«» UK Patent Application .,GB .,2519534

(13)A

(43)Date of A Publication 29.04.2015
(21) Application No: 1318712.5 (51) INT CL:
GO6F 12/10 (2006.01) GO6F 12/06 (2006.01)
(22) Date of Filing: 23.10.2013 GO6F 12/08 (2006.01) GO6F 15/173 (2006.01)

(71) Applicant(s):
International Business Machines Corporation
New Orchard Road, Armonk 10504, New York,
United States of America

(72) Inventor(s):
Martin Leo Schmatz
Animesh Kumar Trivedi
Bernard Metzler
Patrick Stuedi

(74) Agent and/or Address for Service:
Sebastien Ragot
IBM United Kingdom Limited,
Intellectual Property Law, Hursley Park,
WINCHESTER, Hampshire, SO21 2JN,
United Kingdom

(56) Documents Cited:
EP 2150019 A1
US 6598143 B1
US 20090287902 A1

US 8255922 B1
US 20130227201 A1
US 20070124407 A1

(58) Field of Search:
INT CL GO6F
Other: WPI, EPODOC, XPI3E, INSPEC and TXTE

(54) Title of the Invention: Persistent caching system and method for operating a persistent caching system
Abstract Title: Persistent caching system utilising RDMA to request data from memory-mapped files

(57) The application discloses a persistent caching system which includes a storage system having at least one caching
server for storing data, and clients for accessing the data through a network. The caching server is configured to
store the data in a number of virtual memory blocks, each of the virtual memory blocks referring to an associated
memory-mapped file in a file system of the caching server. Further, the caching server is configured to export
addresses of the virtual memory blocks to each of the clients. Each of the clients is configured to access at least
some of the virtual memory blocks through Remote Direct Memory Access (RDMA) using at least some of the
exported addresses. The caching server is further configured to page one or more virtual memory blocks being
accessed by one or more clients through RDMA to and/or from the memory-mapped files associated with the

accessed virtual memory blocks.

e

400 A

ol
™ Nersork
A

Y

P et
¢ {

Caching System

CHent|

X
——

=
i

$a17

%zs

SF——en 210

V $¥EG619¢ 99

,_‘
—
N

4{21@ Y
r""\“""\
e) ;

o _—
{"‘ Nergork uesrv—ssl P

L

s S A N K
e o =

Fig. 1

-
N

215

220
/
Paging Subsystem
Dividing |/ 221
Entity
222
v
Deciding
Entity

Kernel

Fig. 2

Storing L~ 301
Exporting |~ 302
Accessing L~ 303
Paging 0

Fig. 3

900

N

\ [930
910 T
L
905 N Processor Display | 025
901 Controller
920\\ Storage Memory Metnory 915
Controller 940
935 <
960\\ Network Input/Output T > gu tput
Interface (M Controller cvice
Z
7
K 911
950

Fig. 4

845

10

15

20

25

30

35

PERSISTENT CACHING SYSTEM AND METHOD FOR OPERATING A PERSISTENT
CACHING SYSTEM

FIELD OF THE INVENTION

The invention relates to a persistent caching system and to a method for operating a persistent

caching system using RDMA (Remote Direct Memory Access).

BACKGROUND

RDMA is a communication paradigm whereby application data is fetched directly out of a
computer's local application memory and directly placed into the application memory of a
remote computer. In bypassing the operating system and avoiding intermediate data copies in
host memory, RDMA significantly reduces the CPU cost of large data transfers. Complete
data copy avoidance (zero-copy) is achieved if the network interface controller (NIC) is able
to move networked data directly between the application (buffer) memory and NIC buffer

using a DMA engine.

Document US 2011/0078410 A1l describes a method of and a system for multiple party
communications in a processing system including multiple processing subsystems. Each of
the processing subsystems includes a central processing unit and one or more network
adapters for connecting said each processing subsystem to the other processing subsystems.
A multitude of nodes is established or created, and each of these nodes is associated with one
of the processing subsystems. Here, pipelined communication using RDMA among three
nodes may be involved, wherein the first node breaks up a large communication into multiple
parts and sends these parts one after the other to the second node using RDMA, and the
second node in turn absorbs and forwards each of these parts to a third node before all parts

of the communication arrive from the first node.

The ever increasing amount of data stored and processed in data centers poses huge
challenges not only to the data processing itself, but also in terms of power consumption and
latency requirements. In particular, analytics and large-scale web applications running in data

centers have stringent latency requirements.

10

15

20

25

30

35

[\

To accommodate the latency requirements, applications may try to reduce data access

latencies by storing much of the data in DRAM-based storage systems.

Disadvantageously, there is not enough DRAM to keep all the data in memory all the time.

