

US 20160089317A1

(19) United States(12) Patent Application Publication

CETTI et al.

(54) ANTIPERSPIRANT AND DEODORANT COMPOSITIONS COMPRISING MALODOR REDUCTION COMPOSITIONS

- (71) Applicant: **The Procter & Gamble Company**, Cincinnati, OH (US)
- Inventors: Jonathan Robert CETTI, Mason, OH (US); Gayle Marie FRANKENBACH, Cincinnati, OH (US); Steven Anthony HORENZIAK, Cincinnati, OH (US); Judith Ann HOLLINGSHEAD, Batavia, OH (US)
- (21) Appl. No.: 14/865,048
- (22) Filed: Sep. 25, 2015

Related U.S. Application Data

(60) Provisional application No. 62/055,844, filed on Sep. 26, 2014, provisional application No. 62/143,862, filed on Apr. 7, 2015.

Publication Classification

(51) Int. Cl. *A61K 8/49* (2006.01) *A61K 8/58* (2006.01)

(10) Pub. No.: US 2016/0089317 A1 (43) Pub. Date: Mar. 31, 2016

A61K 8/37	(2006.01)
A61K 8/33	(2006.01)
A61K 8/36	(2006.01)
A61Q 15/00	(2006.01)
A61K 8/35	(2006.01)

- (52) U.S. Cl.

(57) **ABSTRACT**

The present invention relates to antiperspirant and deodorant compositions comprising malodor reduction compositions and methods of making and using such antiperspirant and deodorant compositions. Such antiperspirant and deodorant compositions comprising the malodor control technologies disclosed herein provide malodor control without leaving an undesirable scent and when perfume is used to scent such compositions, such scent is not unduely altered by the malodor control technology.

ANTIPERSPIRANT AND DEODORANT COMPOSITIONS COMPRISING MALODOR REDUCTION COMPOSITIONS

FIELD OF THE INVENTION

[0001] The present invention relates to antiperspirant and deodorant compositions comprising malodor reduction compositions and methods of making and using such antiperspirant and deodorant compositions.

BACKGROUND OF THE INVENTION

[0002] Unscented or scented products are desired by consumers as they may be considered more natural and discreet than scented products. Manufacturers of unscented or scented products for controlling malodors rely on malodor reduction ingredients or other technologies (e.g. filters) to reduce malodors. However, effectively controlling malodors, for example, amine-based malodors (e.g. fish and urine), thiol and sulfide-based malodors (e.g. garlic and onion), C₂-C₁₂ carboxylic acid based malodors (e.g. body and pet odor), indole based malodors (e.g. fecal and bad breath), short chain fatty aldehyde based malodors (e.g. grease) and geosmin based malodors (e.g. mold/mildew) may be difficult, and the time required for a product to noticeably reduce malodors may create consumer doubt as to the product's efficacy on malodors. Often times, manufacturers incorporate scented perfumes to help mask these difficult malodors.

[0003] Unfortunately, malodor control technologies typically cover up the malodor with a stronger scent and thus interfere with the scent of the perfumed or unperfumed situs that is treated with the malodor control technology. Thus, limited nature of the current malodor control technologies is extremely constraining. Thus what is needed is a broader palette of malodor control technologies so the perfume community can deliver the desired level of character in a greater number of situations/applications. Surprisingly, Applicants recognized that in addition to blocking a malodor's access to a sensory cell, in order to achieve the desired goal, a malodor control technology must leave such sensor cell open to other molecules, for example scent molecules. Thus, antiperspirant and deodorant compositions comprising the malodor control technologies disclosed herein provide malodor control without leaving an undesirable scent and when perfume is used to scent such compositions, such scent is not unduely altered by the malodor control technology.

SUMMARY OF THE INVENTION

[0004] The present invention relates to antiperspirant and deodorant compositions comprising malodor reduction compositions and methods of making and using such antiperspirant and deodorant compositions. Such antiperspirant and deodorant compositions comprising the malodor control technologies disclosed herein provide malodor control without leaving an undesirable scent and when perfume is used to scent such compositions, such scent is not unduely altered by the malodor control technology.

DETAILED DESCRIPTION OF THE INVENTION

[0005] Definitions

[0006] "Ambient" refers to surrounding conditions at about one atmosphere of pressure, 50% relative humidity and about 25° C.

[0007] "Anhydrous" refers to compositions and/or components which are substantially free of added or free water.

[0008] "Antiperspirant composition" refers to antiperspirant compositions, deodorant compositions, and the like. For example, antiperspirant creams, gels, soft solid sticks, body sprays, and aerosols.

[0009] "Soft solid" refers to a composition with a static yield stress of about 200 Pa to about 1,300 Pa. The term "solid" includes granular, powder, bar and tablet product forms.

[0010] The term "fluid" includes liquid, gel, paste and gas product forms.

[0011] The term "situs" includes paper products, fabrics, garments, hard surfaces, hair and skin.

[0012] The term "substantially free of refers to about 2% or less, about 1% or less, or about 0.1% or less of a stated ingredient. "Free of refers to no detectable amount of the stated ingredient or thing.

[0013] As used herein "MORV" is the calculated malodor reduction value for a subject material. A material's MORV indicates such material's ability to decrease or even eliminate the perception of one or more malodors. For purposes of the present application, a material's MORV is calculated in accordance with method found in the test methods section of the present application.

[0014] As used herein, "malodor" refers to compounds generally offensive or unpleasant to most people, such as the complex odors associated with bowel movements.

[0015] As used herein, "neutralize" or "neutralization" refers to the ability of a compound or product to reduce or eliminate malodorous compounds. Odor neutralization may be partial, affecting only some of the malodorous compounds in a given context, or affecting only part of a malodorous compound. A malodorous compound may be neutralized by chemical reaction resulting in a new chemical entity, by sequestration, by chelation, by association, or by any other interaction rendering the malodorous compound less malodorous or non-malodorous. Neutralization is distinguishable from odor masking or odor blocking by a change in the malodorous compound, as opposed to a change in the ability to perceive the malodor without any corresponding change in the condition of the malodorous compound. Malodor neutralization provides a sensory and analytically measurable (e.g. gas chromatograph) malodor reduction. Thus, if a malodor reduction composition delivers genuine malodor neutralization, the composition will reduce malodors in the vapor and/ or liquid phase.

[0016] As used herein, "odor blocking" refers to the ability of a compound to dull the human sense of smell.

[0017] As used herein, "odor masking" refers to the ability of a compound with a non-offensive or pleasant smell that is dosed such that it limits the ability to sense a malodorous compound. Odor-masking may involve the selection of compounds which coordinate with an anticipated malodor to change the perception of the overall scent provided by the combination of odorous compounds.

[0018] As used herein, the term "perfume" does not include malodor reduction materials. Thus, the perfume portion of a composition does not include, when determining the perfume's composition, any malodor reduction materials found in the composition as such malodor reduction materials are described herein. In short, if a material has a malodor reduction value "MORV" that is within the range of the MORV

recited in the subject claim, such material is a malodor reduction material for purposes of such claim.

[0019] As used herein, the terms "a" and "an" mean "at least one".

[0020] As used herein, the terms "include", "includes" and "including" are meant to be non-limiting.

[0021] Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.

[0022] All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated.

[0023] It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.

Malodor Reduction Materials

[0024] A non-limiting set of suitable malodor reduction materials are provided in the tables below. For ease of use, each material in Tables 1-3 is assigned a numerical indentifier which is found in the column for each table that is designated Number. Table 4 is a subset of Table 1, Table 5 is a subset of Table 2 and Table 6 is a subset of Table 3 and there for Tables 4, 5 and 6 each use the same numerical identifier as found, respectively, in Tables 1-3.

Codes

[0025] A=Vapor Pressure>0.1 torr B=Vapor Pressure is between 0.01 torr and 0.1 torr

C=LogP<3

D=LogP>3

E=Probability of Ingredient Color Instability=0%

F=Probability of Ingredient Color Instability<71%

[0026] G=Odor Detection Threshold less than p.ol=8 H=Odor Detection Threshold greater than p.ol=8

I=Melamine formaldehyde PMC Headspace Response Ratio greater than or equal to 10

J=Melamine formal dehyde PMC leakage less than or equal to 5%

K=Log of liquid dish neat product liquid-air partition coefficient greater than or equal to -7

L=Log of liquid dish neat product liquid-air partition coefficient greater than or equal to -5

TABLE 1

TABLE 1			
	List of materials with at least one l	MORV from 1	to 5
Num- ber	Material Name	CAS Number	Comment Code
1	2-ethylhexyl (Z)-3-(4-	5466-77-3	DEFHJ
2	methoxyphenyl)acrylate 2,4-dimethyl-2-(5,5,8,8-tetramethyl- 5,6,7,8-tetrahydronaphthalen-2-yl)-	131812-67-4	DFHJ
3	1,3-dioxolane 1,1-dimethoxynon-2-yne	13257-44-8	ACEFHJK
4	para-Cymen-8-ol	1197-01-9	BCGIJK
7	3-methoxy-7,7-dimethyl-10-	216970-21-7	BDEFHJK
9	methylenebicyclo[4.3.1]decane Methoxycyclododecane	2986-54-1	DEFHJK
10	1,1-dimethoxycyclododecane	950-33-4	DEFHJK
11	(Z)-tridec-2-enenitrile	22629-49-8	DEFHJK
13	Oxybenzone	131-57-7	DEFGJ
14 16	Oxyoctaline formate 4-methyl-1-oxaspiro[5.5]undecan-4-	65405-72-3 57094-40-3	DFHJK CFGIJK
10	ol	57024-40-5	CIODA
17	7-methyl-2H-benzo[b][1,4]dioxepin- 3(4H)-one	28940-11-6	CGIK
18	1,8-dioxacycloheptadecan-9-one	1725-01-5	DGJ
21 22	4-(tert-pentyl)cyclohexan-1-one o-Phenyl anisol	16587-71-6 86-26-0	ADFGIJKL DEFHJK
23	3a,5,6,7,8,8b-hexahydro-	823178-41-2	DEFHJK
	2,2,6,6,7,8,8-heptamethyl-4H-		
25	indeno(4,5-d)-1,3-dioxole 7-isopropyl-8,8-dimethyl-6,10- dioxaspiro[4.5]decane	62406-73-9	BDEFHIJK
28	Octyl 2-furoate	39251-88-2	DEFHJK
29	Octyl acetate	112-14-1	BDEFHJKL
30	octanal propylene glycol acetal	74094-61-4	BDEFHJKL
31 32	Octanal Octanal dimethyl acetal	124-13-0 10022-28-3	ACHIKL ACEFGJKL
33	Myrcene	123-35-3	ADEFGIKL
34	Myrcenol	543-39-5	BCEFGIJK
35	Myrcenyl acetate	1118-39-4	ADEFGJK
36	Myristaldehyde	124-25-4	DFHJK
37 38	Myristicine Myristyl nitrile	607-91-0 629-63-0	CGJK DEFHJK
39	2,2,6,8-tetramethyl-1,2,3,4,4a,5,8,8a- octahydronaphthalen-1-ol	103614-86-4	DEFHIJK
42	Ocimenol	5986-38-9	BCHIJK
43 47	Ocimenol Nervil esetete	28977-58-4 128-51-8	BCHIJK DEFHJK
47	Nopyl acetate Nootkatone	4674-50-4	DHJK
49	Nonyl alcohol	143-08-8	BDEFGIJKL
50	Nonaldehyde	124-19-6	ADHIKL
52	12-methyl-14-tetradec-9-enolide	223104-61-8	DFHJK DEFGIJK
57 61	N-ethyl-p-menthane-3-carboxamide 1-(3-methylbenzofuran-2-yl)ethan-1-	39711-79-0 23911-56-0	CEFHIK
62	one 2-methoxynaphthalene	93-04-9	BDEFHK
63	Nerolidol	7212-44-4	DEFHJK
64	Nerol	106-25-2	BCHIK
65	1-ethyl-3- methoxytricyclo[2.2.1.02,6]heptane Methyl (E)-non-2-enoate	31996-78-8	ACEFHIJKL
67 68	10-isopropyl-2,7-dimethyl-1-	111-79-5 89079-92-5	ADEFHJKL BDEFHIJK
69	oxaspiro[4.5]deca-3,6-diene 2-(2-(4-methylcyclohex-3-en-1-	95962-14-4	DHJK
70	yl)propyl)cyclopentan-1-one Myrtenal	564-94-3	ACFHIJKL
71	(E)-4-(2,2,3,6- tetramethylcyclohexyl)but-3-en-2-	54992-90-4	BDEFHIJK
74	one Myraldyl acetate	53889-39-7	DHJK
75	Musk tibetine	145-39-1	DHIJ
76	1,7-dioxacycloheptadecan-8-one	3391-83-1	DGJ
77	Musk ketone	81-14-1	DHJ
78 79	Musk ambrette 3-methylcyclopentadecan-1-one	83-66-9 541-91-3	DHIJ DEFHJK
80	(E)-3-methylcyclopentadec-4-en-1- one	82356-51-2	DHJK
82	3-methyl-4-phenylbutan-2-ol	56836-93-2	BCEFHIK

TABLE 1-continued

	TABLE 1-continued		
	List of materials with at least one MORV from 1 to 5		
Num- ber	Material Name	CAS Number	Comment Code
83	1-(4-isopropylcyclohexyl)ethan-1-ol	63767-86-2	BDEFHIJK
85	Milk Lactone	72881-27-7	DEFHJK
91	Methyl octine carbonate	111-80-8	BDEFHKL
92 93	Methyl octyl acetaldehyde 6,6-dimethoxy-2,5,5-trimethylhex-2-	19009-56-4 67674-46-8	ADFHJKL ACHIJKL
15	ene	07074-40-8	ACHIJKE
98 100	Methyl phenylethyl carbinol Methyl stearate	2344-70-9 112-61-8	BCEFHIK DEFHJ
101	Methyl nonyl acetaldehyde dimethyl	68141-17-3	BDEFHJK
102	acetal Methyl nonyl ketone	112 12 0	DDEILIZI
102 103	Methyl nonyl acetaldehyde	112-12-9 110-41-8	BDFHJKL BDFHJK
105	Methyl myristate	124-10-7	DEFHJK
105	Methyl linoleate	112-63-0	DEFHJ
106	Methyl lavender ketone	67633-95-8	CFHJK
108	Methyl isoeugenol	93-16-3	ACEFHK
109	Methyl hexadecanoate	112-39-0	DEFHJK
110	Methyl eugenol	93-15-2	ACEFHK
112	Methyl epijasmonate	1211-29-6	CHJK
113	Methyl dihydrojasmonate	24851-98-7	DFHJK
114	Methyl diphenyl ether	3586-14-9	DEFHJK
117	Methyl cinnamate	103-26-4	BCEFHK
119	Methyl chavicol	140-67-0	ADEFHK
120	Methyl beta-naphthyl ketone	93-08-3	CEFHK
122 123	Methyl 2-octynoate	111-12-6	ACEFHKL
125	Methyl alpha-cyclogeranate Methoxycitronellal	28043-10-9 3613-30-7	ACHIJKL ACFGIJK
120	Menthone 1,2-glycerol ketal	67785-70-0	CEFHJ
130	(racemic) Octahydro-1H-4,7-methanoindene-1-	30772-79-3	BCFHIJKL
130	carbaldehyde 3-(3-(tert-butyl)phenyl)-2-	62518-65-4	BDHJK
154	methylpropanal	02510 05 4	DDIIJK
135	(E)-4-(4,8-dimethylnona-3,7-dien-1- yl)pyridine	38462-23-6	DEFHJK
137	(E)-trideca-3,12-dienenitrile	134769-33-8	DEFHJK
140 141	2,2-dimethyl-3-(m-tolyl)propan-1-ol 2,4-dimethyl-4,4a,5,9b-	103694-68-4 27606-09-3	CEFHIJK CEFHJK
142	tetrahydroindeno[1,2-d][1,3]dioxine Maceal	67845-30-1	BDFHJK
143	4-(4-hydroxy-4- methylpentyl)cyclohex-3-ene-1-	31906-04-4	СНЈ
	carbaldehyde		
145 146	l-Limonene (Z)-3-hexen-1-yl-2-cyclopenten-1-	5989-54-8 53253-09-1	ADEFGIJKI BDHK
140	one Linghyl agternasta	10024 64 2	DEELU
148	Linalyl octanoate	10024-64-3	DEFHJ BDHJK
149 152	Linalyl isobutyrate Linalyl benzoate	78-35-3 126-64-7	DFHJ
152	Linalyl anthranilate	7149-26-0	DFHJ
155	Linalool oxide (furanoid)	60047-17-8	BCHIJK
156	linalool oxide	1365-19-1	CGIJK
158	(2Z,6E)-3,7-dimethylnona-2,6- dienenitrile	61792-11-8	BDEFHJK
159	3-(4-methylcyclohex-3-en-1- yl)butanal	6784-13-0	ACFHIJK
161	(2,5-dimethyl-1,3-dihydroinden-2- yl)methanol	285977-85-7	CEFHJK
162	3-(4-(tert-butyl)phenyl)-2- methylpropanal	80-54-6	BDHJK
167	(E)-1-(1-methoxypropoxy)hex-3-ene	97358-54-8	ACEFGJKL
168	Leaf acetal	88683-94-7	ACEFGJKL
170	l-Carveol	2102-58-1	BCHIJK
174 175	Lauryl alcohol Lauryl acetate	112-53-8 112-66-3	DEFGJK DEFHJK
176	Lauric acid	143-07-7	DEFHJK
177	Lactojasmone	7011-83-8	BDEFHIJKL
178	Lauraldehyde	112-54-9	BDFHJK
179	3,6-dimethylhexahydrobenzofuran- 2(3H)-one	92015-65-1	BCEFHIJKL
182	4-(1-ethoxyvinyl)-3,3,5,5-	36306-87-3	BDFHIJK

TABLE 1-continued

List of materials with at least one MORV from 1 to 5			
Num- ber	Material Name	CAS Number	Comment Code
183	Khusimol	16223-63-5	CEFHJK
184	5-(sec-butyl)-2-(2,4-	117933-89-8	DEFHJ
	dimethylcyclohex-3-en-1-yl)-5-		
185	methyl-1,3-dioxane (1-methyl-2-((1,2,2-	198404-98-7	DEFHJK
105	trimethylbicyclo[3.1.0]hexan-3-	170-0-7	DEATION
	yl)methyl)cyclopropyl)methanol		
186	2-propylheptanenitrile	208041-98-9	ADEFHIJKI
187	(E)-6-(pent-3-en-1-yl)tetrahydro-2H-	32764-98-0	BCFHIKL
189	pyran-2-one 2-hexylcyclopentan-1-one	13074-65-2	BDFHJKL
190	2-methyl-4-phenyl-1,3-dioxolane	33941-99-0	BCEFGIK
192	2,6,9,10-tetramethyl-1-	71078-31-4	BDEFHIJK
100	oxaspiro(4.5)deca-3,6-diene		DODDUUM
193 195	Isopulegol Isopropyl palmitate	89-79-2 142-91-6	BCEFHIJKL DEFHJ
196	Isopropyl myristate	110-27-0	DEFHJK
197	Isopropyl dodecanoate	10233-13-3	DEFHJK
199	Isopimpinellin	482-27-9	CFGJ
206	Iso3-methylcyclopentadecan-1-one	3100-36-5	DEFGJK
208 209	Isomenthone Isojasmone	491-07-6 95-41-0	ADEFGIJKI BDFHJKL
209	Isomenthone	36977-92-1	ADEFGIJKI
211	Isohexenyl cyclohexenyl	37677-14-8	DFHJK
	carboxaldehyde		
212	Isoeugenyl benzyl ether	120-11-6	DFHJ
215	1-((2S,3S)-2,3,8,8-tetramethyl- 1,2,3,4,5,6,7,8-octahydronaphthalen-	54464-57-2	DHJK
	2-yl)ethan-1-one		
218	Isocyclocitral	1335-66-6	ACFHIJKL
221	Isobutyl quinoline	65442-31-1	DEFHJK
227	Isobornylcyclohexanol	68877-29-2	DEFHJK
228 229	Isobornyl propionate Isobornyl isobutyrate	2756-56-1 85586-67-0	BDEFHIJK BDEFHIJK
230	Isobornyl cyclohexanol	66072-32-0	DEFHJK
231	Isobornyl acetate	125-12-2	ADEFHIJKI
233	Isobergamate	68683-20-5	DEFHJK
234	Isoamyl undecylenate	12262-03-2	DEFHJK
238 242	Isoamyl laurate	6309-51-9	DEFHJK
242	Isoambrettolide Irisnitrile	28645-51-4 29127-83-1	DGJ ADEFHKL
244	Indolene	68527-79-7	DEFHJ
246	Indol/Hydroxycitronellal Schiff base	67801-36-9	DEFHJ
247	4,4a,5,9b-tetrahydroindeno[1,2-	18096-62-3	BCEFGJK
	d][1,3]dioxine		
249	Hydroxy-citronellol	107-74-4	CEFGIJK
252 253	2-cyclododecylpropan-1-ol Hydrocitronitrile	118562-73-5 54089-83-7	DEFHJK CEFHJK
	Hydrocinnamyl alcohol	122-97-4	BCEFHIK
	Hydratropaldehyde dimethyl acetal	90-87-9	ACEFHJK
259	5-ethyl-4-hydroxy-2-methylfuran-	27538-09-6	CFGIK
	3(2H)-one		
260	2,3-dihydro-3,3-dimethyl-1H-indene-	173445-44-8	DHJK
261	5-propanal	172445 65 2	DHJK
261	3-(3,3-dimethyl-2,3-dihydro-1H- inden-5-yl)propanal	173445-65-3	DHJK
263	Hexyl octanoate	1117-55-1	DEFHJK
267	Hexyl hexanoate	6378-65-0	DEFHJKL
269	Hexyl cinnamic aldehyde	101-86-0	DHJ
271	Hexyl benzoate	6789-88-4	DEFHJK
274	Hexenyl tiglate	84060-80-0	BDEFHJK
276	(E)-3,7-dimethylocta-2,6-dien-1-yl	3681-73-0	DEFHJ
777	palmitate Heredecenclide	100 20 5	DEFCIP
277 278	Hexadecanolide 2-butyl-4,4,6-trimethyl-1,3-dioxane	109-29-5 54546-26-8	DEFGJK ADEFHIJKI
278	Ethyl (1R,2R,3R,4R)-3-	116126-82-0	BDEFHIJK
200	isopropylbicyclo[2.2.1]hept-5-ene-2- carboxylate		
281	3a,4,5,6,7,7a-hexahydro-1H-4,7-	5413-60-5	CEFGJK

TABLE 1-continued

	List of materials with at least one MORV from 1 to 5		
Num- ber	Material Name	CAS Number	Comment Code
285	2-(1-(3,3-	141773-73-1	DEFHJ
200	dimethylcyclohexyl)ethoxy)-2-	111/00/00 1	22110
	methylpropyl propionate		
286	Heliotropine diethyl acetal	40527-42-2	CEFGJ
288	Helional	1205-17-0	CHJK
289	(E)-oxacyclohexadec-13-en-2-one	111879-80-2	DGJK
290	Gyrane	24237-00-1	ADEFHIJKL
292 293	Guaiol 1-(2,6,6-trimethylcyclohex-2-en-1-	489-86-1 68611-23-4	DEFHJK DHJK
	yl)pentan-3-one	08011-23-4	
294	Ethyl 2-ethyl-6,6-dimethylcyclohex- 2-ene-1-carboxylate	57934-97-1	BDEFHIJK
295	Germacrene B	15423-57-1	DEFHJK
296	Germacrene D	23986-74-5	DEFHJK
300	Geranyl phenylacetate	102-22-7	DFHJ
301	Geranyl phenyl acetate	71648-43-6	DFHJ
303	Geranyl linalool	1113-21-9	DFHJ
307 316	Geranyl cyclopentanone gamma-Undecalactone (racemic)	68133-79-9 104-67-6	DHJK DEFHJKL
317	gamma-Terpinyl acetate	10235-63-9	BDHJK
318	gamma-Terpineol	586-81-2	BCGIJK
321	gamma-Nonalactone	104-61-0	BCEFHIKL
322	gamma-Muurolene	30021-74-0	DEFHJKL
323	gamma-(E)-6-(pent-3-en-1- yl)tetrahydro-2H-pyran-2-one	63095-33-0	BCEFHKL
324	gamma-Ionone	79-76-5	BDEFHIJK
325	gamma-Himachalene	53111-25-4	BDEFHJKL
328	gamma-Gurjunene	22567-17-5	DEFHJKL
329	gamma-Eudesmol	1209-71-8	DFHJK
330	gamma-Dodecalactone	2305-05-7	DEFHJK
331	gamma-Damascone	35087-49-1	BDEFHIJK
332	gamma-Decalactone	706-14-9 39029-41-9	BDEFHIJKL DEFHJKL
333 334	gamma-Cadinene 1-(3,3-dimethylcyclohexyl)pent-4-	56973-87-6	BDEFHJKL BDEFHJK
335	en-1-one 4,6,6,7,8,8-hexamethyl-1,3,4,6,7,8- hexahydrocyclopenta[g]isochromene	1222-05-5	DEFHJK
336	Furfuryl octanoate	39252-03-4	DEFHJK
338	Furfuryl hexanoate	39252-02-3	CEFHJK
339	Furfuryl heptanoate	39481-28-2	CEFHJK
342	2-methyldecanenitrile	69300-15-8	BDEFHJKL
343	8,8-dimethyl-3a,4,5,6,7,7a- hexahydro-1H-4,7-methanoinden-6- yl propionate	76842-49-4	DEFHJK
344	Ethyl (3aR,4S,7R,7aR)-octahydro- 3aH-4,7-methanoindene-3a- carboxylate	80657-64-3	DEFHIJK
347	Diethyl cyclohexane-1,4- dicarboxylate	72903-27-6	CEFHJK
349	(6-isopropyl-9-methyl-1,4- dioxaspiro[4.5]decan-2-yl)methanol	63187-91-7	CEFHJ
350	2-isobutyl-4-methyltetrahydro-2H- pyran-4-ol	63500-71-0	BCEFHIJK
352	Undec-10-enenitrile	53179-04-7	BDEFHJK
353	(Z)-6-ethylideneoctahydro-2H-5,8- methanochromen-2-one	69486-14-2	CEFGJK
356	3-(2-ethylphenyl)-2,2- dimethylpropanal	67634-15-5	BDHJK
358	(E)-4,8-dimethyldeca-4,9-dienal	71077-31-1	BDFHJK
359	(E)-4-((3aR,4R,7R,7aR)- 1,3a,4,6,7,7a-hexahydro-5H-4,7- methanoinden-5-ylidene)-3- methylbutan-2-ol	501929-47-1	DEFHJK
360	8,8-dimethyl-3a,4,5,6,7,7a- hexahydro-1H-4,7-methanoinden-6- yl acetate	171102-41-3	DEFHJK
361	3-(4-ethylphenyl)-2,2- dimethylpropanenitrile	134123-93-6	DEFHJK
362	2-heptylcyclopentan-1-one	137-03-1	DFHJKL
363	1-ethoxyethoxy Cyclododecane	389083-83-4	DEFHJK
364	3-cyclohexene-1-carboxylic acid,	815580-59-7	ACHIJKL

TABLE 1-continued

	List of materials with at least one MORV from 1 to 5		
	List of matchais with at least one worky non 1 to 5		
Num- ber	Material Name	CAS Number	Comment Code
368	Farnesyl acetate	29548-30-9	DEFHJK
369	Farnesol	4602-84-0	DEFHJK
370	Oxacyclohexadecan-2-one	106-02-5	DEFGJK
371	1-cyclopentadec-4-en-1-one	14595-54-1	DEFGJK
372	1-cyclopentadec-4-en-1-one	35720-57-1	DEFGJK
373	2-methoxy-4-(4-	128489-04-3	CGJ
	methylenetetrahydro-2H-pyran-2- yl)phenol		
374	Eugenyl acetate	93-28-7	CFHJK
375	Eugenol	97-53-0	CHIK
377	Ethylmethylphenylglycidate	77-83-8	CFHJK
378	Ethylene brassylate	105-95-3	DFGJ
381	Ethyl undecylenate	692-86-4	DEFHJK
385	Ethyl palmitate	628-97-7	DEFHJ
386	Ethyl nonanoate	123-29-5	BDEFHJK
388	Ethyl myristate	124-06-1	DEFHJK
390	Ethyl linalool	10339-55-6	BCEFHJK
391	Ethyl laurate	106-33-2	DEFHJK
394	Ethyl hexyl ketone	925-78-0	ADFHIKL
397	Ethyl decanoate	110-38-3	BDEFHJK
398	Ethyl gamma-Safranate	35044-57-6	ADHIJK
398 407	Ethyl 3-phenylglycidate	121-39-1	ADHIJK CGJK
407		79893-63-3	BDEFHIJK
415	6-ethyl-2,10,10-trimethyl-1-	/9893-03-3	DDELUIN
41.4	oxaspiro[4.5]deca-3,6-diene	639-99-6	DEFILIK
414	Elemol		DEFHJK
415	(2-(1-ethoxyethoxy)ethyl)benzene	2556-10-7	BCEFHJK
416	(E)-3-methyl-5-(2,2,3- trimethylcyclopent-3-en-1-yl)pent-4- en-2-ol	67801-20-1	DHJK
417		58-86-6	CCII
418	d-xylose	30168-23-1	CGIJ DFHJK
418	(E)-4-((3aS,7aS)-octahydro-5H-4,7-	50108-25-1	DFHJK
421	methanoinden-5-ylidene)butanal	14(20,52,1	DEFILIE
421	Dodecanal dimethyl acetal	14620-52-1	DEFHJK
424	d-Limonene	5989-27-5	ADEFGIJK
425	1 15 5	25265-71-8	CEFGIK
426	Dispirone	83863-64-3	BDEFHJK
428	Diphenyloxide	101-84-8	BDEFHK
429	Diphenylmethane	101-81-5	DEFGK
432	Dimethyl benzyl carbinyl butyrate	10094-34-5	DEFHJK
436	2,6-dimethyloct-7-en-4-one	1879-00-1	ADEFHIJK
441	Octahydro-1H-4,7-methanoinden-5- yl acetate	64001-15-6	DEFHJKL
444	Dihydrocarveol acetate	20777-49-5	BDEFHIJK
445	Dihydrocarveol	619-01-2	BCEFHIJK
449	Dihydro Linalool	18479-51-1	BCEFGIJK
450	Dihydro Isojasmonate	37172-53-5	DHJK
453	Dibutyl sulfide	544-40-1	ADEFHIK
457	Dibenzyl	103-29-7	DEFGJK
459	delta-Undecalactone	710-04-3	DEFHJKL
461	delta-Elemene	20307-84-0	BDEFHJK
462	delta-Guaiene	3691-11-0	DEFHJKL
463	delta-Dodecalactone	713-95-1	DEFHJK
464	delta-Decalactone	705-86-2	BDEFHIJK
465	delta-Cadinene	483-76-1	DEFHJKL
466	delta-damascone	57378-68-4	ADHIJK
467	delta-Amorphene	189165-79-5	DEFHJKL
468	delta-3-Carene	13466-78-9	ADEFGIJK
408	Decylenic alcohol	13019-22-2	BDEFHJK
470	Decyl propionate		
		5454-19-3	DEFHJK
473	Decanal diethyl acetal	34764-02-8	DEFHJK
474	Decahydro-beta-naphthol	825-51-4	BCEFGIK
475	1-cyclohexylethyl (E)-but-2-enoate	68039-69-0	BDFHJK
478	3-(4-isopropylphenyl)-2- methylpropanal	103-95-7	BDFHJK
479	Cyclotetradecane	295-17-0	DEFGJKL
480	Cyclopentadecanone	502-72-7	DEFGJK
482	Cyclohexyl salicylate	25485-88-5	DFGJ
484	3a,4,5,6,7,7a-hexahydro-1H-4,7-	113889-23-9	DEFHJK
-0-		115005-25-9	DLINK
40.5	methanoinden-6-yl butyrate	54002 02 1	DECI
485	Cyclic ethylene dodecanedioate	54982-83-1	DFGJ

TABLE 1-continued

	List of materials with at least one	MORV from 1	to 5
Num- ber	Material Name	CAS Number	Comment Code
486	8,8-dimethyl-1,2,3,4,5,6,7,8- octahydronaphthalene-2-	68991-97-9	DHJK
487	carbaldehyde 3a,4,5,6,7,7a-hexahydro-1H-4,7- methanoinden-5-yl isobutyrate	67634-20-2	DEFHJK
488	Curzerene	17910-09-7	DHJK
491 493	Cumic alcohol Coumarone	536-60-7 1646-26-0	CHIJK BCEFHIK
497	2-(3-phenylpropyl)pyridine	2110-18-1	CEFHJK
498	Dodecanenitrile	2437-25-4	DEFHJK
501 502	(E)-cycloheptadec-9-en-1-one Citryl acetate	542-46-1 6819-19-8	DEFGJ DFHJK
502	Citrus Propanol	15760-18-6	CEFHIJK
505	Citronitrile	93893-89-1	CEFHJK
519		10444-50-5	CEFHJK
520 521	Citral dimethyl acetal Citral diethyl acetal	7549-37-3 7492-66-2	BCEFHJK BDEFHJK
524	cis-Ocimene	3338-55-4	ADGIKL
527	cis-Limonene oxide	13837-75-7	ADEFGIJKL
529 530	Cis-iso-ambrettolide cis-6-nonenol	36508-31-3 35854-86-5	DGJ BCEFHIKL
530	cis-carveol	33834-80-3 1197-06-4	BCHIJK
532	cis-4-Decen-1-al	21662-09-9	ADHKL
534	cis-3-hexenyl-cis-3-hexenoate	61444-38-0	BDEFHJK DEFGJ
537 541	cis-3-Hexenyl salicylate Cis-3-hexenyl Benzoate	65405-77-8 25152-85-6	DEFGJ DEFHJK
544	cis-3-Hexenyl 2-methylbutyrate	53398-85-9	ADEFHJKL
546	cis-3, cis-6-nonadienol	53046-97-2	ACEFHK
548 550		103-56-0 103-59-3	DEFHJK DEFHJK
551	Cinnamyl formate	104-65-4	BCEFHK
552		122-69-0	DHJ
553		103-54-8	BCEFHK
555 558	Cinnamic alcohol Cetyl alcohol	104-54-1 36653-82-4	BCEFHIK DEFHJ
559	(E)-1-(2,6,6-trimethylcyclohex-2-en- 1-yl)hepta-1,6-dien-3-one	79-78-7	DHJK
560	2-methyl-4-(2,6,6-trimethylcyclohex- 1-en-1-yl)butanal	65405-84-7	DFHJK
561	(3aR,5aR,9aR,9bR)-3a,6,6,9a- tetramethyldodecahydronaphtho[2,1- b]furan	3738-00-9	DEFHJK
562	1,6-dioxacycloheptadecan-7-one	6707-60-4	DGJ
563	1-(6-(tert-butyl)-1,1-dimethyl-2,3- dihydro-1H-inden-4-yl)ethan-1-one	13171-00-1	DEFHJK
565	Cedryl methyl ether	19870-74-7	ADEFHJK
566	Cedryl formate	39900-38-4	BDEFHJK
567	Cedryl acetate	77-54-3	DEFHJK
568	(4Z,8Z)-1,5,9-trimethyl-13- oxabicyclo[10.1.0]trideca-4,8-diene	71735-79-0	DFHJK
569 570	Cedrol 5-methyl-1-(2,2,3-	77-53-2 139539-66-5	DEFHJK DEFHJK
	trimethylcyclopent-3-en-1-yl)-6- oxabicyclo[3.2.1]octane		
571	5-methyl-1-(2,2,3- trimethylcyclopent-3-en-1-yl)-6- oxabicyclo[3.2.1]octane	426218-78-2	DFHJ
572	1,1,2,3,3-pentamethyl-1,2,3,5,6,7- hexahydro-4H-inden-4-one	33704-61-9	BDEFHIJK
573	Caryophyllene alcohol acetate	32214-91-8	DEFHJK
574	Caryolan-1-ol	472-97-9	DEFHJK
577 578	Carvyl acetate Caprylnitrile	97-42-7 124-12-9	BDHIJK ACEFGIKL
580	Caprylic alcohol	111-87-5	ACEFGIKL
581	Caprylic acid	124-07-2	BCEFHIK
582	Capric acid	334-48-5	DEFHJK
584	Capraldehyde	112-31-2	ADHKL
586 587	3-(4-methoxyphenyl)-2- methylpropanal Camphorquinone	5462-06-6 10373-78-1	BCHJK ACEFGIJK
589	Camphene	79-92-5	ADEFGIJKL

TABLE 1-continued

TABLE 1-continued			
	List of materials with at least one	MORV from 1	to 5
Num- ber	Material Name	CAS Number	Comment Code
591	Ethyl 2-methyl-4-oxo-6-	59151-19-8	DHJ
592	pentylcyclohex-2-ene-1-carboxylate Butylated hydroxytoluene	128-37-0	DEFGIJK
594	Butyl stearate	123-95-5	DEFHJ
595	Butyl butyryl lactate	7492-70-8	CEFGJK
599	Butyl 10-undecenoate	109-42-2	DEFHJK
600	2-methyl-4-(2,2,3- trimethylcyclopent-3-en-1-yl)butan- 1-ol	72089-08-8	DEFHJK
601	3-(4-(tert-butyl)phenyl)propanal	18127-01-0	BDHJK
603	Bornyl isobutyrate	24717-86-0	BDEFHIJK
604	Bornyl acetate	76-49-3	ADEFHIJKL
606	2-ethoxy-2,6,6-trimethyl-9- methylenebicyclo[3.3.1]nonane	68845-00-1	BDEFHJK
607	(ethoxymethoxy)cyclododecane	58567-11-6	DEFHJK
608 609	Bisabolene Bisarada avida	495-62-5 72429-08-4	DEFHJK ADEFHJKL
610	Bigarade oxide beta-Vetivone	18444-79-6	DHJK
611	beta-Terpinyl acetate	10198-23-9	BDHJK
612	beta-Terpineol	138-87-4	BCGIJK
613	beta-Sinensal	60066-88-8	DHJK
614	beta-Sesquiphellandrene	20307-83-9	DEFHJK
615 616	beta-Selinene beta-Santalol	17066-67-0 77-42-9	BDEFGJK DEFHJK
618	beta-Pinene	127-91-3	ADEFGIJKL
620	beta-Naphthyl ethyl ether	93-18-5	BDEFHJK
621	beta-Patchoulline	514-51-2	BDEFGJKL
624	beta-Himachalene Oxide	57819-73-5	BDFHJK
625	beta-Himachalene	1461-03-6	DEFHJKL
626 627	beta-Guaiene (2,2-dimethoxyethyl)benzene	88-84-6 101-48-4	DEFHJKL DHJK
628	beta-Farnesene	18794-84-8	DEFHJK
631	beta-Copaene	18252-44-3	BDEFHJKL
632	beta-Cedrene	546-28-1	BDEFGJKL
633	beta-Caryophyllene	87-44-5	DEFHJKL
635 636	beta-Bisabolol Beta ionone epoxide	15352-77-9 23267-57-4	DFHJK BDEFHIJK
638	Bergaptene	484-20-8	CGJ
639	Benzyl-tert-butanol	103-05-9	CEFGJK
644	Benzyl laurate	140-25-0	DEFHJ
649	Benzyl dimethyl carbinol	100-86-7	BCEFGIK
650 653	Benzyl cinnamate Benzyl benzoate	103-41-3 120-51-4	DHJ DHJ
655	Benzophenone	119-61-9	DEFHK
658	7-isopentyl-2H- benzo[b][1,4]dioxepin-3(4H)-one	362467-67-2	DHJ
659	2'-isopropyl-1,7,7- trimethylspiro[bicyclo[2.2.1]heptane-	188199-50-0	DEFHJK
660	2,4'-[1,3]dioxane] 4-(4-methylpent-3-en-1-yl)cyclohex- 3-ene-1-carbonitrile	21690-43-7	DEFHJK
661	Aurantiol	89-43-0	DEFHJ
663	Anisyl phenylacetate	102-17-0	DFHJ
668	Methyl (E)-octa-4,7-dienoate	189440-77-5	ACEFHKL
671	Amyl Cinnamate	3487-99-8	DEFHJK
673	(3aR,5aS,9aS,9bR)-3a,6,6,9a- tetramethyldodecahydronaphtho[2,1- b]furan	6790-58-5	DEFHJK
674	(4aR,5R,7aS,9R)-2,2,5,8,8,9a- hexamethyloctahydro-4H-4a,9-	211299-54-6	DEFHJK
675	methanoazuleno[5,6-d][1,3]dioxole 2,5,5-trimethyl-1,2,3,4,5,6,7,8- octahydronaphthalen-2-ol	71832-76-3	DEFHJK
676	2,5,5-trimethyl-1,2,3,4,5,6,7,8- octahydronaphthalen-2-ol	41199-19-3	DEFHJK
677	1-((2-(tert- butyl)cyclohexyl)oxy)butan-2-ol	139504-68-0	DEFHJK
678	(3S,5aR,7aS,11aS,11bR)-3,8,8,11a- tetramethyldodecahydro-5H-3,5a- epoxynaphtho[2,1-c]oxepine	57345-19-4	DEFHJ
679	2,2,6,6,7,8,8-heptamethyldecahydro- 2H-indeno[4,5-b]furan	476332-65-7	ADEFHJK

TABLE 1-continued

List of materials with at least one MORV from 1 to 5			
Num-		CAS	Comment
ber	Material Name	Number	Code
680	2,2,6,6,7,8,8-heptamethyldecahydro-	647828-16-8	ADEFHJK
(01	2H-indeno[4,5-b]furan	27172.02.4	DDDDUW
681 682	Amber acetate Alpinofix	37172-02-4 811436-82-5	BDEFHJK DEFHJ
683	alpha-Thujone	546-80-5	ADEFGIJKL
684	alpha-Vetivone	15764-04-2	DHJK
686	alpha-Terpinyl propionate	80-27-3	BDEFHJK
691	alpha-Sinensal	17909-77-2	DHJK
692 693	alpha-Selinene alpha-Santalene	473-13-2 512-61-8	BDEFHJK ADEFHJKL
694	alpha-Santalol	115-71-9	DEFHJK
696	alpha-Patchoulene	560-32-7	ADEFHJKL
697	alpha-neobutenone	56973-85-4	BDHJK
698 700	alpha-Muurolene alpha-methyl ionone	10208-80-7 127-42-4	DEFHJKL BDHJK
702	alpha-Limonene	138-86-3	ADEFGIJKL
704	alpha-Irone	79-69-6	BDHJK
706	alpha-Humulene	6753-98-6	DEFHJK
707 708	alpha-Himachalene alpha-Gurjunene	186538-22-7 489-40-7	BDEFHJK BDEFHJKL
708	alpha-Guaiene	3691-12-1	DEFHJKL
710	alpha-Farnesene	502-61-4	DEFHJK
711	alpha-Fenchene	471-84-1	ADEFGIJKL
712	alpha-Eudesmol	473-16-5	DEFHJK
713 714	alpha-Curcumene alpha-Cubebene	4176-17-4 17699-14-8	DEFHJK ADEFHJKL
715	alpha-Cedrene epoxide	13567-39-0	ADEFHJK
716	alpha-Cadinol	481-34-5	DEFHJK
717	alpha-Cadinene	24406-05-1	DEFHJKL
718 719	alpha-Bisabolol alpha-bisabolene	515-69-5 17627-44-0	DFHJK DEFHJK
720	alpha-Bergamotene	17699-05-7	BDEFHJKL
721	alpha-Amylcinnamyl alcohol	101-85-9	DEFHJ
722	alpha-Amylcinnamyl acetate	7493-78-9	DEFHJ
723	alpha-Amylcinnamaldehyde diethyl acetal	60763-41-9	DEFHJ
724	alpha-Amylcinnamaldehyde	122-40-7	DHJK
725	alpha-Amorphene	23515-88-0	DEFHJKL
726 727	alpha-Agarofuran 1-methyl-4-(4-methyl-3-penten-1-	5956-12-7 52475-86-2	BDEFHJK DFHJK
121	yl)-3-Cyclohexene-1-carboxaldehyde	52115 66 2	DINN
730	1-Phenyl-2-pentanol	705-73-7	CEFHK
731	1-Phenyl-3-methyl-3-pentanol	10415-87-9	CEFHJK
733 735	2,3,4-trimethoxy-benzaldehyde 2,4,5-trimethoxy-benzaldehyde	2103-57-3 4460-86-0	BCGI BCG
736	2,4,6-trimethoxybenzaldehyde	830-79-5	BCGI
738	2,4-Nonadienal	6750-03-4	ACHKL
741	2,6,10-Trimethylundecanal	105-88-4	BDFGJK
742 746	alpha,4-Dimethyl benzenepropanal Allyl cyclohexyl propionate	41496-43-9 2705-87-5	ACHJK BDEFHJK
	Allyl amyl glycolate	67634-00-8	BCEFGJK
750	Allo-aromadendrene	25246-27-9	BDEFHJKL
752	5	143-14-6	ADHJK
754	Methyl (E)-2-(((3,5- dimethylcyclohex-3-en-1-	94022-83-0	DEFHJ
	yl)methylene)amino)benzoate		
757	2,6,10-trimethylundec-9-enal	141-13-9	BDFHJK
758	Acetoxymethyl-isolongifolene	59056-62-1	BDEFHJK
760	(isomers)	142 12 5	DDEELLINI
763 764	Acetate C9 Acetarolle	143-13-5 744266-61-3	BDEFHJKL DFHJK
766	Acetaldehyde phenylethyl propyl	7493-57-4	CEFHJK
	acetal		
767	Acetaldehyde dipropyl acetal	105-82-8	ACEFGIKL
768	Acetaldehyde benzyl 2-methoxyethyl acetal	7492-39-9	BCEFHJK
769	(Z)-2-(4-methylbenzylidene)heptanal	84697-09-6	DHJ
770	9-decenal	39770-05-3	ADHKL
771	8-Hexadecenolide	123-69-3	DGJ
772 774	7-Methoxycoumarin 7-epi-alpha-Selinene	531-59-9 123123-37-5	CHK BDEFHJK
775	7-eip-alpha-Eudesmol	123123-37-3	DEFHJK
	rr	120 00 0	

