USOORES0024E

as United States

a2 Reissued Patent (10) Patent Number: US RE50,024 E
Zhao et al. 45) Date of Reissued Patent: Jun. 25, 2024
(54) CALL STACK INTEGRITY CHECK ON FOREIGN PATENT DOCUMENTS
CLIENT/SERVER SYSTEMS
WO WO02013091709 6/2013
(71) Applicant: Shape Security, Inc., Santa Clara, CA WO WO 2017/007705 1/2017
(Us)

(72) Inventors: Yao Zhao, Fremont, CA (US); Xinran OTHER PUBLICATIONS

Wang, San Ramon, CA (US) NOA, dated Feb. 21, 2017, re: Shekyan et al., U.S. Appl. No.

(73) Assignee: SHAPE SECURITY, INC., Seattle, 14/502,893, filed Sep. 30, 2014.
WA (US) (Continued)

(21) Appl. No.: 16/231,340 . .
Primary Examiner — Adam L. Baschoar

(22) Filed: Dec. 21, 2018 (74) Attorney, Agent, or Firm — Troutman Pepper
Related U.S. Patent Documents Hamilton Sanders LLP (F5 PATENTS)
Reissue of:
(64) Patent No.: 9,529,994
Issued: Dec. 27, 2016 (57) ABSTRACT
Appl. No.: 14/552,331
Filed: Nov. 24, 2014 Computer systems and methods in various embodiments are
—— configured for improving the security and efficiency of client
GD Gn0t6F 2 1/50 (2013.01) computers interacting with server computers through super-
GO6F 21/62 (2013.01) vising instructions defined in a web page and/or web
(Continued) browser. In an embodiment, a computer system comprising
52) US. CL one or more processors, coupled to a remote client computer,
P pled li p
CPC .. GO6F 21/50 (2013.01); GOGF 21/62 and configured to send, to the remote client computer, one

(2013.01); HO4L 63/102 (2013.01); HO4L
67/01 (2022.05); GOGF 2221/033 (2013.01)
(58) Field of Classification Search

or more instructions, which when executed by the remote
client computer, cause a run-time environment on the remote

CPC ... HO4L 63/102: HOAL 67/42: GOGF 21/50: client computer to: intercept, within the run-time environ-
GOG6F 21/62; GO6F 2221/033 ment, a first call to execute a particular function defined in
(Continued) the run-time environment by a first caller function in the

run-time environment; determine a first caller identifier,

(56) References Cited which corresponds to the first caller function identified in a

U.S. PATENT DOCUMENTS run-time stack maintained by the run-time environment;

determine whether the first caller function is authorized to

2:8;3:?;‘2 ﬁ % lggggg %ﬁiﬂul GO6F 21/51 call the particular function based on the first caller identifier.
726/24

(Continued) 19 Claims, 7 Drawing Sheets

ORIGINAL WEB PAGE 110

L FUNCTION 120 ™
_________________________________ A]
FIRST CALLER FUNCTION
A]
N SECOND CALLER
FUNCTION 140
CALLBACK FUNCTION 150

US RES0,024 E

Page 2
(51) Int.CL 2009/0249310 Al 10/2009 Meijer et al.
HO4L 9/40 (2022.01) 2010/0100927 Al 4/2010 Bhola et al.
T104L 67701 (2022.01) 2010/0251373 Al* 9/2010 Gruzman GO6F %/65/;2‘
(58) Field of Classification Search 2010/0257354 Al 10/2010 Johnston et al.
USPC e e 726/22-33 2010/0287132 Al 11/2010 Hauser
See application file for complete search history. 2011/0107077 Al 5/2011 Henderson et al.
2011/0131416 Al 6/2011 Schneider
(56) References Cited 2011/0239113 Al 9/2011 Hung et al.
2011/0296391 Al 12/2011 Gass et al.
U.S. PATENT DOCUMENTS 2011/0314091 A1 12/2011 Podjarny
2012/0022942 Al* 1/2012 Holloway HO4L 63/1458
6,272,641 BL* 820001 Ji woovvrceooeorerrrcr GO6F 21/51 705/14.49
e ! 380/252 2012/0090026 Al* 4/2012 Andrews GO6F 21/52
. 726/22
6,606,663 Bl 82003 L
032 170 81 20005 Krafl 2012/0096116 Al 42012 Mislove et al.
7.085.928 BL* 82006 Schmidcooo...... GOGF 21/51 égg//g%ﬁg 2} ggg}% E;I?Y}ft al.
713/164 clg
2012/0216251 Al 82012 Kumar et al.
;’}gg’ggg g% %88; Isiﬁgtyhk et al. 2012/0311715 Al 12/2012 Tal et al.
oy 2013/0055287 Al 2/2013 Pope et al.
7,334,254 Bl 2f2008 BO{)dS“m et al. 2013/0061055 Al 3/2013 Schibuk
;"S‘gg’ggg gf ééggg K,IV‘EE?V% ot al 2013/0091425 Al 4/2013 Hughes et al.
7707273 B2 419010 Zubenko ot al. 2013/0091582 Al 4/2013 Chen et al.
7797451 Bl 99010 Scofield of al. 2013/0173782 Al 7/2013 Ragutski et al.
7836425 B2 11/2010 Rubin et al. 2013/0198607 Al* 82013 Mischook ... GO6F 1;/1350/222
180500 B2 gl Caloetal. 2013/0232234 Al 92013 Kapur et al.
S132242 Bl 32012 Wu 2013/0311863 Al 11/2013 Gutkin et al.
S14l 154 B2 37012 Gruzman et al 2013/0340043 Al 12/2013 Zarei et al.
8266202 B 9/2012 Colton et al 2014/0089786 AL 3/2014 Hashmi
8527774 B2 /2013 Fallows et al. 2014/0189808 Al 7/2014 Mahaffey
8,627,479 B2 1/2014 Wittenstein f al. 2014/0222963 AL 872014 Gangadhard f al.
8.025.090 B2* 12/2014 Kec GO6F 21/566 2014/0250514 Al 9/2014 Blomquist et al.
TESETE Be s SR R e 2014/0283068 Al 9/2014 Call et al.
726/2)
. 2014/0298469 Al 10/2014 Marion et al.
9,241,004 Bl 172016 April 2015/0134956 Al 5/2015 Stachura
9,338,143 B2 5/2016 Hansen et al. 2015/0271188 Al 92015 Call
103 B2 ggg}g pppant <t o GOGF 11/3604 2015/0350181 Al 12/2015 Call et al.
2002/&)099’827 Al 7/2002 Shah etal """"""" 2015/0350213 Al 12/2015 Varadaraj_an et al.
2003/0217287 Al* 11/2003 Kruglenko GOGF 21/50 %8}2;883%% Al %8}2 ;’ﬁ@ﬁg:{‘;t al.
726/19 :
2016/0147992 Al 5/2016 Zhao et al.
2004/0098447 Al 5/2004 Verbeke et al. 2016/0294796 Al 102016 Hidayat et al.
2004/0162994 Al 82004 Cohen et al. 2016/0344769 Al 11/2016 Li
2005/0108562 Al* 5/2005 Khazan GO6F 11/3604 3017/0013012 Al 1/2017 Hansen
726/23
2005/0114705 Al 5/2005 Reshef et al. 0100eseT A1 208 ?a}_‘rf};yai? et al.
2005/0182958 Al* 82005 Phamco...... GO6F 21/51
726/22
2005/0198645 Al* 9/2005 Marr ..ooooovvveoenneenn. GO6F 21/606 OTHER PUBLICATIONS
719/310
%882;8??22;8 ﬁ} %;3882 I]\)Tasiliri et al~1 CTNF, mailed on Dec. 24, 2014, re: Justin Call, U.S. Appl. No.
andur et al.
2006/0161985 Al* 7/2006 Zhao ... HO04W 12/1208 14/055,583, filed Oct. 16, 2013. i i
726/24 NOA, dated Aug. 24, 2015, re: Subramanian Varadarajan, U.S.
2006/0282897 AL* 12/2006 Simacoomwr..... GO6F 11/3664 Appl. No. 14/290,805, filed May 29, 2014
726/25 CTFR, mailed on Jan. 14, 2015, re: Subramanian Varadarajan, U.S.
2007/0118669 Al . 5/2007 Rand et al Appl. No. 14/290,805, filed May 29, 2014.
2007/0186106 Al 8/2007 Ting .cocooovvivenncnes H04L7?§;}23 CTNF, mailed on Sep. 5, 2014, re: Subramanian Varadarajan, U.S.
2008/0130940 Al 6/2008 Whitelaw Appl. No. 14/290,805, filed May 29, 2014.
2008/0183902 Al 7/2008 Cooper et al. CTFR, mailed on Dec. 30, 2014, re: Justin Call, U.S. Appl. No.
2008/0222736 Al 9/2008 Bodaei et al. 14/290,835, filed May 29, 2014
2008/0250502 Al* 10/2008 Soleccccoevveenenn GO6F 21/51 CTNF, mailed on Jul. 30, 2014, re: Justin Call, U.S. Appl. No.
726/23 14/290,835, filed May 29, 2014
2008/0280593 Al* 11/2008 Savagaonkar G06F42/5‘§351§f NOA, dated Mar. 11,2015, re: Justin Call, U.S. Appl. No. 14/290,835,
. filed May 29, 2014.
2009/0007243 Al 1/2009 Boodaei et al.)
2009/0119504 Al 5/2009 Van et al. ﬂ?ﬁ)’ziﬁgd ﬁ?cct'sz“’ iglg’oﬁ Sergey Shekyan, U.S. Appl. No.
2009/0144829 Al 6/2009 Grigsby et al. ,893, filed Sep. 30, :
2009/0193513 Al 7/2009 Agfrwz/l et al. CTNF, mailed on Apr. 20, 2016, re: Sergey Shekyan, U.S. Appl. No.
2009/0241174 Al 9/2009 Rajan et al. 14/502,893, filed Sep. 30, 2014.

US RES50,024 E
Page 3

(56) References Cited
OTHER PUBLICATIONS

CTNF, mailed on May 6, 2016, re: Yao Zhao, U.S. Appl. No.
14/552,331, filed Nov. 25, 2014.

NOA, dated Aug. 17,2016, re: Yao Zhao, U.S. Appl. No. 14/552,331,
filed Nov. 25, 2014.

CTNF, mailed on Apr. 28, 2016, re: Ariya Hidayat, U.S. Appl. No.
14/673,669, filed Mar. 30, 2015.

NOA, dated Nov. 21, 2016, re: Ariya Hidayat, U.S. Appl. No.
14/673,669, filed Mar. 30, 2015.

NOA, dated Dec. 22, 2016, re: Ariya Hidayat, U.S. Appl. No.
14/673,669, filed Mar. 30, 2015.

NOA, dated Jan. 9, 2017, re: Ariya Hidayat, U.S. Appl. No.
14/673,669, filed Mar. 30, 2015.

CTNF, mailed on Oct. 21, 2016, re: Justin Call, U.S. Appl. No.
14/738,913, filed Jun. 14, 2015.

NOA, dated Mar. 16,2017, re: Justin Call, U.S. Appl. No. 14/738,913,
filed Jun. 14, 2015.

CTFR, mailed on Aug. 12, 2016, re: Subramanian Varadarajan, U.S.
Appl. No. 14/923,603, filed Oct. 27, 2015.

