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(57) Abstract: A system having at least a first component and a second component
positioned at different locations on a uset's body (e.g., on the user's head and held
on the user's hand). Each component includes at least one inertial measurement
unit (IMU) configured generate measurements indicating acceleration and angular
rate data. The generated measurements of the IMUs are used with ground truth
information indicating the positions of the first and second component to gener-
ate a set of training data to train a neural network configured to predict a relative
position between the first and second components based on IMU measurements
received over a predetermined time period. Because the neural network is trained
based upon movements of a human user, the neural network model takes into ac-
count physiological constraints of the user in determining how the set of potential
positions of the different components may change over time, reducing potential
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CONTROLLER POSITION TRACKING USING INERTIAL
MEASUREMENT UNITS AND MACHINE LEARNING
FIELD OF THE INVENTION
[0001] This disclosure relates generally to artificial reality systems, and more specifically
to position tracking for use in for artificial reality systems.
BACKGROUND
[0002] An artificial reality system, such as a virtual reality (VR), augmented reality (AR),
and/or mixed reality (MR) system, may perform various functions based on a user’s
movements and/or positions of the user’s body. For example, in a VR game, a user may be
able to control the game by moving their head (e.g., to view different regions of a displayed
virtual world) and hands (e.g., to cause an in-game character to perform certain actions). As
the user of the artificial reality system moves their body, the system may determine positions
of various portions of the user’s body over time, and use the determined positional
information to control the artificial reality environment.
[0003] Because position tracking using IMUs is performed by continually integrating the
received measurements (e.g., integrating acceleration with respect to time to calculate
velocity, and again to calculate position), IMU-based position tracking may suffer from
accumulated error, as any measurement errors are accumulated over time, causing the
difference between the determined position and the body’s actual position to continually
increase. This is also known as “drift error” or “drift”, as the determined position may begin
to drift farther away from the actual position over time.
SUMMARY
[0004] Embodiments are directed to a system having different components (e.g., headset,
handheld controller, etc.) positioned at different areas of a user’s body. Each component
comprises at least one inertial measurement unit (IMU) configured generate measurements
indicating acceleration and angular rate data of the component. The generated measurements
of the IMUs are used as inputs to a trained neural network to predict a relative position
between the different components of the system. The neural network is trained based upon
training data comprising IMU measurement data generated by a user having the components
positioned on their body moving their body, and ground truth information indicating absolute
positions of the different components. Because the neural network model is trained based
upon movements of a human user, the neural network model is able to take into account the
physiological constraints of the user in determining how the set of potential positions of the
different components may change over time, reducing potential error that may be caused by
drift.
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[0005] In accordance with a first aspect of the present disclosure, there is provided a
system comprising a first component and a second component. The first component is
configured to be positioned at a first portion of a user’s body, and comprises at least a first
IMU configured to generate first measurements indicating motion of the first component,
while the second component is configured to be positioned at a second portion of the user’s
body, and comprises at least a second IMU configured to generate second measurements
indicating motion of the second component, wherein a set of potential positions of the first
component and the second component is determined by physiological constraints of the first
portion and the second portion of the user’s body. The system further comprises a controller
configured to receive first measurements from the first IMU and the second measurements
from the second IMU, and to predict a position of the first component relative to the second
component using a trained neural network model and the set of potential positions.

[0006] In some embodiments, the first component is a head-mounted device (HMD)
configured to be worn on the user’s head, and the second component is a handheld device
configured to be held in a hand of the user.

[0007] In some embodiments, the position of the first component relative to the second
component predicted by the trained neural network corresponds to an expected position of the
first component relative to the second component corresponding to a future time.

[0008] In some embodiments, the controller is configured to receive ground truth
information for training the neural network model from a camera system configured to
capture images of the first component and the second component.