TABLE 1-continued

List of materials with at least one MORV from 1 to 5			
Jum- ber	Material Name	CAS Number	Comment Code
776	7-Acetyl-1,1,3,4,4,6-	1506-02-1	DEFHJ
	hexamethyltetralin		
778	6-Isopropylquinoline	135-79-5	CEFHJK
781	6,6-dimethyl-2-norpinene-2-	33885-51-7	BCFHJK
	propionaldehyde	50.8 CO 8	
782	6,10,14-trimethyl-2-Pentadecanone	502-69-2	DEFHJK
786	5-Isopropenyl-2-methyl-2-	13679-86-2	ACGIJKL
788	vinyltetrahydrofuran 5-Cyclohexadecenone	37609-25-9	DEFGJK
788 791	4-Terpinenol	562-74-3	BCHIJK
792	4-Pentenophenone	3240-29-7	BCEFHIK
800	4-Carvomenthenol	28219-82-1	BCHIJK
802	4,5,6,7-Tetrahydro-3,6-	494-90-6	BCEFHIJKI
	dimethylbenzofuran		
803	4-(p-Methoxyphenyl)-2-butanone	104-20-1	BCEFHJK
804	3-Thujopsanone	25966-79-4	BDEFHJK
805	3-Propylidenephthalide	17369-59-4	CEFHK
806	3-Nonylacrolein	20407-84-5	BDFHJK
807	3-Methyl-5-phenyl-1-pentanal	55066-49-4	BDFHJK
814	3-Hexenyl isovalerate	10032-11-8	ADEFHJKL
821 824	3,6-Dimethyl-3-octanyl acetate 3,4,5-trimethoxybenzaldehyde	60763-42-0 86-81-7	ADEFHIJKI BCGIK
824 826	3-(p-	7775-00-0	BDFHJK
520	Isopropylphenyl)propionaldehyde		->->1 11/1X
827	2-Undecenenitrile	22629-48-7	BDEFHJK
828	2-Undecenal	2463-77-6	ADHJK
829	2-trans-6-trans-Nonadienal	17587-33-6	ACHKL
831	2-Phenylethyl butyrate	103-52-6	DEFHJK
833	2-Phenyl-3-(2-furyl)prop-2-enal	57568-60-2	CHJ
834	2-Phenoxyethanol	122-99-6	BCEFGIK
837	2-Nonen-1-al	2463-53-8	ADHKL
839 840	2-Nonanol	628-99-9	BDEFGIKL
840 849	2-Nonanone 2-Isobutyl quinoline	821-55-6 93-19-6	ADFHIKL CEFHJK
850	2-Hexylidene cyclopentanone	17373-89-6	DFHJKL
852	2-Heptyl tetrahydrofuran	2435-16-7	BDEFHJKL
856	2-Decenal	3913-71-1	ADHKL
864	2,6-Nonadienal	26370-28-5	ACHKL
865	2,6-Nonadien-1-ol	7786-44-9	ACEFHK
866	2,6-dimethyl-octanal	7779-07-9	ADFGIJKL
868	1-Decanol	112-30-1	BDEFGJK
869	1-Hepten-1-ol, 1-acetate	35468-97-4	ACEFHKL
870 871	10-Undecen-1-ol 10-Undecenal	112-43-6 112-45-8	DEFHJK ADHJK
871 872	10-ondecenar 10-epi-gamma-Eudesmol	112-43-8	DFHJK
873	1.8-Thiocineol	68391-28-6	ADEFHIJKI
876	1,3,5-undecatriene	16356-11-9	ADEFHJKL
877	1,2-Dihydrolinalool	2270-57-7	BCEFGIJKI
878	1,3,3-trimethyl-2-norbornanyl	13851-11-1	ADEFHIJKI
	acetate		
879	1,1,2,3,3-Pentamethylindan	1203-17-4	ADHIJKL
881	(Z)-6,10-dimethylundeca-5,9-dien-2-	3239-37-0	DEFHJK
00 1	yl acetate	(0141.15.1	DOFUM
884	(Z)-3-Dodecenal	68141-15-1	BCFHJK
885 886	(S)-gamma-Undecalactone (R)-gamma-Undecalactone	74568-05-1 74568-06-2	DEFHJKL DEFHJKL
886 890	(E)-6,10-dimethylundeca-5,9-dien-2-	74568-06-2	DEFHJKL DEFHJK
570	yl acetate	5-55-55-0	DEFIN
892	(2Z)-3-methyl-5-phenyl-2-	53243-59-7	DEFHJK
-	Pentenenitrile		
893	(2S,5S,6S)-2,6,10,10-tetramethyl-1-	65620-50-0	DFHIJK
	oxaspiro[4_5]decan-6-ol		
894	(2E)-3-methyl-5-phenyl-2-	53243-60-0	CEFHJK
	pentenenitrile		
897	(+)-Dihydrocarveol	22567-21-1	BCEFHIJKI
905	Menthone (P, F) 2 mothyl 4 (2,2,3)	89-80-5	ADEFGIJKI
908	(R,E)-2-methyl-4-(2,2,3- trimethylcyclopent-3-en-1-yl)but-2-	185068-69-3	CHJK
	en-1-ol		
012			
912	2-(8-isopropyl-6-	68901-32-6	DEFHJK

TABLE 1-continued

	List of materials with at least one	MORV from 1	to 5
Num-		CAS	Comment
ber	Material Name	Number	Code
913	gamma-methyl ionone	7388-22-9	BDHIJK
	3-(3-isopropylphenyl)butanal	125109-85-5	BDHJK
916	3-(1-ethoxyethoxy)-3,7-	40910-49-4	BDEFHJK
	dimethylocta-1,6-diene		
919	3a,4,5,6,7,7a-hexahydro-1H-4,7-	17511-60-3	CEFHJK
	methanoinden-6-yl propionate		
	Bulnesol	22451-73-6	DEFHJK
	Benzyl phenylacetate	102-16-9 119-53-9	DHJ CEFHJ
	Benzoin (E)-1,2,4-trimethoxy-5-(prop-1-en-1-	2883-98-9	BCFGJK
724	yl)benzene	2005-70-7	Der GJK
925	alpha,alpha,6,6-tetramethyl	33885-52-8	BDFHJK
	bicyclo[3.1.1]hept-2-ene-propanal		
	7-epi-sesquithujene	159407-35-9	DEFHJKL
927	5-Acetyl-1,1,2,3,3,6-	15323-35-0	DEFHJK
	hexamethylindan		
	3-Methylphenethyl alcohol	1875-89-4	BCEFHIK
	3,6-Nonadien-1-ol	76649-25-7	ACEFHK
	2-Tridecenal Patchouli alcohol	7774-82-5 5986-55-0	BDFHJK DEFHIJK
	p-Cresyl isobutyrate	103-93-5	BDHJK
	p-Cresyl n-hexanoate	68141-11-7	DEFHJK
	5-hexyl-4-methyldihydrofuran-	67663-01-8	BDEFHIJKL
	2(3H)-one		
942	Ethyl (2Z,4E)-deca-2,4-dienoate	3025-30-7	BDEFHJK
943	Pelargene	68039-40-7	DEFHJK
945	2-cyclohexylidene-2-	10461-98-0	DFHJK
	phenylacetonitrile		
	Perillaldehyde	2111-75-3	ACHIJK
	Perillyl acetate	15111-96-3	DFHJK
	Perillyl alcohol	536-59-4	CHIJK
	(2-isopropoxyethyl)benzene	68039-47-4	ACEFHJKL
	Ethyl (2Z,4E)-deca-2,4-dienoate (2-(cyclohexyloxy)ethyl)benzene	313973-37-4 80858-47-5	BDEFHJK DEFHJK
	Phenethyl 2-methylbutyrate	24817-51-4	DEFHJK
	Phenethyl alcohol	60-12-8	BCEFGIK
	Phenethyl phenylacetate	102-20-5	DHJ
	Phenoxanol	55066-48-3	DEFHJK
965	Phenyl benzoate	93-99-2	DFHJK
	Phenyl ethyl benzoate	94-47-3	DHJ
969	Phenylacetaldehyde ethyleneglycol	101-49-5	BCEFGIK
	acetal		
973	2-(6,6-dimethylbicyclo[3.1.1]hept-2-	30897-75-7	ACFHIJKL
074	en-2-yl)acetaldehyde	5047.26.4	DOFECTIVI
	Pinocarveol Binoropyil costono	5947-36-4 55418-52-5	BCEFGIJKL
	Piperonyl acetone 3a,4,5,6,7,7a-hexahydro-1H-4,7-	55418-52-5 68039-44-1	CEFGJ DEFHJK
110	methanoinden-6-yl pivalate	00052-44-1	DLIIIM
980	(4aR,8aS)-7-methyloctahydro-1,4-	41724-19-0	CEFGJKL
	methanonaphthalen-6(2H)-one		0.01 00110
982	p-Menth-3-en-1-ol	586-82-3	BCGIJK
	(E)-3,3-dimethyl-5-(2,2,3-	107898-54-4	DHJK
	trimethylcyclopent-3-en-1-yl)pent-4-		
	en-2-ol		
988	1-methyl-4-(4-methylpent-3-en-1-	52474-60-9	DFHJK
	yl)cyclohex-3-ene-1-carbaldehyde		
	Propylene glycol	57-55-6	ACEFGIKL
	p-Tolyl phenylacetate	101-94-0	DFHJ
	Ethyl 2,4,7-decatrienoate	78417-28-4	BDEFHJK
	2-benzyl-4,4,6-trimethyl-1,3-dioxane	67633-94-7	DEFHJK
1006	2,4-dimethyl-4-	82461-14-1	BDEFHJK
	phenyltetrahydrofuran		
1007	(2R,4a'R,8a'R)-3,7'-dimethyl-	41816-03-9	DEFHJK
	3',4',4a',5',8',8a'-hexahydro-1'H-		
	spiro[oxirane-2,2'-		
	[1,4]methanonaphthalene]		
		02020 06 7	BCEFHJKL
1008	(Z)-6-ethylideneoctahydro-2H-5,8-	93939-86-7	DCEITIJKE
	methanochromene		
	methanochromene 2-((S)-1-((S)-3,3-	236391-76-7	DFHJ
	methanochromene		

TABLE 1-continued

List of materials with at least one MORV from 1 to 5			to 5
Num- ber	Material Name	CAS Number	Comment Code
1010	Methyl 2,2-dimethyl-6- methylenecyclohexane-1-carboxylate	81752-87-6	ADHIJKL
	2-methyl-5-phenylpentan-1-ol 4-methyl-2-phenyl-3,6-dihydro-2H-	25634-93-9 60335-71-9	DEFHJK BCEFGJK
1020	pyran Sabinol	471-16-9	BCEFHIJKL
1021	Safrole 2,2,7,9-tetramethylspiro(5.5)undec-	94-59-7 502847-01-0	BCEFHK DHIJK
	8-en-1-one 3-methyl-5-(2,2,3- trimethylcyclopent-3-en-1-yl)pentan-	65113-99-7	DEFHJK
1024	2-ol (Z)-2-ethyl-4-(2,2,3- trimethylcyclopent-3-en-1-yl)but-2-	28219-61-6	DEFHJK
1025	en-1-ol (E)-2-methyl-4-(2,2,3- trimethylcyclopent-3-en-1-yl)but-2- en-1-ol	28219-60-5	СНЈК
1026	5-methoxyoctahydro-1H-4,7- methanoindene-2-carbaldehyde	86803-90-9	CHJK
1027	5-methoxyoctahydro-1H-4,7- methanoindene-2-carbaldehyde	193425-86-4	СНЈК
	Sclareol	515-03-7	DEFHJ
	Sclareol oxide	5153-92-4	DEFHJK
	Selina-3,7(11)-diene 2-(1-(3,3-	6813-21-4 477218-42-1	DEFHJKL DEFHJ
1032	dimethylcyclohexyl)ethoxy)-2- methylpropyl	7//210-42-1	DETIIJ
1033	cyclopropanecarboxylate 3-(4-isobutylphenyl)-2- methylpropanal	6658-48-6	DHJK
1035	Spathulenol	6750-60-3	DEFHJK
1036	Spirambrene	533925-08-5	BCEFHJK
1037	Spirodecane	6413-26-9	BCEFGIJKL
	1-(spiro[4.5]dec-7-en-7-yl)pent-4-en- 1-one	224031-70-3	DGJK
	2-(4-methylthiazol-5-yl)ethan-1-ol	137-00-8	CGIKL
	2-(heptan-3-yl)-1,3-dioxolane	4359-47-1 21944-98-9	ACEFHIJKL
	(Z)-dodec-4-enal tau-Cadinol	21944-98-9 5937-11-1	BDFHJK DEFHJK
	tau-Muurolol	19912-62-0	DEFHJK
	Tetrahydrojasmone	13074-63-0	BDFHIJKL
1057	2,6,10,10-tetramethyl-1- oxaspiro[4.5]dec-6-ene	36431-72-8	BDFHIJKL
	Thiomenthone	38462-22-5	BDEFHIJKL
	Thujopsene Thumal mathul athan	470-40-6	BDEFGJKL
	Thymol methyl ether 1-(2,2,6-trimethylcyclohexyl)hexan-	1076-56-8 70788-30-6	ADHIJKL
	3-ol trans, trans-2,4-Nonadienal	70788-30-6 5910-87-2	DEFHJK ACHKL
	trans, trans-Farnesol	106-28-5	DEFHJK
	trans-2, cis-6-Nonadienal	557-48-2	ACHKL
1067	trans-2-Decenal	3913-81-3	ADHKL
	trans-2-Nonen-1-al	18829-56-6	ADHKL
	trans-3, cis-6-nonadienol	56805-23-3	ACEFHK
	trans-4-Decen-1-al	65405-70-1	ADHKL
	trans-ambrettolide	51155-12-5	DGJ
	trans-beta-ocimene	13877-91-3	ADGIKL
	trans-beta-Ocimene	3779-61-1	ADGIKL
	trans-Geraniol	106-24-1	BCHIK
	trans-Hedione	2570-03-8	DFHJK
	7-(1,1-Dimethylethyl)-2H-1,5- benzodioxepin-3(4H)-one	195251-91-3	CEFHJ
	Tricyclone Trideaul alashal	68433-81-8	DEFHJK
	Tridecyl alcohol	112-70-9	DEFGJK
	Triethyl citrate	77-93-0	CEFGJ
	Methyl 2-((1-hydroxy-3- phenylbutyl)amino)benzoate 1-((2E,5Z,9Z)-2,6,10-	144761-91-1 28371-99-5	DFHJ DHJK
1093	trimethylcyclododeca-2,5,9-trien-1- yl)ethan-1-one	20311-99-3	DUR

TABLE 1-continued

List of materials with at least one MORV from 1 to 5			
Num- ber	Material Name	CAS Number	Comment Code
1097	Decahydro-2,6,6,7,8,8-hexamethyl- 2h-indeno(4,5-b)furan	338735-71-0	BDEFHJK
1099	13-methyl oxacyclopentadec-10-en- 2-one	365411-50-3	DEFHJK
1102	Undecanal	112-44-7	BDHJK
	(E)-4-methyldec-3-en-5-ol	81782-77-6	BDEFHIJK
1105	Valencene	4630-07-3	BDEFHJK
1107	Valerianol	20489-45-6	DEFHJK
	Vanillin isobutyrate	20665-85-4	CHJ
	Vaniwhite	5533-03-9	CGIK
1116	(Z)-2-methyl-4-(2,6,6- trimethylcyclohex-2-en-1-yl)but-2- enal	68555-62-4	BDFHJK
1117	Methyl 2,4-dihydroxy-3,6- dimethylbenzoate	4707-47-5	CGIJ
1120	1-methoxy-3a,4,5,6,7,7a-hexahydro- 1H-4,7-methanoindene	27135-90-6	ACEFHJKL
1121	Methyl (Z)-2-((3-(4-(tert- butyl)phenyl)-2-	91-51-0	DFHJ
1125	methylpropylidene)amino)benzoate	41510 22 7	ADDELLUZI
	(Z)-hex-3-en-1-yl isobutyrate Vertacetal	41519-23-7 5182-36-5	ADEFHJKL
		3182-36-5	BCFHJK DHJK
1129	1-((3R,3aR,7R,8aS)-3,6,8,8- tetramethyl-2,3,4,7,8,8a-hexahydro- 1H-3a,7-methanoazulen-5-yl)ethan- 1-one	32388-33-9	DUIK
1131	Methyl (Z)-2-(((2,4- dimethylcyclohex-3-en-1-	68738-99-8	DEFHJ
	yl)methylene)amino)benzoate		
	Vetiverol	89-88-3	CEFHIJK
	Vetivert Acetate	117-98-6	DEFHJK
	Decahydro-3H-spiro[furan-2,5'- [4,7]methanoindene]	68480-11-5	DEFGJKL
	(2Z,6E)-nona-2,6-dienenitrile	67019-89-0 87731-18-8	ACEFHKL
	(Z)-cyclooct-4-en-1-yl methyl carbonate (1aR,4S,4aS,7R,7aS,7bS)-1,1,4,7-	552-02-3	BCHJKL DEFHJK
1140	tetramethyldecahydro-1H- cyclopropa[e]azulen-4-ol	352-02-5	DEFIJK
	3,5,5,6,7,8,8-heptamethyl-5,6,7,8- tetrahydronaphthalene-2-carbonitrile	127459-79-4	DHJ
1143	(1S,2S,3S,5R)-2,6,6- trimethylspiro[bicyclo[3.1.1]heptane- 3,1'-cyclohexan]-2'-en-4'-one	133636-82-5	DEFHJK
1144	1',1',5',5'-tetramethylhexahydro- 2'H,5'H-spiro[[1,3]dioxolane-2,8'- [2,4a]methanonaphthalene]	154171-76-3	DEFHJK
1145	2'H,5'H-spiro[[1,3]dioxolane-2,8'- [2,4a]methanonaphthalene] K	154171-77-4	DEFHJK
1146	4-(4-hydroxy-3-	122-48-5	CEFGJ
1147	methoxyphenyl)butan-2-one (1R,8aR)-4-isopropyl-1,6-dimethyl- 1,2,3,7,8,8a-hexahydronaphthalene	41929-05-9	DEFHJKL
1148	4,5-epoxy-4,11,11-trimethyl-8- methylenebicyclo(7.2.0)undecane	1139-30-6	DEFHJK
1149	1,3,4,6,7,8alpha-hexahydro-1,1,5,5- tetramethyl-2H-2,4alpha-	23787-90-8	DEFHIJK
	methanophtalen-8(5H)-one		

TABLE 2

List of materials with at least one MORV greater than 5 to 10			
Num- ber	Material Name	CAS Number	Comment Code
2	2,4-dimethyl-2-(5,5,8,8-tetramethyl- 5,6,7,8-tetrahydronaphthalen-2-yl)- 1,3-dioxolane	131812-67-4	DFHJ

TABLE 2-continued

TABLE 2-continued			
List of materials with at least one MORV greater than 5 to 10			
Num- ber	Material Name	CAS Number	Comment Code
23	3a,5,6,7,8,8b-hexahydro- 2,2,6,6,7,8,8-heptamethyl-4H- indeno(4,5-d)-1,3-dioxole	823178-41-2	DEFHJK
141	2,4-dimethyl-4,4a,5,9b- tetrahydroindeno[1,2-d][1,3]dioxine	27606-09-3	CEFHJK
185	(1-methyl-2-((1,2,2- trimethylbicyclo[3.1.0]hexan-3- yl)methyl)cyclopropyl)methanol	198404-98-7	DEFHJK
227	Isobornylcyclohexanol	68877-29-2	DEFHJK
	Isobornyl cyclohexanol	66072-32-0	DEFHJK
	Indol/Hydroxycitronellal Schiff base	67801-36-9	DEFHJ
	Hydroxymethyl isolongifolene	59056-64-3	DEFHJK
343	8,8-dimethyl-3a,4,5,6,7,7a- hexahydro-1H-4,7-methanoinden-6- yl propionate	76842-49-4	DEFHJK
359	(E)-4-((3aR,4R,7R,7aR)- 1,3a,4,6,7,7a-hexahydro-5H-4,7- methanoinden-5-ylidene)-3- methylbutan-2-ol	501929-47-1	DEFHJK
565	Cedryl methyl ether	19870-74-7	BDEFHJK
	beta-Copaene	18252-44-3	BDEFHJKL
	2'-isopropyl-1,7,7- trimethylspiro[bicyclo[2.2.1]heptane- 2,4'-[1.3]dioxane]	869292-93-3	BDEFHJK
674	(4aR,5R,7aS,9R)-2,2,5,8,8,9a- hexamethyloctahydro-4H-4a,9- methanoazuleno[5,6-d][1,3]dioxole	211299-54-6	DEFHJK
678	(3S,5aR,7aS,11aS,11bR)-3,8,8,11a- tetramethyldodecahydro-5H-3,5a- epoxynaphtho[2,1-c]oxepine	57345-19-4	DEFHJ
679	2,2,6,6,7,8,8-heptamethyldecahydro- 2H-indeno[4,5-b]furan	476332-65-7	DEFHJK
715	alpha-Cedrene epoxide	13567-39-0	BDEFHJK
758	Acetoxymethyl-isolongifolene (isomers)	59056-62-1	DEFHJK
1028	Sclareol	515-03-7	DEFHJ
1097	Decahydro-2,6,6,7,8,8-hexamethyl- 2h-indeno(4,5-b)furan	338735-71-0	DEFHJK

TABLE 3

List of materials with at least one MORV from 0.5 to less than 1			
Numbe	er Material Name	CAS Number	Comment Code
12	1-ethoxy-4-(tert- pentyl)cyclohexane	181258-89-9	ADEFHJK
19	(3Z)-1-(2-buten-1-yloxy)-3- hexene	888744-18-1	ADEFHJKL
20	4-(2-methoxypropan-2-yl)-1- methylcyclohex-1-ene	14576-08-0	ADHIJKL
24	O-Methyl linalool	60763-44-2	ADHIJKL
26	o-Methoxycinnamaldehyde	1504-74-1	ACHK
27	Octanal, 3,7-dimethyl-	25795-46-4	ADGIJKL
53	3,3-Dimethyl-5(2,2,3- Trimethyl-3-Cyclopenten- 1yl)-4-Penten-2-ol	329925-33-9	CEFHJ
54	n-Hexyl salicylate	6259-76-3	DEFHJ
55	n-Hexyl 2-butenoate	19089-92-0	ADEFHJKL
59	Neryl Formate	2142-94-1	BCEFHJK
72	Methyl-beta-ionone	127-43-5	DHJK
73	Myroxide	28977-57-3	ADGIJKL
81	(E)-3,7-dimethylocta-4,6- dien-3-ol	18479-54-4	BCEFGIJK
84	(Z)-hex-3-en-1-yl cyclopropanecarboxylate	188570-78-7	BCEFHIKL
96	Methyl phenyl carbinyl propionate	120-45-6	ВСНЈК
97	Methyl phenylacetate	101-41-7	ACEFHIKL

TABLE 3-continued

List of materials with at least one MORV from 0.5 to less than 1			
	Material Name	CAS Number	Comment Code
107	2-methyl-6- oxaspiro[4.5]decan-7-one	91069-37-3	BCEFGIKL
111	Methyl geraniate	2349-14-6	BCHJKL
115	2-ethoxy-4-	5595-79-9	CFGK
116	(methoxymethyl)phenol Methyl	40203-73-4	ACEFHIKL
110	cyclopentylideneacetate	40203-73-4	ACEFHIKL
125	Methoxymelonal	62439-41-2	ACGIJK
133	((1s,4s)-4-	13828-37-0	BDEFHIJK
147	isopropylcyclohexyl)methanol Linalyl propionate	144-39-8	BDFHJK
150	Linalyl formate	115-99-1	ACFHJK
151	Linalyl butyrate	78-36-4	BDEFHJK
154	Linalyl acetate	115-95-7	BDHJK
157 163	Linalool (Z)-hex-3-en-1-yl methyl	78-70-6 67633-96-9	BCEFGIJK ACEFGKL
105	carbonate	0,000,000	THE DE CIRE
166	Lepidine	491-35-0	BCEFHIKL
169 181	L-Carvone Khusinil	6485-40-1 75490-39-0	ACGIJKL DHJK
191	Isoraldeine	1335-46-2	BDHIJK
194	Isopropylvinylcarbinol	4798-45-2	ACGIKL
198	Isopropyl 2-methylbutyrate	66576-71-4	ACEFGIJKL
201 204	Isopentyrate Isononyl acetate	80118-06-5 40379-24-6	ADEFGIJKL BDEFHJKL
204	Isononyracetate	27458-94-2	BDEFGIKL
213	Isoeugenyl acetate	93-29-8	CFHJK
214	Isoeugenol	97-54-1	CEFHIK
232 237	Isoborneol Isoamyl octanoate	124-76-5 2035-99-6	ACEFHIJKL DEFHJK
237	Isoamyl isobutyrate	2050-01-3	ACEFGIJKL
255	Hydrocinnamic acid	501-52-0	CEFHIK
258	Hydratopic alcohol	1123-85-9	BCEFHIK
264 270	Hexyl propanoate Hexyl butyrate	2445-76-3 2639-63-6	ADEFHIKL BDEFHJKL
270	Hexyl 2-methylbutanoate	10032-15-2	BDEFHJKL
275	Hexyl 2-furoate	39251-86-0	DEFHJK
282	Heptyl alcohol	111-70-6	ACEFGIKL
283 284	Heptyl acetate Heptaldehyde	112-06-1 111-71-7	ADEFHKL ACHIKL
287	Heliotropin	120-57-0	BCGIK
302	Geranyl nitrile	5146-66-7	BCEFHKL
306	Geranyl formate	105-86-2	BCEFHJK
308 310	Geranyl caprylate Geranyl benzoate	51532-26-4 94-48-4	DEFHJ DFHJ
312	Geranial	141-27-5	ACHIKL
314	N,2-dimethyl-N-	84434-18-4	BCEFHJK
	phenylbutanamide		DESCUTIO
319 346	gamma-Terpinene 2-(sec-butyl)cyclohexan-1-	99-85-4 14765-30-1	ADEFGIJKL ADFHIKL
540	one	14705-50-1	ADI IIIKL
354	3-(2-ethylphenyl)-2,2-	67634-14-4	BDHJK
2.5.5	dimethylpropanal	(7001 (1.2	DDEUW
355	2-(tert-butyl)cyclohexyl ethyl carbonate	67801-64-3	BDFHJK
365	2-(tert-butyl)cyclohexyl ethyl	81925-81-7	ACFHIKL
	carbonate		
366	Fenchyl alcohol	1632-73-1 470-82-6	ACGIJKL
376 379	Eucalyptol Ethyl vanillin acetate	470-82-6 72207-94-4	ADEFGIJKL CHJ
387	Ethyl octanoate	106-32-1	BDEFHJKL
400	Ethyl cinnamate	103-36-6	BCEFHK
412	Ethyl 2-	2511-00-4	BDFHIJKL
419	(cyclohexyl)propionate d-p-8(9)-Menthen-2-one	5524-05-0	ACGIJKL
419	4-methyl-2-phenyltetrahydro-	94201-73-7	BDEFHJK
	2H-pyran		
437	Dihydromyrcenol	18479-58-8	ADEFGIJK
438 439	Dihydrojasmone Dihydroisophorone	1128-08-1 873-94-9	BCFHIJKL ACEFGIJKL
	Dihydroeugenol	2785-87-7	CEFHIJK
440			
440 442	Dihydrocoumarin Dihydrocarvone	119-84-6	BCGIKL

TABLE 3-continued

TABLE 3-continued				
L	List of materials with at least one MORV from 0.5 to less than 1			
Numbe	r Material Name	CAS Number	Comment Code	
447	Dihydro-alpha-terpinyl acetate	80-25-1	BDEFHIJKL	
448	Dihydro-alpha-ionone	31499-72-6	BDHIJK	
454	Dibenzyl ether	103-50-4	DEFHJK	
455	Dibutyl o-phthalate	84-74-2	DEFHJ	
469	2-pentylcyclopentan-1-one	4819-67-4	BDFHIKL	
472	Decyl anthranilate	18189-07-6	DEFHJ	
477	Methyl (1s,4s)-1,4- dimethylcyclohexane-1-	23059-38-3	ADEFHIJKL	
401	carboxylate	21722 92 9	BDEFHJKL	
481 492	Cyclohexylethyl acetate Creosol	21722-83-8 93-51-6	BCHIK	
495	Cosmene	460-01-5	ADEFGIKL	
496	4-cyclohexyl-2-methylbutan-	83926-73-2	BDEFGIJK	
504	2-ol 2-benzyl-2-methylbut-3-	97384-48-0	BDHJK	
500	enenitrile	51566 69.9	DODECIW	
509	Citronellyl nitrile	51566-62-2	BCEFGIKL	
510 512	Citronellyl phenylacetate	139-70-8 105-85-1	DFHJ BCEFGJKL	
512	Citronellyl formate Citronellyl benzoate	105-85-1 10482-77-6	DFHJ	
515	Citronellol	10482-77-6	DFHJ BCHIJKL	
517	Citronellal	106-22-9	ACHIJKL	
522	Citral	5392-40-5	ACHIKL	
525	cis-Pinane	6876-13-7	ADEFGIJKL	
526	(Z)-3-methyl-2-(pent-2-en-1- yl)cyclopent-2-en-1-one	488-10-8	BCHIJKL	
528	cis-iso-Eugenol	5912-86-7	CEFHIK	
535	cis-3-Hexenyl valerate	35852-46-1	BDEFHJKL	
536	cis-3-Hexenyl tiglate	67883-79-8	BDEFHJK	
538	cis-3-Hexenyl propionate	33467-74-2	ACEFHIKL	
540	cis-3-Hexenyl butyrate	16491-36-4	ADEFHJKL	
542	cis-3-Hexen-1-ol	928-96-1	ACEFHIKL	
547	cis-2-Hexenol	928-94-9	ACEFHIKL	
549	Cinnamyl nitrile	4360-47-8	ACEFGIK	
554	Cinnamic aldehyde	104-55-2	ACHIK	
556 557	Cinnamyl nitrile Chloroxylenol	1885-38-7 88-04-0	ACEFGIK BCHIJK	
575	Carvacrol	499-75-2	DHIJK	
576	Carvone	99-49-0	ACGIJKL	
579	Carbitol	111-90-0	BCEFGIK	
583	Caproyl alcohol	111-27-3	ACEFGIKL	
585	2-(2,2,3-trimethylcyclopent-3- en-1-yl)acetonitrile	15373-31-6	ACGIJKL	
588	Camphor	76-22-2	ACEFGIJKL	
602	(E)-2-methyl-4-(2,6,6- trimethylcyclohex-1-en-1-	3155-71-3	DHJK	
605	yl)but-2-enal Borneol	507 70 0	ACEEUUVI	
605 617	Borneol beta-Pinene epoxide	507-70-0 6931-54-0	ACEFHIJKL ACEFGIJKL	
619	beta-Phellandrene	555-10-2	ADEFGIJKL	
640	Benzylacetone	2550-26-7	ACEFGIK	
641	Benzyl salicylate	118-58-1	DFGJ	
645	Benzyl isovalerate	103-38-8	BDEFHJK	
647	Benzyl isobutyrate	103-28-6	BCHJK	
651	Benzyl butyrate	103-37-7	BCEFHJK	
652	Benzyl alcohol	100-51-6	ACEFGIKL	
662	1-(3,3- dimethylcyclohexyl)ethyl	25225-08-5	ADEFHIJKL	
	formate	104 21 2	DOFFOU	
664	Anisyl acetate	104-21-2	BCEFGK	
665	Anisyl formate Anethole	122-91-8	BCEFGK	
667 672	Amyl benzoate	104-46-1 2049-96-9	ACEFHK DEFHJK	
687	alpha-Terpinyl acetate	80-26-2	BDHJK	
699	alpha-rerphyl acetate alpha-methyl- cyclohexanepropanol	10528-67-3	BDEFHIK	
701	alpha-methyl cinnamaldehyde	101-39-3	ACHIK	
703	alpha-Isomethylionone	127-51-5	BDHIJK	
740	2,5-Dimethyl-4-methoxy- 3(2H)-furanone	4077-47-8	ACEFGIJKL	
743 744	Allyl phenoxyacetate Allyl Phenethyl ether	7493-74-5 14289-65-7	BCGK ACEFHK	

TABLE 3-continued

Li	List of materials with at least one MORV from 0.5 to less than 1			
Number	Material Name	CAS Number	Comment Code	
745	Allyl heptanoate	142-19-8	ADEFHJKL	
755	N-ethyl-N-(m-	179911-08-1	CEFHJK	
760	tolyl)propionamide 3-hydroxybutan-2-one	513-86-0	ACEFGIKL	
761	Acetoanisole	100-06-1	BCEFHIK	
777	6-Methylquinoline	91-62-3	BCEFHIKL	
779	6,8-Diethyl-2-nonanol	70214-77-6	BDEFGIJKL	
784	5-Methyl-3-heptanone	541-85-5	ACFGIKL	
789 706	4-Vinylphenol	2628-17-3	BCHIK	
796	4-hydroxy-3-methoxy- cinnamaldehyde	458-36-6	СН	
797	4-Ethylguaiacol	2785-89-9	CEFHIK	
799	4-Damascol	4927-36-0	BDFHJK	
808	3-methyl-4-phenylpyrazole	13788-84-6	CEFHK	
810	3-Methyl-1,2-	765-70-8	ACEFGIKL	
811	cyclopentanedione 3-Methoxy-5-methylphenol	3209-13-0	BCHIK	
812	3-Methoxy-3-Methyl Butanol	56539-66-3	ACGIKL	
817	3-Hexenol	544-12-7	ACEFHIKL	
819	3,7-dimethyl-2-methylene-6-	22418-66-2	ADFHIJK	
000	octenal	106 21 2	DDEECIW	
820 832	3,7-dimethyl-1-octanol 2-Phenylethyl acetate	106-21-8 103-45-7	BDEFGIJKL BCEFHK	
835	2-Phenethyl propionate	103-43-7	BCEFHJK	
836	2-Pentylcyclopentan-1-ol	84560-00-9	DEFHIKL	
838	2-nonanone propylene glycol	165191-91-3	BDEFHJK	
	acetal			
845	2-Methoxy-3-(1-	24168-70-5	BCEFGIK	
846	methylpropyl)pyrazine 2-isopropyl-N,2,3-	51115-67-4	ACEFGIJK	
040	trimethylbutyramide	51115 07 4	ACEI ODK	
847	2-Isopropyl-5-methyl-2-	35158-25-9	ADFGIJKL	
	hexenal			
848	2-Isopropyl-4-methylthiazole	15679-13-7	ACHIJKL	
851 858	2-Hexen-1-ol 2-Butoxyethanol	2305-21-7 111-76-2	ACEFHIKL ACEFGIKL	
875	1,4-Cineole	470-67-7	ADGIJKL	
880	1-(2,6,6-Trimethyl-2-	43052-87-5	BDHIJK	
	cyclohexen-1-yl)-2-buten-1-			
000	one	1576 70 0	ACCELLIN	
882 883	(Z)-3-hepten-1-yl acetate (S)—(1R,5R)-4,6,6-	1576-78-9 1196-01-6	ACEFHKL ACEFGIJKL	
885	trimethylbicyclo[3.1.1]hept-3-	1190-01-0	ACLIVIJKL	
	en-2-one			
888	(R)-(-)-Linalool	126-91-0	BCEFGIJK	
889	(l)-Citronellal	5949-05-3	ACHIJKL	
891 899	(d)-Citronellal	2385-77-5	ACHIJKL BCHIJKL	
899 900	(+)-Citronellol (-)-Citronellol	1117-61-9 7540-51-4	BCHIJKL	
901	(+)-alpha-Pinene	7785-70-8	ADEFGIJKL	
902	(+)-Carvone	2244-16-8	ACGIJKL	
903	(-)-alpha-Pinene	7785-26-4	ADEFGIJKL	
904	Methyl 2-methylbutyrate	868-57-5	ACEFGIKL	
909 918	Hexyl tiglate Allyl 2-	16930-96-4 68901-15-5	BDEFHJKL CHJK	
210	(cyclohexyloxy)acetate	00001 15 5	CHIJIX	
921	1,5-	75147-23-8	CFHIJK	
	dimethylbicyclo[3.2.1]octan-			
0.21	8-one oxime	2206 04 2	ACELIUZ	
931 940	alpha-acetoxystyrene p-Cymene	2206-94-2 99-87-6	ACEFHIK ADGIJKL	
940 956	Phenethyl formate	104-62-1	ACEFHK	
958	Phenethyl isobutyrate	103-48-0	DHJK	
960	Phenethyl tiglate	55719-85-2	DHJK	
971	Phenylethyl methacrylate	3683-12-3	DHJK	
977	p- Isopropylphenylacetaldebyde	4395-92-0	BDFHK	
981	Isopropylphenylacetaldehyde 1,2-dimethyl-3-(prop-1-en-2-	72402-00-7	BCEFGIJKL	
201	yl)cyclopentan-1-ol		2021 GIVINE	
983	p-Methoxyphenylacetone	122-84-9	BCEFHK	
986	(2Z,5Z)-5,6,7-trimethylocta-	358331-95-0	ADHIJKL	
097	2,5-dien-4-one	104 45 0	ADEELIVI	
987	p-Propyl anisole	104-45-0	ADEFHKL	

TABLE 3-continued

TABLE 5-continued				
List of materials with at least one MORV from 0.5 to less than 1				
Number	Material Name	CAS Number	Comment Code	
994	p-t-butyl phenyl acetaldehyde	109347-45-7	BDHJK	
995	p-tert-Amyl cyclohexanol	5349-51-9	BDEFHIJK	
1001	Racemic alpha-Pinene	80-56-8	ADEFGIJKL	
1002	4-(4-hydroxyphenyl)butan-2- one	5471-51-2	CEFGIK	
1004	Rhodinol	141-25-3	BCHIJKL	
1005	Ethyl (2,3,6- trimethylcyclohexyl)carbonate	93981-50-1	BDEFHJKL	
1011	1-(3,3- dimethylcyclohexyl)ethyl acetate	25225-10-9	ADHIJKL	
1017	S)-(+)-Linalool	126-90-9	BCEFGIJK	
1018	Sabinene	3387-41-5	ADEFGIJKL	
1019	Sabinene hydrate	546-79-2	ADEFGIJKL	
1030	Propyl (S)-2-(tert- pentyloxy)propanoate	319002-92-1	BDEFHJK	
1039	Spirolide	699-61-6	BCGIKL	
1040	(Z)-5-methylheptan-3-one oxime	22457-23-4	BCEFGIJKL	
1041	1-phenylethyl acetate	93-92-5	ACEFHIK	
1051	Tetrahydrogeranial	5988-91-0	ADGIJKL	
1052	Tetrahydroionol	4361-23-3	BDEFHIJK	
1054	Tetrahydrolinalool	78-69-3	BDEFGIJKL	
1055	Tetrahydrolinalyl acetate	20780-48-7	ADEFHJKL	
1058	Ethyl (1R,6S)-2,2,6- trimethylcyclohexane-1-	22471-55-2	ADEFHIJKL	
1061	carboxylate Thymol	89-83-8	BDHIJK	
1069	trans-2-Hexenol	928-95-0	ACEFHIKL	
1009	trans-2-tert-	5448-22-6	ACGIJKL	
	Butylcyclohexanol			
1074	trans-alpha-Damascone	24720-09-0	BDHIJK	
1076	trans-Anethole	4180-23-8	ACEFHK	
1079	trans-Cinnamic acid	140-10-3	CEFHK	
1081	trans-Dihydrocarvone	5948-04-9	ACGIJKL	
1084	trans-Isoeugenol	5932-68-3	CEFHIK	
1088	Trichloromethyl phenyl carbinyl acetate	90-17-5	BDEFGJ	
1098	2-mercapto-2-methylpentan- 1-ol	258823-39-1	ACEFHIJKL	
1110	Vanillin acetate	881-68-5	CH	
1112	Vanitrope	94-86-0	CEFHK	
1115	2,2,5-trimethyl-5- pentylcyclopentan-1-one	65443-14-3	BDFGIJKL	
1118	Veratraldehyde	120-14-9	BCGIK	
1119	(1R,5R)-4,6,6-	18309-32-5	ACEFGIJKL	
	trimethylbicyclo[3.1.1]hept-3- en-2-one			
1122	Verdol	13491-79-7	ACGIJKL	
1122	4-(tert-butyl)cyclohexyl	10411-92-4	BDEFHJK	
	acetate			
1128	4-(tert-butyl)cyclohexyl acetate	32210-23-4	BDEFHJK	
1133	Vethymine	7193-87-5	CEFGK	
1135	4-methyl-4-phenylpentan-2-yl acetate	68083-58-9	BDFHJK	
1141	acetate (Z)-1-((2- methylallyl)oxy)hex-3-ene	292605-05-1	ADEFHKL	

TABLE 4

	List of materials with ALL MORVs from 1 to 5			
Num- ber	Material Name	CAS Number	Comment Code	
7	3-methoxy-7,7-dimethyl-10- methylenebicyclo[4.3.1]decane	216970-21-7	BDEFHJK	
14	Oxyoctaline formate	65405-72-3	DFHJK	

TABLE 4-continued

	List of materials with ALL MORVs from 1 to 5			
Num-		CAS	Comment	
ber	Material Name	Number	Code	
39	2,2,6,8-tetramethyl-1,2,3,4,4a,5,8,8a-	103614-86-4	DEFHIJK	
48	octahydronaphthalen-1-ol Nootkatone	4674-50-4	DHJK	
183	Khusimol	16223-63-5	CEFHJK	
199	Isopimpinellin	482-27-9	CFGJ	
206	Iso3-methylcyclopentadecan-1-one	3100-36-5	DEFGJK	
212	Isoeugenyl benzyl ether	120-11-6	DFHJ	
215	1-((2S,3S)-2,3,8,8-tetramethyl- 1,2,3,4,5,6,7,8-octahydronaphthalen-	54464-57-2	DHJK	
229	2-yl)ethan-1-one Isobornyl isobutyrate	85586-67-0	BDEFHIJK	
260	2,3-dihydro-3,3-dimethyl-1H-indene- 5-propanal	173445-44-8	DHJK	
261	3-(3,3-dimethyl-2,3-dihydro-1H- inden-5-yl)propanal	173445-65-3	DHJK	
281	3a,4,5,6,7,7a-hexahydro-1H-4,7-	5413-60-5	CEFGJK	
329	methanoinden-6-yl acetate gamma-Eudesmol	1209-71-8	DFHJK	
335	4,6,6,7,8,8-hexamethyl-1,3,4,6,7,8-	1209-71-8	DEFHJK	
353	hexahydrocyclopenta[g]isochromene (Z)-6-ethylideneoctahydro-2H-5,8-	69486-14-2	CEFGJK	
	methanochromen-2-one			
360	8,8-dimethyl-3a,4,5,6,7,7a- hexahydro-1H-4,7-methanoinden-6-	171102-41-3	DEFHJK	
441	yl acetate Octahydro-1H-4,7-methanoinden-5- yl acetate	64001-15-6	DEFHJKL	
484	3a,4,5,6,7,7a-hexahydro-1H-4,7- methanoinden-6-yl butyrate	113889-23-9	DEFHJK	
487	3a,4,5,6,7,7a-hexahydro-1H-4,7- methanoinden-5-yl isobutyrate	67634-20-2	DEFHJK	
488	Curzerene	17910-09-7	DHJK	
501	(E)-cycloheptadec-9-en-1-one	542-46-1	DEFGJ	
566	Cedryl formate	39900-38-4	BDEFHJK	
567	Cedryl acetate	77-54-3	DEFHJK	
569 570	Cedrol 5-methyl-1-(2,2,3-	77-53-2 139539-66-5	DEFHJK DEFHJK	
510	trimethylcyclopent-3-en-1-yl)-6- oxabicyclo[3.2.1]octane	159559-00-5	DEFIIJK	
573	Caryophyllene alcohol acetate	32214-91-8	DEFHJK	
574	Caryolan-1-ol	472-97-9	DEFHJK	
603	Bornyl isobutyrate	24717-86-0	BDEFHIJK	
616	beta-Santalol	77-42-9	DEFHJK	
621 624	beta-Patchoulline beta-Himachalene Oxide	514-51-2 57819-73-5	BDEFGJKL BDFHJK	
627	(2,2-dimethoxyethyl)benzene	101-48-4	DHJK	
632	beta-Cedrene	546-28-1	BDEFGJKL	
663	Anisyl phenylacetate	102-17-0	DFHJ	
680	2,2,6,6,7,8,8-heptamethyldecahydro- 2H-indeno[4,5-b]furan	647828-16-8	ADEFHJK	
684 694	alpha-Vetivone alpha-Santalol	15764-04-2 115-71-9	DHJK DEFHJK	
696	alpha-Patchoulene	560-32-7	ADEFHJKL	
708	alpha-Gurjunene	489-40-7	BDEFHJKL	
712	alpha-Eudesmol	473-16-5	DEFHJK	
714	alpha-Cubebene	17699-14-8	ADEFHJKL	
726	alpha-Agarofuran Allo-aromadendrene	5956-12-7 25246-27-9	BDEFHJK	
750 764	Allo-aromadendrene Acetarolle	25246-27-9 744266-61-3	BDEFHJKL DFHJK	
775	7-eip-alpha-Eudesmol	123123-38-6	DEFHJK	
776	7-Acetyl-1,1,3,4,4,6- hexamethyltetralin	1506-02-1	DEFHJ	
788	5-Cyclohexadecenone	37609-25-9	DEFGJK	
804	3-Thujopsanone	25966-79-4	BDEFHJK	
872	10-epi-gamma-Eudesmol	15051-81-7	DFHJK	
919	3a,4,5,6,7,7a-hexahydro-1H-4,7- methanoinden-6-yl propionate	17511-60-3	CEFHJK	
927	5-Acetyl-1,1,2,3,3,6-	15323-35-0	DEFHJK	
933	hexamethylindan Patchouli alcohol	5986-55-0	DEFHIJK	
978	3a,4,5,6,7,7a-hexahydro-1H-4,7-	68039-44-1	DEFHJK	
	methanoinden-6-yl pivalate			

TABLE 4-continued

	List of materials with ALL MORVs from 1 to 5			
Num- ber	Material Name	CAS Number	Comment Code	
1007	(2R,4a'R,8a'R)-3,7'-dimethyl- 3',4',4a',5',8',8a'-hexahydro-1'H- spiro[oxirane-2,2'- [1,4]methanonaphthalene]	41816-03-9	DEFHJK	
1022	2,2,7,9-tetramethylspiro(5.5)undec- 8-en-1-one	502847-01-0	DHIJK	
1024	(Z)-2-ethyl-4-(2,2,3- trimethylcyclopent-3-en-1-yl)but-2- en-1-ol	28219-61-6	DEFHJK	
1027	5-methoxyoctahydro-1H-4,7- methanoindene-2-carbaldehyde	193425-86-4	CHJK	
1029	Sclareol oxide	5153-92-4	DEFHJK	
	Spathulenol	6750-60-3	DEFHJK	
	1-(spiro[4.5]dec-7-en-7-yl)pent-4-en- 1-one	224031-70-3	DGJK	
1060	Thujopsene	470-40-6	BDEFGJKL	
	Tricyclone	68433-81-8	DEFHJK	
	Valerianol	20489-45-6	DEFHJK	
1129	1-((3R,3aR,7R,8aS)-3,6,8,8- tetramethyl-2,3,4,7,8,8a-hexahydro- 1H-3a,7-methanoazulen-5-yl)ethan- 1-one	32388-55-9	DHJK	
1131	Methyl (Z)-2-(((2,4- dimethylcyclohex-3-en-1- yl)methylene)amino)benzoate	68738-99-8	DEFHJ	
1136	Vetivert Acetate	117-98-6	DEFHJK	
1137	Decahydro-3H-spiro[furan-2,5'- [4,7]methanoindene]	68480-11-5	DEFGJKL	
1140	(1aR,4S,4aS,7R,7aS,7bS)-1,1,4,7- tetramethyldecahydro-1H- cyclopropa[e]azulen-4-ol	552-02-3	DEFHJK	
1142	3,5,5,6,7,8,8-heptamethyl-5,6,7,8- tetrahydronaphthalene-2-carbonitrile	127459-79-4	DHJ	
1143	(1S,2S,3S,5R)-2,6,6- trimethylspiro[bicyclo[3.1.1]heptane- 3,1'-cyclohexan]-2'-en-4'-one	133636-82-5	DEFHJK	
1144	1',1',5',5'-tetramethylhexahydro- 2'H,5'H-spiro[[1,3]dioxolane-2,8'- [2,4a]methanonaphthalene]	154171-76-3	DEFHJK	
1145	1',1',5',5'-tetramethylhexahydro- 2'H,5'H-spiro[[1,3]dioxolane-2,8'- [2,4a]methanonaphthalene] K	154171-77-4	DEFHJK	
1148	4,5-epoxy-4,11,11-trimethyl-8- methylenebicyclo(7.2.0)undecane	1139-30-6	DEFHJK	
1149	1,3,4,6,7,8alpha-hexahydro-1,1,5,5- tetramethyl-2H-2,4alpha- methanophtalen-8(5H)-one	23787-90-8	DEFHIJK	

TABLE 5

List of materials with ALL MORVs greater than 5 to 10				
Number	Material Name	CAS Number	Comment Code	
248	Hydroxymethyl isolongifolene	59056-64-3	BDEFHJK	

TABLE 6

List of materials with ALL MORVs from 0.5 to less than 1								
Number	Material Name	CAS Number	Comment Code					
472	Decyl anthranilate	18189-07-6	DEFHJ					
526	(Z)-3-methyl-2-(pent- 2-en-1-yl)cyclopent- 2-en-1-one	488-10-8	BCHIJKL					

_

The materials in Tables 1-6 can be supplied by one or more of the following:

[0027] Firmenich Inc. of Plainsboro N.J. USA; International Flavor and Fragrance Inc. New York, N.Y. USA; Takasago Corp. Teterboro, N.J. USA; Symrise Inc. Teterboro, N.J. USA; Sigma-Aldrich/SAFC Inc. Carlsbad, Calif. USA; and Bedoukian Research Inc. Danbury, Conn. USA.