Further, availability is not guaranteed.

In reference [1], it is described to maintain a separate distributed cache close to the
application, e.g. memcached, to cache the hot data. But the application has to handle

consistency between the cache and persistent data. Memcached is described in reference [2].

Moreover, in-memory storages are known. In an in-memory storage, all the data is put inside
a large distributed DRAM-based storage system with guaranteed availability.
Disadvantageously, a huge amount of DRAM and special battery-backed buffers are

required.

Therefore, it is an aspect of the present invention to provide an improved system for caching

data.

BRIEF SUMMARY OF THE INVENTION

According to a first aspect, a persistent caching system is suggested. The persistent caching
system includes a storage system having at least one caching server for storing data, and
clients configured for accessing the data through a network. The caching server is configured
to store the data in a number of virtual memory blocks, wherein each of the virtual memory
blocks refers to an associated memory-mapped file in a file system of the caching server.
Further, the caching server is configured to export addresses (virtual addresses) of the virtual
memory blocks to each of the clients. Each of the clients is configured to access at least some
of the virtual memory blocks through RDMA using at least some of the exported addresses.
The caching server is further configured to page one or more virtual memory blocks being
accessed by one or more clients through RDMA to and/or from the memory-mapped files

associated with the accessed virtual memory blocks.

Advantageously, the present persistent caching system appears to the clients like a storage

system. In particular, there is no need to maintain consistency between physical memory

10

15

20

25

30

35

(cache) and persistence storage (disk). The present persistent caching system provides access

to hot data with ultra-low latencies due to RDMA read operations from physical memory.

Moreover, the persistent caching system may hold data bigger than cluster DRAM size.
Further, easy recovery of data from the mapped files is possible. Namely, each of the caching
servers can be shut down and re-started without losing data. A caching server when started
may create the virtual memory block from the memory-mapped files on a disk containing the

persistent data.

According to some implementations, the present persistent caching system may use RDMA
lazy memory pinning and memory mapped files to build distributed in-memory storage
directly from physical memory, €.g. operating system page caches of cluster nodes. By means
of the memory-mapped files, it is possible to access files through memory. On memory
access, the operating system may bring disk blocks into page cache on-demand. Further, the
operating system may swap pages of the page cache into reference-mapped files. Thus, the
memory may be recovered easily from files. A memory-mapped file is a segment of virtual
memory which is assigned a direct byte-for-byte correlation with some portion of a file or

file-like resource.

According to some implementations, the present persistent caching system provides paging in

network-based shared nothing memory architecture.

According to some implementations, paging may be understood as swapping. Swapping
virtual memory blocks to and/or from persistent files means either writing data from physical

memory to persistent files, or reading data from persistent files into physical memory.

In an embodiment, the storage system includes a plurality of caching servers configured to
store the data. Each of the caching servers is configured to store at least a part of the data in a
number of virtual memory blocks, wherein each of the virtual memory blocks refers to an
associated memory-mapped file in a file system of the caching server. Each of the caching
servers 1s further configured to export addresses of the virtual memory blocks to each of the
clients. Each of the caching servers is further configured to page one or more virtual memory
blocks being accessed by one or more clients through RDMA to and/or from the memory-

mapped files associated with the accessed virtual memory blocks.

10

15

20

25

30

35

Advantageously, the storage system includes a huge amount of different caching servers

which may be interconnected by a certain interconnect.

Because of including a plurality of caching servers, the persistent caching system is embodied

as a persistent distributed caching system.

In a further embodiment, the caching server is configured to serve RDMA read operations

from the clients directly from its operating system page cache.

In this embodiment, a direct service for RDMA read operations is provided at the level of the
operating system of the caching server.

In a further embodiment, the caching server is configured to serve RDMA read operations
from the clients directly from its operating system page cache using an in-kernel soft-RDMA

stack or using hardware supported RDMA.

For example, each of the clients is configured to access the virtual memory blocks through

soft-RDMA using the exported addresses.

In a further embodiment, each of the clients includes a client application and a storage

library. The client application is linked to the storage library for accessing the storage system.

In particular, the client application uses the storage library to write data to and to read data
from the plurality of caching servers, which may be called caching service. In detail, the

storage library may provide two operations: write and read.

The write operation sends data to a caching server. The caching server may then take two
actions: First, it stores (or copies) the data inside the virtual memory block. Second, it asks
the kernel to page the virtual memory block out to the memory-mapped file. After the second

step, the virtual memory block is persistently stored on disk.