NOA, dated Dec. 1, 2016, re: Subramanian Varadarajan, U.S. Appl.
No. 14/923,603, filed Oct. 27, 2015.

CTFR, mailed on Aug. 23, 2016, re: Siying Yang, U.S. App. No.
15/011, 172, filed Jan. 29, 2016.

CTNF, mailed on Apr. 18, 2016, re: Siying Yang, U.S. App. No.
15/011,172, filed Jan. 29, 2016.

NOA, dated Jun. 1, 2017, re: Sergey Shekyan, U.S. Appl. No.
14/502,893, filed Sep. 30, 2014.

CTNF, mailed on Apr. 4, 2017, re: Jarrod Overson, U.S. Appl. No.
15/069,667, filed Mar. 14, 2016.

CTNF, mailed on Apr. 7, 2017, re: Yao Zhao, U.S. Appl. No.
14/861,906, filed Sep. 22, 2015.

CTNF, mailed on Jun. 21, 2017, re: Zhiwei Li, U.S. Appl. No.
14/718,736, filed May 21, 2015.

CTFR, mailed on Oct. 30, 2017, re: Jarrod Overson, U.S. Appl. No.
15/069,667, filed Mar. 14, 2016.

NOA, dated Dec. 18, 2017, re: Yao Zhao, U.S. Appl. No. 14/861,906,
filed Sep. 22, 2015.

NOA, dated Jan. 5, 2018, re: Yao Zhao, U.S. Appl. No. 14/861,906,
filed Sep. 22, 2015.

NOA, dated Jan. 25, 2018, re: Zhiwei Li, U.S. Appl. No. 14/718,736,
filed May 21, 2015.

NOA, dated Mar. 15, 2018, re: Sergey Shekyan, U.S. Appl. No.
15/791,291, filed Oct. 23, 2017.

CTNF, mailed on May 15, 2018, re: Marc R. Hansen, U.S. Appl. No.
15/202,755, filed Jul. 6, 2016.

CTNF, mailed on May 23, 2018, re: Jarrod Overson, U.S. Appl. No.
15/069,667, filed Mar. 14, 2016.

CTNF, mailed on Apr. 25, 2018, re: Ganesh Jampani, U.S. Appl. No.
15/249,133, filed Aug. 26, 2016.

NOA, dated Oct. 24, 2018, re: Jarrod Overson, U.S. Appl. No.
15/069,667, filed Mar. 14, 2016.

CTFR, mailed on Nov. 1, 2018, re: Marc. R. Hansen, U.S. Appl. No.
15/202,755, filed Jul. 6, 2016.

NOA, dated Oct. 26, 2018, re: Ganesh Jampani, U.S. Appl. No.
15/249,133, filed Aug. 26, 2016.

NOA, dated Oct. 3, 2019, re: Marc R. Hansen, U.S. Appl. No.
15/202,755, filed Jul. 6, 2016.

CTNF, mailed on Sep. 24, 2019, re: Ganesh Jampani, U.S. Appl. No.
16/259,890, filed Jan. 28, 2019.

International Search Report, dated Apr. 22, 2016, PCT/US16/18081,
Shape.

International Search Report, dated Jan. 19, 2016, PCT/US15/49024,
Shape.

International Search Report, dated Dec. 22, 2015, PCT/US15/
52030, Shape.

International Search Report, dated Aug. 25, 2015, PCT/US15/
32060, Shape.

International Search Report, dated Sep. 22, 2016, PCT/US16/
40645, Shape.

International Search Report, dated Jul. 1, 2016, PCT/US16/25092,
Shape.

International Search Report, dated Apr. 7, 2016, PCT/US15/62206,
Shape.

Anderson et al., Measuring the Cost of Cybercrime, Workshop on
the Economics of Information Security (WEIS), 2012, pp. 1-33.
Boston University, Understanding Authentication, Authorization,
and Encryption, Last accessed by internet:< http://www.bu.edu/tech/
about/security-resources/bestpractice/auth/>, Sep. 9, 2015, 4 pages.
Currie, In-the-wire authentication: Protecting client-side critical
data fields in secure network transactions, Jan. 14, 2009, pp.
232-237, 2009 2nd International Conference on Adaptive Science
and Technology.

Egele et al., Defending Browsers against Drive-by Downloads:
Mitigating Heap-spraying Code Injection Attacks, Jul. 2009, 20
pages.

Entrust, Defeating Man-in the Browser Malware, Sep. 1, 2012, pp.
1-18, Entrust Inc.

Indiana University, Authentication vs. Authorization, 2015, 2pgs.
Krebs on Security, A Closer Look at Rapport from Trusteer, Apr. 29,
2010, 16 pages.

Marcus et al., Dissecting Operation High Roller, 2012, 20 pages,
McAfee Inc.

Shackleford, Application Whitelisting: Enhancing Host Security,
Oct. 2019, 16 pages.

Wikipedia, MDS, Mar. 24, 2015, 12 pages.

International Searching Authority, “Search Report” in application
No. PCT/US15/52030, dated Dec. 22, 2015, 17 pages.
International Searching Authority, “Search Report” in application
No. PCT/USIS/62206, dated Apr. 7, 2016, 8 pages.

International Searching Authority, “Search Report” in application
No. PCT/2016/018081, dated Apr. 25, 2016, 13 pages.

Current Claims in application No. PCT/US 15/62206, dated Apr.
2016, 5 pages.

Claims in application No. PCT/US2016/018081, dated Apr. 2016, 6
pages.

U.S. Appl. No. 14/290,805, filed May 29, 2014, Notice of Allow-
ance, Mailing Date Aug. 24, 2015.

International Searching Authority, “Search Report” in application
No. PCT/US15/32060, dated Aug. 25, 2015, 10 pages.

* cited by examiner

US RES0,024 E

Sheet 1 of 7

Jun. 25, 2024

U.S. Patent

OFT NOILONNA _
¥ITIVOANOJIS)

(13 ol

07T 39Vd 93IM TYNIDIHO

| "Old

US RES0,024 E

Sheet 2 of 7

Jun. 25, 2024

U.S. Patent

OFT NOILONNA
¥3TIVD ANOD3S
. 0ET
{ NOILONNS ¥ITTVO LSl
/.r 02T NOILONNA
RS —— i
| 022 NOILONNA HOSIAY3dNS |
OTZ 39vd 93M 314100

¢ Old

US RES0,024 E

Sheet 3 of 7

Jun. 25, 2024

U.S. Patent

00€ Wa3sAg

\

S0€
an1onJisesyu)

SR/

)
CTcc g ove 66¢€
uolesngyuo
ste Hon kb 93e1015 Jondwo) L)
)
(
S6€
0gg 1uswuoJIAUg
> Joindwo) < 'Q awil-uny
Alelpawiaiu| yum Jasmolg
W=
0TT 0T¢
a8ed qaMm 98ed goM
|eulslo palIpoIN
€ 'Ol

US RES0,024 E

Sheet 4 of 7

Jun. 25, 2024

U.S. Patent

GEE uoneundiuo)

ove
28el015

So€
a4njonJisesyu|

SR/

vEY
21807
3uissanoid

9¢¥ 21307
uol13d3|u|

~

oo a0 s o . 55 o 2 5 59 o o o 5 09 5

TEY 21807
walp €

8¢y
21807

|020104d

0E€ Joandwo) Alelpawdalu|

JanIas
|02030.4d

imwmwwmm

S6¢
Jasmoug

———— 1

oco

v 'Old

US RES0,024 E

Sheet 5 of 7

Jun. 25, 2024

U.S. Patent

d31LNdNOD
LN3I7O 3HL OL SNOILONYLSNI
40 L3S d3141Q0W IHL AN3S 08

V1vVd NOILVHNOIANOD 40 13S 3HL NO d3Svd SNOILONHLSNI
40 13S d3141a0N Y 30NAd0Hd OL SNOILONHLSNI 40 L3S 1Sl
JHL OL SNOILONYLSNI HOSIAYIANS FHON HO INO SLOAMNI0CS

SNOILYH3dO T¥NIOIHO FHON
d0 INO 3NI43d LYHL SNOILONHLSNI 40 L3S 1SHIA
V "HILNdWOD YIAYIS V INOYS "LdIOYILNI TS

¢ Ol

US RES0,024 E

Sheet 6 of 7

Jun. 25, 2024

U.S. Patent

SNOILONYLSNI 40 L3S 1SHI4 FHL OL SNOILONYHLSNI
HOSIAY3ANS IHOW HO INO IHL aav 059

i

@InMvA SIMOVLS T1vO 3HL NI @314ILN3Al NOILONNA HOV3 3HNSNY
OL NIVHD T1¥Q FHL SISHIAVYL A3TT¥O NIHM ANV ‘NIVHO T1vD AITvA 3HL
NI NOILONN4 HOV3 404 HSYH HOV3 S3ANTINI LYHL NOILONNA HOSIAY3dNS
OIHdYOWATOd ¥V INIJ3A LYHL SNOILONYLSNI HOSIAYIANS ILVYHINIO 0F9

MOVLS 71TV dIMVA ¥ NI NOILONNA HOV3
404 ¥3I4ILNIAI JIHJHOWATOd V ALYH3INID 0£9

A

NOILONNL JHL ¥O4 AIMYA 38 d1N02J
L1¥HL SMOVLS 17v0 IHOW HO INO ININY3L3A 029

f

SNOILONYHLSNI
40 13S LSHI4 3HL NI 3NI43a SI d3SIAH3dNS
39 A1NOHS LYHL NOILONNS ¥ ¥IHLIHM ININYI LI 019

9 "Ol4

V/ 0¢G d31s

US RES0,024 E

Sheet 7 of 7

Jun. 25, 2024

U.S. Patent

L 9l4
1743
LSOH
0L | o
| 007
L \ NI sz
RIOMLIN bt 30VANILNI yoz
§Q _ NOLLYOININOD HOSSIO0Nd
|
|
|
|
92/ _
|
| 0L
_ sSnd
ds| _
|
|
LIANYALNI _
|
oz B0Z 0L
— _ I0IA3Q AYOWINW
8¢L NOY NIV
H3AYIS _ JOVHOLS

173
TOY1LNOD
d0SHNd

[273
301A3A LNdNI

(474
AV1dSId

US RE50,024 E

1
CALL STACK INTEGRITY CHECK ON
CLIENT/SERVER SYSTEMS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

FIELD OF THE DISCLOSURE

The present disclosure generally relates to security tech-
niques applicable to client/server systems, and relates more
specifically to techniques for improving the security of client
computers executing instructions received from server com-
puters. SUGGESTED GROUP ART UNIT: 2441 or 2447,
SUGGESTED CLASSIFICATION: 709/217.

BACKGROUND

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any
of the approaches described in this section qualify as prior
art merely by virtue of their inclusion in this section.

Browsers are powerful computer program applications
that may request and execute instructions received from a
web server to generate complex user interfaces that are
presented to a user through one or more devices, such as a
monitor or speakers. In response to input from a user, such
as a mouse click indicating that the user selected an object
defined in the instructions, such as a link, a browser may
send a request based on the selected object to the web server.
The request may be a request for data and/or include data to
be processed by the web server.

