«» UK Patent Application «GB 2317724 ., A

(43) Date of A Publication 01.04.1998

{21) Application No 9718521.9 (57) INTCL®
GO6F 9/38
(22) Date of Filing 01.09.1997
(52) UKCL (Edition P)
(30) Priority Data G4A APP
(31) 08249163 (32) 30.08.1996 (33) JP
(56) Documents Cited
EP 0685789 A EP 0651321 A US 5555432 A
(71) Applicant(s)
NEC Corporation (58) Field of Search
UK CL (Edition O} G4A APB APP
(incorporated in Japan) INT CL® GO6F 9/38
7-1 Shiba 5-chome, Minato-ku, Tokyo 108-01, Japan
(72) Inventor(s)
Masato Motomura
(74) Agent and/or Address for Service
Mathys & Squire
100 Grays Inn Road, LONDON, WC1X BAL,
United Kingdom
(54) MULTIPLE INSTRUCTION PARALLEL ISSUE/EXECUTION MANAGEMENT SYSTEM
(657) A multiple instruction parallel issue/execution Fig. 7 12 MULTIPLE INSTRUCTION PARALLEL
management system, in a superscalar processor, includes) ISSUBEXECUTION MANAGEMENT UNT
a forward map buffer 1210 storing forward map 1210 FORWARD MAP BUFFER e
information indicating whether or not the result value AL NUL JUL N N | 2%
generated by execution of a given instruction is to be used) ':
as an input operand in other instructions. The forward map : '}f‘;’ﬂg s
buffer stores the forward map information for the result 8 RN 77 H
value, before the result value corresponding to the given 5 1L 123 &
instruction is actually generated. When the result value % ' \ ;:
corresponding to the given instruction is actually N G - - :
generated, the operands using the result value are Y 1216 FORWARD SOURCE ENTRY A
specified by using the previously stored forward map 1215 FORWARD BIT PART EXECUTION \ REGISTER
. . . RAG PART | nUMBER
information corresponding to the result value, and are 1250 Nstwmu:nwm—_—_u{s_isgemm PART
supplied to an instruction, using the result value as an O I T P T TT I RESUT ALUE
input operand. 08 8 7T 8 5 43 2 1 2% m?rﬂ
The system is capable of simultaneously decoding, | |sT°T =} SOURCE ENTRY
issuing, and executing, ten or more instructions in f‘ L ! ?ﬁ}
paralleLNo comparator is used, leading to simpler) 1(2355 p— CLT s
circuitry, and which consumes less power. / 12586 FORWARD SOURCE ENTRY W H
1258 FORWARD MAP PREFETCH BUFFER 3 2 1
L0908 7T 8 s 43 2 1220 mwkgs;am
H o
H=1-H e
=1 53 H
ZEL_L L £ LN
N e L
= 1203 LEFT OPERAND PART § 1243 LEFT W
i 1204 RIGHT OPERAND PART - 'OPERAND
i 1205 INSTRUCTION REGISTRATION ENTRY PART —
{ 1245 INSTRUCTION
i CO0E PART 1262 0, SSUEENTRY |]
i - 12 WSTRUCTION OPERATION RIGHT OPERAND PART
Ceeeeeeeemen INFORMATION MANAGEMENT ENTRY, ~J
N
D

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

Fig. 1
10
----------------- 0 18
/J [‘/
INSTRUCTION
INSTRUCTION
FETCH/DECODE CACHE MEMORY
UNIT
)

/12 }; 135 /13
2 DDDDDDDD

REGISTER FILE

MULTIPLE INSTRUCTION

PARALLEL
ISSUE/EXECUTION
MANAGEMENT UNIT
126
125-1 125-2 125-3
£\ N\

|FRERE:

MEMORY
ACCESS ALU ALU

UNIT
T 1
g 17 RESULT BUS

DATA CACHE ~_ 16
MEMORY

O— =<0

»
--

—__~— NOILONYLSNI NIHLIM SAONvVH3dO
1HOIH ANV 1437 31VNDIS3d

O p=———(
O jle—_3
lc——(C
f—— _|

oc

l——)

| NOILYWHOANI dVIN QHYMHOA
3dAL ONILYNDISIA NOILONHLSNI

H H M H H H H M M 0L > H3GANN NOILONYLSNI JAILY13H

NOILLYWHOANI dVIW QHYMHOA4

HLIM NOILONYLSNI 3LVYNDIS3d

gc " b1

|~ NOILVNHO4NI dYIN QHYMHOAL
3dAL ONILYNDIS3A ANVH3dO LNdNI

Hwoﬁ

-—— O
a—> o
N—>
n—> -
©—> o
N—> —

NOILVWHOANI dVIN ddVYMHO4

> H3GWNN ANVH3dO LNdNI 3AILYI3YH

HLIM ONVH3dO LNdNI 31VNDIS3d

ve b4

DA

NOLLYWHOANI
dvViN QHYMHOJ

43151934

3000
NOILONHLSNI

NOILONYLSNI SS33JV

H31S1934 -

NOILVIWHOANI
dVIN QHYMHOA

30090
NOILONYLSNI

NOILONHLSNI SS300V AHOW3IN -
NOILONYLSNI NOILYHIdO OILIWHLIYY -

€ LYWHO4 NOILOnHISNI - DE ° bi4

NOILVIWHOLNI
dviN d4VMHOAL

H31Si93Y
(aNVYH3dO 1HOIH

43151934
ANVH3dO 1431

43181934

INTVA 11NS3H

OV14 NOISN3LX3
dVN QHYMHOS

3009
NOILONHLSNI

NOILONHLSNI SS303V AHOW3IN -
NOILONYLSNI NOILYHIdO OJILIWHLIYY -

z lvwdod Nolonuisn - g€ B
NOLLYWHOANI | H3LSID3Y SETRIGED H3LSID3Y 3000
dVW QYYMHOS | GNVHIJO LHOIY | ONVHIJO 1431 INTVA LINS3H [NOILONHLSNI

NOILONYLSNI SS300V AHOW3IW -
NOILONYLSNI NOILVHIdO OJILIWHLIYY -

I LVAHO4 NOILONHLSNI

ve - b4

"Tl/_b

Fig . 4A Fig. 4B
INSTRUCTION INSTRUCTION
STRING STRING

GIVEN
INSTRUCTION |

GIVEN
INSTRUCTION I

©00 O
00 O

1

2

HEO0000

3

@EO0000

INSTRUCTION ADDRESS INSTRUCTION ADDRESS
ORDER ORDER
Fig . 5A Fig . 5B
INSTRUCTION INSTRUCTION
STRING STRING
® O INONO,
® 2]
® ® JRONO,
fillg$gUCTION @ @ I(illg'llggUCTION 4 @
ONO ARONO,
Y Y] @
®] @
INSTRUCTION ADDRESS INSTRUCTION ADDRESS

ORDER ORDER

— 1IN

Fig. 6 12 MULTIPLE INSTRUCTION PARALLEL
ISSUE/EXECUTION MANAGEMENT UNIT

12811 1283 T121

1264 | 1234 123
1282 74 1237
1213 { 1239
1215 1211 Q 5 . |1239 D ; D
1272| R 2 3 126212 1232 123
O O-O5#2Y 383000
1211 =, ><
. . . 1272 o '2 i 1262 o
e [] [] z []
-2 55 (1239
L] [] [] O—l a—— []
=0 538
D Doco Dj(,éE EE(>D D D
1211 12732 Wz B Z | 5 [RESULT VALUE
FORWARD MAP oo =3 REGISTRATION
BUFFER 1210 BUFFER 1230
1212 1212 [M212 1273 \1263 1236
1251 1251 | 1251
INSTRUCTION 0124
ISSUING L
CONTROL UNIT 1250 1Y 01%
1256D O |:'f1255 1253 y 1221
> [N N] <‘
. BYPASS MAP
FORWARD MAP 1\254 . 1223 BUFFER
PREFETCH BUFFER <T 1220
128 1254 1223 1222 V1222
1252 1252 [\1252 1222 oo
1201 1201 y /1201 1241 1241 § 1241
— <[— — — < —
~ G 3 «
i z S or— LBk
i p— — Oom — - =S
o = - 11209 1o [[1o @] 1246
2. |52 g [|Sal”
—| | oo =R >0 — c %ﬁ
= — L [1208 12487 | = e =2
T P =wnQ =’f [] T g 2
(qV} A
vwed b g2 1on7 1247f TS
12067 | |/ | L LY e

l 125-1 i 125-2 l 125-3

-
)
]
]
1
]
t
1
]
]
]
]
]
]
]
1
]
[}
1
[]
1
]
1

1210 FORWARD MAP BUFFER

10 9 8 7 6 5 4 3 2 { 1230
10 10
9 9
8 RESULT 8
7 VALUE 7
s V77777777, " SSTRATN 7]
5 11 1235 5
L R St SO S SETh [Ot SUTTES e poven . \< 4
3 : i3
2'. (.. - L (RN DR SR 2
1 (\ (1.1t

)

1216 FORWARD SOURCE ENTRY
1215 FORWARD BIT PART

RESULT VALUE
REGISTRATION BUFFER

1231 1233
EXECUTION \ REGISTER

FLAG PART | NUMBER

0 00 e O 0 S S 0 s o 0 D S) " 0 D e S O o 7 % 5 . " D G5 o = - " o - - - - - - . - - - - - - - - . - - - - - - .- - - -

CODE PART 1242 {944

1250 INSTRUCTION ISSUING 1255 ISSUE FLAG PART
CONTROL UNIT \—— PART 1232
LTI T T 717 1T 1T 11 HESUF&;H\T’ALUE
Lo s 8 r 8. 5 4 8 2 1. 1226 BYPASS
5 SOURCE ENTRY
25. — ! 1225BYPASS
: 1)./ BT PART
y 1 ‘s
12585 FORWARD BIT PART T R
12586 FORWARD SOURCE ENTRY)
1258 FORWARD MAP PREFETCH BUFFER 3 2 1
1220 BYPASS MAP
'1_09 8 7 6 5 4 3 2 1 BUFFER
i ' % S 3 2 1
it % 2 o
Za \ / @ _ \i
= | z W i
3! I <} s
o 7 om :
B! 24/ 1) 2 7
=wm - 1y - - :
oG 1202 INSTRUCTION ~ 2 il
S CODE PART = /[/ [=
= 1203 LEFT OPERAND PART 1243 LEFT
1204 RIGHT OPERAND PART - / OPERAND
1205 INSTRUCTION REGISTRATION ENTRY 2 NSTR gﬁg{q
INSTRUCTI
STRUCTION ISSUE ENTRY

1290 INSTRUCTION OPERATION
INFORMATION MANAGEMENT ENTRY

RIGHT OPERAND PART

- 0 40 8 e o o e o O e e G D e A 0 20 0 A 4 o 2 o 7 = o o o o o 0 %0 o o o)

L

Fig . 8
ABBR.| MEANING DESCRIPTION
EMPTY CONDITION HAVING
em | Emply NO EFFECTIVE INSTRUCTION
j CONDITION BEFORE
Not Ready | CHECKING ISSUABILITY
d | Ready INSTRUCTION 1S ISSUABLE
Wait WAIT FOR ISSUANCE OF
wa ating INSTRUCTION
< ssued INSTRUCTION HAS BEEN
ISSUED
Fig. 9
ABBR.| MEANING DESCRIPTION
EMPTY CONDITION HAVING
em | Empty NO EFFECTIVE INSTRUCTION
. INSTRUCTION HAS NOT
n Not lssued | ver BEEN ISSUED
ex | Execung | INSTRUCTION IS BEING

EXECUTED

es

Executing on

INSTRUCTION IS BEING

Speculation | EXECUTED ON SPECULATION

do | Done EXECUTION OF INSTRUCTION
HAS BEEN ENDED

ds | Doneon | EXECUTION OF INSTRUCTION

Speculation

HAS BEEN ENDED ON SPECULATION

Fig. 10

MEMORY ACCESS
MOy ACCE F | D | op |Ex1|Exe | ws
ARITHMETIC OPERATION
INSTRUCTION IF-1 1D | DP | EX2| WB
/BRANCH INSTRUCTION
Fig. 11
D DP EX2 WB
FIRST HALF . OPERAND Fé)a'mg&e EXECUTION
OF CYCLE REGISTRATION | pocrenato> | ENDING
SECOND HALF| INSTRUCTION | INSTRUCTION | OPERAND | OPERAND
OF CYCLE | REGISTRATION| ISSUE BYPASSING | FORWARDING
Fig. 12A a|F | 0 |0 |Ex2| we
Bl wr | |op|op|EX2|ws
Fig. 12B , [T [or lexe| we
B F | D |op|Ex2|ws
Fig. 12C o[¢ T op lexe | ws
B F | 0 | 0P |Exe | ws

1. AP

Fig. 13

)

T - Hlv:,_mz“ 00lo0|00l00]}00 aI0}s : 67
== =

‘ 1710109 : 00|/00}00]|00]|00 17 youesq : g7

2L T +7 =+ s1:00|00]l00|00]00 GJ ppe : /7
[TIWIN -

L ¥61:7181: ooloL|lLoloo|00 peoj : 97
aNy ——

G ! 761121 oolot]loolot]|o0 pue : g7
€140 G4 —»

L 481 : ¥21:¥S1: LoloolLoltolo0 €1 sS4 10 :p7

oL:! —+ 21 » 1971: oojoolot|oo]oo0 24 ppe : €1

g : [G4IWIW - ¥E€T: LO]|00|00|00]00 Gd peo| : 27

G : €4 + 24 » 1187 : 00]lo0jo0|OL|00 €& & ppe 17

J/

Fig. 14

MM rMrr2r3r4 516 17

234|567

1

0

O ,-'/

/

gM|{2X3[1X3|da|da|da(da| ai | 4 oolooloolo0|00 2101 : 61
gM|2x3|da|da|da|da| ai| 4 oolooloolo0|00 17 Youeuq : g7
am|2x3| da|da| ai | 4 00|00]/00]00]00 G4 ppe : /7
am|ex3(Lx3a| da|da|da| al | 4 oojoLiLoloo|00 peoj : 97
am|ezx3|da|dal a | J oolotlooloL}oo0 pue : g7
amizxajdal a | 4 LoloofLojL0]00 €1 i 0 7
aM|2x3| da|da|da| al | 4 Jooloo|oL]|oo|0O 2 ppe : €7
aM|ezx3afix3|da| a | 41 {Loloolo0l00|00 G4 peo| : 27
am|ex3{da| ai| J |oolooloo]oL|0o0 € 2 ppe : 17

oL 6 8 2 9 S ¥ € 2 L o0 =1

Gl b4

Fig. 16

FORWARD MAP BUFFER
10 9 8 7 6 5 4 3 2

= DD WL OO NOOWO

12

10

1

00

00

00

00

10

00

00

00

00

00

00

00

00

00

00

00

00

01

00

00

00

00

00

00

00

10

00

00

00

00

1230
RESULT VALUE

REGISTRATION BUFFER

1200
INSTRUCTION
REGISTRATION BUFFER

N w

INSTRUCTION ISSUING
CONTROL UNIT

1250

em

em

em

em

em

em

em

10

9

8

7

6

4

3

10 9 8 7 6 5 4 3 2

1

?

add

load
add

t=1

1240

INSTRUCTION
ISSUING BUFFER

em
em
em
em
em
em
em
ni
ni
ni

~—NDWHEOON®OS

BYPASS MAP BUFFER
1220

1200
INSTRUCTION

Flg' 17 1210 1230
FORWARD MAP BUFFER RESULT VALUE
10 9 8 7 6 5 4 3 2 { REGISTRATION BUFFER
10 em 10
9 em 9
8 em 8
7 em 7
6100(01/10(00{00/00/00]00|00|00 ni 6
5100{10|00(10{00{00|00|00]|00|00 ni 5
4100/00/01|01{00/01|00{00/00(00 ni 4
3100(00|00(00(10|00]|00|00]00(00 ni 3
2100100/00|00|00|00|00(01]|00(00 ni 2
1100(00{00{00(00{10/00/00{00|00 ni 1
INSTRUCTION ISSUING
CONTROL UNIT 1250
emjemjemjem - | - |- |wa[rd| rd BYPASS MAP BUFFER
10 9 8 7 6 5 4 3 2 1 1220
3 3
2 2
1 1
3 2 1
10 9 8 7 6 5 4 3 2 1 3 2 1
&5
ST O ™ @
= i
3 B i
= = 2
9 (ol N 30‘:0 QY]
— 2 o
<C N (5
T %=
w Z3
0 812|588 |8] °| |B|E

t=2

T2 AF

1200
INSTRUCTION

Fig. 18 1210 1230
FORWARD MAP BUFFER RESULT VALUE
109 8 7 6 5 4 3 2 1 REGISTRATION BUFFER
10 em 10
9{00]o0]oo{o0[00o0[oo[o0]00]00 ni 9
8 [00]00]o0]o0[00[00[00]00[00]00 ni 8
7[00]00]00[00]00[00|00]00[00]00 ni| [r5]7
6[00[01[10]00[00[00]00]00[00[00 ni 6
5[00[10[00[10{00]00[00]00[00[00 ni 5
400[00Jo1]o1]o0[01]00[00]00]00 ni 4
3[00[00]oo]o0]10[0000[00[00]00 ni 3
2[00]00]oo[oo]oo]00]o0l01]00]00 ex 2
1[00]oo]oofoo]oof10]00l00[00]00fe—2 [ex 1
INSTRUCTION ISSUING
CONTROL UNIT 1250
em - |- |- |wajwajrdjwa] is| iS|| BYPASS MAP BUFFER
10 9 8 7 6 5 4 3 2 1 1220
3 3
2 [00]o0]oo[o000[10]00]00]00]00
1 1
3 2 1
109 87 6 5 4 3 2 1 3 2 1
T
& Lo [- (ot o (o o - o
= i
= = o
(@] O m
= el e N WO NS [T}
< N
o 1—'—2
= n=
2 £ <3
2| 1515|3258 8| °| |s
o]

Fig. 19

—“ N W H OO N OO

1210
FORWARD MAP BUFFER

10 9 8 7 6 5 4 3 2

It Re

1

00{00

00

00

00

00

00

00

00

00

00(00

00

00

00

00

00

00

00

00

00{00

00

00

00

00

00

00

00

00

00)01

10

00

00

00

00

00

00

00

00{10

00

10

00

00

00

00

00

00

00{00

01

01

00

01

00

00

00

00

00/00

00

00

10

00

00

00

00

00

00{00

00

00

00

00

00

01

00

00

INSTRUCTION ISSUING
CONTROL UNIT

1250

em| wa

wa

wa

wa

rd

is

em

10 9

8

7

6

4

N
AN

2100]00

01

01

00/

N

00

NN
HJE

N

00

00

00]00

00

00

00

00

<

N

00

00

1200
INSTRUCTION
REGISTRATION BUFFER

10 9

8

?

