
US 2013 OO66929A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0066929 A1

Sedlar et al. (43) Pub. Date: Mar. 14, 2013

(54) VERSIONING IN INTERNET FILE SYSTEM (60) Provisional application No. 60/147.538, filed on Aug.
5, 1999.

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US) Publication Classification

(72) Inventors: Eric Sedlar, San Francisco, CA (US); (51) Int. Cl.
Michael J. Roberts, Palo Alto, CA (US) G06F 7/30 (2006.01)

(52) U.S. Cl.
(73) Assignee: ORACLE INTERNATIONAL USPC 707/822; 707/E17.01

CORPORATION, Redwood Shores,
CA (US) (57) ABSTRACT

Techniques are provided for managing versions of files in a
(21) Appl. No.: 13/671,429 file system. According to one technique, new versions of

directories are created in response to creation of new versions
(22) Filed: Nov. 7, 2012 of files that descend from the directories, where the different

versions of a versioned directory are associated with different
points in time. Links are maintained between the files in the
file system such that the versions of the files that descend from

(62) Division of application No. 09/571,696, filed on May a particular version of a versioned directory reflect the point
15, 2000, now Pat. No. 8,335,775. in time associated with the versioned directory.

Related U.S. Application Data

APPLICATION APPLICATION

OS FILEAP
V

OPERATING OPERATING
SYSTEM 304A SYSTEM 304B

DBAPPLICATION
31 TRANSLATION ENGINE 308

DATABASE SERVER 204

OPERATING SYSTEM 104

DEVICE DRIVER 106

DISK 108

OAP

DATABASEAP

OS FILEAP

DEVICE API

Patent Application Publication Mar. 14, 2013 Sheet 1 of 18 US 2013/0066929 A1

APPLICATION 102

OS FILEAP

OPERATING SYSTEM 104

DEVICE API

DEVICEDRIVER 106

Se
DISK 108

FIG. 1

Patent Application Publication Mar. 14, 2013 Sheet 2 of 18 US 2013/0066929 A1

DATABASEAPPLICATION
202

DATABASEAP

DATABASE SERVER 204

OSFILEAP

OPERATING SYSTEM 104

DEVICEAP

DEVICEDRIVER 106

Se
DISK 108

FIG.2

Patent Application Publication Mar. 14, 2013 Sheet 3 of 18 US 2013/0066929 A1

APPLICATION APPLICATION
302A 302B

OSFILEAP

I/O API

DATABASEAP s

DATABASE SERVER 204

OS FILEAP

OPERATING SYSTEM 104

DEVICEAP

DEVICE DRIVER 106

DISK 108

FIG. 3

Patent Application Publication Mar. 14, 2013 Sheet 4 of 18 US 2013/0066929 A1

APPLICATION APPLICATION
302A 302B

OPERATING OPERATING
SYSTEM 304A SYSTEM 304B

OS FILEAP

I/O AP

APPLICATION PROTOCOL SERVER PROTOCOL SERVER
410 406A 406B

DBFILEAP s

DBFILE SERVER 408

TRANSLATION ENGINE 308

DATABASEAP

DATABASE SERVER 204

FIG. 4

Patent Application Publication Mar. 14, 2013 Sheet 5 of 18 US 2013/0066929 A1

510
HIERARCHICAL INDEX

508 ROW ID File ID Dir Entry list
Y1 X1 {(Windows, Y2, X2)

(Unix, Y4,X6)
(VMS, Y5, X9)

512 {(Word, Y3,X3)
(ACCess, null, X5)}

514 {(Example.doc, null, X4)}
516 518

{(App1, null, X7)
(App2, null, X8)}

{(App3, null, X10)
(App4, Y6,X11)}

{(Example.doc, null, X12)

Fig. 5

Patent Application Publication Mar. 14, 2013 Sheet 6 of 18 US 2013/0066929 A1

S

&
S

CO S.
CN e

d
co
C
c

2 s
e S CA

X

cy
O
O
CC

CN
O
O

Cd e

o

><
N 2

D CO

O
v
C
O
a.

O
CN

3 sy CD
CD
CC -1 d

&H O

co C
s Cl2

N O O
2 Cld S

v- c
>g

C
s
O

s

Patent Application Publication Mar. 14, 2013 Sheet 7 of 18 US 2013/0066929 A1

710
FILESTABLE

ROW ID File ID Name Body MOdification Date.

R1 X1 | (NULL)
R2 X2 WindoWS (NULL)
R3 X3 Word (NULL)
R4 X4 Example.doc
R5 X5 ACCeSS
R6 X6 Unix
R7 X7 App1
R8 X8 App2
R9 X9 WMS
R1O X10 App3
R11 X11 App4
R12 X12 Example.doc

Fig. 7

Patent Application Publication Mar. 14, 2013 Sheet 8 of 18 US 2013/0066929 A1

FIG. 8
800

LOCATE INDEXENTRY FORROOT DIRECTORY

802
ANY MORE

FILENAMES IN INPUT
PATHNAME?

NO

820
USE FILEID TO LOCATE

804
SELECT NEXT FILENAME INFORMATION INFILESTABLE

ININPUT PATHNAME

806.
SEARCHINDIRENTRY LIST FORAN ARRAY ENTRY FOR

SELECTEDFILENAME

808
WASAN ARRAY ENTRY

FOUND7

810
ERROR: PATHNAME

NOTVALID
822

MORE FILENAMES IN INPUT
PATHNAME?

824
USE ROWID TO FIND INDEXENTRY FOR SELECTEDFILENAME

Patent Application Publication Mar. 14, 2013 Sheet 9 of 18 US 2013/0066929 A1

APPLICATION PROTOCOL SERVER PROTOCOL SERVER
410 406A 406B

DBFILEAP

RENDERING UNIT PARSING UNIT

DBFILE SERVER 408

TRANSLATION ENGINE 308

DATABASEAP

DATABASE SERVER 204

FIG. 9

Patent Application Publication Mar. 14, 2013 Sheet 10 of 18 US 2013/0066929 A1

510
HIERARCHICAL INDEX

File ID SOD Dir Entry list

X1 N {(Windows, Y2,X2)
(Unix, Y4, X6)
(VMS, Y5, X9)

508

512 {(Word, Y3, X3)
(ACCess, null, X5)}

514 {(Example.doc, null, X4)
516 (DOCuments, Y7,X13)}

{(App1, null, X7)
(App2, null, X8)}

{(App3, null, X10)
(App4, YG, X11)}

{(Example.doc, null, X12)}

NULL

Fig. 10

Patent Application Publication Mar. 14, 2013 Sheet 11 of 18 US 2013/0066929 A1

710
FILESTABLE

ROW D File ID Name Body MOClification Date.
R1 X1 |
R2 X2 WindoWS
R3 X3 Word
R4 X4 Example.doc
R5 X5 ACCeSS
R6 X6 Unix
R7 X7 App1
R8 X8 App2
R9 X9 VMS
R1O X10 App3
R11 X11 App4
R12 X12 Example.doc
R13 X13 DOCuments

US 2013/0066929 A1

N

Patent Application Publication

Patent Application Publication Mar. 14, 2013 Sheet 13 of 18 US 2013/0066929 A1

BIGPROJECT
1302

DOCS 1306 SOURCE
CODE 1304

USER
MANUAL 1310

CODE CODE CODE SPEC SPEC UM
1316 1318 1320 1322 1324 1326

FIG. 13

Patent Application Publication Mar. 14, 2013 Sheet 14 of 18 US 2013/0066929 A1

BIGPROJECT
1302

BIGPROJECT
1302"

S.
X

SOURCE SOURCE DOCS 1306
CODE1304 CODE1304

LA CODE
1312

USER
MANUAL 1310

CODE CODE CODE CODE SPEC a SPEC y UM
1316 1318 1320 1320' 1322 1324 1326

FIG. 14

Patent Application Publication Mar. 14, 2013 Sheet 15 of 18 US 2013/0066929 A1

BIGPROJECT
1302

BIGPROJECT
1302"

S.
DOCS 1306 SOURCE

CODE1304
SOURCE

CODE1304

LA CODE
1312

SF CODE
1314 MANUAL 1310

y \
SPEC UM
1324 1326

CODE CODE CODE SPEC
1316 1318 1320 1322

FIG. 15

Patent Application Publication Mar. 14, 2013 Sheet 16 of 18 US 2013/0066929 A1

CLASS: FILES
ATTRIBUTES:
NAME
CREATION DATE
MODIFICATION DATE

METHODS:
STORE
COPY
MOVE
LINK TO
DELETE

CLASS: DOCUMENT
ATTRIBUTES:
SIZE

CLASS: FOLDER
METHODS: ATTRIBUTES:

MAX CHILDREN

METHODS:
CLASS: E-MAIL CLASS: TEXT DIR LIST
ATTRIBUTES: ATTRIBUTES:
READ FLAG CR FLAG
PRIORITY

SENDER METHODS:
TYPE

METHODS:

| _wº_

80|| ETEW | XHEOTO-??)| 83 || Z.
| z) |

US 2013/0066929 A1 Mar. 14, 2013 Sheet 17 of 18

TTON

Patent Application Publication

US 2013/0066929 A1 Mar. 14, 2013 Sheet 18 of 18 Patent Application Publication

TWOOT

|

Z |

US 2013/0066929 A1

VERSIONING IN INTERNET FILE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

Benefit Claim

0001. This application is a Divisional of U.S. patent appli
cation Ser. No. 09/571,696, filed May 15, 2000, the entire
contents of which is hereby incorporated by reference for all
purposes as if fully set forth herein. The Applicants hereby
rescind any disclaimer of claim scope in the parent applica
tion or the prosecution history thereof and advise the USPTO
that the claims in this application may be broader than any
claim in the parent application(s).
0002 This application is also related to and claims domes

tic priority under 35 U.S.C. S 119(e) from prior U.S. Provi
sional Patent Application Ser. No. 60/147.538 filed on Aug. 5,
1999 entitled “Internet File System”, by Eric Sedlar, the
entire disclosure of which is hereby incorporated by reference
as if fully set forth herein.
0003. This application is related to U.S. patent application
Ser. No. 09/251,757 filed on Feb. 18, 1999 now U.S. Pat. No.
6,427,123, entitled "Hierarchical Indexing for Accessing
Hierarchically Organized Information in a Relational Sys
tem', by Eric Sedlar, the entire disclosure of which is hereby
incorporated by reference as if fully set forth herein.
0004. This application is related to U.S. patent application
Ser. No. 09/571,508 filed May 15, 2000 now U.S. Pat. No.
7,418,435 entitled “Multi-model Access to Data”, by Eric
Sedlar, the entire disclosure of which is hereby incorporated
by reference as if fully set forth herein.
0005. This application is related to U.S. patent application
Ser. No. 09/571.496 filed May 15, 2000 now U.S. Pat. No.
6,922,708 entitled “File System that Supports Transactions',
by Eric Sedlar, the entire disclosure of which is hereby incor
porated by reference as if fully set forth herein.
0006. This application is related to U.S. patent application
Ser. No. 09/571,060 filed May 15, 2000 now U.S. Pat. No.
7.620,620 entitled “Basing Directory Contents On A Query
That Is Associated With A File Identifier, by Eric Sedlar, the
entire disclosure of which is hereby incorporated by reference
as if fully set forth herein.
0007. This application is related to U.S. patent application
Ser. No. 09/571,036 filed May 15, 2000 now U.S. Pat. No.
6,549,916 entitled “Event Notification System Tied to a File
System', by Eric Sedlar, the entire disclosure of which is
hereby incorporated by reference as if fully set forth herein.
0008. This application is related to U.S. patent application
Ser. No. 09/571,492 filed May 15, 2000 entitled “Object File
System with Typed Files', by Eric Sedlar, the entire disclo
sure of which is hereby incorporated by reference as if fully
set forth herein.
0009. This application is related to U.S. patent application
Ser. No. 09/571,568 filed May 15, 2000 now U.S. Pat. No.
7.280,995 entitled “On-the-fly Format Conversion', by Eric
Sedlar, the entire disclosure of which is hereby incorporated
by reference as if fully set forth herein.

FIELD OF THE INVENTION

0010. The present invention relates generally to electronic
file systems, and in particular to a system which implements
an operating system file system using a database system.

Mar. 14, 2013

BACKGROUND OF THE INVENTION

0011 Humans tend to organize information in categories.
The categories in which information is organized are them
selves typically organized relative to each other in some form
of hierarchy. For example, an individual animal belongs to a
species, the species belongs to a genus, the genus belongs to
a family, the family belongs to an order, and the order belongs
to a class.
0012. With the advent of computer systems, techniques
for storing electronic information have been developed that
largely reflected this human desire for hierarchical organiza
tion. Conventional operating systems, for example, provide
file systems that use hierarchy-based organization principles.
Specifically, a typical operating system file system (“OS file
system') has directories arranged in a hierarchy, and docu
ments stored in the directories. Ideally, the hierarchical rela
tionships between the directories reflect some intuitive rela
tionship between the meanings that have been assigned to the
directories. Similarly, it is ideal for each document to be
stored in a directory based on some intuitive relationship
between the contents of the document and the meaning
assigned to the directory in which the document is stored.
0013 FIG. 1 illustrates a typical mechanism by which a
Software application that creates and uses a file (such as a
word processor) stores the file in a hierarchical file system.
Referring to FIG. 1, an operating system 104 exposes to an
application 102 an application programming interface (API).
The API thus exposed allows the application 102 to call
routines provided by the operating system. The portion of the
OS API associated with routines that implement the OS file
system is referred to herein as the OS file API. The application
102 calls file system routines through the OS file API to
retrieve and store data on disk 108. The operating system 104,
in turn, makes calls to a device driver 106 that controls access
to the disk 108 to cause the files to be retrieved from and
stored on disk 106.

0014. The OS file system routines implement the hierar
chical organization of the file system. For example, the OS file
system routines maintain information about the hierarchical
relationship between files, and provide application 102 access
to the files based on their location within the hierarchy.
0015. In contrast to hierarchical approaches to organizing
electronic information, a relational database stores informa
tion in tables comprised of rows and columns. Each row is
identified by a unique RowlD. Each column represents an
attribute of a record, and each row represents a particular
record. Data is retrieved from the database by submitting
queries to a database management system (DBMS) that man
ages the database.
0016 FIG. 2 illustrates a typical mechanism by which a
database application accesses information in a database.
Referring to FIG. 2, database application 202 interacts with a
database server 204 through an API provided by the database
server 204 (a “database API). The API thus exposed allows
the database application 202 to access data using queries
constructed in the database language Supported by the data
base server 204. One such language that is Supported by many
database servers is the Structured Query Language (SQL). To
the database application 202, database server 204 makes it
appear that all data is stored in rows of tables. However,
transparent to database application 202, the database server
204 actually interacts with the operating system 104 to store
the data as files in the OS file system. The operating system

US 2013/0066929 A1

104, in turn, makes calls to device driver 106 to cause the files
to be retrieved from and stored on disk 108.
0017. Each type of storage system has advantages and
limitations. A hierarchically organized storage system is
simple, intuitive, and easy to implement, and is a standard
model used by most application programs. Unfortunately, the
simplicity of the hierarchical organization does not provide
the Support required for complex data retrieval operations.
For example, the contents of every directory may have to be
inspected to retrieve all documents created on a particular day
that have a particular filename. Since all directories must be
searched, the hierarchical organization does nothing to facili
tate the retrieval process.
0018. A relational database system is well suited for stor
ing large amounts of information and for accessing data in a
very flexible manner. Relative to hierarchically organized
systems, data that matches even complex search criteria may
be easily and efficiently retrieved from a relational database
system. However, the process of formulating and Submitting
queries to a database server is less intuitive than merely tra
versing a hierarchy of directories, and is beyond the technical
comfort level of many computer users.
0019 Currently, application developers are forced to
choose whether they want data created by their applications to
be accessible through the hierarchical file system provided by
operating systems, or through the more complex query inter
face provided by database systems. In general, if applications
do not demand the complex search capability of a database
system, the applications are designed to store their data using
the more prevalent and simpler hierarchical file system pro
vided by operating systems. This simplifies both application
design and application use, but also limits the flexibility and
power with which the data can be accessed.
0020. On the other hand, if complex search capability is
required, the applications are designed to access their data
using query mechanism provided by database systems. While
this increases the flexibility and power with which the data
may be accessed, it also increases the complexity of the
application, both from the perspective of the designer and the
perspective of the user. It further requires the presence of a
database system, which imposes an additional expense to the
application user.
0021 Based on the foregoing, it is clearly desirable to
allow applications to access data using the relatively simple
OS file APIs. It is further desirable to allow access to that
same data using the more powerful database API.

