 :Y Y 68 :

FC, E, 5EER st' EP OMA REQUEST TRANSFER

6
---------4---S------------------------ -

56
run - w w - - - on as or a Mama ma no- -

HASH
TABLE

ADDRESS
CONTROL

DRAM |
ARBTER INTERFACE

DESCRIPTOR
CONTRO

FIG2

U.S. Patent Jan. 3, 2012 Sheet 4 of 10 US RE43,058 E

HAS
TABLE

ADDRESS
CONTROL

20 12O

U.S. Patent Jan. 3, 2012 Sheet 5 of 10 US RE43,058 E

a NEXT CLOCK ti

50

-1. PER
BIT, HAS Y MARK BT

STATE CHANGED AS "CHANGED"
TO O

p

154

156
CLEAR ANY

UNCHANGED BITS

CHANGE
GROUPS

158

FIG4

U.S. Patent Jan. 3, 2012 Sheet 6 of 10 US RE43,058 E

r

s

US RE43,058 E

-

-

Sheet 7 of 10 Jan. 3, 2012 U.S. Patent

U.S. Patent Jan. 3, 2012 Sheet 8 of 10 US RE43,058 E

MAC ADDRESS <32O)

FIG 7

U.S. Patent

99%) 099)

US RE43,058 E
1.

SWITCHINGETHERNET CONTROLLER

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica
tion; matter printed in italics indicates the additions
made by reissue.

Notice. More than one reissue application has been filed
and/or reissue patent has issued based on U.S. Pat. No. 5,923,
660. The present application, application Ser: No. 1 1/469,
807, filed Sep. 1, 2006, is a continuation reissue application
of application Ser: No. 10/872, 147, filed Jun. 21, 2004, now
U.S. Pat. No. RE39,514, which is a continuation reissue
application of application Ser: No. 09/903,808, filed Jul. 12,
2001, now U.S. Pat. No. RE38,821, which is a reissue of U.S.
Pat. No. 5,923,660, filed Jan. 28, 1997 as application Ser: No.
08/790, 155.

FIELD OF THE INVENTION

The present invention relates to network Switches gener
ally and to Switching Ethernet controllers in particular.

BACKGROUND OF THE INVENTION

A network Switch creates a network among a plurality of
end nodes, such as workstations, and other network Switches
connected thereto. Each end node is connected to one port of
the network. The ports also serve to connect network switches
together.

Each end node sends packets of data to the network switch
which the Switch then routes either to another of the end nodes
connected thereto or to a network switch to which the desti
nation end node is connected. In the latter case, the receiving
network switch routes the packet to the destination end node.

Each network switch has to temporarily store the packets of
data which it receives from the units (end node or network
switch) connected to it while the switch determines how,
when and through which port to retransmit the packets. Each
packet can be transmitted to only one destination address (a
“unicast” packet) or to more than one unit (a “multicast” or
“broadcast packet). For multicast and broadcast packets, the
Switch typically stores the packet only once and transmits
multiple copies of the packet to Some (multicast) or all
(broadcast) of its ports. Once the packet has been transmitted
to all of its destinations, it can be removed from the memory
or written over.

Switching Ethernet controllers are network switches that
implement the Ethernet Switching protocol. According to the
protocol, the Ethernet network (cabling and Ethernet ports)
operates at 10 Megabits per second. However, most switches
do not operate at that speed, since they require longer than the
10 Mbps to process the incoming packets. Thus, their
throughput is less than 10 Mbps. Switches which do operate
at the desired speed are known as providing “full-wire'
throughput.

SUMMARY OF THE PRESENT INVENTION

It is an object of the present invention to provide an
improved switching Ethernet controller (SEC) which pro
vides full-wire throughput.
The SEC of the present invention achieves the high-speed

operation by utilizing a plurality of elements whose opera
tions are faster than those of the prior art.

5

10

15

25

30

35

40

45

50

55

60

65

2
For example, in accordance with a preferred embodiment

of the present invention, the communication between SECs
attempts to utilize the bus as little as possible so that the bus
will be available as soon as an SEC wants to utilize it. In
accordance with the present invention, each SEC includes a
write-only bus communication unit which transfers the pack
ets out of the SEC by utilizing the bus only for write opera
tions. Thus, packets enter each SEC by having been written
therein from other SECs and not by reading them in, since
read operations utilize the bus for significant amounts of time
compared to write operations. Having the bus available gen
erally whenever a SEC needs it helps to provide the full-wire
throughput.