Actual MORV values for each material listed in Tables 1-6 above are as follows:

					82	0.98037
	MORV	MORV Value		MORV	83	0.94183
Material	value for	for	MORV Value	value for	84	0.77423
No.	Equation a.)	Equation b.)	for Equation c.)	Equation d.)	85	2.09293
					91	2.06159
1	0.548223914	0.876283261	1.22018588	-0.41901144	92	2.06874
2	1.520311929	3.493450446	2.70657265	5.11342862	93	-0.08984
3	2.267801995	-0.81712657	0.43218875	1.595983683	96	0.92775
4	-0.591063369	-0.48283571	0.16199804	1.210497701	97	0.65866
7	1.437444636	2.131822996	3.81633465	1.318339345	98	0.85322
9	2.151445882	-0.46189495	0.56090469	1.206360803	100	1.65453
10 11	2.5733592 3.052627325	-0.58780849	1.39751471	1.258361951 0.076323462	101	2.17366
11	0.683776599	1.008519135 -0.01157903	-0.30475953 0.82853231	0.076323462	102	2.06667
12	1.549643217	1.809183231	0.70864531	2.22799611	103	2.33515
13	2.82111224	2.339505033	1.240818	2.502429355	104	2.76058
16	-0.31551128	-0.06816599	-0.04371934	2.76742389	105 106	1.63453
17	-1.334904153	-0.5773313	1.75644798	1.898455724	108	0.89678
18	-1.34154226	-2.63596666	0.06885109	1.001431671	107	0.53237
19	0.15532384	0.09866097	0.64214585	-0.33330779	108	2.40765
20	0.640261783	0.693213268	0.54637273	-0.97556029	110	0.54830
21	0.936895364	-0.01521118	1.1697513	-0.63510809	110	0.93959
22	1.158981042	1.115900089	-0.25859776	1.318200884	111	1.39851
23	3.702361074	1.399942641	5.23954766	7.089933671	112	1.41572
24	0.773874141	0.146848137	-1.05705847	-0.36193173	115	-1.55772
25	-1.016103969	-1.18967936	0.78064625	2.944710012	116	0.19356
25	-1.016103969	-1.18967936	0.78064625	2.944710012	117	1.35351
26	0.615085491	-0.00096877	-0.35697252	-0.18121401	119	0.83005
27	0.70261974	-0.22197386	0.19710806	-2.37196477	120	1.26199
28	1.366472597	-0.42546942	-0.59394241	-0.01417395	122	1.50565
29	1.096043453	-1.02972898	-1.42167356	-0.63817943	123	-0.65872
30	1.143415203	-0.85945441	-0.41416913	2.499807942	125	0.7496
31	1.138642907	-0.19595476	-0.54547769	-0.98828898	126	0.93105
32	1.914414495	-0.64487788	0.63212987	1.166699371	128	-1.34483
33	0.314847366	1.848003955	-1.3905032	-0.62848261	130	1.15324
34	-0.113542761	0.981530917	0.32824239	1.126524277	133	0.84006
35	0.472382903	1.494882467	-0.07201236	-0.64589543	134	0.52226
36	3.158513795	1.084094934	-0.00328981	-0.17786385	135	2.1428
37	-1.055631982	2.240172964	0.92596118	2.105391988	137	3.05262
38	3.158513795	0.592820874	-0.49326241	0.212867212	140	-0.15343
39 42	1.083800659	2.069727985	2.48170879	3.205630609	141	2.06762
42 43	-0.103134861 0.323961628	0.267726008 1.469295081	-0.65350189 -0.52991193	1.125952363 0.797908251	142	0.98353
43	1.703678841	1.348737095	2.00634162	-0.16505407	143	1.73690
48	2.370955056	2.783472865	2.68240273	1.221864405	145	-0.21176
49	1.670680003	-0.41866107	-0.9173849	1.181929544	146	1.9127
50	1.670680003	0.076369374	-0.49915943	-0.85392575	147 148	0.67573
52	0.464485039	0.057512869	1.31230219	-0.11170276	148	0.4387
53	0.626671823	-0.46954947	-0.33383736	0.277079201	149	0.84399
54	0.666149043	0.009549925	-0.36226343	0.197224432	150	0.63353
55	0.723473579	-1.50916383	-0.3848989	-0.71458778	151	0.91158
57	0.381273227	1.192994109	1.65593321	-1.65739236	152	0.31905
59	0.561360663	-0.17793966	-1.63250554	-0.7564969	155	0.7148
61	0.146473611	-0.01535544	-0.16339658	1.738656146	154	-0.16179
62	1.20162032	-0.3576095	-0.10695443	1.322155191	155	-0.10179
63	1.084291915	2.258720158	-1.01245416	1.688283974		
64	0.744770665	0.155243763	-1.8029919	1.023503542	157	0.13122
65	0.972835178	2.797151284	1.53453579	0.857051645	158	1.2016
67	2.069410561	0.021831924	0.37855159	-0.67235457	159	0.81128
68	0.527636614	0.590831983	1.02843762	2.208655795	159	0.81128
69	2.133965691	2.088998449	2.05751412	-0.9433713	161	0.47518
70	0.327378959	0.996844599	1.23648533	-1.25138371	162	0.83303
71	1.40093669	0.778222691	0.70401172	-0.24075444	163	0.58993
					166	-0.12128
72 73	0.617697349 0.617792473	-0.29503359 0.888976061	0.52404847 -0.45289639	0.816184656 0.615659244	166 167	0.84640

		-continued	1	
	MORV	MORV Value		MORV
Material No.	value for Equation a.)	for Equation b.)	MORV Value for Equation c.)	value for Equation d.
74	1.437359024	1.548292147	0.10314807	-0.48982286
75	-1.970885622	3.398008325	4.08025266	-0.89948156
76	-1.32746934	-2.65365233	0.10272816	1.00161412
77	-2.541686116	3.295534192	3.75284227	0.40483780
78 70	-2.110794	2.109874746	3.13350902	-0.3880285
79 80	1.641162056 1.594400214	-0.28533994 0.283682865	1.53676145 2.23140233	0.65269602
81	0.176566806	-2.0786518	-2.13986952	0.98112696
82	0.980373758	-0.28813159	0.19404501	1.25256467
83	0.941833098	0.317310013	1.17606727	0.72992237
84	0.774237336	-0.27140727	0.72461427	-1.56415746
85 91	2.092976965 2.061595915	0.810644229 -0.79930338	0.82999192 -0.18285395	-0.62861800
92	2.068748434	-0.24299896	0.07214682	-1.11758276
93	-0.08984279	-1.06025959	-0.05068694	1.56005010
96	0.927758203	-0.44129515	0.89190422	0.7442849
97	0.658667572	-0.68771072	0.46051026	-0.53120883
98 100	0.853222693 1.654535066	-0.2037738 0.995056228	-0.21414441 2.35139085	1.1197849 0.54365482
100	2.173663649	-0.11491477	1.48285148	1.6985275
102	2.066679492	-0.16785146	-0.84780149	0.1215947
103	2.335152618	-0.02866585	0.16993375	-0.98254522
104	2.760588276	0.459513599	1.35310241	0.0003369
105	1.654535066	3.654489674	3.13033965	0.5442254
106 107	1.750588169 0.896789863	-0.55853348 0.73615897	0.50257773 0.53011623	1.6300113
107	0.532375207	0.826537134	1.21040312	0.6902307
109	2.407655187	0.742651426	1.80322099	0.2718328
110	0.54830833	2.916795026	1.40126098	0.6902307
111	0.939597126	-0.3750368	-1.23479972	-0.8936635
112	1.398518854	1.265740274	4.19618377	-0.1276269
113 115	1.415726941 -1.557729423	0.086297006 -0.44113526	3.43559555 0.86330536	-0.1296416
116	0.193562268	-1.58091165	0.83247813	-0.7097803
117	1.353510875	-0.59062398	-0.31776345	-0.3050158
119	0.830052725	2.28725579	0.38409695	0.21933610
120	1.261997955	-0.22622961	-1.04772194	2.02850413
122 123	1.505653628 -0.658721962	-1.14748206 -0.21299878	-0.19760084 1.01439841	-0.8137304
125	0.749676998	-1.0761601	0.99563924	-1.15409002
126	0.931054384	-0.35067079	1.06050832	-1.6217179
128	-1.344832644	-0.09451199	1.19145467	1.6212742
130	1.153249538	1.605070708	2.38047907	-0.9384229
133	0.840066046	0.2323025	0.19054023	-0.2658834
134 135	0.522267541 2.142817887	0.824106618 2.142411243	1.83479545 -0.93830995	0.3644034
137	3.052627325	3.606270166	0.50445208	0.0763234
140	-0.153437637	0.246303216	0.76565758	1.8009688
141	2.067620311	1.424830396	2.33536931	7.6440250
142	0.98353103	1.950251373	2.50851828	-0.2449952
143	1.736969725	0.991537809	2.5691601	1.2271916
145 146	-0.211768579 1.912710035	1.46336231 0.926306508	-0.93580247 1.81253333	0.4941213
140	0.675736703	0.99202385	-0.66034472	-0.6630266
148	0.757176542	1.83006252	0.16210659	0.2436748
149	0.438772371	1.091438092	-0.1560319	-0.6171164
150	0.84399938	0.675302022	-1.69771411	-0.7384171
151	0.633570539	0.988413715	-0.54991825	-0.4355032
152 153	0.911582356 0.319053885	1.974700218 2.531735341	-0.92267786 -0.39139184	0.6286600
155	0.714814512	0.690769753	-2.06588692	-0.7335662
155	-0.161798388	0.032135767	-0.13802086	1.7349284
156	-0.571799976	-1.32834264	-1.65346017	1.8566895
157	0.131224024	0.21510779	-1.70996346	0.9649021
158	1.201616145	-0.21158932	-0.8501176	-0.3333077
	0.811289908	1.606645397	0.25352447	-1.8377511
159			0.25352447	-1.8377511
159 159	0.811289908	1.606645397		
159 159 161	0.811289908 0.475184006	1.99305646	1.90910177	3.2883370
159 159 161 162	0.811289908 0.475184006 0.833030517	1.99305646 0.487189028	1.90910177 1.76798642	3.2883370 0.1043781
159 159 161	0.811289908 0.475184006	1.99305646	1.90910177	-1.8377311 3.28833703 0.10437810 -0.81090824 0.77805563

-continued

-continued

	-continued				-continued					
Material No.	MORV value for Equation a.)	MORV Value for Equation b.)	MORV Value for Equation c.)	MORV value for Equation d.)	Material No.	MORV value for Equation a.)	MORV Value for Equation b.)	MORV Value for Equation c.)	MORV value for Equation d.)	
1.69		0.81048403	0.09507101	1 (1821100	2(7	1 175007006	1.02507000	0.11004734	0.505(480)	
168 169	-0.310930833 -0.2346025	-0.81048493 0.890438419	0.08527131 -0.13206526	1.61831109 -0.83961838	267 269	1.175997006 2.367197222	-1.03507906 0.457286256	-0.11004734 0.02211231	-0.50564806 0.497925297	
170	-0.169223695	1.172917966	-0.11306441	0.099121666	205	0.711734628	-1.45058685	-0.17018094	-0.71795736	
174	2.863652137	0.236674094	-0.69038707	1.610215283	271	1.073564668	-0.47951936	-0.80269361	0.136837431	
175	1.789769228	-0.31740428	-0.89529921	-0.09686469	273	0.663835001	-1.5674675	0.28509522	-1.12959038	
176	2.625947334	0.083548191	0.30634559	-0.35925728	274	1.628173498	-0.58892922	-0.3892777	-0.66728139	
177	1.674319352	-0.22179044	0.42093738	-0.23683577	275	0.935336765	-0.9522644	-0.87000279	-0.29365972	
178	2.863652137	0.727069168	-0.26724686	-0.44888613	276	-5.989155804	1.722071272	3.31094703	1.273171428	
179	0.070511885	0.365852864	1.35327505	-0.03748038	277	0.904631703	-1.02628534	0.49274649	1.000655271	
181	0.976254543	0.691638796	0.51371978	-0.02503945	278	0.293923493	-0.82335619	0.13147975	2.730914048	
182 183	-1.842503751 3.195758563	-0.12688474 3.886545621	2.56277877 4.29482769	0.111744488 3.829845293	280 281	-0.284822555 2.201373139	0.322094188 2.228820089	3.2184015 2.03455575	0.383213731 1.720697243	
185	0.333889534	-0.67236766	2.21605977	4.254612125	281	0.505189899	-1.01844885	-0.98499144	0.912195522	
185	5.61162203	1.40458529	2.86231343	1.035135749	282	0.775002479	-1.29876341	-1.52162214	-0.77292581	
186	1.068190511	-0.65969343	-0.63104765	-1.36962992	284	0.505189899	-0.57830662	-0.55673047	-1.09870665	
187	1.396358739	0.249705611	0.81449499	-0.15353102	285	-0.987611415	0.908212704	2.59089199	1.311154128	
189	1.544466636	-0.33742685	0.8096674	-0.44483677	286	-2.635687733	-1.53554173	0.68132558	4.350511118	
190	-0.210918777	-1.04086063	0.02614862	3.362615492	287	-1.890800496	-0.9175912	-0.84177071	0.615422874	
191	0.715897301	0.666316436	-0.41719538	0.400723176	288	-0.417807714	-0.27643667	1.06515025	0.958812195	
192	0.65612864	1.231196814	0.75462061	1.514581532	289	1.078763544	0.263281029	1.00763749	0.866949263	
193	-0.394884432	1.129269425	-0.3157071	-0.61478944	290	0.733561298	-0.47493387	0.17088582	1.536463653	
194	-2.111794245	-0.71010521	0.53077207	0.59302222	292	1.2252731	0.720498276	4.33362953	2.202084022	
195 196	1.18880856 1.885714606	0.704463775 0.436434665	1.99312777 1.44657532	1.419709023 1.145809063	293 294	0.947860369 -1.051634009	0.93449449 0.136579632	1.85056304 2.17918871	0.355024738 -0.01949057	
190	2.174580668	0.133070149	0.99814905	0.871658496	294	1.039790111	0.81471915	-0.94326824	0.887662055	
198	-0.533922573	-2.16213117	0.5812107	-0.92280453	295	1.009509413	1.364418947	1.42805339	0.429992055	
199	1.493919434	1.45125612	1.95141371	4.403441058	300	0.246930208	1.113809101	0.25540773	0.528760053	
201	-0.005520296	-0.83362523	0.65480762	-0.38894276	301	0.246930208	1.113809101	0.25540773	0.528760053	
204	0.732981164	-0.97494758	-0.91192246	-1.00034323	302	0.697198045	-0.41500676	-2.35076003	-0.60639529	
205	0.991838899	-0.60053505	-0.49983634	0.674468753	303	0.10667178	3.580489288	0.25893587	2.329367856	
206	2.147983695	1.291351958	1.64553247	1.626455601	306	0.561360663	-0.17793966	-1.63250554	-0.7564969	
208	-0.386224123	-0.24799559	1.19406353	-1.61243489	307	1.583243229	1.398558046	0.152423	-0.13988304	
209	1.447075297	0.122626462	1.08021156	0.473154634	308	-0.067380931	0.74278658	0.29217479	0.180866298	
210	-0.386224123	-0.24799559	1.19406353	-1.61243489	310	0.238202662	0.926241567	-0.66649303	0.508184193	
211 212	2.186118467 1.367811201	1.873949371 1.689658923	0.64852028 1.8017376	-0.59205851 2.525531645	312 314	0.714965519 0.736369931	-0.45511207 -0.52068396	-2.34849436 0.53882253	-0.9953911 -0.7059813	
212	0.925016223	0.875610609	0.31462609	0.847028648	314	2.314558863	-0.25458611	0.22080129	-0.04142716	
213	-0.239873321	1.808823425	-0.36105512	-0.07650286	317	1.095005005	0.057439852	-1.20728654	0.035895107	
215	2.264275088	1.360001278	3.25759951	2.147928282	318	-0.111714595	-0.61079351	-1.16010053	1.102488007	
218	-0.509585598	-0.93428643	1.63030386	-0.79436377	319	-0.264829849	0.540388888	0.10729709	-0.57215449	
221	1.876297063	0.026873469	0.45442758	1.538486988	321	1.243861203	-0.75229123	0.05515858	-0.34659253	
227	5.317676982	2.824566654	1.73360625	3.103310061	322	0.956379568	2.838565742	2.7997689	0.805938034	
228	3.323728685	1.554268023	1.8883835	0.957527434	323	1.884902746	0.813499245	0.86344403	-0.1241887	
229	3.218950175	1.464118271	2.47512497	1.214429025	324	0.189037208	1.105600415	0.48460989	0.285938173	
230	5.242356467	3.482206715	3.50441556	1.614847073	325	0.791400443	2.454239197	1.54315324	1.416449646	
230	5.242356467	3.482206715	3.50441556	1.614847073	328	1.22836182	2.190068443	2.48751772	0.126982574	
231 231	2.710087358 2.710087358	1.517756148 1.517756148	0.35088855 0.35088855	0.603171932 0.603171932	329 330	1.800767509 2.688999059	1.372656013 0.017422444	2.09551175 0.34929031	2.849728342 0.108155361	
231	0.703604481	0.42129186	0.39567696	0.41729786	330	-0.223648429	0.873635097	1.78683863	0.126324441	
232	1.312921486	0.816597603	2.17066283	0.472801294	332	1.884902746	-0.46695445	0.1761545	-0.11026722	
233	0.874145958	0.741410502	1.71105733	-0.47289415	333	0.956379568	2.838565742	2.7997689	0.805938034	
237	0.778921491	-1.02119303	0.4612164	-0.8881184	334	0.569368001	2.811464091	1.88866785	-0.16122533	
238	0.681403734	-0.342052	1.27750286	-0.3383341	335	1.931053264	2.306571877	4.45651797	4.474221307	
239	-0.870637933	-2.58292907	0.79173772	-1.27888846	336	1.355107839	-0.49142588	0.83879083	0.18350392	
242	0.910211214	0.374558101	1.01712685	1.001043471	338	1.025467157	-0.99345477	0.57780149	-0.19101275	
243	1.670680003	0.104780951	-0.6545574	-0.46985154	339	1.216559787	-0.68632827	0.71921804	0.140021721	
244	1.140332181	0.116513028	1.61110902	3.713305291	342	2.073599715	-0.19777074	-0.44964804	-0.71885866	
246	-0.634992987	0.548746912	4.62542427	7.660969857	343	3.375840967	3.294907583	5.0378352	4.14804591	
247	-1.739729444	-0.91508372	1.18693162	3.108631198	344	0.926453735	1.336260845	2.20088072	0.226359561	
248	5.81821686	6.320330665	6.14379552	5.214046447	346	-0.133453942	-0.27276578	0.95852923	-0.88404805	
249	0.348188924	-0.95333461	-0.08432225	1.866717393	347	-0.414858428	-0.94736055	1.9452074	-1.32753709	
252	2.456287983	-0.02516176	0.76814124	1.756087132	349	0.011110326	0.415952358	1.08076289	2.638925816	
253	1.76915226	0.226389981	-0.18115009	-0.62385199	350	-1.366284701	-1.3912958	-0.0683659	1.205395618	
254	0.658956861	-0.39322197	-0.67153044	1.416053304	352	2.592229701	2.014162407	-0.56599991	-0.19676404	
255	0.892122738	-0.46985097	0.42813903	-0.46752753	353	2.347680291	1.432589328	3.81650185	2.28664738	
256	0.625043963	-0.65111806	1.4319541	2.110656697	354	-0.094599823	0.704257624	0.8494127	-0.05632553	
258	-0.187789327	-0.85870492	-0.21766971	0.931521178	355	-0.534528735	-0.26820008	0.69328667	0.63557685	
259	-1.261365139	-2.33099427	1.33595129	0.43644676	356	0.71431796	0.568464069	1.14931631	0.32594963	
260	2.4020693	2.669351733	2.36395771	1.910609499	358	1.637857828	1.932629993	0.68535871	-1.06298922	
261	1.978618006	2.732613301	2.19594212	1.683156477	359	3.169264285	2.326146291	5.44251947	3.621423972	
263	1.350274014	-0.59210334	0.14780643	-0.13113746	360	2.824830639	3.29829616	3.43870859	3.771256974	
264	0.526085484	-1.54983116	-0.17497208	-0.8204696	361	0.772183137	0.62924397	1.14549597	0.743423792	

No

362

363

364

365

366

368 369

370

371

372

373

374

375

376

377

378

379

381

385

385 386

387

388

388

390

391

394

397

398

400

407

412

413

414

415

416

417

418

419

420

421

424

425

426

428

429

432

436 437

438

439

440

441

442

443

444

445

447

448

449

450

453

454

455

457

459

461

462

463

464

465

466

-0.191220659

0.067062979

2.24237992

0.125280183

557

-1.043779684

0.358151507

0.96578333 -0.7498558

-continued

-continued MORV MORV Value MORV MORV MORV Value MORV Material MORV Value MORV Value value for for value for Material value for for value for Equation d.) Equation a.) Equation b.) for Equation c.) No. Equation a.) Equation b.) for Equation c.) Equation d.) 2.158106604 -0.08901432 0.85035629 -0.37323677 467 0.940569103 1.267891616 1.68420132 1.263608034 1.485114303 -0.85819594 0.70929196 4.132013298 468 0.123370943 1.164309475 0.17099727 -0.95446701 -0.661168364 -0.302708752.49237859 -0.7675819 469 0.925252053 -0.57178441 0.69807561 -0.59133195 -0.518303431 -2.08665423 0.5658944 -1.10451499 470 2.237616041 1.810156128 -0.58140154 1.320304914 -0.501301831 0.561788544 0.14113617 0.610082057 471 1.714516544 -0.62135116 0.23636624 -0.2706853 -0.106125097 1.092782715 -0.89571841 -0.08594454 472 0.605628283 0.938001104 0.50028363 0.743911872 1.43532227 1.656262941 -1.09448841 1.674272267 473 0.093847515 -1.1973016 -0.26960381 1.829684619 1.064083705 -1.08482967 0.35640283 0.866246621 474 0.696773849 1.065592689 0.37607733 -0.19214193 1.933819902 0.975863726 1.62799441 1.492919426 475 1.405352842 0.379589036 0.27781476 0.041425889 -1.59912382 1.933819902 0.975863726 1.62799441 1.492919426 477 0.237582954 0.629327199 0.45159895 0.274120553 2.246646022 2.93946992 2.617412085 478 1.360648836 0.598053217 2.00883441 -0.08277150.940949346 2.935858163 0.52084392 479 2.214928637 -0.24358938 -0.3486103 0.9190125 0.847114052 0.373809692 1.933819902 -0.3826187 0.97439148 0.177236108 2.745061961 0.76268843 480 1.491603428 0.97439148 -0.999571921 0.579320229 -0.06019938 -0.94280945 480 1.933819902 -0.38261871.491603428 0.612364301 0.521811983 -0.84766410.7732327 1.729406547 481 -0.26364231 -1.3201026 -1.62884377 1.604448424 -0.532701772 -2.178231881.26760147 0.815211357 482 1.286308964 -0.342892840.887781648 1.604448424 -0.684994963 0.018353057 -0.8170018 0.582030709 482 1.286308964 -0.34289284 0.887781648 1.592237677 1.373054134 0.60184939 -0.30300485 484 3.269313083 2.336715633 3.65534824 2.158890088 0.967501839 0.136172137 1.3645564 0.374341215 486 1.530484593 1.052491466 3.11297562 0.430146348 0.967501839 0.136172137 1.3645564 0.374341215 487 2.889323404 2.226094104 4.12877599 2.184426542 1.247138794 -0.97883463 0.03688288 -0.57321578 488 1.062548487 4.75312035 2.78435853 2.01925207 0.785485559 -1.23629818 -0.07759084 -0.71795736 0.397432667 -0.20071274 0.842202 1.944142408 491 1.503632155 -0.13455265 0.86630165 0.102845335 493 0.270731661 -0.7406408 -1.17192239 1.401933582 0.854414067 1.503632155 -0.13455265 0.86630165 0.102845335 495 0.298981649 -2.2714622 -0.62848261 -0.17445198 0.565278409 0.811363694 0.872605919 1.358866557 496 0.659352661 -0.00159534 0.384991859 0.46475017 2.972647554 1.653006495 -0.44095837-0.16817306 497 1.210988046 0.08629653 0.991649406 1.043989895 -0.82625074 0.40893134 498 0.229707592 -0.75515466 -0.104175422.863652137 -0.060220290.15684862 1.827989577 0.67676345 1.430046723 -0.79407262-0.4384694502 0.478208715 -0.88328385 1.35530191 -0.63550333 1.117392544 -0.21773539 0.272770415 -1.4017234910.271079592 503 0.845706083 -0.93642574 -0.13193338 0.837488879 0 874463134 0.762211626 -1.06778628504 -0.08311625 0 149327397 0.076054765 -0.59137073 -0.89435031.41392426 2.694863328 505 1.749446006 0.291488011 0.591198428 -0.219630040.57788677 -1.22740398509 0.716903285 -1.93027881-1.52173529-0.067309295 -0.229172880.630456164 1 538096427 2 10994563 2 45668637 510 0 241638743 0 769444787 -0.07283731-0.387717370.460631327 3.678501689 1.18326431 1.28320952 512 0.556069536 -0.47514685-1.88388474-1.672972770.23291131 -0.99553291 0.060485009 -137776759-0.226897282 328813337 515 0 598998195 -0.408295421 864088631 0.2451067 1 63260125 1.855346924 517 0.784181146 -0.20530019-1894147480 152726109 -0.747017264-2.60335412 0.85092701 3.525229717 518 0.742030255 0.281479436 -1.4156326-1.913696950.367442761 3 678359573 3.437930194 4 4 2 4 4 9 7 4 6 0.716864637 519 -0.50911405-0.776518043 081125259 -0.1315193930.731836014 0.81604919 -1.29993979520 1.28335174 -0.169761660.19676128 1.493753388 0.11276779 -0.130294530.19422843 0.853490939 521 -1.105672292-1.29204085-0.95149628 1.817322011 2 819997124 0.193567405 1 1 5 9 0 3 1 6 2 1 748390255 522 0.714965519 -0.45511207 -2 34849436 -0.9953911 -0.211768579 1.46336231 -0.93580247-1.48749449 524 0.325255266 1.131242708 -2.79377204 -0.62848261 2.161517022 0.979060885 0.37926876 -1.467980751-2.41196874 -0.34454968525 -0.210625832-2.080029772.176374648 2.131594325 1.99252316 0.002774099 526 0.698504484 0.548193178 0.92265651 0.500152973 2.10568799 0.336366154 -1.411768830.827982605 527 0.420012766 1.731459464 -0.23341719 0.139565409 2.179080731 0.811454228 -0.583047820.827982605 528 0.161304111 0.66712144 0.58401752 0.373809692 0.814675557 -0.13076033 1.07380397 -0.01560954 529 0.911890585 0.353572744 1.04706167 1.001090055 0.003614069 -0.4704298 1.6004974 -1.27605297 530 1.670680003 0.86138741 -0.27652639 1.174059185 -0.070955783 -0.17246926 0.32599434 0.682083059 531 -0.169223695 1.172917966 -0.11306441 0.099121666 0.71141055 -0.62729405 0.6220964 0.498836975 532 2.237616041 1.438074134 0.31117554 -0.71786492 -2.152188932 -1.81662702 0.66042162 534 1.205873658 1.32208026 -0.5027271 -1.570018861.21816392 0.194444196 0.880854446 0.80016905 0.373809692 535 0.999469738 0.056406435 0.72382479 -0.61170287 2.349282571 1.734747324 1.71148239 536 0.63876931 -0.39111525 0.08747854 1.274963632 -0.66833729 0.243841724 0.036287037 0.51243015 0.361825534 0.689953348 1.206425159 0.58870271 0.198159994 537 0.81604919 0.54988634 -0.32842011 0.69258273 -0.131519393 0.731836014 -1.29993979538 -0.81953404 -0.42710132 0.735538933 0.6955468 0.607958335 1.910541857 -0.46909656 540 -0.20826876 -0.7170218-0.047486491 1.045012945 -0.25220201 -0.31982826541 1.097368973 0.740159871 0.12012053 0.137772993 0.611981677 0.559261438 -0.31210071 -2.20421695 542 -0.24632881 -0.09354384-0.13580399 0.599029186 0.03088748 544 0.687639306 1.14537443 0.45491409 0.804084437 -0.17549737-0.30861817-1.128654810.323968221 -1.65151616546 1.94609957 -1.004280761.031096548 1.670680003 0.19633838 1.14825764 1.433196296 -0.122778413.46809784 -0.14760118547 -0.24632881-0.23975349-0.014492880.574861147 1.138642907 0.238344138 -0.56453732 1.349418105 -0.29885837 0.42849141 0.008671721 -0.60639529548 0.689556954 -0.32116049 0.17614165 0.99165159 549 0.623933699 -0.62776258 -1.2835205 -0.23131507 550 0.91994098 -0.978653338-0.963819510.37950282 0.793341469 1.091300413 -0.339690570.043900994 2.740852074 1.146976436 0.01429902 0.909817098 550 1.091300413 -0.339690570.91994098 0.043900994 2.034203389 -0.06483391 0.25864307 0.096715771 551 1.172668936 -0.39476924 -0.61394794 -0.16425167 0.405441454 3.029508918 0.621375526 552 1.434150355 1.041294025 0.32000606 1.66201629 1.24279868 1.348588872 2.252065606 1.98535615 0.126982574 553 1.040907688 -0.38050079 -0.95306497 -0.03036668 2.402548765 0.141297665 0.32401564 0.165555831 554 0.623933699 -0.65991007-1.27562979-0.61529805555 1.396358739 -0.352926340.11760582 -0.139609540.623933699 -0.09654208-0.6432411 1.36608372 0.940569103 1.267891616 1.68420132 1.263608034 556 0.623933699 -0.62776258 -1.2835205 -0.23131507

-continued

-continued

	-continued				-continued					
Material No.	MORV value for Equation a.)	MORV Value for Equation b.)	MORV Value for Equation c.)	MORV value for Equation d.)	Material No.	MORV value for Equation a.)	MORV Value for Equation b.)	MORV Value for Equation c.)	MORV value for Equation d.)	
559	2 1125 48287	0.001040407	0.07402044	2 171120217	644	0.85172251	0.664225682	1 88200246	0.051(02(08	
558 559	3.113548387 1.433732801	0.901949497 2.854621121	-0.07402944 1.81079379	2.171129217 0.893806123	644 645	0.85173251 0.417907652	0.664325682 -1.00347186	1.88299246 0.9667556	0.951603698 -0.47157656	
560	0.793851811	0.195900744	1.13222828	-0.38432626	647	0.221569324	-1.2239438	0.91464498	-0.19166679	
561	1.874725149	0.921395625	3.05642524	2.616508159	649	-0.560315649	-0.67419393	-0.02482011	1.492767049	
562	-1.30410643	-2.63450231	0.12574616	1.001870337	650	1.640396187	0.328871961	0.04729888	0.912259803	
563	-0.153585698	2.733591064	2.12854196	3.424603045	651	0.672555558	-0.9987845	0.48545476	-0.13530683	
565	3.655479783	3.751479035	5.51820797	3.282822615	652	-0.995969271	-1.38653208	-0.49268035	0.944524468	
566	4.034374094	3.755759834	4.82506006	3.190861648	653	1.203949791	0.0153333	-0.10401424	0.73323846	
567	4.203811008	3.627632534	4.68751919	3.372829008	655	1.334772083	0.418728831	-0.92221842	1.317365259	
568	1.643514525	0.827299302	0.70706274	2.545428997	658	0.414934548	0.314990682	2.78051829	2.656854539	
569	2.692371513	3.589810155	4.40390088	4.506937878	659	3.996948911	1.915319951	3.03990612	5.764113617	
570	1.707556133	2.400065573	1.78745169	2.655458557	660	2.175041013	1.882945358	0.07779745	-0.18323732	
571	1.862893827	2.803280605	0.98209954	3.188564781	661	-0.316755016	1.64607349	2.76327471	2.024910676	
572	1.203581368	0.798608763	2.67898788	1.659633314	662	0.258228842	0.844792644	0.1924797	0.098776211	
573	2.459623568	2.656773866	3.54771795	2.085649266	663	1.521826905	1.097809988	2.13583044	1.30609234	
574	2.878405284	1.770500246	4.00464111	4.859737959	664	0.708920214	-0.27795513	0.15395433	0.014791904	
575	-0.395731956	0.325594009	0.98982713	-0.25791379	665	0.630772742	-0.34278374	0.49097281	-0.0565644	
576	-0.2346025	0.890438549	-0.13206526	-0.83961838	667	0.812238101	0.195908668	0.21564664	0.219336109	
577	0.484934913	2.001798597		-0.05230593	668	1.529097453	2.246515706	1.4678099	-0.81836944	
578 570	1.138642907	-0.72228381	-1.0321	-0.60639529	671	1.453855457	-0.51177209	-0.78608937	0.361715513 0.084880782	
579 580	-2.722013313	-3.79238321 -0.66601616	-1.13572295 -0.95089973	0.953543134 1.036450105	672	0.771613806	-0.81209599	-0.85297613		
580	1.138642907 1.105119249	-0.82090309	-0.06184517	-0.90904158	673 674	1.874725149 5.912391366	0.921395625 3.468705262	3.05642524 6.81994671	2.616508159 7.217631788	
582	2.092976965	-0.31228784	0.08755137	-0.62955362	675	0.525794155	0.473286101	2.51749677	2.935001452	
583	-0.24632881	-1.33540368	-0.96483147	0.624830731	676	0.623704257	1.523736626	2.50208859	2.474137331	
584	2.237616041	0.30800753	-0.44296441	-0.71918014	677	-0.548848405	0.058004962	1.07849806	2.361730638	
585	0.634021669	-0.28724544		-1.361765	678	4.818555677	1.506257638	4.96635528	5.508133385	
586	1.313957377	0.449601		-0.30998322	679	4.332202737	2.699343437	5.65576391	5.021298111	
587	0.304876136	-0.43283205	1.23096012	0.398961811	680	4.042984412	4.75506829	4.65903898	4.913020939	
588	0.449793066	0.007950225	0.8004147	-0.63434071	681	0.5959536	2.091803965	-0.14697928	-0.71889234	
589	-0.681766404	1.08547116	0.54331319	-2.16710754	683	0.87899671	0.043210589	1.37554648	-0.60198897	
591	-0.34676031	-0.77573166	1.85884084	0.312272735	684	2.349844428	1.181400632	2.15359469	2.136987013	
592	-1.573190219	2.29028194	1.86285367	0.687279186	686	1.024635336	1.040500794	0.9820242	-1.16405004	
594	-1.45374647	0.452156392	2.48970747	0.858468114	687	0.551495677	0.66297128	-0.45433071	-1.28827912	
595	0.058003677	-1.91126878	1.52586392	-0.07528071	691	1.609835015	2.898881191	-0.99203246	-0.15162554	
599	1.485777974	1.54384772	0.79002365	-0.09069773	692	2.002379485	3.95875961	1.1705779	0.346542121	
600	1.914093549	0.841364523	0.15173954	0.255445859	693	4.264631423	4.375626605	0.93418004	0.114988571	
601	1.203870517	1.17864533	1.22686262	0.453935114	693	4.264631423	4.375626605	0.93418004	0.114988571	
602	0.771984982	0.66859171	-0.37427136	0.07599515	694	4.858313721	4.772826468	3.58732214	2.558402204	
603	3.218950175	1.464118271	2.47512497	1.214429025	696 697	2.99409154	3.843066736	2.50597637	1.205022789	
604 605	2.710087358 0.703615734	1.517756148 0.42129186	0.35088855 0.39567696	0.603171932 0.41729786	698	0.407534444 0.983060431	2.829113684 2.328872529	2.16548165 1.67788951	0.756766079 0.805938034	
606	0.055463315	1.972687323	3.42898264	1.395457482	699	0.996500165	0.60129571	-0.27496491	-0.22179967	
607	-0.146397553	-2.05649732	0.17598641	1.900931587	700	0.698400489	0.514637899	1.14265307	0.816064314	
608	1.473771668	2.08260463	-1.09319437	0.44289209	701	0.592372435	-0.67812322	-1.75051912	-0.51109618	
609	-0.466215117	0.845009196	1.89800228	0.840292062	702	-0.211768579	1.46336231	-0.93580247	-1.48749449	
610	2.14236439	1.079695535	0.29060257	1.329215628	703	0.372029303	0.866016277	-0.91679974	0.347054507	
611	1.078583502	1.707732184	-0.73721672	-0.87923138	704	1.187861135	0.858978871	0.1265005	0.217668671	
612	-0.128136098	1.038320983	-0.63703066	0.184527669	706	0.193569186	1.623921627	0.08867618	0.808617424	
613	1.599427115	3.615521066	0.43343413	-0.1515479	707	0.819562098	3.57840156	3.38080377	1.26599216	
614	1.489603514	2.706865637	-0.06242639	-0.47244791	708	2.391828225	1.877690145	3.85935427	1.647356195	
615	1.960664614	4.490550162	2.26962278	0.346542121	709	1.280902077	2.17019575	3.40315777	0.126982574	
616	2.689328335	3.692579375	2.01499213	1.348800283	710	1.454593977	3.128186882	-2.26368122	-0.02251455	
617	-0.845027889	0.504788036	0.4957383	-0.65628324	711	-0.783387499	1.465620573	1.22912535	-1.41213701	
618	-0.461016335	1.612995126	1.09551709	-1.62235977	712	1.936489942	2.528373237	2.13424487	2.393940425	
619	-0.222804396	0.361727974	0.62743416	-1.02982449	713	1.303999908	2.146563611	-0.26420591	-0.01477791	
620	0.745610019	-0.76737462	-0.67364137	1.696394301	714	2.3584433	3.778880151	3.4396901	1.593719007	
621	3.671429366	1.708460032	4.57083156	1.955988764	715	4.023918591	3.403899942	5.07447567	4.880181625	
624	2.139270802	2.093130621	2.5533383	3.30383102	716	0.981194248	1.73892162	2.21166953	2.738129365	
625	0.665423108	1.356936283	1.5515704	1.874119646	717	0.983060431	2.328872529	1.67788951	0.805938034	
626	1.292942787	0.621140137	2.28513785	1.042322574	718	1.241840746	3.430871861	0.55000978	1.073616332	
627	1.14724223	-0.51104438	1.01088446	1.51232276	719	1.483275952	3.037398628	-1.55547275	-0.47244791	
628	1.44418619	3.825155203	-0.84341678	-0.02251455	720	2.372311412	3.403234423	-0.21191089	-0.08519829	
631	2.622138509	5.106659136	4.48303003	2.115425367	721	2.128185431	0.274654772	0.47626043	2.465333527	
632	2.450328692	4.670297017	4.54579766	2.15781135	722	0.616377169	-0.58753328	0.48821573	1.063402884	
633	1.560465308	2.636096631	2.45546606	0.920962489	723	-1.273274319	-1.12897478	1.71118519	4.067480158	
635	1.510161132	2.388971583	-0.63579931	1.939575919	724	2.103515193	0.165377929	-0.18223896	0.288303217	
636	1.433842763	0.529693203	-0.23195491	1.22356734	725	0.983060431	2.328872529	1.67788951	0.805938034	
638	1.921725015	0.758255259	0.81570609	3.615611357	726	2.887615733	3.282342953	1.95034945	2.462290186	
639	0.422001837	-0.14885323	-0.00660617	1.726576493	727	2.241052707	2.13951389	0.36814978	0.371689426	
640	0.865825265	-0.28827025	-0.54129473	0.283616979	730	1.121105724	-0.20397307	-0.15741334	0.897609916	
641	0.813978315	0.509726232	0.37457254	0.842075065	731	1.437838545	-0.09620743	0.02756967	1.949139525	

Material

No.

754

758

774

782

786

789

-continued

-continued

-continued				-continued					
MORV	MORV Value		MORV			MORV	MORV Value		MORV
value for	for	MORV Value	value for		Material	value for	for	MORV Value	value for
Equation a.)	Equation b.)	for Equation c.)	Equation d.)		No.	Equation a.)	Equation b.)	for Equation c.)	Equation d.)
-0.46922259	1.067777032	1.61226345	0.185415155		837	1.670680003	0.070165381	-0.64700996	-0.85055617
-0.081273581	1.192925027	1.67970188	0.33874614		838	0.810918992	-0.75696962	-0.21854084	0.836677293
-0.13000788	1.099012031	1.64139691	0.248287146		839	1.066219316	-0.66764691	-0.49983634	0.669914
1.670680003	-0.20756775	-0.73755051	-0.84924056		840	1.078821776	-0.72511699	-1.00012288	-0.15789319
-1.532691904	-2.55214711	0.57438104	0.555698696		845	-0.163950017	-0.21616766	0.65276069	-0.52575739
1.407504561 0.644803847	0.048284736 0.644647752	1.01405149 1.35192052	-2.2579901 -0.62780087		846 847	0.665621985 -0.233400992	-3.16625248 -1.15488444	0.34329102 0.83051343	-1.44312939 -1.85751897
0.174679072	0.169515693	0.62350977	-0.08144308		848	-0.631135606	0.037691556	0.57903451	-0.9926
0.02068385	0.648730454	-0.04946215	0.214634634		849	1.707541313	0.010345383	0.48581606	1.513341091
0.741424752	0.523647641	0.52863925	-0.65426285		850	1.447075297	0.022864201	0.99130501	0.473154634
1.285306965	1.929408375	0.85560877	-1.4619958		851	-0.24632881	-0.23975349	-0.01449288	0.574861147
-1.513804897	-1.10823383	1.09397284	-0.88975989		852	1.176028423	-0.85747031	-0.72464089	0.30542841
2.554017714	3.544542579	4.42317523	1.647356195		856	2.237616041	0.345329597	-0.60597063	-0.71581056
2.592229701	1.158945916	0.24149847	-0.58379051		858	-1.47960224	-2.5770536	-1.03619781	0.847300104
1.649506181	1.31981993	2.36997533	0.406081966		864	1.670680003	1.284791101	0.14864516	-0.84985664
-0.028552173	0.253838465	0.95694896	-0.16565786		865	1.670680003	1.916382859	0.6998144	1.124089601
1.446915042 5.933043009	0.673406021 5.716461604	-0.6641103	-1.80002119		866 868	1.024819853 2.237616041	-0.7521596	0.35073152 -0.86317199	-2.14193241 1.325805381
-3.195604514	-2.60998376	6.67410554 -0.11222221	4.433272782 0.792186468		868 869	1.747776963	-0.17986241 -0.25802105	-1.11614995	-0.77093434
0.286783044	-0.52414055	-0.57593161	0.628896611		870	2.592229701	2.030913569	-0.50618719	1.463926567
1.405567948	-0.84372738	-1.32379279	-0.50314577		871	2.592229701	2.510587108	-0.07540594	-0.58371481
0.279442569	-1.00722191	-0.18524031	2.487147765		872	1.800767509	1.372656013	2.09551175	2.849728342
-1.32777782	-2.36136561	-0.79602501	1.247063893		873	1.849432484	4.556065495	-0.39732139	-0.67726477
-0.692560954	-1.92177717	0.46687554	2.400762497		875	0.201768224	0.618509503	-0.39732139	-0.67726477
1.889999468	1.112266205	0.82815523	0.525271623		876	2.237616041	1.553468488	-0.72864242	-0.33330779
2.237616041	2.282141767	-0.149966	-0.71866539		877	0.323968221	-1.00428076	-1.65151616	1.031096548
0.909356011	0.368597887	1.03689838	1.001198751		878	0.783570663	2.023288951	-0.03975252	0.474038265
1.328601831	0.715296776	0.20358825	1.147403521		879	1.187592149	1.464239711	0.67009263	1.103774764
2.002379485	3.95875961	1.1705779	0.346542121		880	-0.192632911	0.142411101	0.79310676	0.125548041
1.936489942 1.495019673	2.528373237 4.35984375	2.13424487 2.59969954	2.393940425 2.95313487		881 882	1.071875228 0.798806784	0.911734331 -0.1516478	-1.50008456 -0.64900063	0.185176261 -0.77199025
0.206892499	-0.57813502	-0.32983	0.781221286		883	-0.671908804	-0.65984824	0.5238174	-0.85314111
1.340232187	-0.11034804	0.35759778	1.690582999		884	2.863652137	1.896850773	0.06443558	-0.44689505
0.595257521	-0.85639987	0.19436224	-0.73333902		885	2.314558863	-0.25458637	0.22080129	-0.04142716
2.187955186	2.571774369	2.74817529	-0.52827851		886	2.314558863	-0.25458637	0.22080129	-0.04142716
0.893855657	0.63313304	1.19104388	-1.61620514		888	0.131224024	0.21510779	-1.70996346	0.964902175
-0.275919571	-1.64491584	0.60429762	-1.5580623		889	0.742030255	0.281479436	-1.4156326	-1.91369695
-0.043537347	1.337721065	-0.56551398	-0.02167052		890	1.071875228	0.911734331	-1.50008456	0.185176261
2.147983695	1.250042565	1.72576392	1.626956379		891	0.742030255	0.281479436	-1.4156326	-1.91369695
-0.624451013	0.76248127	-0.79219481	-0.73513092		892	1.749446006	0.076054765	-0.59137073	0.291488011
0.227060873 0.90746622	-0.04783658 1.643598677	-0.16862915 0.26467094	1.166609659 0.396081003		893 894	0.869958847 1.749446006	0.843158237 0.076054765	0.61532515 -0.59137073	3.158279932 0.291488011
0.811374104	0.766579899	0.10161642	0.135186519		897	-0.047486491	1.045012945	-0.25220201	-0.31982826
-0.185638022	0.53853264	0.65441562	-0.25681926		899	0.784181146	-0.20530019	-1.89414748	0.152726109
0.657769581	0.095543194	0.89522656	0.558428618		900	0.784181146	-0.20530019	-1.89414748	0.152726109
0.227060873	-0.04783658	-0.16862915	1.166609659		901	-0.440378333	0.918089245	0.03050609	-1.62235977
-0.660595577	1.597474466	1.49106895	-0.20429128		902	-0.2346025	0.890438419	-0.13206526	-0.83961838
1.706162052	0.623892414	0.59662073	0.7745661		903	-0.440378333	0.918089245	0.03050609	-1.62235977
3.478490379	2.348697011	3.96279011	2.456963386		904	-1.320466583	-2.49763118	0.9787365	-1.85867969
0.377241729	0.83329773	0.1712741	1.057125999		905	-0.386224123	-0.24799559	1.19406353	-1.61243489
2.863652137	0.771287371	-0.4183972	-0.44551461		908	1.878331515 0.614968453	1.287303121	0.11530502 -0.80789799	1.132065786
1.794279084 0.408210632	0.711717977 0.633556897	0.35187068 -0.37022584	-1.0208486 0.717270748		909 912	0.530707518	-1.61827184 0.774109528	3.0396125	-0.66927285 4.394775258
-2.506277966	-2.61703099	0.87880054	-0.72832121		913	0.337020095	1.531840025	0.10544973	0.347450471
-0.789075789	-0.15346024	0.64720487	-0.48507671		914	0.774589061	1.224705331	1.87994281	-0.11684579
-1.395132583	-2.59063834	0.14973761	0.623759794		916	-0.363201351	0.35600238	-1.20673542	2.056973054
0.414608216	-0.23108581	1.15081653	-1.10351559		918	0.153047955	0.702054562	0.76757802	0.096096862
-0.24632881	-0.09354384	-0.13580399	0.599029186		919	2.891894151	2.295157633	3.54101626	1.984030826
0.805916178	0.96701754	-0.8811308	-1.23858491		920	1.292959895	0.808281618	2.92956952	2.204248324
0.744770665	-0.73855596	-0.2249849	-0.2981968		921	-0.465333775	0.862817284	0.1439546	0.64701735
1.099377934	-0.55297074	-0.58846144	-1.64325365		922	1.54265003	0.291977233	0.79089158	0.801314068
-0.183625049	1.183962609	1.63494269	0.25504959		923	1.340862559	0.503169303	0.53213093	3.164832031
1.678825829	1.234136613	1.45948258	0.224375571		924	0.158497146	1.507280765	2.25315926	1.173977914
2.592229701	0.621958527	-0.52522117	-0.19676404		925	1.23162703	1.671882685	3.1838372	-0.22917041
2.592229701	0.57915141	-0.51767373	-0.58077497		926	2.608734063	3.080604939	-0.69726361	-0.36219702
1.670680003	1.284791367	0.14864516	-0.84985664		927	1.879182741	3.409153142	2.48473663	3.409954437
1.116827432	-0.75462162	0.39137278	-0.04171761		928	-0.093106169	0.019939108	0.15932154	1.229749745
0.516805788	-0.98195801	-1.03806082	-0.25383454		929	1.670680003	1.94609957	0.19633838	1.14825764
1.490368312	0.080687244	-0.97130296	0.833722265		930	3.052627325	0.956834107	-0.29721209	-0.31007607
-0.369014518	-1.35841128	-1.27372214	1.351157886		931	0.367631287	0.501274945	-1.31074554	-0.39331005
0.914072736	-0.8695664	0.36889122	-0.08606658		933	3.702965303	3.03402795	4.33630831	4.238503729
0.998848923	-0.42464651	-0.23731009	0.395895785		937	0.570011387	0.097928934	1.03350455	-0.13392581

Material No.