SUMMARY OF THE INVENTION

0022 Techniques are provided for managing versions of
files in a file system. According to one embodiment, new
versions of directories are created in response to creation of
new versions of files that descend from the directories, where
the different versions of a versioned directory are associated
with different points in time. Links are maintained between
the files in the file system such that the versions of the files that
descend from a particular version of a versioned directory
reflect the point in time associated with the versioned direc
tory.
0023. According to another embodiment, a mechanism is
provided for tagging versions of files that are not to be over
written. In response to an update to a first version of a file, the
following steps are performed: determining whether the first
version of the file is tagged; if the first version of the file is
tagged, then storing the second version of the file while

Mar. 14, 2013

retaining the first version of the file; and if the first version of
the file is not tagged, then deleting the first version of the file
in response to storing the second version of the file.
0024. According to another embodiment, in response to a
change made to a first version of a file, it is determined
whether a first set of criteria is satisfied. If the first set of
criteria is satisfied, then a second version of the file is created
while retaining the first version of the file. A new version of
eachancestor file above the file in a file hierarchy is created if
the ancestor file satisfies a second set of criteria.

BRIEF DESCRIPTION OF THE DRAWINGS

0025. The present invention is illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer
als refer to similar elements and in which:
0026 FIG. 1 is a block diagram that illustrates how con
ventional applications store data through the file system pro
vided by an operating system;
0027 FIG. 2 is a block diagram that illustrates how con
ventional database applications store data through the data
base API provided by a database system;
0028 FIG. 3 is a block diagram that illustrates a system in
which the same set of data may be accessed though a variety
of interfaces, including a database API and an OS file system
API:
0029 FIG. 4 is a block diagram that illustrates translation
engine 308 in greater detail;
(0030 FIG. 5 is a block diagram that illustrates a hierarchi
cal index;
0031 FIG. 6 is a block diagram of a file hierarchy that can
be emulated by a hierarchical index;
0032 FIG. 7 is a block diagram of a files table that can be
used to store files within a relational database according to an
embodiment of the invention;
0033 FIG. 8 is a flowchart illustrating the steps for resolv
ing a pathname using a hierarchical index;
0034 FIG. 9 is a block diagram that illustrates a database

file server in greater detail;
0035 FIG. 10 is a block diagram of a hierarchical index
that includes an entry for a stored query directory;
0036 FIG. 11 is a block diagram of a files table that
includes a row for a stored query directory;
0037 FIG. 12 is a block diagram that illustrates a file
hierarchy that includes a stored query directory;
0038 FIG. 13 is a block diagram that illustrates a file
hierarchy
0039 FIG. 14 is a block diagram that illustrates how the

file hierarchy of FIG. 13 is updated in response to an update to
a document according to one embodiment of the versioning
techniques described herein;
0040 FIG. 15 is a block diagram that illustrates how the

file hierarchy of FIG. 13 is updated in response to the move
ment of a document from one folder to another according to
one embodiment of the versioning techniques described
herein;
0041 FIG. 16 is a block diagram illustrating a class hier
archy of file classes according to an embodiment of the inven
tion;
0042 FIG. 17 is a block diagram of relational tables that
are used in a database-implemented file system that imple
ments the file class hierarchy of FIG. 16, according to one
embodiment of the invention; and

US 2013/0066929 A1

0043 FIG. 18 is a block diagram that illustrates a com
puter system on which embodiments of the invention may be
implemented.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

0044. A method and system are provided that allow the
same set of data to be accessed through a variety of interfaces,
including a database API and an OS file system API. In the
following description, for the purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the present
invention may be practiced without these specific details. In
other instances, well-known structures and devices are shown
in block diagram form in order to avoid unnecessarily obscur
ing the present invention.

Architectural Overview

0045 FIG. 3 is a block diagram that illustrates the archi
tecture of a system 300 implemented according to an embodi
ment of the invention. Similar to the system illustrated in FIG.
2, system 300 includes a database server 204 that provides a
database API through which a database application 312 can
access data managed by database server 204. From the per
spective of all entities that access data managed by database
server 204 through the database API, the data managed by
database server 204 is stored in relational tables that can be
queried using the database language Supported by database
server 204 (e.g. SQL). Transparent to those entities, database
server 204 stores the data to disk 108. According to one
embodiment, database server 204 implements disk manage
ment logic that allows it to store the data directly to disk and
thus avoid the overhead associated with the OS file system of
operating system 104. Thus, database server 204 may cause
the data to be stored to diskeither by (1) by making calls to the
OS file system provided by operating system 104, or (2)
storing the data directly to disk, thus circumventing operating
system 104.
0046. Unlike the system of FIG. 2, system 300 provides a
translation engine 308 that translates I/O commands received
from operating systems 304a and 304b into database com
mands that the translation engine 308 issues to database
server 204. When the I/O commands call for the storage of
data, translation engine 308 issues database commands to
database server 204 to cause the data to be stored in relational
tables managed by database server 204. When the I/O com
mands call for the retrieval of data, translation engine 308
issues database commands to database server 204 to retrieve
data from relational tables managed by database server.
Translation engine 308 then provides the data thus retrieved
to the operating system that issued the I/O commands.
0047. To operating systems 304a and 304b, the fact that
data passed to translation engine 308 is ultimately stored in a
relational database managed by database server 204 is trans
parent. Because it is transparent to operating systems 304a
and 304b, it is also transparent to applications 302a and 302b
that are running on platforms that include those operating
systems.
0048 For example, assume that the user of application
302a selects a “save file' option provided by the application
302a. The application 302a makes a call through the OS File
API to cause operating system 304a to save the file. The

Mar. 14, 2013

operating system 304a issues an I/O command to translation
engine 308 to store the file. Translation engine 308 responds
by issuing one or more database commands to database server
204 to cause the database server 204 to store the data con
tained in the file into relational tables maintained by the
database server 204. Database server 204 may either store the
data directly to disk or make calls to the operating system 104
to cause the data to be stored in the OS file system provided by
operating system 104. If database server 204 calls operating
system 104, operating system 104 responds by causing the
data to be stored on disk 108 by sending commands to device
driver 106.
0049. As another example, assume that the user of appli
cation 302a selects a “load file' option provided by the appli
cation 302a. The application 302a makes a call through the
OS File API to cause operating system 304a to load a file. The
operating system 304a issues an I/O command to translation
engine 308 to load the file. Translation engine 308 responds
by issuing one or more database commands to database server
204 to cause the database server 204 to retrieve from rela
tional tables maintained by the database server 204 the data
that comprises the file to be retrieved. During the retrieval of
the data, database server 204 may either retrieve the data
directory or make calls to the operating system 104 to cause
the data to be retrieved from OS files on disk 108. Once the
data is retrieved, the desired file is “constructed from the
retrieved data. Specifically, the retrieved data is placed in a
format expected by the application 302a that requested the
file. The file thus constructed is passed through the translation
engine 308 and operating system304a up to application 302a.
0050 System 300 incorporates numerous novel features.
In the following sections, these features shall be described in
greater detail. It should be understood, however, that the
specific embodiments are used to describe the features, and
that the invention is not limited to those specific embodi
mentS.

OS File System Access to Relationally Stored Data
0051. According to one aspect of the invention, system
300 allows applications to access data stored in a database
through the conventional OS file APIs. That means that con
ventional applications that have been designed to load files by
making calls to the standard OS file API provided by operat
ing systems are able to load files that are constructed on-the
fly from data stored in relational tables. Further, the fact that
the data originates from relational tables is entirely transpar
ent to the applications.
0.052 For example, assume that database application 312
issues a database command to insert a row of data into a table
in the database maintained by database server 204. Once the
row has been inserted, application 302a, which is only
designed to access data using the relatively simple OS file API
provided by operating system 304a, issues a “file open’ com
mand to operating system 304a. In response, operating sys
tem 304a issues an I/O command to translation engine 308,
which responds by issuing one or more database commands
to database server 204. Database server 204 executes the
database command (typically in the form of a database
query), thereby causing database server 204 to retrieve the
row inserted by database application 312. A file of the file type
expected by application 302a is constructed from the data
contained in the row, and the file thus constructed is passed
back up to application 302A through translation engine 308
and operating system 304a.

US 2013/0066929 A1

0053 System 300 not only allows relationally stored data
to be loaded by applications that only Support conventional
OS file system access, but system 300 also allows information
stored by applications that only support conventional OS file
system access to be accessed by database applications using
conventional querying techniques. For example, assume that
application 302a makes an OS call to save a file that it has
created. That “file save' command is passed down through
operating system 304a and translation engine 308 to database
server 204. Database server 204 receives the “file save' com
mand in the form of a database command, issued by transla
tion engine 308, to store the data contained in that file into one
or more rows of one or more tables contained in the database
managed by database server 204. Once the data is stored
within the database in that manner, database application 312
may issue database queries to database server 204 to retrieve
the data from the database.

Emulating OS File System Organization in a
Database

0054 As explained above, calls made to the file system
routines of operating systems 304a and 304b are ultimately
translated to database commands issued by translation engine
308 to database server 204. According to one embodiment of
the invention, the process of performing these translations is
simplified by emulating within database server 204 the char
acteristics of the file systems implemented by operating sys
tems 304a and 304b.

0055 With respect to the organizational model, most oper
ating systems implement file systems that organize files in a
file hierarchy. Thus, the OS file system calls made by appli
cations 302a and 302b will typically identify a file in terms of
its location within the OS file hierarchy. To simplify the
translation of Such calls to corresponding database calls, a
mechanism is provided for emulating a hierarchical file sys
tem withina relational database system. One Such mechanism
is described in detail in U.S. patent application Ser. No.
09/251,757, entitled “HIERARCHICAL INDEXING FOR
ACCESSING HIERARCHICALLY ORGANIZED INFOR
MATION IN A RELATIONAL SYSTEM filed by Eric Sed
lar on Feb. 18, 1999, the entire contents of which are incor
porated herein by reference.
0056 Specifically, the “HIERARCHICAL INDEXING”
application describes techniques for creating, maintaining,
and using a hierarchical index to efficiently access informa
tion in a relational system based on a pathnames, thus emu
lating a hierarchically organized system. Each item that has
any children in the emulated hierarchical system has an index
entry in the index. The index entries in the index are linked
together in a way that reflects the hierarchical relationship
between the items associated with the index entries. Specifi
cally, if a parent-child relationship exists between the items
associated with two index entries, then the index entry asso
ciated with the parent item has a direct link to the index entry
associated with the child item.

0057 Consequently, pathname resolution is performed by
following direct links between the index entries associated
with the items in a pathname, according to the sequence of the
filenames within the pathname. By using an index whose
index entries are linked in this manner, the process of access
ing the items based on their pathnames is significantly accel
erated, and the number of disk accesses performed during that
process is significantly reduced.

Mar. 14, 2013

Hierarchical Index

0.058 Hierarchical indexes consistent with the invention
Support the pathname-based access method of a hierarchical
system, moving from parent items to their children, as speci
fied by the pathname. According to one embodiment, a hier
archical index consistent with the principles of the invention
employs index entries that include the following three fields:
RowlD, File ID, and Dir entry list (stored as an array).
0059 FIG.5 shows a hierarchical index510 which may be
used to emulate a hierarchical storage system in a database.
FIG. 6 shows the specific file hierarchy that hierarchical index
510 is emulating. FIG. 7 shows a files table 710, used to store
the files illustrated in FIG. 6 within a relational database.
0060. Hierarchical index 510 is a table. The RowID col
umn contains system generated Ids, specifying a disk address
that enables database server 204 to locate the row on the disk.
Depending on the relational database system, RowID may be
an implicitly defined field that the DBMS uses for locating
data stored on the disk drive. The FileID field of an index
entry stores the FileID of the file that is associated with the
index entry.
0061 According to one embodiment of the invention,
hierarchical index 510 only stores index entries for items that
have children. In the context of an emulated hierarchical file
system, therefore, the items that have index entries in the
hierarchical index 510 are only those directories that are
parents to other directories and/or that are currently storing
documents. Those items that do not have children (e.g.
Example.doc, Access, App1, App2, App3 of FIG. 6) are pref
erably not included. The Dir entry list field of the index
entry for a given file stores, in an array, an "array entry’ for
each of the child files of the given file.
0062 For example, index entry 512 is for the Windows
directory 614. The Word directory 616 and the Access direc
tory 620 are children of the Windows directory 614. Hence,
the Dir entry list field of index entry 512 for the Windows
directory 614 includes an array entry for the Word directory
616 and an array entry for the Access directory 620.
0063. According to one embodiment, the specific infor
mation that the Dir entry list field stores for each child
includes the filename of the child and the FileID of the child.
For children that have their own entries in the hierarchical
index 510, the Dir entry list field also stores the RowID of
the child’s index entry. For example, the Word directory 616
has its own entry in hierarchical index 510 (entry 514).
Hence, the Dir entry list field of index entry 512 includes the
name of directory 616 (“Word”), the RowID of the index
entry for directory 616 in hierarchical index 510 (“Y3’), and
the FileID of directory 616 (X3). As shall be described in
greater detail, the information contained in the Dir entry list
field makes accessing information based on pathnames much
faster and easier.
0064. Several key principles of the hierarchical index are
as follows:

0065. The Dir entry list information in the index entry
for a given directory is kept together in as few disk
blocks as possible, since the most frequently used file
system operations (pathname resolution, directory list
ing) will need to look at many of the entries in a particu
lar directory whenever that directory is referenced. In
other words, directory entries should have a high locality
of reference because when a particular directory entry is
referenced, it is likely that other entries in the same
directory will also be referenced.

US 2013/0066929 A1

0066. The information stored in the index entries of the
hierarchical index must be kept to a minimum, so as to fit
the maximum number of entries in a particular disk
block. Grouping directory entries together in an array
means that there is no need to replicate a key identifying
the directory they are in; all of the entries in a directory
share the same key.

0067. The time needed to resolve a pathname should be
proportional to the number of directories in the path, not
the total number offiles in the filesystem. This allows the
user to keep frequently-accessed files toward the top of
the filesystem tree, where access time is lower.

0068. These elements are all present in typical file system
directory structures, such as the UNIX system of inodes and
directories. The use of a hierarchical index, as described
herein, reconciles those goals with the structures that a rela
tional database understands and can query, to allow the data
base server to do ad-hoc searches of files in a manner other
than that used in pathname resolution. To do this, the database
concept of an index must be used: a duplicate of parts of the
underlying information (in this case, the file data) arranged in
a separate data structure in a different manner designed to
optimize access via a particular method (in this case, resolu
tion of a pathname in a hierarchical tree).