In addition, the address table controller operates with a
hash table storing addresses of the ports within the Ethernet
network. The controller hashes the address of a packet to an
initial hash table location value and then accesses that table
location. If the address stored at the table location matches
that of the input address, the port information is retrieved.
However, if the address stored at the table location is other
than that of the input address, rather than reading a pointer to
the next location where values corresponding to the same
hashed address can be found (as in the prior art), the present
invention changes the hash table location values by a fixed
jump amount and reads the address stored at the next table
address. Due to the fixed jump amount, the hash table con
troller of the present invention always knows what the next
possible table location is.
A further speed increase is found in the accessing of the

temporarily stored packets. In the present invention, the pack
ets are stored in a storage buffer including a multiplicity of
contiguous buffers. Associated with the buffers is an empty
list including a multiplicity of single bit buffers. A packet
storage manager associates the state of the bit of a single bit
buffer with the empty or full state of an associated contiguous
buffer and generates the address of a contiguous buffer
through a simple function of the address or number of its
associated single bit buffer. The simple function is typically a
multiplication operation.
The present invention also incorporates a network of SECs

interconnected with PCI busses.
Finally, there is provided, in accordance with a preferred

embodiment of the present invention, an Ethernet network
including a) at least two groups of network Switches, b) at
least two PCI switch busses, wherein each group of network
switches is connected to one of the PCI busses, c) at least two
PCI-to-PCI bridges, wherein each PCI-to-PCI bridge is con
nected to one of the PCI switch busses and d) at least one
interconnection PCI bus to which the PCI-to-PCI bridges are
connected.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood and appreciated
more fully from the following detailed description taken in
conjunction with the drawings in which:

FIG. 1A is a schematic illustration of a network of switch
ing Ethernet controllers;

FIG. 1B is a schematic illustration of a network of switch
ing Ethernet controllers interconnected by PCI busses;

FIG. 2 is a block diagram illustration of a generally full
wire throughput, Switching Ethernet controller, constructed
and operative in accordance with a preferred embodiment of
the present invention;

FIG.3 is a schematic illustration of an empty list block unit
forming part of the switching Ethernet controller of FIG. 2;

US RE43,058 E
3

FIG. 4 is a flow chart illustration of a bit clearing mecha
nism forming part of the empty list block unit of FIG. 3;

FIG. 5 is a schematic illustration of a hash table address
recognition unit, constructed and operative in accordance
with a preferred embodiment of the present invention;

FIG. 6 is a block diagram illustration of the logic elements
of the address recognition unit of FIG. 3;

FIG. 7 is a schematic diagram of a hash function, useful in
the address recognition unit of FIG. 3;

FIG. 8 is a schematic illustration of two network switches
performing a write-only bus transfer protocol;

FIG. 9A is a flow chart illustration of the operations per
formed by the two switches of FIG. 8 during the data transfer
operation of the present invention; and
FIG.9B is a timing diagram illustration of the activity of

the bus during the operation of FIG.9A.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

Reference is now made to FIGS. 1A, 1B and 2 which
illustrate, in general terms, the generally full-wire through
put, switching Ethernet controller (SEC) 10 of the present
invention and its connection within a network, wherein each
SEC 10 forms part of a network switch 12.

FIG. 1A illustrates a plurality of network switches 12 con
nected as a peripheral component interface (PCI) bus, thereby
to form a network. Optionally, a processor 16 and its associ
ated memory unit 18 can also be connected to the bus 14.

FIG. 1A illustrates one network switch 12 in some detail.
As shown, the Switch 12 comprises a memory unit 20, such as
a dynamic random access memory (DRAM) array, and a
plurality of twisted pair drivers 22 for filtering data from an
Ethernet unit 19 which implements a plurality of Ethernet
ports. There typically is one twisted pair driver 22 per Ether
net port. The SECs 10 of each network switch typically pro
vide the Switching operations, Switching data from port to
port and from port to network Switch, all in accordance with
the Switching information found in the headers of each data
packet. The processor 16 can also be involved in the switch
ing, as described in more detail hereinbelow.

FIG.1B illustrates the interconnection of network switches
12 to create a large network or to enlarge an existing network.
A plurality of network switches 12 are connected to PCI
busses 14A and 14B. In FIG. 1B, PCI busses 14A and 14B are
connected together via PCI bus 14C to which they are con
nected through PCI-to-PCI bridges 28A and 28B, respec
tively. Thus, two bus networks can be connected together
through the addition of another PCI bus and two PCI-to-PCI
bridges.

FIG. 2 details the elements of one SEC 10. It comprises an
Ethernet interface unit 30, a frame control unit 32, a switching
unit 34, an inter SEC control unit 36 and a bus interface unit
38. The Ethernet interface unit 30 performs the Ethernet
protocol through which unit 30 communicates the packets to
and from the other elements of the SEC 10. The frame control
unit 32 directs the packet into and out of the DRAM memory
unit 20, as per instructions of the Switching unit 34, and
provides the Ethernet header data to the switching unit 34.
The switching unit 34 determines where to send each packet,
either out one of its ports or out the bus 14 to another of the
network switches. The inter SEC control unit 36 controls the
communication with the bus 14. The bus interface unit 38
physically transfers packets to and from the bus 14. The two
interface units 30 and 38 perform standard protocols (Ether
net and PCI bus, respectively) and therefore, will not be
described hereinbelow in any detail.