The read operation may use RDMA to access the virtual address of the memory block.
Namely, it uses an RDMA read to read parts of the virtual memory block. The RDMA read

request may be received by a network card at the caching server. The network card may issue

10

15

20

25

30

35

a DMA operation to copy the requested virtual memory block to the network card. From

there, the virtual memory block may be transmitted back to the client.

During the processing of write requests at the caching server, the kernel, in particular the
paging subsystem of the caching server, may be involved, namely pages of the virtual

memory block being accessed may have to be paged in from disk, or paged out to disk.

During the processing of read requests at the caching server, the paging subsystem of the
kernel of the caching server may be involved, namely pages of the virtual memory block may

have to be paged in from disk.

In a further embodiment, the storage library is adapted to communicate with the at least one
caching server of the storage system when writing data to or reading data from the storage

system.

In a further embodiment, the client applications and the caching servers are adapted to run on
a disjoint set of compute nodes in the network or on a common set of compute nodes in the

network.

Alternatively, the client applications and the caching servers may run on an overlapping set

of compute nodes.

In a further embodiment, the caching server is configured to create the virtual memory blocks

using the memory-mapped files.

The terms virtual memory blocks and memory-mapped files may be used interchangeably,

e.g. each virtual memory block is referring to a memory-mapped file.

In a further embodiment, the caching server is configured to store the data of one of the
virtual memory blocks in a physical memory or on a disk in the associated memory-mapped

file at any given time.

Thus, the caching server is adapted to page or swap the data of one of the virtual memory

blocks at its own decision at any given time.

10

15

20

25

30

35

In a further embodiment, a kernel of the caching server includes a paging subsystem which is
configured to decide, at any given time, on storing the data of one of the virtual memory
blocks in the physical memory or on the disk in the memory-mapped file.

Thus, for each virtual memory block, the decision about when the memory block should be
present in physical memory, and when the memory block should be held on disk in the file, is

made by the kernel of the caching server, namely by the paging subsystem of the kernel.

In a further embodiment, the paging subsystem is configured to keep more frequently
accessed virtual memory blocks present in the physical memory and less frequently accessed
virtual memory blocks on the disk in the memory-mapped file.

Thus, the more frequently accessed virtual memory blocks are provided faster than less

frequently accessed memory blocks. Thus, the overall latency is decreased.

In a further embodiment, the paging subsystem includes a dividing entity and a deciding
entity, wherein the dividing entity is configured to subdivide a virtual memory block into a
plurality of pages, wherein the deciding entity is configured to decide on keeping a first part
of the pages in the physical memory and a second part of the pages on the disk.

A page may be 4K for example. The deciding entity may decide to keep parts of the virtual

memory block, e.g. some pages, in physical memory and some other pages on disk.

In a further embodiment, the storage library is configured to provide a write operation
through RDMA for writing data into the storage subsystem and a read operation through

RDMA for reading data from the storage system.

In a further embodiment, after receiving data from the storage library of one of the clients, the
caching server is configured to store the received data in the number of virtual memory
blocks and to ask the kernel to page the number of virtual memory blocks out to the

associated memory-mapped file.

In a further embodiment, the paging subsystem is configured to page at least one page of the
virtual memory block being accessed by the write operation in from the disk and to page it

later out to the disk.

10

15

20

25

30

35

In a further embodiment, after receiving an RDMA read request from a requesting client at a
network card of the caching server, the network card is configured to issue a DMA operation
to copy the virtual memory block requested by the RDMA read request to the network card

and to transmit the copied virtual memory block to the requesting client.

In a further embodiment, the paging subsystem is configured to page at least one page of the

virtual memory block being accessed by the read operation in from the disk.

In a further embodiment, access rights are allocated to at least one of the memory-mapped
files. The allocated access rights determine which clients are allowed to access the at least

one of the memory-mapped file.

Any embodiment of the first aspect may be combined with any embodiment of the first

aspect to obtain another embodiment of the second aspect.

According to a second aspect, the invention can be embodied as a method for operating a
persistent caching system including a storage system having at least one caching server for
storing data, and clients configured for accessing the data through a network. In a first step,
the data is stored in a number of virtual memory blocks by the caching server, wherein each
of the virtual memory blocks refers to an associated memory-mapped file in a file system of
the caching server. In a second step, addresses of the virtual memory blocks are exported
from the caching server to each of the clients. In a third step, at least some of the virtual
memory blocks are accessed by at least one of the clients through RDMA using at least some
of the exported addresses. In a fourth step, one or more virtual memory blocks being accessed
by one or more clients through RDMA are paged to and/or from the memory-mapped files

associated with the accessed virtual memory blocks.

According to a third aspect, a computer program is suggested which comprises a program
code for executing the method of the above second aspect for operating a persistent caching

system when run on at least one computer.