?

?

5

1240

store

branch
add
load

RN

load

t=

1230

RESULT VALUE
REGISTRATION BUFFER

rs

em
ni

ni

ni

ni

ni

2 ex
ni

1 ex
em

10

— N WL 0T N O

BYPASS MAP BUFFER
1220

01

00

00

01

3

2

INSTRUCTION
ISSUING BUFFER

and

and

F’g' 20 1210 1230
FORWARD MAP BUFFER RESULT VALUE
10 9 8 7 6 5 4 3 2 1 REGISTRATION BUFFER

0 em 10
9(100/00/00/00100{00{00/00{00(00 ni 9
8100/00/00/00{00({00{00/00][00[00 ni 8
7100]00/00/00/00{00/00/00|00[00 ni r51 7
6(00{01/10]00{00{00{00/00]00[00 ni 6
5100/10/00|10/00{00/00|00|00[00}=—3 ex 5
4(00(00{01]01{00{01]00]00]{00(00 do|7 4
3(00/00{00/00(10{00{00/00[00[00}=—2 ex 3
2 em 2
1 em 1

INSTRUCTION ISSUING
CONTROL UNIT 1250

t=

em| wa| wa| wa| wa| rd| is| rd] is |em BYPASS MAP BUFFER
10 9 8 7 6 5 4 3 2 1 1220
3(00({10{00(10|00(00{00|00|00|00 10(00] 3
2100/00/00({00/10{00(00|00|00|00 00]10] 2
1 i
3 2 1
10 9 8 7 6 5 4 3 2 1 3 2 1
o
Ty o~ |~ i~ ~|m | ~
=5 i
52 51
o O= =2
239 |l |- w|w ey 38’3 w |
o —
- =< NE S
7 “gg
£ 12 22
e - 92}
2| |2|5|8|E|E|5|B 8|8

Fig. 21

= NN WO NO©OOO

1210
FORWARD MAP BUFFER

10 9 8 7 6 5 4 3 2

Hol Ko

1

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

00

INSTRUCTION ISSUING

CONTROL UNIT

1250

em

wa

wa

IS

IS

em

em

em

em

em

10

9

8

7

6

4

3

1200
INSTRUCTION
REGISTRATION BUFFER

10 9 8 7 6

5 4 3 2

1

?

?

10

store

branch
add
load

t=6

1240

INSTRUCTION
ISSUING BUFFER

1230

RESULT VALUE
REGISTRATION BUFFER

em

ni

ni

ex rs

ex

em

em

em

em

“~DWREROON®OS

em

BYPASS MAP BUFFER

1220

17/24,

Flg' 22 1210 1230
FORWARD MAP BUFFER RESULT VALUE
10 9 8 7 6 5 4 3 2 1 REGISTRATION BUFFER

0 em 10
9100{00/00{00)00{00{00{00/00)00 ni 9
8100/00/00{00[{00{00{00{00}00|00 ni 8
7100{00{00{00/00{00{00{00/00)00 ex|12|r5] 7
6(00/01[(10[00]{00/00]{00/00/00{00=—1 ex 6
5 em 5
4 em 4
3 em 3
2 em 2
1 em 1

INSTRUCTION ISSUING
CONTROL UNIT 1250

t=7

em| rd| rd| is| is|em|em| em em|em BYPASS MAP BUFFER
10 9 8 7 6 5 4 3 2 1 1220
3 3
2 2
1100{01/10/00(00{00{00(00/00[{00 01110{ 1
3 2 1
10 9 8 7 6 5§ 4 3 2 1 3 2 1
oc
tlLtJ o~~~ o ~ | =
oz si
otz =2
2;3?8 ol o |2 28‘1) - |
NEL SR @
o)m 1-"—2
=5 23
(22, P = =
ol |5|5(3 | “ |§]5
S 5

1200
INSTRUCTION
REGISTRATION BUFFER

Fig. 23

FORWARD MAP BUFFER
10 9 8 7 6 5 4 3 2

- NN WO OON WO

12

10

|5 Ke

1

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

INSTRUCTION ISSUING

1250

em

IS

IS

CONTROL UNIT

em

em

em

em

em

em

em

10

9

8

7

6

4

3

10

8 7 6 5 4 3 2

1

11

5

1

store

branch

t=8

1240
INSTRUCTION
ISSUING BUFFER

REGISTRATION BUFFER

BYPASS MAP BUFFER

1230

RESULT VALUE

em

es

ex

em

em

em

em

em

em

em

1220

Amm.hmmuoocoa

[\

Fig. 24

- NN WAL OUIOO NOOWO

1210
FORWARD MAP BUFFER

10 9 8 7 6 5 4 3 2

16| No

1

00

00

00

00

00

00

00

00

00

00

INSTRUCTION ISSUING
CONTROL UNIT

1250

em

IS

em

em

em

em

em

em

em

em

10

9

8

7

6

4

3

1200
INSTRUCTION
REGISTRATION BUFFER

10

8 7 6 5§ 4 3 2

1

1

5

store

t=9

1230
RESULT VALUE

REGISTRATION BUFFER

1240
INSTRUCTION
ISSUING BUFFER

em
ex
em
em
em
em
em
em
em
em

“NDWbOTON®©OS

BYPASS MAP BUFFER
1220

w

Fig.

25

1210 FORWARD MAP BUFFER

20 e

51\3 FORWARD MAP REGISTRATION TERMINAL

—

~

FORWARD MAP OUTPUT/ISSUE FLAG INPUT TERMINAL

? ? ? 12102
WRITE WRITE WRITE WORD ThiE
T T
CIRCUIT CIRCUI 12106 CIRCUI 12101
WORD
. . LINE 12(1 0‘5 a CW
! 1 ! 1 1 1
| [MEMORY| | [MEMORY|| ||MEMORY| | IMEMORY | [MEMORY] | [MEMORY
CELL CELL celL JTL_cELL CELL CELL
! ! 1 i — — F=H<-0
|MEMORY| IMEMOHY| ‘*MEMORYI‘ |MEMORY| i | IMEMORY] | |MEMORYI ; =
CELL CELL CELL |T|_cELL 1 TL_CELL CELL ||} >§
8 . . TV AN
[] [4 L] \
. 12107 | . 1215
BIT FORWARD
LINE BIT PART
T 1 1 ! T T /
‘lMEMORY | [MEMORY||] MEMORYI‘ IMEMOHYI v ‘|MEMORY IMEMORYl
CELL CELL CcELL |l _CELL CELL CELL
- 12103
] READ
“es CIRCUIT
Y A Y A \ Y 12104
SELECTOR SELECTOR e o SELECTOR
kl i e o o lj
Y
1212

FORWARD MAP REGISTRATION/OUTPUT CONTROL TERMINAL

“— L} T

3NIT 118 NOILO3HIA MOH 1/85¢l

LINDQHID INA auom [S08S2H TNIWHIL LNdINO dYIW QHYMHOA
. Linoglo ~ dvad NOILD3HI]
9c b4 gvay £8%el NWNT0D
£85¢1 Nsmm_
T@ 1 ! i
T30 || [T30 || T30 IR T30 T30
HOWIW[T TAHOWaW 3NN 18 mozmz Thuowawf[? Thuowaw[l Thuowaw
T T NOILO3HIa T T T
O —V - N NANT00 - -
[\ 2.862) 1dvd Lig
. . . . fr-=mtTheettseteor QHYMYOA
: _u |] L 11 585zl
WNINH3L JOHLNOD [7130 [70] (NER T ||+ 7130] | a0)
1NdLNO/LNdNI Adow3W[T TAdowaw HOWIW[T TAHOWIN]T § TIAHOWIN|T T]AUONIN[T &
dYWN QUYMHO4 l l I I 1 - I ;
vitos o> o
IVNINH3L 1Nd1NO 1 1 y 1 ' 1
dvi mmmm%: @ T30 || | 730) |[T135 T30]| |[70 T30
AHOW3W[T TIAHOWaW AHOW3IW([T TTAdoWan[T TIadonwaw|T Tauowan|
l l)| l)|]
S
198521

1852t INIT gHOM
H3AIHA NOILO3HIO MOH
NN GHOM 28521 LINOHID
H3AIHA J1IHM
INIT gHOM 862l

TYNINH3L LNdNI dVIW aQHVMHO4 108S¢l
TVYNINHIL TOHINOD 1NdLNO dVIN SSVdAB ¢08S¢l

H344N89 HO1343Hd dVIN QHYMHOL 8G¢

"

LINJHID IYNINY3L 1ndLno aNIM 118 NOILO3HId MOH

Qv3d dVW SSvdAg 2z2i 60ccl
€0¢¢! % % Aw
3NN HOM ,/_ _ _ L _
NOILO3HId
s 1 1 1 1 1 1
womw_\/\i T30 | |30] M@) o) e)
AdoWan([T Thuowaw aNIT 118 Thuowaw(T Tauowaw How3w[T TAuowaw
\ iv—v T T NOILIJ3HIA T T T T
° ° NWN10D ” ” : :
T L0221
/] 1 1 1 i — <o
v0cel T30] |30 [T30 | a0 T T 1T TED e
= AHOWaW[T TAuonaw Tiauowan[T Tauowaw[T i Tuowaw[T thuowaw(T | cz21
- O i D i ; : i : i 1Hvd L8
m ~> B T " QuYMHOA
H . & & & .
1 I | 1 1 1
e e mao) rmao || (73))&)
AHOWIW[T TAHOW3W AHOW3W[T Tauowaw(T TIAuowaw[T TAdowaw
I] I] I] c0cel
/ S LINJHID
Y3AIHa 902521 J1IHM
aNIT QHOM 18S2) aNIT qHOM
NOILO3HIA MOH
HIAIHA .
INIT QHOM 1852}t T ,
/ ¥0Zzh 4300030 \ .
| 22 b4
') H344N8 dYIN SSYdAG 0¢¢t

TYNINH3L TOHINOD INdLNO/NOILVHISIO3H dVIN SSvdAg Lédl

TVNINEZL NOILYHLISIOIH dVIN SSVYdAg €2cl

2Lk

~ 1HYd TYNINEIL NOILYHLSIDIH
3000 3009 zo_%gEmz_
NOILONYLSNI ¢l
fe——mm e ~— 0
TNINGAL 1NdLNO
NOILONHLSNI \
L0l 2051 NI ONILYNDISAA
O 1 1Nd1NO NOILYWHOANI
. NOILYH3IdO NOILONYLSNI
Luvd 1102}
aNvH3do
TYNINGIL L1NdNI 1431
QYYMHO4 ANVHIdO |—>----mm---] —s INIT DNILYNDIS3A
8021 \ NOILYH1SID3Y 3009
O— €0zl] NOILONYLSNI
———_____ 2102}
TYNINHAL LNdNI
ONVH3dO H31SIO3H 3INIT ONILYNDISIA
6021 < NOILYH1SID3H
O— 1dvd ANVHIdO 1431
ONVE3dO | | —1 | €10
1HOIY S
Sﬁ\ ,
3N ONILYNDISAA
NOILYHLSID3Y \
ONVH3dO LHOIH ¥102}

TYNIWHIL NOILYNDISIA AHLINI Mu AHIN3 NOILVHISIO3IH NOILONHLSNI
8c .9“\ NOLLYHLSID3H NOILONHLSNI 102} (48

29

T2

Fig. 12 MULTIPLE INSTRUCTION PARALLEL
ISSUE/EXECUTION MANAGEMENT UNIT
1281~y 1283 T121
1280 SHIFTER — —>0123
P am 0 1264 1234\1
1274 1237
1213 Y Y 1239 J
L1Ié—'1:|5"1.21[;:| S S o [1239 D ; L_’]
1272 gg ;§ 12621231 1230 1233
>
Rt M Sl
1211 . =
1272 |5 W (1262
. . uw > z= .
o~—11239
* [| s .
D D XX jO(T é E E E(] D D D
2117 [2|88 b Z |15 |RESULT VALUE
FORWARD MAP oo =3 REGISTRATION
BUFFER 1210 BUFFER 1230
1212 1212 [\M212 1273 1263 1238 $\1236
1251 1251 y 1251 1265
INSTRUCTION - 0124
ISSUING 1.
CONTROL UNIT 1250 'i 0126
‘ZSGD T y221
‘ . BYPASS MAP
FORWARD MAP }254 . | 1228 BUFFER
PREFETCH BUFFER N
_1258 Sea 1223 79
1252 1252 1252 1222
1201 1201 {1201 1241 1241
] <[| [~] [< []
8 i & -
r L ¢ V2 Zzu
:j ! LIZR \ — :J LIRS
3 E = [1209 2 MS®| 1246
| |28 2R | EZ
— — 2 [1208 1287 | & S Em =9
o j — »0) $ _1 -
o || =&} J) ERE
12067 (| |V S |1207 1247 f N
Y1254 S1252 B1253

42 |Ap

¢05¢

IVNINY3L NOILNO3X3 NOILONYLSNI 605¢ O

f A
< AHIN3 NOILONYHLISNI @3nSS! 13A-1ON >
) §)))) s

e AHINT NOILONYLSNI @3NSS! 13A-10N >

w >

m \ A A A I

2 91052 51052 AYIN3 NOILONHLSNI Q3aNnsSi L3A-LON |H+0SC

m ~ ~

2 |} "oLvuvawoo HOLVHYdWOD

m \ _I)

| -

a13i4 ai3id
@134 3009 ai3i4 ovi
9V L/ANVHIdO 9V L/ANYHIAdO
. aNOD3S r NOILONYHLSNI | | NOILONYLSNI
~ ~ ~ 1 ~
v1062 €106 21052 11052
3
TYNINH3L LNdNI M o w o f
NOSIHYdINOD 9052 062 1052
H¥yL ANOD3S 8052 TYNINHIL LNdNI TYNINH3L LNdNI
TYNINYIL LNdNI H3LSID3Y NOSIHVdWOD 3002 14V HOIHd
HVL/ANYHIdO GNOD3S L0S2 vl 1SHI4 NOILONYLSNI . Q
TYNINH3L LNdNI H3ALSID3IH HVL/ANVHIMO 1SHId G052 TYNINH3L LNdNI DVL NOILONYHLSNI £05¢ Qm. sh.\

20[2p

TYNINH3L LNdLNO OVL/ANVHIJO LSHIH 1809¢

TYNINHIL LNdLNO TYNINY3L 1Nd1NnO IVNINHIL LNdLNO
¢09¢ H3IGANNN H3L1SI193Y ¢609¢ INIVA 1INS3H 16092 9yl/gNYHIJO ANOD3IS 28092
f w % i
< AHINT NOILONHISNI @31nd3x3 .
5 5 S)) ez
m < AHINI NOILONHLISNI a31nd3x3 >
m > -
Q] A)
S ~
e AHINI NOILONHLISNI @3Lno3x3|+09¢
3 1092 1092
/
3 [Trpwmes] e :
O
= e HOLYHYAWOD | Y HOLVHVAWOD | H HOLVYHVIWOD >
...m._ A \\ \ X _
91092 a1314 HIGWNN aiaid vl @134 ANTVA
. H3181934 NOILONHLSNI 1ns3y
~ ~ ~
£1092 21092 11092
NOSIHVdWOO , i $ /
HIGWNN HILSIHIH o o)
HO4 TYNIWHAL 9092 092 1092
1NdNI GNOO3S 2£092 TYNINH3L LNdNI TYNINGIL LNdNI
NOSIHVIWOD HIGWNN H3LSIDIY NOILYHLSID3H NOILVHLSID3H LHY HOIHd
HO4 TWNINYIL LINdNI 1SHI4 12092 HIGWNN HILSIO3Y BYL NOLLONYLSNI LE ‘61 n

TVYNINY3L LNdNI NOSIHVAWNOO ©VL NOILONYLSNI S09¢ TYNIAE3L 1NdNI 3NTYA LINS3Y €092

2317724

SPECIFICATION

Title of the Invention
MULTIPLE INSTRUCTION PARALLEL
ISSUE/EXECUTION MANAGEMENT SYSTEM

5 Background of the Invention
Field of the invention

The present invention relates to a multiple instruction parallel
issue/execution management system, provided in a superscalar processor

for dynamically issuing a plurality of instructions in parallel and of

10 executing the plurality of instructions in parallel, and for managing the

1ssuing and execution of the plurality of instructions.

Description of related art
A technology called a "superscalar” is widely used for elevating the
performance of a general-purpose processor, in particular, a
15 microprocessor. The superscalar technology is so feature that, when
individual instructions included in an instruction string are sequentially
fetched, decode, issued and executed, a plurality of instructions are
fetched and decoded in parallel, and from deccded instructions, a
plurality of executable instructions are dynamically designated and issued
20 to a plurality of arithmetic and logic units and a memory access unit in
paralle] so that the instructions are executed in parallel. The éoﬁi?‘entional
superscalar technology is described in detail by Mike Johnson,
"Superscalar Microprocessor Design", published by -Prentic_e Hall. |
In the conventional superscalar microprocessor using the
25 superscalar technology, a multiple instruction parallel issue management

unit and a multiple instruction parallel execution management unit have

- 1-

10

15

20

25

an extremely important role for realizing the above mentioned parallel
processing. The multiple instruction parallel issue management unit is
called a "reservation station”, and the multiple instruction parallel
execution management unit is called a "reorder buffer”.