10

15

25

30

35

40

45

50

55

60

65

4
The frame control unit 32 typically includes input and

output multiple first-in, first-out (FIFO) buffers 40 and 42,
respectively, a direct memory access (DMA) unit 44 and a
descriptor control 46. The FIFO buffers 40 and 42 each have
one FIFO buffer perport defined by the Ethernet interface unit
30. The descriptor control 46 controls 9 circular (or ring)
transmit queues which are stored in the DRAM 20. Each
queue lists the packets to be transmitted through one of the
eight ports or through the PCI bus 14. The descriptor control
46 maintains read and write pointers for each queue So as to
know which packets are still waiting to be transmitted.

For incoming packets, input FIFO buffer 40 receives and
buffers packets from the ports. The DMA unit 44 transfers the
currently available packet provided by the input FIFO buffer
40 to the DRAM 20 in accordance with the instructions from
the switching unit 34. After the packet has been properly
received, the switching unit 34 indicates to the descriptor
control 46 through which port to transfer the packet. The
descriptor control 46 places information about the packet into
the relevant transmit queue and, when the packet rises to the
top of the transmit queue, the descriptor control 46 indicates
to the DMA 44 to transfer the packet from the DRAM 20 to
the buffer in output FIFO 42 for the appropriate port.
The Switching unit 34 typically includes an empty list

block 50, a hash table address control unit 52, an arbiter 54
and a DRAM interface 56. The empty list block 50 manages
the organization of the DRAM 20, noting which buffers of the
DRAM 20 are available for storing newly arrived packets and
which buffers contain packets to be transferred out. As will be
described in more detail hereinbelow, the empty list block 50
associates an empty list of single bit buffers with the buffers
of the DRAM 20. In addition, the empty list block 50 associ
ates the state of the bit of a single bit buffer with the empty or
full state of an associated DRAM buffer and generates the
address of a DRAM buffer through a simple function of the
address or number of its associated single bit buffer. The
simple function is typically a multiplication operation. Thus,
when a buffer request is received, the empty list block 50
relatively quickly can determine the address of the next avail
able buffer.
When the empty list block 50 receives buffer assignment

requests from the DMA 44 or from the inter SEC control unit
36, the empty list block 50 assigns the currently available
buffer based on the state of the single bits of the empty list.
Similarly, on output, when the empty list block 50 receives
notification from the descriptor control 46 of the buffers
which have successfully been either placed into the output
FIFO 42 or transferred to another SEC (via the inter SEC
control wait 36), the empty list block 50 then updates the state
of the associated single bit buffer.
The hash table address control unit 52 receives the source

and destination address information of the packet header
from the Ethernet interface unit 30. As will be described in
more detail hereinbelow, control unit 52 operates in conjunc
tion with a hash table (physically found in DRAM 20) of the
possible addresses of the entire network. The control unit 52
hashes the address of a packet to an initial hash table location
value and then accesses that table location. If the address
stored at the table location matches that of the input address,
the port information is retrieved. However, if the address
stored at the table location is other than that of the input
address, the present invention changes the hash table location
values by a fixed jump amount and reads the address stored at
the next table address. Due to the fixed jump amount, the hash
table controller of the present invention always knows what
the next possible table location is for the current hash value

US RE43,058 E
5

and thus, can generally quickly move through the hash table
to match the input address and to produce the associated port
number.

Arbiter 54 controls the access to the DRAM 20 and DRAM
interface 56 accesses the DRAM 20 for each piece of data (a
packet or an address in the hash table) being stored or
removed. Arbiter 54 receives DRAM access requests from the
hash table control unit 52, the DMA unit 44, the descriptor
control unit 46 and the inter SEC control unit 36.
The hash table control unit 52 provides the port associated

with the destination address of the incoming packet to the
descriptor control 46. Similarly, the empty list block 50 pro
vides the descriptor control 46 with the buffer number in
which the incoming packet is stored. When both values are
received and the packet has been properly received (that is,
without any corrupted data), the descriptor control 46 places
the received buffer information in the transmit queue for the
received buffer number and, at the appropriate moment, ini
tiates the transfer of the packet from the DRAM 20 into the
queue of output FIFO 42 for the appropriate port. A slightly
different operation occurs for the PCI transmit queue, as will
be described hereinbelow.

The inter SEC control unit 36 typically includes a PCI
DMA 60, a write-only transfer manager 62 and three interrupt
registers, buffer request register 64, start of packet register 66
and end of packet register 68. The transfer manager 62 Super
vises the transfer protocol which, in accordance with a pre
ferred embodiment of the present invention, is performed
with only write operations. As discussed hereinabove, write
operations utilize the bus 14 for relatively short periods of
time only.

The descriptor control 46 activates the write only transfer
manager 62 whenever there is buffer information in the PCI
transmit queue for a packet which has not been transmitted.
The descriptor control 46 provides the transfer manager 62
with the buffer address of the packet to be transferred and the
port number of the destination SEC 10 to which the destina
tion end node is attached.