993 –

 $\begin{array}{c} 1010\\ 1011 \end{array}$

1021 -

-continued

	-continued			-continued					
MORV	MORV Value	. CODITION	MORV			MORV	MORV Value	1 CODITION	MORV
value for Equation a.)	for Equation b.)	MORV Value for Equation c.)	value for Equation d.)		Material No.	value for Equation a.)	for Equation b.)	MORV Value for Equation c.)	value for Equation d.)
1.801474588	0.770314085	0.70188154	0.22333959		1033	1.617520676	1.008017006	2.21183536	-0.1288484
-0.412950838	-0.1781887	0.50649275	-0.57215449		1035	2.506372295	3.419954592	4.58206882	4.134341651
1.691004766	-0.42331992	0.66279648	0.0318465		1036	-0.675805062	-0.15357004	0.94597719	3.966016669
1.451782586	-0.565439	-0.32447381	-0.43378383		1037	-0.275092569	-0.67687665	-0.52763797	1.489972106
1.188491672	0.120632811	0.20106994	3.078484746		1038	2.753559643	3.81185814	2.71344734	2.243351472
1.214814941 0.561732094	0.806987609 1.21448402	0.47605587 0.35542793	1.372949466 -1.03704442		1039 1040	0.65087433 0.141526548	0.026885305 -1.65455278	-0.0153558 0.50170705	0.011870127 -1.90794
0.956565856	1.505997176	0.88115653	-0.60583691		1040	0.458680435	-0.69730218	-0.48806249	0.586073092
0.592575441	1.383482681	0.93567635	1.058669028		1042	-0.513264812	-0.22001961	0.36339519	1.03208599
0.343657562	-0.85471906	-0.21125904	1.184648122		1043	-1.497887014	-1.76116109	-0.76634926	1.137002742
1.236659334	3.828926809	1.57729777	-0.31942874		1045	2.863652137	1.96790869	0.43661485	-0.44756897
1.836389049 1.836389049	0.755753735 0.755753735	-0.36014522 -0.36014522	1.262853393 1.262853393		1046 1047	0.981194248 0.981194248	1.73892162 1.73892162	2.21166953 2.21166953	2.738129365 2.738129365
1.001653875	-0.85635082	0.89224781	-0.39245818		1047	0.70261974	-0.22197386	0.19710806	-2.37196477
-0.122918652	-0.846489	-0.63367729	1.182912962		1052	0.662126832	0.741436531	0.61672724	0.289359903
0.589766639	-0.9783487	-0.67638264	-0.38772225		1053	0.87463644	-0.19717783	1.2664131	-0.4187507
0.715082397	-0.90020686	0.86817768	0.030652004		1054	0.284558077	-1.46754925	-0.03124571	0.587227244
1.609198886 0.952787327	0.500797943 -0.90555475	0.795571 -0.17381408	0.908389449 0.06786323		$1055 \\ 1057$	0.885837831 0.790964847	-0.91907796 1.387925398	-0.45817355 -0.18370692	-1.1936897 1.302393792
1.836429446	0.208275147	-0.14300625	1.067462181		1057	-1.052897931	-0.85226912	0.90324527	-1.09684959
1.9158432	0.35211823	-1.02174589	0.625657932		1059	-0.871565421	-0.17856476	1.51267137	-1.52734367
1.383869627	0.274520494	-0.11659267	0.840327437		1060	3.311161199	3.074783921	2.10199297	1.822541682
-0.445579934	-1.68867059	-0.5241276	2.233793943		1061	-0.655128061	0.497032417	0.92381279	-0.56348341
0.736419048 1.073465817	0.409875189	-0.63140848	0.034514594		1062 1063	-0.443129049	0.96200606 0.738759296	1.51641349	-0.22974864 0.501211562
0.130904221	2.18418874 1.882440008	2.01361447 1.85101055	-0.93754437 0.112524893		1065	1.385675542 1.670680003	-0.20756775	1.1677069 -0.73755051	-0.84924056
-0.236681385	-0.09745533	0.1779313	2.08923366		1065	1.43532227	1.656262941	-1.09448841	1.674272267
0.904402612	0.936956925	0.87731788	0.102346515		1066	1.670680003	1.284791101	0.14864516	-0.84985664
2.201759817	2.123549573	3.7881607	2.358768953		1067	2.237616041	0.345329863	-0.60597063	-0.71581056
1.784266982	1.845281076	3.42873622	-0.31098233		1069	-0.24632881	-0.23975349	-0.01449288	0.574861147
-0.225023329 -0.231175318	0.087962898 -0.0159671	-0.29053012 1.27391892	0.514272787 1.090487158		1070 1071	1.670680003 -1.02687397	0.070165381 -0.36244273	-0.64700996 0.13010074	-0.85055617 0.535909448
0.889215441	0.24321159	0.06877629	0.816247177		1071	1.670680003	1.94609957	0.19633838	1.14825764
1.864634345	0.133647536	1.29803755	1.951226654		1073	2.237616041	1.438074134	0.31117554	-0.71786492
0.511450274	-2.33512445	-0.56246315	-0.42184152		1074	-0.192632911	0.142411101	0.79310676	0.125548041
0.847260813	0.368638185	0.4114346	0.219336109		1075	0.909356011	0.368597887	1.03689838	1.001198751
1.596170102 -3.549941097	1.592158381 -2.6847861	0.30052357 -0.17502622	0.283467897 1.41034664		1076 1077	0.812238101 0.325255266	0.195908668 1.131242708	0.21564664 -2.79377204	0.219336109 -0.62848261
0.445802042	0.899738574	0.61059602	0.323194673		1078	0.325255266	1.131242708	-2.79377204	-0.62848261
0.949498724	0.357111159	0.28371155	-0.14156488		1079	0.85330799	-0.6855194	-0.90046979	-0.46415796
2.197271885	1.578871826	0.90563334	1.056619658		1081	-0.131519393	0.731836014	0.81604919	-1.29993979
2.197271885 1.456120673	1.578871826 0.626173572	0.90563334 0.07683183	1.056619658 -0.43324035		1082 1083	0.744770665 1.415726941	0.155243763 0.086297223	-1.8029919 3.43559555	1.023503542 -0.12964168
-0.440378333	0.918089245	0.03050609	-1.62235977		1085	0.161304111	0.66712144	0.58401752	0.373809692
0.819929066	0.459101825	-0.09227583	0.324342063		1085	-0.72863532	-0.2873027	2.21251376	3.003873022
1.64412453	-0.09343399	0.70197344	3.710273595		1088	-1.1773616	-0.23258175	0.40529195	0.994988969
0.796928207	0.459954079	-0.88538616	0.152000937		1089	2.769817302	1.661618789	3.97585272	1.059236597
0.044923203 -0.320452673	-0.19994963 -0.33232662	0.60082875 -0.52315783	0.258347835 1.406273663		1090 1091	3.052627325 -3.379896722	0.420821685 -3.71174986	-0.57080756 2.53586709	1.751222205 0.644702886
4.040291133	3.474551355	3.57146797	3.565985043		1091	0.72304265	1.667011476	2.53982093	2.7903213
0.764519082	0.917635102	2.88258762	2.319622474		1095	0.744219765	1.372184572	0.15852396	1.126053442
-0.071112206	0.539362906	2.98048732	0.580423329		1097	4.407270402	2.670641491	5.02636153	5.361271976
-0.689737481	0.547928768	1.98805626	-0.76653376		1098	-1.85804837	-2.59071226	-0.46522239	0.655734646
0.343668917 1.926713131	0.931501008 0.124849138	-0.05483722 -0.09654906	0.395369857 1.126499382		1099 1102	0.745797788 2.068748434	-0.20547378 -0.24299896	4.27836342 0.07214682	4.646390386 -1.11758276
0.124247716	0.193102712	0.39003599	1.737670628		1102	1.018876287	0.025163067	-0.1106021	0.838914654
0.131224136	0.21510779	-1.70996346	0.964902175		1105	2.387326861	3.865456674	2.2251199	0.728667998
0.499624069	0.962843507	0.77617619	-1.15296947		1107	2.352582059	2.595496601	3.20492728	2.844590737
0.813491983	0.322635656	0.02800396	0.599500927		1110	0.302703712	0.599942142	-0.25637571	-0.03195517
0.715468114	1.015469049	1.45994989	0.352548581		1111	0.750930333	0.656784751	1.68326413	0.329846578
-1.176339404 1.364966718	1.539767848 1.690570939	-0.14427147 2.05914194	1.389902738 2.364375484		1112 1115	-0.205527848 0.999825037	0.287622624 0.662221152	-0.00340777 0.43571192	0.59203719 0.342558518
2.154641091	0.800066339	0.85365652	2.364373484 0.965810338		1115	0.873381263	1.544324176	0.13703728	-0.38172701
2.302280068	1.252164308	1.73414439	1.549538352		1117	-0.682983903	1.798204302	2.42110319	-0.39173951
1.878331515	1.287303121	0.11530502	1.132065786		1118	0.069769623	0.496895599	0.67857133	-0.14954441
2.97722987	2.096441965	3.87172868	0.550274831		1119	-0.671908804	-0.65984824	0.5238174	-0.85314111
2.474381478	1.950326182	3.81861867	1.366897355		1120	0.953790113	1.106552668	3.00006904	1.585038764
1.778414353	3.114931059	4.47690731	6.054314034		1121	-1.184630973	2.476138312	4.80971952	2.450646806
3.672910795 -0.604959715	2.760483725 -2.13584086	3.26915034 0.8687855	3.042677588 0.024144016		1122 1125	-1.02687397 0.387315524	-0.36244273 -0.36101406	0.13010074 1.14153708	0.535909448 -0.75303953
2.012732245	2.293857161	0.54405555	1.261882121		1125	1.021783831	-0.0070257	-0.14327539	3.954381426
-1.086688867	0.953083194	2.92177054	0.876865185		1120	0.990592079	0.305612583	0.14155512	-0.29526854

-continued

-continued

Material No.	MORV value for Equation a.)	MORV Value for Equation b.)	MORV Value for Equation c.)	MORV value for Equation d.)
1128	0.990592079	0.305612583	0.14155512	-0.29526854
1129	3.18966648	3.284362987	4.49398568	3.950809104
1131	1.650621055	1.545704806	2.37535081	1.259373143
1133	-1.519747805	-0.60804324	0.02746106	0.590708892
1134	0.815942067	-0.16126019	-0.54117238	0.613093526
1135	0.626973385	1.998305877	2.61706075	1.570404253
1136	2.812199484	1.353198146	2.05618426	1.869204406
1137	2.208307057	1.387136198	3.21521374	2.069795393
1138	1.670680003	1.316442078	0.14822999	-0.46985154
1139	1.408517438	0.890457374	1.24524408	0.685687797
1140	2.765860952	2.525539595	4.12464228	3.833744077
1141	-0.484394663	0.677713073	-0.22783646	-0.37267608
1142	2.54335679	4.298105601	3.36234238	2.684404542
1143	4.204367611	3.062126931	3.4234313	2.072899554
1144	2.479165229	3.226545885	4.65897152	4.952127235
1145	2.479158921	3.226545885	4.65897152	4.952127235
1146	0.774334025	1.075800774	1.06893156	1.011113116
1147	0.844648531	1.21935371	2.59138595	0.805938034
1148	2.906236436	1.550674121	3.56959167	2.832126896
1149	2.837627443	3.707154326	4.53384262	2.625871865

Antiperspirant and/or Deodorant Compositions and Methods of Use

[0028] An antiperspirant and/or deodorant composition comprising, based on total composition weight,

- **[0029]** a) a sum total of from about 0.0001% to about 2%, preferably from about 0.0001% to about 0.75%, more preferably from about 0.001% to about 0.5%, most preferably from about 0.007% to about 0.25% of 1 or more malodor reduction materials, preferably 1 to about 75 malodor reduction materials, more preferably 1 to about 50 malodor reduction materials, more preferably 1 to about 35 malodor reduction materials, most preferably 1 to about 20 malodor reduction materials, each of said malodor reduction materials having a MORV of at least 0.5, preferably from 0.5 to 10, more preferably from 1 to 10, most preferably from 1 to 5, and preferably each of said malodor reduction materials having a Universal MORV, or said sum total of malodor reduction materials having a Blocker Index of less than 3, more preferable less than about 2.5 even more preferably less than about 2 and still more preferably less than about 1 and most preferably 0 and/or a Blocker Index average of 3 to about 0.001; and
- **[0030]** b) from about 0% to about 12%, preferably from about 0% to about 8%, more preferably from about 0.1% to about 4%, of one or more perfume raw materials having a MORV of less than 0.5, preferably less than 0, more preferably less than -2, most preferably less than -5;
- [0031] c) from about 0.1% to about 99%, preferably from about 1% to about 80%, more preferably from about 5% to about 55%, most preferably from about 10% to about 50% of a solvent, preferably said solvent is selected from cyclopentasiloxane, ethanol, water, propylene glycol, dipropylene glycol, and mixtures thereof;
- [0032] d) from about 0% to about 30%, preferably from about 0% to about 20%, more preferably from about 0.1% to about 4%, most preferably from about 0.1% to about 4% of a material selected from the group consisting of a structurant, a residue masker, an antimicrobial, and mixtures thereof

is disclosed. The aforementioned solvent levels help disperse perfume and MORV materials into the APDO base to give even coverage when used

[0033] In one aspect of said antiperspirant and/or deodorant composition, said sum total of malodor reduction materials has a Blocker Index of less than 3, more preferable less than about 2.5 even more preferably less than about 2 and still more preferably less than about 1 and most preferably 0 and/or a Blocker Index average of 3 to about 0.001.

[0034] In one aspect of said antiperspirant and/or deodorant composition, each of said malodor reduction materials has a MORV of at least 0.5, preferably from 0.5 to 10, more preferably from 1 to 10, most preferably from 1 to 5, and preferably each of said malodor reduction materials has a Universal MORV.

[0035] In one aspect of said antiperspirant and/or deodorant composition, said sum total of malodor reduction materials has a Fragrance Fidelity Index average of 3 to about 0.001 Fragrance Fidelity Index, preferably each malodor reduction material in said sum total of malodor reduction materials has a Fragrance Fidelity Index of less than 3, preferably less than 2, more preferably less than 1 and most preferably each malodor reduction materials has a Fragrance Fidelity Index of less than 0, preferably each malodor reduction materials has a Fragrance Fidelity Index of less than 1 and most preferably each malodor reduction materials has a Fragrance Fidelity Index of 0.

[0036] In one aspect of said antiperspirant and/or deodorant composition, said sum total of malodor reduction materials has an average boiling point, based on the weight percent of each malodor reduction material in said sum total of malodor reduction materials, of from about 160° C. to about 400° C., preferably from about 180° C. to about 400° C.; preferably 25%, more preferably 50%, more preferably 75%, most preferably each of said malodor reduction materials has a of from about 160° C. to about 400° C., to about 400° C., preferably from about 160° C. to about 400° C. to about 400° C. to about 400° C. to about 400° C.

[0037] In one aspect of antiperspirant and/or deodorant composition, said composition comprises a malodor reduction material is selected from the group consisting of Table 1 materials and mixtures thereof; preferably said material is selected from the group consisting of Table 1 materials 1, 2, 3, 4, 7, 9, 10, 11, 13, 14, 16, 17, 18, 21, 22, 23, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 47, 48, 49, 50, 52, 57, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85, 91, 92, 93, 98, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 117, 119, 120, 122, 123, 126, 128, 130, 134, 135, 137, 140, 141, 142, 143, 145, 146, 148, 149, 152, 153, 155, 156, 158, 159, 161, 162, 167, 168, 170, 174, 175, 176, 177, 178, 179, 182, 183, 184, 185, 186, 187, 189, 190, 192, 193, 195, 196, 197, 199, 206, 208, 209, 210, 211, 212, 215, 218, 221, 227, 228, 229, 230, 231, 233, 234, 238, 242, 243, 244, 246, 247, 249, 252, 253, 254, 256, 259, 260, 261, 263, 267, 269, 271, 274, 276, 277, 278, 280, 281, 285, 286, 288, 289, 290, 292, 293, 294, 295, 296, 300, 301, 303, 307, 316, 317, 318, 321, 322, 323, 324, 325, 328, 329, 330, 331, 332, 333, 334, 335, 336, 338, 339, 342, 343, 344, 347, 349, 350, 352, 353, 356, 358, 359, 360, 361, 362, 363, 364, 368, 369, 370, 371, 372, 373, 374, 375, 377, 378, 381, 385, 386, 388, 390, 391, 394, 397, 398, 407, 413, 414, 415, 416, 417, 418, 421, 424, 425, 426, 428, 429, 432, 436, 441, 444, 445, 449, 450, 453, 457, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 473, 474, 475, 478, 479, 480, 482, 484, 485, 486, 487, 488, 491, 493, 497, 498, 501, 502, 503, 505, 519, 520, 521, 524, 527, 529, 530, 531, 532, 534, 537, 541, 544, 546, 548, 550, 551, 552, 553, 555, 558, 559, 560, 561, 19

562, 563, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 577, 578, 580, 581, 582, 584, 586, 587, 589, 591, 592, 594, 595, 599, 600, 601, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 618, 620, 621, 624, 625, 626, 627, 628, 631, 632, 633, 635, 636, 638, 639, 644, 649, 650, 653, 655, 658, 659, 660, 661, 663, 668, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 691, 692, 693, 694, 696, 697, 698, 700, 702, 704, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 730, 731, 733, 735, 736, 738, 741, 742, 746, 748, 750, 752, 754, 757, 758, 763, 764, 766, 767, 768, 769, 770, 771, 772, 774, 775, 776, 778, 781, 782, 786, 788, 791, 792, 800, 802, 803, 804, 805, 806, 807, 814, 821, 824, 826, 827, 828, 829, 831, 833, 834, 837, 839, 840, 849, 850, 852, 856, 864, 865, 866, 868, 869, 870, 871, 872, 873, 876, 877, 878, 879, 881, 884, 885, 886, 890, 892, 893, 894, 897, 905, 908, 912, 913, 914, 916, 919, 920, 922, 923, 924, 925, 926, 927, 928, 929, 930, 933, 937, 939, 941, 942, 943, 945, 946, 947, 948, 950, 951, 953, 954, 955, 959, 962, 965, 967, 969, 973, 974, 976, 978, 980, 982, 985, 988, 993, 998, 1000, 1003, 1006, 1007, 1008, 1009, 1010, 1012, 1016, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1042, 1043, 1045, 1046, 1047, 1053, 1057, 1059, 1060, 1062, 1063, 1064, 1065, 1066, 1067, 1070, 1072, 1073, 1075, 1077, 1078, 1082, 1083, 1085, 1089, 1090, 1091, 1093, 1095, 1097, 1099, 1102, 1104, 1105, 1107, 1111, 1113, 1116, 1117, 1120, 1121, 1125, 1126, 1129, 1131, 1135, 1136, 1137, 1138, 1139, 1140, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, Table 2 materials 2, 23, 141, 185, 227, 230, 246, 248, 343, 359, 565, 631, 659, 674, 678, 679, 715, 758, 1028, 1097, Table 3 materials 12, 19, 20, 24, 26, 27, 53, 54, 55, 59, 72, 73, 81, 84, 96, 97, 107, 111, 115, 116, 125, 133, 147, 150, 151, 154, 157, 163, 166, 169, 181, 191, 194, 198, 201, 204, 205, 213, 214, 232, 237, 239, 255, 258, 264, 270, 273, 275, 282, 283, 284, 287, 302, 306, 308, 310, 312, 314, 319, 346, 354, 355, 365, 366, 376, 379, 387, 400, 412, 419, 420, 437, 438, 439, 440, 442, 443, 447, 448, 454, 455, 469, 472, 477, 481, 492, 495, 496, 504, 509, 510, 512, 515, 517, 518, 522, 525, 526, 528, 535, 536, 538, 540, 542, 547, 549, 554, 556, 557, 575, 576, 579, 583, 585, 588, 602, 605, 617, 619, 640, 641, 645, 647, 651, 652, 662, 664, 665, 667, 672, 687, 699, 701, 703, 740, 743, 744, 745, 755, 760, 761, 777, 779, 784, 789, 796, 797, 799, 808, 810, 811, 812, 817, 819, 820, 832, 835, 836, 838, 845, 846, 847, 848, 851, 858, 875, 880, 882, 883, 888, 889, 891, 899, 900, 901, 902, 903, 904, 909, 918, 921, 931, 940, 956, 958, 960, 971, 977, 981, 983, 986, 987, 994, 995, 1001, 1002, 1004, 1005, 1011, 1017, 1018, 1019, 1030, 1039, 1040, 1041, 1051, 1052, 1054, 1055, 1058, 1061, 1069, 1071, 1074, 1076, 1079, 1081, 1084, 1088, 1098, 1110, 1112, 1115, 1118, 1119, 1122, 1127, 1128, 1133, 1134, 1141 and mixtures thereof; more preferably said material is selected from the group consisting of Table 1 materials 1, 2, 3, 4, 7, 9, 10, 11, 13, 14, 16, 17, 18, 21, 22, 23, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 47, 48, 49, 50, 52, 57, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85, 91, 92, 93, 98, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 117, 119, 120, 122, 123, 126, 128, 130, 134, 135, 137, 140, 141, 142, 143, 145, 146, 148, 149, 152, 153, 155, 156, 158, 159, 161, 162, 167, 168, 170, 174, 175, 176, 177, 178, 179, 182, 183, 184, 185, 186, 187, 189, 190, 192, 193, 195, 196, 197, 199, 206, 208, 209, 210, 211, 212, 215, 218, 221, 227, 228, 229, 230, 231, 233, 234, 238, 242, 243, 244, 246, 247, 249, 252, 253, 254, 256, 259, 260, 261, 263, 267, 269, 271, 274, 276,

277, 278, 280, 281, 285, 286, 288, 289, 290, 292, 293, 294, 295, 296, 300, 301, 303, 307, 316, 317, 318, 321, 322, 323, 324, 325, 328, 329, 330, 331, 332, 333, 334, 335, 336, 338, 339, 342, 343, 344, 347, 349, 350, 352, 353, 356, 358, 359, 360, 361, 362, 363, 364, 368, 369, 370, 371, 372, 373, 374, 375, 377, 378, 381, 385, 386, 388, 390, 391, 394, 397, 398, 407, 413, 414, 415, 416, 417, 418, 421, 424, 425, 426, 428, 429, 432, 436, 441, 444, 445, 449, 450, 453, 457, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 473, 474, 475, 478, 479, 480, 482, 484, 485, 486, 487, 488, 491, 493, 497, 498, 501, 502, 503, 505, 519, 520, 521, 524, 527, 529, 530, 531, 532, 534, 537, 541, 544, 546, 548, 550, 551, 552, 553, 555, 558, 559, 560, 561, 562, 563, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 577, 578, 580, 581, 582, 584, 586, 587, 589, 591, 592, 594, 595, 599, 600, 601, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 618, 620, 621, 624, 625, 626, 627, 628, 631, 632, 633, 635, 636, 638, 639, 644, 649, 650, 653, 655, 658, 659, 660, 661, 663, 668, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 691, 692, 693, 694, 696, 697, 698, 700, 702, 704, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 730, 731, 733, 735, 736, 738, 741, 742, 746, 748, 750, 752, 754, 757, 758, 763, 764, 766, 767, 768, 769, 770, 771, 772, 774, 775, 776, 778, 781, 782, 786, 788, 791, 792, 800, 802, 803, 804, 805, 806, 807, 814, 821, 824, 826, 827, 828, 829, 831, 833, 834, 837, 839, 840, 849, 850, 852, 856, 864, 865, 866, 868, 869, 870, 871, 872, 873, 876, 877, 878, 879, 881, 884, 885, 886, 890, 892, 893, 894, 897, 905, 908, 912, 913, 914, 916, 919, 920, 922, 923, 924, 925, 926, 927, 928, 929, 930, 933, 937, 939, 941, 942, 943, 945, 946, 947, 948, 950, 951, 953, 954, 955, 959, 962, 965, 967, 969, 973, 974, 976, 978, 980, 982, 985, 988, 993, 998, 1000, 1003, 1006, 1007, 1008, 1009, 1010, 1012, 1016, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1042, 1043, 1045, 1046, 1047, 1053, 1057, 1059, 1060, 1062, 1063, 1064, 1065, 1066, 1067, 1070, 1072, 1073, 1075, 1077, 1078, 1082, 1083, 1085, 1089, 1090, 1091, 1093, 1095, 1097, 1099, 1102, 1104, 1105, 1107, 1111, 1113, 1116, 1117, 1120, 1121, 1125, 1126, 1129, 1131, 1135, 1136, 1137, 1138, 1139, 1140, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, Table 2 materials 2, 23, 141, 185, 227, 230, 246, 248, 343, 359, 565, 631, 659, 674, 678, 679, 715, 758, 1028, 1097 and mixtures thereof, more preferably said material is selected from the group consisting of Table 4 materials 7, 14, 39, 48, 183, 199, 206, 212, 215, 229, 260, 261, 281, 329, 335, 353, 360, 441, 484, 487, 488, 501, 566, 567, 569, 570, 573, 574, 603, 616, 621, 624, 627, 632, 663, 680, 684, 694, 696, 708, 712, 714, 726, 750, 764, 775, 776, 788, 804, 872, 919, 927, 933, 978, 1007, 1022, 1024, 1027, 1029, 1035, 1038, 1060, 1089, 1107, 1129, 1131, 1136, 1137, 1140, 1142, 1143, 1144, 1145, 1148, 1149, Table 5 materials 248, more preferably said material is selected from the group consisting of Table 4 and 5 materials 261, 680, 788, 1129, 1148, 1149 and mixtures thereof.

[0038] In one aspect of said antiperspirant and/or deodorant composition, said sum total of malodor reduction materials has an average boiling point, based on the weight percent of each malodor reduction material in said sum total of malodor reduction materials, of from about 160° C. to about 400° C., preferably from about 180° C. to about 400° C.; preferably 25%, more preferably 50%, more preferably 75%, most preferably each of said malodor reduction materials in said sum

total of malodor reduction materials has a of from about 160° C. to about 400° C., preferably from about 180° C. to about 400° C.

[0039] In one aspect of said antiperspirant and/or deodorant composition, said composition comprises one or more perfume raw materials.

[0040] In one aspect of said antiperspirant and/or deodorant composition, said combination of said sum total of malodor reduction materials and said one or more perfume raw materials combined has an average boiling point, based on the weight percent of each malodor reduction material in said sum total of malodor reduction materials, of from about 160° C. to about 400° C., preferably from about 180° C. to about 400° C.; preferably 25%, more preferably 50%, more preferably 75%, most preferably each of said malodor reduction materials and each of said sum total of malodor reduction materials has a boiling point of from about 160° C. to about 400° C.

[0041] In one aspect of said antiperspirant and/or deodorant composition, the ratio of said one or more perfume raw materials to said sum total of malodor reduction material is from about 500:1 to about 1:1, preferably from about 50:1 to about 1:1, most preferably from about 20:1 to about 1:1, most preferably from about 2:1 to about 1:1.

[0042] In one aspect of said antiperspirant and/or deodorant composition, less than 10%, preferably less than 5%, more preferably less than 1% of said malodor reduction materials and said one or more perfume raw materials, based on total combined weight of malodor reduction materials and said one or more perfume raw materials comprise an ionone moiety.

[0043] In one aspect of said antiperspirant and/or deodorant composition, said malodor reduction materials are not selected from the group consisting of Table 1-3 materials 302; 288; 50; 157; 1017; 888; 64; 1054; 832; 375; 390; 745; 504; 505; 140; 1012; 498; 362; 103; 356; 1074; 908; 1127; 475; 918; 687; 611; 317; 9; 141; 550; 602; 913; 1005; 521; 10; 215; 370; 335; 378; 1121; 360; 565; 1136; 1129; 655; 369; 1065; 914; 757; 601; 478; 889; 891; 358; 973; 162; 554; 522; 312; 125; 26; 418; 92; 586; 1026; 218; 31; 828; 871; 829; 1066; 287; 269; 769; 701; 1118; 70; 946; 142; 109; 108 or mixtures thereof.

[0044] In one aspect of said antiperspirant and/or deodorant composition, said said antiperspirant and/or deodorant composition is a antiperspirant composition that comprises a total of, based on total antiperspirant composition weight, from about 0.1% to about 7% of one or more of said malodor reduction materials and, optionally, from about 1% to about 25% of an aluminum salt antiperspirant active.

[0045] In one aspect of said antiperspirant and/or deodorant composition, said composition is an anhydrous antiperspirant composition comprising a total of, based on total anhydrous antiperspirant composition weight, from about 0.1% to about 7% of one or more of said malodor reduction materials and from about 1% to about 25% of an antiperspirant actives selected from the group consisting of astringent metallic salts, preferably inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof, more preferably aluminum halides, aluminum chlorohydrate, aluminum hydroxyhalides, zirconyl oxyhalides, zirconyl hydroxyhalides, and mixtures thereof.

[0046] In one aspect of said antiperspirant and/or deodorant composition, said composition comprises an adjunct ingredi-

ent selected from the group consisting of clay mineral powders, pearl pigments, organic powders, emulsifiers, distributing agents, pharmaceutical active, topical active, preservatives, surfactants and mixtures thereof.

[0047] A method of controlling malodors comprising: contacting a situs comprising a malodor and/or a situs that may become malodorous with an antiperspirant or deodorant composition selected from the group consisting of the antiperspirant and/or deodorant composition disclosed herein, is disclosed.

[0048] In one aspect of said method, said situs is an underarm and said contacting step comprises contacting said underarm with a sufficient amount of Applicants' antiperspirant and/or deodorant composition containing said sum of malodor reduction materials to provide said underarm with a level of malodor reduction materials of at least 0.0001 mg of malodor reduction material per underarm, preferably from about 0.0001 mg of malodor reduction material per underarm to about 10 mg of malodor reduction material per underarm, more preferably from about 0.001 mg of malodor reduction material per underarm about 5 mg of malodor reduction material per underarm, most preferably from about 0.01 of malodor reduction material per underarm to about 0.2 mg of malodor reduction material per underarm.

Antiperspirant Compositions

[0049] Antiperspirant compositions can be formulated in many forms. For example an antiperspirant composition can be, without limitation, a roll on product, a body spray, a stick including soft solid sticks and invisible solids, or an aerosol. Each of the antiperspirant compositions described below can include perfume materials as described herein.

[0050] A. Roll-On and Clear Gel

[0051] A roll-on antiperspirant composition can comprise, for example, water, emollient, solubilizer, deodorant actives, antioxidants, preservatives, or combinations thereof. A clear gel antiperspirant composition can comprise, for example, water, emollient, solubilizer, deodorant actives, antioxidants, preservatives, ethanol, or combinations thereof.

[0052] Water

[0053] The roll-on composition can include water. Water can be present in an amount of about 1% to about 99.5%, about 25% to about 99.5%, about 50% to about 99.5%, about 75% to about 99.5% about 80% to about 99.5%, from about 15% to about 45%, or any combination of the end points and points encompassed within the ranges, by weight of the deodorant composition.

[0054] Emollients

[0055] Roll-on compositions can comprise an emollient system including at least one emollient, but it could also be a combination of emollients. Suitable emollients are often liquid under ambient conditions. Depending on the type of product form desired, concentrations of the emollient(s) in the deodorant compositions can range from about 1% to about 95%, from about 5% to about 95%, from about 15% to about 95%, from about 1% to about 45%, or from about 1% to about 30%, by weight of the deodorant composition.

[0056] Emollients suitable for use in the roll-on compositions include, but are not limited to, propylene glycol, polypropylene glycol (like dipropylene glycol, tripropylene glycol, etc.), diethylene glycol, triethylene glycol, PEG-4, PEG-8, 1,2 pentanediol, 1,2 hexanediol, hexylene glycol, glycerin, C2 to C20 monohydric alcohols, C2 to C40 dihydric

or polyhydric alcohols, alkyl ethers of polyhydric and monohydric alcohols, volatile silicone emollients such as cyclopentasiloxane, nonvolatile silicone emollients such as dimethicone, mineral oils, polydecenes, petrolatum, and combinations thereof. One example of a suitable emollient comprises PPG-15 stearyl ether. Other examples of suitable emollients include dipropylene glycol and propylene glycol. [0057] Deodorant Actives

[0058] Suitable deodorant actives can include any topical material that is known or otherwise effective in preventing or eliminating malodor associated with perspiration. Suitable deodorant actives may be selected from the group consisting of antimicrobial agents (e.g., bacteriocides, fungicides), malodor-absorbing material, and combinations thereof. For example, antimicrobial agents may comprise cetyl-trimethylammonium bromide, cetyl pyridinium chloride, benzethonium chloride, diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride, sodium N-lauryl sarcosine, sodium N-palmethyl sarcosine, lauroyl sarcosine, N-myristoyl glycine, potassium N-lauryl sarcosine, trimethyl ammonium chloride, sodium aluminum chlorohydroxy lactate, triethyl citrate, tricetylmethyl ammonium chloride, 2,4,4'trichloro-2'-hydroxy diphenyl ether (triclosan), 3,4,4'trichlorocarbanilide (triclocarban), diaminoalkyl amides such as L-lysine hexadecyl amide, heavy metal salts of citrate, salicylate, and piroctose, especially zinc salts, and acids thereof, heavy metal salts of pyrithione, especially zinc pyrithione, zinc phenolsulfate, farnesol, and combinations thereof. The concentration of the optional deodorant active may range from about 0.001%, from about 0.01%, of from about 0.1%, by weight of the composition to about 20%, to about 10%, to about 5%, or to about 1%, by weight of the composition.

[0059] Odor Entrappers

[0060] The composition can include an odor entrapper. Suitable odor entrappers for use herein include, for example, solubilized, water-soluble, uncomplexed cyclodextrin. As used herein, the term "cyclodextrin" includes any of the known cyclodextrins such as unsubstituted cyclodextrins containing from six to twelve glucose units, especially, alphacyclodextrin, beta-cyclodextrin, gamma-cyclodextrin and/or their derivatives and/or mixtures thereof. The alpha-cyclodextrin consists of six glucose units, the beta-cyclodextrin consists of seven glucose units, and the gamma-cyclodextrin consists of eight glucose units arranged in a donut-shaped ring. The specific coupling and conformation of the glucose units give the cyclodextrins a rigid, conical molecular structure with a hollow interior of a specific volume. The "lining" of the internal cavity is formed by hydrogen atoms and glycosidic bridging oxygen atoms, therefore this surface is fairly hydrophobic. The unique shape and physical-chemical property of the cavity enable the cyclodextrin molecules to absorb (form inclusion complexes with) organic molecules or parts of organic molecules which can fit into the cavity. Many perfume molecules can fit into the cavity. Cyclodextrin molecules are described in U.S. Pat. No. 5,714,137, and U.S. Pat. No. 5,942,217. Suitable levels of cyclodextrin are from about 0.1% to about 5%, alternatively from about 0.2% to about 4%, alternatively from about 0.3% to about 3%, alternatively from about 0.4% to about 2%, by weight of the composition.

[0061] Buffering Agent

[0062] The composition can include a buffering agent which may be alkaline, acidic or neutral. The buffer can be used in the composition for maintaining the desired pH. The composition may have a pH from about 3 to about 10, from about 4 to about 9, from about 5 to about 8, from about 6 to about 7, or it may have a pH of about 6.5. One unique feature of the polyvinyl amine malodor control polymers is its ability to maintain active nitrogen sites at high pH levels which can help enhance the antibacterial effect which comes, at least in part, from the nitrogen sites.

[0063] Suitable buffering agents include, for example, hydrochloric acid, sodium hydroxide, potassium hydroxide, and combinations thereof.

[0064] The compositions can contain at least about 0%, alternatively at least about 0.001%, alternatively at least about 0.01%, by weight of the composition, of a buffering agent. The composition may also contain no more than about 1%, alternatively no more than about 0.75%, alternatively no more than about 0.5%, by weight of the composition, of a buffering agent.

[0065] Solubilizer

[0066] The composition can contain a solubilizer. A suitable solubilizer can be, for example, a surfactant, such as a no-foaming or low-foaming surfactant. Suitable surfactants are nonionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof.

[0067] Suitable solubilizers include, for example, hydrogenated castor oil, polyoxyethylene 2 stearyl ether, polyoxyethylene 20 stearyl ether, and combinations thereof. One suitable hydrogenated castor oil that may be used in the present composition is polyoxyethylene hydrogenated castor oil.

[0068] When the solubilizing agent is present, it is typically present at a level of from about 0.01% to about 5%, alternatively from about 0.01% to about 3%, alternatively from about 0.05% to about 1%, alternatively from about 0.01% to about 0.05%, by weight of the composition.

[0069] Preservatives

[0070] The composition can include a preservative. The preservative is included in an amount sufficient to prevent spoilage or prevent growth of inadvertently added microorganisms for a specific period of time, but not sufficient enough to contribute to the odor neutralizing performance of the composition. In other words, the preservative is not being used as the antimicrobial compound to kill microorganisms on the surface onto which the composition is deposited in order to eliminate odors produced by microorganisms. Instead, it is being used to prevent spoilage of the composition in order to increase shelf-life.

[0071] The preservative can be any organic preservative material which will not cause damage to fabric appearance, e.g., discoloration, coloration, bleaching. Suitable watersoluble preservatives include organic sulfur compounds, halogenated compounds, cyclic organic nitrogen compounds, low molecular weight aldehydes, parabens, propane diol materials, isothiazolinones, quaternary compounds, benzoates, low molecular weight alcohols, dehydroacetic acid, phenyl and phenoxy compounds, or mixtures thereof.

[0072] Non-limiting examples of commercially available water-soluble preservatives include a mixture of about 77% 5-chloro-2-methyl-4-isothiazolin-3-one and about 23% 2-methyl-4-isothiazolin-3-one, a broad spectrum preservative available as a 1.5% aqueous solution under the trade name Kathon® CG by Rohm and Haas Co.; 5-bromo-5-nitro-1,3-dioxane, available under the tradename Bronidox L® from Henkel; 2-bromo-2-nitropropane-1,3-diol, available under the trade name Bronopol® from Inolex; 1,1'-hexamethylene bis(5-(p-chlorophenyl)biguanide), commonly known as chlorhexidine, and its salts, e.g., with acetic and digluconic acids; a 95:5 mixture of 1,3-bis(hydroxymethyl)-5,5-dimethyl-2,4-imidazolidinedione and 3-butyl-2-iodopropynyl carbamate, available under the trade name Glydant Plus® from Lonza; N-[1,3-bis(hydroxymethyl)2,5-dioxo-4imidazolidinyl]-N,N'-bis(hydroxy-methyl)urea, commonly known as diazolidinyl urea, available under the trade name Germall® II from Sutton Laboratories, Inc.; N,N"methylenebis{N'-[1-(hydroxymethyl)-2,5-dioxo-4-imidazolidinyl]urea}, commonly known as imidazolidinyl urea, available, e.g., under the trade name Abiol® from 3V-Sigma. Unicide U-13® from Induchem, Germall 115® from Sutton Laboratories, Inc.; polymethoxy bicyclic oxazolidine, available under the trade name Nuosept® C from Hüls America; formaldehyde; glutaraldehyde; polyaminopropyl biguanide, available under the trade name Cosmocil CQ® from ICI Americas, Inc., or under the trade name Mikrokill® from Brooks, Inc; dehydroacetic acid; and benzsiothiazolinone available under the trade name Koralone[™]B-119 from Rohm and Hass Corporation.

[0073] Suitable levels of preservative can range from about 0.0001% to about 0.5%, alternatively from about 0.0002% to about 0.2%, alternatively from about 0.0003% to about 0.1%, by weight of the composition.

[0074] B. Body Spray

[0075] A body spray can contain, for example, a carrier, perfume, a deodorant active, odor entrappers, propellant, or combinations thereof. The body spray compositions can be applied as a liquid.

[0076] Carrier

[0077] A carrier suitable for use in a body spray can include, water, alcohol, or combinations thereof. The carrier may be present in an amount of about 1% to about 99.5%, about 25% to about 99.5%, about 50% to about 99.5%, about 75% to about 99.5% about 80% to about 99.5%, from about 15% to about 45%, or any combination of the end points and points encompassed within the ranges, by weight of the composition. A suitable example of an alcohol can include ethanol.

[0078] Propellant

[0079] The compositions described herein can include a propellant. Some examples of propellants include compressed air, nitrogen, inert gases, carbon dioxide, and mixtures thereof. Propellants may also include gaseous hydrocarbons like propane, n-butane, isobutene, cyclopropane, and mixtures thereof. Halogenated hydrocarbons like 1,1-difluoroethane may also be used as propellants. Some non-limiting examples of propellants include 1,1,1,2,2-pentafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, trans-1,3,3,3-tetrafluoroprop-1-ene, dimethyl ether, dichlorodifluoromethane (propellant 12), 1,1-dichloro-1,1,2,2-tetrafluoroethane (propellant 114), 1-chloro-1,1-difluoro-2,2trifluoroethane (propellant 115), 1-chloro-1,1difluoroethylene (propellant 142B), 1,1-difluoroethane (propellant 152A), monochlorodifluoromethane, and mixtures thereof. Some other propellants suitable for use include, but are not limited to, A-46 (a mixture of isobutane, butane and propane), A-31 (isobutane), A-17 (n-butane), A-108 (propane), AP70 (a mixture of propane, isobutane and n-butane), AP40 (a mixture of propane, isobutene and n-butane), AP30 (a mixture of propane, isobutane and n-butane), and 152A (1,1 diflouroethane). The propellant may have a concentration from about 15%, 25%, 30%, 32%, 34%, 35%, 36%, 38%, 40%, or 42% to about 70%, 65%, 60%, 54%, 52%, 50%, 48%,

46%, 44%, or 42%, or any combination thereof, by weight of the total fill of materials stored within the container.

[0080] C. Invisible Solid

[0081] Invisible solid antiperspirant compositions as described herein can contain a primary structurant, an antiperspirant active, a perfume, and additional chassis ingredient (s). The antiperspirant composition can further comprise other optional ingredient(s). The compositions can be in the form of a solid stick. The compositions can have a product hardness of about 600 gram force or more. The compositions may be free of dipropylene glycol, added water, castor wax, or any combination thereof. The antiperspirant composition may be free of added water.

[0082] Hardness

[0083] The invisible solid can have a product hardness of least about 600 gram force, more specifically from about 600 gram force to about 5,000 gram force, still more specifically from about 750 gram force to about 2,000 gram force, and yet more specifically from about 800 gram force to about 1,400 gram force.

[0084] The term "product hardness" or "hardness" as used herein is a reflection of how much force is required to move a penetration cone a specified distance and at a controlled rate into an antiperspirant composition under the test conditions described herein below. Higher values represent harder product, and lower values represent softer product. These values are measured at 27° C., 15% relative humidity, using a TA-XT2 Texture Analyzer, available from Texture Technology Corp., Scarsdale, N.Y., U.S.A. The product hardness value as used herein represents the peak force required to move a standard 45-degree angle penetration cone through the composition for a distance of 10 mm at a speed of 2 mm/second. The standard cone is available from Texture Technology Corp., as part number TA-15, and has a total cone length of about 24.7 mm, angled cone length of about 18.3 mm, and a maximum diameter of the angled surface of the cone of about 15.5 mm. The cone is a smooth, stainless steel construction and weighs about 17.8 grams.

[0085] Primary Structurants

[0086] The invisible solid can comprise a suitable concentration of a primary structurant to help provide the antiperspirant with the desired viscosity, rheology, texture and/or product hardness, or to otherwise help suspend any dispersed solids or liquids within the composition.

[0087] The term "solid structurant" as used herein means any material known or otherwise effective in providing suspending, gelling, viscosifying, solidifying, and/or thickening properties to the composition or which otherwise provide structure to the final product form. These solid structurants include gelling agents, and polymeric or non-polymeric or inorganic thickening or viscosifying agents. Such materials will typically be solids under ambient conditions and include organic solids, crystalline or other gellants, inorganic particulates such as clays or silicas, or combinations thereof.

[0088] The concentration and type of solid structurant selected for use in the antiperspirant compositions will vary depending upon the desired product hardness, rheology, and/ or other related product characteristics. For most structurants suitable for use herein, the total structurant concentration ranges from about 5% to about 35%, more typically from about 10% to about 30%, or from about 7% to about 20%, by weight of the composition.

[0089] Non-limiting examples of suitable primary structurants include stearyl alcohol and other fatty alcohols; hydrogenated castor wax (e.g., Castorwax MP80, Castor Wax, etc.); hydrocarbon waxes include paraffin wax, beeswax, carnauba, candelilla, spermaceti wax, ozokerite, ceresin, baysberry, synthetic waxes such as Fischer-Tropsch waxes, and microcrystalline wax; polyethylenes with molecular weight of 200 to 1000 daltons; solid triglycerides; behenyl alcohol, or combinations thereof.

[0090] Other non-limiting examples of primary structurants suitable for use herein are described in U.S. Pat. No. 5,976,514 and U.S. Pat. No. 5,891,424,the descriptions of which are incorporated herein by reference.

[0091] Antiperspirant Active

[0092] The antiperspirant stick compositions can comprise a particulate antiperspirant active suitable for application to human skin. The concentration of antiperspirant active in the composition should be sufficient to provide the desired perspiration wetness and odor control from the antiperspirant stick formulation selected.

[0093] The antiperspirant stick compositions can comprise an antiperspirant active at concentrations of from about 0.5% to about 60%, and more specifically from about 5% to about 35%, by weight of the composition. These weight percentages are calculated on an anhydrous metal salt basis exclusive of water and any complexing agents such as, for example, glycine, and glycine salts. The antiperspirant active as formulated in the composition can be in the form of dispersed particulate solids having an average particle size or equivalent diameter of less than about 100 microns, more specifically less than about 20 microns, and even more specifically less than about 10 microns.

[0094] The antiperspirant active for use in the anhydrous antiperspirant compositions of the present invention can include any compound, composition or other material having antiperspirant activity. More specifically, the antiperspirant actives may include astringent metallic salts, especially inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof. Even more specifically, the antiperspirant actives may include aluminum-containing and/or zirconium-containing salts or materials, such as, for example, aluminum halides, aluminum chlorohydrate, aluminum hydroxyhalides, zirconyl oxyhalides, zirconyl hydroxyhalides, and mixtures thereof.

[0095] Aluminum salts for use in the anhydrous antiperspirant stick compositions include those that conform to the formula:

Al₂(OH)_aCl_b.xH₂O,

[0096] wherein a is from about 2 to about 5;

[0097] the sum of a and b is about 6;

[0098] x is from about 1 to about 6; and

[0099] a, b, and x may have non-integer values.

[0100] More specifically, aluminum chlorohydroxides referred to as "5/6 basic chlorohydroxide" can be used, wherein a=5, and "2/3 basic chlorohydroxide", wherein a=4.

[0101] Processes for preparing aluminum salts are disclosed in U.S. Pat. No. 3,887,692; U.S. Pat. No. 3,904,741; U.S. Pat. No. 4,359,456; and British Patent Specification 2,048,229, the disclosures of which are incorporated herein by reference for the purpose of describing processes for preparing aluminum salts.

[0102] Mixtures of aluminum salts are described in British Patent Specification 1,347,950, which description is also incorporated herein by reference.

[0103] Zirconium salts for use in the anhydrous antiperspirant stick compositions include those which conform to the formula:

ZrO(OH)2-aCla.xH2O,

[0104] wherein a is from about 1.5 to about 1.87;

[0105] x is from about 1 to about 7; and

[0106] a and x may both have non-integer values.

[0107] These zirconium salts are described in Belgian Patent 825,146, Schmitz, issued Aug. 4, 1975, which description is incorporated herein by reference. Zirconium salts that additionally contain aluminum and glycine, commonly known as "ZAG complexes," are believed to be especially beneficial. These ZAG complexes contain aluminum chlorohydroxide and zirconyl hydroxy chloride conforming to the above-described formulas. Such ZAG complexes are described in U.S. Pat. No. 3,792,068; Great Britain Patent Application 2,144,992; and U.S. Pat. No. 4,120,948, disclosures of which are incorporated herein by reference for the limited purpose of describing ZAG complexes.

