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(57) Abstract: Method and system for maintaining vector clocks during synchronization for data race detection. Embodiments
herein disclose methods to reduce overheads of maintaining and updating vector clock during synchronization in vector based dy-
namic data race detection systems. Embodiments herein enable improvement of vector based dynamic data race detection systems or -
thogonally without compromising with precision of the system by using opportunistic methods to reduce overheads during syn -
chronization of threads.
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Description

Title of Invention: METHOD AND SYSTEM FOR MAINTAINING
VECTOR CLOCKS DURING SYNCHRONIZATION FOR DATA
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RACE DETECTION
Technical Field

Embodiments herein relate to dynamic data race detection, and, more particularly, to

reducing overheads in maintaining and updating vector clocks during synchronization.

Background Art

Vector Clock based dynamic data race detector provides a general dynamic analysis
framework based on vector clock mechanism for detecting data races in concurrent
programs at run time more precisely (fewer false positive) than either static or any
other dynamic approach, such as lock-set based approach. The major issue with the
dynamic data race detector is space and time overheads of maintaining and updating
vector clocks that is O(n) in general where n is number of threads. Increasing number
of cores on chip and high degree of threading supported by cores and GPGPUS further
exaggerate performance and space overheads associated with vector clocks.

A data race condition occurs when two threads access same memory location at the
same time without synchronization (or not ordered by happens before) and at least one
of these memory access is a write access. Race conditions are inherently difficult to
detect, reproduce and eliminate primarily because they occur rarely and only in certain
rare executions and rare contexts. The major trade-offs between static and dynamic
data race detectors is that of soundness vs. precisions. In contrast to static data race
detector which do not actually run the program but never miss a data race if one exist
in program (soundness), at the cost of being conservative and producing lots of false
positive (less precise). But dynamic data race detectors actually run the program to
gain in precision. Dynamic data race detector (DDRD) perform and scale better as
compared to static race detectors, that bear the inherent curse of algorithmic overheads
involved in deep program analysis. However, any overhead due to DDRD directly
impacts the program execution time and not merely the compilation or analysis time as
in static techniques. Improving the performance overheads of DDRD is further fueled
by growing popularity of multi-core architecture and GPGPUs. Current state-of-the-art
tools trade accuracy (preciseness) for the speed.

The lockset based approach of DDRD is limited to detecting races in program that
use most popular synchronization primitive i.e. locking discipline. The lockset based
approach assumes that all the variables are guarded by all the locks in the beginning of

program execution. As it processes the trace of the program, it iteratively refines the
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locks associated with the shared variables and whenever it finds that a variable is not
guarded by proper locks, it alarms a possible data race. This approach being limited to
locking discipline leads to lots of false positives in the presence of other synchro-
nization primitive such as fork-join, and wait-notify among others.

The main idea behind a Purely Happens Before technique (PHB) is to monitor all the
thread and their accesses to the shared memory locations in the current execution trace
and deduce a partial order called happens before as imposed by the synchronization
primitives. Formally, happens before relationship among program statements is
defined as follows. Statement A happens before B (A < B) if any of the following is
true: A executes before B in the same thread or A and B are operations on the same
synchronization variable, between threads and events are ordered according to the
properties of the synchronization objects they access (e.g., A releases a lock, and B
subsequently acquires the same lock) or A < C and C < B then A < B, happens before
is transitive. This partial order is used thereafter to find out the possibility of access to
the same memory location by two different statement not related with happens before
relation. If at least one of these is write, the race is detected.

A specific mechanism to implement happens-before is vector clock. A vector clock is

essentially defined as a mapping C: Tid -> N@id for all id e N where id represents

the thread identification number. Some primitive operation on vector clocks is defined
as follows: happens before relationship operation: C; < G, iff C,(t) < C,(t) for each t
e id, Join operation: C, I'rl C, =max (C(t) , Cy(1)), foreach t e id, Ov=0.

Oe=0@0, for each t e id (Ov is the minimal version epoch and Oe is minimal
epoch) and INCt (C) = For all j € id if j == t then Ct(j)= Ct(j)+1 else Ct(j)= Ct(j).