The multiple instruction paralle]l issue management unit performs
an operation of temporarily holding a plurality of decoded instructions,
discriminating whether or not each of the held decoded instructions is
issuable, and selecting and issuing some number of instructions from
issuable instructions, and continuing to hold non-issuable instructions in
the multiple instruction parallel issue management unit to re-check
whether or not each of the instructions are issuable

Referring to Fig. 30, there is shown a block diagram illustrating a
fundamental construction of the prior art multiple instruction parallel
issue/execution management unit. The shown multiple instruction parallel
issue/execution management unit comprises a plurality of not-yet-issued
instruction entries 2501 and an issue control unit 2502. Each of the
not-yet-issued instruction entries 2501 includes an instruction tag field
25011, an instruction code field 25012, a first operand/tag field 25013, a
second operand/tag field 25014, a comparator 25015, and another -
comparator 25016. Furthermore, the shown multiple instruction parallel
issue/execution management unit comprises an instruction tag input
terminal 2503, an instruction code input terminal- 2504, a first
operand/tag register input terminal 2505, a first tag comparison input
terminal 2506, a second operand/tag register input terminal 2507, and a
second tag comparison input terminal 2508. Oné instruction is

temporarily held in each one not-yet-issued instruction entry.

10

15

20

25

In order to determine whether or not a given instruction is issuable,
it is necessary to investigate whether or not all operands required by the
given instruction are complete. In the prior art multiple instruction
parallel issue management unit, whether or not all pecessary input
operands are complete, is discriminated by a parallel comparison using
the comparators 25015 and 25016, as will be described below. Here, in
the shown example, it is assumed that two input operands are used for one
instruction.

In the instruction tag field 25011 of the not-yet-issued instruction
entry 2501, an instruction tag inherent to the given instruction is stored.
If input operands exist, the input operands are stored in the first
operand/tag field 25013 and the second operand/tag field 25014, a
comparator 25015, and another comparator 25016. If the infmt operands
have not yet existed, instruction tags of instructions resultantly generating
the input operands are stored in the first operand/tag field 25013 and the
second operand/tag field 25014.

If execution of an instruction is completed, the instruction tag of the
same instruction is supplied through the first tag comparison input
terminal 2506 and the second tag comparison input terminal 2508 to the
comparator 25015 and the comparator 25016 of all the not-yet-issued
instruction entries 2501, respectively. These comparators 25015 and
25016 compare the input instruction tag with the values (the input
operand or the instruction tag) stored in the first operand/tag field 25013
and the second operand/tag field 25014, respectively, in order to check
whether or not both are consistent. Here, it is so set that the input

operand and the instruction tag are never consistent.

10

15

20

25

If the result of comparison indicates consistency, since the result
value of the instruction obtained by the completion of the execution of the
instruction is supplied through the first operand/tag register input
terminal 2505 and the second operand/tag register input terminal 2507,
the result value is registered in the first operand/tag field 25013 or the
second operand/tag field 25014. On the other hand, the issue control unit
2502 receives the result of comparison from the comparators 25015 and
25016, and discriminates whether or not all operands required by the
respective instruction are complete.

As mentioned above, the multiple instruction parallel issue
management unit of the prior art superscalar microprocessor
discriminates whether or not the instruction is issuable, by the parallel
comparison using the comparators 25015 and 25016. Incidentally, in the
example shown in Fig. 30, one comparator 25015 and one comparator
25016 are provided for each one not-yet-issued instruction entry, but
actually, for each one entry there are required the comparators of the
number of instructions simultaneously executed in parallel.

On the other hand, the multiple instruction parallel execution
management unit is constructions as follows: In order to ensure the order
of instructions when the instructions are executed in the order different
from the instruction fetch/decode order, the multiple instruction parallel
execution management unit temporarily holds the result value of the
instruction which has been executed but whose execution result has not yet
been decided (called a "not-yet-decided result value” hereinafter), and
supplies these not-yet-decided result values to the not-yet-issued

instructions as an input operand.

10

15

20

25

Referring to Fig. 31, there is shown a block diagram illustrating a
fundamental construction of the prior art multiple instruction parallel
execution management unit. The shown multiple instruction parallel
execution management unit includes a plurality of executed instruction
entries 2601 and an execution control unit 2602. Each of the executed
instruction entries 2601 includes a result value field 26011, an instruction
tag field 26012, a register number field 26013, and three comparators
26014, 26015 and 26016. The shown multiple instruction parallel
execution management unit further includes a result value input terminal
2603, an instruction tag registration input terminal 2604, an in instruction
tag comparison input terminal 2605, a register number registration input
terminal 2606, a first input terminal 26071 for register number
comparison, and a second input terminal 26072 for register number
comparison, a first operand/tag output terminal 26081, a second
operand/tag output terminal 26082, a result value output terminal 26091
and a register number output terminal 26092. For each one executed
instruction entry 2601, a not-yet-decided result value of one executed
instruction is temporarily stored.

When an instruction requires an input operand for a register file,
the multiple instruction parallel execution management unit investigate
whether or not the required input operand is temporarily stored within
the multiple instruction parallel execution management unit as a
not-yet-decided ;és—ﬁlt value with having not yet been written into the
register file, and supplies the not-yet-decided result value as the input
operand for the instruction if necessary. This operation is realized in the

prior art multiple instruction parallel execution management unit by a

10

15

20

25

paralle] comparison using the comparators 26015 and 26016, as will be
described below:

In the result value field 26011 of the executed instruction entry
2601, the not-yet-decided result value is stored, and the instruction tag is
stored in the instruction field 26012. In the register number field 26013,
the register number to be written is stored. When an instruction requires
two input operands, the register numbers from which the required two
input operands are to be read out, are respectively supplied through the
register number cohparison first input terminal 26071 and the register
number comparison second input terminal 26072 to the comparators
26015 and 26016 of all the entries. Each of these comparators 26015 and
26016 compares a corresponding input register number with the register
number stored in the register number field 26013.

For all the entries, the execution control unit 2602 investigates
whether or not the register number consistency is detected as the result of
the comparison. If a plurality of consistency results are obtained for one
input operand, it is discriminated that the register number consistency is
detected in the entry storing the newest instruction. From the executed
instruction entry 2601 which is discriminated to be consistent with the
respective input operand, the result value and the instruction tag are read
out and outputted through the first operand/tag output terminal 26081 and
the second operand/tag output terminal 26082.

When execution of an instruction has been completed, the
comparator 26014 is used for determining into which of the executed
instruction entry 2601 the not-yet-decided result value of the execuied
instruction is stored. The determination is conducted by comparing the

instruction tag of the executed instruction with the instruction tag

-6 -

10

15

20

previously stored in the instruction tag field 26012 of each entry by use
of the comparator 26014 in parallel, in order to investigate the executed
instruction entry consistent with the instruction tag of the executed
instruction. In addition, when the execution of an instruction is decided,
the result value and the register number of that instruction are outpurted
from the multiple instruction parallel execution management unit through
the result output terminal 26091 and the register number output terminal
26092 to the register file.

As mentioned above, the multiple instruction paralle]l execution
management unit of the prior art superscalar mMICroprocessor
discriminates whether or not the not-yet-decided result value is supplied
as the input operand for the not-yet-issued instruction, by a parallel
comparison using the comparators 26015 and 20016 of all the executed
instruction entries. Incidentally, in the shown example, one comparator
26014, one comparator 26015 and one comparator 26016 are provided
for each one executed instruction entry. However, for each one executed
instruction entry, there are required the comparators 26014 of the
number corresponding to the number of instructions, executions of which
are simultaneously completed, and also there are required the
comparators 26015 and 26016 of the number corresponding to the
number of instructions which are simultaneously decoded.

As mentioned above, the microprocessor based on the prior art
superscalar technology, requires a large number;f comparators in each
of the multiple instruction parallel issue management unit and the multiple
instruction parallel execution management unit, for the purpose of the
parallel decoding, the parallel issuing and the paralle]l execution of a

plurality of instructions.

10

15

20

25

For example, consider a microprocessor using the prior art
superscalar based on the prior art superscalar technology and constructed
to issue three instructions in parallel and to execute and complete the
three instructions in parallel. The microprocessor having the
comparators of the number required in this scale, is actually
manufactured and used, although the design is considerably complicated.
In this case, the number of the not-yet-issued instruction entries 2501 in
the multiple instruction parallel issue management unit is required to be at
least 8, and the number of the executed instruction entries 2601 in the
multiple instruction parallel execution management unit, is required to be
at least 16. Therefore, the number of required comparators is 48 (=2 x 8
X 3) in the multiple instruction parallel issue management unit, and 144
(=3 X 16 x 3) in the multiple instruction parallel execution management
unit.

Furthermore, consider a microprocessor using the prior art
superscalar based on the prior art superscalar technology and constructed
to issue nine instructions (which are three times the number of
instructions processed in the above example) in parallel and to execute
and complete the nine instructions in parallel. In this case, in proportion
to the number of instructions issued and executed in parallel, it is
necessary to increase the number of the not-yet-issued instruction entries
2501 in the multiple instruction parallel issue management unit and the
number of the executed instruction entries 2601. For example, the
number of the not-yet-issued instruction entries 2501 is required to be at
least 24, and the number of the executed instruction entries 2601 is
required to be at least 48. Therefore, the total number of required

comparators is 432 (=2 x 24 x 9) in the multiple instruction parallel issue

-

10

15

20

management unit, and 1296 (=3 x 48 x 9) in the multiple instruction
parallel execution management unit.

As seen from the above, the number of the comparators in the
multiple instruction parallel issue management unit and the multiple
instruction parallel execution management unit has the nature of
increasing abruptly substantially in proportion to a square of the number
of instructions which are, in parallel, issued, executed and complete in
execution. Incidentally, the number of instructions executed in paralle],
the number of instructions executed in parallel and the number of
instructions completed in execution in parallel, are set to be same or the
substantially the same.

As described above, the microprocessor based on the prior art
superscalar technology, requires a large number of comparators in each
of the multiple instruction paralle] issue management unit and the multiple
instruction parallel execution management unit, in order to decode a
plurality of instructions in parallel, to issue a plurality of instructions in
parallel, and to execute a plurality of instructions in parallel. Because of
this large number of comparators and the control circuits therefor, the
multiple instruction parallel issue management unit and the multiple
instruction parallel execution management unit in the MIiCroprocessor
based on the prior art superscalar technology, are not only extremely
complicated in construction but also large in circuit scale.

In addition, since a large amount of comparing operations are
executed simultaneously in parallel, a large amount of electric power is
consumed.

Furthermore, since the number of the comparators in the multiple

instruction parallel issue management unit and the multiple instruction

-9.

10

15

20

25

paralle] execution management unit has the nature of increasing abruptly
substantially in proportion to a square of the number of instructions
which are, in parallel, issued, executed and complete in execution, if
attempt is made to elevate the degree of parallelism in processing, the
degree of complication in the control circuits and in wiring also abruptly
increases with increase of the number of the comparators, and the delay
time correspondingly increases. These problems are a serious problem in
improving the architecture of the microprocessor using the superscalar
technology, and in elevating the degree of parallelism in processing.
Elevation of the degree of parallelism in processing is the most
important factor in increasing the processing performance of the
microprocessor using the superscalar technology. However, because of
the above mentioned reason, it was difficult to manufacture a processor

capable of executing ten or more instructions in parallel.

Accordingly, it is an object of at least the preferred embodimentsof
the present invention to provide a
multiple instruction parallel issue management unit and a multiple
instruction parallel execution management unit, which has overcome the
above mentioned defects of the conventional ones.

Another such object is to provide a multiple
instruction parallel issue management unit and a multiple instruction
parallel exeCution management unit, which are constructed with no
comparator, and therefore, which are simple in circuit construction, small
in circuit scale, and also small in electric power consumption.

Still another ~ such object ~ 'is to provide a multiple

instruction parallel issue/execution management unit capable of

-10 -

10

15

20

25

simultaneously decoding, issuing and executing ten or more instructions

in parallel.

Accordingly, the present invention provides a multiple instruction parallel

issue/execution management system incorporated in a superscalar type
Processor for dynarﬁjcallyissums" and executlmg a plurality of
instructions in parallel, the system including a forward map buffer for
storing forward map information indicating whether or not a result value
generated by execution of a given instruction is used as in input operand
other instructions, the forward map information being stored in a
predetermined field of an instruction format, the forward map buffer
- storing the forward map information for the result value
before the result value corresponding to the given instruction is actually
generated, so that when the result value corresponding to the given
instruction is actually generated, an operand using the result value is
specified by using the previously stored forward map information
corresponding to the result value, and supplied to an instruction using the
result value as the input operand.
The above and other objects, features and advantages of the present
invention will be apparent from the following description of preferred
embodiments of the invention with reference to the accompanying

drawings.

Brief Description of the Drawings

Fig. 1 is a block diagram of an overall structure of 2 processor in
accordance with a first embodiment:

Figs. 2A and 2B illustrate two examples of forward map

information used in the first embodiment;

- 11 -

in

10

15

20

25

Figs. 3A, 3B and 3C illustrate three instruction formats used in the
first embodiment ; ,

Figs. 4A and 4B illustrate a relation between a unidirectional
relative input operand number and a relative instruction number, used in
the first embodiment ; _

Figs. SA and 5B illustrate a relation between a bidirectional relative
input operand number and a relative instruction number, used in the first
embodiment ;

Fig. 6 is a block diagram of the multiple instruction parallel

issue/execution management unit in accordance with the first embodiment ;

Fig. 7 illustrates, in a simplified form, an internal structure of the
multiple instruction parallel issue/execution management unit in
accordance with the first embodiment;

Fig. 8 shows abbreviations indicated by the values stored in the
issue flags used in the first embodiment, and
corresponding meanings;

Fig. 9 shows abbreviations indicated by the values stored in the
execution flags used in the first embodiment, and
corresponding meanings;

Fig. 10 illustrates examples of the pipeline operation timing, in the

processor in accordance with the first embodiment;
Fig. 11 illustrates an example of the pipeline operation timing of

the multiple instruction paralle] issue/execution management unit in

accordance with the first embodiment; =

12 -

-

10

15

25

Figs 12A, 12B and 12C illustrate three cases of the pipeline
operation timing in the processor in connection with two instructions
having a data dependency on the register, for explaining an operation of
the multiple instruction parallel issue/execution management unit in
accordance with the first embodiment ;

Fig. 13 illustrate examples of instruction code strings used in the
multiple instruction parallel issue/execution mapnagement unit in
accordance with the first embodiment ;

Fig. 14 illustrates the values of registers in the register file used in
the multiple instruction parallel issue/execution management unit in
accordance with the first embodiment ;

Fig. 15 illustrates the pipeline operation timing in the processor in
the case of the instruction code string shown in Fig. 13;

Fig. 16 illustrates the operation of the multiple instruction parallel
issue/execution management unit in accordance with the first embodiment,

in the case of t=1;

Fig. 17 illustrates the operation of the multiple instruction parallel
issue/execution management unit in accordance with the first embodiment,

in the case of t=2;

Fig. 18 illustrates the operation of the multiple instruction parallel
issue/execution management unit in accordance with the first embodiment,

.1n the case of t=3;

Fig. 19 illustrates the operation of the multi;)ic instruction parallel

issue/execution management unit in accordance with the first embodiment,

in the case of t=4;

- 13-

10

15

Fig. 20 illustrates the operation of the multiple instruction parallel
issue/execution management unit in accordance with the first embodiment ,

in the case of t=5;

Fig. 21 illustrates the operation of the multiple instruction parallel
issue/execution management ugit in accordance with the first embodiment ,

in the case of t=6;

Fig. 22 illustrates the operation of the multiple instruction parallel
issue/execution management unit in accordance with the first embodiment

in the case of t=7;

Fig. 23 illustrates the operation of the multiple instruction parallel
issue/execution management unit in accordance with the first embodiment,

_in the case of t=8;

Fig. 24 illustrates the operation of the multiple instruction parallel

issue/execution management unit in accordance with the first embodiment,
_ in the case of t=9;

Fig. 25 illustrates an example of the forward map buffer in the
multiple instruction parallel issue/execution management unit in
accordance with the first embodiment ;

Fig. 26 illustrates an example of the forward map prefetch buffer
in the multiple instruction parallel issue/execution management unit in
accordance with the first embodiment ;

Fig. 27 illustrates an example of the bypass map buffer in the
multiple instruction paralle]l issue/execution management unit in
accordance with the first embodiment;

Fig. 28 illustrates the construction of the imstruction registration

entry in the instruction registration buffer in the multiple instruction

- 14 -

10

15

20

25

parallel issue/execution management unit in accordance with the first

embodiment; .
Fig. 29 is a block diagram of the multiple instruction parallel

issue/execution management unit in accordance with a second embodiment ,

Fig. 30 is a block diagram illustrating a fundamental construction
of the prior art multiple instruction parallel issue/execution management
unit; and

Fig. 31, there is shown a block diagram illustrating a fundamental
construction of the prior art multiple instruction parallel execution

management unit.

Description of the Preferred embodiments

Now, embodiments of the present invention will be described with
reference to the drawings. In the following description, the multiple
instruction parallel issue management unit and the multiple instruction
parallel execution management unit will be considered as a whole as one
unit, which will be called a "multiple instruction parallel issue/execution
management unit”

Referring to Fig. 1, there is shown a block diagram of an overall

structure of the processor in accordance with a first embodiment.

The shown processor is designated with Reference Numeral 10, and
comprises an instruction fetch/decode unit 11, an instruction cache
memory 18, a multiple instruction parallel issue/execution management
unit 12, a register file 13, a memory access unit 14, arithmetic and logic
units (ALU) 15, a data cache memory 16 and a result bus 17, which are

coupled as shown.