[0108] Also suitable for use herein are enhanced efficacy aluminum-zirconium chlorohydrex-amino acid which typically has the empirical formula $Al_n Zr(OH)_{[3n+4-m(n+1)]}(Cl)_{[m]}$ (n+1)]-AA_a where n is 2.0 to 10.0, preferably 3.0 to 8.0; m is about 0.48 to about 1.11 (which corresponds to M:Cl approximately equal to 2.1-0.9), preferably about 0.56 to about 0.83 (which corresponds to M:Cl approximately equal to 1.8-1.2); q is about 0.8 to about 4.0, preferably about 1.0 to 2.0; and AA is an amino acid such as glycine, alanine, valine, serine, leucine, isoleucine, β -alanine, cysteine, β -amino-n-butyric acid, or y-amino-n-butyric acid, preferably glycine. These salts also generally have some water of hydration associated with them, typically on the order of 1 to 5 moles per mole of salt (typically, about 1% to about 16%, more typically about 4% to about 13% by weight). These salts are generally referred to as aluminum-zirconium trichlorohydrex or tetrachlorohydrex when the Al:Zr ratio is between 2 and 6 and as aluminum-zirconium pentachlorohydrex or octachlorohydrex when the Al:Zr ratio is between 6 and 10. The term "aluminum-zirconium chlorohydrex" is intended to embrace all of these forms. The preferred aluminum-zirconium salt is aluminum-zirconium chlorohydrex-glycine. Additional examples of suitable high efficacy antiperspirant actives can include Aluminum Zirconium Pentachlorohydrex Glycine, Aluminum Zirconium Octachlorohydrex Glycine, or a combination thereof. These high efficacy actives are more fully described in U.S. App. Pub. No. 2007/0003499 by Shen et al. filed Jun. 30, 2005.

Additional Chassis Ingredients

Additional Structurant

[0109] The antiperspirant composition can further comprise an additional structurant. The additional structurant may be present in an amount from 1% to about 10%, by weight of the composition. The additional structurant(s) will likely be present at an amount less than the primary structurant.

[0110] Non-limiting examples of suitable additional structurants include stearyl alcohol and other fatty alcohols; hydrogenated castor wax (e.g., Castorwax MP80, Castor Wax, etc.); hydrocarbon waxes include paraffin wax, bees-

wax, carnauba, candelilla, spermaceti wax, ozokerite, ceresin, baysberry, synthetic waxes such as Fisher-Tropsch waxes, and microcrystalline wax; polyethylenes with molecular weight of 200 to 1000 daltons; and solid triglycerides; behenyl alcohol, or combinations thereof.

[0111] Other non-limiting examples of additional structurants suitable for use herein are described in U.S. Pat. No. 5,976,514 and U.S. Pat. No. 5,891,424.

[0112] Solvent

[0113] The antiperspirant composition can comprise a solvent at concentrations ranging from about 20% to about 80%, and more specifically from about 30% to about 70%, by weight of the composition. The solvent can be a volatile silicone which may be cyclic or linear.

[0114] "Volatile silicone" as used herein refers to those silicone materials that have measurable vapor pressure under ambient conditions. Non-limiting examples of suitable volatile silicones are described in Todd et al., "Volatile Silicone Fluids for Cosmetics", Cosmetics and Toiletries, 91:27-32 (1976), which descriptions are incorporated herein by reference.

[0115] The volatile silicone can be a cyclic silicone having from 3 to 7, and more specifically from 5 to 6, silicon atoms, and still more specifically 5, like cyclopentasiloxane. These cyclic silicone materials will generally have viscosities of less than about 10 centistokes at 25° C. Linear volatile silicone materials suitable for use in the antiperspirant compositions include those represented by the formula:

$$\begin{array}{c} CH_3 \\ H_3 \\ CH_3 \\ H_3 \\ CH_3 \\ CH_3$$

wherein n is from 1 to 7, and more specifically from 2 to 3. These linear silicone materials will generally have viscosities of less than about 5 centistokes at 25° C.

[0116] Specific examples of volatile silicone solvents suitable for use in the antiperspirant compositions include, but are not limited to, Cyclomethicone D-5; GE 7207 and GE 7158 (commercially available from General Electric Co.); Dow Corning 344; Dow Corning 345; Dow Corning 200; and DC1184 (commercially available from Dow Corning Corp.); and SWS-03314 (commercially available from SWS Silicones).

[0117] Non-Volatile Organic Fluids

[0118] Non-volatile organic fluids may be present, for example, in an amount of about 15% or less, by weight of the composition.

[0119] Non-limiting examples of nonvolatile organic fluids include mineral oil, PPG-14 butyl ether, isopropyl myristate, petrolatum, butyl stearate, cetyl octanoate, butyl myristate, myristyl myristate, C12-15 alkylbenzoate (e.g., FinsolvTM), octyldodecanol, isostearyl isostearate, octododecyl benzoate, isostearyl lactate, isostearyl palmitate, and isobutyl stearate.

Adjunct Ingredients

[0120] The anhydrous antiperspirant compositions can further comprise any optional material that is known for use in antiperspirant and deodorant compositions or other personal care products, or which is otherwise suitable for topical application to human skin. [0121] One example of optional materials are clay mineral powders such as talc, mica, sericite, silica, magnesium silicate, synthetic fluorphlogopite, calcium silicate, aluminum silicate, bentonite and montomorillonite; pearl pigments such as alumina, barium sulfate, calcium secondary phosphate, calcium carbonate, titanium oxide, finely divided titanium oxide, zirconium oxide, zinc oxide, hydroxy apatite, iron oxide, iron titrate, ultramarine blue, Prussian blue, chromium oxide, chromium hydroxide, cobalt oxide, cobalt titanate, titanium oxide coated mica; organic powders such as polyester, polyethylene, polystyrene, methyl methacrylate resin, cellulose, 12-nylon, 6-nylon, styrene-acrylic acid copolymers, poly propylene, vinyl chloride polymer, tetrafluoroethylene polymer, boron nitride, fish scale guanine, laked tar color dyes, laked natural color dyes; and combinations thereof.

[0122] Talc, if used at higher levels can produce a significant amount of white residue which has been found to be a consumer negative for product acceptance. Therefore it is best to limit the composition to less than 10%, less than about 8%, less than about 6%, or less than about 3%, by weight of the composition.

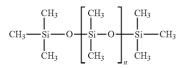
[0123] Nonlimiting examples of other optional materials include emulsifiers, distributing agents, antimicrobials, pharmaceutical or other topical active, preservatives, surfactants, and so forth. Examples of such optional materials are described in U.S. Pat. No. 4,049,792; U.S. Pat. No. 5,019, 375; and U.S. Pat. No. 5,429,816; which descriptions are incorporated herein by reference.

[0124] D. Soft Solid

[0125] Soft solid composition can comprise volatile silicone, antiperspirant active, gellant, residue masking material, or combinations thereof. In addition, soft solids generally have a hardness value after dispensing of about 500 gram force or less.

[0126] Volatile Silicone Solvent

[0127] The soft solid can comprises a volatile silicone solvent at concentrations ranging from about 20% to about 80%, preferably from about 30% to about 70%, more preferably from about 45% to about 70%, by weight of the composition. The volatile silicone of the solvent may be cyclic or linear.


[0128] "Volatile silicone" as used herein refers to those silicone materials which have measurable vapor pressure under ambient conditions. Nonlimiting examples of suitable volatile silicones are described in Todd et al., "Volatile Silicone Fluids for Cosmetics", Cosmetics and Toiletries, 91:27-32 (1976), which descriptions are incorporated herein by reference. Preferred volatile silicone materials are those having from about 3 to about 7, preferably from about 4 to about 5, silicon atoms.

[0129] Cyclic volatile silicones are preferred for use in the antiperspirant compositions herein, and include those represented by the formula:

wherein n is from about 3 to about 7, preferably from about 4 to about 5, most preferably 5. These cyclic silicone materials will generally have viscosities of less than about 10 centistokes at 25° C.

[0130] Linear volatile silicone materials suitable for use in the antiperspirant compositions include those represented by the formula:

wherein n is from about 1 to about 7, preferably from about 2 to about 3. These linear silicone materials will generally have viscosities of less than about 5 centistokes at 25° C.

[0131] Specific examples of volatile silicone solvents suitable for use in the antiperspirant compositions include, but are not limited to, Cyclomethicone D-5 (commercially available from G. E. Silicones), Dow Corning 344, Dow Corning 345 and Dow Corning 200 (commercially available from Dow Corning Corp.), GE 7207 and 7158 (commercially available from General Electric Co.) and SWS-03314 (commercially available from SWS Silicones Corp.).

[0132] Gellant Material

[0133] The soft solid can include a gellant material comprising fatty alcohols having from about 20 to about 60 carbon atoms, or combinations thereof, at concentrations ranging from about 0.1% to about 8% by weight of the composition. The gellant material, when combined with the volatile silicone solvent described hereinbefore, provides the composition with a physically stable structure within which the particulate antiperspirant materials are dispersed, and maintained as such over an extended period of time.

[0134] Specifically, the gellant material can comprise saturated or unsaturated, substituted or unsubstituted, fatty alcohols or mixtures of fatty alcohols having from about 20 to about 60 carbons atoms, preferably from about 20 to about 40 carbon atoms. Preferred are combinations of the fatty alcohols. The fatty alcohol gellants are preferably saturated, unsubstituted monohydric alcohols or combinations thereof, which have a melting point of at less than about 110° C., more preferably from about 60° to about 110° C.

[0135] It has been found that this fatty alcohol-based gellant material, when combined with volatile silicone solvents provides a stable structure for maintaining a dispersion of particulate antiperspirant material in a topical formulation without the necessity of using conventional particulate thickening agents. This gellant material is especially useful in maintaining the physical stability of particulate dispersions containing higher concentrations of volatile silicone solvents.

[0136] It was also found that penetration force values for the antiperspirant compositions can be controlled by adjusting total fatty alcohol concentrations. In controlling penetration force values in this manner, there is no longer a need to use organic solvents or thickening agents to control penetration force values, which solvents or thickening agents often add cost to the formulation, introduce additional compatibility issues, and often contribute undesirable cosmetics such as prolonged stickiness, difficulty in ease of spreading, increased dry-down times and reduced dry feel after application.

[0137] Specific concentrations of the gellant materials can be selected according to the desired penetration force value. For roll-on formulations having a penetration force value of from about 20 gram force to about 100 gram force, gellant material concentrations preferably range from about 0.1% to about 3%, preferably from about 1.5% to about 3%, by weight of the antiperspirant composition. For other cream formulations, including those formulations suitable for use in cream applicator devices, which have a penetration force, gellant material concentrations preferably range from about 500 gram force, gellant material concentrations preferably range from about 3% to about 3%, preferably from about 3% to about 8%, preferably from about 3% to about 6%, by weight of the antiperspirant composition.

[0138] Specific examples of fatty alcohol gellants for use in the antiperspirant compositions that are commercially available include, but are not limited to, Unilin® 425, Unilin® 350, Unilin® 550 and Unilin® 700 (supplied by Petrolite)

[0139] Residue Masking Material

[0140] The soft solid compositions can further comprise a nonvolatile emollient as a residue masking material Such materials and their use in antiperspirant products are well known in the antiperspirant art, and any such material may be incorporated into the composition of the present invention, provided that such optional material is compatible with the essential elements of the composition, or does not unduly impair product performance or cosmetics.

[0141] Concentrations of the optional residue masking material can range from about 0.1% to about 40%, preferably from about 1% to about 10%, by weight of the antiperspirant composition. These optional materials can be liquid at ambient temperatures, and can be nonvolatile. The term "nonvolatile" as used in this context refers to materials which have a boiling point under atmospheric pressure of at least about 200° C. Nonlimiting examples of suitable residue masking materials for use in the antiperspirant products include butyl stearate, diisopropyl adipate, petrolatum, nonvolatile silicones, octyldodecanol, phenyl trimethicone, isopropyl myristate, C12-15 ethanol benzoates and PPG-14 Butyl Ether. Residue masking materials are described, for example, in U.S. Pat. No. 4,985,238, which description is incorporated herein by reference.

[0142] Other Materials

[0143] The soft solid compositions can further comprise one, or more, other materials which modify the physical characteristics of the compositions or serve as additional "active" components when deposited on the skin. Many such materials are known in the antiperspirant art and can be used in the antiperspirant compositions herein, provided that such optional materials are compatible with the essential materials described herein, or do not otherwise unduly impair product performance.

[0144] Non limiting examples of materials can include active components such as bacteriostats and fungiostats, and "non-active" components such as colorants, perfumes, cosmetic powders, emulsifiers, chelants, distributing agents, preservatives, and wash-off aids. Examples of such optional materials are described in U.S. Pat. No. 4,049,792; Canadian Patent 1,164,347; U.S. Pat. No. 5,019,375; and U.S. Pat. No. 5,429,816; which descriptions are incorporated herein by reference.

[0145] E. Aerosol

[0146] An aerosol composition can comprise a concentrate, a propellant, or a combination thereof. Alcohol is a predominant component of the concentrates provided herein. Useful alcohols include C_1 - C_3 alcohols, with the preferred alcohol being ethanol. In certain examples, the alcohol is employed at a concentration level of from at least about 40%, 50% or 55% to about 80%, by weight of the concentrate.

[0147] An antiperspirant active is dissolved in the alcohol, at a level of from about 1% to about 15%, by weight of the concentrate. Various antiperspirant actives can be employed, including, for example, aluminum chloride, aluminum chlorohydrate, aluminum chlorohydrex, aluminum chlorohydrex PG, aluminum chlorohydrex PEG, aluminum dichlorohydrate, aluminum dichlorohydrex PG, aluminum dichlorohydrex PEG, aluminum sesquichlorohydrate, aluminum sesquichlorohydrex PG, aluminum sesquichlorohydrex PEG, aluminum sulfate, aluminum zirconium octachlorohydrate, aluminum zirconium octachlorohydrex GLY, aluminum zirconium pentachlorohydrate, aluminum zirconium pentachlorohydrex GLY, aluminum zirconium tetrachlorohydrate, aluminum zirconium trichlorohydrate, aluminum zirconium tetrachlorohydrate GLY, and aluminum zirconium trichlorohydrate GLY. In one example, aluminum chlorohydrex PG is the chosen antiperspirant active.

[0148] The antiperspirant concentrates can also include an oil or a mixture of two or more oils. Useful oils include, for example, volatile silicone oils and non-volatile organic oils. "Volatile silicone", as used herein, refers to those silicone materials that have measurable vapor pressure under ambient conditions. Non-limiting examples of suitable volatile silicone Fluids for Cosmetics", Cosmetics and Toiletries, 91:27-32 (1976). The volatile silicone atoms or from at least about 3 silicone atoms or for at least about 5 silicone than about 7 silicone atoms or no more than about 6 silicones can be used which conform to the formula:

[0149] wherein n is from about 3 or from about 5 but no more than about 7 or no more than about 6. These volatile cyclic silicones generally have a viscosity of less than about 10 centistokes at 25° C. Suitable volatile silicones for use herein include, but are not limited to, Cyclomethicone D5 (commercially available from G. E. Silicones); Dow Corning 344, and Dow Corning 345 (commercially available from Dow Corning Corp.); and GE 7207, GE 7158 and Silicone Fluids SF-1202 and SF-1173 (available from General Electric Co.). SWS-03314, SWS-03400, F-222, F-223, F-250, F-251 (available from SWS Silicones Corp.); Volatile Silicones 7158, 7207, 7349 (available from Union Carbide); MASIL SF-V (available from Mazer) and combinations thereof. Suitable volatile silicone oils can also include linear silicone oils such as, for example, DC200 (1 cSt), DC200 (0.65 cSt), and DC2-1184, all of which are available from Dow Corning Corp. In certain examples, the volatile silicone oil can have a viscosity of less than 10 centistokes at 25° C.

[0150] Non-volatile organic, emollient oils can also be employed. A representative, non-limiting list of emollient oils includes CETIOL CC (dicaprylyl carbonate), CETIOL OE (dicaprylyl ether), CETIOL S (diethylhexylcyclohexane), and CETIOL B (dibutyl adipate), all of which are available from Cognis, and LEXFEEL 7 (neopentyl glycol diheptanoate) from Inolex. In certain examples, the organic emollient oils have a viscosity of less than 50 centistokes at 25° C. The term "organic emollient oil" as used herein means silicon-free emollient oils that are liquid at 25° C, and that are safe and light to skin and can be miscible with volatile silicone oils (as described above) and the antiperspirant active-alcohol solution in the concentration ranges described below.

[0151] The oil or mixture of oils is generally included in the concentrate formulas at a level of from about 5% to about 45%, by weight of the concentrate. This viscosity ranges noted above in connection with the different classes of oil can facilitate desired spray rates and patterns, and can help minimize nozzle clogging. To provide desired skin feel, minimal nozzle clogging, and good concentrate stability, the ratio of alcohol to volatile silicone oil is preferably greater than 1.0, 1.35, or 1.5. And in examples having both a volatile silicone oil and an organic emollient oil, the ratio of alcohol to total oil is preferably greater than or equal to about 0.90. The oils in certain examples are miscible with the alcohol and antiperspirant active solution. Although various levels of miscibility are acceptable, the oils are preferably miscible enough with the alcohol and antiperspirant active solution to yield a concentrate having a clear appearance.

[0152] The antiperspirant compositions can also include residue-masking agents and propellants as discussed above.

Test Methods

[0153] Malodor reduction materials may be separated from mixtures, including but not limited to finished products such as consumer products and identified, by analytical methods that include GC-MS and/or NMR.

Test Method for Determining Saturation Vapour Pressure (VP)

[0154] The saturation Vapour Pressure (VP) values are computed for each PRM in the perfume mixture being tested. The VP of an individual PRM is calculated using the VP Computational Model, version 14.02 (Linux) available from Advanced Chemistry Development Inc. (ACD/Labs) (Toronto, Canada) to provide the VP value at 25° C. expressed in units of torr. The ACD/Labs' Vapor Pressure model is part of the ACD/Labs model suite.

Test Method for Determining the Logarithm of the Octanol/Water Partition Coefficient (log P)

[0155] The value of the log of the Octanol/Water Partition Coefficient (log P) is computed for each PRM in the perfume mixture being tested. The log P of an individual PRM is calculated using the Consensus log P Computational Model, version 14.02 (Linux) available from Advanced Chemistry Development Inc. (ACD/Labs) (Toronto, Canada) to provide the unitless log P value. The ACD/Labs' Consensus log P Computational Model is part of the ACD/Labs model suite. Test Method for the Generation of Molecular Descriptors

[0156] In order to conduct the calculations involved in the computed-value test methods described herein, the starting information required includes the identity, weight percent, and molar percent of each PRM in the perfume being tested, as a proportion of that perfume, wherein all PRMs in the perfume composition are included in the calculations. Additionally for each of those PRMs, the molecular structure, and the values of various computationally-derived molecular descriptors are also required, as determined in accordance with the Test Method for the Generation of Molecular Descriptors described herein.

[0157] For each PRM in a perfume mixture or composition, its molecular structure is used to compute various molecular descriptors. The molecular structure is determined by the graphic molecular structure representations provided by the Chemical Abstract Service ("CAS"), a division of the American Chemical Society, Columbus, Ohio, U.S.A. These molecular structures may be obtained from the CAS Chemical Registry System database by looking up the index name or CAS number of each PRM. For PRMs, which at the time of their testing are not yet listed in the CAS Chemical Registry System database, other databases or information sources may be used to determine their structures. For a PRM which has potentially more than one isomer present, the molecular descriptor computations are conducted using the molecular structure of only one of the isomers, which is selected to represent that PRM. The selection of isomer is determined by the relative amount of extension in the molecular structures of the isomers. Of all the isomers of a given PRM, it is the isomer whose molecular structure that is the most prevalent which is the one that is selected to represent that PRM. The structures for other potential isomers of that PRM are excluded from the computations. The molecular structure of the isomer that is the most prevalent is paired with the concentration of that PRM, where the concentration reflects the presence of all the isomers of that PRM that are present.

[0158] A molecule editor or molecular sketching software program, such as ChemDraw (CambridgeSoft/PerkinElmer Inc., Waltham, Mass., U.S.A.), is used to duplicate the 2-dimensional molecular structure representing each PRM. Molecular structures should be represented as neutral species (quaternary nitrogen atoms are allowed) with no disconnected fragments (e.g., single structures with no counter ions). The winMoleconn program described below can convert any deprotonated functional groups to the neutral form by adding the appropriate number of hydrogen atoms and will discard the counter ion.

[0159] For each PRM, the molecular sketching software is used to generate a file which describes the molecular structure of the PRM. The file(s) describing the molecular structures of the PRMs is subsequently submitted to the computer software program winMolconn, version 1.0.1.3 (Hall Associates Consulting, Quincy, Mass., U.S.A., www.molconn.com), in order to derive various molecular descriptors for each PRM. As such, it is the winMolconn software program which dictates the structure notations and file formats that are acceptable options. These options include either a MACCS SDF formatted file (i.e., a Structure-Data File); or a Simplified Molecular Input Line Entry Specification (i.e., a SMILES string structure line notation) which is commonly used within a simple text file, often with a ".smi" or ".txt" file name extension. The SDF file represents each molecular structure in the format of a multi-line record, while the syntax for a SMILES structure is a single line of text with no white space. A structure name or identifier can be added to the SMILES string by including it on the same line following the SMILES string and separated by a space, e.g.: C1=CC=CC=C1 benzene.

[0160] The winMolconn software program is used to generate numerous molecular descriptors for each PRM, which are then output in a table format. Specific molecular descriptors derived by winMolconn are subsequently used as inputs (i.e., as variable terms in mathematical equations) for a variety of computer model test methods in order to calculate values such as: saturation Vapour Pressure (VP); Boiling Point (BP); logarithm of the Octanol/Water Partition Coefficient (log P); Odour Detection Threshold (ODT); Malodour Reduction Value (MORV); and/or Universal Malodour Reduction Value (Universal MORV) for each PRM. The molecular descriptor labels used in the models' test method computations are the same labels reported by the winMolconn program, and their descriptions and definitions can be found listed in the winMolconn documentation. The following is a generic description of how to execute the winMolconn software program and generate the required molecular structure descriptors for each PRM in a composition.

[0161] Computing Molecular Structure Descriptors using winMolconn:

- **[0162]** 1) Assemble the molecular structure for one or more perfume ingredients in the form of a MACCS Structure-Data File, also called an SDF file, or as a SMILES file.
- **[0163]** 2) Using version 1.0.1.3 of the winMolconn program, running on an appropriate computer, compute the full complement of molecular descriptors that are available from the program, using the SDF or SMILES file described above as input.
 - **[0164]** a. The output of winMolconn is in the form of an ASCII text file, typically space delimited, containing the structure identifiers in the first column and respective molecular descriptors in the remaining columns for each structure in the input file.
- **[0165]** 3) Parse the text file into columns using a spreadsheet software program or some other appropriate technique. The molecular descriptor labels are found on the first row of the resulting table.
- [0166] 4) Find and extract the descriptor columns, identified by the molecular descriptor label, corresponding to the inputs required for each model.
 - **[0167]** a. Note that the winMolconn molecular descriptor labels are case-sensitive.

MORV and Universal MORV Calculation

[0168] 1.) Input Molecular Descriptor values as determined via the method above into the following four equations:

MORV=-8.5096+2.8597×(<i>dxp</i> 9)+1.1253×(<i>knotpv</i>)-0. 34484×(e1C2O2)-0.00046231×(<i>idw</i>)+3.3509× (<i>idcbar</i>)+0.11158×(<i>n2pag22</i>)	a)
MORV=-5.2917+2.1741×(<i>dxvp</i> 5)-2.6595×(<i>dxvp</i> 8)+ 0.45297x(c1C2C2 <i>d</i>)-0.6202x(c1C2O2)+1. 3542×(CdCH2)+0.68105×(CaasC)+1.7129×(<i>id-cbar</i>)	b)
MORV=-0.0035+0.8028×(SHCsatu)+2.1673×(<i>xvp</i> 7)- 1.3507×(c1C1C3d)+0.61496×(c1C1O2)+0. 00403×(<i>idc</i>)-0.23286×(<i>nd</i> 2).	c)

d)

MORV=-0.9926-0.03882x(*Sd*O)+0.1869x (*Ssp*3OH)+2.1847x(*xp*7)+0.34344x(*e*1C302)-0. 45767x(*c*1C2C3)+0.7684x(CKetone)

- **[0169]** Equation a) relates a material's effectiveness in reducing the malodor trans-3-methyl-2-hexenoic acid (carboxylic acid based malodors)
- **[0170]** Equation b) relates a material's effectiveness in reducing the malodor trimethylamine (amine based malodors)
- **[0171]** Equation c) relates a material's effectiveness in reducing the malodor 3-mercapto-3-methylhexan-1-ol (thiol based malodors)
- **[0172]** Equation d) relates a material's effectiveness in reducing the malodor skatole (indole based malodors)
- **[0173]** 2.) For purpose of the present application, a material's MORV is the highest MORV value from equations 1.)a) through 1.)d).
- **[0174]** 3.) If all MORV values from equations 1.)a) through 1.)d) above are greater than 0.5, the subject material has a Universal MORV.

Method for Assigning Fragrance Fidelity Index (FFI) and the Blocker Index (BI) for a Malodor Reduction Compound

[0175] Blocker materials suitable for use in consumer products of the present invention are chosen for their ability to decrease malodor, while not interfering with perception of a fragrance. Material selection is done by assigning two indices to a test sample material from two reference scales in order to rank odor strengths. The two reference scales are the Fragrance Fidelity Index (FFI) scale and the Blocker Index (BI) scale. The FFI ranks the ability of the test sample material to impart a perceivable odor which could cause interference when combined with another fragrance and the BI ranks the ability of the test sample material to reduce malodor perception. The two methods for assigning the indices to a test sample on the FFI and the BI reference scales are given below. Method for Assigning the FFI to Test samples

[0176] The first step in the method for assigning an FFI on the FFI reference scale is to create the FFI reference swatches. The swatches for the scale are created by treating clean fabrics swatches with a known amount of a known concentration of an ethyl vanillin solution. Fabric swatches for this test are white knit polycotton (4 inch×4 inch) swatches from EMC ordered as PC 50/50. The supplier is instructed to strip the swatches first, stripping involves washing twice with a fragrance-free detergent and rinsing three times.

Making the FFI Reference Swatches

[0177] Make three solutions of ethyl vanillin using a 50%/ 50% EtOH/water as the diluent at the following concentrations: 25 ppm, 120 ppm and 1000 ppm. Pipette 13 μ L of each of the three solutions into the middle of a clean swatch resulting in about a 1 cm diameter of the solution in the middle of the swatch. This will create a sensory scale of three swatches with three different odor levels based on the concentration of the solution pipetted onto the swatch. After drying for 30 minutes in a vented hood, the swatches are wrapped in aluminum foil to prevent odor contamination to the treated swatch. A clean untreated swatch is also included as the lowest anchor point of reference for odor strength on the FFI scale. The FFI reference scale swatches should be used within 0.5 to 12 hours and discarded after 12 hours. The swatches are

used as scale anchor points when graders evaluate a test sample(s) and are assigned a Fragrance Fidelity Index (FFI) as show in Table 7.

[0178] At least four perfumers/expert graders are used to rank the ethyl vanillin swatches in the FFI scale. The perfumer/expert grader needs to demonstrate adequate discrimination on the scale. The perfumer/expert panel is asked to rank order swatches according to a scale between 0 and 3. The panel must demonstrate statistical differences between the swatches as seen in Table 7.

TABLE 7

	Results FFI of reference swatches from six perfumers/expert graders.								
			E		Std				
FFI	Swatch	1	2	3	4	5	6	Ave	Dev.
0	Control: stripped swatch NIL ethyl vanillin	0	0	0.5	0	0	0	0.08	0.2
1	Stripped swatch with 13 µL 25 ppm ethyl vanillin	0.5	0.5	0.5	1.5	0.5	1.0	0.75	0.4
2	Stripped swatch with 13 µL 120 ppm ethyl vanillin	2.0	1.5	1.5	2.0	2.0	2.0	1.8	0.2
3	Stripped swatch with 13 µL 1000 ppm ethyl vanillin	3.0	2.0	3.0	3.0	3.0	3.0	2.8	0.4

[0179] The expert graders must demonstrate a full range of 2.5 over the 4 swatches to be acceptably discriminating. Grader 2 in table 1 has a range of only 2 and is eliminated from the panel. The panel of expert graders must also demonstrated the ability to statistically discriminate between swatches in the scale.

TABLE 8

	This table demonstrates acceptable expert graders with an acceptable range and the panel meets the requirement for discriminating statistics.									
			Expei	t Gra	ıder			Std		
FFI	Swatch	1	3	4	5	6	Ave	Dev.		
0	Control: stripped swatch NIL ethyl vanillin	0	0.5	0	0	0	0.08	0.2		
1	Stripped swatch with 13 µL 25 ppm ethyl vanillin	0.5	0.5	1.5	0.5	1.0	0.80	0.4		
2	Stripped swatch with 13 µL 120 ppm ethyl vanillin	2.0	1.5	2.0	2.0	2.0	1.9	0.2		
3	Stripped swatch with 13 µL 1000 ppm ethyl vanillin	3.0	3.0	3.0	3.0	3.0	3.0	0.0		

[0180] The reference swatches represent the 0, 1, 2, and 3 FFIs on the FFI reference scale, Table 9. The expert grader should familiarize them self with the strength of the odor on the FFI reference swatches by sniffing each one starting at 0 (the lowest odor strength) and ending at 3 (the highest odor strength). This should be done prior to evaluating the test sample material treated swatch.

TABLE 9

Swatch treatments comprising the Fragrance Fidelity Index (FFI) reference scale								
Swatch treatment	Conc. of ethyl vanillin	FFI						
Clean fabric swatch w/ 13 µL ethyl vanillin	1000 ppm ethyl vanillin	3						
Clean fabric swatch w/ 13 µL ethyl vanillin	120 ppm ethyl vanillin	2						
Clean fabric swatch w/ 13 µL ethyl vanillin	25 ppm ethyl vanillin	1						
Clean fabric swatch NIL ethyl vanillin	NIL ethyl vanillin	0						

Making Swatches Treated with the Test Material

[0181] A clean swatch is treated with 13 μ L of a known concentration of a test sample material resulting in an about 1 cm of the solution on the clean swatch. Just like the reference swatches, the test sample material swatch is dried in a vented hood for 30 minutes and then wrapped in aluminum foil to prevent contamination. The test material swatches and the FFI reference swatches should be made within 2 hrs. of each other. The test material swatch must be used within 0.5 to 12 hours and discarded after 12 hours.

Assigning the FFI to the Test Material

[0182] At least two perfumers/expert graders are used to assign an FFI grade to a test sample. The perfumer/expert grader smells the test sample swatch by holding that swatch 1 inch from their nose with their nose centered over the area where the test sample was pipetted on to the fabric and then assigns the test sample an FFI grade using the FFI reference scale anchor swatches as references. The test sample swatch is assigned an FFI grade at or between numbers on the FFI scale shown in Table 9. In cases where the test sample material is graded greater than 3, the test material is not a blocker material or the concentration of the material needs to be lowered and reevaluated to determine if a lower level has a malodor blocker functionality.

Method for Assigning the BI to Test Sample

[0183] The first step in the method for assigning a BI to a test sample material on the BI reference scale is to create the BI reference swatches. The swatches for the scale are created by treating clean fabrics swatches with a known amount of a known volume of isovaleric acid solution at a known concentration. Fabric swatches for this test are white knit polycotton (4 inch×4 inch) swatches from EMC ordered as PC 50/50. The supplier is instructed to strip the swatches first, stripping involves washing twice with a fragrance-free detergent and rinsing three times.

Making the BI Reference Swatches

[0184] Make one solution of 0.08% isovaleric acid using 50%/50% EtOH/water as the diluent. The BI scale contains one clean swatch with no malodor applied. Three other swatches each have a different volume of the 0.08% isovaleric acid applied. Pipette 2 μ L of the 0.08% isovaleric acid solution to one clean swatch, 5 μ L of the 0.08% isovaleric acid solution to the next swatch and 20 μ L of isovaleric acid to the final clean swatch. These solutions are pipetted to the middle of the swatches. This will create a sensory scale of three swatches with three different odor levels based on the volume of the 0.08% isovaleric acid solution pipetted onto the swatch.

After drying for 30 minutes in a vented hood, the swatches are wrapped in aluminum foil to prevent odor contamination to the treated swatch. A clean untreated swatch is also included as the lowest anchor point of reference for malodor strength on the BI scale. The BI reference scale swatches should be used within 0.5 to 12 hours and discarded after 12 hours. The swatches are used as scale anchor points when graders evaluate a test sample(s) and are assigned a Blocker Index (BI) as show in Table 12.

[0185] At least four perfumers/expert graders are used to rank the isovaleric acid swatches in the BI scale. The perfumer/expert grader needs to demonstrate adequate discrimination on the scale. The perfumer/expert grader is asked to rank order swatches according to a scale between 0 and 3. The panel of graders must demonstrate statistical differences between the swatches as seen in Table 10.

TABLE 10

	Results from six perfumers/ex	pert g	rader	s to c	reate	the I	3I scale	e
		Expert Grader						Std
BI	Swatch	1	2	3	4	5	Ave	Dev.
0	Control: stripped swatch NIL isovaleric acid	0	0	0	0	0	0	0
1	Stripped swatch with 2 µL 0.08% isovaleric acid	0.5	2.0	1.0	1.0	0.5	1.0	0.5
2	Stripped swatch with 5 µL 0.08% isovaleric acid	2.0	2.5	2.0	2.0	2.0	2.1	0.2
3	Stripped swatch with $20 \ \mu L$ 0.08% isovaleric acid	3.0	3.0	3.0	3.0	2.5	2.8	0.2

[0186] The expert graders must demonstrate a full range of 2.5 over the 4 swatches to be acceptably discriminating. The panel of expert graders must also demonstrated the ability to statistically discriminate between swatches in the scale. Expert grader #2 did not demonstrate the ability to discriminate between the swatches and is eliminated from the panel, see Table 11.

TABLE 11

	This table demonstrates acceptable expert graders with an acceptable range and the panel meets the requirement for discriminating statistics.								
		E	xpert	Grade	r		Std		
BI	Swatch	1	3	4	5	Ave	Dev.		
0	Control: stripped swatch NIL isovaleric acid	0	0	0	0	0	0		
1	Stripped swatch with 2 µL 0.08% isovaleric acid	0.5	1.0	1.0	0.5	0.8	0.3		
2	Stripped swatch with 5 µL 0.08% isovaleric acid	2.0	2.0	2.0	2.0	2.0	0		
3	Stripped swatch with 20 µL 0.08% isovaleric acid	3.0	3.0	3.0	2.5	2.9	0.2		

[0187] The reference swatches represent the 0, 1, 2, and 3 BIs on the BI reference scale, Table 12. The expert grader should familiarizes him/herself with the strength of the odor on the BI reference swatches by sniffing each one starting at 0 (the lowest odor strength) and ending at 3 (the highest odor strength). This should be done prior to evaluating the swatch treated with the test material.

TABLE 12

Swatch treatments comprising the Bl	ocker Index (BI) reference	scale.
Swatch/treatment	Wt. of isovaleric acid	BI
Clean fabric swatch w/ 20 μL 0.08% isovaleric acid	16 mg isovaleric acid	3
Clean fabric swatch w/ 5 µL 0.08% isovaleric acid	4 mg isovaleric acid	2
Clean fabric swatch w/ 2 µL 0.08% isovaleric acid	1.6 mg isovaleric acid	1
Clean fabric swatch NIL isovaleric acid	NIL isovaleric acid	0

Making the Malodorous Swatch and Treating it with a Test Material

[0188] To evaluate the BI, the test material is applied to a malodorous swatch to determine how well the test material blocks the malodor. The malodorous swatch is made by treating a clean swatch with 20 μ L of a 0.08% solution of isovaleric acid. Dry the malodorous swatch treated with isovaleric acid in a vented hood for 30 minutes. After drying the malodorous swatch a known concentration of test material solution, between 1 ppm and 100 ppm is pipetted onto the malodorous swatch. Apply the test material solution right on top of the spot where the isovaleric acid solution was applied making an about 1 cm diameter spot. Just like the BI reference swatches, the isovaleric acid+test material swatch is dried in

a vented hood for 30 minutes and then wrapped in aluminum foil to prevent contamination. The isovaleric acid+test material swatches and the BI reference swatches should be made within 2 hrs. of each other. The isovaleric acid+test material swatch must be used between 1-12 hours just like the reference swatches. It is sometimes necessary to evaluate several levels of the test material between about 1 and about 100 ppm to determine the BI.

Assigning the BI to the Test Material

[0189] At least two perfumers/expert graders are used to assign the BI to the test sample. The expert grader smells the isovaleric acid+test material swatch by holding that swatch one inch from their nose with their nose centered over the area where the Test sample was pipetted on to the fabric and then assigns the isovaleric acid+test material swatch a BI based on ranking its odor strength against the odor strength of the swatches in the BI reference scale. The test sample swatch is assigned a BI at or between numbers on the BI in table. In cases where the isovaleric acid+test material swatch odor is greater than 3 on the BI reference scale, this indicates the material is not a blocker or the concentration of the test material needs to be lowered to achieve its blocker functionality.

Malodor Reduction Compounds with FFI and BI Grades Based on the Aforementioned

Table Ref #	CAS#	log P	Name	Conc	FFI	BI
281	54830-99-8	3.11	3a,4,5,6,7,7a-hexahydro-4,7-	10 ppm	0	2.0
			methano-1H-indenyl acetate	50 ppm	0.5	2.0
677	139504-68-0	3.75	1-((2-(tert-	10 ppm	0	2.3
			butyl)cyclohexyl)oxy)butan-2-ol	50 ppm	1.8	2.0
962	55066-48-3	3.17	3-methyl-5-phenylpentan-1-ol	10 ppm	0	2.3
				$50 \mathrm{ ppm}$	0.5	1.7
261	173445-65-3	3.29	3-(3,3-dimethyl-2,3-dihydro-1H-	10 ppm	0	1.8
			inden-5-yl)propanal	$50 \mathrm{ppm}$	1.3	1.3
1139	87731-18-8	2.11	(Z)-cyclooct-4-en-1-yl methyl	10 ppm	0	2.0
			carbonate	50 ppm	1.0	2.7
	4430-31-3	1.43	3,4,4a,5,6,7,8,8a-octahydrochromen-	$10 \mathrm{ ppm}$	0	2.0
			2-one	50 ppm	0	2.0
204	40379-24-6	3.89	7-methyloctyl acetate	10 ppm	0	2.0
				$50 \mathrm{ ppm}$	0	2.7
1005	93981-50-1	5.59	ethyl (2,3,6-trimethylcyclohexyl)	50 ppm	0.5	2.6
			carbonate			
391	106-33-2	5.73	Ethyl laurate	50 ppm	0.3	2.2
1148	1139-30-6	4.06	Caryophyllene Oxide	50 ppm	0.5	2.3
524	13877-91-3	4.31	3,7-Dimethyl-1,3,6-Octatriene(cis- β	50 ppm	0	2.8
	3338-55-4		ocimene 70%)			
1149	23787-90-8	4	1,3,4,6,7,8alpha-hexahydro-	10 ppm	0	1.5
			1,1,5,5-tetramethyl-2H-2,4alpha- methanophtalen-8(5H)-one	50 ppm	0.8	2.3
	112-42-5	4.62	Undecanol	50 ppm	0.8	2.3
174	112-53-8	5.17	1-dodecanol	50 ppm	0.5	2.3
	98-52-2	2.78	4-tert-butyl cyclohexane	10 ppm	0	2.0
				50 ppm	0.3	2.0
109	112-39-0	6.41	Methyl palmitate	10 ppm		2.0

[0190] Malodor Control Compounds with Improved Performance at Lower Levels.

[0191] Below are some non-limiting examples of preferred behavior by which the malodor control compound gives improved malodor control at lower concentration. These non-limiting data provide additional compelling data that malodor is being blocked, not masked.

Table Ref# CAS#	Name	Conc	FFI	BI
N/A 68912-13-0	8,8-dimethyl-3a,4,5,6,7,7a- hexahydro-1H-4,7-	10 ppm 50 ppm	0 0	1.5 2.2
N/A TBD	methanoinden-6-yl propionate 4,8-dimethyl-1-(methylethyl)- 7-oxybiciclo [4.3.0]nonane	10 ppm 50 ppm	0.3	2.0 2.2

about 0.001 Fragrance Fidelity

Retesting Malodor Reduction Compounds at Lower Levels.

[0193] The example below demonstrates that while a malodor control compound could fail to demonstrate odor blocking (BI>2.5) at a higher concentration it should be retested at a lower concentration to determine if it passes.

Table Ref # CAS #	Name	Conc	FFI	BI
N/A 173445-65-3	1H-Indene-5-propanal, 2,3-	10 ppm	0	1.5
	dihydro-3,3-dimethyl-	50 ppm	0.5	2.7

EXAMPLE 1

Compositions Comprising Malodor Reduction Compounds

[0194] In the present invention blends enable more potent malodor reduction because blends are useful at a higher % of the product composition before becoming olfactively notice-able. Below are non-limiting examples of malodor reduction compounds.

		% wt. Active				
Component	CAS#	А	В	С	D	Е
2,2,8,8-tetramethyl-octahydro-1H- 2,4a-methanonapthalene-10-one	29461-14-1	35-45	15-25	5-20	10-30	15-25
1H-Indene-ar-propanal, 2,3- dihydro-1,1-dimethyl-	300371-33-9	10-20	1-30	NIL	5-10	1-5
Hexadecanoic acid, (2E)-3,7- dimethyl-2,6-octadien-1-yl ester	3681-73-0	35-45	10-25	NIL	30-40	35-50
1-Pentanol-3-methyl-5-phenyl	55066-48-3	10-20	10-25	2-10	5-17	10
4,7-Methano-1H-inden-5-ol,	171102-41-3	0-5	10-25	NIL	1-6	1-5
3a,4,5,6,7,7a-hexahydro-, 5-acetate						
4,8-dimethyl-1-(methylethyl)-7- oxybiciclo [4.3.0]nonane	N/A	0-5	NIL	NIL	NIL	1-5
(3Z)-3,7-dimethylocta-1,3,6-triene	3338-55-4	NIL	NIL	10-20	2-5	NIL
1H-Indene-5-propanal, 2,3- dihydro-3,3-dimethyl-	173445-65-3	NIL	NIL	NIL	7.5-16	1-15
3,4,4a,5,6,7,8,8a- octahydrochromen-2-one	4430-31-3	NIL	NIL	NIL	3-7	1-15
1-(2-tert-	139504-68-0	NIL	NIL	NIL	0.25-1.5	NIL
butylcyclohexyl)oxybutan-2-ol						
ethyl (2,3,6-trimethylcyclohexyl) carbonate	93981-50-1	NIL	NIL	15-30	NIL	2
benzyl 2-hydroxypropanoate	2051-96-9	NIL	NIL	2-5	NIL	NIL
(3,5-dimethylcyclohex-3-en-1- yl)methanol	67634-16-6	NIL	NIL	5-30	NIL	NIL
2-Dodecanol	10203-28-8	NIL	0.25-1	NIL	0.5-3	NIL

EXAMPLE 2

Compositions Comprising Malodor Reduction Compounds

[0195]

		% wt. Active					
Ingredient	CAS#	А	В	С	В	D	Е
(E)-1-(2,6,6-trimethyl-1- cyclohex-2-enyl)pent-1-en-3- one	127-42-4	4	8	2	8	3	2
ethyl dodecanoate	106-33-2	NIL	1	NIL	3	NIL	NIL

	-conti	nued						
			% wt. Active					
Ingredient	CAS #	А	В	С	В	D	Е	
3a,4,5,6,7,7a-hexahydro-1H- 4,7-methanoinden-1-yl propanoate	68912-13-0	8	30	1	4	1	3.5	
[1R-(1R*,4R*,6R*,10S*)]- 4,12,12-trimethyl-9- methylene-5- oxatricyclo[8.2.0.04,6]dodecane	1139-30-6	NIL	0.3	2	0.5	NIL	0.5	
(8E)-cyclohexadec-8-en-1-one	3100-36-5	NIL	5	NIL	7	NIL	NIL	
3,5,5-trimethylhexyl acetate	58430-94-7	25	15	50	35	60	56	
ethyl (2,3,6- trimethylcyclohexyl) carbonate	93981-50-1	NIL	1	NIL	5	NIL	NIL	
2,4-dimethyl-4,4a,5,9b- tetrahydroindeno[1,2- d][1,3]dioxine	27606-09-3	25	10	15	15	16	15	
2,2,7,7- tetramethyltricyclo[6.2.1.01,6] undecan-5-one	23787-90-8	8	9	5	7	5	5	
(3,5-dimethylcyclohex-3-en- 1-yl)methanol	67634-16-6	NIL	0.7	NIL	0.5	NIL	NIL	
3-(7,7-dimethyl-4- bicyclo[3.1.1]hept-3-enyl)- 2,2-dimethylpropanal	33885-52-8	30	20	25	15	15	18	
Total		100	100	100	100	100	100	

EXAMPLE 3

Malodor Reduction Composition

[0196]

		% wt. Active			
Ingredient	CAS #	А	В	С	
5-Cyclohexadecen-1-One	37609-25-9	15.0	2.00	2.00	
decahydro-2,2,7,7,8,9,9-	476332-65-7	0.005	0.01	0.01	
heptamethylindeno(4,3a-b)furan					
2,3-Dihydro-5,6-dimethoxy-2-(4-	33704-61-9	0.3	0.5	0.5	
piperidinylmethylene)-1H-inden-1-one					
Cedryl Methyl Ether	19870-74-7	6.0	10.0	4.0	
Trans-4-Decenal	65405-70-1	0.005	0.002	0.002	
Decyl Aldehyde	112-31-2	3.74	2.0	2.0	
3-methyl cyclopentadecenone	63314-79-4	0.4	1.0	1.0	
Diphenyl Oxide	101-84-8	0.5	1.0	1.0	
3a,4,5,6,7,7a-hexahydro-4,7-methano-	54830-99-8	5.0	8.0	8.0	
1H-indenyl acetate					
3a,4,5,6,7,7a-hexahydro-1H-4,7-	68912-13-0	6.0	8.0	8.0	
methanoinden-1-yl propanoate					
2-(5-methyl-2-propan-2-yl-8-	68901-32-6	10.0	15.0	15.0	
bicyclo[2.2.2]oct-5-enyl)-1,3-dioxolane					
(E)-3,7-dimethyl-2,6-	3681-73-0	10.0	10.0	16.0	
octadienylhexadecanoate					
Iso Nonyl Acetate	58430-94-7	6.65	8.0	3.0	
2,2,7,7-	23787-90-8	10.0	8.0	8.0	
tetramethyltricyclo[6.2.1.01,6]undecan-5-one					
(1-Methyl-2-(1,2,2-	198404-98-7	0.1	0.3	0.3	
trimethylbicyclo[3.1.0]-hex-3-					
ylmethyl)cyclopropyl)methanol					
Lauric Aldehyde	112-54-9	0.625	1.0	0.7	
Methyl Iso Eugenol	93-16-3	18.000	10.0	13.0	
Methyl hexadecanoate	112-39-00	3.000	10.0	12.0	
2,3-dihydro-1,1-1H-dimethyl-indene-ar- propanal	300371-33-9	0.400	0.0	0.3	
4-tert-butylcyclohexanol	98-52-2	0.400	0.1	0.1	
2-isobutyl-4-hydroxy-4- methyltetrahydropyran	63500-71-0	1.600	2.0	2.0	

	-continued				
	<u>% wt.</u>				
Ingredient	CAS #	А	В	С	
Undecyl Aldehyde Undecylenic Aldehyde	112-44-7 112-45-8	1.725 0.550	2.888 0.2	1.888 1.2	
Total		100	100.0	100.0	

EXAMPLE 4.1-4.5

Deodorant Example with Malodor Reducing Composition

[0197] An example of Deodorant compositions prepared with malodor reduction composition, according to the compositions shown in Example 1 to 3.

Ingredient	4.1	4.2	4.3	4.4	4.5
Product Form	Solid Deodorant Control	Solid Deodor- ant	Solid Deodor- ant	Solid Deodor- ant	Aerosol Deodorant or Body Spray
dipropylene glycol	48	48	20	30	20
propylene glycol	19.3	19.3	22	_	
tripopylene glycol			25	_	
Glycerine				10	
PEG-8				20	
Propylene Glycol 3 Myristyl Ether	1.4	1.4	—	—	—
ethanol	_	—	—	—	QS

-continued	

Ingredient	4.1	4.2	4.3	4.4	4.5
Water	QS	QS	QS	QS	
sodium stearate	5.4	5.4	5.5	5.5	_
tetra sodium EDTA	0.5	0.5	0.05	0.05	
sodium hydroxide		_	0.04	0.04	
triclosan		_	0.3	0.3	_
Neat Perfume	2.8	2.8	2	1.5	1.5
Malodor reducing composition		0.7	1.0	0.5	0.35
Blue 1	0.0009	0.0009	_	_	_
Propellant (1,1 difluoroethane)	—	—	—	—	40

QS - Indicates that this material is used to bring the total to 100%.

EXAMPLES 5.1-5.6

Antiperspirant Examples with Malodor Reducing Composition

[0198] An example of Antiperspirant compositions prepared with malodor reduction composition, according to the compositions shown in Example 1-3.