To begin the transfer, the transfer manager 62 first prepares
a "buffer request message and writes the message into the
buffer request register 64 of the destination SEC 10. Typically
the buffer request includes at least the address of the buffer
storing the packet to be transferred and the port number of the
destination SEC 10 to which the destination end node is
attached.
The presence of a message in register 64 causes the transfer

manager 62 of the destination SEC 10 to request that the
empty list block 50 allocate a buffer in the DRAM 20 for the
packet to be transferred. The empty list block 50 reviews its
empty list (without reading anything from the DRAM20) and
allocates the next available buffer (by changing the state of the
bit associated with the buffer) to the packet to be transferred.
The empty list block 50 provides the address of the allocated
buffer to the transfer manager 62 which prepares a “start of
packet' message with the address of the allocated buffer. The
transfer manager 62 of the destination SEC 10 then writes the
“start of packet' message to the start of packet register 66 of
the source SEC 10. Typically, the “start of packet' message
includes at least the address of the allocated buffer (in the
destination SEC 10), the address of the buffer (in the source
SEC 10) storing the packet to be transferred and the port
number of the destination end node.
The presence of a message in the start of packet register 66

causes the transfer manager 62, of the source SEC 10, to
activate the PCI DMA 60 to write the contents of the buffer
storing the packet to be transferred in the allocated buffer in
the destination SEC 10. The PCI DMA 60 of the Source SEC

5

10

15

25

30

35

40

45

50

55

60

65

6
10 actually writes the packet to the PCI DMA 60 of the
destination SEC 10 which, in turn, writes the transferred
packet to the allocated buffer of its DRAM 20 after receiving
permission from its arbiter 54. The transfer manager 62 also
prepares an “end of packet' message and then writes the
message into the end of packet register 68 once the packet to
be transferred has been successfully transferred. Finally, the
transfer manager 62 indicates to the empty list block 50 to
clear the bit of the empty list which is associated with the
transferred packet. The “end of packet' message includes at
least the destination port number.
The transfer manager 62 of the destination SEC 10

responds to the “end of packet' message by providing its
descriptor control 46 with the port and buffer numbers of the
transferred packet. The descriptor control 46 then adds the
buffer information to the transmit queue for the indicated
port. The packet is then transferred to the port as described
hereinabove.
The following describe the empty list block 50, the hash

table control unit 52 and the write-only transfer protocol in
more detail.

Empty List Block 50

Reference is now made to FIG. 3 which schematically
illustrates the empty list block 50 and its operation with the
other elements of the SEC 10. Block 50 comprises an empty
list 110 and its associated multiple buffer 112 (stored in
DRAM 20), an empty list controller 114 and a bit clearing
mechanism 121. FIG.3 also shows the ports 120 (of Ethernet
unit 30) to and from which the packets of data pass, DMA 44
and hash table address control 52.

In accordance with the present invention, the buffer 112
comprises a multiplicity of contiguous buffers 122, each of M
bits and large enough to store, for example, at least one packet
of 1518 bytes. For example, M might be 1.5K or 1536 bytes.
Alternatively, each buffer 122 might hold many packets.

Furthermore, in accordance with a preferred embodiment
of the present invention, the empty list110 is a buffer of single
(0 or 1) bits 124, each associated with one of the buffers 122.
FIG.3 shows 12 of each of buffers 122 and single bit buffers
124; typically, there will be 1024 or more of each of buffers
122 and single bit buffers 124.

Buffers 124 store the value of 1 when their associated
buffer 122 stores a not-yet retransmitted packet and a 0 when
their associated buffer 122 is free to be written into. The
buffers 122 and bits 124 are associated as follows: the address
of the beginning of a buffer 122 is M times the address (or
number) of the single bit buffer 124 associated therewith. In
other words, for M=1.5K, the buffer 122 labeled 3 begins at
address 4.5K and the buffer 122 labeled Obegins at address 0.
Alternatively, the first buffer 122 can begin at an offset Kand
thus, the address of the beginning of a buffer i is M times the
address of the single bit buffer 124 associated therewith plus
the offset K.
The empty list block 50 operates as follows: when a port

120 provides a packet, the DMA 44 requests the number of
the next available buffer 122 from the empty list controller
114. Empty list controller 114 reviews the empty list110 for
the next available single bit buffer 124 whose bit has a 0 value.
Empty list controller 114 then changes the bit value to 1,
multiplies the address of next available buffer 124 by M (and
adds an offset K if there is one) and provides the resultant
address, which is the start location of the corresponding
buffer 122, to DMA 44.