- 15 -

10

15

20

25

Although one memory access unit 14 and two arithmetic and logic
units 15 are shown, an arbitrary number of memory access units and an
arbitrary number of arithmetic and logic units can be provided. In
addition, when a plurality of arithmetic and logic units 15 are provided, it
is possible to adopt such a construction that the plurality of arithmetic and
logic units 15 has different internal constructions to perform different
operations. In the shown embodiment, one memory access unit 14 and
two arithmetic and logic units 15 are provided to be able to execute three
instructions at maximum in parallel. In addition, the instruction cache
memory 18 and the data cache memory 16 are not indispensable, and
therefore, the processor 10 can be coupled to access directly to an
external memory. The register file 13 internally includes a plurality of
registers 135. In the shown embodiment, the register file 13 internally
includes eight registers 135

The multiple instruction parallel issue/execution management unit
12 includes a decode information input terminal 121, a register file
writing terminal 123, a register file reading data terminal 124, three
instruction issuing terminals 125-1, 125-2 and 125-3, and a result input
terminal 126, as shown.

In the processor 10 shown in Fig. 1, the instruction cache memory
18 stores a strings of instructions arranged in the order of instruction
addresses. The processor 10 executes the instruction string in the order
of instruction adcifesses, except for the situation that a branch is executed
for a branch instruction. When the branch is executed for the branch
instruction, the processor processes an instruction string starting a branch

destination address designated by the branch instruction. In the

-16 -

10

15

20

25

following, the predetermined processing order of the instruction string as
mentioned above will be called a "program sequence”.

The instruction fetch/decode unit 11 simultaneously fetches a
plurality of instructions arranged in the instruction address order, from
the instruction cache memory 18. The instruction fetch/decode unit 11
decodes the plurality of instructions to designate the kind of the operation
and the registers 135 in which the reading/writing is performed. For
simplification of the description, it is assumed that one instruction
executes to write the result value into one register 135 at maximum
within the register file 13, and similarly, one instruction executes to read
input operands from two registers 135 at maximum within the register
file 13. In the shown embodiment, the instruction fetch/decode unit 11
can decode three instructions at maximum in parallel.

As regards the three decoded instructions, the instruction
fetch/decode unit 11 transfers a decoded instruction code (called an
“instruction code information"), information of the register 135 to be
written (called a "register write information”), and forward map
information, through the decode information input terminal 121 to the
multiple instruction parallel issue/execution management unit 12.
Information concerning the instructions supplied from the instruction
fetch/decode unit 11 to the multiple instruction parallel issue/execution
management unit 12 and held in the multiple instruction parallel
issue/execution management unit 12, —\;lill be called an “instruction
operation information”. In addition, the instruction fetch/decode unit 11
supplies the register write information and a register read information
(information of the register 135 to be read out), to the register file 13.

The forward map information will be described later.

-17 -

10

15

20

25

The multiple instruction parallel issue/execution management unit
12 temporarily stores in the instruction operation information concerning
the plurality of instructions transferred through the decode information
input terminal 121 from the instruction fetch/decode unit 11, Here, the
instruction which is stored in the multiple instruction parallel
issue/execution management unit 12 and which has not yet been issued to
the memory access unit 14 or the arithmetic and logic unit 15, is called a
‘not-yet-issued instruction". The multiple instruction parallel
issue/execution management unit 12, selects from the not-yet-issued
instructions, a plurality of instructions which are issuable because
necessary input operands are already complete, and then, simultaneously
issues the selected plurality of instructions through the instruction issue
terminals 125 to the memory access unit 14 and the arithmetic and logic
units 15. In this embodiment, the multiple instruction parallel
issue/execution management unit 12 can simultaneously issue three
instructions at maxirnum.

Here, the memory access unit 14 is used in a load/store 1gstruction
or when any instruction using a variable in the memory as an input
value/output value is executed. The memory access unit 14 access the data
cache memory 16. The arithmetic and logic units 15 processes an
arithmetic and long operation and a branch instruction. The memory
access unit 14 and the arithmetic and logic units 15 output the result value
(which are the result of the processing of a given instructions) to the
result bus 17.

The multiple instruction parallel issue/execution managernent unit
12 internally holds not only the instruction operation information

concerning the not-yet-issued instructions, but also the instruction

- 18 -

10

15

20

25

operation information concerning the instructions each of which has
already been issued but is under execution (called an "under-execution
instruction) and the instructions each of which has been already executed
but has not yet been decided (called a "not-yet-decided instruction). In
other words, the multiple instruction parallel issue/execution management
unit 12 internally holds the information of all instructions which have
already been decoded but for which the result value has not been decided.

The multiple instruction parallel issue/execution management unit
12 receives through the result value input terminal 126 the result values
of three executed instructions at maximum supplied through the result bus
17, and internally temporarily holds the result values until the result
values have been decided. If the result values have been decided, the
multiple instruction parallel issue/execution management unit 12 writes
these result values through the register file write terminal 123 to the
register file 13. The result value in a not-yet-decided condition is called a
"not-yet-decided result value". The not-yet-decided result value is not
written into the register 13 and is held in the multiple instruction parallel
issue/execution management unit 12.

In the processor 10, issuing and execution of instructions are
performed after all necessary operands are complete. Therefore, there
may be a case that the instructions are issued and executed in the order
different from the program order of the instructions. When the
instructions have been executed in the order different from the proéfam
order, it is said that the execution and the result value of the instruction
have not yet been decided. In other words, the fact that a given
instruction has been decided or the result value of a given instruction has

been decided, means that the execution of the given instruction is

-19 -

10

15

25

completed, and the execution of all instructions to be executed before the
given instruction in the program sequence has been completed, so that the
execution and the result value of the given instruction can no longer be
revoked for various reasons including an interrupt, an exception and an
branch prediction failure.

When a given instruction designates the register 135 in the register
file 13 as an input operand, the multiple instruction parallel
issue/execution management unit 12 receives the data read out from the
designated register 135, through the register file reading data terminal
124. In addition, for any instruction, the multiple instruction parallel
issue/execution management unit 12 selects a plurality of not-yet-issued
instructions requiring the result value of the instruction, in accordance
with the forward map information which will be described later, and
executes an operation of forwarding the result value to the plurality of
not-yet-issued instructions. The multiple instruction parallel
issue/execution management unit 12 investigates whether or not all
necessary input operands for each instruction will be complete, by
reading from the register file 13 and forwarding the not-yet-decided
result value, and determines that the instruction, all pecessary input
operands for which will be complete, is issuable.

In the shown embodiment, in each instruction there is previously
designated an input operand using the result value of the instruction. The __
designation of the input operand is realized by having the forward map
information in the inside of each instruction generating the result value.
The multiple instruction paralle] issue/execution management unit 12
shown in Fig. 1 manages the multiple instruction paralle] issue/execution

management on the basis of this forward map information.

- 20 -

10

15

20

Figs. 2A and 2B illustrate two examples of the forward map
information. Here, the forward map information is information
indicating which of succeeding instructions uses the result value of an
instruction as an input operand. An example of the forward map
information shown in Fig. 2A is called an "input operand designating
type", and an example of the forward map information shown in Fig. 2B
is called an "instruction designating type".

The input operand designating type forward map information
shown in Fig. 2A is constituted by arranging "D" items of one-bit
information. Here, "D" is an arbitrary positive integer, and indicates the
maximum number of the input operands for which the forward map
information can be designated. In the shown example, D=10, and when
the value of a (d)th bit counted from a rightmost bit in the forward map
information is “1", it indicates that an input operand of a relative input
operand number "d" viewed from the instruction designating the forward
map information, uses the result value of the same instruction. To the
contrary, when the value of the (d)th bit counted from the rightmost bit
in the forward map information is "Q", it indicates that the input operand
of the relative input operand number "d" viewed from the instruction
designating the forward map information, does not use the result value of
the same instruction. The relative input operand number will be
described later. _ |

The input operand designating type forward map information will
be described with reference to Fig. 2A. In the example shown in Fig. 2A,
the bits at the positions corresponding to the input operands of the relative
input operand numbers "3", "5" and "7" are 1", and the other bits are

"0". Accordingly, the forward map information indicates that the result

-21 -

10

15

20

25

value of the instruction containing the forward map information is used
by the input operand of the relative input operand numbers “3", "5" and
"7", but not used by the input operands of the other relative input operand
numbers.

The instruction designating type forward map information shown in
Fig. 2B is constituted by arranging "pxD" items of one-bit information.
Here, "D" is an arbitrary positive integer, and indicates the maximum
number of the input operands for which the forward map information can
be designated. "p" is an arbitrary positive integer, and indicates the
maximum number of the input operands which can be taken by the
arbitrary instruction. In the shown example, D=10 and p=2, and when
the value of a (pxd+q)th bit counted from a rightmost bit in the forward
map information is "1", it indicates that a (q)th input operand in a relative
input operand number "d"” viewed from the instruction designating the
forward map information, uses the result value of the same instruction.
To the contrary, when the value of the (pxd+q)th bit counted from the
rightmost bit in the forward map information is "0", it indicates that the
(@)th input operand in the relative input operand number "d" viewed
from the instruction designating the forward map information, does not
use the result value of the same instruction. The relative instruction
number will be described later.

The instruction designating type forward map information will be
described with reference to Fig. 2B. In the example shown in Fig. 2B,
the 2-bit forward map information corresponding to the respective
instructions are partitioned by "I". In Fig. 2B, for simplification of
explanation, two bits corresponding to each one instruction are

distinguished from each other by giving character labels "L" and "R".

-22-

10

15

20

25

This labeling corresponds to the fact that, since two input operands exist
at maximum for each instruction, the two operands are called a "left input
operand” and a "right input operand”, respectively.

In the shown example, the bits at the positions corresponding to the
input operands "R", "L" and "R" in the relative instruction numbers "5",
"7" and "9" are "1", and the other bits are "0". Accordingly, the forward
map information indicates that the result value of the instruction
containing the forward map information is used by the right input
operand, the left input operand and right input operand in the instruction
of the relative instruction numbers "S", "7" and "9", but not used by the
other input operands of the other instructions.

As mentioned above, the forward map information used in the
preferred embodiment makes it possible to designate a plurality of input
operands using the result value of the instruction concerned.

~ Figs. 3A, 3B and 3C illustrate the instruction formats used in the
preferred enbodiment. As regards the arithmetic operation instruction and the
memory access instruction, Figs. 3A, 3B and 3C illustrate three
instruction formats including the forward map information.

The instruction format shown in Fig. 3A includes the forward map
information in addition to the fields which have existed in the prior art
instruction format of the arithmetic operation instruction and the memory
access instruction, and which designate an instruction code, a result value
register, a left operand register and a right operand register, respectively.
The instruction code field indicates the kind of the instruction to be
executed, and the result value register indicates the register number of the
register in which the result value is to be written (called a "result value

register” hereinafter). The left operand register field indicates the

-23 .

10

15

20

25

register number of the register from which the left operand is to be read
out (called a "left operand register" hereinafter), and the right operand
register field indicates the register number of the register from which the
right operand is to be read out (called a "right operand register”
hereinafter). In the forward map information field, there is stored the
above mentioned forward map information, namely, information
concerning which of input operands of succeeding instructions uses the
result value of the instruction concerned. This forward map information
can be easily obtained by investigating, in instruction strings using the -
prior art instruction format, which of left and right input operands of
which succeeding instructions uses the result value of the instruction
concerned.

As mentioned above, the multiple instruction parallel
issue/execution method in the first embodiment uses the forward map
information to directly give the result value of some instruction to an
input operand of other instructions. Therefore, by designating the
forward map information, there exist many cases in which it is no longer
necessary to designate the result value register and the left operand
register or the right operand register. In these cases, the corresponding
field in the shown instruction format is made blank.

The instruction format shown in Fig. 3B is different from the

instruction format shown in Fig. 3A in that a field for a forward map

- information extension flag is added. When it is unnecessary to designate

the result value register and the left operand register or the right operand
register as in the above mentioned case, this forward map information
extension flag is used to store the forward map information into the black
field and therefore to efficiently utilize the blank field. Namely, the

-24 -

10

15

20

forward map information extension flag indicates whether the result
register field, the left operand register field and the right operand
register field designate the result register, the left operand register and
the right operand register, reSpectivéIy, or alternatively stores the
forward map information. Incidentally, although not shown, in an
alternative embodiment, when it is unnecessary to designate the result
value register and the left operand register or the right operand register,
it is possible to omit the unnecessary field(s) to realize a variable length
instruction format.

In the instruction format shown in Fig. 3C, each of the arithmetic
operation instruction and the memory access instruction is constituted of
two fields designating the instruction code and the forward map
information, respectively. In this shown example of the instruction
format, namely, the result value register, the left operand register and the
right operand register are not designated. The instruction of this
instruction format receives all the input operands by receiving the result
values of other instructions by means of designation of the forward map
information, and supplies all the result value generated as the result of
execution of the instruction concerned to input operands of other
instructions by means of designation of the forward map information in
the instruction concerned.

In the example of this instruction format, a register access
instruction is provided as another instruction type. This register access
instruction is constituted of three field designating the instruction code,
the register and the forward map information, and is used for writing
into the register or reading from the register. When some value is read

out from the register, an input operand of another instruction using the

=25 -

10

15

25

read-out value is designated by the forward map information. In the
example of this instruction format, all of register accesses are realized by
the register access instruction.

In the above description, a conditional branch instruction and a
non-conditional branch instruction are not described. Since these
instructions generates no result value, it is sufficient if the branch
destination address are stored in the forward map information field and
the result value field of the instruction format for the arithmetic
operation instruction.

Figs. 4A and 4B and Figs. 5A and 5B illustrate a relation between
the relative input operand number and the relative instruction number,
used in the first embodiment. - Figs. 4A and 4B
illustrate a unidirectional type of the relative input operand number and
the relative instruction number, and Figs. 5A and 5B illustrate a
bidirectional type of the relative input operand number and the relative
instruction number.

Here, the unidirectional type means to number from an instruction
next to a given instruction or from input operands of the instruction next
to the given instruction, in‘ the order of instruction addresses. On the
other hand, the unidirectional type means to number from an instruction
located before a given instruction in the order of instruction addresses, or
from input operands of the before-located instruction, in the order of
instruction addresses. In 4A and 4B and Figs. 5A and 5B, squares
indicate instructions, and circles indicates operands of instructions. The
number indicated in a circle indicates the bit position within the forward
map information designating the corresponding input operand. In the

case that the relative input operand number is used, the bit position within

- 26 -

10

15

20

25

the forward map information designating some input operand is consistent
with the relative input operand number of the same operand.

In the unidirectional type of the relative input operand number
shown in Fig. 4A, the relative input operand numbers are allocated, in
accordance with the order of instruction addresses, from a right input
operand of an instruction next to the given instruction, to a left input
operand of the instruction next to the given instruction, to a right input
operand of an instruction next to the instruction next to the given
instruction, and then to a left input operand of the instruction next to the
instruction next to the given instruction. Therefore, when the relative
input operand number is used, the bit position within the forward map
information designating a respective input operand corresponds to the
relative input operand number of the same operand.

In the unidirectional type of the relative instruction number shown
in Fig. 4B, the relative instruction numbers are allocated, in accordance
with the order of instruction addresses, from an instruction next to the
given instruction, to an instruction next to the instruction next to the
given instruction. This relative instruction numbers are indicated within
the squares, respectively. When the relative instruction number is used,
the bit position within the forward map information designating a
respective input operand, is calculated for example as shown in Fig. 4B.
As shown in Fig. 4B, in the forward map information designated by using
the relative instruction numbe_r; when the number of the input operand(s)
is smaller than the maximum operand number which can be taken in an
arbitrary instruction, not-used bit positions are generated in the forward
map information. In the shown example, the third and fifth bit positions

correspond to no input operand.

227 .-

10

15

20

25

In the bidirectional type of relative input operand number shown in
Fig. 5A, the relative input operand numbers are allocated, in accordance
with the order of instruction addresses, by considering as a starting point
instruction an instruction located before a given instruction in the order
of instruction addresses, from a right input operand of the starting point
instruction, to a left input operand of the starting point instruction, to a
right input operand of an instruction next to the starting point instruction,
and then to a left input operand of the instruction next to the starting
point instruction. When the relative input operand number is used, the bit
position within the forward map information designating a respective
input operand corresponds to the relative input operand number of the
same operand.

In the bidirectional type of relative instruction number shown in
Fig. 5B, the relative instruction numbers are allocated, in accordance with
the order of instruction addresses, by considering as a starting point
instruction an instruction located before a given instruction in the order
of instruction addresses, from the starting point instruction, to an
instruction next to the starting point instruction, and then to an instruction
next to the instruction next to the starting point instruction. This relative
instruction numbers are indicated within the squares, respectively. When
the relative instruction number is used, the bit position within the forward
map information designating a respective input operand, is calculated for
example as shown in Fig. 5B. Similarly, in the forward map information
designated by using the bidirectional type of relative instruction number,
when the number of the input operand(s) is smaller than the maximum
operand number which can be taken in an arbitrary instruction, not-used

bit positions are generated in the forward map information.

-28 -

10

15

20

25

As mentioned above, when the relative input operand number is
used, all the bits within the forward map information correspond to input
operand numbers. On the other hand, when the relative instruction
number is used, there is a case in which bits corresponding to no input
operand exist in the forward map information. From a viewpoint of a
recording density, the relative input operand number is more efficient,
but the relative instruction number is more excellent in the point that it is
easy to understand correspondence between the instruction and the input
operand number. In the following description, explanation will be made
on only cases in which the relative instruction number is used.