[0009] In some embodiments, the ground truth information comprises position
information of the first component and the second component corresponding to a time after a
time period during which measurements from the first IMU and the second IMU are received.
[0010] In some embodiments, the controller is further configured to periodically receive
information indicating positions of the first and second components from an additional
sensor, and to periodically use the received information to correct an error of the predicted
position,

[0011] In some embodiments, the trained neural network model is configured to: receive
a set of first measurements from the first IMU and a set of second measurements from the
second IMU corresponding to a predetermined period of time; and predict a motion of the
first component relative to the second component over the predetermined period of time;
wherein the controller is further configured to predict the position of the first component
relative to the second component by updating an initial position based upon the motion

predicted by the trained neural network model.
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[0012] In some embodiments, the trained neural network is configured to: receive a set of
first measurements from the first IMU and a set of second measurements from the second
IMU corresponding to a predetermined period of time; and predict an expected motion of the
first component relative to the second component over a future time period following the
predetermined period of time; wherein the controller is further configured to predict the
position of the first component relative to the second component by updating an initial
position based upon the motion predicted by the trained neural network model, and wherein
the position corresponds to an expected future position of the first component relative to the
second component.

[0013] In some embodiments, the trained neural network is configured to: receive
velocity information indicating a current velocity of the first component relative to the second
component; extrapolate an expected future position estimate using the received velocity
information corresponding to a future point in time; predict an expected offset from the
expected future position estimate corresponding to the future point in time; and apply the
expected offset to the expected future position estimate to predict the expected future position
of the first component relative to the second component at the future point in time.

[0014] In some embodiments, the trained neural network model is a long short-term
memory (LTSM) network which when unrolled matches a length of a set of first
measurements from the first IMU and a set of second measurements from the second IMU
corresponding to a predetermined period of time.

[0015] In some embodiments, the trained neural network model is a convolutional neural
network (CNN) model.

[0016] In some embodiments, the controller is further configured to: track positions of
the first component and second component based upon received information indicating
positions of the first and second components from an additional sensor; compare the
predicted position of the first component relative to the second component predicted using
the trained neural network model to the positions of the first and second components received
from the additional sensor; determine whether the additional sensor has lost tracking, based
upon the comparison; and responsive to determining that the additional sensor has lost
tracking, adjust the tracked positions of the first component and second component based on
the predicted position.

[0017] In some embodiments, measurements from the first and second IMUs are received
over a predetermined period of time, and the predicted position of the first component
relative to the second component is determined by predicting a motion of the first component

relative to the second component over the predetermined period of time, and updating an
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initial position based upon the predicted motion. In some embodiments, the position of the
first component relative to the second component predicted by the trained neural network
corresponds to an expected position of the first component relative to the second component
corresponding to a future time, and is determined based upon an expected motion of the first
component relative to the second component over a future time period following the
predetermined period of time.

[0018] In accordance with a second aspect of the present disclosure, there is provided a
method comprising: receiving, from a first inertial measurement unit (IMU), first
measurements indicating motion of a first component, wherein the first component is
positioned at a first portions of a user’s body; receiving, from a second IMU, second
measurements indicating motion of a second component positioned at a second portion of the
user’s body, wherein a set of potential positions of the first component and the second
component is determined by physiological constraints of the first portion and the second
portion of the user’s body; and predicting a position of the first component relative to the
second component using a trained neural network model trained using the set of potential
positions.

[0019] In some embodiments, the first component is a head-mounted device (HMD)
configured to be worn on the user’s head, and the second component is a handheld device
configured to be held in a hand of the user.

[0020] In some embodiments, the position of the first component relative to the second
component predicted by the trained neural network corresponds to an expected position of the
first component relative to the second component corresponding to a future time.

[0021] In some embodiments, the method further comprises, at the trained neural network
model: receiving a set of first measurements from the first IMU and a set of second
measurements from the second IMU corresponding to a predetermined period of time,
predicting a motion of the first component relative to the second component over the
predetermined period of time; and predicting the position of the first component relative to
the second component by updating an initial position based upon the motion predicted by the
trained neural network model.