	5.1 Invisible Solid	5.2 Invisible Solid	5.3 Invisible Solid	5.4 Soft Solid	5.5 Soft Solid	5.6 Soft Solid
Aluminum Zirconium Trichlorohydrex	24	24	24	26.5	26.5	26.5
Glycine Powder						
Cyclopentasiloxane Dimethicone	Q.S	Q.S.	Q.S.	Q.S. 5	Q.S. 5	Q.S. 5
CO-1897 Stearyl Alcohol NF	14	14	14	_	_	—
Hydrogenated Castor Oil MP80 Deodorized	3.85	3.85	3.85	_	_	_
Behenyl Alcohol	0.2	0.2	0.2			
Tribehenin	_	_	_	4.5	4.5	4.5
C 18-36 acid	_			1.125	1.125	1.125
triglyceride						
C12-15 Alkyl Benzoate	9.5	9.5	5	_	_	—
PPG-14 Butyl Ether	6.5	6.5	—	0.5	0.5	0.5
Phenyl Trimethicone	3	—	3	—	—	—
White Petrolatum	3			3	3	3
Mineral Oil	1.0	1.0	1.0			
Free (Neat) Perfume	1.0	0.75	2.0	0.75	1.0	1.25
Malodor reducing composition	0.25	—	0.35	0.175	0.25	0.1
Beta-Cyclodextrin complexed with Malodor reducing	_	3.0	—	_	_	3.0

composition

-continued						
	5.1 Invisible Solid	5.2 Invisible Solid	5.3 Invisible Solid	5.4 Soft Solid	5.5 Soft Solid	5.6 Soft Solid
Talc Imperial 250 USP	3.0	3.0	3.0	_	_	_
Polyacrylate Microcapsule loaded with Malodor reducing composition	_	_	1.9	_		_

QS - indicates that this material is used to bring the total to 100%.

EXAMPLE 6.1-6.5

Clear Gel Antiperspirant Examples with Malodor Reducing Composition

[0199] An example of Antiperspirant compositions prepared with malodor reduction composition, according to the compositions shown in Example 1-3. ment conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.

[0202] While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit

	6.1 Clear Gel Antiperspirant	6.2 Clear Gel Antiperspirant	6.3 Clear Gel Antiperspirant	6.4 Clear Gel Antiperspirant	6.5 Clear Gel Antiperspirant
Aluminum	20	18.5	20	18	10
Zirconium					
Octachlorohydrex					
Gly					
Water	Q.S	Q.S.	Q.S.	Q.S.	Q.S.
Ethanol	5.5	8	6	6.5	5
Propylene Glycol	5.3	5	7	5.5	8
DC 5225c -	7.8	9	6.5	7	8
Cyclopentasiloxane					
& PEG/PPG-					
18/18					
Dimethicone					
Dimethicone	5.6	4.5	5.8	5	4.1
Cyclopentasiloxane	2.6	3	1	3	2.5
Free (Neat)	1.0	0.75	2.0	0.75	1.0
Perfume					
Malodor reducing composition	0.25	—	0.35	0.175	0.25

QS - indicates that this material is used to bring the total to 100%.

[0200] The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."

[0201] Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests, or discloses any such invention. Further, to the extent that any meaning or definition of a term in this docu-

and scope of the invention. It is, therefore, intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

What is claimed:

1. An antiperspirant and/or deodorant composition comprising, based on total composition weight,

a) a sum total of from about 0.0001% to about 2%, preferably from about 0.0001% to about 0.75%, more preferably from about 0.001% to about 0.5%, most preferably from about 0.007% to about 0.25% of 1 or more malodor reduction materials, preferably 1 to about 75 malodor reduction materials, more preferably 1 to about 50 malodor reduction materials, more preferably 1 to about 35 malodor reduction materials, most preferably 1 to about 20 malodor reduction materials, each of said malodor reduction materials having a MORV of at least 0.5, preferably from 0.5 to 10, more preferably from 1 to 10, most preferably from 1 to 5, and preferably each of said malodor reduction materials having a Universal MORV, or said sum total of malodor reduction materials having a Blocker Index of less than 3, more preferable less than about 2.5 even more preferably less than about 2 and still more preferably less than about 1 and most preferably 0 and/or a Blocker Index average of 3 to about 0.001; and

- b) from about 0% to about 12%, preferably from about 0% to about 8%, more preferably from about 0.1% to about 4%, of one or more perfume raw materials having a MORV of less than 0.5, preferably less than 0, more preferably less than -2, most preferably less than -5;
- c) from about 0.1% to about 99%, preferably from about 1% to about 80%, more preferably from about 5% to about 55%, most preferably from about 10% to about 50% of a solvent, preferably said solvent is selected from cyclopentasiloxane, ethanol, water, propylene glycol, dipropylene glycol, and mixtures thereof;
- d) from about 0% to about 30%, preferably from about 0% to about 20%, more preferably from about 0.1% to about 4%, most preferably from about 0.1% to about 4% of a material selected from the group consisting of a structurant, a residue masker, an antimicrobial, and mixtures thereof.

2. An antiperspirant and/or deodorant composition according to claim 1, wherein said sum total of malodor reduction materials has a Blocker Index of less than 3, more preferable less than about 2.5 even more preferably less than about 2 and still more preferably less than about 1 and most preferably 0 and/or a Blocker Index average of 3 to about 0.001.

3. An antiperspirant and/or deodorant composition according to any preceding claim, wherein each of said malodor reduction materials has a MORV of at least 0.5, preferably from 0.5 to 10, more preferably from 1 to 10, most preferably from 1 to 5, and preferably each of said malodor reduction materials having a Universal MORV.

4. An antiperspirant and/or deodorant composition according to any preceding claim wherein, said sum total of malodor reduction materials has a Fragrance Fidelity Index average of 3 to about 0.001 Fragrance Fidelity Index, preferably each malodor reduction material in said sum total of malodor reduction materials has a Fragrance Fidelity Index of less than 3, preferably less than 2, more preferably less than 1 and most preferably each malodor reduction material in said sum total of malodor reduction materials has a Fragrance Fidelity Index of 0.

5. An antiperspirant and/or deodorant composition according to any preceding claim, wherein said malodor reduction materials are selected from the group consisting of 2-ethylhexyl(Z)-(3-(4-methoxyphenyl)acrylate; 2,4-dimethyl-2-(5, 5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1,3dioxolane; 1,1-dimethoxynon-2-yne; 2-(p-tolyl)propan-2-ol; 3-methoxy-7,7-dimethyl-10-methylenebicyclo[4.3.1]decane; methoxycyclododecane; 1,1-dimethoxycyclododecane; (Z)-tridec-2-enenitrile; (2-hydroxy-4-methoxyphenyl) (phenyl)methanone; 2,4a,5,8a-tetramethyl-1,2,3,4,4a,7,8, 8a-octahydronaphthalen-1-yl formate; 4-methyl-1-oxaspiro [5.5]undecan-4-ol; 7-methyl-2H-benzo[b][1,4]dioxepin-3 (4H)-one; 1,8-dioxacycloheptadecan-9-one; 4-(tert-pentyl) cyclohexan-1-one; 2-methoxy-1,1'-biphenyl; 3a,5,6,7,8,8bhexahydro-2,2,6,6,7,8,8-heptamethyl-4H-indeno(4,5-d)-1, 3-dioxole; 7-isopropyl-8,8-dimethyl-6,10-dioxaspiro[4.5] decane; octyl furan-2-carboxylate; octyl acetate; 2-heptyl-4methyl-1,3-dioxolane; octanal: 1,1-dimethoxyoctane; 7-methyl-3-methyleneocta-1,6-diene; 2-methyl-6-methyleneoct-7-en-2-ol; 2-methyl-6-methyleneoct-7-en-2-yl acetate; tetradecanal; 4-methoxy-6-prop-2-enyl-1,3-benzodioxole; tetradecanenitrile; 2,2,6,8-tetramethyl-1,2,3,4,4a,5, 8,8a-octahydronaphthalen-1-ol; (E)-2,6-dimethylocta-5,7dien-2-ol; (E)-2,7-dimethylocta-1,5,7-trien-3-ol; 2-((1S, 5R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)ethyl acetate; (4R,4aS,6R)-4,4a-dimethyl-6-(prop-1-en-2-yl)-4,4a,5,6,7,8hexahydronaphthalen-2(3H)-one; nonan-1-ol; nonanal; 12-methyl-14-tetradec-9-enolide; N-ethyl-2-isopropyl-5methylcyclohexane-1-carboxamide; 1-(3-methylbenzofuran-2-yl)ethan-1-one; 2-methoxynaphthalene; (E)-3,7,11trimethyldodeca-1,6,10-trien-3-ol; (Z)-3,7-dimethylocta-2, 6-dien-1-ol; 1-ethyl-3-methoxytricyclo[2.2.1.02,6]heptane; methyl(E)-non-2-enoate; 10-isopropyl-2,7-dimethyl-1-oxaspiro[4.5]deca-3,6-diene: 2-(2-(4-methylcyclohex-3-en-1-yl) propyl)cyclopentan-1-one; 6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbaldehyde; (E)-4-(2,2,3,6tetramethylcyclohexyl)but-3-en-2-one; (4-(4-methylpent-3en-1-yl)cyclohex-3-en-1-yl)methyl acetate; 2-(tert-butyl)-4, 5,6-trimethyl-1,3-phenylene dinitrite; 1.7dioxacycloheptadecan-8-one; 1-(4-(tert-butyl)-2,6dimethyl-3,5-dinitrophenyl)ethan-1-one; 1-(tert-butyl)-2methoxy-4-methyl-3,5-dinitrobenzene;

3-methylcyclopentadecan-1-one; (E)-3-methylcyclopentadec-4-en-1-one; 3-methyl-4-phenylbutan-2-ol; 1-(4-isopropylcyclohexyl)ethan-1-ol; (E)-dec-5-enoic acid; methyl non-2-ynoate; 2-methyldecanal; 6,6-dimethoxy-2,5,5trimethylhex-2-ene; 4-phenylbutan-2-ol; methyl stearate; 1,1-dimethoxy-2-methylundecane; undecan-2-one; 2-methylundecanal; methyl tetradecanoate; methyl(9Z,12Z)-octadeca-9,12-dienoate; 1-hydroxydecan-3-one; (Z)-1.2dimethoxy-4-(prop-1-en-1-yl)benzene; methyl palmitate; 4-allyl-1,2-dimethoxybenzene; methyl 2-((1R,2R)-3-oxo-2-((Z)-pent-2-en-1-yl)cyclopentyl)acetate; methyl 2-(3-oxo-2-1-methyl-2-phenoxybenzene; pentylcyclopentyl)acetate; methyl cinnamate; 1-allyl-4-methoxybenzene; 1-(naphthalen-2-yl)ethan-1-one; methyl oct-2-ynoate; methyl 2,6,6-trimethylcyclohex-2-ene-1-carboxylate; 7-methoxy-3,7-dimethyloctanal; 7-isopropyl-10-methyl-1,5-dioxaspiro[5.5] undecan-3-ol; octahydro-1H-4,7-methanoindene-1carbaldehyde; 3-(3-(tert-butyl)phenyl)-2-methylpropanal; (E)-4-(4.8-dimethylnona-3.7-dien-1-vl)pyridine: (E)trideca-3,12-dienenitrile; 2,2-dimethyl-3-(m-tolyl)propan-1ol; 2,4-dimethyl-4,4a,5,9b-tetrahydroindeno[1,2-d][1,3]dioxine; 8-isopropyl-6-methylbicyclo[2.2.2]oct-5-ene-2carbaldehyde; 4-(4-hydroxy-4-methylpentyl)cyclohex-3ene-1-carbaldehyde; (S)-1-methyl-4-(prop-1-en-2-yl) cyclohex-1-ene; (Z)-3-hexen-1-yl-2-cyclopenten-1-one; 3,7dimethylocta-1,6-dien-3-yl octanoate; 3,7-dimethylocta-1,6-3,7-dimethylocta-1,6-dien-3-yl dien-3-yl isobutyrate; benzoate; 3,7-dimethylocta-1,6-dien-3-yl 2-aminobenzoate; 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-ol; 6-methyl-2-(oxiran-2-yl)hept-5-en-2-ol; (2Z,6E)-3,7-dimethylnona-2,6-dienenitrile; 3-(4-methylcyclohex-3-en-1-yl)butanal; (2,5-dimethyl-1,3-dihydroinden-2-yl)methanol; 3-(4-(tert-butyl)phenyl)-2-methylpropanal; (E)-1-(1methoxypropoxy)hex-3-ene; (E)-1-(1-ethoxyethoxy)hex-3ene; (1S,5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1ol; dodecan-1-ol; dodecyl acetate; dodecanoic acid; 5-hexyl-5-methyldihydrofuran-2(3H)-one; dodecanal; 3,6dimethylhexahydrobenzofuran-2(3H)-one; 4-(1ethoxyvinyl)-3,3,5,5-tetramethylcyclohexan-1-one; ((3S,

3aR,6R,8aS)-7,7-dimethyl-8-methyleneoctahydro-1H-3a,6methanoazulen-3-yl)methanol; 5-(sec-butyl)-2-(2,4dimethylcyclohex-3-en-1-yl)-5-methyl-1,3-dioxane;

(1-methyl-2-((1,2,2-trimethylbicyclo[3.1.0]hexan-3-yl)methyl)cyclopropyl)methanol; 2-propylheptanenitrile; (E)-6-(pent-3-en-1-yl)tetrahydro-2H-pyran-2-one; 2-hexylcyclopentan-1-one; 2-methyl-4-phenyl-1,3-dioxolane; 2,6,9,10tetramethyl-1-oxaspiro(4.5)deca-3.6-diene; (1R,2S,5R)-5methyl-2-(prop-1-en-2-yl)cyclohexan-1-ol; isopropv1 palmitate; isopropyl tetradecanoate; isopropyl dodecanoate; 4,9-dimethoxy-7H-furo[3,2-g]chromen-7-one; (E)-cyclohexadec-8-en-1-one; (2S,5S)-2-isopropyl-5-methylcyclohexan-1-one; 2-hexylcyclopent-2-en-1-one; (2S,5S)-2-isopropyl-5-methylcyclohexan-1-one; 4-(4-methylpent-3-en-1yl)cyclohex-3-ene-1-carbaldehyde; (Z)-1-(benzyloxy)-2methoxy-4-(prop-1-en-1-yl)benzene; 1-((28,38)-2,3,8,8tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)

ethan-1-one; 2,5,6-trimethylcyclohex-3-ene-1carbaldehyde; 6-(sec-butyl)quinoline; 2-(cyclohexyloxy)-1, 7,7-trimethylbicyclo[2.2.1]heptane; (1R,2R,4S)-1,7,7trimethylbicyclo[2.2.1]heptan-2-yl propionate; (1S,2S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl isobutyrate;

4-((2R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)cyclohexan-1-ol; (1R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2yl acetate; 2-(4-isopropylcyclohexa-1,4-dien-1-yl)ethyl formate; isopentyl(E)-undec-6-enoate; isopentyl dodecanoate; (E)-oxacycloheptadec-10-en-2-one; (E)-non-2-enenitrile; (E)-8-(1H-indol-1-yl)-2,6-dimethyloct-7-en-2-ol; 8.8-di (1H-indol-1-yl)-2,6-dimethyloctan-2-ol; 4,4a,5,9b-tetrahydroindeno[1,2-d][1,3]dioxine; 3,7-dimethyloctane-1,7-diol; 2-cyclododecylpropan-1-ol; 3-methyl-5-phenylpentanenitrile; 3-phenylpropan-1-ol; (1,1-dimethoxypropan-2-yl)benzene; 5-ethyl-4-hydroxy-2-methylfuran-3(2H)-one; 2,3-di-3-(3,3hydro-3,3-dimethyl-1H-indene-5-propanal; dimethyl-2,3-dihydro-1H-inden-5-yl)propanal; hexyl octanoate; hexyl hexanoate; (Z)-2-benzylideneoctanal; hexyl benzoate; (Z)-hex-1-en-1-yl(Z)-2-methylbut-2-enoate; (E)-3,7-dimethylocta-2,6-dien-1-yl palmitate; oxacycloheptadecan-2-one; 2-butyl-4,4,6-trimethyl-1,3-dioxane; ethyl(1R, 2R,3R,4R)-3-isopropylbicyclo[2.2.1]hept-5-ene-2-

carboxylate; 3a,4,5,6,7,7a-hexahydro-1H-4,7methanoinden-6-yl acetate; 2-(1-(3,3-dimethylcyclohexyl) ethoxy)-2-methylpropyl propionate; 5-(diethoxymethyl) 3-(benzo[d][1,3]dioxol-5-yl)-2benzo[d][1,3]dioxole; methylpropanal; (E)-oxacyclohexadec-13-en-2-one; 6-butyl-2,4-dimethyl-3,6-dihydro-2H-pyran; 2-((3S,5R,8S)-3,8-dimethyl-1,2,3,4,5,6,7,8-octahydroazulen-5-yl)propan-2-01: 1-(2,6,6-trimethylcyclohex-2-en-1-yl)pentan-3-one; ethyl 2-ethyl-6,6-dimethylcyclohex-2-ene-1-carboxylate; (1Z,5Z)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-(1E,6E)-8-isopropyl-1-methyl-5-methylenecyclodiene: deca-1,6-diene; (E)-3,7-dimethylocta-2,6-dien-1-yl 2-phenylacetate; (E)-3,7-dimethylocta-2,6-dien-1-yl 2-phenylacetate; (6E,10E)-3,7,11,15-tetramethylhexadeca-1,6,10,14-tetraen-3-ol; (E)-2-(3,7-dimethylocta-2,6-dien-1yl)cyclopentan-1-one; 5-heptyldihydrofuran-2(3H)-one; 1-methyl-4-(propan-2-ylidene)cyclohexyl acetate; 1-methyl-4-(propan-2-ylidene)cyclohexan-1-ol; 5-pentyldihydrofuran-2(3H)-one; (1R,4aR,8aS)-1-isopropyl-7-methyl-4-methylene-1,2,3,4,4a,5,6,8a-octahydronaphthalene; 5-[(Z)hex-3-envl]oxolan-2-one; (Z)-4-(2,2-dimethyl-6methylenecyclohexyl)but-3-en-2-one; (4aS,9aR)-3,5,5,9tetramethyl-2,4a,5,6,7,9a-hexahydro-1H-benzo[7]annulene; (1R,3aR,4R,7R)-1,4-dimethyl-7-(prop-1-en-2-yl)-1,2,3,3a,

isochromene; furan-2-vlmethyl octanoate; furan-2-vlmethyl hexanoate; furan-2-ylmethyl heptanoate; 2-methyldecanenitrile; 8,8-dimethyl-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-6-yl propionate; ethyl(3aR,4S,7R,7aR)-octahydro-3aH-4,7-methanoindene-3a-carboxylate; diethyl cyclohexane-1,4-dicarboxylate; (6-isopropyl-9-methyl-1,4dioxaspiro[4.5]decan-2-yl)methanol; 2-isobutyl-4-methyltetrahydro-2H-pyran-4-ol; undec-10-enenitrile; (Z)-6-ethvlideneoctahydro-2H-5.8-methanochromen-2-one; 3 - (2 ethylphenyl)-2,2-dimethylpropanal; (E)-4,8-dimethyldeca-(E)-4-((3aR,4R,7R,7aR)-1,3a,4,6,7,7a-4,9-dienal; hexahydro-5H-4,7-methanoinden-5-ylidene)-3-

methylbutan-2-ol; 8,8-dimethyl-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-6-yl acetate; 3-(4-ethylphenyl)-2,2dimethylpropanenitrile; 2-heptylcyclopentan-1-one; 1-ethoxyethoxy Cyclododecane; 3-cyclohexene-1-carboxylic acid, 2,6,6-trimethyl-, methyl ester; (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl acetate; (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol; oxacyclohexadecan-2-one; (E)-cyclopentadec-4-en-1-one; 1-cyclopentadec-4-en-1-one; 2-methoxy-4-(4-methylenetetrahydro-2H-pyran-2-yl)phe-

nol; 4-allyl-2-methoxyphenyl acetate; 4-allyl-2-methoxyphenol; ethyl 3-methyl-3-phenyloxirane-2-carboxylate; 1,4-dioxacycloheptadecane-5,17-dione; ethyl undec-10enoate; ethyl palmitate; ethyl nonanoate; ethyl tetradecanoate; (E)-3,7-dimethylnona-1,6-dien-3-ol; ethyl dodecanoate; nonan-3-one; ethyl decanoate; ethyl 6,6-dimethyl-2-methylenecyclohex-3-ene-1-carboxylate; ethv1 3-phenyloxirane-2-carboxylate; 6-ethyl-2,10,10-trimethyl-1-oxaspiro[4.5]deca-3,6-diene; 2-((1R,3S,4S)-4-methyl-3-(prop-1-en-2-yl)-4-vinylcyclohexyl)propan-2-ol; (2 - (1 ethoxyethoxy)ethyl)benzene; (E)-3-methyl-5-(2,2,3trimethylcyclopent-3-en-1-yl)pent-4-en-2-ol; (2R,3S,4R)-2, 3,4,5-tetrahydroxypentanal; (E)-4-((3aS,7aS)-octahydro-5H-4,7-methanoinden-5-ylidene)butanal; 11dimethoxydodecane; (R)-1-methyl-4-(prop-1-en-2-yl) cyclohex-1-ene; 2-(2-hydroxypropoxy)propan-1-ol; 7,9dimethylspiro[5.5]undecan-3-one; oxydibenzene; diphenylmethane; 2-methyl-1-phenylpropan-2-yl butyrate; 2,6-dimethyloct-7-en-4-one; octahydro-1H-4,7-methanoinden-5-yl acetate; 2-methyl-5-(prop-1-en-2-yl)cyclohexyl acetate; 2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-ol; 3,7dimethyloct-6-en-3-ol; methyl 2-hexyl-3-oxocyclopentane-1-carboxylate; dibutylsulfane; 1,2-diphenylethane; 6-hexyltetrahydro-2H-pyran-2-one; (3R,4R)-1-isopropyl-4methyl-3-(prop-1-en-2-yl)-4-vinylcyclohex-1-ene; (3S,3aS, 5R)-3,8-dimethyl-5-(prop-1-en-2-yl)-1,2,3,3a,4,5,6,7octahydroazulene; 6-heptyltetrahydro-2H-pyran-2-one; 6-pentyltetrahydro-2H-pyran-2-one; (1S,8aR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene; (Z)-1-((1R,2S)-2,6,6-trimethylcyclohex-3-en-1-yl)but-2-en-(1S,8aS)-1-isopropyl-4,7-dimethyl-1,2,3,5,6,8a-1-one; hexahydronaphthalene; 3,7,7-trimethylbicyclo[4.1.0]hept-3ene; dec-9-en-1-ol; decyl propionate; 1,1-diethoxydecane; decahydronaphthalen-2-ol; 1-cyclohexylethyl(E)-but-2-

enoate; 3-(4-isopropylphenyl)-2-methylpropanal; cyclotet-

radecane; cyclopentadecanone; cyclohexyl 2-hydroxybenzoate; 3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-6-yl butyrate; 1,4-dioxacyclohexadecane-5,16-dione; 8,8-dimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-2-carbalde-

hyde; 3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-5-yl isobutyrate; (5R,6R)-3,6-dimethyl-5-(prop-1-en-2-yl)-6-vinyl-4,5,6,7-tetrahydrobenzofuran; (4-isopropylphenyl) methanol; 1-(benzofuran-2-yl)ethan-1-one; 2-(3-phenylpropyl)pyridine; dodecanenitrile; (E)-cycloheptadec-9-en-1one; 3-(4-methylcyclohex-3-en-1-yl)but-3-en-1-yl acetate; 3-(4-methylcyclohex-3-en-1-yl)butan-1-ol; (E)-3-methyl-5phenylpent-2-enenitrile; (E)-2-(2,6-dimethylhepta-1,5-dien-1-yl)-4-methyl-1,3-dioxolane; (E)-1,1-dimethoxy-3,7-dimethylocta-2,6-diene; (E)-1,1-diethoxy-3,7-dimethylocta-2,6diene; (E)-3,7-dimethylocta-1,3,6-triene; (1R,4R,6S)-1methyl-4-(prop-1-en-2-yl)-7-oxabicyclo[4.1.0]heptane; (E)oxacycloheptadec-11-en-2-one; (Z)-non-6-en-1-ol; (1R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-ol; (Z)-dec-4enal; (E)-hex-3-en-1-yl(E)-hex-3-enoate; (Z)-hex-3-en-1-yl 2-hydroxybenzoate; (Z)-hex-3-en-1-yl benzoate; (Z)-hex-3en-1-yl 2-methylbutanoate; (3Z,6Z)-nona-3,6-dien-1-ol; cinnamyl propionate; cinnamyl isobutyrate; cinnamyl formate; cinnamyl cinnamate; cinnamyl acetate; (E)-3-phenylprop-2en-1-ol; hexadecan-1-ol; (E)-1-(2,6,6-trimethylcyclohex-2en-1-yl)hepta-1,6-dien-3-one; 2-methyl-4-(2,6,6-trimethylcyclohex-1-en-1-yl)butanal; (3aR,5aR,9aR,9bR)-3a,6,6,9atetramethyldodecahydronaphtho[2,1-b]furan; 1.6dioxacycloheptadecan-7-one; 1-(6-(tert-butyl)-1,1dimethyl-2,3-dihydro-1H-inden-4-yl)ethan-1-one; (3R,3aR, 6S,7S,8aS)-6-methoxy-3,6,8,8-tetramethyloctahydro-1H-(3R,3aS,6R,7R,8aS)-3,6,8,8-3a,7-methanoazulene; tetramethyloctahydro-1H-3a,7-methanoazulen-3-yl formate; (3R,3aS,6R,7R,8aS)-3,6,8,8-tetramethyloctahydro-1H-3a, 7-methanoazulen-6-yl acetate; (4Z,8Z)-1,5,9-trimethyl-13oxabicyclo[10.1.0]trideca-4,8-diene; (3R,3aS,6R,7R,8aS)-3,6,8,8-tetramethyloctahydro-1H-3a,7-methanoazulen-6-ol; 5-methyl-1-(2,2,3-trimethylcyclopent-3-en-1-yl)-6-oxabicyclo[3.2.1]octane; 5-methyl-1-(2,2,3-trimethylcyclopent-3en-1-yl)-6-oxabicyclo[3.2.1]octane; 1,1,2,3,3-pentamethyl-1,2,3,5,6,7-hexahydro-4H-inden-4-one; (Z)-4,11,11trimethyl-8-methylenebicyclo[7.2.0]undec-3-en-5-yl acetate; (1S,2S,5R,8S)-4,4,8-trimethyltricyclo[6.3.1.02,5] dodecan-1-ol; 2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1vl acetate; octanenitrile; octan-1-ol; octanoic acid; decanoic acid; decanal; 3-(4-methoxyphenyl)-2-methylpropanal; 1,7, 7-trimethylbicyclo[2.2.1]heptane-2,3-dione; 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane; ethyl 2-methyl-4-oxo-6pentylcyclohex-2-ene-1-carboxylate; 2,6-di-tert-butyl-4methylphenol; butyl stearate; 1-butoxy-1-oxopropan-2-yl butyrate; butyl undec-10-enoate; 2-methyl-4-(2,2,3-trimethylcyclopent-3-en-1-yl)butan-1-ol; 3-(4-(tert-butyl)phenyl) propanal; (1S,2S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl isobutyrate; 1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl acetate; 2-ethoxy-2,6,6-trimethyl-9-methylenebicyclo[3.3. 1]nonane; (ethoxymethoxy)cyclododecane; (E)-1-methyl-4-(6-methylhept-5-en-2-ylidene)cyclohex-1-ene; 3,3,6,7-tetramethyloctahydro-2H-chromene; (5R,10R)-6,10-dimethyl-2-(propan-2-ylidene)spiro[4.5]dec-6-en-8-one; 1-methyl-4-(prop-1-en-2-yl)cyclohexyl acetate; 1-methyl-4-(prop-1-en-2-yl)cyclohexan-1-ol; (2Z,6E)-2,6-dimethyl-10methylenedodeca-2,6,11-trienal; (R)-3-methylene-6-((S)-6methylhept-5-en-2-yl)cyclohex-1-ene; (4aR,7R,8aS)-4amethyl-1-methylene-7-(prop-1-en-2-yl) decahydronaphthalene; (Z)-2-methyl-5-((1S,2R,4R)-2methyl-3-methylenebicyclo[2.2.1]heptan-2-yl)pent-2-en-1-

ol; 6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane; 2-ethoxynaphthalene; (1S,4R,7R)-1,4,9,9-tetramethyl-1,2,3,4,5,6,7,8-octahydro-4,7-methanoazulene; (1aS,5aR,9aR)-1a,5,5,7-tetramethyl-1a,2,3,4,5,5a,8,9-octahydrobenzo[1,7] cyclohepta[1,2-b]oxirene; (R)-3,5,5,9-tetramethyl-2,4a,5,6,7,8-hexahydro-1H-benzo[7]annulene; (1S,4S)-1,4-dimethyl-7-(propan-2-ylidene)-1,2,3,4,5,6,7,8-

octahydroazulene; (2,2-dimethoxyethyl)benzene; (E)-7,11dimethyl-3-methylenedodeca-1,6,10-triene; (1R,2S,6S,7S, 8S)-8-isopropyl-1-methyl-3-methylenetricyclo[4.4.0.02,7] (3R,3aS,7S,8aS)-3,8,8-trimethyl-6decane: methyleneoctahydro-1H-3a,7-methanoazulene; (1R,9S,Z)-4,11,11-trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene; (S)-4-methyl-1-((S)-6-methylhept-5-en-2-yl)cyclohex-3-en-1-ol; (Z)-4-(2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl) but-3-en-2-one; 4-methoxy-7H-furo[3,2-g]chromen-7-one; 2-methyl-4-phenylbutan-2-ol; benzyl dodecanoate; 2-methyl-1-phenylpropan-2-ol; benzyl cinnamate; benzyl benzoate; benzophenone; 7-isopentyl-2H-benzo[b][1,4]dioxepin-3(4H)-one; 2' -isopropyl-1,7,7-trimethylspiro[bicyclo [2.2.1]heptane-2,4'-[1,3]dioxane]/A; 4-(4-methylpent-3-en-1-yl)cyclohex-3-ene-1-carbonitrile; methyl(E)-2-((7hydroxy-3,7-dimethyloctylidene)amino)benzoate; 4-methoxybenzyl 2-phenylacetate; methyl(E)-octa-4,7-dienoate; pentyl(Z)-3-phenylacrylate; (3aR,5aS,9aS,9bR)-3a, 6,6,9a-tetramethyldodecahydronaphtho[2,1-b]furan; (4aR, 5R,7aS,9R)-2,2,5,8,8,9a-hexamethyloctahydro-4H-4a,9methanoazuleno[5,6-d][1,3]dioxole; 2,5,5-trimethyl-1,2,3,4, 5,6,7,8-octahydronaphthalen-2-ol; 2,5,5-trimethyl-1,2,3,4, 4a,5,6,7-octahydronaphthalen-2-ol; 1-((2-(tert-butyl) cyclohexyl)oxy)butan-2-ol; (3S,5aR,7aS,11aS,11bR)-3,8,8, 11a-tetramethyldodecahydro-5H-3,5a-epoxynaphtho[2,1-c] oxepine; 2,2,6,6,7,8,8-heptamethyldecahydro-2H-indeno[4, 5-b]furan; 2,2,7,7,8,9,9-heptamethyldecahydroindeno[4,3ab]furan; 2-(sec-butyl)-1-vinylcyclohexyl acetate; (1S,4R, 5R)-1-isopropyl-4-methylbicyclo[3.1.0]hexan-3-one; (4R, 4aS)-4,4a-dimethyl-6-(propan-2-ylidene)-4,4a,5,6,7,8hexahydronaphthalen-2(3H)-one; 2-(4-methylcyclohex-3en-1-yl)propan-2-yl propionate; (2Z,6E,9E)-2,6,10trimethyldodeca-2,6,9,11-tetraenal; (2R,4aR,8aR)-4a,8dimethyl-2-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,8aoctahydronaphthalene; 1,7-dimethyl-7-(4-methylpent-3-en-1-vl)tricvclo[2.2.1.02.6]heptane; (E)-5-(2.3dimethyltricyclo[2.2.1.02,6]heptan-3-yl)-2-methylpent-2en-1-ol; (1R,3aS,7S,8aR)-1,4,9,9-tetramethyl-2,3,6,7,8,8ahexahydro-1H-3a,7-methanoazulene; 1-(5,5dimethylcyclohex-1-en-1-yl)pent-4-en-1-one; (1S,4aS, 8aR)-1-isopropyl-4,7-dimethyl-1,2,4a,5,6,8ahexahydronaphthalene; (R,Z)-1-(2,6,6-trimethylcyclohex-2en-1-yl)pent-1-en-3-one; 1-methyl-4-(prop-1-en-2-yl) cyclohex-1-ene; (Z)-4-(2,5,6,6-tetramethylcyclohex-2-en-1vl)but-3-en-2-one; (1Z,4E,8Z)-2,6,6,9tetramethylcycloundeca-1,4,8-triene; (4aR,8S,9aS)-3,5,5,8tetramethyl-9-methylene-2,4a,5,6,7,8,9,9a-octahydro-1Hbenzo[7]annulene; (1aR,4R,4aR,7bS)-1,1,4,7-tetramethyl-1a,2,3,4,4a,5,6,7b-octahydro-1H-cyclopropa[e]azulene; 1,4dimethyl-7-(prop-1-en-2-yl)-1,2,3,4,5,6,7,8octahydroazulene; (3E,6E)-3,7,11-trimethyldodeca-1,3,6, 7,7-dimethyl-2-methylenebicyclo[2.2.1] 10-tetraene: heptane; 2-((2R,4aR,8aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8aoctahydronaphthalen-2-yl)propan-2-ol; (R)-1-methyl-4-(6methylhept-5-en-2-yl)benzene; (3aR,3bR,4S,7R,7aS)-4-

isopropyl-7-methyl-3a,3b,4,5,6,7-hexahydro-1H-cyclopenta

hexahydronaphthalene; (R)-2-((R)-4-methylcyclohex-3-en-1-vl)hex-5-en-2-ol; (Z)-1-methyl-4-(6-methylhepta-2,5dien-2-yl)cyclohex-1-ene; 2.6-dimethyl-6-(4-methylpent-3en-1-yl)bicyclo[3.1.1]hept-2-ene; (E)-2-benzylideneheptan-(E)-2-benzylideneheptyl 1-ol;acetate; (Z)-(2-(diethoxymethyl)hept-1-en-1-yl)benzene; (E)-2benzylideneheptanal; (1S,4aR,8aS)-1-isopropyl-4,7dimethyl-1,2,4a,5,6,8a-hexahydronaphthalene; (3R,5aS, 9aR)-2,2,5a,9-tetramethyl-3,4,5,5a,6,7-hexahydro-2H-3,9amethanobenzo[b]oxepine; 1-methyl-4-(4-methylpent-3-en-1-yl)cyclohex-3-ene-1-carbaldehyde; 1-phenylpentan-2-ol; 3-methyl-1-phenylpentan-3-ol; 2,3,4-trimethoxybenzaldehyde; 2,4,5-trimethoxybenzaldehyde; 2,4,6-trimethoxybenzaldehyde; Trans, Trans-2, 4-Nonadienal; 2, 6, 10-trimethylundecanal; alpha-4-Dimethyl benzenepropanal; allvl 3-cyclohexylpropanoate; allyl 2-(isopentyloxy)acetate; (1aR,4aS,7R,7aR,7bS)-1,1,7-trimethyl-4-methylenedecahydro-1H-cyclopropa[e]azulene; (E)-undec-9-enal; methyl(E)-2-(((3,5-dimethylcyclohex-3-en-1-yl)methylene)amino)

benzoate; 2,6,10-trimethylundec-9-enal; (7,7,8,8-tetramethyloctahydro-2,3b-methanocyclopenta[1,3]

cyclopropa[1,2]benzen-4-yl)methyl acetate; nonyl acetate; (2-(1-propoxyethoxy)ethyl)benzene; 1-(1-propoxyethoxy) propane; ((1-(2-methoxy)ethoxy)methyl)benzene; (Z)-2-(4-methylbenzylidene)heptanal; dec-9-enal; (Z)-oxacycloheptadec-8-en-2-one; 7-methoxy-2H-chromen-2-one; (2S,4aR,8aR)-4a,8-dimethyl-2-(prop-1-en-2-yl)-1,2,3,4,4a, 5,6,8a-octahydronaphthalene; 2-((2S,4aR,8aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)propan-2ol; 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethan-1-one; 6-isopropylquinoline; 3-(6,6-6,10,14dimethylbicyclo[3.1.1]hept-2-en-2-yl)propanal; trimethylpentadecan-2-one; 2-methyl-5-(prop-1-en-2-yl)-2vinyltetrahydrofuran; (E)-cyclohexadec-5-en-1-one; 1-isopropyl-4-methylcyclohex-3-en-1-ol; 1-phenylpent-4en-1-one; 1-isopropyl-4-methylcyclohex-3-en-1-ol; 3,6dimethyl-4,5,6,7-tetrahydrobenzofuran; 4-(4-methoxyphe-(1aR,2S,4aS)-2,4a,8,8nvl)butan-2-one; tetramethyloctahydrocyclopropa[d]naphthalen-3(1H)-one; (E)-3-propylideneisobenzofuran-1(3H)-one; (Z)-dodec-2enal; 3-methyl-5-phenylpentanal; (E)-hex-3-en-1-yl 3-methylbutanoate; 3,6-dimethyloctan-3-yl acetate; 3,4,5-trimethoxybenzaldehyde; 3-(4-isopropylphenyl)propanal; (Z)undec-2-enenitrile; (E)-undec-2-enal; (2E,6E)-nona-2,6phenethyl butyrate; (Z)-3-(furan-2-yl)-2dienal: phenylacrylaldehyde; 2-phenoxyethan-1-ol; (Z)-non-2-enal; nonan-2-ol; nonan-2-one; 2-isobutylquinoline; (E)-2-hexylidenecyclopentan-1-one; 2-heptyltetrahydrofuran; (E)-dec-2-enal; (2E,6E)-nona-2,6-dienal; (2E,6E)-nona-2,6-dien-1ol; 2,6-dimethyloctanal; decan-1-ol; (E)-hept-1-en-1-yl acetate; undec-10-en-1-ol; undec-10-enal; 2-((2R,4aS)-4a,8dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-2-yl)propan-2-ol; 1-isopropyl-4-methyl-7-thiabicyclo[2.2.1]heptane; (3E,5Z)-undeca-1,3,5-triene; 3,7-dimethyloct-6-en-3-ol; 1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl acetate; 1,1,2,3,3-

pentamethyl-2,3-dihydro-1H-indene; (Z)-6,10-dimethylundeca-5,9-dien-2-yl acetate; (Z)-dodec-3-enal; (S)-5-heptyldihydrofuran-2(3H)-one; (R)-5-heptyldihydrofuran-2 (3H)-one; (E)-6,10-dimethylundeca-5,9-dien-2-yl acetate; (Z)-3-methyl-5-phenylpent-2-enenitrile; (2S,5S,6S)-2,6,10, 10-tetramethyl-1-oxaspiro[4.5]decan-6-ol; (2E)-3-methyl-5phenyl-2-pentenenitrile; (1S,2S,5S)-2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-ol; (2S,5R)-2-isopropyl-5methylcyclohexan-1-one; (R,E)-2-methyl-4-(2,2,3trimethylcyclopent-3-en-1-yl)but-2-en-1-ol; 2-(8-isopropyl-6-methylbicyclo[2.2.2]oct-5-en-2-yl)-1,3-dioxolane; (E)-4-(2.2-dimethyl-6-methylenecyclohexyl)-3-methylbut-3-en-2one; 3-(3-isopropylphenyl)butanal; 3-(1-ethoxyethoxy)-3,7dimethylocta-1,6-diene; 3a,4,5,6,7,7a-hexahydro-1H-4,7methanoinden-6-yl propionate; 2-((3S,3aS,5R)-3,8dimethyl-1,2,3,3a,4,5,6,7-octahydroazulen-5-yl)propan-2ol; benzyl 2-phenylacetate; 2-hydroxy-1,2-diphenylethan-1one; (E)-1,2,4-trimethoxy-5-(prop-1-en-1-yl)benzene; 3-(6, 6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-2,2dimethylpropanal; 2-methyl-5-(6-methylhept-5-en-2-yl) bicyclo[3.1.0]hex-2-ene; 1-(1,1,2,3,3,6-hexamethyl-2,3dihydro-1H-inden-5-yl)ethan-1-one; 2-(m-tolyl)ethan-1-ol; (3E,6E)-nona-3,6-dien-1-ol; (E)-tridec-2-enal; (1R,4S,4aS, 6R,8aS)-4,8a,9,9-tetramethyloctahydro-1,6-methanonaphthalen-1(2H)-ol; p-tolyl isobutyrate; p-tolyl hexanoate; 5-hexyl-4-methyldihydrofuran-2(3H)-one; ethyl(2Z,4E)deca-2,4-dienoate; 2,4-dimethyl-6-phenyl-3,6-dihydro-2Hpyran; 2-cyclohexylidene-2-phenylacetonitrile; 4-(prop-1en-2-yl)cyclohex-1-ene-1-carbaldehyde; (4-(prop-1-en-2-yl) cvclohex-1-en-1-yl)methyl acetate; (4-(prop-1-en-2-yl) cyclohex-1-en-1-yl)methanol; (2-isopropoxyethyl)benzene; 2-cyclohexylhepta-1,6-dien-3-one; (2-(cyclohexyloxy) ethyl)benzene; phenethyl 2-methylbutanoate; 2-phenylethan-1-ol; phenethyl 2-phenylacetate; 3-methyl-5-phenylpentan-1-ol; phenyl benzoate; phenethyl benzoate; 2-benzyl-1,3-dioxolane; 2-(6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl) 6,6-dimethyl-2-methylenebicyclo[3.1.1] acetaldehyde; heptan-3-ol; 4-(benzo[d][1,3]dioxol-5-yl)butan-2-one; 3a,4, 5,6,7,7a-hexahydro-1H-4,7-methanoinden-6-yl pivalate; (4aR,8aS)-7-methyloctahydro-1,4-methanonaphthalen-6 (2H)-one; 4-isopropyl-1-methylcyclohex-3-en-1-ol; (E)-3,3dimethyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pent-4-en-2-ol; 1-methyl-4-(4-methylpent-3-en-1-yl)cyclohex-3-ene-1-carbaldehyde; propane-1,2-diol; p-tolyl 2-phenylacetate; Ethyl 2,4,7-decatrienoate; 2-benzyl-4,4,6-trimethyl-1,3-dioxane; 2,4-dimethyl-4-phenyltetrahydrofuran; (2R,4a'R, 8a'R)-3,7'-dimethyl-3',4',4a',5',8',8a'-hexahydro-1'H-spiro [oxirane-2.2'-[1,4]methanonaphthalene]; (Z)-6ethylideneoctahydro-2H-5,8-methanochromene; 2-((S)-1-((S)-3,3-dimethylcyclohexyl)ethoxy)-2-oxoethyl propionate; methyl 2,2-dimethyl-6-methylenecyclohexane-1-carboxylate; 2-methyl-5-phenylpentan-1-ol; 4-methyl-2-