Attackers may use software, often referred to as a “bot”
or “headless browser”, which imitates a browser by receiv-
ing instructions from a web server and generating requests
based on those instructions. For example, a bot may receive
a web page, gather data in one or more objects defined in the
web page, and generate a request for another web page to
gather additional data, as if a user using a browser was
requesting a new web page. Also for example, a bot may
submit false or bogus data to a web server.

Attackers may use bots to commit many types of unau-
thorized acts, crimes or computer fraud, such as content
scraping, ratings manipulation, fake account creation,
reserving rival goods attacks, ballot stuffing attacks, pass-
word snooping, web site scraping attacks, vulnerability
assessments, brute force attacks, click fraud, DDoS attacks,
bidding wars, and stack fingerprinting attacks. As a specific
example, a malicious user may cause a bot to traverse
through pages of a web site and collect private and/or
proprietary data, such as who is connected with whom on a
particular social networking web site.

Furthermore, attackers may inject malicious instructions
into a web page and/or a browser. The malicious instructions
may be configured to simulate a user interacting with the
web page and/or browser. For example, malicious instruc-
tions injected into a web page, which when executed by a
browser, may call one or more functions defined by the web
page and/or the browser to gather data in the web page,
collect and/or ask for user input, submit data to a web server,
and/or request additional data from a server. The injected

10

15

20

25

30

35

40

45

50

55

60

65

2

malicious instructions may further use functions defined in
the web page and/or browser to send collected data to an
attacker’s online storage server or to pose as a legitimate
browser. A legitimate browser may be a browser operated by
a legitimate user.

Web server administrators may wish to prevent attacks
from malicious users, while allowing legitimate users to use
the site as intended. However, it is difficult to determine
whether a legitimate user is using a web browser or whether
the browser is infected, and/or operated, by a malicious user.

SUMMARY

The appended claims may serve as a summary of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates an example structure of the text and code
in a web page that defines one or more objects and one or
more functions, including an unprotected function config-
ured to implement one or more countermeasures to protect
a user and/or a server computer, in an example embodiment.

FIG. 2 illustrates a modified web page that defines a
supervisor function, which may intercept calls to the pro-
tected function and prevent unauthorized callers from call-
ing the protected function, in an example embodiment.

FIG. 3 illustrates a computer system comprising a
browser, a web infrastructure, and an intermediary com-
puter, which may be configured to protect functions and/or
data structures defined, referenced, or called from instruc-
tions sent from the web infrastructure to the client computer,
in an example embodiment.

FIG. 4 illustrates a detailed view of an intermediary
computer in an example embodiment.

FIG. 5 illustrates a process for intercepting instructions
from a server computer, determining whether one or more
functions should be protected, generating one or more
supervisor instructions configured to intercept and validate
calls to one or more the protected functions, render a new set
of instructions that define one or more supervisor
function(s), and send the new set of instructions to a client
computer, in an example embodiment.

FIG. 6 illustrates a process for determining which func-
tion(s) in a web page should be protected, generating super-
visor instructions that define one or more supervisor func-
tions, and adding the supervisor instructions to the original
set of instructions, in an example embodiment.

FIG. 7 illustrates a computer system upon which an
embodiment may be implemented.

While each of the drawing figures illustrates a particular
embodiment for purposes of illustrating a clear example,
other embodiments may omit, add to, reorder, and/or modify
any of the elements shown in the drawing figures. For
purposes of illustrating clear examples, one or more figures
may be described with reference to one or more other
figures, but using the particular arrangement illustrated in
the one or more other figures is not required in other
embodiments. For example, intermediary computer 330 in
FIG. 3 may be described with reference to several compo-
nents illustrated in FIG. 5 and discussed in detail below, but
using the particular arrangement illustrated in FIG. 3 is not
required in other embodiments. Furthermore, while the
instructions discussed in many example embodiments are
HyperText Markup Language (“HTML”) and JavaScript
instructions, in other embodiments, the instructions inter-

US RE50,024 E

3

cepted and generated may be any other standard and/or
proprietary instructions configured to be executed by a client
computer.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

Embodiments are described herein according to the fol-
lowing outline:

1.0 General Overview

2.0 Browsers, Bots, and Injected Malware

2.1 Less Sophisticated Bots
2.2 More Sophisticated Bots
2.3 Injected Malware
3.0 Protecting Functions from Bots and Malware
3.1 Direct Callers and Indirect Callers
3.2 Supervisor Functions
3.2.1 Caller Function Identifiers
3.2.2 Validating a Call Stack
3.2.3 Blacklisting Caller Functions
4.0 Example Network Topology for dynamically Protect-
ing Functions Executed on a Client Computer
4.1 Web Infrastructure
4.2 Intermediary Computer
4.2.1 Protocol Client Logic
4.2.2 Processing Logic
4.2.3 Injection logic
4.2.4 Protocol Server Logic
4.2.5 Configurations
4.2.6 Storage
4.3 Browser
5.0 Process Overview
5.1 Intercepting Instructions from a Server Computer
5.2 Injecting Supervisor Instructions into a Web Page
5.2.1 Determining which Functions should be Pro-
tected
5.2.2 Determining one or more Authorized Call
Stacks
5.2.3 Generating Authorized Caller Function Identi-
fiers
5.2.4 Generating and Injecting Supervisor Instruc-
tions into a Web Page
5.3 Sending the Modified Web Page to the Client
Computer
6.0 Implementation Mechanisms—Hardware Overview
7.0 Other Aspects of Disclosure

1.0 GENERAL OVERVIEW

In an embodiment, a specialized computing system com-
prising one or more processors, coupled to a remote client
computer, and configured to send, to the remote client
computer, one or more instructions, which when executed by
the remote client computer, cause a run-time environment on
the remote client computer to: intercept, within the run-time
environment, a first call to execute a particular function
defined in the run-time environment by a first caller function
in the run-time environment; determine a first caller identi-
fier, which corresponds to the first caller function identified
in a run-time stack maintained by the run-time environment;

10

15

20

25

30

35

40

45

50

55

60

65

4

determine whether the first caller function is authorized to
call the particular function based on the first caller identifier.

The specialized computing system, wherein the one or
more instructions, which when executed by the remote client
computer, are further configured to cause the run-time
environment to terminate the first call without performing
the particular function in response to determining that the
first caller function is not authorized to call the particular
function.

The specialized computing system, wherein the one or
more instructions, which when executed by the remote client
computer, are further configured to cause the run-time
environment to execute the particular function based, at least
in part, on determining that the first caller function is
authorized to call the particular function.

The specialized computing system, wherein the one or
more instructions, which when executed by the remote client
computer, are further configured to cause the run-time
environment to execute the particular function based, at least
in part, on determining that the first caller function is
authorized to call the particular function.

The specialized computing system, wherein: the one or
more instructions include a first dynamic identifier; the one
or more instructions are further configured to cause the
run-time environment to, as part of determining the first
caller identifier: determine a first caller name that corre-
sponds to the first caller function from the run-time stack;
perform a hashing function on the first caller name to
produce the first caller identifier; determine whether the first
caller function is authorized to call the particular function
based on the first caller identifier is based on whether the
first caller identifier matches the first dynamic identifier.

In an embodiment, a data processing system comprising:
a memory; one or more processors coupled to the memory;
a protocol logic stored in the memory, executed by the one
or more processors, and configured to cause the one or more
processors to receive, from a web server computer, a first set
of instructions that define one or more original operations;
an injection logic stored in the memory, executed by the one
or more processors, and configured to cause the one or more
processors to add one or more supervisor instructions to the
first set of instructions to produce a modified set of instruc-
tions prior to providing the modified set of instructions to a
client computer; a server logic stored in the memory,
executed by the one or more processors, and causing the one
or more processors to send the modified set of instructions
to a remote client computer; wherein the one or more
supervisor instructions are configured to cause a run-time
environment executed on the client computer to intercept a
first call to execute a particular function from a first caller
function, determine whether the first caller function is autho-
rized to call the particular function.

Embodiments discussed herein provide numerous benefits
and improvements over the general idea of increasing the
resistance of browsers and server computers to computer
attacks. For example, one or more of the embodiments
discussed herein may prohibit the ability of injected, mali-
cious instructions to call one or more functions defined in a
web page, a run-time environment and/or a browser-based
application. One or more of the embodiments discussed
herein may allow authorized functions to call one or more
protected functions, while prohibiting malicious instructions
from calling the same functions.

2.0 BROWSERS, BOTS, AND INJECTED
MALWARE

A web browser may be a computer program through
which server-based application programs can provide client

US RE50,024 E

5

computers with content in a dynamic, custom Ul For
example, in response to receiving a request for data from a
web browser, a computer configured as a web server may
respond with a set of instructions that define one or more
objects with one or more object identifiers. The browser,
and/or the instructions from a web server, may define
functions to perform one or more of the following: define
how objects may be presented in a user interface (“UI”) to
enable human/computer interaction, retrieve data from, and/
or store data in, a client computer or a server computer on
behalf of a user, and/or any other operation on a client
computer and/or in concert with a server computer. For
convenience of expression, a set of instructions may be
referred to herein as a file and/or web page. However, a set
of instructions, file, and/or web page may comprise one or
more files and/or data packets. A set of instructions, file(s),
and/or web page(s) need not have a particular type or
extension, and need not be stored in persistent storage. For
example, a web page may be generated dynamically on a
server computer and/or a client computer based on one or
more parameters. While some files may be identified as a
particular type of file, such as an “HTML file” or “JavaScript
file”, a file may include mixed content. For example, an
HTML file may include HTML, JavaScript, Cascading Style
Sheets (“CSS”) instructions, and/or any other standard and/
or proprietary set of instructions.

In contrast to legitimate browsers, bots are computer
programs that traverse web pages and/or web sites to
retrieve data from, and/or submit data to, one or more web
servers with little, if any, human/computer interaction. For
example, in response to receiving a request for data from a
bot, a web server may respond with a set of instructions. A
bot may parse the instructions to collect data from, and/or to
store data in, particular objects with particular object iden-
tifiers. A bot may also make requests based on an object
identifier, such as the identifier for a text field input. Unlike
a legitimate browser used by a legitimate user, a bot need not
execute the instructions that define how objects should be
presented in a Ul because the bot is built to operate with
little, if any, human/computer interaction. Thus, a bot may
be a functionally-limited and/or automated browser.

2.1 Less Sophisticated Bots

Less sophisticated bots need not include parsers and/or
execution environments. For example, a bot may be config-
ured to search for data embedded in a document object
model (“DOM”) defined in one or more HyperText Markup
Language (“HTML”) documents. Therefore, the bot may
include an HTML parser. However, the bot need not include
other parsers or execution environments, such as an image
parser, CSS parser, JavaScript parser, extension execution
environment, and/or JavaScript execution environment.

Data and functionality in a web page may be protected
from less sophisticated bots by embedding data and func-
tionality into code that will not be executed by less sophis-
ticated bots. For example, a web page may include HTML
and JavaScript instructions. The HTML instructions may
define an object that is presented in a Ul, but need not
initially include any personal data. The JavaScript instruc-
tions may define a function, which when executed populates
the object with personal data for a particular user, which is
then presented in the Ul A less sophisticated bot may be
prevented from gathering the personal data that would have
been included in the object because the less sophisticated bot
cannot, and/or does not, execute the JavaScript that puts the
data in the object before attempting to retrieve the data from
the object.