It will be appreciated that the empty list block 50 provides
a very simple mechanism by which to determine and store the

US RE43,058 E
7

address of the next available buffer 122. The mechanism only
requires one multiplication operation to determine the
address and the address value is stored as a single bit (the
value of buffer 124), rather than as a multiple bit address.
DMA 44 then enters the data from the incoming packet into

the selected buffer 122. Once DMA 44 has finished entering
the data, it indicates such to the hashtable address control unit
52 which in the meantime, has received the destination and
source end node addresses from the Ethernet unit 30. Unit 52
determines through which port to retransmit the packet.
Empty list controller 114 provides unit 52 with the number of
the buffer 122 in which the packet is stored.
When a packet is to be retransmitted, the empty list con

troller 114 provides the DMA 44 with the buffer address for
the packet and the hash table address control 52 provides the
DMA 44 with the port number. DMA 44 reads the data from
the buffer 122 and provides the packet to the FIFO buffer for
the relevant port 120.

For unicast packets, once the DMA 44 has finished trans
mitting the data of the selected buffer 122. DMA 44 indicates
such to empty list controller 114 and includes in the indication
the beginning address of the selected buffer 122. Empty list
controller 114 then determines the buffer number of the
selected buffer 122 and changes the bit value of the associated
single bit buffer 124 to 0, thereby indicating that the selected
buffer 122 is now available.

Buffers 122 are larger by at least N bits than the maximum
amount of data to be stored therein. N is the number of ports
connected to the switch plus the number of switches con
nected to the current switch. For example, N might be 46. The
extra bits, labeled 132, are utilized, for multicast packets, to
indicate the multiple ports through which the packet has to be
transmitted.
When the multicast packet enters the switch, DMA 44 sets

all of the bits 132 (since multicast packets are to be sent to
everyone). After the DMA 44 has transmitted a packet, whose
port number it receives from the address control 52, the DMA
44 indicates such to the empty list controller 114. If the packet
is a multicast packet, the address control unit 52 indicates to
the empty list controller 114 to read the N bits 132 to deter
mine if any of them are set. If they are, empty list controller
114 indicates to DMA 44 to reset the bit associated with the
port 120 through which the packet was sent. When the DMA
44 indicates that it has finished resetting the bit, the empty list
controller 114 does not change the associated single bit buffer
124.

If the empty list controller 114 reads that only one bit is still
set (i.e. the previous transmission was the last time the packet
had to be transmitted), when the DMA 44 indicates that it has
finished resetting the bit, the empty list controller 114
changes the bit value of the associated single bit buffer 124 to
0, thereby indicating that the associated buffer 122 is now
available.

In the empty list 110, bits typically change as data is
received and transmitted. However, it is possible for data not
to be transmitted if there are some errors in the network, such
as a port being broken or a Switch being removed from the
network. In any of these cases, the bits in the empty list110
associated with those ports must be cleared or else the asso
ciated buffers 122 will never be rewritten.

Therefore, the present invention includes bit clearing
mechanism 121 which reviews the activity of the bits in the
single bit buffers 124 and clears any set bits (i.e. of value 1)
which have not changed during a predetermined periodT. The
period T is typically set to be Small enough to avoid wasting
storage space for too long but large enough to avoid clearing
a buffer before its turn for transmission has occurred.

10

15

25

30

35

40

45

50

55

60

65

8
Bit clearing mechanism 121 comprises a multiplexer 140

and a state reviewer 142. The multiplexer 140 connects, at one
time, to a group of single bit buffers 124 and switches
between groups of buffers every period T. State reviewer 142
reviews the state of the group of single bit buffers 124 to
determine if all of the single bit buffers 124 changed from 1 to
0 at least once during the period T. If, at the end of period T.
one or more bits in buffers 124 have remained in the set state
(i.e. with value 1), the state reviewer 142 clears them to 0.
Multiplexer 140 then connects to the next group of single bit
buffers 124.
The operations of the bit clearing mechanism 121 are

detailed in FIG. 4. Specifically, at each clock tick t. the state
reviewer 142 checks (step 150) each bit. If the bit has changed
to 0, the bit is marked (step 152) as “changed”. Otherwise,
nothing occurs. The process is repeated until the period T has
ended (step 154).
At the end of the period T, the state reviewer 142 clears

(step 156) any unchanged bits and the multiplexer 140
changes (step 158) the group. The process is repeated for the
next time period T.

Hash Table Control Unit 52

Reference is now made to FIGS. 5 and 6 which illustrate
the hash table control unit 52 of the present invention. FIG.5
illustrates the hash table control unit 52 and its operation and
FIG. 6 details the elements of unit 52. The term “address will
be used herein to refer to MAC addresses and the term “loca
tion' will be utilized to refer to addresses within the hashtable
212.

Hashtable control unit 52 comprises a hash table 212 and
a hash table location generator 214. Hash table 212 is shown
with only 18 locations; it will be appreciated that this is for the
purposes of clarity only. Typically, hash table 212 will have
32K locations therein and, in accordance with the present
invention, stores only the MAC address and the port associ
ated therewith.

Location generator 214 receives the MAC address,
whether of the source end node or of the destination end node,
and transforms that address, via a hash function, to a table
location. The hash function can be any suitable hash function;
one suitable function is provided hereinbelow with respect to
FIG. 7.