Using the Hierarchical Index
0069. How hierarchical index 510 may be used to access a

file based on the pathname of the file shall now be described
with reference to the flowchart in FIG. 8. It shall be assumed
for the purpose of explanation that document 618 is to be
accessed through its pathname. The pathname for this file is
/Windows/Word/Example.doc, which shall be referred to
hereafter as the “input pathname'. Given this pathname, the
pathname resolution process starts by locating within hierar
chical index 510 the index entry for the first name in the input
pathname. In the case of a file system, the first name in a
pathname is the root directory. Therefore, the pathname reso
lution process for locating a file within an emulated file sys
tem begins by locating the index entry 508 of the root direc
tory 610 (step 800). Because all pathname resolution
operations begin by accessing the root directory's index entry
508, data that indicates the location of the index entry for the
root directory 610 (index entry 508) may be maintained at a
convenient location outside of the hierarchical index 510 in
order to quickly locate the index entry 508 of the root direc
tory at the start of every search.
0070. Once the index entry 508 for the root directory 610
has been located, the DBMS determines whether there are
any more filenames in the input pathname (step 802). If there
are no more filenames in the input pathname, then control
proceeds to step 820 and the FileID stored in index entry 508
is used to lookup the root directory entry in the files table 710.
(0071. In the present example, the filename “Windows'
follows the root directory symbol “f” in the input pathname.
Therefore, control proceeds to step 804. At step 804, the next
filename (e.g. “Windows') is selected from the input path
name. At step 806, the DBMS looks in the Dir entry list
column of the index entry 508 to locate an array entry per
taining to the selected filename.
0072. In the present example, the filename that follows the
root directory in the input pathname is “Windows’. There
fore, step 806 involves searching the Dir entry list of index
entry 508 for an array entry for the filename “Windows”. If
the Dir entry list does not contain an array entry for the

Mar. 14, 2013

selected filename, then control would proceed from step 808
to step 810, where an error is generated to indicate that the
input pathname is not valid. In the present example, the Dir
entry list of index entry 508 does include an array entry for
“Windows’. Therefore, control passes from step 808 to step
822.
0073. The information in the Dir entry list of index entry
508 indicates that one of the children of the root directory 610
is indeed a file named “Windows”. Further, the Dir entry list
array entry contains the following information about this
child: it has an index entry located at RowlDY2, and its
FileID is X2.
0074 At step 822, it is determined whether there are any
more filenames in the input pathname. If there are no more
filenames, then control passes from step 822 to step 820. In
the present example, “Windows' is not the last filename, so
control passes instead to step 824.
0075. Because “Windows' is not the last filename in the
input path, the FileID information contained in the Dir en
try list is not used during this path resolution operation.
Rather, because Windows directory 614 is just part of the
specified path and not the target, files table 710 is not con
sulted at this point. Instead, at step 824 the RowlD (Y2) for
“Windows, which is found in the Dir entry list of index
entry 508, is used to locate the index entry for the Windows
directory 614 (index entry 512).
0076 Consulting the Dir entry list of index entry 512, the
system searches for the next filename in the input pathname
(steps 804 and 806). In the present example, the filename
“Word” follows the filename “Windows' in the input path
name. Therefore, the system searches the Dir entry list of
index entry 512 for an array entry for “Word’. Such an entry
exists in the Dir entry list of index entry 512, indicating that
“Windows' actually does have a child named “Word' (step
808). At step 822, it is determined that there are more filena
mes in the input path, so control proceeds to step 824.
(0077. Upon finding the array entry for “Word’, the system
reads the information in the array entry to determine that an
index entry for the Word directory 616 can be found in hier
archical index510 at RowlDY3, and that specific information
pertaining to Word directory 616 can be found in files table
710 at row X3. Since Word directory 616 is just part of the
specified path and not the target, files table 710 is not con
sulted. Instead, the system uses the RowlD (Y3) to locate the
index entry 514 for Word directory 616 (step 824).
(0078. At RowIDY3 of hierarchical index 510, the system
finds index entry 514. At step 804, the next filename
“Example.doc' is selected from the input pathname. At step
806, the Dir entry list of index entry 514 is searched to find
(step 808) that there is an array entry for “Example.doc'.
indicating that “Example.doc' is a child of Word directory
616. The system also finds that Example.doc has no indexing
information in hierarchical index 510, and that specific infor
mation pertaining to Example.doc can be found in files table
710 using the FileIDX4. Since Example.doc is the target file
to be accessed (i.e. the last filename in the input path), control
passes to step 820 where the system uses the FileIDX4 to
access the appropriate row in the files table 710, and to extract
the file body (the BLOB) stored in the body column of that
row. Thus, the Example.doc file is accessed.
0079. In accessing this file, only hierarchical index 510
was used. Notable scans were necessary. With typical sizes of
blocks and typical filename lengths, at least 600 directory
entries will fit in a disk block, and a typical directory has less

US 2013/0066929 A1

than 600 entries. This means that the list of directory entries in
a given directory will typically fit in a single block. In other
words, each index entry of hierarchical index 510, including
the entire Dir entry list array of the index entry, will typi
cally fit in a single block, and therefore can be read in a single
I/O operation.
0080. In moving from index entry to index entry in the
hierarchical index 510, it is possible that some disk accesses
will need to be performed if the various index entries in the
index reside in different disk blocks. If each index entry
entirely fits in a single block, then number of disk accesses,
however, will at most be the number of directories in the path.
Even if the size of an average index entry does not fit in a
single disk block, the number of disk accesses per directory
will be a constant term, and will not increase with the total
number of files in the file system.
0081. The foregoing description of techniques for emulat
ing the hierarchical characteristic possessed by Some file
systems is merely exemplary. Other techniques may be used
to emulate the hierarchical characteristics of some file sys
tems and protocols. Further, some protocols may not even
possess a hierarchical characteristic. Thus, the present inven
tion is not limited to any particular technique for emulating
the hierarchical characteristic of some protocols. Further, the
present invention is not limited to protocols that are hierar
chical in nature.

Emulating Other OS File System Characteristics in a
Database

0082 Beyond the hierarchical organization of OS file sys
tems, another characteristic of most OS file systems is that
they maintain certain system information about the files that
they store. According to one embodiment, this OS file system
characteristic is also emulated within the database system.
Specifically, translation engine 308 issues commands that
cause the “system” data for a file to be stored in a row of a files
table (e.g. files table 710) managed by database server 204.
According to one embodiment, all or most of the file contents
is stored as a large binary object (BLOB) in one column of the
row. In addition to the BLOB column, the files table further
includes columns for storing attribute values that correspond
to those implemented in OS file systems. Such attribute val
ues include, for example, the owner or creator of the file, the
creation date of the file, the last modification data of the file,
the hard links to the file, the file name, the size of the file, and
the file type.
0083. When translation engine 308 issues database com
mands to database server 204 to perform any file operation,
those database commands include statements which cause the
attributes associated with the files involved in the operation to
be modified appropriately. For example, in response to insert
ing a new row in the files table for a newly created file,
translation engine 308 issues database commands to (1) store
in the "owner' column of the row a value that indicates the
user who is creating the file, and (2) store in the “creation
date' column of the row a value that indicates the current date,
and (3) store in the “last modify’ column a value that indi
cates the current date and time, and (4) store in the “size”
column a value that indicates the size of the BLOB. In
response to Subsequent operations on the file, the values in
these columns are modified as required by the operations. For
example, if translation engine 308 issues a database com
mand that modifies the contents of a file stored in a particular
row, then as part of the same operation the translation engine

Mar. 14, 2013

308 issues a database command to update the “last modify
value of the particular row. Further, if the modification
changes the size of the file, then translation engine 308 also
issues a database command to update the “size value of the
particular row.
I0084 Another characteristic of most OS file systems is the
ability to provide security on a file-by-file basis. For example,
Windows NT, VMS and some versions of UNIX maintain
access controllists that indicate the rights that various entities
have with respect to each file. According to one embodiment
of the invention, this OS file system characteristic is emulated
within the database system by maintaining a “security table'
where each row of the security table contains content similar
to an entry of an access control list. For example, a row in the
security table contains one column to store a value that iden
tifies a file, another column to store a value that represents a
permission type (e.g. read, update, insert, execute, change
permission), another column that stores a flag to indicate
whether the permission is granted or denied, and an owner
column to store a value that represents the owner of that
permission for that file. The owner may be a single user,
identified by a userid, or a group, identified by a groupid. In
the case of a group, one or more additional tables are used to
map the groupid to the userids of the members of the group.
I0085 Prior to issuing database commands that access a
file stored in the files table managed by database server 204,
translation engine 308 issues database commands to verify
that the user that is requesting the access has permission to
perform the type of access requested for the specified file.
Such pre-access database commands would retrieve data
from the security table to determine whether the user that is
requesting access has permission to perform the access. If the
data thus retrieved indicates that the user does not have the
required permission, then translation engine 308 does not
issue the commands that perform the requested operation.
Instead, translation engine 308 provides an error message
back to the operating system from which the request origi
nated. In response to the error message, the operating system
sends the same OS error message to the application that
requested the access as the operating system would send if the
application had attempted to access, without permission, a
file maintained in the OS file system of that operating system.
Thus, even under error conditions, the fact that the data is
stored in a relational database rather than in the OS file system
is transparent to the application.
I0086 Different operating systems store different types of
system information about files. For example, one operating
system may store an "archive' flag but no icon information,
while another may store icon information but no archive flag.
The specific set of system data maintained by a database
system that implements the techniques described herein may
vary from implementation to implementation. For example,
database server 204 may store all of the system data supported
by the OS file system of operating system304a, but only some
of the system data supported by the OS file system of oper
ating system 304b. Alternatively, database server may store
all of the system data Supported by both operating systems
304a and 304b, or less that all of the system data supported by
any one of the operating systems 304a and 304b.
0087. As illustrated in FIG. 3, database server 204 stores
files that originate from numerous distinct OS file systems.
For example, operating system 304a may be different from
operating system 304b, and both operating systems 304a and
304b may be different from operating system 104. OS file

US 2013/0066929 A1

systems 304a and 304b may have contradictory characteris
tics. For example, OS file system304a may allow filenames to
contain the character"/, while OS file system304b may not.
According to one embodiment, in situations such as this,
translation engine 308 is configured to implement OS file
system-specific rules. Thus, if application 302a attempts to
store a file whose filename contains the character '/', trans
lation engine 308 issues database commands to database
server 204 to perform the operation. On the other hand, if
application 302battempts to store a file whose filename con
tains the character '/', then translation engine 308 raises an
eO.

0088 Alternatively, translation engine 308 may be config
ured to implement a single set of rules for all operating sys
tems. For example, translation engine 308 may implement the
rule that ifa filename is not valid in even one operating system
supported by translation engine 308, then an error will be
raised even if the filename is valid in the operating system that
issued the command that specified the filename.

Translating OS File System Calls to Database
Queries

0089. Having built mechanisms to emulate OS file system
characteristics within a database system, the translation of OS
file system calls to database queries may be performed by
translation engine 308 without losing the functionality
expected by the applications that are making the OS file
system calls. The OS file system calls made by those appli
cations are made through the OS file API provided by the
operating systems in which they are executing. For example,
for programs written in the “C” programming language, a
source code file entitled “stdio.h' is used to specify the inter
face of the OS file API of an operating system. The stdio.h file
is included by applications so that the applications will know
how to invoke the routines that implement the OS file API.
0090. The specific routines that implement an OS file API
may vary from operating system to operating system, but
typically include routines to perform the following opera
tions: open file, read from file, write to file, seek within a file,
lock a file, and close file. In general, the mapping from those
I/O commands to relational database commands is:
0091 open file=begin transaction, resolve pathname to
locate row that contains file
0092 write to file-update
0093 read from file=Select
0094 lock file-lock row associated with file
0095 seek in file update counter
0096 close file-commit transaction (the Windows OS file
system protocol requires that the directory entry be commit
ted immediately before the file data is written. Other proto
cols do not.)
0097. As will be discussed in greater detail hereafter, some

file systems expect the name of a file to be visible even before
the contents of the file have been received. In the context of
those file systems, the “open file’” I/O command corresponds
to a begin transaction for writing the name and a commit
transaction for writing the name, as well as a begin transaction
for writing the content.
0098. According to one embodiment, a counter is used to
track the "current location' within a file. In embodiments
where the files are stored as BLOBs, the counter may take the
form of an offset from the beginning of a BLOB. Upon the
execution of an “open file' command, a counteris created and
set to a value that indicates the starting address of the BLOB

Mar. 14, 2013

in question. The counter for a BLOB is then incremented in
response to data being read from or written to the BLOB. Seek
operations cause the counter to be updated to point to the
location within the BLOB dictated by the seek operations
parameters. According to one embodiment, these operations
are facilitated through the use of LOB Locators, as described
in U.S. patent application Ser. No. 08/962.487 entitled “LOB
LOCATORS, filed Oct. 31, 1997 by Noriet. al., the entire
contents of which is incorporated herein by reference.
0099. In some operating systems, OS locks may persist
beyond the closing of a file. To emulate this feature, the lock
file command is translated to a request for a session lock.
Consequently, when the “commit transaction' is performed
in response to the close file command, the lock on the row
associated with the file is not automatically released. The lock
thus established is released either explicitly in response to an
unlock file command, or automatically in response to the
termination of the database session through which the lock
was acquired.

In-Progress I/O Operations
0100. When a file is created, the directory in which the file

is created is updated to indicate the presence of the file. In
some OS file systems, the modification to a directory to show
a new file is committed before the new file is entirely gener
ated. Some applications designed for those OS file systems
take advantage of that feature. For example, an application
may open a new file with a first file handle, and proceed to
write data into the file. While the data is being written, the
same application may open the file with a second file handle.
0101 Emulating this feature within the database involves
special issues because, in general, until a database transaction
commits, another transaction is not able to see the changes
made by the transaction. For example, assume that a first
database transaction is initiated in response to the first “open’
command. The first transaction updates a directory table to
indicate that the file exists in a particular directory, and then
updates a files table to insert a row that contains the file. If a
second database transaction is initiated in response to a sec
ond open command, issued by the same application, the sec
ond database transaction will not see either the change to the
directory table nor the new row in the files table until the first
transaction commits.
0102) According to one embodiment of the invention, the
ability to see the directory entry of a file whose creation is in
progress is emulated in a database system by causing the
update to the directory table to be performed as a separate
transaction than the transaction used to insert the row for the
file in the files table. Thus, in response to the first open
command, translation engine 308 issues database commands
to (1) start a first transaction, (2) change the directory table to
indicate the existence of the new file, (3) commit the first
transaction, (4) start a second transaction, (5) insert a row for
the file into the files table, and (6) commit the second trans
action. By committing the change to the directory table sepa
rate from the change to the files table, a third transaction,
initiated in response to a second open command, may see the
entry in the directory table while the insertion into the files
table is still in progress. If the second transaction fails, then
the directory will be left with an entry for a file with no
COntent.

The Translation Engine
0103) According to one embodiment of the invention,
translation engine 308 is designed in two layers. Those layers

US 2013/0066929 A1

are illustrated in FIG. 4. Referring to FIG. 4, translation
engine 308 includes a protocol server layer, and a DB file
server 408 layer. DB file server 408 allows applications to
access data stored in the database managed by database server
204 through an alternative API, referred to herein as the DB
file API. The DB file API combines aspects of both an OS file
API and the database API. Specifically, the DB file API sup
ports file operations similar to those Supported by conven
tional OS file APIs.
0104. However, unlike OS file APIs, the DB file API incor
porates the database API concept of transactions. That is, the
DB file API allows applications to specify that a set of file
operations are to be performed as an atomic unit. The benefits
of having a transacted file system are described in greater
detail hereafter.

DB File Server

0105. The DB file server 408 is responsible for translating
DB file API commands to database commands. The DB file
API commands received by DB file server 408 may come
from the protocol server layer of translation engine 308, or
directly from applications (e.g. application 410) specifically
designed to perform file operations by issuing calls through
the DB file API.
0106. According to one embodiment, DB file server 408 is
object oriented. Thus, the routines supplied by DB file server
408 are invoked by instantiating an object and calling meth
ods associated with the object. In one implementation, the DB
file server 408 defines a “transaction” object class that
includes the following methods: insert, save, update, delete,
commit and roll-back. The DB file API provides an interface
that allows external entities to instantiate and use the trans
action object class.
0107 Specifically, when an external entity (e.g. applica
tion 410 or a protocol server) makes a call to DB file server
408 to instantiate a transaction object, DB file server 408
sends a database command to database server 204 to begin a
new transaction. The external entity then invokes the methods
of the transaction object. The invocation of a method results in
a call to DB file server 408. DB file server 408 responds to the
call by issuing corresponding database commands to data
base server 204. All database operations that are performed in
response to the invocation of methods of a given transaction
object are performed as part of the database transaction asso
ciated with the given transaction object.
0108 Significantly, the methods invoked on a single trans
action object may involve multiple file operations. For
example, application 410 may interact with DB file server
408 as follows: Application 410 instantiates a transaction
object TXO1 by making a call through the DB file API. In
response, DB file server 408 issues a database command to
start a transaction TX1 within database server 204. Applica
tion 410 invokes the update method of TXO1 to update a file
F1 stored in the database managed by database server 204. In
response, DB file server 408 issues a database command to
database server 204 to cause the requested update to be per
formed as part of transaction TX1. Application 410 invokes
the update method of TXO1 to update a second file F2 stored
in the database managed by database server 204. In response,
DB file server 408 issues a database command to database
server 204 to cause the requested update to be performed as
part of transaction TX1. Application 410 then invokes the
commit method of TXO1. In response, DB file server 408
issues a database command to database server 204 to cause

Mar. 14, 2013

TX1 to be committed. If the update to file F2 had failed, then
the roll-back method of TXO1 is invoked and all changes
made by TX1, including the update to file F1, are rolled back.
0109 While techniques have been described herein with
reference to a DB file server that uses transaction objects,
other implementations are possible. For example, within the
DB file server, objects may be used to represent files rather
than transactions. In Such an implementation, file operations
may be performed by invoking the methods of the file objects,
and passing thereto data that identifies the transaction in
which the operations are to be executed. Thus, the present
invention is not limited to a DB file server that implements
any particular set of object classes.
0110. For the purpose of explanation, the embodiment
illustrated in FIG. 4 shows DB file server 408 as a process
executing outside database server 204 that communicates
with database server 204 through the database API. However,
according to an alternative embodiment, the functionality of
DB file server 408 is built into database server 204. By build
ing DB file server 408 into database server 204, the amount of
inter-process communication generated during the use of the
DB file system is reduced. The database server produced by
incorporating DB file server 408 into database server 204
would therefore provide two alternative APIs for accessing
data managed by the database server 204: the DB file API and
the database API (SQL).