10

15

20

25

30

35

40

45

50

55

60

65

6

Web servers may be protected from less sophisticated bots
by embedding functionality into code that will not be
executed by a less sophisticated bot. For example, a web
page comprising HTML instructions may define a link,
which when selected by a user in a browser is configured to
call a JavaScript function. The JavaScript function may be
configured to gather data related to the link, and/or other
objects defined in the web page, perform one or more
operations on the data, and submit a request with the
gathered and/or derived data to a web server. If the web
server does not receive the correct data, then the web server
may disregard the request and/or return an error. A less
sophisticated bot may require a substantial amount of work
to be configured to gather and/or derive the data required by
the web server to validated a request and send a request with
the data to the web server.

FIG. 1 illustrates an example structure of the text and code
in a web page that defines one or more objects and one or
more functions, including an unprotected function config-
ured to implement one or more countermeasures to protect
a user and/or a server computer, in an example embodiment.
In the example of FIG. 1, an original web page 110 com-
prises a function 120 that is referenced by a first caller
function 130, a callback function 150, and a malicious
function 190. A second caller function 140 is configured to
call the first caller function 130. Each of the functions 120,
130, 140, 150, 160 may be implemented using any of several
different document markup languages or computer program
languages, such as HTML, JAVASCRIPT, and equivalents
thereof. For purposes of illustrating a clear example, assume
that the following Snippet 1, is an excerpt of markup
instructions and/or code from original web page 110, and
Snippet 2 is an excerpt from original web page 110 that
defines function 120.

Snippet 1:
line 1: <form id="Booth” action="vote.com/submitVote.php"
method="post">

line 2: <hidden id="ValidationToken”
name="ValidationToken” value="false”>

line 3: <p>name: <input id=""Candidate” name="
Candidate™/></p>

line 4: <input id = ”Vote” name= ""Vote” type="button"
value="Vote" onclick="Function120();">

line 5: </form>

In Snippet 1, a form identified as “Booth” is defined,
which has a hidden field named “ValidationToken”, a text
field named “Candidate”, and a button named “Vote”, which
when selected by a legitimate user using a browser causes
the browser to execute function 120, which is discussed
below and is assigned the following alias: “Function120”.

Snippet 2:

line 1: var Function120 = function() {

line 2: var validationToken =
document.getElementById(”ValidationToken”);

line 3: validationToken.value = “true”;

line 4: document.getElementById("Booth").submit();

line 5: }

In Snippet 2, line 1, function 120 is assigned the alias
“Function120”. When executed by a legitimate browser,
function 120 may cause the browser to set the Validation-
Token field to “true”, and then submit a request, which
includes the values stored in the Booth form object as
parameters, to a web server.

US RE50,024 E

7

When the web server receives the request, the web server
may determine whether the ValidationToken parameter is set
to “true”. If the ValidationToken parameter is set to “true”,
then the web server may determine that the request was
made by a legitimate browser and process the request. If the
ValidationToken parameter is set to any value other than
“true”, or is not present in the request, then the web server
may reject the request and/or perform one or more counter-
measures.

A less sophisticated bot configured to repeatedly submit a
large number of votes for a particular candidate may be
thwarted because the bot cannot execute function 120,
which causes a legitimate browser to send a valid vote to a
web server. Over time, a malicious user may determine that
the web server is performing a negative response to the
invalid requests sent from the bot. In response, the malicious
user may invest time in configuring the less sophisticated bot
user may spoof a field named ValidationToken that is set to
“true”.

In the example above, a single hidden input field is used
to determine whether a request is legitimate or not. How-
ever, in an embodiment, more complex countermeasures
and/or anti-tampering systems may be used. For example, a
polymorphic protocol may be implemented, which dictates
that of the name of the hidden field changes each time the
web page is rendered and/or sent to a browser. The poly-
morphic protocol may further dictate that the reference(s) to
the hidden field should be updated throughout the web page
so that the function 120 will continue to operate correctly.

2.2 More Sophisticated Bots

A more sophisticated bot may include one or more parsers
and/or execution environments to subvert one or more
countermeasures and/or anti-tampering systems, such as the
countermeasures and/or anti-tampering systems discussed
above. For example, a sophisticated bot may include a
JavaScript engine, which can be used to generate a run-time
environment that executes JavaScript instructions.

Data and functionality in a web page may be difficult to
protect from more sophisticated bots. For example, to simu-
late a user interacting with one or more objects in a web
page, the more sophisticated bot may programmatically call
a JavaScript function, which, on a legitimate browser, may
be automatically triggered by one or more user inputs. For
purposes of illustrating a clear example, assume that Snippet
3 is an excerpt of malicious function 190 created by a
malicious user and embedded in a bot to subvert the coun-
termeasures in Snippet 1 and Snippet 2. In FIG. 1, malicious
function 190 is injected into original web page 110; how-
ever, as discussed in this example, malicious function 190
may be included in, and/or part of, a more sophisticated bot.

Snippet 3:

line 1: var MaliciousFunction190 = function() {

line 2: var candidateInputField =
document.getElementById(”Candidate™);

line 3: candidateInputField.value = »Ted”;

line 4: Funection120();

line 5: }

In line 1 of Snippet 3, malicious function 190 is assigned
“MaliciousFunction190” as an alias. In line 2, the input field,
element, or object identified “Candidate” is retrieved. In line
3, the value is set to the name of a particular candidate,
“Ted”. In line 4,MaliciousFunction190 expressly calls Func-
tion120, which updates the ValidationToken object to

10

15

20

25

30

35

40

45

50

55

60

65

8

include a valid token and submits a request to the web server
to vote for the candidate named Ted.

Web servers may be more susceptible to sophisticated
bots. As seen in the previous example, a bot that includes
malicious function190, which expressly calls function 120,
allows the bot to generate a request with a valid token. Even
if the valid token changes from “true” to “17, as an example,
then the bot may still submit a valid request to the server
computer by expressly calling function 120. The web server
receiving the request generated by function 120 may incor-
rectly determine the request is from a legitimate browser and
process the request accordingly. For example, the web server
may update a database tracking the number of votes for each
candidate.

2.3 Injected Malware

Attackers may use one or more techniques, such as cross
site scripting, to inject malicious instructions into a web
page, which when executed bypass a countermeasure and/or
anti-tampering system. For example, if an attacker success-
fully injects the malicious function aliased as “Malicious-
Function190”, in Snippet 3, and one or more instructions
calling the malicious function, then a legitimate browser
infected with malicious function may send one or more
requests to a web server that appear to be valid votes from
an infected legitimate browser.

3.0 PROTECTING FUNCTIONS FROM BOTS
AND MALWARE

In an embodiment, a “supervisor” function may be used
to protect another function, referred to herein as a “pro-
tected” function, from bots and/or malicious instructions. A
supervisor function may be a function that determines, at
run-time, whether the function(s) that call a protected func-
tion are pre-authorized to call the protected function. If so,
the supervisor function may call the protected function,
and/or cause the protected function to be executed. Other-
wise, the supervisor function may terminate, return an
invalid response or error tlag, raise an exception and/or other
error, display an error, and/or perform any other negative
response that interrupts and/or prevents execution of the
protected function.

In an embodiment, in response to determining that a
protected function was called by an unauthorized function,
the supervisor function may send data to a server computer
indicating that the browser and/or client computer is a bot
and/or infected with malware. In response, the server com-
puter may perform one or more negative responses, such as
block or disregard one or more future requests sent from the
browser and/or client computer. Additionally or alterna-
tively, the server computer may include one or more addi-
tional countermeasures in subsequent responses. For
example, the server computer may send the client computer
new instructions in a subsequently requested web page,
which when executed in a legitimate browser require a user
to enter a keyword or password.

3.1 Direct Callers and Indirect Callers

For convenience of expression, in this description a
function that is called by another function is referred to as a
“callee” or “callee function”; and, a function that calls
another function is referred to as a “caller” or “caller
function”. A caller function “directly” calls a particular
callee function if it expressly calls the callee function. A
caller function “indirectly” calls a particular callee function
if the caller function does not expressly call the callee
function, but causes the callee function to be called. For
purposes of illustrating a clear example, assume Snippet 4 is

US RE50,024 E

9

an excerpt of first caller function 130, and Snippet 5 is an
excerpt of second caller function 140.

Snippet 4:
line 1: var FirstCallerFunction130 = function() {
line 2: Funection120();
line 3: }

In snippet 4, in line 2, first caller function 130, aliased as
“FirstCallerFunction130”, expressly calls function 120.
Thus, first caller function 130 directly calls, or is a “direct
caller” of, function 120.

Snippet 5:
line 1: var SecondCallerFunction140 = function() {
line 2: FirstCallerFunction130() ;
line 3: }

In snippet 5, in line 2, second caller function 140, aliased
as SecondCallerFunction140, expressly calls first caller
function 130, which in turn calls function 120. Thus, second
caller function 140 indirectly calls, or is an “indirect caller”
of function 120. In this example, the indirect caller function
directly calls the direct caller function; however, any caller
function that causes a particular callee function to be called
through one or more other caller functions may be an
indirect caller function.

3.2 Supervisor Functions

A supervisor function may be used to protect a function
defined in a web page and/or browser. FIG. 2 illustrates a
modified web page that defines a supervisor function, which
may intercept calls to the protected function and prevent
unauthorized callers from calling the protected function, in
an example embodiment. In the example of FIG. 2, a
modified web page 210 comprises a supervisor function 220
that refers to, contains, and/or encapsulates the function 120;
the first caller function 130, second caller function 140,
callback function 150, and malicious function 190 are pres-
ent in the arrangement of FIG. 1 except that, as further
described, the malicious function is unable to call or access
the function 120 due to the configuration of supervisor
function 220. For purposes of illustrating a clear example,
assume Snippet 6 is an excerpt of modified web page 210,
and defines supervisor function 220.

Snippet 6:
line 1: var ProtectedFunction120 = Function120;
line 2: var SupervisorFunction220 = function() {
line 3: var AuthorizedCallerID = 130;
line 4: var Caller = arguments.callee.caller;
line 5: var CallerID = identifierHash(Caller);
line 6: if(CallerID == AuthorizedCallerID) {
line 7: ProtectedFunction120();
line 8:
line 9: else {
line 10: throw “Not Allowed”;
line 11: }
line 12: }
line 13: Function120 = SupervisorFunction220;

In Snippet 6, line 1, the protected function, function 120,
is assigned a new alias: “ProtectedFunction120”. In line 2,
supervisor function 220 is defined, and is given the follow-
ing initial alias: “SupervisorFunction220”. In line 3, an
identifier for an authorized caller function is defined. The
identifier may be a hash or code based on one or more factors

10

15

20

25

30

35

40

45

50

55

60

65

10

discussed herein. The hash for each of the authorized caller
functions may be pre-computed and/or pre-determined by a
server computer and/or user as discussed herein. In lines 4-5,
an identifier for the direct caller of the supervisor function is
generated using a “client-side hashing” function (discussed
in detail herein and aliased is Snippet 6 as “identifierHash”).
In line 6, supervisor function 220 determines whether the
identifier for the current direct caller matches, and/or is
equivalent to, the authorized caller function identifier. If so,
control passes to line 7, which calls the protected function is
called using the new alias (“ProtectedFunction120”); other-
wise, control passes to line 10. In line 10, the supervisor
function raises or throws an exception error, which termi-
nates supervisor function 220 without calling function 120
and indicates an unauthorized caller function attempted to
call function 120. In line 13, supervisor function 220 is
assigned the original alias of the protected function.