In accordance with the present invention, if the generated
table location stores an address which is not the same as the
input MAC address, the location generator 214 generates a
second location which is X locations further down in the hash
table 212. The hash table does not store any pointers to the
next location. In accordance with the present invention, X is
a prime number Such that, if it is necessary to move through
the entire hash table 212, each location will be visited only
once during the review.

For example, and as shown in FIG. 5, X is 5 and the first
table location is the location labeled 1. If the MAC address of
location 2 does not match that of the input MAC address, the
location generator 214 jumps' to location 6 (as indicated by
arrow 220), and then to location 11 (arrow 222), and then to
location 16 of the hash table 212 (arrow 224). Since there are
only 18 locations in the hash table 212 of FIG. 5, location
generator 214 then jumps to location 3 (arrow 226) which is
(16+5) mod 18. If location 4 is also full, location generator
214 will generate locations until all of the locations of table
212 have been visited.

It will be appreciated that the hash table control unit 52
does not need to have pointers in table 212 pointing to the
“next location in the table. As a result, unit 52 knows, a

US RE43,058 E
9

priori, which locations in the table are next and can, accord
ingly, generate a group of locations upon receiving the MAC
address. If desired, the data in the group of locations can be
read at once and readily compared to the input MAC address.

FIG. 6 illustrates the elements of the location generator 214
and its operation in conjunction with the table 212. Location
generator 214 comprises a hash function generator 230,
DRAM interface 56 (since the hash table 212 is typically
implemented in DRAM 20), a latch 234 and a comparator
236.
The hash function generator 230 converts the MAC address

MA, of 48 bits, to the table location TLo, of 15 bits. The
DRAM interface 56 generates the group of next table loca
tions TLo TL and TL, where TL=TLo+X and TL-TLo+
2X. It will be appreciated that FIG. 6 illustrates only three
table locations but many more or many less can be generated
at once, as desired.
DRAM interface 56 accesses the table 212 to read the

addresses, AoA and A, and their associated data do, d and
d stored in table locations TLo, TL and TL, respectively.
The data d, include the necessary information about the
address, such as the Switch identification number and any
other desired information. The read operation can be per
formed at once or Successively.
The output of each table location is latched by latch 234.

Comparator 236 then compares the address information A,
with that of MAC address MA. If the two addresses match
(i.e. a “hit”), then comparator 236 indicates to latch 234 to
output the associated data d, stored therein. Otherwise, com
parator 236 indicates to DRAM interface 56 to read the
address A, and associated data d, stored in the next table
location.

If many table locations are to be read at once, the location
generator 214 can include a multiplicity of latches 234, one
for each location to be read at once.

If one of the table locations is empty, as indicated by a valid
bit of the data d, all locations after it will also be empty. Thus,
the input MAC address has no corresponding stored address
and therefore, the input MAC address is typically input into
the empty table location. The valid bit in the associated datad,
is then set to not empty.

FIG. 7, to which reference is now made, illustrates an
exemplary hash function, for typical MAC addresses, which
can be performed by hash function generator 230. In this
embodiment, generator 230 considers only the 33 lowest
significant bits (LSBS) of the MAC address. The 33 LSBs are
divided into four bytes, labeled A, B, C and D. Byte A consists
of bits 0:5, byte B consists of bits 6:14, byte C consists of bits
15:23 and byte D consists of bits 24:32. Thus, byte A is 6 bits
and the remaining bytes are 9 bits.

Hash function generator 230 comprises two XOR units
240A and 240B, a concatenator 242 and a swap unit 244. The
XOR unit 240A performs an exclusive OR between bytes C
and D and XOR unit 240B performs an exclusive OR between
the output of XOR unit 240A and byte B. Concatenator 242
concatenates the output of XOR unit 240B with byte A,
thereby producing variable T of 15 bits. Swap unit 244 swaps
the bits of variable T to produce the output table location TL.
Thus, the value of TL.<14> receives the value of T-O>, the
value of TL<13> receives that of T<1>, etc. It will be appre
ciated that any hash function can be utilized. However, the
desired hash functions are those which provide a uniform
distribution of table locations for the expected MAC
addresses. It is noted that the above hash function is easily
implemented inhardware since XOR units and concatenators
are simple to implement.

10

15

25

30

35

40

45

50

55

60

65

10
Write-Only Transfer Manager 62

Reference is now made to FIG. 8 which illustrates the
network configuration of the present invention and to FIGS.
9A and 9B which illustrate the data transfer operation of the
present invention. Elements of FIG. 8 which are similar to
those of FIG. 2 have the same reference numerals. It is noted
that bus 14 has at least two lines, a data line340 and an address
line 342.

In accordance with the write-only protocol of the present
invention, packets of data are not transferred until a buffer
location 319 is allocated for them in the DRAM 20 of the
destination network switch 12B. Furthermore, since the
transfer operation is a DMA transfer, a packet is directly
written into the location allocated therefor.