1-carboxylate; 2-methyl-5-phenylpentan-1-ol; 4-methyl-2phenyl-3,6-dihydro-2H-pyran; (1S,3R,5S)-1-isopropyl-4methylenebicyclo[3.1.0]hexan-3-ol; 5-allylbenzo[d][1,3] dioxole; 2,2,7,9-tetramethylspiro(5.5)undec-8-en-1-one; 3-methyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pentan-2ol; (Z)-2-ethyl-4-(2,2,3-trimethylcyclopent-3-en-1-yl)but-2en-1-ol; (E)-2-methyl-4-(2,2,3-trimethylcyclopent-3-en-1yl)but-2-en-1-ol; 5-methoxyoctahydro-1H-4,7methanoindene-2-carbaldehyde; 5-methoxyoctahydro-1H-4, 7-methanoindene-2-carbaldehyde; 1-(3-hydroxy-3methylpent-4-en-1-yl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol; (4aR,6aS,10aS, 10bR)-3,4a,7,7,10a-pentamethyl-4a,5,6,6a,7,8,9,10,10a, 10b-decahydro-1H-benzo[f]chromene; (4aR,8aR)-4a,8dimethyl-2-(propan-2-ylidene)-1,2,3,4,4a,5,6,8a-

octahydronaphthalene; 2-(1-(3,3-dimethylcyclohexyl) ethoxy)-2-methylpropyl cyclopropanecarboxylate; 3-(4isobutylphenyl)-2-methylpropanal; (1aR,4aR,7S,7aR,7bR)-1,1,7-trimethyl-4-methylenedecahydro-1H-cyclopropa[e]

azulen-7-ol; (1R,3R,6R)-2',2',3,7,7-pentamethylspiro [bicyclo[4.1.0]heptane-2,5'-[1,3]dioxane]; 2-methvl-1.5dioxaspiro[5.5]undecane; 1-(spiro[4.5]dec-7-en-7-yl)pent-4-en-1-one; 2-(4-methylthiazol-5-yl)ethan-1-ol; 2-(heptan-3-vl)-1.3-dioxolane; (Z)-dodec-4-enal; (1S,4S,4aR,8aR)-4isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-

octahydronaphthalen-1-ol; (1S,4S,4aR,8aS)-4-isopropyl-1, 6-dimethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol; 3-methyl-2-pentylcyclopentan-1-one; 2,6,10,10-tetramethyl-1-oxaspiro[4.5]dec-6-ene; 2-(2-mercaptopropan-2-yl)-5-methylcyclohexan-1-one; (1aR,4aS)-2,4a,8,8-tetramethyl-1,1a,4,4a,5,6,7,8-octahydrocyclopropa[d]naphthalene; 1-isopropyl-2-methoxy-4-methylbenzene; 1-(2,2,6-trimethylcyclohexyl)hexan-3-ol; (2Z,4E)-nona-2,4-dienal; (2E,6E)-3.7.11-trimethyldodeca-2,6,10-trien-1-ol; (2E.6Z)-nona-2, 6-dienal; (Z)-dec-2-enal; (E)-non-2-enal; (3E,6Z)-nona-3,6dien-1-ol; (E)-dec-4-enal; (Z)-oxacycloheptadec-8-en-2-(Z)-3,7-dimethylocta-1,3,6-triene; (Z)-3,7one: dimethylocta-1,3,6-triene; (E)-3,7-dimethylocta-2,6-dien-1ol; methyl 2-((1S,2S)-3-oxo-2-pentylcyclopentyl)acetate; 7-(1,1-Dimethylethyl)-2H-1,5-benzodioxepin-3(4H)-one; (1R-(1alpha,3alpha,4aalpha))-2,3,4,4a,5,6-hexahydro-2,2dimethyl-1,3-methanonaphthalen-7(1H)-one; tridecan-1-ol; triethyl 2-hydroxypropane-1,2,3-tricarboxylate; methyl 2-((1-hydroxy-3-phenylbutyl)amino)benzoate; 1-((2E,5Z, 9Z)-2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl)ethan-1one; decahydro-2,6,6,7,8,8-hexamethyl-2h-indeno(4,5-b)furan; 13-methyl oxacyclopentadec-10-en-2-one; undecanal; (E)-4-methyldec-3-en-5-ol; (3R,4aS,5R)-4a,5-dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene; 2-((2R,8R,8aS)-8,8a-dimethyl-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)propan-2-ol; 4-formyl-2-methoxyphenyl isobutyrate; (Z)-2-methyl-4-(2,6,6-trimethylcyclohex-2en-1-yl)but-2-enal; methyl 2,4-dihydroxy-3,6dimethylbenzoate; 1-methoxy-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoindene; methyl(Z)-2-((3-(4-(tert-butyl)phenyl)-2-methylpropylidene)amino)benzoate; (Z)-hex-3-en-1-yl isobutyrate; 2,4,6-trimethyl-4-phenyl-1,3-dioxane; 1-((3R, 3aR,7R,8aS)-3,6,8,8-tetramethyl-2,3,4,7,8,8a-hexahydro-1H-3a,7-methanoazulen-5-yl)ethan-1-one; methyl(Z)-2-(((2,4-dimethylcyclohex-3-en-1-yl)methylene)amino) benzoate; 4,8-dimethyl-2-(propan-2-ylidene)-1,2,3,3a,4,5,6, 8a-octahydroazulen-6-ol; 4,8-dimethyl-2-(propan-2ylidene)-1,2,3,3a,4,5,6,8a-octahydroazulen-6-yl acetate: decahydro-3H-spiro[furan-2,5'-[4,7]methanoindene]; (2Z, 6E)-nona-2,6-dienenitrile; (Z)-cyclooct-4-en-1-yl methyl (1aR,4S,4aS,7R,7aS,7bS)-1,1,4,7-tetramethylcarbonate: decahydro-1H-cyclopropa[e]azulen-4-ol; 3,5,5,6,7,8,8-heptamethyl-5,6,7,8-tetrahydronaphthalene-2-carbonitrile; (1S, 2S,3S,5R)-2,6,6-trimethylspiro[bicyclo[3.1.1]heptane-3,1'cyclohexan]-2'-en-4'-one; 1',1',5',5'-tetramethylhexahydro-2'H,5'H-spiro[[1,3]dioxolane-2,8'-[2,4a] (2'S,4a'S,8a'S)-1',1',5',5'methanonaphthalene]; tetramethylhexahydro-2'H,5'H-spiro[[1,3]dioxolane-2,8'-[2, 4a]methanonaphthalene]; 4-(4-hydroxy-3-methoxyphenyl) butan-2-one; (1R,8aR)-4-isopropyl-1,6-dimethyl-1,2,3,7,8, 8a-hexahydronaphthalene; 2,4-dimethyl-2-(5,5,8,8tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1,3-3a,5,6,7,8,8b-hexahydro-2,2,6,6,7,8,8dioxolane; heptamethyl-4H-indeno(4,5-d)-1,3-dioxole; 2,4-dimethyl-4, 4a,5,9b-tetrahydroindeno[1,2-d][1,3]dioxine; (1-methyl-2-((1,2,2-trimethylbicyclo[3.1.0]hexan-3-yl)methyl)

cyclopropyl)methanol; 2-(cyclohexyloxy)-1,7,7-trimethylbicyclo[2.2.1]heptane; 4-((2R)-1,7,7-trimethylbicyclo[2.2. 1]heptan-2-yl)cyclohexan-1-ol; 8,8-di(1H-indol-1-yl)-2,6dimethyloctan-2-ol; (7,7,8,8-tetramethyloctahydro-2,3bmethanocyclopenta[1,3]cyclopropa[1,2]benzen-4-yl) 8,8-dimethyl-3a,4,5,6,7,7a-hexahydro-1H-4,7methanol; methanoinden-6-yl propionate; (E)-4-((3aR,4R,7R,7aR)-1, 3a,4,6,7,7a-hexahydro-5H-4,7-methanoinden-5-ylidene)-3methylbutan-2-ol; (3R,3aR,6S,7S,8aS)-6-methoxy-3,6,8,8tetramethyloctahydro-1H-3a,7-methanoazulene; (1R,2S,6S, 7S,8S)-8-isopropyl-1-methyl-3-methylenetricyclo[4.4.0.02, 7]decane; 2'-isopropyl-1,7,7-trimethylspiro[bicyclo[2.2.1] heptane-2,4'-[1,3]dioxane]; (4aR,5R,7aS,9R)-2,2,5,8,8,9ahexamethyloctahydro-4H-4a,9-methanoazuleno[5,6-d][1,3] (3S,5aR,7aS,11aS,11bR)-3,8,8,11adioxole; tetramethyldodecahydro-5H-3,5a-epoxynaphtho[2,1-c] oxepine; 2,2,6,6,7,8,8-heptamethyldecahydro-2H-indeno[4, 5-b]furan; (1aS,2aR,3R,5aS,7R,7aR)-3,6,6,7atetramethyloctahydro-2H-2a,7-methanoazuleno[5,6-b] oxirene; (7,7,8,8-tetramethyloctahydro-2,3bmethanocyclopenta[1,3]cyclopropa[1,2]benzen-4-yl)methyl acetate; 1-(3-hydroxy-3-methylpent-4-en-1-yl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol; decahydro-2,6,6,7,8,8hexamethyl-2h-indeno(4,5-b)furan; 2-ethylhexyl(Z)-3-(4methoxyphenyl)acrylate; methoxycyclododecane; 1-ethoxy-4-(tert-pentyl)cyclohexane; (2-hydroxy-4-methoxyphenyl) (phenyl)methanone; (3Z)-1-(2-buten-1-yloxy)-3-hexene; 4-(2-methoxypropan-2-yl)-1-methylcyclohex-1-ene; 4-(tertpentyl)cyclohexan-1-one; 3-methoxy-3,7-dimethylocta-1,6-7-isopropyl-8,8-dimethyl-6,10-dioxaspiro[4.5]dediene; cane; (E)-3-(2-methoxyphenyl)acrylaldehyde; 3.7dimethyloctanal; 1,1-dimethoxyoctane; 2-methyl-6methyleneoct-7-en-2-ol; 4-methoxy-6-prop-2-enyl-1,3benzodioxole; tetradecanenitrile; (E)-2,7-dimethylocta-1,5, 7-trien-3-ol; 3,3-Dimethyl-5(2,2,3-Trimethyl-3-Cyclopenten-1yl)-4-Penten-2-ol; hexyl 2-hydroxybenzoate; hexyl(Z)-but-2-enoate; (Z)-3,7-dimethylocta-2,6-dien-1-yl formate; (Z)-3,7-dimethylocta-2,6-dien-1-ol; 1-ethyl-3methoxytricyclo[2.2.1.02,6]heptane; 10-isopropyl-2,7-dimethyl-1-oxaspiro[4.5]deca-3,6-diene; 6,6-dimethylbicyclo [3.1.1]hept-2-ene-2-carbaldehyde; (E)-4-(2,2,3,6tetramethylcyclohexyl)but-3-en-2-one; (Z)-1-(2,6,6trimethylcyclohex-1-en-1-yl)pent-1-en-3-one; (E)-2,2dimethyl-3-(3-methylpenta-2,4-dien-1-yl)oxirane; 3-methylcyclopentadecan-1-one; (E)-3,7-dimethylocta-4,6dien-3-ol; 3-methyl-4-phenylbutan-2-ol; 1-(4-isopropylcyclohexyl)ethan-1-ol; (Z)-hex-3-en-1-yl cyclopropanecarboxylate; (E)-dec-5-enoic acid; 1-phenylethyl propionate; methyl 2-phenylacetate; 4-phenylbutan-2-ol; methyl stear-

ate; methyl(9Z,12Z)-octadeca-9,12-dienoate; 1-hydroxydecan-3-one; 2-methyl-6-oxaspiro[4.5]decan-7-one; (Z)-1,2dimethoxy-4-(prop-1-en-1-yl)benzene; methyl palmitate; 4-allyl-1,2-dimethoxybenzene; methyl(Z)-3,7-dimethylocta-2,6-dienoate; 1-methyl-2-phenoxybenzene; 2-ethoxy-4-(methoxymethyl)phenol; methyl 2-cyclopentylideneacetate: 1-allyl-4-methoxybenzene; 6-methoxy-2,6dimethylheptanal; 7-methoxy-3,7-dimethyloctanal; ((1s,4s)-4-isopropylcyclohexyl)methanol; 3-(3-(tert-butyl)phenyl)-2-methylpropanal; (E)-4-(4,8-dimethylnona-3,7-dien-1-yl) pyridine; (E)-trideca-3,12-dienenitrile; 2,2-dimethyl-3-(mtolyl)propan-1-ol; 8-isopropyl-6-methylbicyclo[2.2.2]oct-5ene-2-carbaldehyde; 4-(4-hydroxy-4-methylpentyl) (Z)-3-hexen-1-yl-2-

cyclohex-3-ene-1-carbaldehyde; cyclopenten-1-one; 3,7-dimethylocta-1,6-dien-3-yl propionate; 3,7-dimethylocta-1,6-dien-3-yl octanoate; 3,7dimethylocta-1,6-dien-3-yl formate; 3,7-dimethylocta-1,6dien-3-yl butyrate; 3,7-dimethylocta-1,6-dien-3-yl benzoate; 3,7-dimethylocta-1,6-dien-3-yl 2-aminobenzoate; 3,7-dimethylocta-1,6-dien-3-yl acetate; 3,7-dimethylocta-1,6-dien-3-ol; 3-(4-methylcyclohex-3-en-1-yl)butanal; 3-(4-(tert-butyl)phenyl)-2-methylpropanal; (Z)-hex-3-en-1-yl methyl carbonate; 4-methylquinoline; (E)-1-(1-methoxypropoxy) hex-3-ene; 2-Methyl-5-(1-methylethenyl)-2-cyclohexenone; dodecanal; 2,2-dimethyl-5-phenylhexanenitrile; (E)-6-(pent-3-en-1-yl)tetrahydro-2H-pyran-2-one; 2-hexylcyclopentan-1-one; (Z)-4-(6,6-dimethylcyclohex-2-en-1-yl)-3-methylbut-3-en-2-one; 2,6,9,10-tetramethyl-1-oxaspiro(4.5)deca-3, 6-diene; 4-methylpent-1-en-3-ol; isopropyl palmitate; isopropyl dodecanoate; isopropyl 2-methylbutanoate; 4-methylpent-4-en-2-yl isobutyrate; 7-methyloctyl acetate; 7-methyloctan-1-ol; 4-(4-methylpent-3-en-1-yl)cyclohex-3-ene-1-carbaldehyde; (Z)-2-methoxy-4-(prop-1-en-1-yl)phenyl acetate; (Z)-2-methoxy-4-(prop-1-en-1-yl)phenol; (1R,2R, 4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl propionate; (1R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl acetate; 1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol; 2-(4-isopropylcyclohexa-1,4-dien-1-yl)ethyl formate; isopentyl(E)-undec-6enoate; isopentyl octanoate; isopentyl dodecanoate; isopentyl isobutyrate; (E)-oxacycloheptadec-10-en-2-one; 8,8-di (1H-indol-1-yl)-2,6-dimethyloctan-2-ol;

2-cyclododecylpropan-1-ol; 3-phenylpropan-1-ol; 3-phenylpropanoic acid; (1,1-dimethoxypropan-2-yl)benzene; 2-phenylpropan-1-ol; hexyl propionate; hexyl butyrate; hexyl 2-methylbutanoate; hexyl furan-2-carboxylate; oxacycloheptadecan-2-one; heptan-1-ol; heptyl acetate; heptanal; 2-(1-(3, 3-dimethylcyclohexyl)ethoxy)-2-methylpropyl propionate; 5-(diethoxymethyl)benzo[d][1,3]dioxole; benzo[d][1,3]dioxole-5-carbaldehyde; 3-(benzo[d][1,3]dioxol-5-yl)-2-methylpropanal; (E)-oxacyclohexadec-13-en-2-one; 6-butyl-2, 4-dimethyl-3,6-dihydro-2H-pyran; 2-((3S,5R,8S)-3,8dimethyl-1,2,3,4,5,6,7,8-octahydroazulen-5-yl)propan-2-ol; 1-(2,6,6-trimethylcyclohex-2-en-1-yl)pentan-3-one; (1Z. 5Z)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene; (E)-3,7-dimethylocta-2,6-dien-1-yl 2-phenylacetate; (E)-3, 7-dimethylocta-2,6-dien-1-yl 2-phenylacetate; (Z)-3,7-dimethylocta-2,6-dienenitrile; (E)-3,7-dimethylocta-2,6-dien-1yl formate; (E)-3,7-dimethylocta-2,6-dien-1-yl octanoate; (E)-3,7-dimethylocta-2,6-dien-1-yl benzoate; (E)-3,7-dimethylocta-2,6-dienal; N,2-dimethyl-N-phenylbutanamide; 1-isopropyl-4-methylcyclohexa-1,4-diene; (1R,4aR,8aS)-1isopropyl-7-methyl-4-methylene-1,2,3,4,4a,5,6,8a-octahydronaphthalene; 5-[(Z)-hex-3-enyl]oxolan-2-one; (4aS, 9aR)-3,5,5,9-tetramethyl-2,4a,5,6,7,9a-hexahydro-1Hbenzo[7]annulene; (Z)-1-(2,2-dimethyl-6methylenecyclohexyl)but-2-en-1-one; (1R,4aS,8aS)-1isopropyl-7-methyl-4-methylene-1,2,3,4,4a,5,6,8aoctahydronaphthalene; 1-(3,3-dimethylcyclohexyl)pent-4en-1-one; furan-2-ylmethyl octanoate; furan-2-ylmethyl hexanoate; furan-2-ylmethyl heptanoate; ethyl (3aR,4S,7R, 7aR)-octahydro-3aH-4,7-methanoindene-3a-carboxylate; 2-(sec-butyl)cyclohexan-1-one; 3-(2-ethylphenyl)-2,2-dimethylpropanal; 2-(tert-butyl)cyclohexyl ethyl carbonate; 3-(2-ethylphenyl)-2,2-dimethylpropanal; (E)-4,8-dimethyldeca-4,9-dienal; 3-(4-ethylphenyl)-2,2-dimethylpropaneni-2-heptylcyclopentan-1-one; trile: 1-ethoxyethoxy Cyclododecane; (Z)-5-methylhept-2-en-4-one; 1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol; oxacyclohexadecan-2-one; (E)-cyclopentadec-4-en-1-one; 1-cyclopentadec-4-en-1-one; 4-allyl-2-methoxyphenyl acetate; 4-allyl-2-methoxyphenol; 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane; ethyl 3-methyl-3-phenyloxirane-2-carboxylate; 1,4-dioxacycloheptadecane-5,17-dione; 2-ethoxy-4-formylphenyl acetate; ethyl undec-10-enoate; ethyl palmitate; ethyl octanoate; ethyl tetradecanoate; (E)-3,7-dimethylnona-1,6-dien-3-ol; ethyl tetnamate; ethyl 3-phenyloxirane-2-carboxylate; ethyl 2-cyclohexylpropanoate; 6-ethyl-2,10,10-trimethyl-1-oxaspiro[4.5] deca-3,6-diene; (2R,3S,4R)-2,3,4,5-tetrahydroxypentanal; (E)-4-((3aS,7aS)-octahydro-5H-4,7-methanoinden-5-

vlidene)butanal; (2R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-one; 4-methyl-2-phenyltetrahydro-2H-pyran; oxydibenzene; diphenylmethane; 2-methyl-1-phenylpropan-2-yl butyrate; 2,6-dimethyloct-7-en-2-ol; 3-methyl-2-pentylcyclopent-2-en-1-one; 3,3,5-trimethylcyclohexan-1-one; 2-methoxy-4-propylphenol; chroman-2-one; 2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-one; 2-methyl-5-(prop-1-en-2-yl)cyclohexyl acetate; 2-(4-methylcyclohexyl)propan-2-yl acetate; 4-(2,6,6-trimethylcyclohex-2-en-1-yl)butan-2-one; (oxybis(methylene))dibenzene; dibutyl phthalate; 1,2-diphenylethane; (3R,4R)-1-isopropyl-4-methyl-3-(prop-1-en-2yl)-4-vinylcyclohex-1-ene; (1S,8aR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene; (1S,8aS)-1isopropyl-4,7-dimethyl-1,2,3,5,6,8a-hexahydronaphthalene; 2-pentylcyclopentan-1-one; decyl 2-aminobenzoate; decahydronaphthalen-2-ol; methyl(1s,4s)-1,4-dimethylcyclohexane-1-carboxylate; 3-(4-isopropylphenyl)-2-methylpropanal: cyclopentadecanone; cyclotetradecane; 2-cyclohexylethyl acetate; cyclohexyl 2-hydroxybenzoate; 1,4-dioxacyclohexadecane-5,16-dione; (4-isopropylphenyl) methanol; 2-methoxy-4-methylphenol; (3Z,5Z)-2,6-dimethylocta-1,3,5,7-tetraene; 4-cyclohexyl-2-methylbutan-2ol; 2-(3-phenylpropyl)pyridine; 3-(4-methylcyclohex-3-en-1-yl)but-3-en-1-yl acetate; 3-(4-methylcyclohex-3-en-1-yl) butan-1-ol; 2-benzyl-2-methylbut-3-enenitrile; 3,7dimethyloct-6-enenitrile; 3,7-dimethyloct-6-en-1-yl 2-phenylacetate; 3,7-dimethyloct-6-en-1-yl formate; 3,7dimethyloct-6-en-1-yl benzoate; 3,7-dimethyloct-6-en-1-ol; 3,7-dimethyloct-6-enal; (E)-3,7-dimethylocta-2,6-dienal; (1R,2S,5R)-2,6,6-trimethylbicyclo[3.1.1]heptane; (Z)-3methyl-2-(pent-2-en-1-yl)cyclopent-2-en-1-one; (E)-2methoxy-4-(prop-1-en-1-yl)phenol; (E)-oxacycloheptadec-(Z)-non-6-en-1-ol; 11-en-2-one; (Z)-hex-3-en-1-yl pentanoate; (E)-hex-3-en-1-vl(E)-2-methylbut-2-enoate; (Z)-hex-3-en-1-yl 2-hydroxybenzoate; (Z)-hex-3-en-1-yl propionate; (Z)-hex-3-en-1-yl butyrate; (Z)-hex-3-en-1-yl benzoate; (Z)-hex-3-en-1-ol; (Z)-hex-3-en-1-yl 2-methylbutanoate; (Z)-hex-2-en-1-ol; cinnamonitrile; cinnamyl isobutyrate; cinnamaldehyde; (E)-3-phenylprop-2-en-1-ol; cinnamonitrile; 4-chloro-3,5-dimethylphenol; hexadecan-1-ol; (E)-1-(2,6,6-trimethylcyclohex-2-en-1-yl)hepta-1,6-dien-3-2-methyl-4-(2,6,6-trimethylcyclohex-1-en-1-yl)butaone: nal; (3aR,5aR,9aR,9bR)-3a,6,6,9a-tetramethyldodecahydronaphtho[2,1-b]furan; (4Z,8Z)-1,5,9-trimethyl-13oxabicyclo[10.1.0]trideca-4,8-diene; 5-methyl-1-(2,2,3trimethylcyclopent-3-en-1-yl)-6-oxabicyclo[3.2.1]octane; 1,1,2,3,3-pentamethyl-1,2,3,5,6,7-hexahydro-4H-inden-4one; 5-isopropyl-2-methylphenol; 2-methyl-5-(prop-1-en-2yl)cyclohex-2-en-1-one; 2-(2-ethoxyethoxy)ethan-1-ol; hexan-1-ol; 2-(2,2,3-trimethylcyclopent-3-en-1-yl)acetonitrile; 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one; 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane; 2,6-di-tert-butyl-4-methylphenol; butyl stearate; butyl undec-10-enoate; 2-methyl-4-(2,2,3-trimethylcyclopent-3-en-1-yl)butan-1-ol;

(E)-2-methyl-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-2enal; 1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl acetate; (1S, 2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol; 3,3,6,7tetramethyloctahydro-2H-chromene; 6,6-dimethylspiro [bicyclo[3.1.1]heptane-2,2'-oxirane]; 3-isopropyl-6methylenecyclohex-1-ene; 2-ethoxynaphthalene; (R)-3,5,5, 9-tetramethyl-2,4a,5,6,7,8-hexahydro-1H-benzo[7] annulene; (1S,4S)-1,4-dimethyl-7-(propan-2-ylidene)-1,2,3, 4.5.6.7.8-octahydroazulene; (1R,9S,Z)-4,11,11-trimethyl-8methylenebicyclo[7.2.0]undec-4-ene; (Z)-4-(2,2,6trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl)but-3-en-2-one; 4-methoxy-7H-furo[3,2-g]chromen-7-one; 4-phenylbutan-2-one; benzyl 2-hydroxybenzoate; benzyl dodecanoate; benzyl 3-methylbutanoate; benzyl isobutyrate; benzyl cinnamate; benzyl butyrate; phenylmethanol; benzyl benzoate; 1-(3,3-dimethylcyclohexyl)ethyl formate; 4-methoxybenzyl acetate: 4-methoxybenzyl formate: (Z)-1-methoxy-4-(prop-1-en-1-yl)benzene; pentyl benzoate; (3aR,5aS,9aS,9bR)-3a, 6,6,9a-tetramethyldodecahydronaphtho[2,1-b]furan; 2,5,5trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-ol; 2,5,5trimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-2-ol; 2-(sec-butyl)-1-vinylcyclohexyl acetate; (1S,4R,5R)-1-isopropyl-4-methylbicyclo[3.1.0]hexan-3-one; 2-(4-methylcyclohex-3-en-1-yl)propan-2-yl propionate; 2-(4-methylcyclohex-3-en-1-yl)propan-2-yl acetate; 1,7-dimethyl-7-(4methylpent-3-en-1-yl)tricyclo[2.2.1.02,6]heptane; 1-(5,5dimethylcyclohex-1-en-1-yl)pent-4-en-1-one; (1S,4aS, 8aR)-1-isopropyl-4,7-dimethyl-1,2,4a,5,6,8ahexahydronaphthalene; 4-cyclohexylbutan-2-ol; (R,Z)-1-(2, 6,6-trimethylcyclohex-2-en-1-yl)pent-1-en-3-one; (E)-2methyl-3-phenylacrylaldehyde; (Z)-3-methyl-4-(2,6,6trimethylcyclohex-2-en-1-yl)but-3-en-2-one; (Z)-4-(2,5,6,6tetramethylcyclohex-2-en-1-yl)but-3-en-2-one; (1Z,4E,8Z)-2.6.6.9-tetramethylcycloundeca-1,4,8-triene; (4aR,8S,9aS)-3,5,5,8-tetramethyl-9-methylene-2,4a,5,6,7,8,9,9aoctahydro-1H-benzo[7]annulene; (1R,4S,4aR,8aR)-4isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8aoctahydronaphthalen-1-ol; (1S,4aR,8aR)-1-isopropyl-4,7dimethyl-1,2,4a,5,6,8a-hexahydronaphthalene; (R)-2-((R)-4-methylcyclohex-3-en-1-yl)hex-5-en-2-ol; (E)-2benzylideneheptyl acetate; (1S,4aR,8aS)-1-isopropyl-4,7dimethyl-1,2,4a,5,6,8a-hexahydronaphthalene; 1-phenylpentan-2-ol; 4-methoxy-2,5-dimethylfuran-3(2H)one; alpha-4-Dimethyl benzenepropanal; allyl 2-phenoxyacetate; (2-(allyloxy)ethyl)benzene; allyl heptanoate; allyl 3-cyclohexylpropanoate; N-ethyl-N-(m-tolyl)propionamide; 2,6,10-trimethylundec-9-enal; 3-hydroxybutan-2-one; 1-(4methoxyphenyl)ethan-1-one; (Z)-2-(4-methylbenzylidene) heptanal; (Z)-oxacycloheptadec-8-en-2-one; 7-methoxy-2Hchromen-2-one; 6-methylquinoline; 6,8-dimethylnonan-2-

ol; 6,10,14-trimethylpentadecan-2-one; 5-methylheptan-3one; 4-vinylphenol; 1-phenylpent-4-en-1-one; (E)-3-(4hydroxy-3-methoxyphenyl)acrylaldehyde; 4-ethyl-2methoxyphenol; 5-methyl-5-phenylhexan-3-one; 4-(4methoxyphenyl)butan-2-one; (E)-3propylideneisobenzofuran-1(3H)-one; (Z)-dodec-2-enal; 3-methyl-5-phenylpentanal; 3-methyl-4-phenyl-1H-pyrazole; 3-methylcyclopentane-1,2-dione; 3-methoxy-5-methylphenol; 3-methoxy-3-methylbutan-1-ol; (E)-hex-3-en-1ol; 3,7-dimethyl-2-methyleneoct-6-enal; 3,7-dimethyloctan-1-ol; (Z)-undec-2-enenitrile; (E)-undec-2-enal; phenethyl acetate; (Z)-3-(furan-2-yl)-2-phenylacrylaldehyde; phenethyl propionate; 2-pentylcyclopentan-1-ol; (2S,4S)-2-hep-

tyl-2,4-dimethyl-1,3-dioxolane; nonan-2-ol; 2-(sec-butyl)-3-

methoxypyrazine; 2-isopropyl-N,2,3-trimethylbutanamide; (E)-2-isopropyl-5-methylhex-2-enal; 2-isopropyl-4-methylthiazole; (E)-2-hexylidenecyclopentan-1-one; (E)-hex-2en-1-ol; 2-butoxyethan-1-ol; (2E,6E)-nona-2,6-dien-1-ol; 1-isopropyl-4-methyl-7-oxabicyclo[2.2.1]heptane; 1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl acetate; 1,1,2,3,3-pentamethyl-2,3-dihydro-1H-indene; (Z)-1-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-en-1-one; (Z)-6,10-dimethylundeca-5, 9-dien-2-yl acetate; (Z)-hept-3-en-1-yl acetate; (1S,5S)-4,6, 6-trimethylbicyclo[3.1.1]hept-3-en-2-one; (R)-3,7dimethylocta-1,6-dien-3-ol; 3,7-dimethyloct-6-enal; (E)-6, 10-dimethylundeca-5,9-dien-2-yl (R)-3,7acetate; dimethyloct-6-enal; (2S,5S,6S)-2,6,10,10-tetramethyl-1oxaspiro[4.5]decan-6-ol; 3,7-dimethyloct-6-en-1-ol; 3,7dimethyloct-6-en-1-ol; (1R,5R)-2,6,6-trimethylbicyclo[3.1. 1]hept-2-ene; (S)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2en-1-one; (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene; methyl 2-methylbutanoate; hexyl(Z)-2-methylbut-2-enoate; 2-(8-isopropyl-6-methylbicyclo[2.2.2]oct-5-en-2-yl)-1,3-dioxolane; 3-(3-isopropylphenyl)butanal; allyl 2-(cyclohexyloxy)acetate; 2-((3S,3aS,5R)-3,8-dimethyl-1,2,3,3a,4,5,6,7octahydroazulen-5-yl)propan-2-ol; 1,5-dimethylbicyclo[3.2. 1]octan-8-one oxime; benzyl 2-phenylacetate; 2-hydroxy-1, 2-diphenylethan-1-one; (E)-tridec-2-enal; 1-phenylvinyl acetate; p-tolyl isobutyrate; p-tolyl hexanoate; p-cymene; 5-hexyl-4-methyldihydrofuran-2(3H)-one; 2-cyclohexylidene-2-phenylacetonitrile; 4-(prop-1-en-2-yl)cyclohex-1ene-1-carbaldehyde; (4-(prop-1-en-2-yl)cyclohex-1-en-1-yl) methyl acetate; (4-(prop-1-en-2-yl)cyclohex-1-en-1-yl) methanol; (2-(cyclohexyloxy)ethyl)benzene; phenethyl 2-methylbutanoate; phenethyl formate; phenethyl isobutyrate; phenethyl 2-phenylacetate; phenethyl(Z)-2-methylbut-2-enoate; phenyl benzoate; phenethyl benzoate; phenethyl methacrylate; 2-(4-isopropylphenyl)acetaldehyde; 1,2dimethyl-3-(prop-1-en-2-yl)cyclopentan-1-ol; methoxyphenyl)propan-2-one; (2Z,5Z)-5,6,7-trimethylocta-2,5-dien-4-one; 1-methoxy-4-propylbenzene; 2-(4-(tertbutyl)phenyl)acetaldehyde; 4-(tert-pentyl)cyclohexan-1-ol; p-tolyl 2-phenylacetate; Ethyl 2,4,7-decatrienoate; 2,6,6-trimethylbicyclo[3.1.1]hept-2-ene; 4-(4-hydroxyphenyl)butan-2-one; 2-benzyl-4,4,6-trimethyl-1,3-dioxane; 3,7-dimethyloct-7-en-1-ol; ethyl(2,3,6-trimethylcyclohexyl)carbonate; (Z)-6-ethylideneoctahydro-2H-5,8-methanochromene; 2-((S)-1-((S)-3,3-dimethylcyclohexyl)ethoxy)-2-oxoethyl propionate; methyl 2,2-dimethyl-6-methylenecyclohexane-1-carboxylate; 1-(3,3-dimethylcyclohexyl)ethyl acetate; (S)-3,7-dimethylocta-1,6-dien-3-ol; 1-isopropyl-4-methylenebicyclo[3.1.0]hexane; 5-isopropyl-2-methylbicyclo[3.1.0] hexan-2-ol; (1S,3R,5S)-1-isopropyl-4-methylenebicyclo[3. 1.0]hexan-3-ol; 3-methyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pentan-2-ol; 5-methoxyoctahydro-1H-4,7methanoindene-2-carbaldehyde; propyl (S)-2-(tertpentyloxy)propanoate; (4aR,8aR)-4a,8-dimethyl-2-(propan-2-ylidene)-1,2,3,4,4a,5,6,8a-octahydronaphthalene; 2-(1-(3, 3-dimethylcyclohexyl)ethoxy)-2-methylpropyl cyclopropanecarboxylate; (1R,3R,6R)-2',2',3,7,7-pentamethylspiro[bicyclo[4.1.0]heptane-2,5'-[1,3]dioxanel; 1-oxaspiro(4,5)decan-2-one; (Z)-5-methylheptan-3-one oxime; 1-phenylethyl acetate; (1S,4S,4aR,8aR)-4-isopropyl-1,6dimethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol; (1S, 4S,4aR,8aS)-4-isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol; 3,7-dimethyloctanal; 4-(2,2,6-

trimethylcyclohexyl)butan-2-ol;

pentylcyclopentan-1-one;

3-methyl-2-

3.7-

3,7-dimethyloctan-3-ol;

dimethyloctan-3-yl acetate; 2,6,10,10-tetramethyl-1oxaspiro[4.5]dec-6-ene; ethyl(1R,6S)-2,2,6trimethylcyclohexane-1-carboxylate; 2-isopropyl-5-

methylphenol; 1-isopropyl-2-methoxy-4-methylbenzene; 1-(2,2,6-trimethylcyclohexyl)hexan-3-ol; (E)-hex-2-en-1-ol; (1R,2S)-2-(tert-butyl)cyclohexan-1-ol; (Z)-1-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-en-1-one; (Z)-oxacycloheptadec-8-en-2-one; (Z)-1-methoxy-4-(prop-1-en-1-yl)benzene; cinnamic acid; (2R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-one; (E)-3,7-dimethylocta-2,6-dien-1-ol; (Z)-2methoxy-4-(prop-1-en-1-yl)phenol; 2.2.2-trichloro-1-phenylethyl acetate; triethyl 2-hydroxypropane-1,2,3tricarboxylate; methyl 2-((1-hydroxy-3-phenylbutyl)amino) benzoate; 1-((2E,5Z,9Z)-2,6,10-trimethylcyclododeca-2,5, 9-trien-1-yl)ethan-1-one; 2-mercapto-2-methylpentan-1-ol; 13-methyl oxacyclopentadec-10-en-2-one; undecanal; (E)-4methyldec-3-en-5-ol; (3R,4aS,5R)-4a,5-dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene;

4-formyl-2-methoxyphenyl acetate; 4-formyl-2-methoxyphenyl isobutyrate; (Z)-2-ethoxy-5-(prop-1-en-1-yl)phenol; 2,2,5-trimethyl-5-pentylcyclopentan-1-one; (Z)-2-methyl-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-enal; 3,4dimethoxybenzaldehyde; (1R,5R)-4,6,6-trimethylbicyclo[3. 1.1]hept-3-en-2-one; 1-methoxy-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoindene; 2-(tert-butyl)cyclohexan-1-ol; cis-(4-tert-butylcyclohexyl) acetate; 4-(tert-butyl)cyclohexyl acetate; 2,4-diethoxy-5-methylpyrimidine; 4-methyl-4-phenylpentan-2-yl acetate; 4,8-dimethyl-2-(propan-2-ylidene)-1,2,3,3a,4,5,6,8a-octahydroazulen-6-ol; (Z)-cyclooct-4-en-1-yl methyl carbonate; (Z)-1-((2-methylallyl)oxy)hex-3-ene; 4-(4-hydroxy-3-methoxyphenyl)butan-2-one; (1R,8aR)-4isopropyl-1,6-dimethyl-1,2,3,7,8,8a-hexahydronaphthalene; 4,5-epoxy-4,11,11-trimethyl-8-methylenebicyclo(7.2.0)un-1,3,4,6,7,8alpha-hexahydro-1,1,5,5-tetramethyldecane: 2H-2,4alpha-methanophtalen-8(5H)-one preferably said malodor reduction materials are selected from the group consisting of 2-ethylhexyl(Z)-3-(4-methoxyphenyl)acrylate; 2,4-dimethyl-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahy-

dronaphthalen-2-yl)-1,3-dioxolane; 1,1-dimethoxynon-2yne; 2-(p-tolyl)propan-2-ol; 3-methoxy-7,7-dimethyl-10methylenebicyclo[4.3.1]decane; methoxycyclododecane; 1,1-dimethoxycyclododecane; (Z)-tridec-2-enenitrile; (2-hydroxy-4-methoxyphenyl)(phenyl)methanone; 2,4a,5,8a-tetramethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl formate; 4-methyl-1-oxaspiro[5.5]undecan-4-ol; 7-methyl-2Hbenzo[b][1,4]dioxepin-3(4H)-one; 1,8dioxacycloheptadecan-9-one; 4-(tert-pentyl)cyclohexan-1one; 2-methoxy-1,1'-biphenyl; 3a,5,6,7,8,8b-hexahydro-2,2, 6,6,7,8,8-heptamethyl-4H-indeno(4,5-d)-1,3-dioxole;

7-isopropyl-8,8-dimethyl-6,10-dioxaspiro[4.5]decane; octyl furan-2-carboxylate; octyl acetate; 2-heptyl-4-methyl-1,3dioxolane; octanal; 1,1-dimethoxyoctane; 7-methyl-3-methvleneocta-1,6-diene; 2-methyl-6-methyleneoct-7-en-2-ol; 2-methyl-6-methyleneoct-7-en-2-yl acetate; tetradecanal; 4-methoxy-6-prop-2-enyl-1,3-benzodioxole; tetradecanenitrile; 2,2,6,8-tetramethyl-1,2,3,4,4a,5,8,8a-octahydronaphthalen-1-ol; (E)-2,6-dimethylocta-5,7-dien-2-ol; (E)-2,7dimethylocta-1,5,7-trien-3-ol; 2-((1S,5R)-6,6dimethylbicyclo[3.1.1]hept-2-en-2-yl)ethyl acetate; (4R, 4aS,6R)-4,4a-dimethyl-6-(prop-1-en-2-yl)-4,4a,5,6,7,8hexahydronaphthalen-2(3H)-one; nonan-1-ol; nonanal; 12-methyl-14-tetradec-9-enolide; N-ethyl-2-isopropyl-5methylcyclohexane-1-carboxamide; 1-(3-methylbenzofu-

ran-2-yl)ethan-1-one; 2-methoxynaphthalene; (E)-3,7,11-

trimethyldodeca-1,6,10-trien-3-ol; (Z)-3,7-dimethylocta-2, 6-dien-1-ol; 1-ethyl-3-methoxytricyclo[2.2.1.02,6]heptane; methyl(E)-non-2-enoate; 10-isopropyl-2,7-dimethyl-1-oxaspiro[4.5]deca-3,6-diene; 2-(2-(4-methylcyclohex-3-en-1-yl) propyl)cyclopentan-1-one; 6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbaldehyde; (E)-4-(2,2,3,6tetramethylcyclohexyl)but-3-en-2-one; (4-(4-methylpent-3en-1-vl)cyclohex-3-en-1-yl)methyl acetate; 2-(tert-butyl)-4, 5,6-trimethyl-1,3-phenylene dinitrite; 1.7dioxacycloheptadecan-8-one; 1-(4-(tert-butyl)-2,6dimethyl-3,5-dinitrophenyl)ethan-1-one; 1-(tert-butyl)-2methoxy-4-methyl-3,5-dinitrobenzene;

3-methylcyclopentadecan-1-one; (E)-3-methylcyclopentadec-4-en-1-one; 3-methyl-4-phenylbutan-2-ol; 1-(4-isopropylcyclohexyl)ethan-1-ol; (E)-dec-5-enoic acid; methyl non-2-vnoate: 2-methyldecanal; 6,6-dimethoxy-2,5,5trimethylhex-2-ene; 4-phenylbutan-2-ol; methyl stearate; 1,1-dimethoxy-2-methylundecane; undecan-2-one; 2-methylundecanal; methyl tetradecanoate; methyl(9Z,12Z)-octadeca-9,12-dienoate; 1-hydroxydecan-3-one; (Z)-1,2dimethoxy-4-(prop-1-en-1-yl)benzene; methyl palmitate; 4-allyl-1,2-dimethoxybenzene; methyl 2-((1R,2R)-3-oxo-2-((Z)-pent-2-en-1-yl)cyclopentyl)acetate; methyl 2-(3-oxo-2pentylcyclopentyl)acetate; 1-methyl-2-phenoxybenzene; methyl cinnamate; 1-allyl-4-methoxybenzene; 1-(naphthalen-2-yl)ethan-1-one; methyl oct-2-ynoate; methyl 2,6,6-trimethylcyclohex-2-ene-1-carboxylate; 7-methoxy-3,7-dimethyloctanal; 7-isopropyl-10-methyl-1,5-dioxaspiro[5.5] undecan-3-ol; octahydro-1H-4,7-methanoindene-1carbaldehyde; 3-(3-(tert-butyl)phenyl)-2-methylpropanal; (E)-4-(4,8-dimethylnona-3,7-dien-1-yl)pyridine; (E)trideca-3,12-dienenitrile; 2,2-dimethyl-3-(m-tolyl)propan-1ol; 2,4-dimethyl-4,4a,5,9b-tetrahydroindeno[1,2-d][1,3]di-8-isopropyl-6-methylbicyclo[2.2.2]oct-5-ene-2oxine; carbaldehyde; 4-(4-hydroxy-4-methylpentyl)cyclohex-3ene-1-carbaldehyde; (S)-1-methyl-4-(prop-1-en-2-yl) cyclohex-1-ene; (Z)-3-hexen-1-yl-2-cyclopenten-1-one; 3,7dimethylocta-1,6-dien-3-yl octanoate; 3,7-dimethylocta-1,6dien-3-yl isobutyrate; 3,7-dimethylocta-1,6-dien-3-yl benzoate; 3,7-dimethylocta-1,6-dien-3-yl 2-aminobenzoate; 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-ol; 6-methyl-2-(oxiran-2-yl)hept-5-en-2-ol; (2Z,6E)-3,7-dimethylnona-2,6-dienenitrile; 3-(4-methylcyclohex-3-en-1-yl)butanal; (2,5-dimethyl-1,3-dihydroinden-2-yl)methanol; 3-(4-(tert-butyl)phenyl)-2-methylpropanal; (E)-1-(1methoxypropoxy)hex-3-ene; (E)-1-(1-ethoxyethoxy)hex-3ene; (1S,5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1ol; dodecan-1-ol; dodecyl acetate; dodecanoic acid; 5-hexyl-5-methyldihydrofuran-2(3H)-one; dodecanal; 3,6dimethylhexahydrobenzofuran-2(3H)-one; 4 - (1 ethoxyvinyl)-3,3,5,5-tetramethylcyclohexan-1-one; ((3S, 3aR,6R,8aS)-7,7-dimethyl-8-methyleneoctahydro-1H-3a,6methanoazulen-3-yl)methanol; 5-(sec-butyl)-2-(2,4dimethylcyclohex-3-en-1-yl)-5-methyl-1,3-dioxane; (1-methyl-2-((1,2,2-trimethylbicyclo[3.1.0]hexan-3-yl)methyl)cyclopropyl)methanol; 2-propylheptanenitrile; (E)-6-(pent-3-en-1-yl)tetrahydro-2H-pyran-2-one; 2-hexylcyclopentan-1-one; 2-methyl-4-phenyl-1,3-dioxolane; 2,6,9,10tetramethyl-1-oxaspiro(4.5)deca-3,6-diene; (1R,2S,5R)-5-

methyl-2-(prop-1-en-2-yl)cyclohexan-1-ol; isopropyl palmitate; isopropyl tetradecanoate; isopropyl dodecanoate; 4,9-dimethoxy-7H-furo[3,2-g]chromen-7-one; (E)-cyclohexadec-8-en-1-one; (2S,5S)-2-isopropyl-5-methylcyclohexan-1-one; 2-hexylcyclopent-2-en-1-one; (2S,5S)-2-isopropyl-5-methylcyclohexan-1-one; 4-(4-methylpent-3-en-1yl)cyclohex-3-ene-1-carbaldehyde; (Z)-1-(benzyloxy)-2methoxy-4-(prop-1-en-1-yl)benzene; 1-((2S,3S)-2,3,8,8tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)

ethan-1-one; 2,5,6-trimethylcyclohex-3-ene-1carbaldehyde; 6-(sec-butyl)quinoline; 2-(cyclohexyloxy)-1, 7,7-trimethylbicyclo[2.2.1]heptane; (1R.2R.4S)-1.7.7trimethylbicyclo[2.2.1]heptan-2-yl propionate; (1S,2S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl isobutyrate; 4-((2R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)cyclohexan-1-ol; (1R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2vl acetate; 2-(4-isopropylcyclohexa-1,4-dien-1-yl)ethyl formate; isopentyl(E)-undec-6-enoate; isopentyl dodecanoate; (E)-oxacycloheptadec-10-en-2-one; (E)-non-2-enenitrile; (E)-8-(1H-indol-1-yl)-2,6-dimethyloct-7-en-2-ol; 8.8-di (1H-indol-1-yl)-2,6-dimethyloctan-2-ol; 4,4a,5,9b-tetrahydroindeno[1,2-d][1,3]dioxine; 3,7-dimethyloctane-1,7-diol; 2-cyclododecylpropan-1-ol; 3-methyl-5-phenylpentanenitrile; 3-phenylpropan-1-ol; (1,1-dimethoxypropan-2-yl)benzene; 5-ethyl-4-hydroxy-2-methylfuran-3(2H)-one; 2,3-dihydro-3,3-dimethyl-1H-indene-5-propanal; 3-(3.3dimethyl-2,3-dihydro-1H-inden-5-yl)propanal; hexyl octanoate; hexyl hexanoate; (Z)-2-benzylideneoctanal; hexyl benzoate; (Z)-hex-1-en-1-yl(Z)-2-methylbut-2-enoate; (E)-3,7-dimethylocta-2,6-dien-1-yl palmitate; oxacycloheptadecan-2-one; 2-butyl-4,4,6-trimethyl-1,3-dioxane; ethyl(1R, 2R,3R,4R)-3-isopropylbicyclo[2.2.1]hept-5-ene-2carboxylate; 3a,4,5,6,7,7a-hexahydro-1H-4,7methanoinden-6-yl acetate; 2-(1-(3,3-dimethylcyclohexyl) ethoxy)-2-methylpropyl propionate; 5-(diethoxymethyl) 3-(benzo[d][1,3]dioxo1-5-yl)-2benzo[d][1,3]dioxole; methylpropanal; (E)-oxacyclohexadec-13-en-2-one; 6-butyl-2,4-dimethyl-3,6-dihydro-2H-pyran; 2-((3S,5R,8S)-3,8-dimethyl-1,2,3,4,5,6,7,8-octahydroazulen-5-yl)propan-2-01: 1-(2,6,6-trimethylcyclohex-2-en-1-yl)pentan-3-one; 2-ethyl-6,6-dimethylcyclohex-2-ene-1-carboxylate; ethvl

(1Z,5Z)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-(1E,6E)-8-isopropyl-1-methyl-5-methylenecyclodiene: deca-1,6-diene; (E)-3,7-dimethylocta-2,6-dien-1-yl 2-phe-(E)-3,7-dimethylocta-2,6-dien-1-yl nylacetate; 2-phenylacetate; (6E,10E)-3,7,11,15-tetramethylhexadeca-1,6,10,14-tetraen-3-ol; (E)-2-(3,7-dimethylocta-2,6-dien-1yl)cyclopentan-1-one; 5-heptyldihydrofuran-2(3H)-one; 1-methyl-4-(propan-2-ylidene)cyclohexyl acetate; 1-methyl-4-(propan-2-ylidene)cyclohexan-1-ol; 5-pentyldihydrofuran-2(3H)-one; (1R,4aR,8aS)-1-isopropyl-7-methyl-4-methylene-1,2,3,4,4a,5,6,8a-octahydronaphthalene; 5-[(Z)hex-3-envl]oxolan-2-one; (Z)-4-(2,2-dimethyl-6methylenecyclohexyl)but-3-en-2-one; (4aS,9aR)-3,5,5,9tetramethyl-2,4a,5,6,7,9a-hexahydro-1H-benzo[7]annulene; (1R,3aR,4R,7R)-1,4-dimethyl-7-(prop-1-en-2-yl)-1,2,3,3a, 4,5,6,7-octahydroazulene; 2-((2R,4aR)-4a,8-dimethyl-1,2,3, 4,4a,5,6,7-octahydronaphthalen-2-yl)propan-2-ol; 5-00tyldihydrofuran-2(3H)-one; (Z)-1-(2,2-dimethyl-6methylenecyclohexyl)but-2-en-1-one; 5-hexyldihydrofuran-2(3H)-one; (1R,4aS,8aS)-1-isopropyl-7-methyl-4methylene-1,2,3,4,4a,5,6,8a-octahydronaphthalene; 1-(3,3dimethylcyclohexyl)pent-4-en-1-one; 4,6,6,7,8,8hexamethyl-1,3,4,6,7,8-hexahydrocyclopenta[g] isochromene; furan-2-ylmethyl octanoate; furan-2-ylmethyl hexanoate; furan-2-ylmethyl heptanoate; 2-methyldecanenitrile; 8,8-dimethyl-3a,4,5,6,7,7a-hexahydro-1H-4,7-metha-

noinden-6-yl propionate; ethyl(3aR,4S,7R,7aR)-octahydro-

diethyl

3aH-4,7-methanoindene-3a-carboxylate;

cyclohexane-1,4-dicarboxylate; (6-isopropyl-9-methyl-1,4dioxaspiro[4.5]decan-2-yl)methanol; 2-isobutyl-4-methyltetrahydro-2H-pyran-4-ol; undec-10-enenitrile; (Z)-6-ethylideneoctahydro-2H-5,8-methanochromen-2-one; 3-(2ethylphenyl)-2,2-dimethylpropanal; (E)-4,8-dimethyldeca-4,9-dienal; (E)-4-((3aR,4R,7R,7aR)-1,3a,4,6,7,7ahexahydro-5H-4,7-methanoinden-5-vlidene)-3-

8,8-dimethyl-3a,4,5,6,7,7a-hexahydromethylbutan-2-ol; 1H-4,7-methanoinden-6-yl acetate; 3-(4-ethylphenyl)-2,2dimethylpropanenitrile; 2-heptylcyclopentan-1-one; 1-ethoxyethoxy Cyclododecane; 3-cyclohexene-1-carboxylic acid, 2,6,6-trimethyl-, methyl ester; (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl acetate; (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol; oxacyclohexadecan-2-one; (E)-cyclopentadec-4-en-1-one; 1-cyclopentadec-4-en-1-one; 2-methoxy-4-(4-methylenetetrahydro-2H-pyran-2-yl)phenol; 4-allyl-2-methoxyphenyl acetate; 4-allyl-2-methoxyphenol; ethyl 3-methyl-3-phenyloxirane-2-carboxylate; 1,4-dioxacycloheptadecane-5,17-dione; ethyl undec-10enoate; ethyl palmitate; ethyl nonanoate; ethyl tetradecanoate; (E)-3,7-dimethylnona-1,6-dien-3-ol; ethyl dodecanoate; nonan-3-one; ethyl decanoate; ethyl 6,6-dimethyl-2-methylenecyclohex-3-ene-1-carboxylate; ethyl 3-phenyloxirane-2-carboxylate; 6-ethyl-2,10,10-trimethyl-1-oxaspiro[4.5]deca-3,6-diene; 2-((1R,3S,4S)-4-methyl-3-(prop-1-en-2-yl)-4-vinylcyclohexyl)propan-2-ol; (2 - (1 ethoxyethoxy)ethyl)benzene; (E)-3-methyl-5-(2,2,3trimethylcyclopent-3-en-1-yl)pent-4-en-2-ol; (2R,3S,4R)-2, 3,4,5-tetrahydroxypentanal; (E)-4-((3aS,7aS)-octahydro-5H-4,7-methanoinden-5-ylidene)butanal; 1.1dimethoxydodecane; (R)-1-methyl-4-(prop-1-en-2-yl) cyclohex-1-ene; 2-(2-hydroxypropoxy)propan-1-ol; 7,9dimethylspiro[5.5]undecan-3-one; oxydibenzene; diphenylmethane; 2-methyl-1-phenylpropan-2-yl butyrate; 2,6-dimethyloct-7-en-4-one; octahydro-1H-4,7-methanoinden-5-yl acetate; 2-methyl-5-(prop-1-en-2-yl)cyclohexyl acetate; 2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-ol; 3,7dimethyloct-6-en-3-ol; methyl 2-hexyl-3-oxocyclopentane-1-carboxylate; dibutylsulfane; 1,2-diphenylethane; 6-hexyltetrahydro-2H-pyran-2-one; (3R,4R)-1-isopropyl-4methyl-3-(prop-1-en-2-yl)-4-vinylcyclohex-1-ene; (3S,3aS, 5R)-3,8-dimethyl-5-(prop-1-en-2-yl)-1,2,3,3a,4,5,6,7-6-heptyltetrahydro-2H-pyran-2-one; octahydroazulene; 6-pentvltetrahvdro-2H-pyran-2-one; (1S.8aR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene; (Z)-1-((1R,2S)-2,6,6-trimethylcyclohex-3-en-1-yl)but-2-en-1-one: (1S,8aS)-1-isopropyl-4,7-dimethyl-1,2,3,5,6,8ahexahydronaphthalene; 3,7,7-trimethylbicyclo[4.1.0]hept-3ene; dec-9-en-1-ol; decyl propionate; 1,1-diethoxydecane; decahydronaphthalen-2-ol; 1-cyclohexylethyl(E)-but-2enoate; 3-(4-isopropylphenyl)-2-methylpropanal; cyclotetradecane; cyclopentadecanone; cyclohexyl 2-hydroxybenzoate; 3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-6-yl butyrate; 1,4-dioxacyclohexadecane-5,16-dione; 8,8-dimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-2-carbaldehyde; 3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-5-yl isobutyrate; (5R,6R)-3,6-dimethyl-5-(prop-1-en-2-yl)-6-vinyl-4,5,6,7-tetrahydrobenzofuran; (4-isopropylphenyl) methanol; 1-(benzofuran-2-yl)ethan-1-one; 2-(3-phenylpropyl)pyridine; dodecanenitrile; (E)-cycloheptadec-9-en-1one; 3-(4-methylcyclohex-3-en-1-yl)but-3-en-1-yl acetate; 3-(4-methylcyclohex-3-en-1-yl)butan-1-ol; (E)-3-methyl-5phenylpent-2-enenitrile; (E)-2-(2,6-dimethylhepta-1,5-dien-