For purposes of illustrating how supervisor function 220
may work as discussed above, assume first caller function
130 expressly calls the protected function (function 120)
using function 120's original alias (“Function120”), and the
identifier for first caller function 130 is determined by the
client-side hashing function to be the value 130. Supervisor
function 220 may intercept the call to function 120. Super-
visor function 220 may generate an identifier based on first
caller function 130, which for this example is 120. Super-
visor function 220 may compare the generated identifier
with the authorized identifier. In response to determining
that the generated identifier and the authorized identifier
match, supervisor function 220 may call the protected func-
tion using the new alias (“ProtectedFunction120”). “Call-
ing” the protected function may comprise, expressly calling
a protected function by a new alias and/or performing one or
more other operations that cause the protected function to be
executed.

For purposes of illustrating a clear of example of how
supervisor function 220 may perform as configured in
Snippet 6 if called by an unauthorized caller function,
assume that malicious function 190 (aliased as “Malicious-
Function190”), expressly calls the protected function (func-
tion 120) using the original alias, “Function120”. In
response, the browser may call supervisor function 220,
instead of function 120. Supervisor function 220, using the
client-side hashing function, may generate an identifier for
the direct caller function (malicious function 190), which in
this example may be the value 190. Supervisor function 220
may compare the generated identifier (190) with the autho-
rized identifier (130). In response to determining that the
generated identifier and the authorized identifier do not
match, supervisor function 220 may throw an exception
error, causing the process that attempted to call the protected
function to terminate.

In the example discussed above, a new alias (Protect-
edFunction120) is assigned to function 120, and the super-
visor function (supervisor function 220) causes function 120
to be executed by calling function120 using the new alias. In
an embodiment, one or more instructions in a protected
function may be embedded in the supervisor function, the
supervisor function need not call the protected function,
and/or the protected function need not be assigned a new
alias. For example, instead of calling function 120 in line 7
of Snippet 6 using the new alias, lines 2-4 in Snippet 2 may
be embedded in the supervisor function 220 at line 7 in
Snippet 6. The supervisor function may include brackets
and/or other features to encapsulate the embedded instruc-
tions within a different scope. Additionally or alternatively,
the protected function, and/or the one or more instructions

US RE50,024 E

11

from the protected function included in the supervisor
function, may be removed, and/or need not be sent to, a
client computer. Embedding one or more instructions from
a protected function into a supervisor function, not including
the one or more instructions outside of a supervisor function,
and/or not including the protected function in a set of
instructions sent to a client computer, may prevent attackers
and/or bots from directly calling the protected function,
and/or causing the one or more instructions previously in the
protected function to be executed, using the new protected
function alias to bypass the supervisor function.

3.2.1 Caller Function Identifiers

In Snippet 6, line 3, AuthorizedCallerID stores a function
identifier for an authorized caller function, which is based on
the authorized caller function (FirstCallerFunction130). A
function identifier may, but need not, uniquely identify an
authorized caller function. A function identifier may be
based on one or more features of a caller function, such as
the function name, length, body, declaration, definition,
parameters, outputs, type signature, type annotation, func-
tion signature, and/or any other attributes of the function.
Additionally or alternatively, a function identifier may be
derived from one or more features of the function, such as
the MD5 sum and/or SHA-1 hash of one or more features of
a caller function. Additionally or alternatively, a function
identifier may be based on one or more proprietary and/or
standard operations based one or more features of a caller
function. Additionally or alternatively, a function identifier
may be a value that is associated with function in a lookup
table and/or any other data structure. The one or more
operations used to determine each authorized caller func-
tion’s function identifier may be referred to herein as a
server-side hashing function.

The “identifierHash™ function (referred to herein as the
client-side hashing function), in line 5 of Snippet 6, may
generate a function identifier for the actual caller function
using the same and/or equivalent one or more operations
used to generate AuthorizedCallerID. Accordingly, if a func-
tion identifier, which is generated based on one or more
features of the actual caller function, matches an authorized
caller function identifier, then the supervisor function will
proceed to call the protected function; otherwise, the super-
visor function may perform one or more negative responses,
such as terminating the supervisor function without calling
the protected function, terminating one or more processes or
threads, returning an error, raising or throwing an exception,
and/or any other action that alerting a user, browser, client
computer, web server, or web site administrator of an error
and/or prevents the protected function from being executed.

3.2.2 Validating a Call Stack

A “call stack” or “call chain” may be data and/or a data
structure that identifies one or more functions that were
called leading up to a particular callee function being called
and/or executed. In the example illustrated in Snippet 6, only
the direct caller function was validated. However, in an
embodiment, a supervisor function may comprise a set of
authorized caller identifiers, and the supervisor function may
iteratively or recursively traverse through the call stack to
verify that each caller function is authorized to directly
and/or indirectly call the protected function. Verifying that
each function in the call stack is an authorized direct or
indirect caller function may be referred to herein as validat-
ing a call stack. In response to determining that a call stack
is valid, a supervisor function may call the protected func-
tion. Otherwise, the supervisor function may perform a
negative response.

10

15

20

25

30

35

40

45

50

55

60

65

12

The set of authorized caller identifiers may be organized
as an ordered list. In response to determining that one or
more of the function identifiers derived from the call stack
deviate in order, and/or in any other way, from the ordered
list, then the supervisor function may perform a negative
response; otherwise, the supervisor function may call the
protected function. The set of authorized caller identifiers
may be organized as a call graph, or tree. In response to
determining that one or more of the function identifiers
derived from the call stack does not match a possible path in
the call graph, the supervisor function may perform a
negative response; otherwise, the supervisor function may
call the protected function.

Each caller function in a call chain may, but need not, be
validated until the caller function is identified as the browser.
The caller function identifier for a browser, and/or run-time
environment, may be a base and/or constant value, such as
zero, nil, null, and/or some other value. For purposes of
illustrating a clear example, assume that callback function
150 in FIG. 2 is triggered by a legitimate browser in
response to user input, and callback function 150 expressly
calls the protected function (function 120). When callback
function 150 attempts to call function 120, supervisor func-
tion 220 may intercept the call and trace the call stack. The
first function in the call stack (the direct caller) is callback
function 150. Supervisor function 220 may determine that
callback function 150 is authorized to call the protected
function. In response, supervisor function 220 may deter-
mine the second function in the call stack (an indirect caller,
which in this example is the browser or run-time environ-
ment), and receive a base value, such as null, which indi-
cates that no other functions are in the call stack, or that the
browser is the initial caller function. If none of the functions
in the call stack were determined to be unauthorized, then
supervisor function 220 may call the protected function
(function 120); otherwise, supervisor function 220 may
perform a negative response.

3.2.3 Blacklisting Caller Functions

A supervisor function may include a blacklist of caller
function identifiers. If the supervisor function determines
that a direct or indirect caller function is associated with a
function identifier that is on the blacklist, then the supervisor
function may perform one or more negative responses. In an
embodiment, if the supervisor function determines that no
direct and/or indirect caller functions are on the blacklist,
then the supervisor function may call the protected function.

4.0 EXAMPLE NETWORK TOPOLOGY FOR
DYNAMICALLY PROTECTING FUNCTIONS
EXECUTED ON A CLIENT COMPUTER

FIG. 3 illustrates a computer system comprising a
browser, a web infrastructure, and an intermediary com-
puter, which may be configured to protect functions and/or
data structures defined, referenced, or called from instruc-
tions sent from the web infrastructure to the client computer,
in an example embodiment. In FIG. 3, system 300 comprises
web infrastructure 305, client computer 399, intermediary
computer 330, storage 340, and configuration 335 distrib-
uted across one or more interconnected networks.

While each of the components listed above is illustrated
as if running on a separate, remote computer from each
other, one or more of the components listed above may be
part of and/or executed on the same computer. For example,
intermediary computer 330, configuration 335, storage 340,
and/or web infrastructure 305 may be executed on the same
computer, local area, and/or wide area network. Additionally

US RE50,024 E

13

or alternatively, intermediary computer 330 may be a proxy
server and/or layer for web infrastructure 305. Additionally
or alternatively, intermediary computer 330 may be in line
between a router and web infrastructure 305, such that
intermediary computer 330 may intercept all network data
sent to, and/or sent from, web infrastructure 305 over one or
more protocols. Additionally or alternatively, intermediary
computer 330, and/or one or more modules and/or logic
comprising intermediary computer 330 discussed herein,
may be a software layer between, and/or executed on, web
infrastructure 305 and/or a component of web infrastructure
305. Additionally or alternatively, intermediary computer
330, and/or one or more modules and/or logic comprising
intermediary computer 330 discussed herein, may be part of
a server-side application that responds to requests over one
or more standard and/or proprietary protocols, such as
Hypertext Transfer Protocol (“HTTP”), SPDY, and/or any
other protocol.

A “computer” may be one or more physical computers,
virtual computers, and/or computing devices. As an
example, a computer may be one or more server computers,
cloud-based computers, cloud-based cluster of computers,
virtual machine instances or virtual machine computing
elements such as virtual processors, storage and memory,
data centers, storage devices, desktop computers, laptop
computers, mobile devices, and/or any other special-purpose
computing devices. Any reference to “a computer” herein
may mean one or more computers, unless expressly stated
otherwise.

4.1 Web Infrastructure

Web infrastructure 305 may comprise one or more server
computers that receive requests for data from users through
one or more client computers, such as client computer 399
and/or intermediary computer 330. Web infrastructure 305
may respond by sending data to the browser that sent the
request. The data sent from web infrastructure 305 may
include one or more types of instructions, such as HTML,
JavaScript, CSS, and/or any other standard or propriety
instructions. The one or more computers in web infrastruc-
ture 305 may, but need not, be owned and/or managed by
one or more independent entities and may span across one
or more computer networks, such as the Internet.

A server computer may be a computer that receives
requests for data and responds with data. For example, a web
server computer may be an HTTP-based computer that
receives HTTP requests and responds with data comprising
HTML and/or JavaScript instructions. Additionally or alter-
natively, a server computer may respond with data that
references data on other server computers in, and/or outside
of, web infrastructure 305.

4.2 Intermediary Computer

Intermediary computer 330 may be an intermediary that
may intercept instructions sent from web infrastructure 305,
parse and/or execute one or more of the intercepted instruc-
tions, modify the intercepted instructions, generate and/or
add new instructions, and send the modified and/or new
instructions to a client computer. For example, intermediary
computer 330 may intercept original web page 110, generate
modified web page 210, and send modified web page 210 to
browser 395. Intermediary computer 330 may intercept a
request from browser 395, generate a new and/or modified
request, and send the new and/or modified request to web
infrastructure 305.

Intermediary computer 330 may be an HTTP or SPDY
intermediary that intercepts, parses, executes, and/or pro-
cesses HTML, JavaScript, and CSS instructions. Addition-
ally or alternatively, intermediary computer 330 may inter-

10

15

20

25

30

35

40

45

50

55

60

65

14

cept requests for data and/or instructions from a client
application, generate a new HTTP request, and send the
newly generated HTTP request to one or more HT'TP and/or
SPDY-based web servers. Additionally or alternatively,
intermediary computer 330 may be an intermediary for any
other standard and/or proprietary protocol. Furthermore,
each of the components discussed herein, which intermedi-
ary computer 330 is comprised of, may be configured to
perform any of the processes and/or methods discussed
herein for any standard and/or proprietary protocol.