Protocol Servers

0111. The protocol server layer of translation engine 308
is responsible for translating between specific protocols and
DB file API commands. For example, protocol server 406a
translates I/O commands received from operating system
304a to DB file API commands that it sends to DB file server
408. Protocol server 406a also translates DB file API com
mands received from DB file server 408 to I/O commands that
it sends to operating system 304a.
0112 In practice, there is nota one-to-one correspondence
between protocols and operating systems. Rather, many oper
ating systems Support more than one protocol, and many
protocols are Supported by more then one operating system.
For example, a single operating system may provide native
support for one or more of network file protocols (SMB, FTP,
NFS), e-mail protocols (SMTP, IMAP4), and web protocols
(HTTP). Further, there is often an overlap between the sets of
protocols that different operating systems Support. However,
for the purpose of illustration, a simplified environment is
shown in which operating system 304A Supports one proto
col, and operating system 304b Supports a different protocol.

The IFO API

0113. As mentioned above, protocol servers are used to
translate I/O commands to DB file commands. The interface
between the protocol servers and the OS file systems with
which they communicate is generically labeled I/O API.
However, the specific I/O API provided by a protocol server
depends on both (1) the entity with which the protocol server
communicates, and (2) how the protocol server is to appear to
that entity. For example, operating system 304a may be
Microsoft Windows NT, and protocol server 406a may be
designed to appear as a device driver to Microsoft Windows
NT. Under those conditions, the I/O API presented by proto
col server 406a to operating system 304a would be a type of
device interface understood by Windows NT. Windows NT

US 2013/0066929 A1

would communicate with protocol server 406a as it would
any storage device. The fact that files stored to and retrieved
from protocol server 406a are actually stored to and retrieved
from a database maintained by database server 204 is com
pletely transparent to Windows NT.
0114 While some protocol servers used by translation
engine 308 may present device driver interfaces to their
respective operating systems, other protocol servers may
appear as other types of entities. For example, operating
system 304a may be the Microsoft Windows NT operating
system and protocol server 406a presents itself as a device
driver, while operating system 304b is the Microsoft Win
dows 95 operating system and protocol server 406b presents
itself as a System Message Block (SMB) server. In the latter
case, protocol server 406b would typically be executing on a
different machine than the operating system 304b, and the
communication between the operating system 304b and pro
tocol server 406b would occur over a network connection.
0115. In the examples given above, the sources of the I/O
commands handled by the protocol servers are OS file sys
tems. However, translation engine 308 is not limited to use
with OS file system commands. Rather, a protocol server may
be provided to translate between the DB file commands and
any type of I/O protocol. Beyond the I/O protocols used by
OS file systems, other protocols for which protocol servers
may be provided include, for example, the File Transfer Pro
tocol (FTP) and the protocols used by electronic mail systems
(POP3 or IMAP4).
0116. Just as the interface provided by the protocol servers
that work with OS file systems is dictated by the specific OS,
the interface provided by the protocol servers that work with
non-OS file systems will vary based on the entities that will be
issuing the I/O commands. For example, a protocol server
configured receive I/O commands according to the FTP pro
tocol would provide the API of an FTP server. Similarly,
protocol servers configured to receive I/O commands accord
ing to the HTTP protocol, the POP3 protocol, and the IMAP4
protocol, would respectively provide the APIs of an HTTP
server, a POP3 server, and an IMAP4 server.
0117 Similar to OS file systems, each non-OS file proto
col expects certain attributes to be maintained for its files. For
example, while most OS file systems store data to indicate the
last modified date of a file, electronic mail systems store data
for each e-mail message to indicate whether the e-mail mes
sage has been read. The protocol server for each specific
protocol implements the logic required to ensure that the
semantics its protocol are emulated in the database file sys
tem.

Transacted File System

0118 Within database systems, operations are generally
performed as part of a transaction. The database system per
forms all of the operations that are part of a transaction as a
single atomic operation. That is, either all of the operations
are completed Successfully, or none of the operations are
performed. During the execution of a transaction, if an opera
tion cannot be performed, all of the previously executed
operations of that transaction are undone or “rolled back'.
0119. In contrast to database systems, OS file systems are
not transaction based. Thus, if a large file operation fails, the
portion of the operation that was performed prior to the failure
remains. The failure to undo incomplete file operations can
lead to corrupt directory structures and files.

Mar. 14, 2013

I0120 According to one aspect of the invention, a trans
acted file system is provided. As mentioned above, translation
engine 308 converts I/O commands to database statements
that are sent to database server 204. The series of statements
sent by translation engine 308 to execute a specified I/O
operation is preceded by a begin transaction statement, and
ended with a close transaction statement. Consequently, if
any failure occurs during the execution of those Statements by
database server 204, then all of the changes made as part of
that transaction by database server 204 up to the point of the
failure will be rolled back.

0.121. The events that cause the failure of a transaction
may vary based on the system from which the I/O commands
originate. For example, an OS file system may support the
concept of signatures, where a digital “signature' identifying
the source of a file is appended to the file. A transaction that is
initiated to store a signed file may fail, for example, if the
signature of the file being stored is not the expected signature.

On-the-Fly Intelligent File Conversion

I0122) According to one aspect of the invention, files are
processed prior to insertion into a relational database, and
processed again as they are retrieved from the relational data
base.

I0123 FIG. 9 is a block diagram that illustrates the func
tional components of DB file server 308 that are used to
perform the inbound and outbound file processing.
I0124 Referring to FIG.9, translation engine 308 includes
a rendering unit 904 and a parsing unit 902. In general, pars
ing unit 902 is responsible for performing the inbound pro
cessing of files, and rendering unit 904 is responsible for
performing the outbound processing of files. Each of these
functional units shall now be described in greater detail.

Inbound File Processing

(0.125 Inbound files are passed to DB file server 408
through the DB file API. Upon receiving an inbound file,
parsing unit 902 identifies the file type of the file, and then
parses the file based on its file type. During the parsing pro
cess, parsing unit 902 extracts structured information from
the file being parsed. The structured information may include,
for example, information about the file being parsed, or data
that represents logically distinct components or fields of the
file. This structured information is stored in the database
along with the file from which the structured information was
generated. Queries may then be issued to the database server
to select and retrieve files based on whether the structured
information thus extracted satisfies particular search criteria.
0.126 The specific techniques used by parsing unit 902 to
parse a document, and the structured data generated thereby,
will vary based on the type of document that is passed to the
parsing unit 902. Thus, prior to performing any parsing opera
tions, parsing unit 902 identifies the file type of the document.
Various factors may be taken into account to determine the
file type of a file. For example, in DOS or Windows operating
systems, the file type of a file is frequently indicated by an
extension in the filename of the file. Thus, if the filename ends
in “...txt, then parser unit 902 classifies the file as a text file,
and applies the text-file-specific parsing techniques to the file.
Similarly, if the filename ends in “...doc, then parser unit 902
classifies the file as a Microsoft Word document and applies
Micro soft-Word-specific parsing techniques to the file. In

US 2013/0066929 A1

contrast, the Macintosh Operating System stores file type
information for a file as a attribute maintained separate from
the file.

0127. Other factors that may be considered by parsing unit
902 to determine the file type of a file include, for example,
the directory in which the file is located. Thus, parser unit 902
may be configured to classify and parse all files that are stored
in the \WordPerfect\documents directory as WordPerfect
documents, regardless of the filenames of those files.
0128. Alternatively, both the file type of an inbound file
and the file type required by a requesting entity may be
specified by or inferred through information provided to DB
file server 408. For example, when a web browser sends a
message, the message typically includes information about
the browser (e.g. the browser type, version, etc.). When a web
browser requests a file through an HTTP protocol server, this
information is passed to DB file server 408. Based on this
information, rendering unit 904 may look up information
about the capabilities of the browser and infer from those
capabilities the best file type to deliver to the browser.
0129. As mentioned above, the specific parsing techniques
used by parsing unit 902, and the type of structured data thus
generated, will vary based on the type of file that is being
parsed. For example, the structured data generated by parsing
unit 902 may include embedded metadata, derived metadata,
and system metadata. Embedded metadata is information
embedded within the file itself. Derived metadata is informa
tion that is not contained within the file, but which can be
derived by analyzing the file. System metadata is data about
the file provided by the system from which the file originates.
0130 For example, assume that application 410 passes a
Microsoft Word document to parsing unit 902. Parsing unit
902 parses the document to extract information about the file
that is embedded within the file. The information embedded
in a Microsoft Word document, for example, may include data
that indicates the author of the document, a category to which
the document has been assigned, and comments about the
document.

0131. In addition to locating and extracting embedded
information about the Word document, parser 902 may also
derive information about the document. For example, parser
902 may scan the Word document to determine how many
pages, paragraphs and words are contained in the document.
Finally, the system in which the document originated may
Supply to parsing unit 902 data that indicates the size, creation
date, last modification date, and file type of the document.
0132) The more structured the file type of a document, the
easier it is to extract specific items of structured data from the
document. For example, an HTML document typically has
delimiters or “tags' that specify the beginning and end of
specific fields (title, heading1, heading2, etc). These delimit
ers may be used by parsing unit 902 to parse the HTML
document, thus producing an item of metadata for some orall
of the delimited fields. Similarly, XML files are highly struc
tured, and the XML parser could extract a separate item of
metadata for some or all of the fields contained in the XML
document.

0133) Once the parsing unit 902 has generated structured
data for a file, DB file server 408 issues database commands
to database server 204 to cause the file to be inserted into a
row of a files table (e.g. files table 710). According to one
embodiment, the database commands thus issued store the

Mar. 14, 2013

file as a BLOB in one column of the row, and store the various
items of structured data generated for the file in other columns
of the same row.
I0134. Alternatively, some or all of the structured data
items for a file may be stored outside the files table. Under
Such circumstances, the rows that store structured data asso
ciated with a file would typically contain data that identifies
the file. For example, assume that a Word document is stored
in row R20 of the files table, and that the system metadata
(e.g. creation date, modification date, etc.) for that Word
document is stored in row R34 of a system attributes table.
Under these circumstances, both R20 of the files table and
R34 of the system attributes table would typically contain a
FileID column that stores a unique identifier for the Word
document. Queries can then retrieve both the file and the
system metadata about the file by issuing a join Statement that
joins rows in the files table to rows in the system attributes
table based on the FileID values. A technique for storing file
attributes in tables associated with file “classes” is described
in greater detail hereafter.

Outbound File Processing
0.135 Outbound files are constructed by rendering unit
904 based on information retrieved in response to database
commands sent to database server 204. Once constructed, an
outbound file is delivered, through the DB file API, to the
entity that requested it.
0.136 Significantly, the file type of the outbound file pro
duced by rendering unit 904 (the target file type) is not nec
essarily the same file type as the file that produced the data
that is used to construct the outbound file (the source file
type). For example, rendering unit 904 may construct a text
file based on data that was originally stored within the data
base as a Word file.
0.137 Further, the entity requesting an outbound file may
be on an entirely different platform, and using an entirely
different protocol, than the entity that produced the file from
which the outbound file is constructed. For example, assume
that protocol server 406b implements an IMAP4 server inter
face, and that protocol server 406a implements an HTTP
server interface. Under these conditions, an e-mail document
that originates from an e-mail application may be stored into
the database through protocol server 406b, and retrieved from
the database by a Web browser through protocol server 406a.
In this scenario, parsing unit 902 would invoke the parsing
techniques associated with the e-mail file type (e.g. RFC822),
and rendering unit would invoke the rendering routines that
construct an HTML document from the e-mail data retrieved
from the database.

Parser And Renderer Registration
0.138. As mentioned above, the parsing techniques applied
to a file are dictated by the type of the file. Similarly, the
rendering techniques applied to a file are dictated by both the
source type of the file and the target type of the file. The
number of file types that exist across all computer platforms
is enormous. Thus, it is not practical to build a parsing unit
902 that handles all known file types, nor a rendering unit 904
that handles all possible file-type to file-type conversions.
0.139. According to one embodiment of the invention, the
problem caused by the proliferation of file types is addressed
by allowing type-specific parsing modules to be registered
with parsing unit 902, and type-specific rendering modules to

US 2013/0066929 A1

be registered with rendering unit 904. A type-specific parsing
module is a module that implements the parsing techniques
for a specific file type. For example, Word documents may be
parsed using a Word Document parsing module, while POP3
e-mail documents are parsed using a POP3 e-mail parsing
module.

0140. Similar to type-specific parsing modules, type-spe
cific rendering modules are modules that implement the tech
niques for converting data associated with one or more source
file types into one or more target file types. For example, a
type-specific rendering module may be provided for convert
ing Word documents into text documents.
0141. In some cases, conversion may be required even
when the Source and target file types are the same. For
example, when parsed and inserted into the database, the
contents of an XML document may not be maintained in a
single BLOB, but spread over numerous columns of numer
ous tables. In that case, XML is the source file type of that
data, even though that data is no longer stored as an XML file.
A type-specific rendering module may be provided to con
struct an XML document from that data.

0142. When an inbound file is received by parsing unit
902, parsing unit 902 determines the file type of the file and
determines whether a type-specific parsing module has been
registered for that file type. If a type-specific parsing module
has been registered for that file type, then parsing unit 902
calls the parsing routines provided by that type-specific pars
ing module. Those parsing routines parse the inbound file to
generate metadata, which metadata is then stored into the
database along with the file. If a type-specific parsing module
has not been registered for the file type, then parsing unit 902
may raise an error or, alternatively, apply a generic parsing
technique to the file. Because the generic parsing technique
would not have any knowledge about the content of the file,
the generic parsing technique would be limited with respect to
the useful metadata it could generate for the file.
0143. When a file request is received by rendering unit
904, rendering unit 904 issues database commands to retrieve
the data associated with the file. That data includes metadata
that indicates the source file type of the file. Rendering unit
904 then determines whether a type-specific rendering mod
ule has been registered for that source file type. If a type
specific rendering module has been registered for that source
file type, then rendering unit 904 invokes the rendering rou
tines provided by that type-specific rendering module to con
struct a file, and provides the file thus constructed to the entity
requesting the file.
0144 Various factors may be used to determine which
target file type should selected by a type-specific rendering
module. In some cases, the entity requesting the file may
explicitly indicate the type of file it requires. For example, a
text editor may only be able to handle text files. The text editor
may request a file whose source file type is a Word Document.
In response to the request, a Word-specific rendering module
may be invoked which, based on the required target file type,
converts the Word document to a text file. The text file is then
delivered to the text editor.

0145. In other cases, the entity requesting the file may
Support numerous file types. According to one embodiment,
the type-specific rendering module incorporates logic that (1)
identifies a set of file types that are supported by both the
requesting entity and the type-specific rendering module, and
(2) selects the best target file type in that set. The selection of

Mar. 14, 2013

the best target file type may take into account various factors,
including the specific characteristics of the file in question.
0146 For example, assume that (1) DB file server 408
receives a request for a file, (2) the source file type for the file
indicates that the file is a “BMP image, (3) the request was
initiated by an entity that supports “GIF, “TIF" and “JPG”
images, (4) the BMP source type-specific rendering module
supports target file types of “GIF, “JPG” and “PCX'. Under
these conditions, the BMP source type-specific rendering
module determines that both “GIF and “JPG” are possible
target file types. To select between the two possible target file
types, the BMP source type-specific rendering module may
taking into account information about the file, including its
resolution and color depth. Based on this information, the
BMP source type-specific rendering module may determine
that JPG is the best target file type, and then proceed to
convert the BMP file into a JPG file. The resulting JPG file is
then delivered to the requesting entity.
0147 According to one embodiment, type-specific pars
ing and rendering modules are registered by storing informa
tion in a database table that indicates the capabilities of the
module. For example, the entry for a type-specific rendering
module may indicate that it should be used when the source
file type is XML and the requestingentity is a Windows-based
Web Browser. The entry for a type-specific parsing module
may indicate that it should be used when the source file type
is a .GIF image.
0148 When the DB file server 408 receives a file-related
command through DB file API, the DB file server 408 deter
mines the file type at issue, and the identity of the entity that
issued the command. DB file server 408 then issues database
commands to database server 204 which cause database
server 204 to scan the table of registered modules to select the
appropriate module to use under the current circumstances. In
the case of an inbound file, the appropriate parsing module is
invoked to parse the file before it is inserted into the database.
In the case of an outbound file, the appropriate rendering
module is invoked to construct the outbound file from data
retrieved from the database.