In the following, exemplary embodiments of the present invention are described with

reference to the accompanying figures.

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a schematic block diagram of an embodiment of a persistent caching system;

Fig. 2 shows a schematic block diagram of an extract of a kernel of a caching server of the

persistent caching system of Fig. 1;

Fig. 3 shows an embodiment of a sequence of method steps for operating a persistent caching

system; and

Fig. 4 shows a schematic block diagram of an embodiment of a system adapted for data

transmissions using RDMA.

Similar or functionally similar elements in the figures have been allocated the same reference

signs if not otherwise indicated.

DETAILED DESCRIPTION OF THE EMBODIMENTS

In Fig. 1, a schematic block diagram of an embodiment of a persistent caching system 100 is
depicted. The persistent caching system 100 of Fig. 1 includes a number of clients 300 and a

storage system 200. Without loss of generality, Fig. 1 shows two clients 300.

The storage system 200 comprises a plurality of caching servers 210 which may be coupled
by an interconnect 230. The clients 300 and the storage system 200 may be connected by or
may be part of a network 400, e.g. the internet or a local area network (LAN). Each of the
caching servers 210 includes a user space 214, a kernel 215 and an I/O space 216. Because
the caching servers 210 are interconnected to one storage system 200, the clients 300 may see
a distributed physical memory 217 including the physical memories 212 of the caching
servers 210 and an effective storage space 218 including the disks 213 of the caching servers
210. The respective disk 213 includes files 219 holding persistent data. Without loss of

generality, Fig. 1 shows a plurality of caching servers 210, e.g. four caching servers 210.

As indicated above, the clients 300 are adapted to access (at least some of) the data stored in

the storage system 200 through the network 400. Each of the clients 300 may for instance

10

15

20

25

30

35

include a client application 310 and a storage library 320. The client application 310 is linked
to the storage library 320 for accessing the storage system 200. In particular, the storage
library 320 is adapted to communicate with the caching servers 210 of the storage system 200

on writing data to or reading data from the storage system 200.

As depicted in Fig. 1, the client applications 310 and the caching servers 210 are adapted to
run on a disjoint set of computing nodes in the network 400. Alternatively, the client
applications 310 and the caching servers 210 may be adapted to run on a common set of

computer nodes (not shown).

Each caching server 210 is adapted to store the data in a number of virtual memory blocks,
wherein each of the virtual memory blocks refers to an associated memory-mapped file 211
in a file system of the caching server 210. Further, the respective caching server 210 is
adapted to export addresses (virtual addresses) of the virtual memory blocks to each of the
clients 300. As a result, each of the clients 300 is adapted to access (at least some of) the
virtual memory blocks through RDMA R, W using (at least some of) the exported addresses.
Using RDMA includes RDMA read operations R and RDMA write operations W.

Moreover, the respective caching server 210 is configured to page P one or more virtual
memory blocks being accessed by one or more clients 300 through RDMA R, W to and/or

from the memory-mapped files 211 associated with the accessed virtual memory blocks.

The persistent caching system 100 appears to the clients 300 like a storage system. In
particular, there is no need to maintain consistency between physical memory 212 (cache)
and persistence storage 213 (disk). The persistent caching system 100 may provide access to

hot data with ultra-low latencies due to RDMA read operations from physical memory 212.

Furthermore, the persistent caching system 100 may hold data bigger than cluster DRAM
size. Further, easy recovery of data from the memory-mapped files 211 is possible. Namely,
each of the caching servers 210 may be shut down and re-started without losing data. A
caching server 210 when started may create the virtual memory block from the memory-

mapped files 211 on a disk 213 containing the persistent data.

10

15

20

25

30

35

10

Note that the data (e.g., stored as files), may have access rights, owners, etc. Thus, clients
may be allowed to access only certain files (and blocks thereof). To that aim, access rights
can be allocated to some of the memory-mapped files. The allocated access rights determine
which clients are allowed to access which the memory-mapped files. For example, a first
client may be able to access data A though a subset a of the export addresses, while not being
able to access data B, whereas a second client may access data B though another subset b of
the export addresses (while not necessarily able to access data A, etc.). For this reason and
most generally, each client is adapted to access at least some of the virtual memory blocks
through RDMA using at least some of the exported addresses. This distinction is not
reiterated in the following. Without prejudice, it is hereafter assumed that clients can access

the same data using the same exported addresses (made available to them all), for simplicity.