Intermediary computer 330 may be a server computer that
one or more domain name servers or other elements of the
domain name system (“DNS”) identify in DNS records as a
destination network address associated with one or more
internet domain names. Accordingly, intermediary computer
330 and/or intermediary computer 330 may receive requests
sent to the one or more domains from a browser or bot.
Based on using DNS to resolve the domain name in a request
to a network address, intermediary computer 330 may
forward the request, or a modified request, to a server
computer in web infrastructure 305, such as original web
server computer 402. Intermediary computer 330 may be a
router and/or a computer that is part of an internet service
provider.

In FIG. 3, intermediary computer 330 is programmed to
send instructions to, and receive requests from, a particular
type of client application: browser 395. However, in an
embodiment, intermediary computer 330 may be pro-
grammed to send instructions to, receive requests from,
and/or open sockets with standard and/or proprietary client
application on a client computer.

FIG. 4 illustrates a detailed view of an intermediary
computer in an example embodiment. In FIG. 4, interme-
diary computer 330 comprises protocol client logic 432,
processing logic 434, injection logic 436, and protocol
server logic 438. In an embodiment, each of the logical
and/or functional units of intermediary computer 330 may
be implemented using any of the techniques further
described herein in connection with FIG. 7; for example, the
intermediary computer 330 may comprise a general-purpose
computer configured with one or more stored programs
which when executed cause performing the functions
described herein for the intermediary computer, or a special-
purpose computer with digital logic that is configured to
execute the functions, or digital logic that is used in other
computing devices. While the figures include lines that
indicate various devices and/or modules being communica-
tively coupled, each of the computers, devices, modules,
storage, and configurations may be communicatively
coupled with each other.

4.2.1 Protocol Client Logic

Protocol client logic 432 may intercept data over any
standard or proprietary protocol. For example, protocol
client logic 432 may intercept data over HTTP.

4.2.2 Processing Logic

Processing logic 434 may process instructions intercepted
by protocol client logic 432, which causes processing logic
434 to generate one or more in-memory data structures that
correspond to one or more objects. Processing one or more
instructions may comprise parsing and/or executing the one
or more instructions. After processing the instructions, pro-
cessing logic 434 may notify injection logic 436 to begin
rendering instructions based on the one or more data struc-
tures.

Processing logic 434 may make requests for additional
data. For example, if instructions received from protocol
client logic 432 reference one or more instruction files, then

US RE50,024 E

15

processing logic 434 may request the one or more instruc-
tion files through protocol client logic 432.

4.2.3 Injection Logic

Injection logic 436 may determine one or more functions
that should be protected and which function(s) are autho-
rized to call which of the one or more protected functions
based on configuration 335, data structures in memory,
and/or any other data, inputs, or factors. A supervisor
function may protect a function defined by instructions
received from web infrastructure 305 and/or a base function.
A base function may be a function that is assumed or
expected to be defined by instructions from a different
source and/or the client-side run-time environment execut-
ing the instructions. For example, “getElementByld” is an
alias for a base function that is commonly defined by modern
consumer browsers.

Injection logic 436 may determine which base functions
are available on a client computer based on one or more
factors. For example, a reference to a function that is not
defined by the instructions received from web infrastructure
305 may be determined to be a base function. Additionally
or alternatively, injection logic 436 may determine which
base function(s) available based on the type and/or version
of the recipient browser. The type and/or version of the
recipient browser may be based on data received by browser
395 and/or web infrastructure 305.

Injection logic 436 may render a new set of instructions,
which define one or more supervisor functions and/or one or
more protected functions. Injection logic 436 may send the
rendered instructions to one or more client computers
through protocol server logic 438.

Injection logic 436 may further protect functions using
one or more polymorphic protocols based on configuration
335, data structures in memory, and/or any other data,
inputs, and/or factors. For example, injection logic 436 may
assign a different alias to a protected function each time
injection logic 436 renders a new set of instructions. Injec-
tion logic 436 may update and/or generate one or more
supervisor functions to reference the protected function by
the different alias.

4.2.4 Protocol Server Logic

Protocol server logic 438 may receive the instructions
generated by injection logic 436 and send the generated
instructions to client computer 399. Additionally or alterna-
tively, protocol server logic 438 may intercept requests from
client computer 399. Protocol server logic 438 may forward
the request to web infrastructure 305 through protocol client
logic 432 as the request would have been generated and sent
by browser 395 had browser 395 received the original
instructions without the supervisor functions from web
infrastructure 305.

4.2.5 Configurations

Configuration 342 may be a database, a configuration file,
and/or any other system that stores configurations: settings,
preferences, and/or protocols. Configuration 342 may store
more than one configuration for one or more web servers
and/or web sites hosted in web infrastructure 305. For
example, configuration 335 may include one or more super-
visor protocols that indicate particular functions, in one or
more particular web pages, for one or more particular web
sites, hosted on web infrastructure 305 that should be
protected. The particular functions may be defined by
instructions received from web infrastructure 305 and/or
base functions. Additionally or alternatively, configuration
335 may indicate that a particular web page need not be
modified and/or one or more supervisor functions need not
be added. Additionally or alternatively, configuration 335

10

15

20

25

30

35

40

45

50

55

60

65

16

may include data that indicates whether particular web pages
should be processed by processing logic 434 and/or modi-
fied by injection logic 436.

Configuration 335 may be modified by a user and/or
administrator through one or more computers, such as
intermediary computer 330, a computer in web infrastruc-
ture 305, and/or another computer not illustrated in system
300.

4.2.6 Storage

Storage 340 may be a database, a configuration file,
and/or any other system and/or data structure that stores
data. In FIG. 3, storage 340 is illustrated as if a separate
computer from intermediary computer 330. Additionally or
alternatively, storage 340 may be a data structure stored in
memory on the one or more computers comprising, at least
in part, intermediary computer 330. Additionally or alterna-
tively, storage 340 may, at least in part, be a data structure
stored in shared memory between one or more intermediary
computers. Additionally or alternatively, storage 340 may
be, at least in part, non-volatile storage.

4.3 Browser

Browser 395 may be a browser as described herein and
executed on a client computer, such as client computer 399.
Additionally or alternatively, browser 395 may be a bot
comprising one or more of the components traditionally
found in a browser.

5.0 PROCESS OVERVIEW

In an embodiment, a data processing method may be
configured to intercept instructions from a server computer
that are directed toward a browser, generate one or more
supervisor instructions, which define one or more supervisor
functions, render a second set of instructions comprising the
supervisor instructions. Various embodiments may use stan-
dard web protocols, such as HTTP, and/or standard web-
based instructions, such as HTML and/or JavaScript. Addi-
tionally or alternatively, other standard and/or proprietary
protocols may be used. Additionally or alternatively, other
standard and/or proprietary instructions may be used.

5.1 Intercepting Instructions from a Server Computer

FIG. 5 illustrates a process for intercepting instructions
from a server computer, determining whether one or more
functions should be protected, generating one or more
supervisor instructions configured to intercept and validate
calls to one or more the protected functions, render a new set
of instructions that define one or more supervisor
function(s), and send the new set of instructions to a client
computer, in an example embodiment. In step 510, an
intermediary computer intercepts, from a server computer, a
first set of instructions that define one or more original
operations. For purposes of illustrating a clear example,
assume that browser 395 on client computer 399 requests
original web page 110 from a server computer in web
infrastructure 305. The request may be sent through inter-
mediary computer 330. In response, protocol client logic
432 may receive original web page 110 from a web server
computer in web infrastructure 305.

5.2 Injecting Supervisor Instructions into a Web Page

In step 520, the intermediary computer injects one or
more supervisor instructions into the first set of instructions
to produce a modified set of instructions based on the set of
configurations data. FIG. 6 illustrates a process for deter-
mining which function(s) in a web page should be protected,
generating supervisor instructions that define one or more

US RE50,024 E

17

supervisor functions, and adding the supervisor instructions
to the original set of instructions, in an example embodi-
ment.

5.2.1 Determining which Functions should be Protected

In step 610, the intermediary computer determines
whether a function that should be protected is defined in the
first set of instructions. For example, processing logic 434
may process the original web page 110 and determine one or
more objects and/or functions that are defined in the original
web page 110. Injection logic 436 may retrieve data from
configuration 335 indicating which function(s), if any,
should be protected in original web page 110. For purposes
of illustrating a clear example, assume that data retrieved
from configuration 335 indicates that function 120 defined in
original web page 110 should be protected.

There are many ways or protocols by which configuration
335 may be updated to indicate which function(s) should be
protected. For example, after original web page 110 is
written, a user, such as a developer or web site administrator,
may store data in configuration 335 indicating that one or
more functions defined and/or referenced in original web
page 110, or other base functions, should be protected. Also
for example, a user may associate one or more functions
with a security protocol, such as a countermeasure or
anti-tamper function.

Injection logic 436 may automatically determine if a
particular function is related to security and/or should be
protected. For example, intermediary computer 330 may
inject one or more functions that implement one or more
countermeasures. Accordingly, injection logic 436 may
determine that each of the one or more injected functions
should be protected. Additionally or alternatively, if a func-
tion in a web page is configured to enforce, subvert, and/or
disable one or more countermeasures, then injection logic
436 may determine that the function protected.

Injection logic 436 may select functions that reference
one or more objects to be protected. For example, a user,
computer, and/or logic may identify one or more objects
and/or container objects that should be protected. Processing
logic 434 may process original web page 110 and generate
one or more in-memory data structures indicating which
object(s) are referenced by which function(s). Injection logic
436 may determine that each function that references a
protected object should be protected by a supervisor func-
tion.

5.2.2 Determining One or More Authorized Call Stacks

Returning to FIG. 6, in step 620, the intermediary com-
puter determines one or more call stacks, and/or one or more
call graphs, that could be valid for the protected function.
For purposes of illustrating a clear example, assume that
configuration 335 indicates that first caller function 130,
second caller function 140, callback function 150 are autho-
rized caller functions. Injection logic 436 may generate a
call graph indicating that first caller function 130 and
callback function 150 are both authorized to call function
120, and second caller function 140 is authorized to call first
caller function 130. Additionally or alternatively, the call
graph may indicate that second caller function 140 is an
authorized indirect caller function for function 120. Addi-
tionally or alternatively, the generated call graph may indi-
cating that second caller function 140 is only authorized to
call function 120 indirectly through first caller function 130.

A user, such as a web site administrator and/or developer,
may store data in configuration 335 indicating which caller
functions are authorized to call a protected function. The
user may store data in configuration 335 indicating which
caller functions are authorized to be direct caller functions

10

15

20

25

30

35

40

45

50

55

60

65

18

and which caller functions are authorized to be indirect
caller functions. The user may store data in configuration
335 defining one or more call stacks and/or call graphs for
one or more functions that should be protected. Injection
logic 436 may generate one or more authorized call func-
tions, call stacks, and/or call graphs.