During the execution of the program, race detector need to maintain multiple vector
clocks such as vector clocks to store the clock value of each of the thread by every
other thread and storing last read and write by any thread for each shared variable
among others. As the program executes these clocks are updated depending on the read
and writes to shared variables of different threads and synchronization operation by
different thread. Vector clocks, if not used efficiently leads to expensive O(n) op-
erations and space overheads. Different tools vary in terms of reducing these overheads
of updating vector clocks by summarizing vector clock information into a scalar
thereby reducing O(n) operation to O(1) operation.

DIJIT+ essentially maintains following vector clocks: Firstly, each thread t keeps a
vector clock Ct such that for any thread u, Ct(u) record the clock of the last operation

of thread u that happens before the current operation of thread t. Clock of every thread
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is incremented at each lock release operation. Secondly, Lm is a vector clock corre-
sponding to each lock and when a thread u releases a lock m, DJIT+ algorithm updates
Lm to Cu and if, the thread t subsequently acquires m then the algorithm updates Ct to
be Ct |T| Lm. Finally, to identify conflicting access, DJIT+ algorithm keeps two

vector clocks Rx and Wx that record the clock of thread that last read and write x from
every thread respectively.

Using these clocks DJIT+ determines a read access to x by thread u to be race free, if
it happens after the last write by all the threads (Wx < Cu) and a write access to X by
thread u is race free provided it happens after all access (read and write) to that
variable (i.e Wx < Cu and Rx < Cu). Vector clocks are updated on synchronization
operation that impose happens-before order between different threads. DJIT+ uses the
full generality of the vector clocks thereby leads to overhead of O(n) in space as well
as time where n is the number of threads.

FastTrack is a vector clock based dynamic data race detector that provides same
precision as DJIT+ but significantly improves the performance and space overhead of
maintaining and updating multiple vector clocks. FastTrack works on the premises that
the full generality of vector clocks as used in DJIT+is not required for detecting data
races. Essentially, FastTrack switches effectively between vector and epoch (summary
information from vector clock faded into a scalar) in order to reduce expensive O(n)
operation to O(1) operations as much as possible in the quest of taming the overheads
of maintaining full vector clock wherever possible for memory read and memory write
operations.

In order to reduce the overheads, FastTrack keeps the summary of a vector clock in
the form of epoch. An epoch is denoted as c@t. An epoch c@t happens before a vector
clock V iff c<=V(t). For each variable FastTrack maintains write epoch which es-
sentially is the clock value of last thread that wrote x and for a read it adaptively
switches between read epoch (clock value of last variable that read x) as well as
completely general vector clock. A shrewd observation exploited by FastTrack to
improve over DJIT+ is that just write epoch suffices instead of a write vector clock
because writes to a variable are actually totally ordered. FastTrack also observes that in
a race-free program, upon a write, all previous reads must happen before the write, so
FastTrack adaptively switches from read epoch to read vector clock and from read
vector clock to read epoch whenever necessary. For example, it switches from epochs
to vector clocks, when it has to distinguish between multiple concurrent reads, since
they all potentially race with a subsequent write. When reads are ordered by the
happens-before relation, FastTrack uses an epoch for the last read otherwise, it uses a

vector clock for reads.
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On each read access by a thread, FastTrack simply checks that the read happens after
the last write by comparing with the Write epoch of the variable and this is a fast O(1)
operation as compared to O(n) operation of DJIT+. On each write access by a thread,
FastTrack first checks the conflicts with earlier write by comparison with the write
epoch of x which is also O(n) operation and is not very expensive from performance or
space point of view. However, in order to check the read-write kind of race FastTrack
also compare with the read vector clock to detect, if there is a race with any of the
reads happening before this write which is in general a relatively slow O(n) operation.
However, FastTrack is able to reduce the overheads of keeping the full vector clock for
fully ordered read such as thread local and lock protected data. In other cases, where
reads are not completely ordered FastTrack adaptively switches to vector clock for
read operations. Thus it indicates that, FastTrack reduces the general O(n) space and
time overheads of vector clock such as in DJIT+ to O(1) for memory reads completely
and memory writes partially. However, it does not make any attempt to reducing O(n)
overheads of synchronization operation that happen say during acquire and release, and
are on rise because of more number of threads in upcoming multi-cores and GPGPUs.

FIG. 1 illustrates an example of functioning, FastTrack dynamic data race detector.
Consider that there are 3 threads executing concurrently and accessing the variables x
and y with the initial vector clock values as <1,0,0>, <0,1,0>, and <0,0,1> . The reads
on x by the 3 threads are not ordered by happens before, so both FastTrack and DJIT+
store all the 3 in a vector clock.