In accordance with a preferred embodiment of the present
invention, when a packet of data is to be transferred, the
source network switch 12A initially writes (step 350, FIG.
9A) a “buffer request' message to the buffer request register
64b of the destination network switch 12B. The buffer request
message asks that the destination network Switch allocate a
buffer for the data to be transferred.

In the DMA transfer embodiment of the present invention,
the source network switch 12A provides, on address line 342,
the address of the “buffer request register, the address of
destination network switch 12B and its “return address.
Source network switch 12A provides, on data line 340, the
size (or byte count) of the packet to be transferred and the
buffer location 319A in which it is stored. The data of the data
line is then written directly into the buffer request register.

In response to the buffer request message, the destination
network switch 12B determines (step 352) the buffer location
319B in which the packet can be stored. It then writes (step
354) a “start of packet' message to the start of packet register
66a of the source network switch 12A which includes at least
the location of the allocated buffer and the port numbers of the
Source and destination network Switches. It can also include
the byte count.

For example, in the DMA transfer embodiment of the
present invention described hereinabove, the destination net
work switch 12B provides, on address line 342, the address of
the “start of packet' register and the address of source net
work switch 12A. Destination network switch 12B provides,
on data line 340, at least the following: the byte count of the
packet to be transferred, the address 319B of the allocated
buffer, the port number of the destination network switch
12B, and, for identification, the buffer location 319A in which
the data is stored in the source network switch 12A and the
port number of the source network switch 12A. As before, the
data of the data line is then directly written into the start of
packet register.

In response to receipt of the start of packet message in the
start of packet register, the source network switch 12A writes
(step 356) the packet of data to the allocated buffer location,
followed by an “end of packet' message. Once the source
network switch 12A has finished writing the end of packet
message, it is free to send the next packet, beginning at Step
350.

In the above described embodiment, the writing of the
packet of data involves providing the address of the destina
tion network Switch 12B and the buffer location 319B on the
address line 342 and the packet to be transferred on the data
line 340. The transferred packet is then directly written into
the allocated buffer location 319B. The end of packet mes
sage is written in a similar manner to the other messages, but
to end of packet register 68b. The address information
includes the address of the end of packet register and the

US RE43,058 E
11

address of the destination network switch 12B. The data
includes the port number of the destination network switch
12B, the buffer location 319B and the byte count.
When the packet arrives at the destination network switch

12B it directly writes (step 360) the packet into the allocated
buffer location 319B, as per the address on the address line
342, until it receives the end of packet message for that
allocated buffer location. The destination network switch 12B
is now free to perform other operations until it receives a next
buffer allocation request.

FIG. 9B illustrates the timing of the packet transfer
described in FIG.9A. The initial source write operation of the
buffer request message (step 350) is typically relatively short
since write operations take relatively little time and since the
message to be transferred is Small. Some time later, there is a
destination write (DW) operation of the start of packet mes
sage (step 354). The destination write operation takes
approximately the same length of time as the first source write
operation. Some time later, there is a further source write
operation (step 356) of the packet transfer and end of packet
message. Since, for this operation, there is more data to be
transferred, this source write operation is shown to take a
longer time than the other two write operations. The source
and network switches are free to perform other operations
after they finish their writing operations.

It is also noted that, in the present invention, the Source
network switch 12A is free to operate on other packets once it
has finished writing its packet, and its associated end of
packet message, to the bus. The source network Switch 12A
does not need to ensure that the destination network switch
12B has successfully received the racket since, in the present
invention, the address for the data (in the destination network
Switch) is known and is fully allocated prior to sending the
packet; the packet would not be sent if there was no buffer
location available for it. In the present invention, the time it
takes for the destination network switch 12B to process the
packet is not relevant to the operation of the Source network
switch 12A.

It will be appreciated by persons skilled in the art that the
present invention is not limited to what has been particularly
shown and described hereinabove. Rather the scope of the
present invention is defined by the claims which follow:

We claim:
1. A generally full-wire throughput, switching Ethernet

controller for use within an Ethernet network of other switch
ing Ethernet controllers connected together by a bus, the
controller comprising:

a. a plurality of ports including at least one bus port asso
ciated with ports connected to other switching Ethernet
controllers;

b. a hash table for storing addresses of ports within said
Ethernet network;

c. hash table address control for hashing the address of a
packet to initial hash table location values, for changing
the hash table location values by a fixed jump amount if
the address values stored in said initial hash table loca
tion does not match the received address, and for pro
viding at least an output port number of the port associ
ated with the received address;

d. a storage buffer including a multiplicity of contiguous
buffers in which to temporarily store said packet;

e. an empty list including a multiplicity of single bit buff
ers;

f a packet storage manager for associating the state of the
bit of a single bit buffer with the empty or full state of an
associated contiguous buffer and for generating the

5

10

15

25

30

35

40

45

50

55

60

65

12
address of a contiguous buffer through a simple function
of the address or number of its associated single bit
buffer;

g. a packet transfer manager for directing said temporarily
stored packet to the port determined by said hash table
control unit; and

h. a write-only bus communication unit, activated by said
packet transfer manager, for transferring said packet out
said at least one bus port by utilizing said bus only for
write operations.