In addition, in the forward map information using the
unidirectional type relative instruction number and relative input operand
number, it is possible to have only the forward map information for input
operands in instructions succeeding to the given instruction in the order
of instruction addresses. On the other hand, in the forward map
information using the bidirectional type relative instruction number and
relative input operand number, it is possible to have the forward map
information for input operands in instructions preceding and succeeding
to the given instruction in the order of instruction addresses. This is
advantageous when the program sequence is different from the order of
instruction addresses by for example a branch instruction jumping to an
instruction before the branch instruction in the order of instruction
addresses, because it is possible to have the forward map information in
accordance with the program sequence. In any case, which is used, can be
set for each instruction independently of other instructions. In the
following description, explanation will be made on only the unidirectional

forward map information.

-29 .

10

15

20

25

The multiple instruction parallel issue/execution management
method in accordance with the preéent invention is realized with the
multiple instruction parallel issue/execution management unit 12 shown in
Fig. 1, by using the instruction format including the forward map
information as explained with reference to Figs. 2A to 5SB. The units
included in the processor 10 other than the multiple instruction parallel
issue/execution management unit 12 are the same as those included in a
processor based on the prior art superscalar technology, and further
explanation thereof will be omitted. In the following, therefore, the
multiple instruction parallel issue/execution management unit 12 will be
described.

Referring to Fig. 6, there is shown a block diagram illustrating the
construction of the multiple instruction parallel issue/execution
management unit 12 in the first embodiment , As
shown in Fig. 6, the multiple instruction parallel issue/execution
management unit 12 includes an instruction registration buffer 1200, a
forward map buffer 1210, a bypass map buffer 1220, a result value
registration buffer 1230, an instruction issuing buffer 1240, an
instruction issuing control unit 1250, an instruction execution control unit
1260, a operand forwarding control unit 127 and a shifter 1280, coupled
as shown.

Fig. 7 illustrates, in a simplified form, an internal structure of the_.
instruction registration buffer 1200, the forward map buffer 1210, the
result value registration buffer 1230, the instruction issuing buffer 1240,
and the instruction issuing control unit 1250, for illustrating an operation
of the multiple instruction parallel issue/execution management unit in

accordance with the first embodiment. In Fig. 7,

-30-

10

IS5

20

25

for the purpose of making it easier to understand the operation, external
and internal connection of respective blocks are omitted. In the
following, the construction and the operation of the multiple instruction
paralle] issue/execution management unit 12 will be described.

The instruction registration buffer 1200 holds the instruction code
information and the two input operands of each of the not-yet-issued
instructions, the under-execution instructions and the not-yet-decided
instructions. As shown in Fig. 7, the instruction registration buffer 1200
is constituted by arranging "N" instruction registration entries 1205 in N
columns. Here, "N" is a total number of the not-yet-issued instructions,
the under-execution instructions and the not-yet-decided instructions,
whose instruction operation information can be held in the multiple
instruction parallel issue/execution management unit 12. In the example
shown in Fig. 7, N=10.

In the instruction registration buffer 1200, the instruction operation
information is registered in the instruction registration entries 1205 in the
order of instructions decoded in accordance with the program sequence of
the instructions. In Fig. 7, the numbers given to ome column of
instruction registration entry 1205 is so that a smaller number means an
instruction at an early position in the program sequence. However, when

the instruction operation information is registered until a 10th column

_instruction registration entry 1205, a next instruction operation

information is cyclically registered until a first column instruction
registration entry 1205. In the following, an "x"th instruction indicates an
instruction stored at the "x"th column instruction registration entry 1205.
In addition, when in the instruction registration buffer 1200 there is no

lostruction registration entry 1205 which can register a new instruction

-31 -

10

15

20

25

operation information, the instruction fetch/decode unit 11 stops
supplying of the instruction operation information.

Each one instruction registration entry 1205 comprises an
instruction code part 1202, a left operand part 1203 and a right operand
part 1204. The instruction code part 1202 stores the instruction code, and
the left operand part 1203 and the right operand part 1204 stores two
operands at maximum for each one instruction. When only one input
operand is used, the left operand part 1203 is used to store the input
operand.

The instruction registration buffer 1200 includes instruction
registration entry designation input terminals 1201, an instruction code
registration terminal 1206, an instruction output terminal 1207, an
operand forward input terminal 1208, and a register operand input
terminal 1209. The instruction registration entry designation input
terminals 1201 include "N" instruction registration entry designation
input terminals 1201 corresponding to the "N" instruction registration
entries 1205.

The forward map buffer 1210 stores the forward map information
designated in the instruction as mentioned above. The forward map
buffer 1210 is constituted of forward bits 1215 arranged in the form of a
square matrix of NxN. Here, "N" is the maximum number of the
instructions which can be held in the multiple instruction parallel
issue/execution management unit 12. In the example shown in Fig. 7,
N=10 as mentioned above. As shown in Fig. 7, one row of forward bits
1215 is called a forward source entry 1216.

This forward source entry 1216 stores the forward map

information in each instruction. One forward source entry 1216 stores

-32.

10

15

25

the two-bit forward map information indicating dependency between one
result value and an input operand of a certain instruction. The number of
forward bits in the forward source entry 1216, namely, "N", must be
larger than the number of succeeding instructions which can be designated
by the forward map information in each instruction, namely, "D*
mentioned above.

A "y"th row forward source entry 1216 holds the forward map
information of the "y"th instruction held in the multiple instruction
paralle] issuc/execution.management unit 12. Here, assume that the
two-bit information at the "x" column and at the "y” row is "ab". Each of
"a" and "b" is one-bit information. If “a"is "1, it means that the result
value of the "y"th instruction is used as a left operand of the "x"th
instruction, and if "a" is "0", it is not used. In addition, if "b" is "1%, it
means that the result value of the "y"th instruction is used as a right
operand of the "x"th instruction, and if "b" is "0", it is not used. For
example, when the flag at the position of y=7 and z=5 is "1 1", it means
that the result value of the 5th instruction is used as a left operand and a
right operand of the 7th instruction.

As will be described later, the forward map information stored in
the forward map buffer 1210 is used for realizing a function of
transferring the not-yet-decided result value to the input operand of the
not-yet-issued instruction._ ~This function is called an "operand forward".
The operand forward indicates an gﬁeration of writing a desired
not-yet-decided result value into the left operand part 1203 and the right
operand part 1204 of the instruction registration entry 1205 storing the

not-yet-issued instruction.

-33 .-

10

15

20

25

The forward map buffer 1210 includes forward map
registration/output control terminals 1211, forward map output/issue flag
input terminals 1212, and forward map registration terminals 1213. The
forward map registration/output control terminal 1211, the forward map
output/issue flag input terminal 1212, and the forward map registration
terminals 1213 respectively include "N" terminals corresponding to the
forward bits 1215 of the N rows and the N columns.

The bypass map buffer 1220 is constituted of bypass bit parts of J
rows and K columns. Here, "J" indicates the number of instructions,
execution of which are simultaneously completed, and K" shows the
number of instructions which can be issued simultaneously. In the
example shown in Fig. 7, J=3 and K=3. This corresponds to the
construction of the processor 10 shown in Fig. 1. Each of the bypass bit
parts 1225 stores two-bit information indicating whether or not the
not-yet-decided result value is bypassed to the left and right input
operands of the instruction issue entry 1245 in the instruction 1ssue buffer
1240. One row of the bypass bit parts 1225 is called a "bypass source
entry” 1226.

The respective bypass source entries 1226 in the bypass map buffer
1220 correspond to the result values generated in the memory access unit
14 and the arithmetic and logic units 15 and 15, respectively. For
example, in the example shown in Fig. 7, a first row bypass source entry
1226 corresponds to the result value generated in the memory access unit
14 shown in Fig. 1, and a second row bypass source entry 1226
corresponds to the result value generated in the arithmetic and logic unit
15 positioned adjacent to the memory access umit 14 in Fig. 1. A third

row bypass source entry 1226 corresponds to the result value generated in

-34-

10

15

20

the arithmetic and logic unit 15 positioned at a right side in Fig. 1. Each
column in the bypass map buffer 1220 corresponds to a column of
instruction issue entries 1245, at the same column position, in the
instruction issuing buffer 1240. Therefore, if the bypass bit part 1225 at
the second row and at third column is "10" as shown in Fig. 7, it means
that the result value generated in the arithmetic and logic unit 15
positioned adjacent to the memory access unit 14 in Fig. 1, is bypassed to
the left operand part 1243 of the instruction at the third column
instruction issue entry 1245 in the instruction issue buffer 1240. The
operand bypass operation will be described later.

The bypass map buffer 1220 includes a bypass map
registration/output control terminal 1221, a bypass map output terminal
1222, and a bypass map registration terminal 1223. The bypass map
output terminal 1222 includes "K" terminals, and the bypass map
registration terminal 1223 includes "J" terminals.

The result value registration buffer 1230 stores the not-yet-decided
result values of the "N" instructions held in the multiple instruction
parallel issue/execution management unit 12 | The result value
registration buffer 1230 includes "N" result value registration entries
1235, and a "y"th result value registration entry 1235 stores the result
value corresponding to the "y"th instruction. Each result value
registration entry 1235 includes a result value part 1232 for actually
holding the result value, an execution flag part 1231 for stoHng an
execution flag indicative of an execution condition of each instruction,
and a register number part 1233.

The result value registration buffer 1230 includes a write register

designation terminal 1234, result value registration entry designation

-35 -

10

15

20

25

input terminals 1239, a result value registration terminal 1236 and a
result value output terminal 1237. The result value registration entry
designation input terminals 1239 include "N” terminals.

The instruction issuing buffer 1240 temporarily holds the
not-yet-issued instructions which can be issued in a next operation cycle.
The instruction issuing buffer 1240 includes instruction issuing entries
1245 of "K" columns corresponding to the number of instructions which
can be issued simultaneously. In the example shown in Fig. 7, the
instruction issuing buffer 1240 includes three instruction issuing entries
1245, to correspond to the processor 10 shown in Fig. 1. Each
instruction issuing entry 1245 includes the instruction code part 1242, the
left operand part 1243 and the right operand part 1244, which
temporarily stores the instruction code information, the left operand and
the right operand of the instruction to be issued.

Respective instruction issuing entries 1245 of the instruction issue
buffer 1240 correspond to the memory access unit 14 and the arithmetic
and logic units 15 and 15, respectively, to which the respective
instructions are to be supplied. For example, in the example shown in
Fig. 7, a first column instruction issuing entry 1245 holds the instruction
to be issued to the memory access unit 14 shown in Fig. 1, and a second
column instruction issuing entry 1245 holds the instruction to be issued to
the arithmetic and logic unit 15 positioned adjacent to the memory access
unit 14 in Fig. 1. A third column instruction issuing entry 1245 holds the
instruction to be issued to the arithmetic and logic unit 15 positioned at a
right side in Fig. 1.

The instruction issue buffer 1240 includes a bypass map input

terminal 1241, an instruction issuing terminal 1246, an instruction

- 36 -

10

15

25

receiving terminal 1247 and an operand bypass input terminal 1248. The
bypass map input terminal 1241 includes "K" terminals.

The instruction issuing control unit 1250 controls the instruction
registration buffer 1200, concerning into which of the instruction
registration entries 1205 a new instruction is to be registered, into which
of the instruction registration entries 1205 the not-yet-decided result
value is to be forwarded as an operand, from which of the instruction
registration entries 1205 an instruction is to be transferred to the
instruction issue buffer 1240. The instruction issuing control unit 1250
internally comprises issue flag parts 1255 and a forward map prefetch
buffer 1258. The issue flag parts 1255 includes "N" flag parts, each of
which holds an issue flag indicative an issue condition of a corresponding
instruction registration .cntry 1205. The forward map prefetch buffer
1258 temporarily holds the information of the forward source entries
1216 corresponding to the "J" rows. Therefore, the forward map
prefetch buffer 1258 is composed of forward source entries 12586
arranged in "J" rows and each composed of "N" forward bit parts 12585.
Each of the forward bit parts 12585 temporarily stores the two-bit
content of the forward bit part 12135, as it is. Here, "J" is the maximum
number of instructions, execution of which can be completed
simultaneously. In the eXample shown in Fig. 7, J=3. The forward
source entries 12586 of the forward map prefetch buffer 1258
correspond to the result values of the memory access unit 14 and the two
arithmetic and logic units 15, respectively, similarly to the bypass source
entries 1226. This correspondence is determined to be similar to the

bypass source entries 1226 at the same row.

-37.

10

15

20

The instruction issuing control unit 1250 includes forward map
input/issue flag output terminals 1251, instruction registration entry
designation output terminals 1252, a control information input/output
terminal 1253, bypass map output terminals 1254, and an instruction
registration control terminal 1256. The forward map input/issue flag
output terminals 1251 and the instruction registration entry designation
output terminals 1252 respectively include "N" terminals, and the bypass
map output terminals 1254 include "J" terminals.

The instruction execution control unit 1260 controls as to designate
the result value and the register number of which instruction is registered
into which result value registration entry 1235 in the result value
registration buffer 1230, to designate the result value of which result
value registration entry 1235 is decided, and to control the execution flags
in the execution flag parts 1231 of the respective result value registration
entries 1235. The instruction execution control unit 1260 includes result
value registration entry designation output terminals 1262, a control
information input/output terminal 1263, and an instruction execution
control terminal 1264. The result value registration entry designation
output terminals 1262 include "N" terminals.

The operand forwarding control unit 127 manages the registration
of the forward map information, and controls into which input operand
the not-yet-decided result value is forwarded. The operand forwarding
control unit 127 includes forward map registration/output indication
terminals 272, a control information input/output terminal 1273, a
forward map registration control terminal 1274, and a shift width
designation output terminal 1275. The forward map registration/output

indication terminals 272 include "N" terminals.

-38-

10

15

20

25

The shifter 1280 shifts the forward map information designated in
the instruction by a left cyclic shifting and by a "0" extension, and then,
causes the forward map information thus processed, to be stored in the
forward map buffer 1210. The shifter 1280 includes a forward map
input terminal 1281, forward map output terminals 1281 and a shift width
designation output terminal 1283,

The following summary indicates where an arbitrary instruction
("n"th instruction) whose instruction operation information is managed by
the multiple instruction parallel issue/execution management unit 12, is
stored.

(1) In the "n"th column instruction registration entry 1205, the
instruction code information and the left and right input operands are
stored.

(2) In the "n"th column issue flag part 1255, the issue flag is stored.

(3) In the "n"th row forward source entry 1216, the forward map
information is stored.

(4) In the "n"th row result value registration entry 12335, there are
stored the result value and the register number where the execution flag
and the result value are to be written.

In the following, all the above mentioned entries will be called in
combination, as an instruction operation information management entry
1290 for the "n"th instruction. For example, the instruction operation
information management entry 1290 shown in Fig. 7 is for a sixth
instruction. When the instruction fetch/decode unit 11 transfers the
instruction operation information for a plurality of instructions, to the
multiple instruction parallel issue/execution management unit 12, the

instruction operation information for the plurality of instructions are

-39.

10

15

25

written into a plurality of instruction operation information management
entries 1290. Basically, the instruction operation information
management entry 1290 having a smaller number corresponds to an early
instruction in the program sequence, but since the instruction operation
information management entries 1290 are cyclically used, the instruction
operation information next to the instruction operation information stored
into the "N"th column instruction operation information management
entry 1290, is stored into the first column instruction operation
information management entry 1290.

Fig. 8 illustrates the status taken by the issue flag stored in the issue
flag part 1255. The status of the issue flag of an "n"th column issue flag
part 1255 indicates the status concerning the issuing, of the "n"th
instruction stored in the "n"th instruction operation information
management entry 1290. The status designated by the issue flag
abbreviation "em" indicates that the corresponding instruction operation
information management entry 1290 is in an empty condition having no
effective instruction operation information. The status designated by the
abbreviation "-" indicates that the decoded instruction is received and
registered, but whether or not it is issuable has not yet been checked. The
status designated by the abbreviation “rd" indicates that all necessary input
operand are complete and the instruction is issuable. The status
designated by the abbreviation "wa" indicates that all necessary input
operand have not yet become complete and the instruction is not issuable.
The status designated by the abbreviation "is" indicates that the instruction
has already been issued.

Fig. 9 illustrates the status taken by the execution flag stored in the

execution flag part 1231. The status of the execution flag of an "n"th row

- 40 -

10

15

25

execution flag part 1231 indicates the status concerning the execution, of
the "n"th instruction stored in the "n"th instruction operation information
management entry 1290. The status designated by the execution flag
abbreviation "em" indicates that the corresponding instruction operation
information management entry 1290 is in an empty condition having no
effective instruction operation information. The status designated by the
abbreviation "ni" indicates that the corresponding instruction has not yet
been issued. The status designated by the abbreviation "ex" indicates that
the corresponding instruction has already been issued and is béing
executed by the memory access unit 14 or the arithmetic and logic unit
15. The status designated by the abbreviation "es” indicates that the
corresponding instruction has already been issued in a speculative
condition based on a branch prediction and is being executed by the
memory access unit 14 or the arithmetic and logic unit 15. The status
designated by the abbreviation "do" indicates that the execution of the
corresponding instruction has already been completed, and a
not-yet-decided result value is obtained. The status designated by the
abbreviation “"ds” indicates that the execution of the corresponding
instruction has already been completed in the speculative condition based
on the branch prediction, and a not-yet-decided result value is obtained.

When the issue flag corresponding to some instruction operation

information management entry 1290 is "em"”, a corresponding execution

flag is necessarily "em"”. If the issue flag assumes any of "-", "rd"” and
"wa", the corresponding execution flag is "ni". If the execution flag is
any of "ex", "ex”, "do" and "do", the corresponding issue flag is "is". By
comparing with definition of the not-yet-issued instruction, the

under-execution instruction and the not-yet-decided instruction, the

- 41 -

10

15

20

25

not-yet-issued instruction is an instruction whose 1issue flag assumes any of
".", "rd" and "wa". The under-execution instruction is an instruction

whose execution flag assumes any of "ex" and "es”, and the
not-yet-decided instruction is an instruction whose execution flag assumes
any of "do" and "ds". The result of execution of a given instruction is
decided when the condition of the given instruction is "do” and the
conditions of all the instructions fetched and decoded before the given
instruction in time are "do”. The conditions "es” and "ds" are changed
into "ex" and "do", respectively, when it has been found that the branch
prediction is correct, and the speculative condition is dissolved. If it has
been found that the branch prediction is not correct, all the
not-yet-decided result values of the under-execution instructions and the
not-yet-decided instructions after the branch prediction are canceled.