Next, the respective caching server 210 may be adapted to serve RDMA read operations R
from the clients 300 directly from its operating system page cache 212. For example, the
caching server 210 may be configured to serve said RDMA read operations R from the
clients 300 directly from its operating system page cache 212 using an in-kernel soft-RDMA
stack or using hardware-supported RDMA. In particular, the respective caching server 210 is
configured to create the virtual memory blocks using said memory-mapped files 211. At any
given time, the respective caching server 210 may be adapted to store the data of one of the
virtual memory blocks in the physical memory 212 or on the disk 213 in the associated

memory-mapped file.

The storage library 320 of the respective client 300 may be configured to provide and to
transmit a write operation W for writing data into the storage system 210 and a read operation

R through RDMA for reading data from the storage system 210.

In the case of a write operation W, after receiving data from the storage library 320 of one of
the clients 300, the caching server 210 stores the received data in the number of virtual
memory blocks and asks the kernel 215 to page P the number of virtual memory blocks out to
the associated memory-mapped file 211. In this regard, the paging subsystem 220 may page P
at least one page of the virtual memory block being accessed by the write operation W in

from the disk 213 and to page it later out to the disk 213.

10

15

20

25

30

35

11

In case of a read operation R, after receiving an RDMA read request R from a requesting
client 300 at a network card of the caching server 210, the network card issues a DMA
operation to copy the virtual memory block requested by the RDMA read request R to said
network card and to transmit the copied virtual memory block to the requesting client 300. In
this case, the paging subsystem 220 may page P at least one page of the virtual memory block

being accessed by said read operation R in from the disk 213.

Fig. 2 shows a schematic block diagram of an extract of a kernel 215 of one caching server
210 of the persistent caching system 100 of Fig. 1. The kernel 215 of the caching server 210
includes a paging subsystem 220. The paging subsystem 220 is adapted to decide, at any
given time, on storing the data of the respective virtual memory block in the physical memory
212 or on the disk 213 in the memory-mapped file. Furthermore, the paging subsystem 220 is
configured to keep more frequently accessed virtual memory blocks present in the physical
memory 212, but less frequently accessed memory blocks on the disk 213 in the memory-

mapped file.

As shown in Fig. 2, the paging subsystem 212 includes a dividing entity 221 and a deciding
entity 222. The dividing entity 221 is adapted to subdivide a virtual memory block into a
plurality of pages. Further, the deciding entity 222 is configured to decide on keeping a first
part of the pages in the physical memory 212 and a second part of the pages on the disk 213.
Also, the ratio of the first and second parts may be decided by said deciding entity 222.

Fig. 3 shows an embodiment of a sequence of method steps for operating a persistent caching

system.

In Fig. 3, an embodiment of a sequence of method steps for operating a persistent caching
system 100 is shown. The persistent caching system 100 may be embodied as shown in Fig.
1. The caching system 100 includes a storage system 200 having a number of caching servers

210 for storing data, and clients 300 for accessing the data through a network 400.

The method of Fig. 3 includes the following steps 301 to 304:

10

15

20

25

30

35

12

In step 301, the data is stored in a number of virtual memory blocks by at least one of the
caching servers. Therein, each of the virtual memory blocks refers to an associated memory-

mapped file in a file system of the caching server.

In step 302, addresses, in particular virtual addresses, of the virtual memory blocks are

exported from the at least one caching server to each of the clients.

In step 303, the virtual memory blocks are accessed by at least one of the clients through

RDMA using the exported addresses.

In step 304, one or more virtual memory blocks accessed by one or more clients through
RDMA are paged to and/or from the memory-mapped files associated with the accessed

virtual memory blocks.

Computerized devices can be suitably designed for implementing embodiments of the present
invention as described herein. In that respect, it can be appreciated that the methods described
herein are largely non-interactive and automated. In exemplary embodiments, the methods
described herein can be implemented either in an interactive, partly-interactive or non-
interactive system. The methods described herein can be implemented in software (e.g.,
firmware), hardware, or a combination thereof. In exemplary embodiments, the methods
described herein are implemented in software, as an executable program, the latter executed
by suitable digital processing devices. In further exemplary embodiments, at least one step or
all steps of above method of Fig. 3 may be implemented in software, as an executable
program, the latter executed by suitable digital processing devices. More generally,
embodiments of the present invention can be implemented wherein general-purpose digital

computers, such as personal computers, workstations, etc., are used.

For instance, the system 900 depicted in Fig. 9 schematically represents a computerized unit
901, e.g., a general-purpose computer. In exemplary embodiments, in terms of hardware
architecture, as shown in Fig. 9, the unit 901 includes a processor 905, memory 910 coupled
to a memory controller 915, and one or more input and/or output (I/O) devices 940, 945, 950,
955 (or peripherals) that are communicatively coupled via a local input/output controller 935.
The input/output controller 935 can be, but is not limited to, one or more buses or other wired

or wireless connections, as is known in the art. The input/output controller 935 may have

10

15

20

25

30

35

13

additional elements, which are omitted for simplicity, such as controllers, buffers (caches),
drivers, repeaters, and receivers, to enable communications. Further, the local interface may
include address, control, and/or data connections to enable appropriate communications

among the aforementioned components.