2. A controller according to claim 1 and wherein said
write-only bus communication unit includes a direct memory
access controller

3. A switching controller; comprising:
a hash table including a plurality of hash table locations

that store destination addresses,
a hash table controller that selects a first address in the

hash table based on a hash of a first destination address
in at least One packet, and

a packet transfer manager that transfers the at least one
packet from a source port to a destination port when a
second destination address stored at the first address
matches the first destination address and that selects a
second address that is offset from the first address in the
hash table when the second destination address stored at
the first address does not match the first destination
address.

4. The switching controller of claim 3 wherein the offset is
a fixed offset.

5. The switching controller of claim 3 further comprising:
P ports each including:

SSource ports that communicate with SSource devices,
and

D destination ports that communicate with D destina
tion devices,

wherein P S and Dare integers, P is greater than one, and
S and D are greater than or equal to One.

6. The switching controller of claim 5 wherein each of the
SSource devices includes a source address and each of the D
destination devices include a destination address.

7. The switching controller of claim 5 further comprising:
memory that includes a plurality of buffers, wherein each of

the P ports corresponds to a respective One of the plu
rality of buffers.

8. The switching controller of claim 3 wherein the at least
One packet comprises the first destination address.

9. The switching controller of claim 3 wherein the at least
One packet comprises a combination of the first destination
address and data.

10. The switching controller of claim 4 wherein the fixed
offset is a prime number:

II. The switching controller of claim 3 wherein the packet
transfer manager generates additional addresses that are
offset from a preceding address in the hash table when the
second destination address stored at the first address does not
match the first destination address.

12. The Switching controller of claim 3 wherein the switch
ing controller is a switching Ethernet controller:

13. A switching controller, comprising:
hash table storing means for storing a plurality of hash

table locations that store destination addresses,
hash table control means for selecting a first address in the

hash table based on a hash of a first destination address
in at least One packet, and

packet transfer managing means for transferring the at
least one packet from a source port to a destination port
when a second destination address stored at the first

US RE43,058 E
13

address matches the first destination address and that
selects a second address that is offset from the first
address in the hash table when the second destination
address stored at the first address does not match the first
destination address. 5

14. The switching controller of claim 13 wherein the offset
is a fixed offset.

15. The switching controller of claim 13 further compris
ing.
P ports each including: 10
SSource ports that communicate with SSource devices,
and

D destination ports that communicate with D destina
tion devices,

wherein P S and D are integers, P is greater than one, and 15
S and D are greater than or equal to One.

16. The switching controller of claim 15 wherein each of
the SSource devices includes a source address and each of the
D destination devices include a destination address.

17. The switching controller of claim 15 further compris- 20
ing.

storing means for storing a plurality of buffers, wherein
each of the Pports corresponds to a respective One of the
plurality of buffers.

18. The switching controller of claim 13 wherein the at 25
least one packet comprises the first destination address.

19. The switching controller of claim 13 wherein the at
least one packet comprises a combination of the first destina
tion address and data.

20. The switching controller of claim 14 wherein the fixed 30
offset is a prime number:

21. The switching controller of claim 13 wherein the packet
transfer managing means generates additional addresses
that are offset from a preceding address in the hash table
storing means when the second destination address stored at 35
the first address does not match the first destination address.

22. The switching controller of claim 13 wherein the
switching controller is a switching Ethernet controller:

23. A method for operating a switching controller; com
prising: 40

providing a hash table including a plurality of hash table
locations that store destination addresses,

14
selecting a first address in the hash table based on a hash

of a first destination address in at least One packet,
transferring the at least one packet from a source port to a

destination port when a second destination address
stored at the first address matches the first destination
address, and

selecting a second address that is offset from the first
address in the hash table when the second destination
address stored at the first address does not match the first
destination address.

24. The method of claim 23 wherein the offset is a fixed
offset.

25. The method of claim 23 filrther comprising:
providing P ports each including:

SSource ports that communicate with SSource devices,
and

D destination ports that communicate with D destina
tion devices,

wherein P S and Dare integers, P is greater than one, and
S and D are greater than or equal to One.

26. The method of claim 25 wherein each of the S source
devices includes a source address and each of the D destina
tion devices include a destination address.

27. The method of claim 25 filrther comprising:
associating each of the P ports with a respective One of a

plurality of buffers.
28. The method of claim 23 wherein the at least one packet

comprises the first destination address.
29. The method of claim 23 wherein the at least one packet

comprises a combination of the first destination address and
data.

30. The method of claim 24 wherein the fixed offset is a
prime number.

31. The method of claim 23 further comprising generating
additional addresses that are offset from a preceding address
in the hash table when the second destination address stored
at the first address does not match the first destination
address.

32. The method of claim 23 wherein the switching control
ler is a switching Ethernet controller.