[0022] In some embodiments, the method further comprises, at the trained neural network
model: receive a set of first measurements from the first IMU and a set of second
measurements from the second IMU corresponding to a predetermined period of time,
predicting an expected motion of the first component relative to the second component over a
future time period following the predetermined period of time; and predicting the position of

the first component relative to the second component by updating an initial position based
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upon the motion predicted by the trained neural network model, wherein the position
corresponds to an expected future position of the first component relative to the second
component.

[0023] In some embodiments, the method further comprises tracking positions of the first
component and second component based upon received information indicating positions of
the first and second components from an additional sensor; comparing the predicted position
of the first component relative to the second component predicted using the trained neural
network model to the positions of the first and second components received from the
additional sensor; determining whether the additional sensor has lost tracking, based upon the
comparison; and responsive to determining that the additional sensor has lost tracking,
adjusting the tracked positions of the first component and second component based on the
predicted position.

[0024] In accordance with a third aspect of the present disclosure, there is provided a
computer readable non-transitory storage medium, storing instructions for: receiving, from a
first inertial measurement unit (IMU), first measurements indicating motion of a first
component, wherein the first component is positioned at a first portions of a user’s body;
receiving, from a second IMU, second measurements indicating motion of a second
component positioned at a second portion of the user’s body, wherein a set of potential
positions of the first component and the second component is determined by physiological
constraints of the first portion and the second portion of the user’s body; and predicting a
position of the first component relative to the second component using a trained neural
network model and the set of potential positions.

[0025] In some embodiments, the first component is a head-mounted device (HMD)
configured to be worn on the user’s head, and the second component is a handheld device
configured to be held in a hand of the user.

[0026] In some embodiments, the system corresponds to an artificial reality system,
where the first component corresponds to a headset or head-mounted device of the artificial
reality system, and the second component corresponds to a device of the artificial reality
system positioned on a hand or arm of the user, such as a handheld controller.

[0027] It will be appreciated that any features described herein as being suitable for
incorporation into one or more aspects or embodiments of the present disclosure are intended
to be generalizable across any and all aspects and embodiments of the present disclosure.
Other aspects of the present disclosure can be understood by those skilled in the art in light of

the description, the claims, and the drawings of the present disclosure. The foregoing general
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description and the following detailed description are exemplary and explanatory only and
are not restrictive of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0028] FIG. 1A is a high-level diagram of a system in which a position and orientation of
the device is tracked using one or more IMUs, in accordance with some embodiments.
[0029] FIG. 1B is a perspective view of a headset implemented as a head-mounted
display, in accordance with one or more embodiments.
[0030] FIG. 2 is a side view of a handheld controller, in accordance with one or more
embodiments.
[0031] FIG. 3 is a diagram of a user using an artificial reality system configured to
determine positional information using IMUs, in accordance with some embodiments.
[0032] FIG. 4 is a diagram of a neural network model that may be trained to predict
relative positions of components of an artificial reality system, in accordance with some
embodiments.
[0033] FIG. 5 is a diagram of another neural network model that may be trained to predict
relative positions of components of an artificial reality system, in accordance with some
embodiments.
[0034] FIG. 6A is a flowchart illustrating a process for training a neural network model to
predict relative positions of components using IMUs, in accordance with one or more
embodiments.
[0035] FIG. 6B is a flowchart illustrating a process for predicting relative positions of
components using IMUs and a trained neural network model, in accordance with some
embodiments.
[0036] FIG. 7 is a system that includes a headset and controller device, in accordance
with one or more embodiments.
[0037] The figures depict various embodiments for purposes of illustration only. One
skilled in the art will readily recognize from the following discussion that alternative
embodiments of the structures and methods illustrated herein may be employed without
departing from the principles described herein.