When the operation release on lock m is performed, vector clock of T is copied to
Lm in this case <0,0,1> is copied to Lm (this operation takes an O(n) time) and then T,
increments its clock to <0,0,2>. When T, acquires Lm it performs a join operation with
the vector clock of Lm, so the new vector clock is updated to <1,0,1>. When write on x
is observed in the trace at T, FastTrack first checks for the write-write races and then
read-write races. Since in this case there is no write-write race, as before there is no
previous writes to X so it does not report any race. But there is a read-write race, since
Rx on T, is not ordered by happens before with Wx in T;. So, FastTrack checks for Rx
happens before Wx at T, since they are not ordered by happens before, FastTrack
reports a race. Now consider the access on the shared variable y, when the write access
by T, happens, FastTrack updates the write epoch to 1@3 (since there are no access
before this operation as there are no races). The next access on y is a write accesses by
T,, but WY at T5 happens before WY at T, since there is synchronization operation
rel(Lm) at T; followed by acq(Lm) at T,. So the write epoch of x gets updated to 1 @1.
If the next access is by T and is read access, then there is write-read race i.e RY at T,
are not ordered by happens before with WY at T, and so, FastTrack reports this race (It
compares 1@]1 at write epoch at x with 0@1 at T5). Suppose WY at T, occurs after
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WY at T, in the trace then there is a write-write race and FastTrack reports this race (It

compares 1@]1 at write epoch of x with 0@1 at T,).
FastTrack claims significant performance and space improvement over the DJIT+

algorithm and represent the state-of-the-art in vector clock based dynamic data race
detector. Though, FastTrack improves the time and space overhead for memory op-
erations (completely for write operations and partially for read operation), the synchro-
nization operation such as acquire/release for maintaining and updating vector clocks
also have considerable overheads of the O(n). These overheads are further going to
increase with more and more threads contending in multi-cores and GPGPUs over the
shared data.

Disclosure of Invention

Technical Problem

The principal object of embodiments herein is to reduce overheads of maintaining
and updating vector clocks during synchronization for dynamic data race detection.

Another object of embodiments herein is to orthogonally improve the performance of
vector clock based dynamic data race detection over the state-of-the-art techniques
without affecting the precision of dynamic data race detection by maintaining and
updating the vector clocks for synchronization operation.

Solution to Problem

Accordingly embodiments herein provide a method for reducing overheads or-
thogonally during synchronization of threads in a vector clock based dynamic data race
detection system. The method comprises opportunistically reducing the complexity of
updating clock values during a thread synchronization operation.

One embodiment herein provides a method A method for reducing overheads or-
thogonally during synchronization in a vector clock based dynamic data race detector
between a first thread and a second thread using a lock when said second thread is
acquiring said lock from said first thread, by updating entire vector of clock values in
said second thread with corresponding maximum clock value for each thread where
said maximum clock value for each thread is obtained by comparing clock value for
each thread in said lock, the method characterized by maintaining previous version
value in each among said threads being monitored, where said previous version of a
thread among said threads being monitored is a version after which there are no
updates from any thread other than said thread; maintaining previous version value in
each lock, where said previous version is the version of a thread that last released said
lock; checking for a condition, if previous version value of said first thread is not more
than version value of said first thread in version vector of said second thread; and when

previous version value of said first thread is not more than version value of said first
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thread in version vector of said second thread, updating the clock value of said first
thread to said second thread and retaining clock values of threads other than said first

thread without updating.
Embodiments herein also disclose a system for perform various methods disclosed

herein.