1-yl)-4-methyl-1,3-dioxolane; (E)-1,1-dimethoxy-3,7-dim-

ethylocta-2,6-diene; (E)-1,1-diethoxy-3,7-dimethylocta-2,6diene; (E)-3,7-dimethylocta-1,3,6-triene; (1R,4R,6S)-1methyl-4-(prop-1-en-2-yl)-7-oxabicyclo[4.1.0]heptane; (E)oxacycloheptadec-11-en-2-one; (Z)-non-6-en-1-ol; (1R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-ol; (Z)-dec-4enal; (E)-hex-3-en-1-yl(E)-hex-3-enoate; (Z)-hex-3-en-1-yl 2-hydroxybenzoate; (Z)-hex-3-en-1-yl benzoate; (Z)-hex-3en-1-yl 2-methylbutanoate; (3Z,6Z)-nona-3,6-dien-1-ol; cinnamyl propionate; cinnamyl isobutyrate; cinnamyl formate; cinnamyl cinnamate; cinnamyl acetate; (E)-3-phenylprop-2en-1-ol; hexadecan-1-ol; (E)-1-(2.6.6-trimethylcyclohex-2en-1-yl)hepta-1,6-dien-3-one; 2-methyl-4-(2,6,6-trimethylcyclohex-1-en-1-yl)butanal; (3aR,5aR,9aR,9bR)-3a,6,6,9atetramethyldodecahydronaphtho[2,1-b]furan; 1.6 dioxacycloheptadecan-7-one; 1-(6-(tert-butyl)-1,1dimethyl-2,3-dihydro-1H-inden-4-yl)ethan-1-one; (3R,3aR, 6S,7S,8aS)-6-methoxy-3,6,8,8-tetramethyloctahydro-1H-3a,7-methanoazulene; (3R,3aS,6R,7R,8aS)-3,6,8,8tetramethyloctahydro-1H-3a,7-methanoazulen-3-yl formate; (3R,3aS,6R,7R,8aS)-3,6,8,8-tetramethyloctahydro-1H-3a, 7-methanoazulen-6-yl acetate; (4Z,8Z)-1,5,9-trimethyl-13oxabicyclo[10.1.0]trideca-4,8-diene; (3R,3aS,6R,7R,8aS)-3,6,8,8-tetramethyloctahydro-1H-3a,7-methanoazulen-6-ol; 5-methyl-1-(2,2,3-trimethylcyclopent-3-en-1-yl)-6-oxabicyclo[3.2.1]octane; 5-methyl-1-(2,2,3-trimethylcyclopent-3en-1-vl)-6-oxabicyclo[3.2.1]octane; 1,1,2,3,3-pentamethyl-1,2,3,5,6,7-hexahydro-4H-inden-4-one; (Z)-4,11,11trimethyl-8-methylenebicyclo[7.2.0]undec-3-en-5-yl acetate; (1S,2S,5R,8S)-4,4,8-trimethyltricyclo[6.3.1.02,5] dodecan-1-ol; 2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1yl acetate; octanenitrile; octan-1-ol; octanoic acid; decanoic acid; decanal; 3-(4-methoxyphenyl)-2-methylpropanal; 1,7, 7-trimethylbicyclo[2.2.1]heptane-2,3-dione; 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane; ethyl 2-methyl-4-oxo-6pentylcyclohex-2-ene-1-carboxylate; 2,6-di-tert-butyl-4methylphenol; butyl stearate; 1-butoxy-1-oxopropan-2-yl butyrate; butyl undec-10-enoate; 2-methyl-4-(2,2,3-trimethylcyclopent-3-en-1-yl)butan-1-ol; 3-(4-(tert-butyl)phenyl) propanal; (1S,2S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl isobutyrate; acetate; 2-ethoxy-2,6,6-trimethyl-9-methylenebicyclo[3.3. 1]nonane; (ethoxymethoxy)cyclododecane; (E)-1-methyl-4-(6-methylhept-5-en-2-ylidene)cyclohex-1-ene; 3,3,6,7-tetramethyloctahydro-2H-chromene; (5R.10R)-6,10-dimethyl-2-(propan-2-ylidene)spiro[4.5]dec-6-en-8-one; 1-methyl-4-(prop-1-en-2-yl)cyclohexyl acetate; 1-methyl-4-(prop-1-en-2-yl)cyclohexan-1-ol; (2Z,6E)-2,6-dimethyl-10methylenedodeca-2,6,11-trienal; (R)-3-methylene-6-((S)-6methylhept-5-en-2-yl)cyclohex-1-ene; (4aR,7R,8aS)-4amethyl-1-methylene-7-(prop-1-en-2-yl) (Z)-2-methyl-5-((1S,2R,4R)-2decahydronaphthalene; methyl-3-methylenebicyclo[2.2.1]heptan-2-yl)pent-2-en-1ol;6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane; 2-ethoxynaphthalene; (1S,4R,7R)-1,4,9,9-tetramethyl-1,2,3, 4,5,6,7,8-octahydro-4,7-methanoazulene; (1aS,5aR,9aR)-1a,5,5,7-tetramethyl-1a,2,3,4,5,5a,8,9-octahydrobenzo[1,7] cyclohepta[1,2-b]oxirene; (R)-3,5,5,9-tetramethyl-2,4a,5,6, 7,8-hexahydro-1H-benzo[7]annulene; (1S, 4S) - 1, 4 dimethyl-7-(propan-2-ylidene)-1,2,3,4,5,6,7,8octahydroazulene; (2,2-dimethoxyethyl)benzene; (E)-7,11-

dimethyl-3-methylenedodeca-1,6,10-triene; (1R,2S,6S,7S, 8S)-8-isopropyl-1-methyl-3-methylenetricyclo[4.4.0.02,7] decane; (3R,3aS,7S,8aS)-3,8,8-trimethyl-6methyleneoctahydro-1H-3a,7-methanoazulene; (1R,9S,Z)- 4,11,11-trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene; (S)-4-methyl-1-((S)-6-methylhept-5-en-2-yl)cyclohex-3-en-1-ol; (Z)-4-(2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl) but-3-en-2-one; 4-methoxy-7H-furo[3,2-g]chromen-7-one; 2-methyl-4-phenylbutan-2-ol; benzyl dodecanoate; 2-methyl-1-phenylpropan-2-ol; benzyl cinnamate; benzyl benzoate; benzophenone; 7-isopentyl-2H-benzo[b][1,4]dioxepin-3(4H)-one; 2'-isopropyl-1,7,7-trimethylspiro[bicyclo [2.2.1]heptane-2,4'-[1,3]dioxane]/A; 4-(4-methylpent-3-en-1-yl)cyclohex-3-ene-1-carbonitrile; methyl(E)-2-((7hydroxy-3,7-dimethyloctylidene)amino)benzoate; 4-methoxybenzyl 2-phenylacetate; methyl(E)-octa-4,7-dienoate; pentyl(Z)-3-phenylacrylate; (3aR,5aS,9aS,9bR)-3a, 6,6,9a-tetramethyldodecahydronaphtho[2,1-b]furan; (4aR, 5R,7aS,9R)-2,2,5,8,8,9a-hexamethyloctahydro-4H-4a,9methanoazuleno[5,6-d][1,3]dioxole; 2,5,5-trimethyl-1,2,3,4, 5,6,7,8-octahydronaphthalen-2-ol; 2,5,5-trimethyl-1,2,3,4, 4a,5,6,7-octahydronaphthalen-2-ol; 1-((2-(tert-butyl) cyclohexyl)oxy)butan-2-ol; (3S,5aR,7aS,11aS,11bR)-3,8,8, 11a-tetramethyldodecahydro-5H-3,5a-epoxynaphtho[2,1-c] oxepine; 2,2,6,6,7,8,8-heptamethyldecahydro-2H-indeno[4, 5-b]furan; 2,2,7,7,8,9,9-heptamethyldecahydroindeno[4,3ab]furan; 2-(sec-butyl)-1-vinylcyclohexyl acetate; (1S,4R, 5R)-1-isopropyl-4-methylbicyclo[3.1.0]hexan-3-one; (4R, 4aS)-4,4a-dimethyl-6-(propan-2-ylidene)-4,4a,5,6,7,8hexahydronaphthalen-2(3H)-one; 2-(4-methylcyclohex-3en-1-yl)propan-2-yl propionate; (2Z,6E,9E)-2,6,10trimethyldodeca-2,6,9,11-tetraenal; (2R,4aR,8aR)-4a,8dimethyl-2-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,8aoctahydronaphthalene; 1,7-dimethyl-7-(4-methylpent-3-en-1-yl)tricyclo[2.2.1.02,6]heptane; (E)-5-(2,3dimethyltricyclo[2.2.1.02,6]heptan-3-yl)-2-methylpent-2en-1-ol; (1R,3aS,7S,8aR)-1,4,9,9-tetramethyl-2,3,6,7,8,8ahexahydro-1H-3a,7-methanoazulene; 1-(5,5dimethylcyclohex-1-en-1-yl)pent-4-en-1-one; (1S,4aS, 8aR)-1-isopropyl-4,7-dimethyl-1,2,4a,5,6,8ahexahydronaphthalene; (R,Z)-1-(2,6,6-trimethylcyclohex-2en-1-yl)pent-1-en-3-one; 1-methyl-4-(prop-1-en-2-yl) cyclohex-1-ene; (Z)-4-(2,5,6,6-tetramethylcyclohex-2-en-1yl)but-3-en-2-one; (1Z,4E,8Z)-2,6,6,9tetramethylcycloundeca-1,4,8-triene; (4aR,8S,9aS)-3,5,5,8tetramethyl-9-methylene-2,4a,5,6,7,8,9,9a-octahydro-1Hbenzo[7]annulene; (1aR,4R,4aR,7bS)-1,1,4,7-tetramethyl-

1a,2,3,4,4a,5,6,7b-octahydro-1H-cyclopropa[e]azulene; 1,4dimethyl-7-(prop-1-en-2-yl)-1,2,3,4,5,6,7,8-

octahydroazulene; (3E,6E)-3,7,11-trimethyldodeca-1,3,6, 10-tetraene; 7,7-dimethyl-2-methylenebicyclo[2.2.1] heptane; 2-((2R,4aR,8aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8aoctahydronaphthalen-2-yl)propan-2-ol; (R)-1-methyl-4-(6methylhept-5-en-2-yl)benzene; (3aR,3bR,4S,7R,7aS)-4isopropyl-7-methyl-3a,3b,4,5,6,7-hexahydro-1H-cyclopenta [1,3]cyclopropa[1,2]benzene; (1aS,2aR,3R,5aS,7R,7aR)-3, 6,6,7a-tetramethyloctahydro-2H-2a,7-methanoazuleno[5,6b]oxirene; (1R,4S,4aR,8aR)-4-isopropyl-1,6-dimethyl-1,2, 3,4,4a,7,8,8a-octahydronaphthalen-1-ol; (1S,4aR,8aR)-1isopropyl-4,7-dimethyl-1,2,4a,5,6,8a-

hexahydronaphthalene; (R)-2-((R)-4-methylcyclohex-3-en-1-yl)hex-5-en-2-ol; (Z)-1-methyl-4-(6-methylhepta-2,5dien-2-yl)cyclohex-1-ene; 2,6-dimethyl-6-(4-methylpent-3en-1-yl)bicyclo[3.1.1]hept-2-ene; (E)-2-benzylideneheptan-1-ol; (E)-2-benzylideneheptyl acetate; (Z)-(2-(diethoxymethyl)hept-1-en-1-yl)benzene; (E)-2benzylideneheptanal; (1S,4aR,8aS)-1-isopropyl-4,7dimethyl-1,2,4a,5,6,8a-hexahydronaphthalene; (3R,5aS, 9aR)-2,2,5a,9-tetramethyl-3,4,5,5a,6,7-hexahydro-2H-3,9amethanobenzo[b]oxepine; 1-methyl-4-(4-methylpent-3-en-1-yl)cyclohex-3-ene-1-carbaldehyde; 1-phenylpentan-2-ol; 3-methyl-1-phenylpentan-3-ol; 2,3,4-trimethoxybenzaldehyde; 2,4,5-trimethoxybenzaldehyde; 2,4,6-trimethoxybenzaldehyde; Trans, Trans-2,4-Nonadienal; 2,6,10-trimethylundecanal; alpha-4-Dimethyl benzenepropanal; allyl 3-cyclohexylpropanoate; allyl 2-(isopentyloxy)acetate; (1aR,4aS,7R,7aR,7bS)-1,1,7-trimethyl-4-methylenedecahydro-1H-cyclopropa[e]azulene; (E)-undec-9-enal; methyl(E)-2-(((3,5-dimethylcyclohex-3-en-1-yl)methylene)amino)

benzoate; 2,6,10-trimethylundec-9-enal; (7,7,8,8-tetramethyloctahydro-2,3b-methanocyclopenta[1,3]

cyclopropa[1,2]benzen-4-yl)methyl acetate; nonyl acetate; (2-(1-propoxyethoxy)ethyl)benzene; 1-(1-propoxyethoxy) propane; ((1-(2-methoxy)ethoxy)methyl)benzene; (Z)-2-(4-methylbenzylidene)heptanal; dec-9-enal; (Z)-oxacycloheptadec-8-en-2-one; 7-methoxy-2H-chromen-2-one; (2S,4aR,8aR)-4a,8-dimethyl-2-(prop-1-en-2-yl)-1,2,3,4,4a, 5,6,8a-octahydronaphthalene; 2-((2S,4aR,8aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)propan-2ol; 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethan-1-one; 6-isopropylquinoline; 3-(6,6dimethylbicyclo[3.1.1]hept-2-en-2-yl)propanal; 6,10,14trimethylpentadecan-2-one; 2-methyl-5-(prop-1-en-2-yl)-2vinyltetrahydrofuran; (E)-cyclohexadec-5-en-1-one; 1-isopropyl-4-methylcyclohex-3-en-1-ol; 1-phenylpent-4en-1-one; 1-isopropyl-4-methylcyclohex-3-en-1-ol; 3,6dimethyl-4,5,6,7-tetrahydrobenzofuran; 4-(4-methoxyphenyl)butan-2-one; (1aR,2S,4aS)-2,4a,8,8tetramethyloctahydrocyclopropa[d]naphthalen-3(1H)-one; (E)-3-propylideneisobenzofuran-1(3H)-one; (Z)-dodec-2enal; 3-methyl-5-phenylpentanal; (E)-hex-3-en-1-yl 3-methvlbutanoate; 3,6-dimethyloctan-3-yl acetate; 3,4,5-trimethoxybenzaldehyde; 3-(4-isopropylphenyl)propanal; (Z)undec-2-enenitrile; (E)-undec-2-enal; (2E,6E)-nona-2,6phenethyl (Z)-3-(furan-2-yl)-2dienal; butyrate; phenylacrylaldehyde; 2-phenoxyethan-1-ol; (Z)-non-2-enal; nonan-2-ol; nonan-2-one; 2-isobutylquinoline; (E)-2-hexylidenecyclopentan-1-one; 2-heptyltetrahydrofuran; (E)-dec-2-enal; (2E,6E)-nona-2,6-dienal; (2E,6E)-nona-2,6-dien-1ol; 2,6-dimethyloctanal; decan-1-ol; (E)-hept-1-en-1-yl acetate; undec-10-en-1-ol; undec-10-enal; 2-((2R,4aS)-4a,8dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-2-yl)pro-

pan-2-ol; 1-isopropyl-4-methyl-7-thiabicyclo[2.2.1]heptane; (3E,5Z)-undeca-1,3,5-triene; 3,7-dimethyloct-6-en-3-ol; 1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl acetate; 1,1,2,3,3pentamethyl-2,3-dihydro-1H-indene; (Z)-6,10-dimethylundeca-5,9-dien-2-yl acetate; (Z)-dodec-3-enal; (S)-5-heptyldihydrofuran-2(3H)-one; (R)-5-heptyldihydrofuran-2 (3H)-one; (E)-6,10-dimethylundeca-5,9-dien-2-yl acetate; (Z)-3-methyl-5-phenylpent-2-enenitrile; (2S,5S,6S)-2,6,10, 10-tetramethyl-1-oxaspiro[4.5]decan-6-ol; (2E)-3-methyl-5phenyl-2-pentenenitrile; (1S,2S,5S)-2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-ol; (2S,5R)-2-isopropyl-5methylcyclohexan-1-one; (R,E)-2-methyl-4-(2,2,3trimethylcyclopent-3-en-1-yl)but-2-en-1-ol; 2-(8-isopropyl-6-methylbicyclo[2.2.2]oct-5-en-2-yl)-1,3-dioxolane; (E)-4-(2,2-dimethyl-6-methylenecyclohexyl)-3-methylbut-3-en-2one; 3-(3-isopropylphenyl)butanal; 3-(1-ethoxyethoxy)-3,7dimethylocta-1,6-diene; 3a,4,5,6,7,7a-hexahydro-1H-4,7propionate; methanoinden-6-yl 2-((3S,3aS,5R)-3,8dimethyl-1,2,3,3a,4,5,6,7-octahydroazulen-5-yl)propan-2ol; benzyl 2-phenylacetate; 2-hydroxy-1,2-diphenylethan-1one; (E)-1,2,4-trimethoxy-5-(prop-1-en-1-yl)benzene; 3-(6, 6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-2,2-

2-methyl-5-(6-methylhept-5-en-2-yl) dimethylpropanal; bicyclo[3.1.0]hex-2-ene; 1-(1,1,2,3,3,6-hexamethyl-2,3dihydro-1H-inden-5-yl)ethan-1-one; 2-(m-tolyl)ethan-1-ol; (3E,6E)-nona-3,6-dien-1-ol; (E)-tridec-2-enal; (1R,4S,4aS, 6R.8aS)-4.8a,9,9-tetramethyloctahydro-1,6-methanonaphthalen-1(2H)-ol; p-tolyl isobutyrate; p-tolyl hexanoate; 5-hexyl-4-methyldihydrofuran-2(3H)-one; ethyl(2Z,4E)deca-2,4-dienoate; 2,4-dimethyl-6-phenyl-3,6-dihydro-2Hpyran; 2-cyclohexylidene-2-phenylacetonitrile; 4-(prop-1en-2-yl)cyclohex-1-ene-1-carbaldehyde; (4-(prop-1-en-2-yl) cyclohex-1-en-1-yl)methyl acetate; (4-(prop-1-en-2-yl) cyclohex-1-en-1-yl)methanol; (2-isopropoxyethyl)benzene; 2-cyclohexylhepta-1,6-dien-3-one; (2-(cyclohexyloxy) ethyl)benzene; phenethyl 2-methylbutanoate; 2-phenylethan-1-ol; phenethyl 2-phenylacetate; 3-methyl-5-phenylpentan-1-ol; phenyl benzoate; phenethyl benzoate; 2-benzyl-1,3-dioxolane; 2-(6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl) acetaldehyde; 6,6-dimethyl-2-methylenebicyclo[3.1.1] heptan-3-ol; 4-(benzo[d][1,3]dioxol-5-yl)butan-2-one; 3a,4, 5,6,7,7a-hexahydro-1H-4,7-methanoinden-6-yl pivalate: (4aR,8aS)-7-methyloctahydro-1,4-methanonaphthalen-6 (2H)-one; 4-isopropyl-1-methylcyclohex-3-en-1-ol; (E)-3,3dimethyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pent-4-en-2-ol; 1-methyl-4-(4-methylpent-3-en-1-yl)cyclohex-3-ene-1-carbaldehyde; propane-1,2-diol; p-tolyl 2-phenylacetate; Ethyl 2,4,7-decatrienoate; 2-benzyl-4,4,6-trimethyl-1,3-dioxane; 2,4-dimethyl-4-phenyltetrahydrofuran; (2R,4a'R, 8a'R)-3,7'-dimethyl-3',4',4a',5',8',8a'-hexahydro-1'H-spiro [oxirane-2,2'-[1,4]methanonaphthalene]; (Z)-6ethylideneoctahydro-2H-5,8-methanochromene; 2-((S)-1-((S)-3,3-dimethylcyclohexyl)ethoxy)-2-oxoethyl propionate; methyl 2,2-dimethyl-6-methylenecyclohexane-1-carboxylate; 2-methyl-5-phenylpentan-1-ol; 4-methyl-2phenyl-3,6-dihydro-2H-pyran; (1S,3R,5S)-1-isopropyl-4methylenebicyclo[3.1.0]hexan-3-ol; 5-allylbenzo[d][1,3] dioxole: 2,2,7,9-tetramethylspiro(5.5)undec-8-en-1-one; 3-methyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pentan-2ol; (Z)-2-ethyl-4-(2,2,3-trimethylcyclopent-3-en-1-yl)but-2en-1-ol; (E)-2-methyl-4-(2,2,3-trimethylcyclopent-3-en-1-5-methoxyoctahydro-1H-4,7vl)but-2-en-1-ol; methanoindene-2-carbaldehyde; 5-methoxyoctahydro-1H-4, 7-methanoindene-2-carbaldehyde: 1-(3-hvdroxy-3methylpent-4-en-1-yl)-2,5,5,8atetramethyldecahydronaphthalen-2-ol; (4aR,6aS,10aS, 10bR)-3,4a,7,7,10a-pentamethyl-4a,5,6,6a,7,8,9,10,10a,

10b-decahydro-1H-benzo[f]chromene; (4aR,8aR)-4a,8dimethyl-2-(propan-2-ylidene)-1,2,3,4,4a,5,6,8a-

octahydronaphthalene; 2-(1-(3,3-dimethylcyclohexyl) ethoxy)-2-methylpropyl cyclopropanecarboxylate; 3-(4isobutylphenyl)-2-methylpropanal; (1aR,4aR,7S,7aR,7bR)-1,1,7-trimethyl-4-methylenedecahydro-1H-cyclopropa[e]

azulen-7-ol; (1R,3R,6R)-2',2',3,7,7-pentamethylspiro [bicyclo[4.1.0]heptane-2,5'-[1,3]dioxane]; 2-methyl-1,5dioxaspiro[5.5]undecane; 1-(spiro[4.5]dec-7-en-7-yl)pent-4-en-1-one; 2-(4-methylthiazol-5-yl)ethan-1-ol; 2-(heptan-3-yl)-1,3-dioxolane; (Z)-dodec-4-enal; (1S,4S,4aR,8aR)-4isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-

octahydronaphthalen-1-ol; (1S,4S,4aR,8aS)-4-isopropyl-1, 6-dimethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol;

3-methyl-2-pentylcyclopentan-1-one; 2,6,10,10-tetramethyl-1-oxaspiro[4.5]dec-6-ene; 2-(2-mercaptopropan-2-yl)-5-methylcyclohexan-1-one; (1aR,4aS)-2,4a,8,8-tetramethylone;

1,1a,4,4a,5,6,7,8-octahydrocyclopropa[d]naphthalene; 1-isopropyl-2-methoxy-4-methylbenzene; 1-(2,2,6-trimethylcyclohexyl)hexan-3-ol; (2Z,4E)-nona-2,4-dienal; (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol; (2E,6Z)-nona-2, 6-dienal; (Z)-dec-2-enal; (E)-non-2-enal; (3E,6Z)-nona-3,6dien-1-ol; (E)-dec-4-enal; (Z)-oxacycloheptadec-8-en-2-(Z)-3,7-dimethylocta-1,3,6-triene; (Z)-3,7dimethylocta-1,3,6-triene; (E)-3,7-dimethylocta-2,6-dien-1ol; methyl 2-((1S,2S)-3-oxo-2-pentylcyclopentyl)acetate; 7-(1,1-Dimethylethyl)-2H-1,5-benzodioxepin-3(4H)-one; (1R-(1alpha,3alpha,4aalpha))-2,3,4,4a,5,6-hexahydro-2,2dimethyl-1.3-methanonaphthalen-7(1H)-one; tridecan-1-ol; triethyl 2-hydroxypropane-1,2,3-tricarboxylate; methyl

2-((1-hydroxy-3-phenylbutyl)amino)benzoate; 1-((2E,5Z, 9Z)-2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl)ethan-1one; decahydro-2,6,6,7,8,8-hexamethyl-2h-indeno(4,5-b)furan; 13-methyl oxacyclopentadec-10-en-2-one; undecanal; (E)-4-methyldec-3-en-5-ol; (3R,4aS,5R)-4a,5-dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene; 2-((2R,8R,8aS)-8,8a-dimethyl-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)propan-2-ol; 4-formyl-2-methoxyphenyl isobutyrate; (Z)-2-methyl-4-(2,6,6-trimethylcyclohex-2-2,4-dihydroxy-3,6en-1-yl)but-2-enal; methyl

dimethylbenzoate; 1-methoxy-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoindene; methyl(Z)-2-((3-(4-(tert-butyl)phenyl)-2-methylpropylidene)amino)benzoate; (Z)-hex-3-en-1-yl isobutyrate; 2,4,6-trimethyl-4-phenyl-1,3-dioxane; 1-((3R, 3aR,7R,8aS)-3,6,8,8-tetramethyl-2,3,4,7,8,8a-hexahydro-1H-3a,7-methanoazulen-5-yl)ethan-1-one; methyl(Z)-2-(((2,4-dimethylcyclohex-3-en-1-yl)methylene)amino) benzoate; 4,8-dimethyl-2-(propan-2-ylidene)-1,2,3,3a,4,5,6, 8a-octahydroazulen-6-ol; 4,8-dimethyl-2-(propan-2ylidene)-1,2,3,3a,4,5,6,8a-octahydroazulen-6-yl acetate; decahydro-3H-spiro[furan-2,5'-[4,7]methanoindene]; (2Z, 6E)-nona-2,6-dienenitrile; (Z)-cyclooct-4-en-1-yl methyl (1aR,4S,4aS,7R,7aS,7bS)-1,1,4,7-tetramethylcarbonate: decahydro-1H-cyclopropa[e]azulen-4-ol; 3,5,5,6,7,8,8-heptamethyl-5,6,7,8-tetrahydronaphthalene-2-carbonitrile; (1S,

2S,3S,5R)-2,6,6-trimethylspiro[bicyclo[3.1.1]heptane-3,1'cyclohexan]-2'-en-4'-one; 1',1',5',5'-tetramethylhexahydro-2'H,5'H-spiro[[1,3]dioxolane-2,8'-[2,4a] (2'S,4a'S,8a'S)-1',1',5',5'methanonaphthalene]; tetramethylhexahydro-2'H,5'H-spiro[[1,3]dioxolane-2,8'-[2, 4a]methanonaphthalene]; 4-(4-hvdroxy-3-methoxyphenyl) butan-2-one; (1R,8aR)-4-isopropyl-1,6-dimethyl-1,2,3,7,8, 8a-hexahydronaphthalene; 2,4-dimethyl-2-(5,5,8,8tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1,3dioxolane; 3a,5,6,7,8,8b-hexahydro-2,2,6,6,7,8,8heptamethyl-4H-indeno(4,5-d)-1,3-dioxole; 2,4-dimethyl-4, 4a,5,9b-tetrahydroindeno[1,2-d][1,3]dioxine; (1-methyl-2-((1,2,2-trimethylbicyclo[3.1.0]hexan-3-yl)methyl) cyclopropyl)methanol; 2-(cyclohexyloxy)-1,7,7trimethylbicyclo[2.2.1]heptane; 4-((2R)-1,7,7trimethylbicyclo[2.2.1]heptan-2-yl)cyclohexan-1-ol; 8,8-di (1H-indol-1-yl)-2,6-dimethyloctan-2-ol; (7, 7, 8, 8 tetramethyloctahydro-2,3b-methanocyclopenta[1,3] cyclopropa[1,2]benzen-4-yl)methanol; 8,8-dimethyl-3a,4,5, 6,7,7a-hexahydro-1H-4,7-methanoinden-6-yl propionate; (E)-4-((3aR,4R,7R,7aR)-1,3a,4,6,7,7a-hexahydro-5H-4,7methanoinden-5-ylidene)-3-methylbutan-2-ol; (3R,3aR,6S, 7S,8aS)-6-methoxy-3,6,8,8-tetramethyloctahydro-1H-3a,7methanoazulene; (1R,2S,6S,7S,8S)-8-isopropyl-1-methyl-3-methylenetricyclo[4.4.0.02,7]decane; 2'-isopropyl-1,7,7-

trimethylspiro[bicyclo[2.2.1]heptane-2,4'-[1,3]dioxane];

(4aR,5R,7aS,9R)-2,2,5,8,8,9a-hexamethyloctahydro-4H-4a, 9-methanoazuleno[5,6-d][1,3]dioxole; (3S,5aR,7aS,11aS, 11bR)-3,8,8,11a-tetramethyldodecahydro-5H-3,5a-ep-

oxynaphtho[2,1-c]oxepine; 2.2.6.6.7.8.8heptamethyldecahydro-2H-indeno[4,5-b]furan; (1aS,2aR, 3R,5aS,7R,7aR)-3,6,6,7a-tetramethyloctahydro-2H-2a,7methanoazuleno[5,6-b]oxirene; (7, 7, 8, 8 -

tetramethyloctahydro-2,3b-methanocyclopenta[1,3]

cyclopropa[1,2]benzen-4-yl)methyl acetate; 1-(3-hydroxy-3-methylpent-4-en-1-yl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol; decahydro-2,6,6,7,8, 8-hexamethyl-2h-indeno(4,5-b)furan; 4,5-epoxy-4,11,11trimethyl-8-methylenebicyclo(7.2.0)undecane; 1,3,4,6,7, 8alpha-hexahydro-1,1,5,5-tetramethyl-2H-2,4alpha-

methanophtalen-8(5H)-one, more preferably said malodor reduction materials are selected from the group consisting of 3-methoxy-7,7-dimethyl-10-methylenebicyclo[4.3.1]de-

cane: 2,4a,5,8a-tetramethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl formate; 2,2,6,8-tetramethyl-1,2,3,4,4a, 5,8,8a-octahydronaphthalen-1-ol; (4R,4aS,6R)-4,4adimethyl-6-(prop-1-en-2-yl)-4,4a,5,6,7,8-

hexahydronaphthalen-2(3H)-one; ((3S,3aR,6R,8aS)-7,7dimethyl-8-methyleneoctahydro-1H-3a,6-methanoazulen-3-yl)methanol; 4,9-dimethoxy-7H-furo[3,2-g]chromen-7-

one; (E)-cyclohexadec-8-en-1-one; (Z)-1-(benzyloxy)-2methoxy-4-(prop-1-en-1-yl)benzene; 1-((28,38)-2,3,8,8tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)

ethan-1-one: (1S,2S,4S)-1,7,7-trimethylbicyclo[2.2.1] isobutyrate; 2,3-dihydro-3,3-dimethyl-1Hheptan-2-yl indene-5-propanal; 3-(3,3-dimethyl-2,3-dihydro-1H-inden-5-yl)propanal; 3a,4,5,6,7,7a-hexahydro-1H-4,7methanoinden-6-yl acetate; 2-((2R,4aR)-4a,8-dimethyl-1,2, 3,4,4a,5,6,7-octahydronaphthalen-2-yl)propan-2-ol; 4,6,6,7,

8,8-hexamethyl-1,3,4,6,7,8-hexahydrocyclopenta[g] isochromene; (Z)-6-ethylideneoctahydro-2H-5,8methanochromen-2-one; 8,8-dimethyl-3a,4,5,6,7,7ahexahydro-1H-4,7-methanoinden-6-yl acetate; octahydro-1H-4,7-methanoinden-5-yl acetate: 3a.4.5.6.7.7ahexahydro-1H-4,7-methanoinden-6-yl butyrate; 3a,4,5,6,7, 7a-hexahydro-1H-4,7-methanoinden-5-yl isobutyrate; (5R, 6R)-3,6-dimethyl-5-(prop-1-en-2-yl)-6-vinyl-4,5,6,7tetrahydrobenzofuran; (E)-cycloheptadec-9-en-1-one; (3R, 3aS,6R,7R,8aS)-3,6,8,8-tetramethyloctahydro-1H-3a,7methanoazulen-3-vl formate; (3R,3aS,6R,7R,8aS)-3,6,8,8tetramethyloctahydro-1H-3a,7-methanoazulen-6-yl acetate; (3R,3aS,6R,7R,8aS)-3,6,8,8-tetramethyloctahydro-1H-3a, 7-methanoazulen-6-ol; 5-methyl-1-(2,2,3-trimethylcyclopent-3-en-1-yl)-6-oxabicyclo[3.2.1]octane; (Z)-4,11,11-trimethyl-8-methylenebicyclo[7.2.0]undec-3-en-5-yl acetate; (1S,2S,5R,8S)-4,4,8-trimethyltricyclo[6.3.1.02,5]dodecan-(1S,2S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 1-ol; isobutyrate; (Z)-2-methyl-5-((1S,2R,4R)-2-methyl-3-meth-

ylenebicyclo[2.2.1]heptan-2-yl)pent-2-en-1-ol; (1S,4R,7R)-1,4,9,9-tetramethyl-1,2,3,4,5,6,7,8-octahydro-4,7-methanoazulene; (1aS,5aR,9aR)-1a,5,5,7-tetramethyl-1a,2,3,4,5, 5a,8,9-octahydrobenzo[1,7]cyclohepta[1,2-b]oxirene; (2,2dimethoxyethyl)benzene; (3R,3aS,7S,8aS)-3,8,8-trimethyl-6-methyleneoctahydro-1H-3a,7-methanoazulene;

4-methoxybenzyl 2-phenylacetate; 2,2,7,7,8,9,9-heptamethyldecahydroindeno[4,3a-b]furan; (4R,4aS)-4,4a-dimethyl-6-(propan-2-ylidene)-4,4a,5,6,7,8-hexahydronaphthalen-2 (3H)-one; (E)-5-(2,3-dimethyltricyclo[2.2.1.02,6]heptan-3yl)-2-methylpent-2-en-1-ol; (1R,3aS,7S,8aR)-1,4,9,9tetramethyl-2,3,6,7,8,8a-hexahydro-1H-3a,7methanoazulene; (1aR,4R,4aR,7bS)-1,1,4,7-tetramethyl-1a, 2,3,4,4a,5,6,7b-octahydro-1H-cyclopropa[e]azulene;

2-((2R,4aR,8aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)propan-2-ol; (3aR,3bR,4S,7R,7aS)-4isopropyl-7-methyl-3a,3b,4,5,6,7-hexahydro-1H-cyclopenta [1,3]cyclopropa[1,2]benzene; (3R,5aS,9aR)-2,2,5a,9tetramethyl-3,4,5,5a,6,7-hexahydro-2H-3,9a-methanobenzo (1aR,4aS,7R,7aR,7bS)-1,1,7-trimethyl-4-[b]oxepine: methylenedecahydro-1H-cyclopropa[e]azulene; 2-((2S,4aR, 8aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)propan-2-ol; 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8tetrahydronaphthalen-2-yl)ethan-1-one; (E)-cyclohexadec-(1aR,2S,4aS)-2,4a,8,8-5-en-1-one; tetramethyloctahydrocyclopropa[d]naphthalen-3(1H)-one; 2-((2R,4aS)-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-2-yl)propan-2-ol; 3a,4,5,6,7,7a-hexahydro-1H-4,7-

methanoinden-6-yl propionate; 1-(1,1,2,3,3,6-hexamethyl-2, 3-dihydro-1H-inden-5-yl)ethan-1-one; (1R,4S,4aS,6R,8aS)-4,8a,9,9-tetramethyloctahydro-1,6-methanonaphthalen-1

(2H)-ol; 3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-6ylpivalate; (2R,4a'R,8a'R)-3,7'-dimethyl-3',4',4a',5',8',8a'hexahydro-1'H-spiro[oxirane-2,2'-[1,4]

methanonaphthalene]; 2,2,7,9-tetramethylspiro(5.5)undec-8-en-1-one; (Z)-2-ethyl-4-(2,2,3-trimethylcyclopent-3-en-1yl)but-2-en-1-ol; 5-methoxyoctahydro-1H-4,7methanoindene-2-carbaldehyde; (4aR,6aS,10aS,10bR)-3,4a, 7,7,10a-pentamethyl-4a,5,6,6a,7,8,9,10,10a,10b-decahydro-1H-benzo[f]chromene; (1aR,4aR,7S,7aR,7bR)-1,1,7trimethyl-4-methylenedecahydro-1H-cyclopropa[e]azulen-7-ol; 1-(spiro[4.5]dec-7-en-7-yl)pent-4-en-1-one; (1aR, 4aS)-2,4a,8,8-tetramethyl-1,1a,4,4a,5,6,7,8-

octahydrocyclopropa[d]naphthalene; (1R-(1alpha,3alpha, 4aalpha))-2,3,4,4a,5,6-hexahydro-2,2-dimethyl-1,3-

methanonaphthalen-7(1H)-one; 2-((2R,8R,8aS)-8,8adimethyl-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl) propan-2-ol; 1-((3R,3aR,7R,8aS)-3,6,8,8-tetramethyl-2,3,4,

7,8,8a-hexahydro-1H-3a,7-methanoazulen-5-yl)ethan-1methyl(Z)-2-(((2,4-dimethylcyclohex-3-en-1-yl) one: methylene)amino)benzoate; 4,8-dimethyl-2-(propan-2vlidene)-1,2,3,3a,4,5,6,8a-octahydroazulen-6-yl acetate; decahvdro-3H-spiro[furan-2,5'-[4,7]methanoindene]; (1aR, 4S,4aS,7R,7aS,7bS)-1,1,4,7-tetramethyldecahydro-1H-cyclopropa[e]azulen-4-ol; 3,5,5,6,7,8,8-heptamethyl-5,6,7,8tetrahydronaphthalene-2-carbonitrile; (1S,2S,3S,5R)-2,6,6trimethylspiro[bicyclo[3.1.1]heptane-3,1'-cyclohexan]-2'en-4'-one; 1',1',5',5'-tetramethylhexahydro-2'H,5'H-spiro[[1, 3]dioxolane-2,8'-[2,4a]methanonaphthalene]; (2'S,4a'S, 8a'S)-1',1',5',5'-tetramethylhexahydro-2'H,5'H-spiro[[1,3] dioxolane-2,8'-[2,4a]methanonaphthalene]; (7, 7, 8, 8 tetramethyloctahydro-2,3b-methanocyclopenta[1,3] cyclopropa[1,2]benzen-4-yl)methanol; 4,5-epoxy-4,11,11trimethyl-8-methylenebicyclo(7.2.0)undecane; 1,3,4,6,7, 8alpha-hexahydro-1,1,5,5-tetramethyl-2H-2,4alphamethanophtalen-8(5H)-one, most preferably said malodor reduction materials are selected from the group consisting of (E)-cyclohexadec-5-en-1-one; 2,2,7,7,8,9,9-heptamethyl-decahydroindeno[4,3a-b]furan; 2,3-dihydro-3,3-dimethyl-1H-indene-5-propanal; 3-(3,3-dimethyl-2,3-dihydro-1H-inden-5-yl)propanal; 4,5-epoxy-4,11,11-trimethyl-8methylenebicyclo(7.2.0)undecane; 1,3,4,6,7,8alphahexahydro-1,1,5,5-tetramethyl-2H-2,4alpha-

methanophtalen-8(5H)-one and mixtures thereof.

6. An antiperspirant and/or deodorant composition according to any preceding claim, said composition comprising one or more perfume raw materials.

7. An antiperspirant and/or deodorant composition according to any preceding claim wherein, said sum total of malodor reduction materials has an average boiling point, based on the weight percent of each malodor reduction material in said sum total of malodor reduction materials, of from about 160° C. to about 400° C., preferably from about 180° C. to about 400° C.; preferably 25%, more preferably 50%, more preferably 75%, most preferably each of said malodor reduction materials in said sum total of malodor reduction materials has a of from about 160° C. to about 400° C., preferably from about 180° C. to about 400° C.

8. An antiperspirant and/or deodorant composition according to any preceding claim wherein, said combination of said sum total of malodor reduction materials and said one or more perfume raw materials combined has an average boiling point, based on the weight percent of each malodor reduction material in said sum total of malodor reduction materials, of from about 160° C. to about 400° C., preferably from about 180° C. to about 400° C., preferably each of said malodor reduction materials in said sum total of said one or more perferably 75%, most preferably each of said malodor reduction materials and each of said one or more perfume raw materials has a boiling point of from about 160° C. to about 400° C.

9. An antiperspirant and/or deodorant composition according to any preceding claim wherein, the ratio of said one or more perfume raw materials to said sum total of malodor reduction material being from about 500:1 to about 1:1, preferably from about 50:1 to about 1:1, more preferably from about 20:1 to about 1:1, most preferably from about 2:1 to about 1:1.

10. An antiperspirant and/or deodorant composition according to any preceding claim, wherein less than 10%, preferably less than 5%, more preferably less than 1% of said malodor reduction materials and said one or more perfume raw materials, based on total combined weight of malodor reduction materials and said one or more perfume raw materials comprise an ionone moiety.

11. An antiperspirant and/or deodorant composition according to any preceding claim, wherein said malodor reduction materials are not a material selected from the group consisting of geranyl nitrile; helional; nonanal; linalool; (S)-(+)-linalool; (R)-(-)-linalool; nerol; tetrahydrolinalool; 2-phenylethyl acetate; eugenol; ethyl linalool; allyl heptoate; agrumen nitrile; citronitrile; 2,2-dimethyl-3-(m-tolyl)propan-1-ol; 2-methyl-5-phenylpentan-1-ol; dodecanenitrile; 2-heptylcyclopentan-1-one; methyl nonyl acetaldehyde; 3-(2-ethylphenyl)-2,2-dimethylpropanal; (Z)-1-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-en-1-one; (R,E)-2-methyl-4-(2,2,3-trimethylcyclopent-3-en-1-yl)but-2-en-1-ol; 4-(tertbutyl)cyclohexyl acetate; 1-cyclohexylethyl(E)-but-2enoate; allyl 2-(cyclohexyloxy)acetate; alpha terpinyl acetate; beta terpinyl acetate; gamma terpinyl acetate; methyl dodecyl ether; 2,4-dimethyl-4,4a,5,9b-tetrahydroindeno[1,2d][1,3]dioxine; cinnamyl isobutyrate; (E)-2-methyl-4-(2,6,6trimethylcyclohex-1-en-1-yl)but-2-enal; gamma methyl ionone; ethyl 2,3,6-trimethyl cyclohexyl carbonate ethyl 2,3,6trimethyl cyclohexyl carbonate; Citral diethyl acetal; Dimethoxycyclododecane; 1-((2S,3S)-2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)ethan-1-one;

oxacyclohexadecan-2-one; 4,6,6,7,8,8-hexamethyl-1,3,4,6,

7,8-hexahydrocyclopenta[g]isochromene; Ethylene brassylate; Methyl(Z)-2-((3-(4-(tert-butyl)phenyl)-2-methylpropylidene)amino)benzoate; 4,7-Methano-1H-inden-5-ol, 3a,4,5, 6,7,7a-hexahydro-, 5-acetate; cedryl methyl ether; vetivert acetate; 1-((3R,3aR,7R,8aS)-3,6,8,8-tetramethyl-2,3,4,7,8, 8a-hexahydro-1H-3a,7-methanoazulen-5-yl)ethan-1-one; Benzophenone; Farnesol; trans,trans-farnesol; 3-(3-isopropylphenyl)butanal; 2,6,10-trimethylundec-9-enal; 3-(4-(tertbutyl)phenyl)propanal; 3-(4-isopropylphenyl)-2-methylpropanal; Citronellal (1); Citronellal (d); (E)-4,8-dimethyldeca-4,9-dienal; Pino Acetaldehyde; 3-(4-(tert-butyl)phenyl)-2methylpropanal; Cinnamic aldehyde; Citral; Geranial; MethoxyMelonal; o-methoxycinnamaldehyde; (E)-4-((3aS, 7aS)-octahydro-5H-4,7-methanoinden-5-ylidene)butanal; Methyl Octyl Acetaldehyde; 3-(4-methoxyphenyl)-2-meth-

ylpropanal; 5-methoxyoctahydro-1H-4,7-methanoindene-2carbaldehyde; Iso Cyclocitral; Octanal; 2-Undecenal; 10-Undecenal; Trans-trans-2,6-Nonadienal; Trans-2,cis-6nondienal; Heliotropin; Hexyl Cinnamic aldehyde; p-methylalpha-pentylcinnamaldehyde; Alpha-methyl cinnamaldehyde; 3,4-dimethoxybenzaldehyde; Myrtenal; Perillaldehyde; Maceal; Methyl palmitate; Methyl iso eugenol and mixtures thereof.

12. An antiperspirant and/or deodorant composition according to any preceding claim, said composition being a antiperspirant composition, said antiperspirant composition comprising a total of, based on total antiperspirant composition weight, from about 0.1% to about 7% of one or more of said malodor reduction materials and, optionally, from about 1% to about 25% of an aluminum salt antiperspirant active.

13. An antiperspirant and/or deodorant composition according to any preceding claim, said composition being anhydrous antiperspirant composition, said anhydrous antiperspirant composition comprising a total of, based on total antiperspirant composition weight, from about 0.1% to about

7% of one or more of said malodor reduction materials and from about 1% to about 25% of an antiperspirant actives selected from the group consisting of astringent metallic salts, preferably inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof, more preferably aluminum halides, aluminum chlorohydrate, aluminum hydroxyhalides, zirconyl oxyhalides, zirconyl hydroxyhalides, and mixtures thereof.

14. An antiperspirant and/or deodorant composition according to any preceding claim, said composition comprising an adjunct ingredient selected from the group consisting of clay mineral powders, pearl pigments, organic powders, emulsifiers, distributing agents, pharmaceutical active, topical active, preservatives, surfactants and mixtures thereof.

15. A deodorant method of controlling malodors comprising: contacting a situs comprising a malodor and/or a situs that will become malodorous with a care antiperspirant and/ or deodorant composition selected from the group consisting of the antiperspirant and/or deodorant composition of claims 1 to 14.

16. The method of claim 15 wherein, said situs comprises an underarm and said contacting step comprises contacting said underarm with a sufficient amount of Applicants' antiperspirant and/or deodorant composition containing said sum of malodor reduction materials to provide said underarm with a level of malodor reduction materials of at least 0.0001 mg of malodor reduction material per underarm, preferably from about 0.0001 mg of malodor reduction material per underarm to about 10 mg of malodor reduction material per underarm, more preferably from about 0.001 mg of malodor reduction material per underarm about 5 mg of malodor reduction material per underarm, most preferably from about 0.01 of malodor reduction material per underarm to about 0.2 mg of malodor reduction material per underarm.

* * * * *