DETAILED DESCRIPTION

[0038] Inertial measurement units (IMUs) are used in many position tracking applications
to determine a position of a body. An IMU comprises at least an accelerometer and a
gyroscope, and is configured to generate measurements indicating an acceleration (e.g., using
the accelerometer) and an angular rate (e.g., using the gyroscope) of the body over time.

These measurements may be used to determine changes in position or orientation of the body
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from an initial position and orientation, e.g., by integrating the angular rate to determine an
angular offset from the initial angular position, and by integrating the measured acceleration
to determine velocity, which in turn can be integrated to determine a spatial offset from the
initial spatial position, in a process known as “dead reckoning™ or “inertial navigation.”
[0039] However, using IMUs for positional tracking may result in accumulated error.
Because position is tracked by continually integrating acceleration with respect to time to
calculate velocity and position (as well as integrating angular rate with respect to time to
calculate angular position), any measurement errors are accumulated over time, causing the
difference between the determined position and the body’s actual position to continually
increase. This is also known as “drift error” or “drift”, as the determined position may begin
to drift farther away from the actual position over time. For a constant angular rate and
acceleration error, angular error will increase linearly (due to being determined by integrating
angular rate), while spatial position error increases quadratically (due to being determined by
integrating acceleration twice).

[0040] In some systems, in order to compensate for drift error, IMUs are used in
conjunction with a second sensor system configured to determine a position of the body, in
order to correct for the drift errors of the IMU. The second sensor system may comprise a
positional tracking system such as a visual odometry system, a global positioning system
(GPS), and/or the like. In some embodiments, because IMU drift error accumulates with
time, in order to prevent the drift error of the IMU-based positioned tracking from exceeding
a threshold amount, the second sensor system may be configured to generate positional data
at least at a threshold frequency for correcting the drift error of the IMUs. For example,
where the second sensor system comprises one or more cameras for capturing images of the
tracked device and/or surrounding environment for position determination, one or more
cameras may be configured to capture images at a relatively high frame rate, so that drift
error can be corrected for at a predetermined frequency to maintain performance.

[0041] Embodiments described herein are directed to a tracking system that tracks
portions of a user’s body using IMUs and predicts positional information using a machine
learning model or neural network model, in order to reduce or eliminate the need for a second
sensor system for correcting drift error. In some embodiments, the tracking system
comprises a first IMU on a first component and a second IMU on a second component. The
first and second components are positioned at different portions of the user’s body. For
example, in some embodiments, the first component comprises a headset or head-mounted
device (HMD), while the second component comprises a handheld device, such as controller

held in the user’s hand. The tracking system receives measurement data from the first and
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second IMUs and uses a trained machine learning model or neural network model to
determine a relative position of the first component to the second component. For ease of
discussion, further discussion below will refer to the user of a neural network model for
predicting the relative positions of the first and second components, although it is understood
that in other embodiments, a trained machine learning model may be used.

[0042] The trained neural network model may take into account physiological constraints
of the human in predicting the relative position of the first and second components. For
example, where the first component is positioned on the user’s head, and the second
component is positioned on the user’s hand, the ways in which the position of the second
component can change relative to the first component is constrained by human physiology.
The neural network model receives measurements from the first and second IMUs, and is
trained to predict the relative position of the first component to the second component given
the IMU measurements received over a predetermined time period (e.g., past 1 second, past
10 seconds, etc.). Because the neural network model determines a current relative position
based on a limited set of measurements from the first and second IMUs, and is trained based
on movements of the human body, the drift error of the IMUs can be limited, reducing or
eliminating a need to correct the position determined using the IMUs with a second sensor
system. In some embodiments, the neural network model determines a current position based
on a determined relative motion from a known starting position. However, even though drift
error may accumulate when the neural network model is run in an iterative fashion, because
the model takes into account human physiological constraints, the amount of drift error in
comparison to conventional dead reckoning techniques may be greatly reduced. In some
embodiments, the neural network model is used to determine the positions of the first and/or
second components when at least one of the first or second component is unable to be tracked
using vision-based tracking (e.g., if the user moves a handheld controller device outside the
view of the vision tracking cameras, such as behind the head) for a period of time (e.g., 10-20
seconds), but is expected to return to a position where vision-based tracking can be resumed.
During this “blind” period, the neural network model can be used to determine the relative
positions of the components with greater accuracy and/or less accumulation of drift error.
[0043] In some embodiments, the neural network is configured to predict expected
positions of the first and/or second components a certain period of time into the future, e.g.,
an expected future position of the second component relative to the first component, with
limited change in accuracy. Predicting a future position of the first and/or second component
may be performed for latency compensation purposes, e.g., to absorb latency induced by the