0149 According to an embodiment of the invention, the
DB file system allows file classes to be defined using object
oriented techniques, where each file type belongs to a file
class, and file classes can inherit attributes from other file
classes. In such a system, the file class of a file may be a factor
used in determining the appropriate parser and renderer for
the file. The use of file classes shall be described in greater
detail hereafter.

Stored Query Directories

0150. As explained above, a hierarchical directory struc
ture may be implemented in a database system using a files
table 710, where each row corresponds to a file. A hierarchical
index 510 may be employed to efficiently locate the row
associated with a specified file based on the pathname of the
file.

0151. In the embodiment illustrated in FIGS. 5 and 7, the
child files of each directory are explicitly enumerated. In
particular, the child files of each directory are enumerated in
the Dir entry list of the index entry associated with the direc
tory. For example, index entry 512 corresponds to the Win
dows directory 614, and the Dir entry list of index entry 512
explicitly enumerates “Word and "Access” as the child files
of Windows directory 614.

US 2013/0066929 A1

0152. According to one aspect of the invention, a file sys
tem is provided in which the child files of some or all direc
tories are not explicitly enumerated, but instead are dynami
cally determined based on the search results of stored queries.
Such directories are referred to herein as stored query direc
tories.
0153. For example, assume that a file system user desires
to group all files with the extension .doc into a single direc
tory. With conventional file systems, the user would create a
directory, search for all files with the extension.doc, and then
either move the files found by the search into the newly
created directory, or create hard links between the newly
created directory and the files found by the search. Unfortu
nately, the contents of the newly created directory only accu
rately reflect the state of the system at the time the search was
performed. Files would remain in the directory if renamed to
Something that did not have the .doc extension. In addition,
files with the .doc extension that are created in other directo
ries after the new directory is established would not be
included in the new directory.
0154 Rather than statically define the membership of the
new directory, the membership of the directory may be
defined by a stored query. A stored query that selects the files
that have the extension .doc may appear as follows:

Q1:
SELECT * from files table
where

files table.Extension = 'doc'

0155 Referring to FIG. 7, when executed against table
710, the query Q1 selects rows R4 and R12, which are the
rows for the two documents entitled “Example.doc'.
0156 According to one embodiment of the invention, a
mechanism is provided to link queries, such as query Q1, to
directory entries in the hierarchical index 510. During the
traversal of the hierarchical index 510, when a directory entry
that contains such a link is encountered, the query identified
by the link is executed. Each file selected by the query is
treated as a child of the directory associated with the directory
entry, just as if the file had been an explicit entry in the
database table that stores directory entries.
0157 For example, assume that a user desires to create a
directory “Documents' that is a child of Word 616, and
desires the document directory to contain all files that have
the extension .doc. According to one embodiment of the
invention, the user designs a query that specifies the selection
criteria for the files that are to belong to the directory. In the
present example, the user may generate query Q1. The query
is then stored into the database system.
0158 Similar to other types of directories, a row for the
Document directory is added to the files table 710, and an
index entry for the Document directory is added to the hier
archical index 510. In addition, the Dir Entry list of the
index entry for the Word directory is updated to indicate that
the new Document directory is a child of the Word directory.
Rather than explicitly list children in a Dir Entry list, the
new directory entry for the Document directory contains a
link to the stored query.
0159 FIGS. 10 and 11 respectively show the state of hier
archical index 510 and files table 710 after the appropriate
entries have been created for the Documents directory. Refer
ring to FIG. 10, an index entry 1004 has been created for the

Mar. 14, 2013

Documents directory. Because the children of the Documents
directory are determined dynamically based on the result set
of a stored query, the Dir entry list field of the index entry
1004 is null. Instead of a static enumeration of child files, the
index entry 1004 includes link to the stored query 1002 that is
to be executed to determine the child files of the Documents
directory.
0160. In addition to the creation of index entry 1004 for the
Documents directory, the existing index entry 514 for the
Word directory is updated to indicate that Documents is a
child of the Word directory. Specifically, a Dir entry list
array entry is added to index entry 514 that identifies the name
“Documents', the RowID of the index entry for the Docu
ments directory (i.e. Y7), and the FileID of the Documents
directory (i.e. X13).
0.161. In the illustrated embodiment, two columns have
been added to the hierarchical index 510. Specifically, a
Stored Query Directory (SQD) column contains a flag to
indicate whether the directory entry is for a stored query
directory. In the directory entries for stored query directories,
a Query Pointer (QP) column stores a link to the stored
queries associated with the directories. In directory entries for
directories that are not stored query directories, the QP col
umn is null.
0162 The nature of the link may vary from implementa
tion to implementation. For example, according to one imple
mentation, the link may be a pointer to the storage location at
which the stored query is stored. According to another imple
mentation, the link may simply be a unique stored query
identifier that may be used to look up the stored query in a
stored query table. The present invention is not limited to any
particular type of link.
(0163 Referring to FIG. 11, it illustrates files table 710 as
updated to include a row (R13) for the Documents directory.
According to one embodiment, the same metadata that is
maintained for conventional directories is also maintained for
the Documents directory. For example, row R13 may include
a creation date, a last modification date, etc.
0164 FIG. 12 is a block diagram of a file hierarchy. The
hierarchy shown in FIG. 12 is the same as that of FIG. 6, with
the addition of the Documents directory 1202. When any
application requests a display of the contents of the Docu
ments directory 1202, the database executes the query asso
ciated with the Documents directory 1202. The query selects
the files that satisfy the query. The results of the query are then
presented to the application as the contents of the Documents
directory 1202. At the time illustrated in FIG. 12, the file
system only includes two files that satisfy the query associ
ated with the Documents directory 1202. Those two files are
both entitled Example.doc. Thus, the two Examples.doc files
618 and 622 are shown as children of the Documents direc
tory 1202.
0.165. In many OS file systems, the same directory cannot
store two different files with the same name. Thus, the exist
ence of two files entitled Examples.doc within Documents
directory 1202 may violate the OS file system conventions.
Various techniques may be used address this issue. For
example, the DB file system may append characters to each
filename to produce unique filenames. Thus, Example.doc
618 may be presented as Example.doc1, while Example.doc
622 is presented as Example.doc2. Rather than append char
acters that convey no particular information, the appended
characters may be selected to convey meaning. For example,
the appended characters may indicate the path to the directory

US 2013/0066929 A1

in which the file is a statically located. Thus, Example.doc
618 may be presented as Example.doc Windows Word,
while Example.doc. 622 is presented as Example.doc. VMS
App4. Alternatively, stored query directories may simply be
allowed to violate the OS file system conventions.
(0166 In the embodiment shown in FIG. 10, the child files
of a given directory are either all statically defined, or all
defined by a stored query. However, according to one embodi
ment of the invention, a directory may have some statically
defined child files, and some child files that are defined by a
stored query. For example, rather than having a null Dir
entry list, index entry 1004 could have a Dir entry list that
statically specifies one or more child files. Thus, when the an
application asks the database system to specify the children of
the Documents directory, the database server would list the
union of the statically defined child files and the child files
that satisfy the stored query 1002.
0167 Significantly, the stored query that identifies the
child files of a directory may select other directories as well as
documents. Some or all of those other directories may them
selves be stored query directories. Under Some circum
stances, the stored query of a particular directory may even
select the particular directory itself, causing the directory to
be its own child.
0168 Because the child files of stored query directories
are determined on-the-fly, a listing of the child files will
always reflect the current state of the database. For example,
assume that a "Documents' stored query directory is created,
as described above. Every time a new file is created with the
extension .doc, the file automatically becomes a child of the
Documents directory. Similarly, if the extension of a file is
changed from .doc to .txt, the file will automatically cease to
qualify as a child of the Documents directory.
0169. According to one embodiment, the query associated
with a stored query directory may select certain database
records to be the child files of the directory. For example, a
directory entitled “Employees' may be linked to a stored
query that selects all rows from an Employee table within the
database. When an application requests the retrieval of one of
the virtual employee files, a renderer uses the data from the
corresponding employee record to generate a file of the file
type expected by the requesting application.

Stored Query Documents
0170 Just as stored queries may be used to specify the
child files of a directory, stored queries may also be used to
specify the contents of a document. Referring to FIGS. 7 and
11, they illustrate files table 710 with a Body column. For
directories, the Body column is null. For documents, the
Body column contains a BLOB that contains the document.
For a file whose contents are specified by a stored query, the
BODY column may contain a link to the stored query. When
an application requests the retrieval of a stored query docu
ment, the stored query that is linked to the row associated with
the stored query document is executed. The content of the
document is then constructed based on the result set of the
query. According to one embodiment, the process of con
structing the document from the query results is performed by
a renderer, as described above.
0171 In addition to providing support for documents
whose contents are entirely dictated by the results of a stored
query, Support may also be provided for documents in which
Some portions are dictated by the results of a query, while
other portions are not. For example, the Body column of a row

Mar. 14, 2013

in the document directory may contain a BLOB, while
another column contains a link to a stored query. When a
request is received for the file associated with that row, the
query may be executed, and the results of the query may be
combined with the BLOB during the rendering of the file.

Multiple-Level Stored Query Directories

0172. As mentioned above, a stored query may be used to
dynamically select the child files of a directory. The child files
of a directory all belong to the same level in the file hierarchy
(i.e. the level immediately below the directory associated
with the stored query). According to one embodiment, the
stored query associated with a directory may define multiple
levels below the directory. Directories that are associated with
queries that define multiple levels are referred to herein as
multiple-level stored query directories.
0173 For example, a multiple-level stored query directory
may be associated with a query that selects all employee
records in an employee table, and groups those employees
records by department and by region. Under these conditions,
separate hierarchical levels may be established for each
grouping key (department and region) and for the employee
records. Specifically, the results of Such a query may be
presented as three different levels in the file hierarchy. The
child files of the directory would be determined by the first
grouping criteria. In the present example, the first grouping
criteria is “department'. Hence, the child files of the directory
may be the various department values: “Dept1”. “Dept2 and
“Dept3”. These child files would themselves be presented as
directories.
0.174. The child files of the department directories would
be determined by the second grouping criteria. In the present
example, the second grouping criteria is “region'. Thus, each
department directory would have a child file for each of the
region values, such as “North”, “South”, “East”, “West”. The
region files would also be presented as directories. Finally, the
child files of each region directory would be files that corre
spond to the particular department/region combination asso
ciated with the region directory. For example, the children of
the \Dept1\East directory would be the employees that are in
Department 1 in the East region.

Handling File Operations on the Child Files of a
Stored Query Directory

0.175. As mentioned above, the child files of a stored query
directory are presented to applications in the same manner as
the child files of conventional directories. However, certain
file operations that may be performed to the child files of
conventional directories present special issues when per
formed on the child files of a stored query directory.
0176 For example, assume that a user enters input that
specifies that a child file of a stored query directory should be
moved to another directory. This operation presents a prob
lem because the child file belongs to the stored query direc
tory by virtue of satisfying the criteria specified in the stored
query associated with the directory. Unless the file is modified
in a way that causes the file to cease to satisfy that criteria, the
file will continue to qualify as a child file of the stored query
directory.
0177. A similar problem occurs when an attempt is made
to move a file into a stored query directory. If the file is not
already a child of the stored query directory, then the file does
not satisfy the stored query associated with the stored query

US 2013/0066929 A1

directory. Unless the file is modified in a way that causes the
file to satisfy the criteria specified by the stored query, the file
should not be a child of the stored query directory.
0.178 Various approaches may be taken to resolve these
issues. For example, the DB file system may be configured to
raise an error in response to operations that attempt to move
files into or out of stored query directories. Alternatively, the
DB file system may respond to such attempts by deleting the
file in question (or the database record that is being presented
as a file).
0179. In yet another approach, files that are moved into a
stored query directory may be automatically modified so that
they satisfy the criteria of the stored query associated with the
directory. For example, assume that the stored query associ
ated with a stored query directory selects all employees that
are married. If a file that corresponds to an employee record is
moved to that stored query directory, the “married field of
the employee record is updated to indicate that the employee
is married.

0180. Similarly, files that are moved out of a stored query
directory may be automatically modified so that they cease to
satisfy the criteria of the stored query associated with the
directory. For example, if a file in the “married employee'
stored query directory is moved out of the directory, then the
“married field of the corresponding employee record is
updated to indicate that the employee is not married.
0181. When an attempt is made to move a file that does not
satisfy the criteria of a stored query into the corresponding
stored query directory, another approach is to update the
index entry for the stored query directory to statically estab
lish the file as a child of the stored query directory. Under
those circumstances, the stored query directory would have
some child files that are child files because they satisfy the
stored query, and other child files that are child files because
they have been manually moved to the stored query directory.

Programmatically Defined Files

0182 Stored query directories and stored query docu
ments are examples of programmatically defined files. A pro
grammatically defined file is an entity that is presented to the
file system as a file (e.g. a document or a directory), but whose
contents and/or child files are determined by executing code.
The code that is executed to determine the contents of the file
may include a stored database query, as in the case of stored
query files, and/or other code. According to one embodiment,
the code associated with a programmatically defined file
implements the following routines:

resolve filename(filename): child file handle;
list directory;
fetch:
put;
delete:

0183. The resolve filename routine returns a file handle of
a file that has the name “filename' and is a child of the
programmatically defined file. The list directory routine
returns a listing of all child files of the programmatically
defined file. The fetch routine retrieves the contents of the
programmatically defined file. The put routine inserts data
into the programmatically defined file. The delete routine
deletes the programmatically defined file.

Mar. 14, 2013

0184. According to one embodiment, a “resolve path
name(path): file handle' routine is also provided. The
resolve pathname routine receives a path and iteratively calls
the resolve filename function for each filename in the path.
0185. According to one embodiment, the DB file system
provides an object class that implements the above-listed
routines for conventional files (i.e. files that are not program
matically defined). For the purpose of explanation, that object
class shall be referred to herein as the “directory class'. To
implement a programmatically defined file, a Subclass of the
directory class is established. The subclass inherits the rou
tines of the directory class, but allows the programmer to
override the implementations of those routines. The imple
mentations provided by the Subclass dictate the operations
performed by the DB file system in response to file operations
involving the programmatically defined file.