Fig. 10 illustrates examples of the pipeline operation timing, in the
processor 10 shown in Fig. 1. Fig. 10 shows, as an example, the most
basic pipeline timing for simplifying the following description. The
shown pipeline timing is based on a typical pipeline operation in the prior
art superscalar processor.

Fig. 10 illustrates that a memory access instruction operates in a
six-stage pipeline, and an arithmetic operation instruction and a branch
instruction operate in a five-stage pipeline. "IF" indicates a pipeline stage
for executing an instruction fetch, and "ID" indicates a pipeline stage for
-e-chuting an instruction decoding. "ID" indicates a pipeline stage for
executing an instruction dispatch, and "EX1" and "EX2" indicate a
pipeline stage for executing an operation. "WB" indicates a pipeline stage
for executing the writing back to the register or the memory. If the

instruction cannot be immediately issued, the DP stage is repeated in a

- 42 -

10

15

20

plurality of cycles. In addition, if a desired data does not exist in the data
cache memory 16, the EX1 stage is repeated in a plurality of cycles.

Fig. 11 illustrates how the operation of the multiple instruction
parallel issue/execution management unit 12 is executed in respective
pipeline stages. The related pipeline stages "ID", "DP", "EX2" and "WB"
are shown with being divided into a first half and a second half of the
cycle. In a second half of the ID stage, the instruction registration
operation is executed. In a first half of the DP stage, the operand
registration operation is executed, and in a second half of the DP stage,
the instruction issuing operation is executed. In a first half of the EX2
stage, the operand forwarding reserving operation is executed, and in a
second half of the EX2 stage, the operand bypassing operation is
executed. In a first half of the WB stage, the execution ending (or
completing) operation is executed, and in a second half of the WB stage,
the operand forwarding operation is executed.

Now, the operation of the multiple instruction parallel
issue/execution management unit 12 will be described with reference to
Figs. 6 to 11, with being divided into the above mentioned seven basic
operations, namely, the instruction registration, the operand registration,
the instruction issuing, the operand forwarding reserving, the operand
bypassing, the execution ending (or completing), and the operand
forwarding, separately. In the following description, these operations
concerning one given instruction will be described. However, in the
multiple instruction parallel issue/execution mapagement unit 12, a
plurality of instructions simultaneously cause the same or different
operations. In addition, it should be understood that, unless specially

noted, the forward map information and the instruction format of the

- 43 -

10

15

20

25

instruction including the forward map information are the same although
any construction is taken.

First, the instruction registration operation will be described. In
the instruction registration, the instruction operation information
concerning a plurality of instructions, transferred from the instruction
fetch/decode unit 11 through the decode information input terminal 121,
are stored in empty instruction operation information management entries
1290, respectively. The instruction issue control unit 1250, the
instruction execution control unit 1260 and the operand forwardiné
control unit 1270 respectively receive through the instruction registration
control terminal 1256, the instruction execution control terminal 1264
and the forward map registration control terminal 1274, an instruction as
to the number of instructions to be registered, and commonly have the
information concerning the empty instruction operation information
management entries 1290 through the control information input/output
terrninals 1253, 1263 and 1273. Thus, it is determined to arrange the
instruction operation information in the order in accordance with the
program sequence. Here, "empty” indicates that both the issue flag and
the execution flag are "em". The issue flag and the execution flag
corresponding to the registered instruction operation information
management entry 1290 become "-" and "ni", respectively.

As mentioned above, the instruction operation information
management entries 1290 are cyclically used. Namely, when one
instruction is registered in the 10th instruction operation information
management entry 1290, an instruction next to the one instruction in the
program sequence is registered in the first instruction operation

information management entry 1290. If there is no empty instruction

-44 -

10

15

20

25

operation information management entry 1290, the instruction
fetch/decode unit !l stops the transfer of the instruction operation
information.

As mentioned hereinbefore, the instruction operation information is
constituted of the instruction code information, the register writing
information and the forward map information. The instruction code
information is stored through the instruction code registration terminal
1206 to the instruction code part 1202 of the instruction code buffer
1200. The register writing information is stored through the write
register designation terminal 1234 to the register number part 1233 of the
result value registration buffer (register map buffer) 1230. The forward
map information is subjected to the left cyclic shifting and the "0"
extension by the shifter 1280, and then, is stored through the forward
map registration terminal 1213 into the forward source entry 1216 of the
forward map buffer 1210.

The width of the left cyclic shifting in the shifter 1280 is controlled
through the shift width control terminal 1283 by the operand forwarding
control unit 1270. For example, assuming that the forward map
information of a given instruction is to be registered in the "n"th row
forward source entry 1216, the forward map information is cyclically
shifted in a left direction by 2xn bits. Here, the left cyclic shifting means
that when the forward map information is overflowed from the left end
of the }orward source entry 1216, the overflowed po—fﬁon is set into the
right side of the forward source entry 1216. In the forward source entry
1216, a portion which is filled with the forward map information
obtained by the left cyclic shifting, is filled with the value "0". This is the

"0" extension.

- 45 -

10

15

20

25

The reason for executing the left shifting by the shifter 1280 as
mentioned above, is that the forward map information uses the relative
instruction number obtained from the given instruction. The reason for
setting the forward map information overflowed from the left end of the
forward source entry 1216, into the right side of the forward source
entry 1216, is that the instruction operation information management
entries 1290 are cyclically used. In addition, the reason for performing
the "0" extension, is that when the forward source entry 1216 can hold
the forward map information of the input operands in a range wider than
that covered by the forward map information designated in the
instruction, the operand forwarding is never conducted to the input
operand corresponding to the difference.

Incidentally, at the time of registering the forward map
information, if the forward map information is of the unidirectional type,
when the forward bit part 1215 in some column becomes to include the
value "1" as the result of the registration, the issue flag part 1255
corresponding to that column must have the issue flags other than "wa”
and "-", in the condition before the registration. If this condition is not
satisfied, even if the instruction operation information management entry
1290 itself is registrable, the instruction registration operation is stopped
until the condition is satisfied. The forward map buffer 1210 performs
the above mentioned control by reading the status of the issue flags
through the forward map output/issue flag input terminals 1212. On the
other hand, if the forward map information of the bidirectional type is
used, this control is not necessary.

Next, the operand registration operation will be described. In this

operand registration, the input operand read out from the register file 13

- 46 -

10

15

20

25

is registered in the instruction registration buffer 1200. The input
operand is supplied through the register file read data terminal 124, and
supplied through the register operand input terminal 1209 to instruction
registration buffer 1200. Which of the left or right input operand parts
the input operand is registered in, is designated through the instruction
registration entry designation input terminal 1201 by the instruction issue
control unit 1250.

When the not-yet-decided result value corresponding to the register
135 designated as the input operand exists in the result value registratiori
buffer 1230, it is not possible to read the input operand from the register
file 13. In this case, in the shown embodiment, until the corresponding
not-yet-decided result value is written into the register file 13, it is not
allowed to register the input operand. Therefore, the instruction
repeatedly executes the DP stage. Here, the register file 13 stores and
manages the register busy information indicating whether or not the
values stored in each register 135 can be used as the input data, similarly
to the prior art.

When all the necessary operands become complete by the reading
from the register file 13 and the operand forwarding reserving operation
which will be explained later, the instruction issue control unit 1250 sets
the issue flag part 1255 corresponding to the given instruction, to the "rd"
condition. Otherwise, it is set to the "wa" condition.

Now, the instruction issuing operation will be described. The
instruction registration buffer 1200 is investigated to find out, the
instruction registration entries 1205 in the "rd" condition, and the
instruction registration entries 1205 to be actually issued are selected

from the instruction registration entries 1205 in the "rd" condition. The

- 47 -

10

15

20

25

instruction operation information of the selected instruction registration
entries 1205 is transferred through the instruction output terminal 1207
to the instruction issue entry 1245. Here, as mentioned above, to which
of the instruction issue entries 1245 the instruction is outputted, is
determined by to which of the memory access unit 14 and the arithmetic
and logic units 14 the instruction is to be issued. The information of the
forward map prefetch buffer 1258 of the column corresponding to the
selected instruction registration entry 1205 is transferred through the
bypass map output terminal 1254 to the column in the bypass map buffer
1220, which is the same column position as the transfer destination
column of the instruction issue entry 1245. For example, assuming that
the instruction operation information in the "n"th column instruction
registration entry 1205 is transferred to the "m"th column instruction
registration entry 1245, the content of the "n"th columa in the forward
map prefetch buffer 1258 is transferred to the "m"th column of the
bypass map buffer 1220.

As mentioned above, the respective instruction issue entry 1245 in
the instruction issue buffer 1240 corresponds to the memory access unit
14 or the arithmetic and logic unit 15 or 15, which is the instruction issue
destination. In the embodiment shown in Fig. 7, for example, the first
column instruction issue entry 1245 holds the instruction to be issued to
the memory access unit 14, and the second column instruction issue entry
1245 holds the instruction to be issued to the central arithmetic and logic
unit 15. The third column instruction issue entry 1245 holds the

instruction to be issued to the right side operation unit 15.

- 48 -

10

15

20

25

Thereafter, at a heading of the succeeding EX1 or EX2 stage, the
instruction is actually issued from the instruction issue buffer 1240 to the
mermory access unit 14 or the arithmetic and logic unit 15 or 15.

Next, the operand forwarding reserving operation will be
described. In the first half of the EX2 stage, it becomes apparent that the
execution of the given instruction is completed in a next cycle.
Therefore, the multiple instruction parallel issue/execution management
unit 12 selects the not-yet-issued instruction(s) which uses the result value
of the given instruction as the input operand, and checks whether or not
all the input operands of the selected instruction have become complete,
and then, sets the corresponding issue flag to "rd" when the operands have
become complete. Specifically, the following operation is executed.

Now, assume that the "n"th instruction enters in the EX2 stage.
The operand forwarding control unit 1270 receives this information from
the instruction execution control unit 1260 through the control
information input/output terminal 1273, and access to the "n"th row
forward source entry 1216 in the forward map buffer 1210 through the
forward map output indication terminal 1272. The 2N-bit information in
the "n"th row forward source entry 1216 is read out through the "N"
forward map output/issue flag input terminals 1212, and supplied to the
instruction issue control unit 1250. As mentioned above, the read-out
2N-bit information of the "n"th row forward source entry 1216 indicates
which of instruction —I;SCS the result value of the "n"th instruction as the
left operand or the right operand. The instruction issue control unit 1250
checks this forward map information and the status of the "N" issue flag
parts 1255, so as to find out from the instruction registration entries 1205

having the issue flag of "-" or "wa", an instruction whose input operands

-49 -

10

15

20

become complete by forwarding the result value of the "n"th instruction.
Then, the issue flag of the found-out instruction is set to "rd".

For example, when the forward map information given by some
column forward map input/issue flag output terminal 1251 1s "11", since
all the input operands become complete, the issue flag of that column is
brought to "rd". Alternatively, when the forward map information given
by some column forward map input/issue flag output terminal 1251 is
"10", if the corresponding instruction has already received the right
operand, since all the input operands become complete, the issue flag of
that column is brought to "rd".

The information of the forward source entry 1216 supplied to the
instruction registration buffer 1200 is temporarily stored in the forward
map prefetch buffer 1258 in the instruction issue control unit 1250. The
respective forward source entry 12588 in the forward map prefetch
buffer 1258 is previously determined to correspond to the result value
generated from which of the memory access unit 14 and the arithmetic
and logic units 15. For example, the first row forward source entry
12588 corresponds to the result value of the memory access unit 14 of the
processor 10 shown in Fig. 1, the second row forward source entry
12588 corresponds to the result value of the central arithmetic and logic
unit 15. The third row forward source entry 12588 corresponds to the
result value of the right side arithmetic and logic unit 15.

Now, the operand bypassing operation will be explained. With the
operand forwarding reserving, the corresponding issue flag part 1255 is
brought to the "rd" condition before the input operands actually become
complete in an instruction registration entry 1205. Therefore, by the

above mentioned instruction issue operation, before the input operands

-50 -

10

15

20

25

actually become complete, the instruction operation information of the
instruction registration entry 1205 is transferred to the instruction issue
buffer 1240, and therefore, the instruction becomes an instruction to be
issued. In the operand bypassing operation, in order to cope with this
situation, the necessary input operand is bypassed from the result bus 17
directly to the instruction issue buffer 1240. Specifically, the following
operation is conducted.

In the second half of the EX2 stage, the result value is generated by
the memory access unit 14 or the arithmetic and logic unit 15, and then,
transferred to the result bus 17. This result value is supplied through the
result input terminal 126 and the operand bypass input terminal 1248 to
the instruction issue buffer 1240, so that, if there is the instruction issue
entry 1245 requiring the result value as the input operand, the result
value is written into the left operand part 1243 or the right operand part
1244 of the instruction issue entry 1245 requiring the result value. Here,
whether or not such an instruction issue entry 1245 exists, is instructed
through the bypass map input terminal 1241 by the bypass map
information registered in the bypass map buffer 1220 by the instruction
issue operation.

Similarly to the forward map prefetch buffer 1258, each row of the
bypass map buffer 1220 is previously determined to hold the bypass map
information corresponding to the result value of which of the memory
access unit 14 and the arithmetic and logic units —1--5. For exa-ﬁiple, the
first row of the bypass map buffer 1220 corresponds to the result value of
the memory access unit 14 of the processor 10 shown in Fig. 1, the
second row of the bypass map buffer 1220 corresponds to the result value

of the central arithmetic and logic unit 15. The third row of the bypass

-51-

10

15

20

25

map buffer 1220 corresponds to the result value of the right side
arithmetic and logic unit 15. Respective columns of the bypass map
buffer 1220 correspond to respective column instruction issue entries
1245 in the instruction issue buffer 1240.

Next, the execution ending (or completing) operation will be
described. The result value supplied through the result value input
terminal 126 is registered through the result value registration terminal
1236 to the result value registration entry 1235 within the result value
registration buffer 1230 and corresponding to the given instruction. Into
which of the result value registration entries 1235 the result value is to be
registered, is designated by the instruction execution control unit 1260
through the result value registration entry designation output terminal
1262. The execution flag part 1231 corresponding to the registered result
value registration entry 1235 is set to "do” or “ds".

When the result value written by the execution ending operation or
the already written not-yet-decided result value is decided, the decided
result value is written into the register file 13 in the execution ending
operation. The result value stored in which of the result value
registration entries 1235 is decided, is designated by the instruction
execution control unit 1260 through the result value registration entry
designation output terminal 1262. The instruction operation information
management entry 1290 corresponding to the decided result value is set to
the "em” condition. _

Now, the operand forwarding operation will be described. As
mentioned above, by the operand forwarding reserving operation in the
EX?2 stage corresponding to a given instruction, an instruction using the

result value of the given instruction is specified. In the operand

-52-

10

15

20

25

forwarding operation in the WB stage for the specified instruction, the
obtained result value is registered into the left operand part 1203 and the
right operand part 1204 in the instruction registration buffer 1200.

Which result value is registered into which left operand part 1203
and which right operand part 1204, is instructed, in the operand
forwarding operation for the given instruction, by the content of the
forward source entry 12586 previously held in the forward map prefetch
buffer 1258. Namely, the result value is forwarded to and registered into
the left operand part 1203 or the right operand part 1204 corfespondi.ng
to the value "1" of the forward map information in the forward source
entry 12586. Depending upon the result value of which of the memory
access unit 14 and the arithmetic and logic units 15 corresponds to the
result value to be registered, the operand forwarding to be executed in
accordance with the forward map information of which of the forward
source entries 12586, is unambiguously determined.

In order to supplement to the above mentioned description of
various operations, Figs 12A, 12B and 12C illustrate the pipeline
processing of two instructions in the case that the result value of an
instruction A is used as the input operand of an instruction B, by
assuming three pipeline operation timings. Here, it is assumed that all
input operands of the instruction A can be read from the register file 13,
and input operands of the instruction B become complete by the operand
forwarding from the instruction A.

Figs 12A illustrates the case in which the instruction A and the
instruction B are simultaneously fetched and decoded. Since necessary
operand of the instruction A become complete in the operand registration

operation in the DP stage, the issue flag is set to "rd", and in the

-53-

10

15

20

instruction issue operation, the instruction A is selected as an instruction
to be actually issued, and executed in the next EX2 stage. On the other
hand, as regards the instruction B, the forward map information
registered in the instruction registration operation indicates that the
instruction B requires the result value of the instruction Accordingly, in
the operand registration operation of a first DP stage, necessary operand
of the instruction B do not become corhplete, and therefore, the issue flag
is brought to "wa". In the operand forwarding reserving operation of the
EX2 stage for the instruction A, using the forward map information of
the instruction B registered in the instruction registration operation, it is
notified that the input operand required by the instruction B is generated
as the result value of the instruction A in a next cycle, and therefore, the
issue flag of the instruction B is brought to "rd". Accordingly, in the
instruction issue operation of the DP stage in a second cycle, the
instruction B is selected as an instruction to be actually issued, and
simultaneously, the result value of the instruction A is bypassed to the
instruction issue buffer 1240 in the operand bypassing operation, so that
the instruction B is executed in a next cycle. The result value of the
instruction A is registered and forwarded to the result value buffer 1230
and the instruction registration buffer 1200 in the execution ending
operation and the operand forwarding operation of the WB stage,
respectively. When the result value of the instruction A is registered into
the result value buffer 1230 there is used the forward map information
stored in the forward map prefetch buffer 1258 in the operand
forwarding reserving operation of the EX2 stage for the instruction A.
Figs 12B illustrates the case in which the instruction A and the

instruction B are fetched and decoded at such different tiﬁm'ngs that the

-54 -

10

15

20

25

instruction B is delayed form the instruction A by one cycle. Since
necessary operand of the instruction A become complete in the operand
registration operation in the DP stage, the issue flag is set to "rd", and in
the instruction issue operation, the instruction A is selected as an
instruction to be actually issued, and executed in the next EX2 stage. On
the other hand, as regards the instruction B, in the operand forwarding
reserving operation of the EX2 stage for the instruction A, it is possible
to know that the input operand required by the instruction B is generated
as the result value of the instruction A in a next cycle, and therefore, the
issue flag of the instruction B is brought to "rd". Accordingly, in the
instruction issue operation of the DP stage, the instruction B is selected as
an instruction to be actually issued, and simultaneously, the result value of
the instruction A is bypassed to the instruction issue buffer 1240 in the
operand bypassing operation, so that the instruction B is executed in a
next cycle. The result value of the instruction A is registered and
forwarded to the result value buffer 1230 and the instruction registration
buffer 1200 in the execution ending operation and the operand
forwarding operation of the WB stage, respectively.