These and other aspects of the embodiments herein will be better appreciated and un-
derstood when considered in conjunction with the following description and the ac-
companying drawings. It should be understood, however, that the following de-
scriptions, while indicating preferred embodiments and numerous specific details
thereof, are given by way of illustration and not of limitation. Many changes and modi-
fications may be made within the scope of the embodiments herein without departing
from the spirit thereof, and the embodiments herein include all such modifications.
Brief Description of Drawings

This invention is illustrated in the accompanying drawings, through out which like
reference letters indicate corresponding parts in the various figures. The embodiments
herein will be better understood from the following description with reference to the
drawings, in which:

FIG. 1 illustrates an example of functioning, FastTrack dynamic data race detector in
the context of the invention,

FIG. 2 illustrates handling of synchronization operations in dynamic data race
according to prior art,

FIG. 3 illustrate handling of synchronization operations in dynamic data race
according to embodiments disclosed herein,

FIG. 4 illustrates a thread interaction scenario associated with maintaining and
updating vector clocks for synchronization operation, according to one embodiment,

FIG. 5 illustrates the thread interaction scenario associated with maintaining and
updating vector clocks for synchronization operation, according to another em-
bodiment,

FIG. 6 illustrates the thread interaction scenario associated with maintaining and
updating vector clocks for synchronization operation, according to yet another em-
bodiment,

FIG. 7 illustrates the thread interaction scenario associated with maintaining and
updating vector clocks for synchronization operation, according to further em-
bodiment, and

FIG. 8 and FIG. 9 illustrate an example computing environment that may be used in

implementing the embodiments disclosed herein.

Mode for the Invention
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The embodiments herein and the various features and advantageous details thereof
are explained more fully with reference to the non-limiting embodiments that are il-
lustrated in the accompanying drawings and detailed in the following description. De-
scriptions of well-known components and processing techniques are omitted so as to
not unnecessarily obscure the embodiments herein. The examples used herein are
intended merely to facilitate an understanding of ways in which the embodiments
herein may be practiced and to further enable those of skill in the art to practice the
embodiments herein. Accordingly, the examples should not be construed as limiting
the scope of the embodiments herein.

The embodiments herein enable a method and system to reduce overheads of
maintaining and updating vector clocks during synchronization by opportunistically
reducing complexity of operations from O(n) in time and space overheads of synchro-
nization to O(1). Referring now to the drawings, and more particularly to FIGS. 1
through 9, where similar reference characters denote corresponding features con-
sistently throughout the figures, there are shown preferred embodiments.

Embodiments herein enable opportunistic reduction of O(n) time and space
overheads of synchronization, exploiting the fact that there is temporal locality in the
thread interactions. Essentially, threads tend to interact locally with each other over
time and interaction is not completely haphazard in nature. If a thread TX has lock Li k
times, where k>=1 before TY acquires Li and there is no thread TZ, where z!=x and
z!=y which acquires Li between successive releases of TX followed by final acquire of
TY, and the last update of TY was received from TX, then the expensive O(n) join
operation can be converted to a O(1) join operation (for all but first Joins), where n is
the number of threads.

Embodiments herein achieve the opportunistic reduction of complexity of join op-
erations. The improvement is illustrated through the use of data structure of
ThreadState and LockState representing state of a thread and state of a lock used by
various threads respectively, according to an example implementation of a preferred
embodiment showing improvement over an example implementation of FastTrack.

Structure for ThreadState and LockState as used by FastTrack:

class ThreadState {

int tid; //Threadld

int C[]; //Vector of Clocks of all the threads maintained by each thread

int epoch; // clock value of tid (c@tid)

int Version[]; /Contains last version value of each thread at the time join with that
thread

int Vepoch; //same as version value of tid(Version(tid))

int Pversion;
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[43] }

[44] class LockState {

[45] int C[]; //copy of vector clock of last thread that released the lock

[46] int Vepoch; //same as version value of tid with tid (v@tid) is the thread last released
the lock.

[47] int Pversion;

[48] }

[49] Improved structure for ThreadState and Lockstate:

[50] class ThreadState {

[51] int tid; //Threadld for this thread

[52] int C[]; // Clocks of all threads maintained by each

[53] // thread as its vector clock

[54] int epoch; // clock value of tid (c@tid)

[55] int Version[]; // version of each thread at the time of last join

[56] int Vepoch; // Version Number of thread after which there is no

[57] int Pversion; } // change in the clock of any other thread except this

[58] // tid

[59] class LockState {

[60] int C[]; // vector clock copy of last thread that released the lock

[61] int Vepoch; // version value of tid, last thread that released the lock

[62] int Pversion; } //Pversion of last thread that released the lock

[63] Some of the notations are explained further as follows:

[64] Version is incremented every time there a change in vector clock

[65] Versiont [1::n] is a Version vector of thread where each element of version vector is
version value of corresponding thread.

[66] Versiont[u] is the latest version received by the thread under consideration from the
thread u that it joins.