Event Notification within a File System
0186. According to one aspect of the invention, a file sys
tem is provided in which users are proactively notified upon
the occurrence of certain file system events. Because they are
proactively notified, they need not incur the overhead of
repeated polling to detect conditions that indicate that the
events of interest have occurred. The ability to be notified
upon the occurrence of a file system eventis extremely useful,
for example, when particular file system events have signifi
cant meaning to a user.
0187. For example, it is common for multiple copies of a
document to be maintained at different locations ("cached')
to provide more efficient access to the document. Under these
conditions, if one of the copies is updated, the remaining
copies are rendered Stale (i.e. they no longer reflect the current
state of the document). Using the event notification tech
niques described hereafter, when one copy is updated, the
sites at which the other copies reside can be proactively noti
fied of the update. Processes or users at those sites may then
take whatever action is appropriate under the circumstances.
In the case of a cache, the appropriate action may be, for
example, to replace the cached version of the document with
the updated version.
0188 As another example, a particular user may be
responsible for reviewing all of the technical documents of a
company before they are published. The technical writers of
that company may be instructed to store all technical docu
ments into a “ready for review' directory when they are ready
for review by that user. Without a proactive notification sys
tem, the mere storage of a technical document into the “ready
for review' directory does not make the user aware that a new
document is ready for review. Rather, some additional work
would be required, such as the technical writer informing the
user that the document is ready for review, or the user peri
odically checking the “ready for review' directory. In con
trast, with a file system that implements the event notification
techniques described herein, the act of placing a technical
document into the “ready for review' directory could trigger
the generation of a message to the user to notify the user that
a new technical document is ready for review.
0189 According to one embodiment of the invention,
rules may be defined for proactively generating messages for
file system events. Such events include, for example, Storage
or creation of files in a particular directory, deletions of files
in a particular directory, movement of files out of a particular
directory, modification or deletion of a particular file, and
linking a file to aparticular directory. These file system opera

US 2013/0066929 A1

tions are merely representative. The specific operations for
which proactive notification rules may be created may vary
from implementation to implementation. The present inven
tion is not limited to providing event notification Support for
any particular set of file system operations.
0190. According to one embodiment, event ids are
assigned to file system events. Notification rules may then be
created which specify an event id and a set of one or more
subscribers. Once a rule has been registered with the file
system, the set of consumers identified in the rule are auto
matically sent messages in response to the occurrence of the
file system event identified by the event id of the rule.
0191 For example, a user may register an interest in
knowing when files are added to a particular directory. To
record this interest, the database server (1) inserts an row into
a “registered rules” table, and (2) sets a flag associated with
the directory to indicate that at least one rule has been regis
tered for the directory. The row inserted into the registered
rules table identifies the entity and indicates the event in
which the entity is interested. The row may also include
additional information, Such as the protocol to use to com
municate with the entity. The flag that indicates that a rule
applies to the directory may be stored in the files table row
associated with the directory, in the hierarchical index entry
associated with the directory, or both.
0.192 When inserting a file into a directory, the database
server inspects the flag associated with the directory to deter
mine whether any rules have been registered for that direc
tory. If a rule has been registered for that directory, then the
registered rules table is searched to find the specific rules that
apply to the directory. If the registered rules include rules that
apply to the specific operation that is being performed on the
directory, then messages are sent to the interested entities
identified in those rules. The protocol used to send the mes
sages to the entities may vary from entity to entity. For
example, for some entities the message may be sent via
CORBA, while for other entities the message may be sent in
the form of an HTML page via HTTP.
0193 According to one embodiment, the notification
mechanism is implemented in conjunction with a database
implemented file system, as described above, using a queuing
mechanism Such as the queuing mechanism described in U.S.
patent application Ser. No. 08/961,597, entitled APPARA
TUS AND METHOD FOR MESSAGE QUEUING IN A
DATABASE SYSTEM, filed by Chandra et al. on Oct. 31,
1997, the entire contents of which are incorporated herein by
reference.
0194 According to one such embodiment, an event server
executing external to a database server is registered as a
Subscriber to a queue managed by the database server. The
queue to which the event server subscribes shall be referred to
herein as the file event queue. Entities that are interested in
particular file system events register their interest with the
event server. The event server communicates with the data
base server through the database API, and with the interested
entities through the protocols Supported by those entities.
0.195. When the database server performs an operation
related to the file system, the database server places into the
file event queue a message that indicates the event id associ
ated with the operation. The queuing mechanism determines
that the event server has registered an interest in the file event
queue, and transmits the message to the event server. The
event server searches a list of interested entities to determine
whether any entity has registered an interest in the event

Mar. 14, 2013

identified in the message. The event server then transmits a
message that indicates the occurrence of the file system event
to all entities that have registered an interest in the event.
0196. In an embodiment that uses event servers to forward
messages to interested entities, the event servers may be
configured to Support a certain maximum number of users. If
the number of interested users exceeds the maximum, then
additional event servers are initiated to service the additional
users. Similar to the single event server scenario, each event
server in a multiple event server system is registered as a
subscriber to the file event queue.
0.197 According to an alternative embodiment, the enti
ties that are interested in file system events are directly reg
istered as subscribers to the file event queue. As part of the
registration information, the entities indicate the event ids of
the file system events in which they are interested. When the
queuing mechanism places a message in the file event queue,
the queuing mechanism does not automatically send the mes
sage to all queue Subscribers. Rather, the queuing mechanism
inspects the registration information to determine which enti
ties have registered an interest in the specific event associated
with the message, and selectively sends the message to only
those entities. In the case of entities that do not support the
database API, the registration information includes informa
tion about the protocol Supported by those entities. The queu
ing mechanism transmits the file event messages to those
entities using the protocols listed in their registration infor
mation.

0198 File system event notification may be applied in a
variety of contexts. For example, at times it is desirable to
store on a first machine a cache of files that reside on a second
machine. One currently available mechanism to implement
such a file cache is the “briefcase' feature provided by
Microsoft Windows operating systems. The briefcase feature
allows users to create a special folder (a “briefcase') on one
machine, and copy into that briefcase files that are stored on
other machines. Each briefcase has an “update' option which,
when selected, causes the file system to compare the copy of
the file that is in the briefcase with the copy of the file that is
in the original location. If the files do not have the same
modification date, then the file system allows the user to
synchronize the two copies (typically by copying the newer
copy over the older copy).
0199 Unlike the briefcase mechanism, the file system
event notification mechanism allows a file cache to be proac
tively updated so that it always reflects the current state of the
files at their original locations. For example, the process that
manages the file cache may register an interest in updates to
the original copies of the files contained in the cache. Conse
quently, the process will automatically be informed when any
of the original files are updated, and may immediately
respond by copying the updated files into the file cache.
Similarly, the file system event notification mechanism may
be used to mirror on a first machine one or more directories
that reside on a second machine. To use the file system event
notification mechanism in this manner, a process for main
taining the mirrored directories initially makes copies of the
directories and all of the files contained therein, and then
registers its interest in changes made to the directories and the
files contained in the directories. When informed that a
change has been made to a directory, the process makes a
corresponding change to the copy of the directory. Similarly,

US 2013/0066929 A1

when informed of a change to any of the files within the
mirrored directories, the process makes a corresponding
change to the copy of the file.
0200 For example, if a file moved from a directory that is
mirrored to a directory that is not mirrored, the process
deletes the copy of the file from the mirrored directory, and
unregisters its interest in the file. Thus, the process will not
continue to be notified when the file is updated. Similarly, if a
file is moved from a directory that is not mirrored to a direc
tory that is mirrored, the process will be informed that the
directory has changed. In response to that message, the pro
cess identifies the new file, makes a copy of the new file in the
mirrored directory, and registers its interest in the new file.

Version Management in the File System

0201 In the workplace, large assignments that involve
many people working together for extended periods of time
are referred to as “projects’. While working on a project,
workers typically generate numerous documents, each of
which is in Some way related to the project.
0202 Similarly, within a computer system, users fre
quently create numerous electronic documents that all relate
to a project. For example, programmers located at numerous
sites around the world may each be working on different
portions of the same computer program. The electronic docu
ments that they generate for that computer program, which
typically would include source code files, belong to a single
project. Thus, within the context of this discussion, projects
are collections of related files.

0203 Typically, the files of a project will be organized into
specific folders. For example, FIG. 13 shows an example of
how files related to a project “Big Project” may be organized
into various folders. Referring to FIG. 13, a folder entitled Big
Project 1302 has been created to hold all files (directories and
documents) related to the project. The immediate child files
of Big Project 1302 are the folders source code 1304 and docs
1306. Source code 1304 includes two directories, LA code
1312 for storing the source code 1316 and 1318 of program
mers located in Los Angeles, and SF code 1314 for storing
source code 1320 of programmers located in San Francisco.
Docs 1306 includes two folders: specs 1308 and user manual
1310. Specs 1308 includes spec 1322 and 1324. User manual
1310 includes UM1326.

0204 Frequently, files within a project will contain refer
ences (e.g. HTML links) to other files within the same project.
These references typically identify the other document using
the full pathname of the document. Consequently, if a docu
ment is moved from one location in the directory hierarchy to
another, or the name of the document is changed, then all
references to that document are rendered invalid.

0205 Due to the existence of inter-document references,
new versions of files are typically stored with the same name
and in the same location as the older versions that they are
replacing. In conventional file systems, this process over
writes the older version of the file, making it irrecoverable.
Unfortunately, there are many circumstances in which it is
desirable to recover older versions of files. For example,
critical information may have been inadvertently deleted
from the newer version. If the older version is irrecoverable,
then the user may have to spend significant resources to
recreate the lost material, if it can be recreated at all. In
addition, it is often desirable to be able to reconstruct the
change history for a file, to be able to determine when a

Mar. 14, 2013

particular change was made, or to be able to determine what
was changed at a given point in time.
0206. According to one aspect of the invention, a version
ing mechanism is provided in which new versions of files are
saved in the same location in the directory hierarchy using the
same name as the older versions without overwriting the older
versions. Rather than overwrite the older versions, the older
versions are retained, and users can selectively retrieve older
versions of files. Further, the older versions are retained at
their original locations in the directory hierarchy. As shall be
described in greater detail hereafter, novel directory version
ing techniques are provided that allow the file system to
retain, at the same location within a directory hierarchy, mul
tiple versions of the same file with the same name.
0207 Because the creation of new versions does not
change the name or location of the original versions, any
references to a first version of a file continue to point to the
first version of the file even when a newer version of the file is
created. Thus, inter-file references contained within a docu
ment continue to point to the correct versions of the refer
enced documents, even if newer versions of the referenced
documents have been created. The fact that inter-file refer
ences remain valid (i.e. continue to refer to the correct version
of the referenced files) during the versioning process has a
significant beneficial impact on the efficiency of file retrieval.
Specifically, rather than necessitating the performance of a
look-up operation to find the appropriate version of a refer
enced file, referenced files may be retrieved directly by fol
lowing references to them contained within other files.
0208 Similarly, the process of determining the contents of
a directory at a particular point in time need not involve
look-up operations. Since directories are themselves ver
Sioned, selection of a particular version of a directory implic
itly selects the members of the directory. The selected version
of a directory will contain direct links to the correct files, and
the correct version of the files, that belong to that version of
the directory.
0209 Techniques are also provided for tracking the rela
tionship between versions of the same file even when the
name of the file changes from version to version. As shall be
described in greater detail hereafter, a FileID and version
number are maintained for each version of each file, in addi
tion to the file's name. If two files have the same FileID, they
are different versions of the same file even though they may
have different names.

0210. According to one aspect of the invention, a mecha
nism is provided to allow users to select the “view” of a
project that they want to see. A view of a project presents the
files of the project as they existed at a particular point in time.
For example, the default view presented to users may present
the most current version of all files. Another view may present
the version of the files that was current as of one day earlier.
Another view may present the version of the files that was
current as of one week earlier.

0211. According to one embodiment, a version tracking
mechanism is provided by storing a version number with a
each file in a project. For example, in a file system imple
mented in a database system using a files table. Such as files
table 710, one column of the row associated with a file may
store a version number for the file. Whenevera file is created,
a row for the file is inserted into the files table 710, and a
predetermined initial version number (e.g. 1) is stored in the
version column of that row.

US 2013/0066929 A1

0212. When the file is updated, the previous version of the
file is not overwritten. Rather, a new row is inserted in the files
table for the new version of the file. The row for the new
version contains the same FileId, Name, and Creation Date as
the original row, but includes a higher version number (e.g. 2),
a new Modification Date, and possibly a different file size,
etc. In addition, the BLOB that stores the content of the file
will reflect the update, while the BLOB of the original entry
remains unchanged.
0213. According to one embodiment, when a file and the
directory in which the file resides both belong to a project,
then a change to the file effectively creates a new version of
the directory. Consequently, a update to a file in a directory
will not only cause the creation of a files table row for the new
version of the file, but will cause the creation of a files table
row for the new version of the directory. In an embodiment
that uses a hierarchical index, an index entry for the new
version of the directory would also be added to the hierarchi
cal index.
0214. If both a directory and the parent directory belong to
the same project, then the creation of a new version of the
directory effectively creates a new version of the parent direc
tory. Consequently, new rows are also added to the files table
and hierarchical index for the parent directory of the direc
tory. This process continues, causing new versions to be cre
ated for all directories that belong to a project and that reside
above an updated file in the file hierarchy.
0215. To illustrate how the versioning mechanism
responds to an update of a file that belongs to a project,
assume that all files shown in FIG. 13 are version 1, and that
an update is performed to code 1320. As illustrated in FIG. 14,
the versioning mechanism responds to the update by creating
a new version of code 1320' without deleting the original
version of the code 1320. Code 1320 belongs to SF code
directory 1314, so a new version of SF code directory 1314" is
created without deleting the original version. SF code direc
tory 1314 belongs to source code directory 1304, so a new
version of source code directory 1304 is created without
deleting the original version. Finally, source code directory
1304 belongs to big project directory 1302, so a new version
of big project 1302 is created without deleting the original
version.

0216. As illustrated in FIG. 14, when a new version of a
parent file is created in response to a new version of a child
file, the new version of the parent file continues to have the
same children as it had before the update, with the exception
that the new version of the updated file is its child, rather than
the original version of the updated file. For example, the new
version of code 1320' is the child of the new version of SF
code 1314'. The new version of SF code 1314" is a child of the
new version of source code 1304". However, the unchanged
child files of the original source code 1304 (e.g. LA code
1312) continue to be child files of the new version of source
code 1304". Similarly, the new version of source code 1304' is
the child of the new version of big project 1302', but the
unchanged child files of the original big project (e.g. docs
1306) continue to be child files of the new version of big
project 1302.
0217. In an embodiment in which the file system is imple
mented using a hierarchical index, the index entry created for
a new version of a directory would contain the same Dir
entry list as the index entry for the previous version of the
directory, except that the array entry for the child file that was
updated is replaced with an array entry to the new version of

Mar. 14, 2013

the child file. If the updated child file was a child directory,
then the Dir entry list array entry for the new directory
would include the RowID, within the hierarchical index, of
the index entry for the new version of the child directory.
0218. When a file that belongs to a project is moved from
one directory in the project to another directory in the project,
the file itself has not been changed, so a new version of the file
is not created. However, the directory from which the file was
moved, and the directory into which the file was placed, have
both been changed. Consequently, new versions are created
for those directories and all ancestor directories of those
directories that are in the same project. FIG. 15 illustrates the
new directories that would be created in response to code
1318 of FIG. 13 being moved from LA code 1312 to SF code
1314. Specifically, new versions of LA code 1312 and SF
code 1314 would be created. The new version of LA code
1312" would not have code 1318 as its child. Rather, code
1318 would be the child of the new version of SF code 1314".
A new source code directory 1304 is created and linked to the
new versions of LA code 1312" and SF code 1314'. A new big
project directory 1302 is created and linked to the new source
code directory 1304", and to the original docs directory 1306.
0219 Using the versioning technique described above, a
new version of the root directory of a project (e.g. big project
1302) is created after every change to the project. The links
that descend from each version of the root project directory
link together all files that belonged to the project at a particu
lar point in time, and the versions of the files thus linked are
the versions that existed at that particular point in time. For
example, referring to FIG. 14, the links descending from big
project 1302 reflect the project as it existed prior to the update
to code 1320. The links descending from big project 1302
reflect the project as it existed immediately after the update to
code 1320. Similarly, in FIG. 15, the links descending from
big project 1302 reflect the project as it existed prior to mov
ing code 1318 from LA code 1312 to SF code 1314. The links
descending from big project 1302" reflect the project as it
existed immediately after moving code 1318 from LA code
1312 to SF code 1314.