Figs 12C illustrates the case in which the instruction A and the
instruction B are fetched and decoded at such different timings that the
instruction B is delayed form the instruction A by two cycles. In this
case,. the EX2 stage for the instruction A and the ID stage for the
instruction B are executed at the same pipeline timing, and the WB stage
for the instruction A and the DP stage for the instruction B are executed
at the same pipeline timing. In the operand forwarding reserving
operation of the EX2 stage for the instruction A, since the instruction B is

still 1n the ID stage, the instruction B has not yet been registered in the

-55-

10

15

20

25

multiple instruction parallel issue/execution management unit 12.
However, by the forward map information of the instruction A, the result
value of the instruction A is forwarded to the instruction operation
information registration entry 1290 into which the instruction B will be
registered. In the WB stage of the instruction A, the result value of the
instruction A is registered and forwarded to the result value buffer 1230
and the instruction registration buffer 1200 by the execution ending
operation and the operand forwarding operation, respectively. In the
operand registration operation of the DP stage of the instruction B, since
it can be known by the above mentioned operand forwarding reserving
operation that the input operands are complete, the issue flag is set to
"rd". In the instruction issue operation, the result value of the instruction
A operand-forwarded to the instruction registration buffer 1200 is used
as the operand of the instruction A, and then, is transferred together with
the instruction code information to the instruction issue buffer 1240. The
instruction B is executed in a next cycle. At this pipeline timing, the input
operand can be obtained without intermediary of the operand bypassing

operation.

- 56 -

15

20

25

Now, the operation of the multiple instruction parallel
issue/execution management unit 12 .

_will be described more specifically, with reference to a simple
instruction code string.

Fig. 13 shows an example of the instruction string for illustrating
the operation of the multiple instruction parallel issue/execution
management unit 12 _ . The
shown instruction code string is prepared in accordance with the
instruction format 1 shown in Fig. 3A. "rl", “r2" and the like indicates
the number of the registers 135. Each instruction includes the instruction
code, the register 135 into which the result value is to be written, the
register 135 from which the left input operand is to be read out, the
register 135 from which the right input operand is to be read out, and the

forward map information, which are arranged in the named order. In the

-57 -

10

15

20

shown example, therefore, each instruction includes five instruction codes
having as a instruction code the unidirectional type forward map
information using the relative instruction number.

At the right side of the instruction string, there is given an
explanation of an operation of each instruction. "LoL" or "LnR" ("n" is
positive integer) means the operand forwarding to the left input operand
or the right input operand of an instruction labeled "Ln" ("Ln" is
indicated at a leftmost position in Fig. 13). A portion indicated by the
blank "_" shows to receive an input operand by the operand forwarding.
In addition, the result value generated by execution of each instruction is
shown at a rightmost position in Fig. 13.

In the multiple instruction parallel issue/execution management
method, . the forward map
information is used to directly indicate, within each instruction, that the
result value of an instruction is used as the input operand of another
instruction. Therefore, there are many cases that it is not necessary to
designate a register for the result value or the input operand. In the
shown example, a portion where a register designation is not necessary, is
shown as the blank.

Fig. 14 illustrates the value of the respective registers 135 within
the register file 13 used in connection with the above description.

Fig. 15 illustrates a pipeline operation timing in the case of the
instruction code string shown in Fig. 13. ln Fig. 15, "t" is a variable
indicating the pipeline cycle number. In the shown example, each three
instructions are simultaneously fetched and decoded, and three
instructions at maximum are simultaneously executed from the

instructions, input operands of which become complete. In a cycle of

- 58 -

10

15

t=10, execution of the final instruction is completed, and the result value
of all the instructions have been decided.

Figs. 16 to 24 illustrates the operation of the multiple instruction
parallel issue/execution management unit 12 when the example shown in
Figs. 13 to 15 is executed. Figs. 16 to 24 show the internal conditions of
the instruction registration buffer 1200, the forward map buffer 1210,
the bypass map buffer 1220, the result value registration buffer 1230, the
instruction issuing buffer 1240, and the instruction issuing control unit
1250, in accordance with the example shown in Fig. 7, but in nine
different pipeline cycles from t=1 to t=9, respectively. In Figs. 16 to 24
and in the following description, the condition of t=j (J=1 to 9) should be
understood to indicate the condition after the operation of the "j"th cycle
has been completed but before the operation of the "j+1"th cycle has not
yet been started. In Figs. 16 to 24, in addition, the internal conditions
having no relation to the operation are shown in the blank form, for
avoiding complicated drawings.

In the condition of t=1 shown in Fig. 16, first three instructions
exists in the ID stage. Namely, the shown condition shows that the
registration operation for the first three instructions has been completed.
In the instruction registration buffer 1200, some number of operands are
given with "?". This means that an operand has not yet been registered.
One operand is given with "x". This means that only one operand is used
in the instruction. The forward map information of the respective
instructions are registered in the forward map buffer 1210 after they are
subjected to the left-shifting and the O-extension. Since the operand
registration is not conducted, the issue flags for the three instruction are

in the condition.

-59 -

10

15

20

25

In the condition of t=2 shown in Fig. 17, the first three instructions
are in the DP stage, and second three instructions are in the ID stage. The
first and second instructions, which have become the "rd" condition by
fetching all necessary operands from the register file 13, have been
transferred to instruction issue entries 1245 of the instruction issue buffer
1240 determined in accordance with the kind of the instruction, in the
instruction issue operation. Since the input operands for the third
instruction are not yet complete, the third instruction is brought into the
"wa" condition.

In the condition of t=3 shown in Fig. 18, the first and second
instructions as mentioned above are issued and therefore are in the EX1
stage. The fourth instruction has become the "rd" condition by fetching
all necessary operands from the register file 13, and has been transferred
to the instruction issue buffer 1240. Since the "add" instruction of the
first instruction is in the EX2 stage, the operand forwarding reserving
operation for this first instruction is executed. The forward map
information of the first row forward source entry 1216 is transferred to
the second row of the forward map prefetch buffer 1258. The second
row is designated as a transfer destination, because the first instruction
("add" instruction) was issued from the second row instruction issue entry
1245. In Fig. 18, the first column of the forward map buffer is given
with "2" together with an arrow. In addition, in this cycle, there is no
instruction which becomes the "rd" condition by the operand forwarding
reserving operation. By the instruction registration operation for the
seventh instruction, the register number of the result value writing
destination is registered in the register number part 1233 of the seventh

row result value registration entry 1235.

- 60 -

10

15

20

25

In the condition of t=4 shown in Fig. 19, the seventh to ninth
instructions are in the DP stage, and the instruction registration operation
for these instructions are conducted. The first instruction ("add"
instruction) is in the WB stage, and therefore, the result value of the first
instruction is written into the result value registration buffer 1230 by the
execution ending operation. By this operation, the result value of the first
instruction has been decided, and therefore, the first instruction operation
information management entry 1290 is brought to the "em" condition.
Furthermore, by the operand forwarding operation, this result value is
forwarded to the right operand of the fifth instruction ("and” instruction),
in accordance with the forward map information temporarily stored in
the forward map prefetch buffer 1258 in the preceding cycle. Since the
second instruction and the fourth instruction are in the EX?2 stage, the
operand forwarding reserving operation is executed, so that the forward
map information for these instructions is transferred to the first row and
the second row of the forward map prefetch buffer 1258, and the third
instruction and the fifth instruction are brought into the "rd” condition.
In the instruction issue operation, the forward map information of the
columns in the forward map prefetch buffer 1258, corresponding to these
instructions, (hatched in Fig. 19), is transferred to the second column and
the third column of each of the instruction issue Buffer 1240 and the
bypass map buffer 1220, respectively. With the operand bypassing
operation, and in accordance with the instruction shown by the bypass
map buffer 1220, the result value of the second instruction and the fourth
instruction are bypassed to the right operand part 1244 in the second

column and the third column in the instruction issue buffer 1240.

- 61 -

10

15

20

25

In the condition of t=5 shown in Fig. 20, since the execution of the
second instruction is completed and decided, the instruction operation
information management entry 1290 for this second instruction is brought
to the "em" condition. In addition, since the execution of the fourth
instruction is completed but has not yet been decided, the result value of
the fourth instruction is written into the fourth result value registration
entry 1235, and the corresponding execution flag is set to the "do"
condition. The result value of these instructions are forwarded into the
instruction registration buffer 1200 by the operand forwarding operation.
Since the third and fourth instructions are in the EX2 stage, the issue flags
of the sixth and seventh instructions are brought into the "rd" condition
by the operand forwarding reserving operation. These sixth and seventh
instructions are transferred together with the corresponding bypass map
information to the instruction issue buffer 1240 and the bypass map
buffer 1220. On the instruction issue buffer 1240, the result values of the
second and fourth instructions are bypassed to the input operands of these
instructions.

In the condition of t=6 shown in Fig. 21, the execution of the third
and fifth instructions are completed, the results of the execution of the
third to fifth instructions are decided. The execution results of the third
and fifth instructions are forwarded to the instruction registration buffer
1200 by the operand forwarding operation. In this cycle, the seventh
instruction is in the_EXZ stage, but since the forward map information for
this instruction is all "0", there is no instruction for causing the issue flag
into "rd" by the operand forwarding reserving operation.

In the condition of t=7 shown in Fig. 22, the execution of the

seventh instruction is completed, and the result value of the seventh

-62 -

10

15

25

instruction is written into the result value registration buffer 1230. In
addition, the sixth instruction is in the EX2 stage, and the forward map
information of this instruction is read out to the forward map prefetch
buffer 1258, by the operand forwarding reserving operation. Since the
issue flags for the eighth and ninth instructions are brought into the "rd"
condition, these instructions and the corresponding bypass map
information are transferred to the instruction issue buffer 1240 and the
bypass map buffer 1220, by the instruction issue operation. The
instruction issue buffer 1240 is bypassed by the operand bypass operation
in connection with the result value.

In the condition of t=8 shown in Fig. 23, the execution of the sixth
instruction is completed, and therefore, the result values of the sixth and
seventh instructions are decided. The result value of the seventh
instruction is written back to the register file 13 from the result value
registration buffer 1230. In addition, the result value is forwarded to the
instruction registration buffer 1200 by the operand forwarding operation.
Furthermore, the eight and ninth instructions are executed, but the
execution of the "branch" instruction of the eighth instruction has not yet
been completed, the "store” instruction of the ninth instruction is executed
in the speculative execution condition on the basis of a branch prediction
that the branch does not hold, and therefore, the execution flag is brought
to the "es"” condition. _

In the condition of t=9 shown in Fig. 24, the execution of the
"branch” instruction of the eighth instruction is completed, and it is found
that the branch did not hold. Therefore, the execution flag for the ninth

instruction is brought from the "es" condition into the "ex" condition. In

addition, since the execution of the eighth instruction is decided, the

- 63 -

10

15

20

25

instruction operation information management entry 1290 for the eighth
instruction is brought to the "em"” condition.

As mentioned above, by supplying the result value of an instruction
to an input operand of another instruction by using the forward map
information and by means of the operand forwarding or the operand
bypassing, the instructions can be executed and the execution can be
completed from instructions whose operand(s) has become complete,
without using a comparator.

Referring to Fig. 25, there is shown a block diagram illustrating an
example of the forward map buffer 1210 incorporated in the multiple
instruction parallel issue/execution management unit 12 shown in Fig. 6.
In order to correspond to the above mentioned description, Fig. 25 shows
only a construction for registering the forward map information for one
instruction and for reading the forward map information for one result
value. Furthermore, the registration of the forward map information is
executed in the instruction registration operation, and the reading of the
forward map information is executed in the operand forwarding
reserving operation.

As shown in Fig. 25, the forward map buffer 1210 includes a
number of memory cells 12105 arranged in the form of matrix having
"N" rows and "2N" columns. Each pair of adjacent memory cells 12105
in a row direction constitute one foreword bit part 215. One row of _.
mcrr;é)ry cells 12015 correspond to one forward source entry 1216. The
forward map buffer 1210 has "N" word lines 12106 and "2N" bit lines
12107, so that one memory cell 12105 is located at each of intersections
between the word lines 12106 and the bit lines 12107 and is connected to

one word line 12106 and on bit line 12107 at the intersection.

- 64 -

10

15

20

25

First, the registration of the forward map information in the
instruction registration operation will be described. The forward map
information subjected to the left cyclic shifting and the "0" extension by
the shifter 1280, is supplied through the forward map registration
terminals 1213. Into which of the forward source entries 1216 the
supplied forward map information is to be registered, namely, into which
of memory cell rows in Fig. 25 the supplied forward map information is
to be registered, is instructed through the forward map
registration/output terminals 1211. The two-bit forward map
information supplied through each of the forward map registration
terminals 1213 is supplied to a write circuit 12102, which receives the
issue flag given through a corresponding selector 12104 and a
corresponding forward map output/issue flag input terminal 1212. When
the value of the issue flag "-" or "rd" and at least one bit of two bits of
forward map information is "1', the forward map information is not
registered and the registration is stalled until the value of the issue flag
becomes a value other than "-" and "rd". Otherwise, the write circuit
12102 drives a pair of adjacent bit lines 12107 to signal levels designated
by the two-bit forward map information. On the other hand, by a word
line driver 12101 connected to the forward map registration/output
control terminal 1211 given with the value "1", all the memory cells
connected to the word line driven to the value "1" are put into a writable
condition. Thus, the signal values of the respective bit lines 12107 are
written into the memory cells connected to the word line driven to the
value "1".

Next, the reading of the forward map information in the operand

forwarding reserving operation will be described. One row of memory

- 65 -

10

15

20

25

cells 12105 to be read out are designated through the forward map
registration/output control terminals 1211, so that only the word line
12106 corresponding to the designated row is driven to the signal value
"1", and the other word lines are driven to the signal value "0". Thus,
only the forward map information stored in the memory cells 12106 of
the row driven to the signal value "1", is read out to the bit lines 12107
by reading circuits 12103, and then, outputted through the selector 12104
and the forward map output/issue flag input terminals 1212.

In the example shown in Fig. 25, considering that only one word
line 12106 and one bit line 12107 are shown for one instruction, in the
actual forward map buffer 1210, a plurality of word lines and a plurality
of bit lines are provided. Specifically, assuming that "L" instructions are
simultaneously decoded and "K" instructions are simultaneously issued,
the word lines and the bit lines of the number equal to a larger one of "L"
and "K", are required.

Referring to Fig. 26, there is shown a block diagram illustrating an
example of the forward map prefetch buffer 1258 incorporated in the
multiple instruction parallel issue/execution management unit 12 shown in
Fig. 6. Similarly to Fig. 25, Fig. 26 shows a construction for receiving
and outputting the forward map information concerning one result value
and for outputting the bypass map information for one instruction issue.
As mentioned above, the receiving of the forward map information is
executed in the operand for\iz;fding reser;ing operation, and the
outputting of the forward map information is executed in the operand
forwarding operation. The outputting of the bypass map information is

executed in the instruction issue operation.

- 66 -

10

15

20

25

The forward map prefetch buffer 1258 includes a number of
memory cells 12585 arranged in the form of a matrix having "J" rows
and "2N" columns. "J" is the maximum number of instructions, execution
of which can be simultaneously completed. Each pair of adjacent
memory cells 12585 in a row direction constitute one foreword bit part
12585. One row of memory cells 12585 correspond to one forward
source entry 12586. Each memory cell is connected to one row direction
word line 125861, one column direction word line 125862, one row
direction bit line 125871 and one column direction bit line 125872. Thus,
the forward map prefetch buffer 1258 of the shown embodiment
constitutes a so called orthogonal memory in which each of the word line
and the bit line extends in a vertical direction and in a horzontal
direction.

First, the receiving of the forward map information in the operand
forwarding reserving operation, will be described. The forward map
information read out from the forward map buffer 1210, is used for
controlling the issue flag in the instruction issue control unit 1250, and
thereafter, is supplied from the forward map input terminals 125801 to
the forward map prefetch buffer 1258, and then, applied through write
circuits 12582 to the column direction bit lines 125872. Into which of the
rows the forward map information is registered, is instructed from the
instruction issue control unit 1250 through the forward map input/output
control terminals 125804, by driving the row direction word lines
125861 by word line drivers 12581 connected to the forward map
input/output control terminals 125861.

When the forward map information is outputted in the operand

forwarding operation, one of the row direction word lines 125861 is

-67 -

10

15

20

25

selected and driven by the forward map input/output control terminals
125804, so that the forward map information on the selected row is
outputted through the column direction bit lines 125872 connected to
reading circuits 12583 and the forward map output terminals 125805.