entire tracking system (IMU data acquisition, wireless communication, processing, rendering
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etc.). For example, in a system in which a virtual object corresponding to a controller is
rendered to the user in an augmented or virtual reality environment, the virtual object may be
rendered at a position corresponding to where the controller will be expected to be,
compensating for an expected level of latency or lag (e.g., 50ms in the future, to compensate
for an expected 50ms of latency). A neural network model based approach can produce
better future predictions compared to more rudimentary approaches that rely on extrapolating
position changes based on last measured velocity/acceleration, as it can use the knowledge of
trajectory over a past time period and how controller has moved in the past after such a
trajectory, e.g., based upon patterns of movement of a human user, which are limited by
physiological constraints of the human body. In some embodiments, because a latency level
of the system may change over time, the neural network is configured to output, instead of
relative position information for a specific future point in time, one or more coefficients of a
function (e.g., a polynomial function) corresponding to an expected path over which the
second component is expected to travel relative to the first component over a future time
period. Thus, the same neural network model may be used to determine expected future
positions for different amounts of latency.

[0044] Embodiments of the invention may include or be implemented in conjunction with
an artificial reality system. Artificial reality is a form of reality that has been adjusted in
some manner before presentation to a user, which may include, e.g., a virtual reality (VR), an
augmented reality (AR), a mixed reality (MR), a hybrid reality, or some combination and/or
derivatives thereof. Artificial reality content may include completely generated content or
generated content combined with captured (e.g., real-world) content. The artificial reality
content may include video, audio, haptic feedback, or some combination thereof, any of
which may be presented in a single channel or in multiple channels (such as stereo video that
produces a three-dimensional effect to the viewer). Additionally, in some embodiments,
artificial reality may also be associated with applications, products, accessories, services, or
some combination thereof, that are used to create content in an artificial reality and/or are
otherwise used in an artificial reality. The artificial reality system that provides the artificial
reality content may be implemented on various platforms, including a wearable device (e.g.,
headset) connected to a host computer system, a standalone wearable device (e.g., headset), a
mobile device or computing system, or any other hardware platform capable of providing
artificial reality content to one or more viewers.

[0045] FIG. 1A is a high-level diagram of a system in which a position of the device is
tracked using one or more IMUs, in accordance with some embodiments. The system 100

comprises a plurality of devices, including a headset 102 and an additional device 104. Each
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of the plurality of devices may be configured to be positioned at respective portion of a body
of a user. For example, in some embodiments, the headset 102 is worn on the user’s head,
while the device 104 may be worn at a different position on the user’s body (e.g., strapped to
the user’s chest, leg, or arm, etc.). In other embodiments, the device 104 may be configured
to be held in a hand of the user.

[0046] The headset 102 may be implemented as an eyewear device, in accordance with
one or more embodiments. In some embodiments, the headset 102 is a near eye display
(NED). In general, the headset 102 may be worn on the face of a user such that content (e.g.,
media content) is presented using a display assembly and/or an audio system. However, the
headset 102 may also be used such that media content is presented to a user in a different
manner. Examples of media content presented by the headset 102 include one or more
images, video, audio, or some combination thereof. The headset 102 includes a frame, and
may include, among other components, a display assembly including one or more display
elements 120, a depth camera assembly (DCA), an audio system, and an IMU 190. While
FIG. 1A illustrates the components of the headset 102 in example locations on the headset
102, the components may be located elsewhere on the headset 102, on a peripheral device
paired with the headset 102, or some combination thereof. Similarly, there may be more or
fewer components on the headset 102 than what is shown in FIG. 1B.