[67] L.Vepoch is maintained for a lock L is same as version value of tid that is the thread
last released the lock.

[68] Vepoch: (Version epoch v@t) is the current version v of thread t i.e (Versiont[t]) in
the given vector clock.

[69] Pversioni (previous version of Ti) : Denotes the version number of Ti after which
there is no change in the clock of any other thread except that of Ti in the vector clock
maintained by Ti

[70] The improved versions of ThreadState and LockState introduce the variables

Pversion, representing the previous version of a thread. Pversioni represents the
previous version of thread Ti and denotes the version number of Ti after which there is

no change in the clock of any other thread except that of Ti in the vector clock
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maintained by Ti. Therefore, each thread maintains at least the following metadata:

- Version of a thread is a scalar, is incremented every time there is a change in any
element of the vector lock maintained by the thread. Versiont [1::n] is a Version vector
of thread where each element of version vector, Versiont[u], is the latest version
received by the thread t under consideration from the thread u that it joins.

- L.Vepoch is maintained for a lock L, is same as version value of tid, the thread last
released the lock.

- Vepoch (Version epoch v@t1) is the current version v of thread t i.e (Versiont[t]) in
the given vector clock.

- Pversioni (previous version of Ti) denotes the version number of Ti after which
there is no change in the clock of any other thread except that of Ti in the vector clock
maintained by Ti.

- Let Li be a Lock and Ti be the thread that has last released Li. The corresponding
vector clock (C), Ti.Vepoch, Pversion, thread id of Li are denoted by L.Ci, L.Vepochi ,
L.Pversioni ,L.Tidi, which are same as corresponding values of Ti at the time of
release of Li by Ti.

The improvement brought about by the embodiments herein may be stated through
the following Lemma:

- Let T, , T, be two threads such that T, releases a lock L, at time t;, which is next
acquired by T, and T, releases a lock L, at time t, which is next acquired by T, where t,
> t;. If the Pversionl does not change in between t; to t, then reduce the O(n) acquire
operation by T, at t, to O(1) acquire operation.

The implementation of the aforementioned Lemma is described through the
following illustration and subsequent examples:

When T, releases lock L, it takes O(n) time for copying C, to L;.C . This is followed
by an increment of C,(1); i.e., the clock value of T, as maintained by T, in its vector C,
is incremented. Further, Pversionl is copied to L;.Pversion.

Subsequently, when T, acquires the lock L, from T, FastTrack does an expensive
O(n) join operation by checking if L;.C(1) > C,(1). However, embodiments herein
avoid redundant O(n) join operation by checking if L;.Pversion <= Version,(1), to
check if version value of thread T, after which there are no updates for any other
threads is not more than version value of thread T, in the vector of thread T.,.

If the condition is true, that is if the current Pversion value of thread T, is not more
than version value of thread T, as in the vector of thread T,, it would mean that there
was no acquisition of lock L, by thread T, or any other synchronization operation like
join since last update, and that the last update of thread T, was received by thread To.

If the condition is false, that is if the current Pversion value of thread T, is more than

version value of thread T, as in the vector of thread T,, it would mean that there was
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another join operation involving threat T; and lock L; since the last join operation
between threads T, and T,, and that the last update to thread T; was not received by
thread T..

If the condition is true, there would be no need to update the entire clock vector of
thread T, as only thread T, was updated since the last update to thread T,. Therefore, in
the improved method, the check is followed by updating Pversion2, C,(1) and Version,
(1) to T,.Vepoch, L;.C(1), and L,.Vepoch.

However, if the condition is false, the complex O(n) operation as performed by
FastTrack would be adopted to update thread T,.

EXAMPLE IMPLEMENTATION

The synchronization operation of obtaining a lock by thread T, from thread T, as
performed by FastTrack may be illustrated using the following pseudo code:

Void join(ThreadState t, LockState m){

/I O(n) operation to update all thread clock values

t.C[u] = max(t.C[u],m.C[u]) for all u;

}

As illustrated in FIG. 2, FastTrack always performs the synchronization operation
with O(n) complexity.