The outputting of the bypass map information in the instruction
issue operation is executed as follows: From which of the columns the
forward map information is outputted as the bypass map information, is
instructed from the instruction issue control unit 1250 through the bypass
map input terminals 125801 and word line driver 12581 connected
between the bypass map input terminals 125801 and the column direction
word lines 125862. Here, the column instructed is the same column of
the instruction registration entry storing the instruction to be issued, in
the instruction registration buffer 1200. Thus, the column direction word
line 125862 corresponding to the column instructed is selected, so that the
forward map information on that column is outputted as the bypass map
information through the row direction bit lines 125871, a reading circuits
12583 connected to the row direction bit lines 125871, and the bypass
map output terminals 1254.

In the example shown in Fig. 26, considering that only one row
direction word line 125861, one column direction word line 125862, one
row direction bit line 125871 and one column direction bit line 125872
are shown for one instruction, in the actual forward map prefetch buffer
1258, a plurality of row direction word lines, a plurality of column
direction word lines, a plurality of row direction bit lines and a plurality
of column direction bit lines are provided. Specifically, assuming that
"K" instructions are simultaneously issued and “J" instructions are

simultaneously executed and ended, "J" row direction word lines 125861

- 68 -

10

15

20

25

and "J" column direction bit lines 125872, and "2K" column direction
word lines 125862 and "2K" row direction bit lines are required.

Referring to Fig. 27, there is shown a block diagram illustrating an
example of the bypass map buffer 1220 incorporated in the multiple
instruction parallel issue/execution management unit 12 shown in Fig. 6.
Similarly to Fig. 26, Fig. 27 shows a construction for registering the
bypass map information for one instruction issue and for outputting the
bypass map information for one result valué. As mentioned above, the
registration of the bypass map information is executed in the instruction
issue operation, and the output of the bypass map information is executed
in the operand bypassing operation.

The forward map buffer 1220 includes a number of memory cells
12205 arranged in the form of a matrix having "J" rows and "2N"
columns. "J” is the maximum number of instructions, execution of which
can be simultaneously completed. "K" is the maximum number of
instructions which can be simultaneously issued. Each pair of adjacent
memory cells 12205 in a row direction constitute one bypass bit part
1225. One row of memory cells 12205 correspond to one bypass source
entry 1226. Each memory cell is connected to one row direction word
line 12206, one column direction word line 12208, one row direction bit
line 12209 and one column direction bit line 12207. Thus, the forward
map buffer 1220 of the shown embodiment constitutes the orthogonal

_;ﬁemory in which each of the word line and the bit line extends in a
vertical direction and in a horizontal direction.

First, the registration of the bypass map information in the
instruction issue operation, will be described. The bypass map

information read out from the forward map prefetch buffer 1258 is

- 69 -

10

15

20

inputted through the bypass map registration terminals 1223 and
associated write circuits 12202 to the row direction bit lines 12209. Into
which of the columns the bypass map information is to be registered, is
instructed, in accordance with the instructions to be issued, from the
instruction issue control unit 1250 through the bypass map
registration/output control terminal 1221 connected to a decoder 12204
having a number of decode outputs connected through word line drivers
12201 to the column direction word lines 12208. Thus, the bypass map
information is registered into the memory cells 12205 connected to the
selected column direction word line 12208.

Next, the output of the bypass map information in the operand
bypassing operation will be described. From which of the columns the
bypass map information is to be outputted, is instructed, in accordance
with the generated result value, from the instruction execution control
unit 1260 through the bypass map registration/output control terminal
1221 connected to a decoder 12204 having a number of decode outputs
coonected through word line drivers 12201 to the row direction word
lines 12206. Thus, the bypass map information in the memory cells
12205 connected to the selected row direction word line 12206, is read
out through the column direction bit lines 12207, associated reading
circuits 12203 and the bypass map output terminals 1222.

In Fig. 27, considering that only one row direction word line
12206, one column direction word line 12208, one row direction bit line
12209 and one column direction bit line 12207 are provided for one
instruction, in the actual bypass map buffer 1220, a plurality of row
direction word lines 12206, a plurality of column direction word lines

12208, a plurality of row direction bit lines 12209 and a plurality of

-70 -

10

15

20

25

column direction bit lines 12207 are provided. Specifically, assuming
that "K" instructions are simultaneously issued and “J" instructions are
simultaneously executed and ended, "J" row direction word lines 12206,
"J" plurality of column direction bit lines 12207, "2K" column direction
word lines 12208 and "2K" row direction bit lines 12209 are required.

Referring to Fig. 28, there is shown a block diagram illustrating the
construction of one instruction registration entry 1205 in the instruction
registration buffer 1200 incorporated in the multiple instruction parallel
1ssue/execution management unit 12 shown in Fig. 6. Fig. 28 illustrates a
connection relation between the input/output terminals of the instruction
registration buffer 1200 and the instruction code part 1202, the left
operand part 1203 and the right operand part 1204.

The instruction registration entry designation terminal 1201 is
connected through an instruction code registration designating line 12012
to the instruction code part 1202, through a left operand registration
designating line 12013 to the left operand part 1203, through a right
operand registration designating line 12014 to the right operand part
1204, and through an instruction operation information output
designating line 12011 to the instruction code part 1202, the left operand
part 1203 and the right operand part 1204. These lines are signal lines
for controlling the registration and the outputting of the instruction code
part 1202, the left operand part 1203 and the right operand part 1204.

When the instruction code is reg1stered the instruction code
supplied through the instruction code registration terminal 1206 is
registered into the instruction code part 1202 designated from the
instruction registration entry designation terminal 1201 through the

instruction code registration designating line 12012. When left and/or

-71 -

10

15

20

25

right the input operand is registered, the input operand supplied through
the register operand input terminal 1209 or the operand forward input
terminal 1208, is registered to the left operand part 1203 or the right
operand part 1204 or both, designated from the instruction registration
entry designation terminal 1201 through the left operand registration
designating line 12013 or through the right operand registration
designating line 12014. When the operand is registered into the left
operand part 1203, the signal value supplied to the instruction registration
entry designation terminal 1201 is "10", and when the operand is
registered into the right operand part 1204, the signal value supplied to
the instruction registration entry designation terminal 1201 is "01".
When the operand is registered into both the left and right operand parts
1203 and 1204, the signal value supplied to the instruction registration
entry designation terminal 1201 is "11". When the instruction operation
information is outputted, the instruction operation information is
outputted to the instruction output terminal 1207 from the instruction
registration entry 1205 designated from the instruction registration entry
designation terminal 1201 through the instruction operation information
output designating line 12011.

When the operand forwarding operation is executed, the two-bit
forward map information is supplied from the instruction registration
entry designation terminal 1201. Respective bits of the two-bit forward
map information are supplied to the left operand registration designating
line 12013 and the right operand registration designating line 12014,
respectively, one bit for one line. Thus, the above mentioned selection of
the left operand part 1203 and the right operand part 1204, can be

realized. Therefore, when the input operand is registered in the operand

-72 -

10

15

20

25

forwarding operation, one operand can be registered into any number of
the left operand parts 1203 and any number of the right operand parts
1204, differently from the case that the instruction code is registered.

Referring to Fig. 29, there is shown a block diagram of another
construction example of the multiple instruction parallel issue/execution
management unit 12. In Fig. 29, elements similar to those shown in Fig.
6 are given the same Reference Numerals, and explanation thereof will be
omitted.

The second example of the multiple instruction parallel
issue/execution management unit 12 shown in Fig. 29 is different in
construction from the first example of the multiple instruction parallel
issue/execution management unit 12 shown in Fig. 6, in that the
instruction execution control unit 1260 has a result value registration
entry designation terminal 1265, which is connected to the register file
read data terminal 124, and in that the result value registration buffer
1230 has a result value tentative output terminal 1238, which is connected
to the register operand input terminal 1209.

Furthermore, the multiple instruction parallel issue/execution
management unit 12 shown in Fig. 29 is different from the multiple
instruction parallel issue/execution management unit 12 shown in Fig. 6,
in the operation when the result value to be written into the register 135
designated by a given instruction as an input operand, still exists in the
result value registration buffer 1230. In this case, in the multiple
instruction parallel issue/execution management unit 12 shown in Fi g. 6,
the operand registratioq operation for the given instruction is stalled until

the result value is written into the register 135.

-73 -

10

15

20

25

In this case, on the other hand, in the multiple instruction parallel
issue/execution management unit 12 shown in Fig. 29, the number of the
result value registration entry 1235 having the result value is received
through the register file read data terminal 124 from the register file 13,
and supplied through the result value registration entry designation
terminal 1265 to the instruction execution control unit 1260. This
instruction execution control unit 1260 instructs to read the result value
from the result value registration entry 1235 in the result value
registration buffer 1230, and to register the result value read out through
the result value tentative output terminal 1238, to the instruction
registration buffer 1200 through the register operand input terminal
1209.

The multiple instruction parallel issue/execution management units
12 shown in Figs. 6 and 29 are characterized in that the instruction
operation information management entries are cyclically used. This can
be realized by using the construction of a cyclic FIFO (first-in, first-out)
buffer. Alternatively, the multiple instruction parallel issue/execution
management units 12 can be constructed by using a shift type FIFO
buffer. In this case, as soon as the execution of an instruction is decided
and the instruction operation information of that instruction is erased, the
content of the instruction operation information management entry 1290
of a next instruction is shifted into the instruction operation information
management entry 1290 which has become empty. If the construction is
adopted, the shifter 1280 is no longer necessary. Instead, it is required
that the instruction registration buffer 1200 and the instruction issue
control unit 1250 have a right shifting mechanism in the row direction,

and the forward map buffer 1210 has a shifting mechanism into a right-

- 74 -

10

15

25

down diagonal direction, and the result value registration buffer 1230 has
a down shifting mechanism in the column direction.

In the above mentioned multiple instruction parallel issue/execution
management units, the forward map information is previously encoded
and included in an instruction, and after the instruction decoding, the
forward map information is registered in the forward map buffer, and
furthermore, just before the result value is generated by the execution of
the instruction, the forward map information is read out from the
forward map buffer, and the dependency between the result value and
input operands is specified. Since the dependency between the result
value and input operands is statically previously given, the multiple
instruction parallel issue/execution management unit no longer requires a
large amount of comparators and parallel Opefation of the large amount
of comparators, which were required in the prior art.

The forward map buffer used in the multiple instruction parallel
issue/execution management unit 12 has a regulated memory cell array
construction as mentioned above. In addition, by holding the forward
map information corresponding to some result value, as a one-row
information connected to one word line, it is possible to easily realize the
registration and reading of the forward map information by a writing and
reading operation in a conventional memory. Accordingly, the forward
map buffer can remarkably reduce the complication, the circuit scale and
the consumed electric power, in comparison with the not-yet-issued
instruction entry and the executed instruction entry in the prior art
multiple instruction parallel issue/execution management unit constructed

by adding a number of comparators to each one memory cell.

-75 -

10

15

20

25

In the prior art multiple instruction parallel issue/execution
management unit, the detection of the dependency between the result
value and the input operands and the forwarding of the result value to the
input operands, were reactively executed. Here, "reactively” indicates
that the input operand side waits for the necessary result value and
receives the necessary result value when the necessary result value is
generated. In this method, it is necessary to compare the register number
and the instruction tag by using a large number of comparators as

mentioned above.

On the other hand, the multiple instruction parallel issue/execution

mEragement unit in accordance with the preferred embodiments of the present invention, actively

executes the detection of the dependency between the result value and the
input operands and the forwarding of the result value to the input
operands. Here, "actively” indicates that the result value side has the
knowledge that there exists an input operand requires the result value of
the result value side, and in accordance with the knowledge, the result
value side positively supplies the result value to the input operand side
when the result value is generated. In this method, it is no longer
necessary to compare the instruction tag by using a large number of
comparators as mentioned above. |
Furthermore, the simultaneous parallel multiple access to the
register file has become a bottle neck, similarly to the parallel operation
of a large number of comparators, in issuing and executing a plurality of
instructions in parallel on the basis of the prior art superscalar

technology. However, the multiple instruction parallel issue/execution

management unit in accordance with the’pref‘er'red embodiments of the present invention is configured

to give the result value directly to the input operand by the operand

- 76 -

10

15

25

forwarding operation. As a result, it is possible to reduce the number of
accesses to the register file, including the writing of the result value into
the register file and the reading of the input operand from the regatta file.

In addition, the forward map information used in the multiple
instruction parallel issue/execution management unit in accordance with
the preferred embodiments of the present invention, can simply be generated by using an object
conversion from the program code using the instruction set a:rchitecture
of the prior art microprocessor. The reason for this is as follows: Into
which of registers the result value is to be written, and which of the
registers is designated by the input operand, are statically shown in the
program code, and therefore, by analyzing this information, it is possible
to statically know the dependency between the result value and the input
operand. For the same reasoning, it is possif)le to compile from a high
level language program without any progra:ﬁ.

Moreover, the forward map information used in the multiple
instruction parallel issue/execution management unit in accordance with
the preferred embodiments of the-present invention, indicates the dependency between the result
value of a given instruction and input operands of instructions, which succeed to
the given instruction in a predetermined range or which precede and
succeed to the given instruction in a predetemﬁned range. Therefore, it
is possible to show the dependency of any number of input operands if
these input operands are included in the predetermined range. In a
program code processed by a processor, there are frequently generated
such a situation that the result value of a given instruction is used as an
input operand by many instructions in a neighboring range. Therefore, a
more efficient multiple instruction parallel issue/execution management

unit can be realized by the forward map information as mentioned above.

-77 -

10

15

20

25

The invention has thus been shown and described with reference to
the specific embodiments. However, it should be noted that the present
invention is in no way limited to the details of the illustrated structures
but changes and modifications may be made within the scope of the
appended claims.

For example, a plurality of instruction issue buffers can be
provided in place of the only one instruction issue buffer, so that the
instruction issue buffers are separately used in accordance with the kind
of the instruction to be issued.

In addition, in place of transferring only issuable instructions from
the instruction registration buffer to the instruction issue buffer, whether
or not the instruction is issuable, is checked on the instruction issue
buffer. In this case, the issue flag is moved from the instruction issue
control unit to the instruction issue buffer.

The above mentioned description did not explain whether or not the
embodiments includes a floating-point arithmetic unit. The embodiments
can be used as without modification other than replacing the arithmetic
and logic unit by a floating-point arithmetic unit

Furthermore, in the forward map buffer, the forward map prefetch
buffer and the bypass buffer, each bit line is constituted of a single line,
but can be constituted of a pair of a complementary signal lines.

- As mentioned above, the processor including the multiple

mstmcnon parallel 1ssuc/execuuon management unit in accordance with tre

' pref‘er'r'ed e!rbodlments of the present invention, is characterized in that the forward map buffer is

provided within the multiple instruction parallel issue/execution
management unit, and the dependency between the result value and the

input operands is statically designated in the instruction, and held in the

-78 -

10

15

20

25

forward map buffer. With this arrangement, it is possible to forward the
result value to the input operand with using no comparator. In addition,
the operation required for all the multiple instruction parallel
issue/execution management is realized by the writing operation and the
reading operation to the memory cells. Therefore, a large number of
comparators and a control circuit for collation operation of the
comparators are no longer necessary. Accordingly, the circuit
construction of the multiple instruction parallel issue/execution
management unit and the processor including the multiple instruction
parallel issue/execution management unit can be reduced.

In the multiple instruction parallel issue/execution management unit
in accordance with the preferred embodiments of the present invention, only the memory cells
connected to the designated row-direction or column-direction word line
are activated, the consumed electric power can be reduced in comparison
with the prior art multiple instruction parallel issue/execution
management unit in which all the comparators are operated
simultaneously in parallel for the parallel collation.

~ Furthermore, in the multiple instruction parallel issue/execution
management unit in accordance with the preferred embodiments of the present invention, when the
result value can be gi'vén‘as the input operand by the operand forwarding
operation, the result value is not written into the register file. Therefore,
the number of accesses to the register file can be reduced. Accordingly,
it is possible to avoid the complication of the register file, which was a
problem in the prior art processor, by increasing the number of
instructions which are executéd in parallel, and by increasing the number

of simultaneous readings/writings to the register file.

-79 -

10

15

Each feature disclosed in this specification (which term includes the claims)
and/or shown in the drawings may be incorporated in the invention independently of
other disclosed and/or illustrated features.

The text of the abstract filed herewith is repeated here as part of the
specification.

A multiple instruction parallel issue/execution management system including
a forward map buffer for storing forward map information indicating whether or not
the result value generated by execution of a given instruction is used an input operand
in other instructions. The forward map buffer previously stores the forward map
information for the result value, before the result value corresponding to the given
instruction is actually generated, and when the result value corresponding to the given
instruction is actually generated, the operands using the result value are specified by
using the previously stored forward map information corresponding to the result value,

and supplied to an instruction using the result value as in input operand.

- 80 -

10

15

CLAIMS

A multiple instruction parallel issue/execution management system
incorporated in a superscalar type processor for dynamically issuing and
executing a plurality of instructions in parallel, the system including a forward
map buffer for storing forward map information indicating whether or not a
result value generated by execution of a given instruction is to be used as an
input operand in other instructions, said forward map information being stored
in a predetermined field of an instruction format, said forward map buffer
storing said forward map information for said result value, before said result
value corresponding to said given instruction is actually generated, so that
when said result value corresponding to said given instruction is actually
generated, an operand using said result value is specified by using said
previously stored forward map information corresponding to said result value,

and supplied to an instruction using said result value as said input operand.
A multiple instruction parallel issue/execution management system

substantially as herein described with reference to Figures 1 to 29 of the

accompanying drawings.

-81-

Ofhce

Application No: GB 9718521.9 Examiner: Leslie Middleton
Claims searched: 1 Date of search: 12 November 1997

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK CI (Ed.O): G4A(APB,APP)
Int C1 (Ed.6): GO6F 9/38
Other: Online:WPI, Inspec.

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims

A EP 0685789 A (Advanced Micro Devices Inc.)
A EP 0651321 A (Advanced Micro Devices Inc.)
A US 5555432 A (Intel Corporation)

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before
with one or more other documents of same category. the filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

TL

An Executive Agency of the Department of Trade and Industry