The processor 905 is a hardware device for executing software, particularly that stored in
memory 910. The processor 905 can be any custom made or commercially available
processor, a central processing unit (CPU), an auxiliary processor among several processors
associated with the computer 901, a semiconductor based microprocessor (in the form of a

microchip or chip set), or generally any device for executing software instructions.

The memory 910 can include any one or combination of volatile memory elements (e.g.,
random access memory) and nonvolatile memory elements. Moreover, the memory 910 may
incorporate electronic, magnetic, optical, and/or other types of storage media. Note that the
memory 910 can have a distributed architecture, where various components are situated

remote from one another, but can be accessed by the processor 905.

The software in memory 910 may include one or more separate programs, each of which
comprises an ordered listing of executable instructions for implementing logical functions. In
the example of Fig. 9, the software in the memory 910 includes methods described herein in
accordance with exemplary embodiments and a suitable operating system (OS) 911. The OS
911 essentially controls the execution of other computer programs, such as the method as
described herein (e.g., Fig. 3), and provides scheduling, input-output control, file and data

management, memory management, and communication control and related services.

The methods described herein may be in the form of a source program, executable program
(object code), script, or any other entity comprising a set of instructions to be performed.
When in a source program form, then the program needs to be translated via a compiler,
assembler, interpreter, or the like, as known per se, which may or may not be included within
the memory 910, so as to operate properly in connection with the OS 911. Furthermore, the
methods can be written as an object oriented programming language, which has classes of
data and methods, or a procedure programming language, which has routines, subroutines,

and/or functions.

10

15

20

25

30

35

14

Possibly, a conventional keyboard 950 and mouse 955 can be coupled to the input/output
controller 935. Other I/O devices 940 — 955 may include sensors (especially in the case of
network elements), i.e., hardware devices that produce a measurable response to a change in a
physical condition like temperature or pressure (physical data to be monitored). Typically, the
analog signal produced by the sensors is digitized by an analog-to-digital converter and sent
to controllers 935 for further processing. Sensor nodes are ideally small, consume low

energy, are autonomous and operate unattended.

In addition, the I/O devices 940 — 955 may further include devices that communicate both
inputs and outputs. The system 900 can further include a display controller 925 coupled to a
display 930. In exemplary embodiments, the system 900 can further include a network

interface or transceiver 960 for coupling to a network 965.

The network 965 transmits and receives data between the unit 901 and external systems. The
network 965 is possibly implemented in a wireless fashion, e.g., using wireless protocols and
technologies, such as WiFi, WiMax, etc. The network 965 may be a fixed wireless network, a
wireless local area network (LAN), a wireless wide area network (WAN) a personal area
network (PAN), a virtual private network (VPN), intranet or other suitable network system

and includes equipment for receiving and transmitting signals.

The network 965 can also be an IP-based network for communication between the unit 901
and any external server, client and the like via a broadband connection. In exemplary
embodiments, network 965 can be a managed IP network administered by a service provider.
Besides, the network 965 can be a packet-switched network such as a LAN, WAN, Internet

network, etc.

If the unit 901 is a PC, workstation, intelligent device or the like, the software in the memory
910 may further include a basic input output system (BIOS). The BIOS is stored in ROM so
that the BIOS can be executed when the computer 901 is activated.

When the unit 901 is in operation, the processor 905 is configured to execute software stored
within the memory 910, to communicate data to and from the memory 910, and to generally
control operations of the computer 901 pursuant to the software. The methods described

herein and the OS 911, in whole or in part are read by the processor 905, typically buftered

10

15

20

25

30

35

15

within the processor 905, and then executed. When the methods described herein (e.g. with
reference to Fig. 3) are implemented in software, the methods can be stored on any computer
readable medium, such as storage 920, for use by or in connection with any computer related

system or method.

As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects. Furthermore, aspects of the present
invention may take the form of a computer program product embodied in one or more
computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer readable storage medium would include the
following: an electrical connection having one or more wires, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable compact disk read-only memory
(CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination
of the foregoing. In the context of this document, a computer readable storage medium may
be any tangible medium that can contain, or store a program for use by or in connection with

an instruction execution system, apparatus, or device.