The improved synchronization operation of obtaining a lock by thread T, from thread
T, according to embodiments herein may be illustrated using the following pseudo
code:

Void join(ThreadState t, LockState m){

if (m.L[u] > t.C[u] for any u) {

tlastVersion = t.lastVersion + 1

t.Pversion = t.lastVersion //update Pversion

if(m.Pversion < t.Version[u]) { /check for redundant join.

t.Version[u] = vepoch(m) // where u is m.tid

t.C[u]l= m.C[u] //thread t clock is updated by clock of u

return; //avoid the O(n) path below and return

}

t.C[u]= max(t.C[u],m.L[u]) for all u; //expensive O(n) path

}

As illustrated in FIG. 3, the improved method performs a check to reduce the
complexity of the synchronization operation to O(1).

The improved method of performing synchronization may be illustrated further using
the following examples:

EXAMPLE 1: In example 1, threads T,, T, and T; are interacting as depicted in FIG.

4. When T; acquires Lx from T}, the vector clock, version vector (Pversion) and
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version epoch of T; is updated that essentially takes O(n) time, where n is the number
of threads. Similarly, when T acquires Lz from T, then the vector clock, version
vector (Pversion) and version epoch of T; is updated. Since there are no operations
changing vector clock of T, between the release of Lx and Ly, except the clock and
current version of T;. So when T; acquires Ly, embodiments herein do O(1) check as
Pversion of T <= version of T, in T; and increment the T;.Vepoch. Followed by
update of C;(1), Pversion3 and Ver3(1) to clock of T;, T;.Vepoch and current version
of T, respectively, when T, released Ly. Similarly when T acquires Lw, perform O(1)
operation. This is in contrast to the FastTrack method that performs O(1) check in case
of last two acquires as explained above.

EXAMPLE 2: In example 2, consider threads T, T,, and T; out of many active
threads are interacting as depicted in FIG. 5. When T, acquires Lx from T}, the vector
clock, version vector (Pversion) and version epoch of T, is updated. This takes O(n)
time ,where n is the number of threads. Similarly when T; acquires Ly from T, then the
vector clock, version vector (Pversion) and version epoch of Ts is updated. Because,
there are no acquire operations that change the vector clock of T, between the Rel(Lx)
and Rel(Lz), only the clock and version epoch of T, are modified. Thereafter, when T
acquires Lz, the present invention perform a simple check to see if the Pversion of T,
at the time of release of Lz <= Version,(3) (O(1) check) and increment the T.Vepoch.
Then update the Cs(1), Pversion3 and Versions(1) to clock of T,, T;.Vepoch and
version epoch of T at the time of release of Lz.. Similarly, when T, acquires La,. the
present invention perform O(1) operation thereby reducing some O(n) operations to
O(1), where n is the number of threads.

EXAMPLE 3: In example 3, consider four threads (T;, T,, T; and T,) out of many
active threads which interact as depicted in FIG. 6. Suppose the threads T, and T; are
in separate loops then, one of the possible interleaving between the T, and T, can be as
follows. T, acquires Lx and releases Lx followed by acquire of Lx and release of Lx by
T. This is further followed acquire and release of Ly where y!=x by T, (assume that
intial acquire of Ly by T, is redundant join O(1)) for 'k'times and acquire of Ly by Ts.
In this scenario, when T; first acquires Lx when it is first released by T, it does an O(n)
join operation.

Thereafter the all the subsequent consecutive acquire and release of Ly by T, only in-
crements the clock and version epoch of T,. The next time when T; acquires Ly, the
present invention check to see if the Pversion of T at the time of release of Ly 1.e.
Ly.Pversion <= Versions(2) (O(1) check) and increment T,.Vepoch , T:.Vepoch,
followed by updating C5(2) and Versions(2) to clock of T, and version epoch of T, at
the time of release of Lx. This reduces O(n) operations to O(1).Similarly in a scenario

of T; executing k' times followed by acquire of L, by T, thus present method reduce
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[112]

[113]

O(n) overheads to O(1).

EXAMPLE 4: In example 4, consider four threads T, T, Ts, and T, out of many
active threads with interaction as depicted in FIG. 7. Initially threads T, and T interact
followed by the interaction between T, and T, and followed by the interaction between
T;and T,.