Processing logic 434 may generate one or more inmemory
data structures that indicate which function(s), if any, ref-
erence a protected function. For each protected function,
injection logic 436 may determine that each caller function
that references the protected function directly and/or indi-
rectly is an authorized caller function accordingly. Injection
logic 436 may generate a call graph accordingly. Addition-
ally or alternatively, processing logic 434 and/or injection
logic 436 may use one or more compiler techniques to
determine one or more authorized call functions, call stacks,
and/or call graphs.

Intermediary computer 330 may store and/or retrieve data
defining one or more authorized set(s) of caller function(s),
call stack(s) and/or call graph(s) in volatile and/or non-
volatile memory. For example, injection logic 436 may store
the call graph for function 120, which includes identifiers for
first caller function 130, first function caller 140, and call-
back function 150, in storage 340. In response to receiving
the original web page 110 and/or another web page with
function 120, injection logic 436 may retrieve the call graph
in storage 340. Injection logic 436 may, but need not,
re-determine and/or update the authorized set(s) of caller
function(s), call stack(s) and/or call graph(s) retrieved from
storage 340.

5.2.3 Generating Authorized Caller Function Identifiers

In step 630, the intermediary computer generates an
identifier for each function in a valid call stack. For example,
injection logic 436 generates an authorized caller function
identifier for each authorized caller function in the call graph
generated and/or retrieved in step 620, which in this example
is first caller function 130, second caller function 140, and
callback function 150. For purposes of illustrating a clear
example, assume the authorized caller function identifiers
are “130”, “140”, and “150”, respectively.

As discussed in detail herein, a supervisor function com-
pares one or more authorized caller function identifiers to an
identifier generated on-the-fly of an actual caller function to
determine whether the actual caller function is authorized to
call the protected function. (For convenience of expression,
the one or more methods used by injection logic 436 to
generate the authorized caller function identifiers is referred
to herein as a “server-side hashing function”; the one or
more methods used by a supervisor function to determine
the actual caller function identifier may be referred to herein
as the “client-side hashing function”.) Accordingly, the
client-side hashing function may be configured to produce
the same identifier as the server-side hashing function for
authorized caller functions.

The client-side hashing function included in, and/or ref-
erenced by, a supervisor function may perform the same or
equivalent operations or steps as the server-side hashing
function to compute the authorized caller function
identifier(s). However, the server-side hashing function may
perform different operations or steps than the client-side
hashing function. For example, the server-side hashing
function may generate a lookup table that maps one or more
authorized caller function properties with an authorized
caller function identifier. The client-side hashing function
may use the lookup table to determine an actual caller
function identifier. If the lookup table does not include an
entry that maps to a valid actual caller function identifier,

US RE50,024 E

19

then the client-side hashing function may return an error
and/or one or more caller function identifiers that do not
match an authorized caller function identifier.

For purposes of illustrating a clear example, the server-
side hashing function and the client-side hashing function
are called functions herein. However, the server-side hash-
ing function and/or client-side hashing function may be one
or more instructions and/or data structures used to generate
one or more caller function identifiers. Additionally or
alternatively, injection logic 436 may use a different server-
side hashing for to generate the authorized function identi-
fiers for each supervisor function; accordingly, each super-
visor function may use a different, corresponding client-side
hashing function.

The authorized caller function identifiers may be poly-
morphic. If an attacker determines what the server-side
hashing function and/or client-side hashing function is con-
figured to do, then the attacker may change modify a
malicious function to cause the client-side hashing function
to return an authorized function identifier for the malicious
function. Accordingly, the server-side hashing function and
the client-side hashing function may synchronously change
the operations used to determine caller function identifiers.
For example, injection logic 436 may inject one or more
instructions in modified web page 210, which when
executed perform the one or more operations used by the
server-side hashing function. When a new server-side hash-
ing function is used, then injection logic 436 may inject new
instructions in modified web page 210, which when
executed are configured to produce the same identifier(s) as
the new server-side hashing function for the authorized
caller function(s).

5.2.4 Generating and Injecting Supervisor Instructions
into a Web Page

In step 640, the intermediary computer 330 generates the
supervisor instructions that define a polymorphic supervisor
function that includes each hash for each function in the
valid call stack, and when called traverses the call stack to
ensure each function identifier in the call stack is valid. For
example, injection logic 436 may generate the JavaScript
instructions in Snippet 6. Injection logic 436 may also
generate one or more instructions that define the client-side
hashing function aliased in Snippet 6 as “identifierHash”.

In step 650, the intermediary computer 330 adds the one
or more supervisor instructions to the first set of instructions.
For example, injection logic 436 may inject the JavaScript
instructions in Snippet 6 and the client-side hashing function
generated in step 640 into original web page 110, to produce
modified web page 210.

5.3 Sending the Modified Web Page to the Client Com-
puter

Returning now to FIG. 5, in step 530, the intermediary
computer sends the modified set of instructions to the client
computer. For example, injection logic 436 may send modi-
fied web page 210 to browser 395 through protocol server
logic 438. Browser 395 may process and/or execute modi-
fied web page 210 as discussed herein. For purposes of
illustrating a clear example, assume that Snippet 2, Snippet

7, Snippet 8, and Snippet 9 are excerpts of modified web
page 210.

Snippet 7:
line 1: <form id="Booth” action="vote.com/submitVote.php"

method="post">

15

30

35

40

45

50

55

20
-continued
line 2: <hidden id="ValidationToken”
name="ValidationToken” value="false”>
line 3: <p>name: <input id=""Candidate”® name="
Candidate™/></p>
line 4: <input id = ”Vote” name= ""Vote” type="button"
value="Vote" onclick="CallbackFunction150();">
line 5: </form>

Snippet 7 is similar Snippet 1; however, in line 4 of
Snippet 7, a callback function, callback function 150, aliased
as “CallbackFunction150”, is registered with the browser,
which may be called by the browser when a user selects the
Vote button.

Snippet 8:

line 1: var CallbackFunction150 = function() {

line 2: var candidateName =
document.getElementById(”Candidate”).value;

line 3: if(candidateName != ") {

line 4: Function120();

line 5:

line 6: else {

line 7: alertUserOfInvalidCandidateSelection();

line 8: }

line 9: }

Snippet 8 defines callback function 150. Callback func-
tion150 may be configured to verify that the Candidate field
defined in Snippet 7 is not empty. If the Candidate field is not
empty, then control may proceed to line 4, which expressly
calls the protected function, function 120; otherwise, control
may proceed to line 7 that expressly calls a function that
indicates a candidate’s name has not be entered into the
Candidate field.

Snippet 9:

line 1: var ProtectedFunction120 = Function120;

line 2: var SupervisorFunction220 = function() {

line 3: var AuthorizedCallerIDs = [130, 140, 150];

line 4: var Caller = arguments.callee.caller;

line 5: while(Caller) {

line 6: var CallerID = identifierHash(Caller);

line 7: if(AuthorizedCallerIDs.doesNotHave(CallerID))
{

line 8: return;

line 9:

line 10: else if(Caller == Caller.caller) {

line 11: break;

line 12:

line 13: Caller = Caller.caller;

line 14: }

line 15: ProtectedFunction120();

line 16:

line 17: Funection120 = SupervisorFunction220;

Snippet 9 comprises supervisor instructions that define
supervisor function 220. Snippet 9 is similar to Snippet 3;
however, in Snippet 9, supervisor function 220 defines a
supervisor function that iteratively checks each function in
the call stack to validate the call stack. For purposes of
illustrating a clear example, assume the “doestNotHave”
function, referenced in line 7, determines whether the value
in the parameter (CallerID) is included in the set of autho-
rized caller function identifiers. In line 10, if a function in the
call stack is recursive, then the supervisor function will
detect that the function is recursive and may avoid an
endless loop by breaking out of the “while” loop (in line 11)
and calling the protected function (in line 15). If the call

US RE50,024 E

21

stack is valid, the supervisor function 220 may expressly call
the protected function, function 120, using the protected
alias: “ProtectedFunction120”.

For purposes of illustrating a clear example, assume
browser 395 is a legitimate browser, a user enters “Brad”
into the candidate field defined in Snippet 7, and the user
selects the Vote button. In response, browser 395 executes
callback function 150. Callback function 150 determines
that the Candidate field is not blank, and calls the protected
function with the protected function’s original alias: Func-
tion120. Supervisor function 220, which is aliased as “Func-
tion120”, intercepts the function call and validates the stack:
Supervisor function 220 determines that a function identified
as “150” attempted to expressly call the protected function,
which is authorized; then supervisor function 220 deter-
mines that the browser, which is identified using a base value
(“null”), called the callback function, which is authorized;
and then supervisor function 220 may determine that there
are no further functions identified in the call stack. Since
each function in the call stack is authorized, supervisor
function 220 may determine that the call stack is valid, and
in response, call the protected function aliased as “Protect-
edFunction120”. Accordingly, a legitimate user may submit
valid data and/or requests to the web server using the Booth
form with a legitimate browser.

In the example above, the browser callback called a
function that was defined by the web page (call back
function 150). However, browser may call the protected
function directly, using the protected function’s original
alias, which in this example is “Function120”. The super-
visor function may intercept the browser’s call to the pro-
tected function, validate the call stack, and if valid, proceed
to call the protected function.

For purposes of illustrating another clear example,
assume browser 395 is a bot and/or infected browser that
defines malicious function 190, as discussed above in Snip-
pet 3, and calls malicious function 190 using the alias
“MaliciousFunction190”. In response, malicious function
190 may populate the Candidate field with “Ted” and
proceed to call the protected function with the protected
function’s original alias: Function120. Supervisor function
220, which is aliased as “Function120”, intercepts the func-
tion call and determines that the stack is invalid: Supervisor
function 220 determines that a function identified as “190”
attempted to expressly call the protected function, which is
not authorized. In response, Supervisor function 220 pro-
ceeds to line 8 in Snippet 9 and performs a negative
response: terminating quietly. Terminating quietly may be
harder for an attacker to determine what functions prevented
the protected function from being called. Accordingly, the
supervisor function may prevent malicious code from being
executed on a client computer, and/or malicious requests or
data from being sent to a server computer.

6.0 IMPLEMENTATION MECHANISMS
Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to

10

15

20

25

30

35

40

45

50

55

60

65

22

perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 7 is a block diagram that illustrates a
computer system 700 upon which an embodiment of the
invention may be implemented. Computer system 700
includes a bus 702 or other communication mechanism for
communicating information, and a hardware processor 704
coupled with bus 702 for processing information. Hardware
processor 704 may be, for example, a general purpose
Mmicroprocessor.

Computer system 700 also includes a main memory 706,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 702 for storing information
and instructions to be executed by processor 704. Main
memory 706 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 704. Such instruc-
tions, when stored in non-transitory storage media acces-
sible to processor 704, render computer system 700 into a
special-purpose machine that is customized to perform the
operations specified in the instructions.

Computer system 700 further includes a read only
memory (ROM) 708 or other static storage device coupled
to bus 702 for storing static information and instructions for
processor 704. A storage device 710, such as a magnetic disk
or optical disk, is provided and coupled to bus 702 for
storing information and instructions.

Computer system 700 may be coupled via bus 702 to a
display 712, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 714, includ-
ing alphanumeric and other keys, is coupled to bus 702 for
communicating information and command selections to
processor 704. Another type of user input device is cursor
control 716, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 704 and for controlling cursor
movement on display 712. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., X) and
a second axis (e.g., y), that allows the device to specify
positions in a plane.