A computer readable signal medium may include a propagated data signal with computer
readable program code embodied therein, for example, in baseband or as part of a carrier
wave. Such a propagated signal may take any of a variety of forms, including, but not limited
to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal
medium may be any computer readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport a program for use by or in
connection with an instruction execution system, apparatus, or device. Program code

embodied on a computer readable medium may be transmitted using any appropriate

10

15

20

25

30

35

16

medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any

suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of the present invention may
be written in any combination of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++ or the like and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the unit 901, partly

thereon, partly on a unit 901 and another unit 901, similar or not.

Aspects of the present invention are described above with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams can be implemented by one or more computer
program instructions. These computer program instructions may be provided to a processor
of a general purpose computer, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart and/or block diagram block or

blocks.

The computer program instructions may also be loaded onto a computer, other programmable
data processing apparatus, or other devices to cause a series of operational steps to be
performed on the computer, other programmable apparatus or other devices to produce a
computer implemented process such that the instructions which execute on the computer or
other programmable apparatus provide processes for implementing the functions/acts

specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical

function(s). It should also be noted that, in some alternative implementations, the functions

10

15

20

17

noted in the blocks may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved and
algorithm optimization. It will also be noted that each block of the block diagrams and/or
flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special purpose hardware and computer

instructions.

More generally, while the present invention has been described with reference to certain
embodiments, it will be understood by those skilled in the art that various changes may be
made and equivalents may be substituted without departing from the scope of the present
invention. In addition, many modifications may be made to adapt a particular situation to the
teachings of the present invention without departing from its scope. Therefore, it is intended
that the present invention not be limited to the particular embodiments disclosed, but that the
present invention will include all embodiments falling within the scope of the appended

claims.

10

15

20

25

30

18

REFERENCE SIGN LIST

100 caching system

200 storage system

210 caching server

211 memory-mapped file

212 physical memory

213 disk

214 user space

215 kernel

216 I/O space

217 distributed physical memory
218 effected storage space of the storage system
219 file holding persistent data
220 paging subsystem

221 dividing entity

222 deciding entity

230 interconnect

300 client

301 method step

302 method step

303 method step

304 method step

310 client application

320 storage library

330 storage API

P paging

R RDMA read operation

W RDMA write operation

5

10

19

REFERENCES

[1] Patrick Stuedi, Animesh Trivedi, Bernard Metzler; IBM Research, Zurich: Wimpy
Nodes with 10GbE: Leveraging One-Sided Operations in Soft-RDMA to Boost

Memcache

[2] Memcached - a distributed memory object caching system;

http://memcached.org.

20

CLAIMS

1. A persistent caching system (100), comprising:
a storage system (200) having at least one caching server (210) for storing data, and
clients (300) configured for accessing at least some of the data through a network
(400), wherein the caching server (210) is configured to:
store the data in a number of virtual memory blocks, each of the virtual
memory blocks referring to an associated memory-mapped file (211) in a file system
of the caching server (210); and
export addresses of the virtual memory blocks to each of the clients (300),
wherein each of the clients (300) is configured to access at least some of the virtual
memory blocks through RDMA (R, W) using at least some of the exported addresses, and
wherein the caching server (210) is further configured to page (P) one or more virtual
memory blocks being accessed by one or more clients (300) through RDMA (R, W) to and/or

from the memory-mapped files (211) associated with the accessed virtual memory blocks.

2. The persistent caching system of claim 1,

wherein the storage system (200) includes a plurality of caching servers (210) configured to
store the data, wherein each of the caching servers (210) is configured to store at least a part
of the data in a number of virtual memory blocks, each of the virtual memory blocks referring
to an associated memory-mapped file (211) in a file system of the caching server (210), and to
export addresses of the virtual memory blocks to each of the clients (300), wherein each of the
caching servers (210) is further configured to page (P) one or more virtual memory blocks
being accessed by one or more clients through RDMA (R, W) to and/or from the memory-

mapped files (211) associated to the accessed virtual memory blocks.

3. The persistent caching system of claim 1 or 2,
wherein the caching server (210) is configured to serve RDMA read operations (R) from the

clients (300) directly from its operating system page cache (212).

4. The persistent caching system of claim 3,
wherein the caching server (210) is configured to serve RDMA read operations (R) from the
clients (300) directly from its operating system page cache (212) using an in-kernel soft-

RDMA stack or using hardware supported RDMA.

21

5. The persistent caching system of one of claims 1 to 4,

wherein each of the clients (300) includes a client application (310) and a storage library
(320), wherein the client application (310) is linked to the storage library (320) for accessing
the storage system (200).

6. The persistent caching system of one of claims 1 to 5,
wherein the caching server (210) is configured to create the virtual memory blocks using the

memory-mapped files (211).