Consider the interaction between T, and Ts, when the first release and acquire on LU
is performed, the join operation which takes place at T; takes O(n) time . Next time,
when T; acquires Lv, the present method check to see if the Pversion of T, at the time
of release of LV. <= Version;(2) (O(1) check) and increment the current version of Tj,
followed by update of C;(2), Version,(2) to clock of T, and version epoch of T, at the
time of release of Lv. This reduces O(n) operations to O(1). Similarly, the first release
and acquire between T and T, takes O(n) time and the subsequent release and acquire
between T;and T, takes O(1) time. Similarly, O(n) operations between T, , T, T, and
T, are reduced. Thus, embodiments herein reduce many O(n) operations to O(1)
operation.

FIG. 8 illustrates a computing environment implementing the application as
disclosed in an embodiment herein. As depicted the computing environment comprises
at least one processing unit that is equipped with a control unit and an Arithmetic
Logic Unit (ALU), a memory, a storage unit, plurality of networking devices, and a
plurality Input output (I/O) devices. The processing unit is responsible for processing
the instructions of the algorithm. The processing unit receives commands from the
control unit in order to perform its processing. Further, any logical and arithmetic op-
erations involved in the execution of the instructions are computed with the help of the
ALU. Processing unit can support more than one threads

FIG. 9 illustrates another computing environment implementing the application as
disclosed in an embodiment herein. As depicted the computing environment comprises
of more than one processing units that are equipped with a control unit and an array of
Arithmetic Logic Units (ALUs) and a multilevel local memory (cache hierarchy). Ad-
ditionally, the computing environments have a storage unit, plurality of networking
devices, and a plurality Input output (I/O) devices. The processing units in this case
can be same, similar or widely different in their capabilities and can support plurality
of threads. The overall computing environment can be composed of multiple ho-
mogeneous and/or heterogeneous cores, multiple GPUs of different kinds, special
media and other accelerators. The processing unit is responsible for processing the in-
structions of the algorithm. The processing unit receives commands from the control
unit in order to perform its processing. Further, any logical and arithmetic operations
involved in the execution of the instructions are computed with the help of the ALU.

Further, the plurality of process units may be located on a single chip or over multiple
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[114] The instructions and codes required for the implementation are stored in either the

[115]

[116]

[117]

[118]

[119]

[120]

memory unit or the storage or both. At the time of execution, the instructions may be
fetched from the corresponding memory and/or storage, and executed by the
processing unit.

In case of any hardware implementations various networking devices or external I/0
devices may be connected to the computing environment to support the imple-
mentation through the networking unit and the I/0O device unit.

In some embodiments, the methods disclosed herein may be implemented as part of a
thread library. In some embodiments, the methods disclosed herein may be im-
plemented as part of a runtime system like a Just-In-Time compile system. In some
embodiments the methods disclosed herein may be implemented as part of an
Operating System (OS).

In some embodiments the methods disclosed herein may be made use of by a
hardware system with specific instruction set architecture. Such a hardware system
may use specific registers for storing state information of threads. The storing of state
information may happen in the register memory or on an external system memory.

In some embodiments, the methods disclosed herein may be implemented in a multi-
thread embedded system environment.

In various embodiments, the methods for reducing overheads during synchronization
operations may further be enhanced for certain systems by performing sampling of
thread interactions. Embodiments disclosed herein suggested monitoring all thread in-
teractions. However, as number of threads and thread interactions grow, there may be a
need to sample thread interactions to reduce overheads. Further, sampling of thread in-
teractions may be implemented in systems that have severe memory usage restrictions
during runtime.

The embodiments disclosed herein can be implemented through at least one software
program running on at least one hardware device. Therefore, it is understood that the
scope of the protection is extended to such a program and in addition to a computer
readable means having a message therein, such computer readable storage means
contain program code means for implementation of one or more steps of the method,
when the program runs on a server or mobile deviceor any suitable programmable
device. The method is implemented in a preferred embodiment through or together
with a software program written in e.g. Very high speed integrated circuit Hardware
Description Language (VHDL) another programming language, or implemented by
one or more VHDL or several software modules being executed on at least one
hardware device. The hardware device can be any kind of portable device that can be

programmed. The device may also include means which could be e.g. hardware means
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[121]

like e.g. an ASIC, or a combination of hardware and software means, e.g. an ASIC and
an FPGA, or at least one microprocessor and at least one memory with software
modules located therein. The method embodiments described herein could be im-
plemented partly in hardware and partly in software. Alternatively, the invention may
be implemented on different hardware devices, e.g. using a plurality of CPUs.