Computer system 700 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 700 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 700 in response to
processor 704 executing one or more sequences of one or
more instructions contained in main memory 706. Such
instructions may be read into main memory 706 from
another storage medium, such as storage device 710. Execu-
tion of the sequences of instructions contained in main
memory 706 causes processor 704 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or

US RE50,024 E

23

volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 710.
Volatile media includes dynamic memory, such as main
memory 706. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Storage media is distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates in transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 702. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be involved in carrying one
or more sequences of one or more instructions to processor
704 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 700 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in
the infra-red signal and appropriate circuitry can place the
data on bus 702. Bus 702 carries the data to main memory
706, from which processor 704 retrieves and executes the
instructions. The instructions received by main memory 706
may optionally be stored on storage device 710 either before
or after execution by processor 704.

Computer system 700 also includes a communication
interface 718 coupled to bus 702. Communication interface
718 provides a two-way data communication coupling to a
network link 720 that is connected to a local network 722.
For example, communication interface 718 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
718 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 718 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.

Network link 720 typically provides data communication
through one or more networks to other data devices. For
example, network link 720 may provide a connection
through local network 722 to a host computer 724 or to data
equipment operated by an Internet Service Provider (ISP)
726. ISP 726 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 728. Local
network 722 and Internet 728 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 720 and through communication interface 718,
which carry the digital data to and from computer system
700, are example forms of transmission media.

Computer system 700 can send messages and receive
data, including program code, through the network(s), net-
work link 720 and communication interface 718. In the
Internet example, a server 730 might transmit a requested

10

15

20

25

30

35

40

45

50

55

60

24

code for an application program through Internet 728, ISP
726, local network 722 and communication interface 718.

The received code may be executed by processor 704 as
it is received, and/or stored in storage device 710, or other
non-volatile storage for later execution.

7.0 OTHER ASPECTS OF DISCLOSURE

Using the networked computer arrangements, intermedi-
ary computer, and/or processing methods described herein,
security in client-server data processing may be significantly
increased. The systems and methods discussed herein effec-
tively reduce attacks from bot and other malicious code.
Consequently, one or more various attacks, such as a denial
of service (“DOS”) attack, credential stuffing, fake account
creation, ratings or results manipulation, man-in-thebrowser
attacks, reserving rival goods or services, scanning for
vulnerabilities, and/or exploitation of vulnerabilities, are
frustrated because supervisor instructions prevent bots and
other malicious instructions from using one or more func-
tions defined in a web page and/or a browser.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

What is claimed is:

1. A specialized computing system comprising one or
more processors, coupled to a remote client computer, and
configured to send, to the remote client computer, one or
more instructions, which when executed by the remote client
computer, cause a run-time environment on the remote client
computer to:

intercept, within the run-time environment, a first call to

execute a particular function defined in the run-time
environment by a first caller function in the run-time
environment;

determine a first caller identifier, which corresponds to the

first caller function identified in a run-time stack main-
tained by the run-time environment;

wherein the one or more instructions include a first

[dynamic] identifier and the one or more instructions
are further configured to cause the run-time environ-
ment to, as part of determining the first caller identifier:
determine a first caller name that corresponds to the

first caller function from the run-time stack; and
perform a client-side hashing function on the first caller

name to produce the first caller identifier;

determine whether the first caller function is authorized to

call the particular function based on whether the first
caller identifier produced as a result of performing the
client-side hashing function on the first caller name
matches the first [dynamic] identifier included in the
one or more instructions sent to the remote client
computer.

2. The specialized computing system of claim 1, wherein
the one or more instructions, which when executed by the
remote client computer, are further configured to cause the
run-time environment to terminate the first call without

US RE50,024 E

25

performing the particular function in response to determin-
ing that the first caller function is not authorized to call the
particular function.

3. The specialized computing system of claim 1, wherein
the one or more instructions, which when executed by the
remote client computer, are further configured to cause the
run-time environment to execute the particular function
based, at least in part, on determining that the first caller
function is authorized to call the particular function.

[4. The specialized computing system of claim 1 wherein
the one or more processors are further configured to:

determine the first caller name for the first caller function;

perform the hashing function on the first caller name to
produce the first dynamic identifier;

insert the first dynamic identifier in the one or more

instructions.]

5. The specialized computing system of claim 1, wherein
in response to determining that the first caller function is
authorized to call the particular function, the one or more
instructions, which when executed by the remote client
computer, further causes the run-time environment to:

determine a second caller identifier, which corresponds to

a second caller function identified in the run-time stack
maintained by the run-time environment;

determine that the second caller function is not authorized

to be in a stack of caller functions that call the particular
function based on the second caller identifier, and in
response, terminating the first call without performing
the particular function.

6. The specialized computing system of claim 1, wherein
the particular function is defined by the one or more instruc-
tions.

7. The specialized computing system of claim 1, wherein
the [particular function] first caller function is a function
defined by [a] the run-time environment running on the
remote client computer.

[8. The specialized computing system of claim 1,
wherein:

the first caller function is a function defined by the

run-time environment;

determining whether the first caller function is authorized

to call the particular function comprises determining
whether the first caller identifier is assigned a generic
identifier by the run-time environment.]

9. The specialized computing system of claim 1, wherein
the one or more instructions are one or more JavaScript
instructions, and the run-time environment is a JavaScript
run-time environment that is part of an HT'TP-based browser
configured to executing one or more HTML and JavaScript
instructions.

10. A data processing system comprising:

a memory;

one or more processors coupled to the memory;

aprotocol logic stored in the memory, executed by the one

or more processors, and configured to cause the one or
more processors to receive, from a web server com-
puter, a first set of instructions that define one or more
original operations;

an injection logic stored in the memory, executed by the

one or more processors, and configured to cause the one
or more processors to add one or more supervisor
instructions to the first set of instructions to produce a
modified set of instructions prior to providing the
modified set of instructions to a client computer;

a server logic stored in the memory, executed by the one

or more processors, and causing the one or more

20

25

30

35

40

45

50

55

60

65

26

processors to send the modified set of instructions to [a
remote] #he client computer;

wherein the one or more supervisor instructions are
configured to cause a run-time environment executed
on the client computer to intercept a first call to execute
a particular function from a first caller function[,] and
determine whether the first caller function is authorized
to call the particular function;

wherein the injection logic is further configured to cause
the one or more processors to generate a first [dynamic]
identifier based on a first original name assigned to a
first original function and add the first [dynamic] iden-
tifier to the modified set of instructions;

wherein the one or more supervisor instructions are
further configured to cause the runtime environment to
generate a first caller identifier based on a first caller
name associated with the first caller function, and
determine whether the first caller function is authorized
to call the particular function based on whether the first
caller identifier matches the first [dynamic] identifier.

11. The data processing system of claim 10, wherein,
upon determining the first caller function is not authorized to
call the particular function, the one or more supervisor
instructions are further configured to cause the run-time
environment to terminate the first call without performing
the particular function.

12. The data processing system of claim 10, wherein,
based, at least in part, on determining the first caller function
is authorized to call the particular function, the one or more
supervisor instructions are further configured to cause the
run-time environment to perform the particular function.

13. A [data] processing system comprising:

a memory;

one or more processors coupled to the memory;

a protocol logic stored in the memory, executed by the one
or more processors, and configured to cause the one or
more processors to receive, from a web server com-
puter, a first set of instructions that define one or more
original operations;

an injection logic stored in the memory, executed by the
one or more processors, and configured to cause the one
or more processors to add one or more supervisor
instructions to the first set of instructions to produce a
modified set of instructions prior to providing the
modified set of instructions to a client computer;

a server logic stored in the memory, executed by the one
or more processors, and causing the one or more
processors to send the modified set of instructions to [a
remote] #he client computer;

wherein the one or more supervisor instructions are
configured to cause a run-time environment executed
on the client computer to intercept a first call to execute
a particular function from a first caller function[,] and
determine whether the first caller function is authorized
to call the particular function;

wherein the injection logic is further configured to cause
the one or more processors to generate [a second
dynamic] an identifier based on [a second] ar original
name assigned to [a second] an original function and
add the [second dynamic] identifier to the modified set
of instructions;

in response to the run-time environment determining that
the first caller function is authorized to call the par-
ticular function, the one or more supervisor instructions
are further configured to cause the run-time environ-
ment to:

US RE50,024 E

27
determine a call stack that led the first caller function to
be called;
determine a second caller function from the call stack;
determine a [second] caller identifier based on a name
associated with the second caller function;
determine whether the second caller function is autho-
rized to be in the call stack based on the [second
dynamic] identifier and the [second] caller identifier;
terminate the first call without performing the particular
function based on determining the second caller
function is not authorized to be in the call stack.
14. A method implemented by a system, the method
comprising:
intercepting, within a run-time environment, a first call to
execute a particular function defined in the run-time
environment by a first caller function in the run-time
environment;
determining a first caller identifier, which corresponds to
the first caller function identified in a run-time stack
maintained by the run-time environment;
determining whether the first caller function is authorized
to call the particular function based on the first caller
identifier;
receiving one or more instructions from a server com-
puter, which includes a first [dynamic] identifier;
wherein the determining the first caller identifier com-
prises determining a first caller name that corresponds
to the first caller function from the run-time stack, and
performing a client-side hashing function on the first
caller name to produce the first caller identifier;
wherein the determining whether the first caller function
is authorized to call the particular function is based on
whether the first caller identifier produced as a result of
performing the client-side hashing function on the first
caller name matches the first [dynamic] identifier|;
wherein the method is performed by one or more
computing devices] included in the one or more
instructions.
15. The method of claim 14 further comprising:
terminating the first call without performing the particular
function in response to determining that the first caller
function is not authorized to call the particular function.

10

15

20

25

30

35

40

28

16. The method of claim 14 further comprising executing
the particular function based, at least in part, on determining
that the first caller function is authorized to call the particular
function.
17. The method of claim 14 further comprising, in
response to determining that the first caller function is
authorized to call the particular function:
determining a second caller identifier, which corresponds
to a second caller function identified in the run-time
stack maintained by the run-time environment;

determining that the second caller function is not autho-
rized to be in a stack of caller functions that call the
particular function based on the second caller identifier,
and in response, terminating the first call without
performing the particular function.

18. The method of claim 14, wherein the particular
function is defined by #he one or more instructions received
from [a] ¢he server computer.

19. The method of claim 14, wherein the particular
function is defined by default by the run-time environment
and not by #he one or more instructions received from [a] the
server computer.

20. The method of claim 19, wherein the particular
function is referenced by the one or more instructions
received from the server computer.

[21. The method of claim 14, wherein:

the first caller function is a function defined by the

run-time environment;

determining whether the first caller function is authorized

to call the particular function comprises determining
whether the first caller identifier is assigned a generic
identifier by the run-time environment.]

22. The method of claim 14 further comprising: receiving
one or more JavaScript instructions from [a] the server
computer; executing the one or more JavaScript instructions;
wherein the run-time environment is configured, based at
least in part on the one or more JavaScript instructions, to
intercept the first call to execute the particular function,
determine the first caller identifier, and determine whether
the first caller function is authorized.

#* #* #* #* #*