7. The persistent caching system of one of claims 1 to 6,
wherein the caching server (210) is configured to store the data of one of the virtual memory
blocks in a physical memory (212) or on a disk (213) in the associated memory-mapped file

(211) at any given time.

8. The persistent caching system of claim 7,
wherein a kernel (215) of the caching server (210) includes a paging subsystem (220) which is
configured to decide, at any given time, on storing the data of one of the virtual memory

blocks in the physical memory (212) or on the disk (213) in the memory-mapped file (211).

0. The persistent caching system of claim §,
wherein the paging subsystem (220) is configured to keep more frequently accessed virtual
memory blocks present in the physical memory (212) and less frequently accessed virtual

memory blocks on the disk (213) in the memory-mapped file (211).

10. The persistent caching system of claim 8 or 9,

wherein the paging subsystem (220) includes a dividing entity (221) and a deciding entity
(222), wherein the dividing entity (221) is configured to subdivide a virtual memory block
into a plurality of pages, wherein the deciding entity (222) is configured to decide on keeping
a first part of the pages in the physical memory (212) and a second part of the pages on the
disk (213).

11. The persistent caching system of one of claims 5 to 10,

22

wherein the storage library (320) is configured to provide a write operation (W) for writing
data into the storage system (200) and a read operation (R) through RDMA for reading data

from the storage system (200).

12. The persistent caching system of claim 11,

wherein, after receiving data from the storage library (320) of one of the clients (300), the
caching server (210) is configured to store the received data in the number of virtual memory
blocks and to ask the kernel (215) to page (P) the number of virtual memory blocks out to the

associated memory-mapped file (211).

13. The persistent caching system of claim 12,

wherein the paging subsystem (220) is configured to page (P) at least one page of the virtual
memory block being accessed by the write operation (W) in from the disk (213) and to page it
later out to the disk (213).

14. The persistent caching system of one of claims 11 to 13,

wherein, after receiving an RDMA read request (R) from a requesting client (300) at a
network card of the caching server (210), the network card is configured to issue a DMA
operation to copy the virtual memory block requested by the RDMA read request (R) to the

network card and to transmit the copied virtual memory block to the requesting client (300).

15. A method for operating a persistent caching system including a storage system having
at least one caching server for storing data, and clients configured for accessing at least some
of the data through a network, the method comprising:

storing (301) the data in a number of virtual memory blocks by the caching server,
each of the virtual memory blocks referring to an associated memory-mapped file in a file
system of the caching server,

exporting (302) addresses of the virtual memory blocks from the caching server to
each of the clients,

accessing (303) at least some of the virtual memory blocks by at least one of the
clients through RDMA using at least some of the exported addresses, and

paging (304) one or more virtual memory blocks being accessed by one or more
clients through RDMA to and/or from the memory-mapped files associated with the accessed

virtual memory blocks.

e ke 3
I3 oo W

AL
R ¥ g

Intellectual 23
Property
Office

Application No: GB1318712.5 Examiner: Dr Mark Edwards
Claims searched: 1-15 Date of search: 28 March 2014

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:
Category |Relevant | Identity of document and passage or figure of particular relevance
to claims

X X:1-15 | US 2013/0227201 Al
(TALAGALA) See especially figures 2-4 and columns 72, 130-133,
151-158, 165 & 185-188

X X: 1-15 | US 2009/0287902 Al
(FULLERTON) See especially Figures 2-6 and columns 13-24, 29-40,
44-51 & 67

Y Y1: 1-4, | US 2007/0124407 Al
6-10 & 15| (WEBER) See especially columns 12, 21, 45-53 & 60-63

Y Y1: 1-4, | EP 2150019 Al
6-10 & 15| (LUCENT) Abstract, figurcs 2-3 and paragraphs 3-8 & 13-28

Y Y2: 1-4, | US 6598143 B1
6-10 & 15| (BAKER) See especially Figure 4 and columns 50-67

Y Y2: 1-4, | US 8255922 B1
6-10 & 15| (FRESKO) Abstract, figures 4-7, column 1 (lines 6-41), 2 (line 28)-3

(line 11)
Categories:

X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.

& Member of the same patent family E Patent document published on or after, but with priority date

earlier than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™ :

Worldwide search of patent documents classified in the following areas of the IPC
[GOGF |
The following online and other databases have been used in the preparation of this search report

[WPL, EPODOC, XPI3E, INSPEC and TXTE |

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

AN
Intellectual 24
Property
Office
International Classification:
Subclass Subgroup Valid From
GO6F 0012/10 01/01/2006
GO6F 0012/06 01/01/2006
GO6F 0012/08 01/01/2006
GO6F 0015/173 01/01/2006

Intellectual Property Office is an operating name of the Patent Office

www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