The foregoing description of the specific embodiments will so fully reveal the
general nature of the embodiments herein that others can, by applying current
knowledge, readily modify and/or adapt for various applications such specific em-
bodiments without departing from the generic concept, and, therefore, such adaptations
and modifications should and are intended to be comprehended within the meaning and
range of equivalents of the disclosed embodiments. It is to be understood that the
phraseology or terminology employed herein is for the purpose of description and not
of limitation. Therefore, while the embodiments herein have been described in terms of
preferred embodiments, those skilled in the art will recognize that the embodiments
herein can be practiced with modification within the spirit and scope of the em-

bodiments as described herein.
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Claims

A method for reducing overheads orthogonally during synchronization
of threads in a vector clock based dynamic data race detection system,
said method comprising

opportunistically reducing the complexity of updating clock values
during a thread synchronization operation.

The method as in claim 1, wherein said method opportunistically
reduces complexity of said synchronization operation from O(n) to
O(1) wherein n represents the number of threads being monitored.

A method for reducing overheads orthogonally during synchronization
in a vector clock based dynamic data race detector between a first
thread and a second thread using a lock when said second thread is
acquiring said lock from said first thread, by updating entire vector of
clock values in said second thread with corresponding maximum clock
value for each thread where said maximum clock value for each thread
is obtained by comparing clock value for each thread in said lock, said
method characterized by

maintaining previous version value in each among said threads being
monitored, where said previous version of a thread among said threads
being monitored is a version after which there are no updates from any
thread other than said thread;

maintaining previous version value in each lock, where said previous
version is the version of a thread that last released said lock;

checking for a condition, if previous version value of said first thread is
not more than version value of said first thread in version vector of said
second thread; and

when previous version value of said first thread is not more than
version value of said first thread in version vector of said second
thread,

updating the clock value of said first thread to said second thread and
retaining clock values of threads other than said first thread without
updating.

The method as in claim 3, wherein said method opportunistically
reduces complexity of said synchronization operation between said first
thread and second thread from O(n) to O(1) wherein n represents the
number of threads being monitored.

The method as in claim 3, wherein said method comprises sampling
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thread interactions before checking for said condition to reduce
overhead.

A system for performing a method according to at least one of claims 1
to 5.

The system as in claim 6, wherein said system is a single processor
system.

The system as in claim 6, wherein said system is a multi-processor
system.

The system as in claim 6, wherein said system is a homogeneous
processor system.

The system as in claim 6, wherein said system is a heterogeneous
processor system.

A computer program product embodied in a computer readable medium
including program instructions which when executed by a processor
cause the processor to perform a method for reducing overheads or-
thogonally during synchronization of threads in a vector clock based
dynamic data race detection system, said method comprising
opportunistically reducing the complexity of updating clock values
during a thread synchronization operation.

The computer program product as in claim 11, wherein said method op-
portunistically reduces complexity of said synchronization operation
from O(n) to O(1) wherein n represents the number of threads being
monitored.

A computer program product embodied in a computer readable medium
including program instructions which when executed by a processor
cause the processor to perform a method for reducing overheads or-
thogonally during synchronization in a vector clock based dynamic data
race detector between a first thread and a second thread using a lock
when said second thread is acquiring said lock from said first thread, by
updating entire vector of clock values in said second thread with corre-
sponding maximum clock value for each thread where said maximum
clock value for each thread is obtained by comparing clock value for
each thread in said lock, said method characterized by

maintaining previous version value in each among said threads being
monitored, where said previous version of a thread among said threads
being monitored is a version after which there are no updates from any
thread other than said thread;

maintaining previous version value in each lock, where said previous
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version is the version of a thread that last released said lock;

checking for a condition, if previous version value of said first thread is
not more than version value of said first thread in version vector of said
second thread; and

when previous version value of said first thread is not more than
version value of said first thread in version vector of said second
thread,

updating the clock value of said first thread to said second thread and
retaining clock values of threads other than said first thread without
updating.

[Claim 14] The computer program product as in claim 13, wherein said method op-
portunistically reduces complexity of said synchronization operation
between said first thread and second thread from O(n) to O(1) wherein
n represents the number of threads being monitored.

[Claim 15] The computer program product as in claim 13, wherein said method
comprises sampling thread interactions before checking for said

condition to reduce overhead.
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