Tagging
0220. Unfortunately, the versioning technique described
above causes a significant proliferation of file versions, par
ticularly of the directories that are at higher levels of a project.
Under some conditions, this proliferation may be both unnec
essary and undesirable. Therefore, according to one embodi
ment of the invention, a mechanism is provided for "tagging
versions of files. Tagging a version of a file indicates that that
version of the file should be retained. Thus, rather than always
retaining older version of files when newer versions are cre
ated, older versions of files are retained only if they have been
tagged. Otherwise, they are replaced (overwritten) when
newer versions are created.
0221 Referring to FIG. 13, assume that code 1320 has not
been tagged. If code 1320 is updated, the new version of the
code merely replaces the old version of the code. Only if code
1320 has been tagged are separate new versions made of code
1320, SF code 1314, source code 1304 and big project 1302,
as illustrated in FIG. 14.
0222 Under many circumstances, tags will be applied to
all files within a project at the same time. For example, if a
particular version of a software program is released, all of the
Source code used to create the released version of the program
may be tagged at that point in time. Consequently, the exact

US 2013/0066929 A1

set of source code associated with the released version will be
available for later reference regardless of subsequent revi
sions to the Source code files.
0223) In an embodiment where tags are always applied to
a project as a whole, a single tag may be maintained for the
root project directory. If a file is located using a version of the
root project directory that is tagged, then any change to that
file will cause a new version of the file to be created while the
original version of the file is retained. If, on the other hand, a
file is located using a version of the root project directory that
is not tagged, then any change to that file will merely over
write the previous version of the file.
0224. According to another embodiment, applying a tag to
a file effectively applies a tag to all files that reside below that
file in the file hierarchy. For example, assume that a tag is
applied to LA code 1312. If code 1318 is moved out of LA
code 1312, then a new version of LA code 1312 is created. If
code 1318 is updated, then new versions of both code 1318
and LA code 1312 are created. In such an embodiment, if a
file is located by traversing the file hierarchy through any
tagged file, then any change to that file causes a new version
of the file to be created. If a file is located without traversing
any file in the hierarchy that is tagged, then any change to that
file overwrites the previous version of the file.

Purge Count
0225. Another technique for reducing the proliferation of
versions, which may be employed instead of or in addition to
tagging, involves maintaining a purge count. A purge count
indicates the maximum number of versions that will be
retained for any given file. If a new version is created for a file
which is already at the purge count number of versions, the
new version of that file overwrites the oldest retained version
of that file. A purge count may be implemented on a per-file
system, per-project, or per-file basis. When implemented on a
per-file system basis, a single purge count applies to all files
maintained in the file system. On a per-project basis, all files
in a given project have the same purge count, but different
projects may have different purge counts. On a per-file basis,
a different purge count may be specified for each file.
0226. When used in combination with tagging, the purge
count mechanism may be implemented in a variety of ways.
According to one embodiment, tagged files are ignored for
the purpose of determining whether creating a new version of
a file would exceed the purge count, and tagged files are never
deleted by the purge count mechanism. For example, assume
that the purge count for a file is five, that five versions of the
file exist, and that one of those five versions is tagged. When
an update is made to the file, the purge count mechanism
determines that there are currently only four existing non
tagged versions of the file, and therefore creates another ver
sion of the file without deleting any of the existing versions. If
the same file is updated again, then the purge count mecha
nism determines that there are five existing non-tagged ver
sions of the file, and therefore deletes the oldest non-tagged
version of the file in response to creating a new version.

Inter-Project Links

0227 Each link has a source file (the file from which the
link extends) and a target file (the file to which the link
points). In the file hierarchy, the source file of a link is fre
quently a directory, while the target file of the link is a file
within the directory. However, not all links are between direc

Mar. 14, 2013

tories and their children. For example, an HTML file may
include hyperlinks to graphic images and to other HTML
files. In a file system implemented using a hierarchical index,
those hyperlinks may be handled in the same manner as
directory-to-document links.
0228. A view of the file system shows how each project in
the file system existed at a particular point in time. However,
the point in time associated with one project in a view may be
different than the point in time associated with another project
in the same view. This creates a problem when the source file
of a link belongs to a different project than the target file of the
link. For example, assume that a view specifies a time T1 for
a project P1 that includes a file F1, and a later time T2 for a
project P2 that includes a file F2. Assume further that file F2
has a link to file F1. The link contained in the T2 version of F2
will go to the T2 version of P1, not the T1 version of P1.
However, because the view specifies T1 for P1, the T1 version
of P1 should be used for any operations performed on any files
in P1 through the view.
0229. According to one embodiment of the invention, an
“inter-project boundary' flag is maintained for each link. The
inter-project boundary flag of a link indicates whether the
source file and the target file of the link are in the same project.
In a file system that uses a hierarchical index. Such as hierar
chical index 510, an inter-project boundary flag may be
stored, for example, in each array entry of an index entry's
Dir entry list.
0230. During the traversal of the file hierarchy, the inter
project boundary flag of every link is inspected before the link
is followed. If the inter-project boundary flag of a link is set,
then the required version time of the project to which the
Source side file belongs is compared to the required version
time of the project to which the target side file belongs. If the
desired version time is the same, then the link is traversed. If
the desired version time is not the same, then a search is
performed for the version of the target file that corresponds to
the required version time of the project to which the target
side file belongs.
0231. For example, the inter-project boundary flag of the
link between F2 and F1 would be set. Consequently, a com
parison is made between the required version time of P2 and
the required version time of P1. The required version time of
P2 is T2, which is not the same as T1, the required version
time of P1. Therefore, P1 would not be located by following
the link. Rather, a search would be performed to locate the
version of P1 that corresponds to time T1.
0232. According to an alternative embodiment, no inter
project boundary flags are maintained. Instead, every time a
link is encountered, the required version time of the source
file is compared to the required version time of the target file.
If the source and target files are in the same project, or if they
are in different projects that have the same required version
times, then the link is followed. Otherwise, a search is per
formed to find the correct version of the target file.

Object-Oriented File System

0233. In recent years, object oriented programming has
become the standard programming paradigm. In object ori
ented programming, the world is modeled in terms of objects.
An object is a record combined with the procedures and
functions that manipulate it. All objects in an object class have
the same fields (“attributes'), and are manipulated by the
same procedures and functions (“methods”). An object is said
to be an “instance' of the object class to which it belongs.

US 2013/0066929 A1

0234 Sometimes an application requires the use of object
classes that are similar, but not identical. For example, the
object classes used to model both dolphins and dogs might
include the attributes of nose, mouth, length and age. How
ever, the dog object class may require a hair color attribute,
while the dolphin object class requires a fin size attribute.
0235. To facilitate programming in situations in which an
application requires multiple similar attributes, object ori
ented programming supports “inheritance'. Without inherit
ance, a programmer would have to write one set of code for
the dog object class, and a second set of code for the dolphin
object class. The code implementing the attributes and meth
ods common to both object classes would appear redundantly
in both object classes. Duplicating code in this manner is very
inefficient, especially when the number of common attributes
and methods is much greater than the number of unique
attributes. Further, code duplication between object classes
complicates the process of revising the code, since changes to
a common attribute will have to be duplicated at multiple
places in the code in order to maintain consistency between
all object classes that have the attribute.
0236. Inheritance allows a hierarchy to be established
between object classes. The attributes and methods of a given
object class automatically become attributes and methods of
the object classes that are based upon the given object class in
the hierarchy. For example, an “animal' object class may be
defined to have nose, mouth, length and age attributes, with
associated methods. To add these attributes and methods to
the dolphin and dog object classes, a programmer can specify
that the dolphin and dog object classes “inherit” the animal
object class. Under these circumstances, the dolphin and dog
object classes are said to be “subclasses of the animal object
class, and the animal object class is said to be the "parent
class of the dog and dolphin object classes.
0237 According to one aspect of the invention, a mecha
nism is provided for applying the object-oriented paradigm,
including inheritance, to a file system. Specifically, each file
in the file system belongs to a class. The class of a file system
determines, among other things, the type of information that
the file system stores about the file. According to one embodi
ment, a base class is provided. Users of the file system may
then register other classes, which may be defined as Sub
classes of the base class or any previously registered class.
0238 When new file classes are registered with the file
system, the file system is effectively extended to support new
types of files, and interaction with new types of file systems.
For example, most e-mail applications expect e-mail docu
ments to have a “priority” property. If a file system does not
provide storage for the priority property, then the e-mail
applications may not operate properly with e-mail documents
stored in that file system. Similarly, certain operating systems
may expect certain types of system information to be stored
with a file. If the file system does not store that information,
the operating systems may encounter problems. By register
ing a class that includes all of the attributes required to Sup
port a particular type of system or protocol (e.g. specific
operating systems, FTP, HTTP, IMAP4, etc) accurate and
transparent interaction with that system or protocol becomes
possible.
0239. To register a class, information is provided about the
class, including data that identifies the parent class of the class
and describes any attributes that the class has that the parent
class does not have. The information may also specify spe
cific methods that operate on instances of the class.

Mar. 14, 2013

0240 An object-oriented file system that allows users to
register file classes, Supports inheritance between file classes,
and stores information about the files based on the class to
which they belong may be implemented in a variety of ways
depending on the context in which the file system itself is
implemented. According to one embodiment, an object-ori
ented file system is provided in the context of a database
implemented file system, as described above. However, while
various aspects of the object-oriented file system shall be
described relative to a database-implemented embodiment,
the object oriented file system techniques described herein
are not limited to such an embodiment.

Database-Implementation of Object Oriented File
System

0241 According to one embodiment, a database-imple
mented file system provides a base class, and allows Sub
classes of the base class to be registered with the file system.
Referring to FIG. 16, it illustrates an exemplary set of file
classes. The base class is entitled “Files' and includes
attributes that are generally common to all files, including
name, creation date, and modification date. Similarly, the
methods of the Files class include methods for operations that
may be performed on all files.
0242. According to one embodiment, the attributes of the
Files class is the union of all attributes maintained by the
operating systems with which the database-implemented file
system will be used. For example, assume that the file system
is implemented in a database managed by server 204 as
shown in FIG. 3. The files stored in the file system originate
from operating systems 304a and 304b, which do not neces
sarily Support the same set offile attributes. Consequently, the
set of attributes of the Files class of the file system imple
mented by database server 204 would be the union of the sets
ofattributes supported by the two operating systems 304a and
304b.
0243 According to an alternative embodiment, the
attributes of the Files class is the intersection of all attributes
maintained by the operating systems with which the data
base-implemented file system is used. In such an embodi
ment, a subclass of the Files class could be registered for each
operating system. The Subclass registered for a given operat
ing system would extend the base Files class by adding all of
the attributes Supported by that given operating system that
are not already included in the base Files class.
0244. In the embodiment illustrated in FIG. 16, two sub
classes of the Files class have been registered: a “Document'
class and a "Folder” class. The Document class inherits all of
the attributes and methods of the Files class, and adds
attributes that are specific to document files. In the illustrated
embodiment, the Document class adds the attribute “size'.
0245. The Folder class inherits all of the attributes and
methods of the Files class and adds attributes and methods
that are specific to folder files (i.e. files, such as directories,
that are able to contain other files). In the illustrated embodi
ment, the Folder class introduces a new attribute "max chil
dren' and a new method “dir list'. The max children
attribute may, for example, indicate the maximum number of
child files that may be contained in a given folder. The “dir
list method may, for example, provide a listing of all of the
child files of a given folder.
0246. In the class hierarchy illustrated in FIG. 16, the
Document class has two registered subclasses: e-mail and
Text. Both subclasses inherit all of the attributes and methods

US 2013/0066929 A1

of the Document class. In addition, the e-mail class includes
three additional properties: read flag, priority, and sender.
The Text class has one additional attribute, CR Flag, and an
additional method, Type. The CR Flag may be a flag to
indicate whether the text document contains “carriage return”
symbols. The Type method outputs the text document to an
I/O device. Such as a computer monitor.

File Class and File Format

0247 The internal structure of a file is referred to as the
“format of the file. Typically, the format of a file is dictated
by the application that creates the file. For example, a docu
ment created by one word processor may have the same
semantic content but an entirely different format than another
document created by a different word processor. In some file
systems, a mapping is maintained between document formats
and filename extensions. For example, all files that have file
names ending in .doc are presumed to be files created by a
particular word processor, and therefore are presumed to have
the internal structure imposed by that word processor. In other
file systems, information about the format of document is
maintained in a separate metafile associated with the docu
ment.

0248. In contrast to file formats, the file class mechanism
described herein does not relate to the internal structure of a
document. Rather, the file class of a file dictates what infor
mation the file system maintains for the file, and what opera
tions the file system can perform on the file. For example,
documents created by numerous word processors may all be
instances of the Document class. Consequently, the file sys
tem would maintain the same attribute information about the
documents, and allow the same operations to be performed on
the documents, even though the internal structures of the
documents are completely different.

Class Tables

0249 According to one embodiment, an object-oriented
file system is implemented in a relational database system
where a relational table is created for each class of file. FIG.
17 is an example of the tables that may be created for the
classes illustrated in FIG. 16. Specifically, Files table 1702,
Document table 1704, E-mail table 1706, Text table 1708 and
Folder table 1708 respectively corresponds to the Files class,
Document class, E-mail class, Text class and Folder class.
0250. According to one embodiment, the class table for a
given class includes rows for (1) files that belong to that given
class, and (2) files that belong any descendant class of that
given class. For example, in the illustrated system, the Files
class is the base class. Consequently, every file in the file
system will be a member of the Files class or a descendant
class thereof. Therefore, the Files table will include rows for
all files in the file system. On the other hand, the E-mail class
and the Text class are descendents of the Document class, but
the Files class and the Folder class are not. Therefore, the
Document table 1704 includes rows for all files of class
Document, E-mail or Text, but not for files that are of class
Files or Folder.

0251. The table for each class includes columns to store
values for the attributes that are introduced by that class. For
example, the Document class inherits the attributes of the
Files class, and adds to those attributes the size attribute.
Therefore, the Document table includes a column for storing
a size value for the size attribute. Similarly, the E-mail class

20
Mar. 14, 2013

inherits the attributes of the Document class and introduces
the read flag, priority, and sender attributes. Consequently,
the E-mail table 1706 includes columns for storing read flag
values, priority values, and sender values.
0252 Five files are stored in the file system illustrated in
FIG. 17. The file named File1 is stored at RowIDX1 in Files
table 1702. The FileID of File1 is F1. The class of File1 is the
File class, as indicated by the value stored in the Class column
of row X1. Because File1 is an instance of the Files class, the
Files table 1704 is the only class table that contains informa
tion for File:1. Thus, the only attribute values stored for File1
are values for the attributes associated with the Files class.
0253. The file named File2 is stored at RowID X2 in Files
table 1702. The FileID of File2 is F2. The class of File2 is the
Document class, as indicated by the value stored in the Class
column of row X2. Because File2 is an instance of the Docu
ment class, the Files table 1702 and Document table 1704
contain information for File2. Thus, the attribute values
stored for File2 are values for the attributes associated with
the Documents class, including those attributes inherited
from the Files class.

0254 The file named File3 is stored at RowIDX3 in Files
table 1702. The FileID of File3 is F3. The class of File3 is the
E-mail class, as indicated by the value stored in the Class
column of row X3. Because File3 is an instance of the E-mail
class, the Files table 1702, the Document table 1704 and the
E-mail table 1706 all contains information for File3. Thus, the
attribute values stored for File3 are values for the attributes
associated with the E-mail class, including those attributes
inherited from the Document and Files classes.
0255. The file named File4 is stored at RowIDX4 in Files
table 1702. The FileID of File4 is F4. The class of File4 is the
Text class, as indicated by the value stored in the Class col
umn of row X4. Because File4 is an instance of the Text class,
the Files table 1702, the Document table 1704 and the Text
table 1708 contain information for File4. Thus, the attribute
values stored for File4 are values for the attributes associated
with the Text class, including those attributes inherited from
the Document and Files classes.

0256 The file named File5 is stored at RowIDX5 in Files
table 1702. The FileID of File:5 is F5. The class of File:5 is the
Folder class, as indicated by the value stored in the Class
column of row X5. Because File5 is an instance of the Folder
class, the Files table 1702 and the Folder table 1708 contain
information for File5. Thus, the attribute values stored for
File:5 are values for the attributes associated with the Folder
class, including those attributes inherited from the Files class.
0257 According to one embodiment of the invention, the
files within the class tables are accessed by traversing a hier
archical index, as described above with reference to FIGS. 5
and 8. A traversal of the hierarchical index (as is performed
during pathname resolution) produces the RowlD of the row
within Files table 1702 that corresponds to a target file. From
that row, attribute values for the Files class attributes may be
retrieved. However, for files that belong to other classes,
additional attributes may have to be retrieved from other class
tables. For example, for File3 the creation and modification
dates may be retrieved from row X3 of Files table 1702.
However, to retrieve the size of File3, row Y2 of Document
table 1704 must be accessed. To retrieve the priority informa
tion for File3, row Q1 of E-mail table 1706 must be accessed.
0258 To facilitate the retrieval of the various attribute
values that belong to a file, the rows containing those
attributes are linked to each other. In the illustrated embodi

US 2013/0066929 A1

ment, the links are stored in columns labeled “Derived
RowID. The value Stored in the Derived Row ID column of a
row for a particular file in a table for a particular class points
to the row for that particular file that resides in a table for a
subclass of that particular class. For example, the Derived
RowID column of the Files table row X3 for File:3 contains
the value Y2. Y2 is the Row ID of the row for File3 in the
Document table 1704. Similarly, the Derived RowID column
of the Document row Y2 contains the value Q1. Q1 is the
RowID of the row for File3 in the E-mail table 1706.
0259. In the illustrated embodiment, the links between the
rows for a particular file are unidirectional, going from the
row in the table for a parent class to the row in the table of a
subclass. These unidirectional links facilitate searches that
start with rows in the base table (i.e. the files table), which
under most conditions will be the case. However, if the start
ing point of a search is the row of another table, the related
rows in the parent class tables cannot be located by the links.
To find those related rows, a search of those tables may be
performed based on the FileID of the file of interest.
0260 For example, assume that a user has retrieved row
Y2 of Document table 1704, and desires to retrieve all of the
other attribute values for File3. The row containing the
E-mail-specific attribute values may be found by following
the pointer in the Derived RowlD column of row Y2, which
points to row Q1 in E-mail table 1706. However, to find the
remaining attributes, the Filestable 1702 is searched based on
the FileID F3. Such a search would find row X3, which
contains the remaining attribute values of File3.
0261 According to an alternative embodiment, the links
between related rows may be implemented in a way that
allows all related rows to be located without a FileID lookup.
For example, each class table may also have a Parent RowlD
column that contains the RowlD of the related row in a parent
class table. Thus, the Parent RowID column for row Y2 of
Document table 1704 would point to row X3 in the Filestable
1702. Alternatively, the last row in the chain of unidirectional
links may include a pointerback to the related row in the Files
table. Yet another alternative involves establishing, for each
class table, a column that includes a pointerback to the related
row in the Files table. Thus, row R1 of Text table 1708 and
row Y3 of Document table 1704 would both include pointers
back to row X4 of Files table 1702.

Subclass Registration
0262. As mentioned above, a mechanism is provided for
extending the class hierarchy of the file system by registering
new classes. In general, the information provided during the
class registration process includes data that identifies the
parent class of the new class, and data that describes attributes
that are added by the new class. Optionally, the data may also
include data used to identify new methods that can be per
formed on instances of the new class.
0263. The registration information may be provided to the

file system using any one of numerous techniques. For
example, a user may be presented with a graphical user inter
face that includes icons representing all of the registered
classes, and the user may operate controls presented by the
user interface to (1) select one of the classes as the parent of
a new class, (2) name the new class, (3) define additional
attributes for the new class, and (4) define new methods that
may be performed on the new class. Alternatively, a user may
provide to the file system a file containing the registration
information for a new class. The file system parses the file to

Mar. 14, 2013

identify and extract the information, and builds a class file for
the new class based on the information.

0264. According to one embodiment of the invention, the
class registration information is provided to the file system in
the form of an Extensible Markup Language (XML) file. The
XML format is described in detail at www.oasis-open.org/
cover/xml.html#contents and at the sites listed there. In gen
eral, the XML language includes tags that name fields and
mark the beginnings and ends of fields, and values for those
fields. For example, an XML document containing registra
tion information for the “Folder file class may contain the
following information:

<typename>
folder
<typename>
<inherits from
files
<inherits from
<dbi classname>
my folder methods
<dbi classname>
<prop def>

<nale

max children
</name>
<types
integer

0265. In response to receiving this file class registration
document, the file system creates a table for the new class
Folder. The new table thus created includes a column for each
of the attributes defined in the registration information. In the
present example, only the max children attribute is defined.
The data type specified for the max children attribute is “inte
ger'. Consequently, the Folder table is created with a max
children column that holds integer values. In addition to the
name and type of an attribute, various other information may
be provided for each attribute. For example, the registration
information may indicate a range or maximum length for
attribute values, and whether the column should be indexed or
Subject to a uniqueness or referential constraint.
0266 The registration information also includes informa
tion about any methods supported by the new file class.
According to one embodiment, the new methods are specified
by identifying a file that contains the routines associated with
those methods. According to one embodiment, the routines
associated with each file class are implemented in a JAVA
class. If a first file class is a Subclass of a second file class, then
the JAVA class that implements the methods associated with
the first file class is a subclass of the JAVA class that imple
ments the methods of the second file class.

0267 In the XML example given above, the dbi class
name field of the registration information specifies a JAVA
class file for the Folder file class. Specifically, the registration
information provides the filename “my folder methods” for
the dbi classname field to indicate that the my folder meth
ods JAVA class implements the routines for the non-inherited
methods of the Folder class. Because the Folder class is a
Subclass of the Files class, the my folder methods class
would be a subclass of the JAVA class that implements the
methods for the Files class. Thus, the my folder methods
class would inherit the Files methods.

US 2013/0066929 A1

0268. In addition to defining new methods that are not
supported by a parent file class, the routines for a child file
class can override the implementation of methods defined in
the parent class. For example, the Files class illustrated in
FIG. 16 provides a “store' method. The Folder class inherits
the store method. However, the implementation of the store
method provided for the Files class may not be the implemen
tation required to store folders. Therefore, the Folder class
may provide its own implementation of the store method, thus
overriding the implementation provided by the Files class.

Determining the Class of a File
0269. When the file system is asked to perform an opera
tion on a file, the file system invokes the routines that imple
ment the requested operation for the particular class of file to
which the file belongs. As mentioned above, that same opera
tion may be implemented differently for different file classes
when, for example, a Subclass has overridden the implemen
tation provided by its parent class. Thus, to ensure that the
proper operation is performed, the file system must first iden
tify the class of the file upon which the operation is to be
performed.
0270. For files already stored in the file system, the task of
identifying the class of the files may be trivial. For example,
in the embodiment illustrated in FIG. 17, the Files table 1702
includes a Class column that, for any given row, stores data
indicating the class of file associated with that row. Thus, if a
request is received for performing a “move operation on
File3, the Class column of row X3 may be inspected to deter
mine that File3 is of type E-mail. Consequently, the E-mail
implementation of “move' should be executed. The E-mail
implementation of “move would be the implementation pro
vided for the E-mail file class if the E-mail file class overrides
the implementation of its inherited “move method. Other
wise, the E-mail implementation of “move' is the implemen
tation that is inherited by the E-mail class.
0271 The task of identifying the class of a file may be
more difficult when the file is not already stored in the file
system. For example, when the file system is asked to store a
file that is not already in the file system, the file system cannot
make the class determination by inspecting the files table.
Under these conditions, various techniques may be used to
identify the type of the file. According to one embodiment, the
type of the file may be expressly provided in the file operation
request. For example, if the request is made in response to a
command issued through the command-line of an operating
system, one of the command-line arguments may be used to
indicate the file type of the file. For example, the command
may be entered as: “move a:\mydocs\file2 c:\yourdocs/
class=document'.
0272 Another technique for determining the class of a file
involves determining the class based on information con
tained in the name of the file. For example, all files with
certain extensions (e.g. ..doc.wpd pwp, etc.) may all be
treated as members of a particular file class (e.g. Document).
Consequently, when the file system is asked to perform opera
tions on those files, the method implementations associated
with that particular file class are used.
0273 Yet another technique for determining the class of a

file involves determining the class based on the location of the
file within the file system hierarchy. For example, all files
created within a particular directory or set of directories may
be presumed to belong to a particular file class, regardless of
how the files are named. These and other techniques may be

22
Mar. 14, 2013

combined in a variety of ways. For example, a file with a
particular extension may be treated as a member of a first
class unless the file is stored in a directory associated with a
second class. If the file is stored in the directory associated
with the second class, then the file is treated as a member of
the second class unless the file operation request explicitly
identifies the file to be a member of another file class.

Hardware Overview

0274 FIG. 18 is a block diagram that illustrates a com
puter system 1800 upon which an embodiment of the inven
tion may be implemented. Computer system 1800 includes a
bus 1802 or other communication mechanism for communi
cating information, and a processor 1804 coupled with bus
1802 for processing information. Computer system 1800 also
includes a main memory 1806, Such as a random access
memory (RAM) or other dynamic storage device, coupled to
bus 1802 for storing information and instructions to be
executed by processor 1804. Main memory 1806 also may be
used for storing temporary variables or other intermediate
information during execution of instructions to be executed
by processor 1804. Computer system 1800 further includes a
read only memory (ROM) 1808 or other static storage device
coupled to bus 1802 for storing static information and instruc
tions for processor 1804. A storage device 1810, such as a
magnetic disk or optical disk, is provided and coupled to bus
1802 for storing information and instructions.
0275 Computer system 1800 may be coupled via bus
1802 to a display 1812, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
1814, including alphanumeric and other keys, is coupled to
bus 1802 for communicating information and command
selections to processor 1804. Another type of user input
device is cursor control 1816. Such as a mouse, a trackball, or
cursor direction keys for communicating direction informa
tion and command selections to processor 1804 and for con
trolling cursor movement on display 1812. This input device
typically has two degrees of freedom in two axes, a first axis
(e.g., X) and a second axis (e.g., y), that allows the device to
specify positions in a plane.
0276. The invention is related to the use of computer sys
tem 1800 for implementing the techniques described herein.
According to one embodiment of the invention, those tech
niques are implemented by computer system 1800 in
response to processor 1804 executing one or more sequences
of one or more instructions contained in main memory 1806.
Such instructions may be read into main memory 1806 from
another computer-readable medium, Such as storage device
1810. Execution of the sequences of instructions contained in
main memory 1806 causes processor 1804 to perform the
process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combina
tion with software instructions to implement the invention.
Thus, embodiments of the invention are not limited to any
specific combination of hardware circuitry and software.
0277. The term “computer-readable medium' as used
herein refers to any medium that participates in providing
instructions to processor 1804 for execution. Such a medium
may take many forms, including but not limited to, non
Volatile media, Volatile media, and transmission media. Non
Volatile media includes, for example, optical or magnetic
disks, such as storage device 1810. Volatile media includes
dynamic memory. Such as main memory 1806. Transmission
media includes coaxial cables, copper wire and fiber optics,

US 2013/0066929 A1

including the wires that comprise bus 1802. Transmission
media can also take the form of acoustic or light waves. Such
as those generated during radio-wave and infra-red data com
munications.
0278 Common forms of computer-readable media
include, for example, a floppy disk, a flexible disk, hard disk,
magnetic tape, or any other magnetic medium, a CD-ROM,
any other optical medium, punchcards, papertape, any other
physical medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.
0279 Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 1804 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 1800 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 1802. Bus 1802 carries the data to main memory 1806,
from which processor 1804 retrieves and executes the instruc
tions. The instructions received by main memory 1806 may
optionally be stored on storage device 1810 either before or
after execution by processor 1804.
0280 Computer system 1800 also includes a communica
tion interface 1818 coupled to bus 1802. Communication
interface 1818 provides a two-way data communication cou
pling to a network link 1820 that is connected to a local
network 1822. For example, communication interface 1818
may be an integrated services digital network (ISDN) card or
a modem to provide a data communication connection to a
corresponding type of telephone line. As another example,
communication interface 1818 may be a local area network
(LAN) card to provide a data communication connection to a
compatible LAN. Wireless links may also be implemented. In
any such implementation, communication interface 1818
sends and receives electrical, electromagnetic or optical sig
nals that carry digital data streams representing various types
of information.

0281 Network link 1820 typically provides data commu
nication through one or more networks to other data devices.
For example, network link 1820 may provide a connection
through local network 1822 to a host computer 1824 or to data
equipment operated by an Internet Service Provider (ISP)
1826. ISP1826 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 1828. Local
network 1822 and Internet 1828 both use electrical, electro
magnetic or optical signals that carry digital data streams. The
signals through the various networks and the signals on net
work link 1820 and through communication interface 1818,
which carry the digital data to and from computer system
1800, are exemplary forms of carrier waves transporting the
information.
0282 Computer system 1800 can send messages and
receive data, including program code, through the network
(s), network link 1820 and communication interface 1818. In
the Internet example, a server 1830 might transmit a
requested code for an application program through Internet
1828, ISP 1826, local network 1822 and communication

Mar. 14, 2013

interface 1818. In accordance with the invention, one such
downloaded application implements the techniques
described herein.
0283. The received code may be executed by processor
1804 as it is received, and/or stored in storage device 1810, or
other non-volatile storage for later execution. In this manner,
computer system 1800 may obtain application code in the
form of a carrier wave.
0284. In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifica
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention. The speci
fication and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense.
What is claimed is:
1. A computer-implemented method for managing Ver

sions of files in a file system, the method comprising:
creating new versions of directories in response to creation

of new versions offiles that descend from the directories,
where the different versions of a versioned directory are
associated with different points in time; and

maintaining links between the files in the file system Such
that the versions of the files that descend from a particu
lar version of a versioned directory reflect the point in
time associated with the versioned directory.

2. The method of claim 1, further comprising:
determining a selected point in time that files are to reflect

for a particular operation;
selecting a particular version of a directory from a plurality

of versions of the directory on the basis that the particu
lar version of the directory is associated with the selected
point in time; and

following links from the selected version of the directory to
locate one or more files involved in said operation.

3. The method of claim 1, further comprising:
receiving input indicating movement of a particular file

from a first version of a first directory to a first version of
a second directory;

wherein the first version of the first directory includes a first
set of Zero or more files other than said particular file;

wherein the first version of the second directory includes a
second set of zero or more files other than said particular
file;

wherein maintaining links includes performing the follow
ing steps in response to said input:
creating a second version of said first directory;
establishing said first set of Zero or more files as mem

bers of said second version of said first directory
without establishing said particular file as a member
of said second version of said first directory;

creating a second version of said second directory; and
establishing said particular file and said second set of

Zero or more files as members of said second version
of said second directory.

4. The method of claim 1, further comprising:
receiving an update to a first version of a particular file;
wherein the first version of said particular file is stored in a

first version of a particular directory;
wherein the first version of the particular directory includes

one or more files other than said particular file;
wherein maintaining links includes performing the follow

ing steps in response to the update:

US 2013/0066929 A1

creating a second version of said particular directory;
creating a second version of said particular file;
establishing said one or more files as members of said

second version of said particular directory; and
establishing said second version of said particular file as

a member of said second version of said particular
directory while maintaining said first version of said
particular file as a member of said first version of said
particular directory.

5. One or more non-transitory computer-readable media
carrying instructions which, when executed by one or more
processors, cause:

creating new versions of directories in response to creation
of new versions offiles that descend from the directories,
where the different versions of a versioned directory are
associated with different points in time; and

maintaining links between the files in a file system such
that the versions of the files that descend from a particu
lar version of a versioned directory reflect the point in
time associated with the versioned directory.

6. The one or more computer-readable media of claim 5,
wherein instructions, when executed by the one or more pro
cessors, further cause:

determining a selected point in time that files are to reflect
for a particular operation;

Selecting a particular version of a directory from a plurality
of versions of the directory on the basis that the particu
lar version of the directory is associated with the selected
point in time; and

following links from the selected version of the directory to
locate one or more files involved in said operation.

7. The one or more computer-readable media of claim 5,
wherein the instructions, when executed by the one or more
processors, further cause:

receiving input indicating movement of a particular file
from a first version of a first directory to a first version of
a second directory;

24
Mar. 14, 2013

wherein the first version of the first directory includes a first
set of Zero or more files other than said particular file;

wherein the first version of the second directory includes a
second set of zero or more files other than said particular
file;

wherein maintaining links includes performing the follow
ing steps in response to said input:
creating a second version of said first directory;
establishing said first set of Zero or more files as mem

bers of said second version of said first directory
without establishing said particular file as a member
of said second version of said first directory;

creating a second version of said second directory; and
establishing said particular file and said second set of

Zero or more files as members of said second version
of said second directory.

8. The one or more computer-readable media of claim 5,
wherein the instructions, when executed by the one or more
processors, further cause:

receiving an update to a first version of a particular file;
wherein the first version of said particular file is stored in a

first version of a particular directory;
wherein the first version of the particular directory includes

one or more files other than said particular file;
wherein maintaining links includes performing the follow

ing steps in response to the update:
creating a second version of said particular directory;
creating a second version of said particular file;
establishing said one or more files as members of said

second version of said particular directory; and
establishing said second version of said particular file as

a member of said second version of said particular
directory while maintaining said first version of said
particular file as a member of said first version of said
particular directory.

k k k k k