[0047] The frame 110 holds the other components of the headset 102. The frame 110
includes a front part that holds the one or more display elements 120 and end pieces (e.g.,
temples) to attach to a head of the user. The front part of the frame 110 bridges the top of a
nose of the user. The length of the end pieces may be adjustable (e.g., adjustable temple
length) to fit different users. The end pieces may also include a portion that curls behind the
ear of the user (e.g., temple tip, ear piece).

[0048] The one or more display elements 120 provide light to a user wearing the headset
102. As illustrated the headset includes a display element 120 for each eye of a user. In
some embodiments, a display element 120 generates image light that is provided to an
evebox of the headset 102. The eyebox is a location in space that an eye of user occupies
while wearing the headset 102. For example, a display element 120 may be a waveguide
display. A waveguide display includes a light source (e.g., a two-dimensional source, one or
more line sources, one or more point sources, etc.) and one or more waveguides. Light from
the light source is in-coupled into the one or more waveguides which outputs the light in a
manner such that there is pupil replication in an eyebox of the headset 102. In-coupling
and/or outcoupling of light from the one or more waveguides may be done using one or more

diffraction gratings. In some embodiments, the waveguide display includes a scanning
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element (e.g., waveguide, mirror, etc.) that scans light from the light source as it is in-coupled
into the one or more waveguides. Note that in some embodiments, one or both of the display
elements 120 are opaque and do not transmit light from a local area around the headset 102.
The local area is the area surrounding the headset 102. For example, the local area may be a
room that a user wearing the headset 102 is inside, or the user wearing the headset 102 may
be outside and the local area is an outside area. In this context, the headset 102 generates VR
content. Alternatively, in some embodiments, one or both of the display elements 120 are at
least partially transparent, such that light from the local area may be combined with light
from the one or more display elements to produce AR and/or MR content.

[0049] In some embodiments, a display element 120 does not generate image light, and
instead is a lens that transmits light from the local area to the eyebox. For example, one or
both of the display elements 120 may be a lens without correction (non-prescription) or a
prescription lens (e.g., single vision, bifocal and trifocal, or progressive) to help correct for
defects in a user’s eyesight. In some embodiments, the display element 120 may be polarized
and/or tinted to protect the user’s eyes from the sun.

[0050] In some embodiments, the display element 120 may include an additional optics
block (not shown). The optics block may include one or more optical elements (e.g., lens,
Fresnel lens, etc.) that direct light from the display element 120 to the eyebox. The optics
block may, e.g., correct for aberrations in some or all of the image content, magnify some or
all of the image, or some combination thereof.

[0051] The DCA determines depth information for a portion of a local area surrounding
the headset 102. The DCA includes one or more imaging devices 130 and a DCA controller
(not shown in FIG. 1A), and may also include an illuminator 140. In some embodiments, the
illuminator 140 illuminates a portion of the local area with light. The light may be, e.g.,
structured light (e.g., dot pattern, bars, etc.) in the infrared (IR), IR flash for time-of-flight,
etc. In some embodiments, the one or more imaging devices 130 capture images of the
portion of the local area that include the light from the illuminator 140. As illustrated, FIG.
1A shows a single illuminator 140 and two imaging devices 130. In alternate embodiments,
there is no illuminator 140 and at least two imaging devices 130.

[0052] The DCA controller computes depth information for the portion of the local area
using the captured images and one or more depth determination techniques. The depth
determination technique may be, e.g., direct time-of-flight (ToF) depth sensing, indirect ToF
depth sensing, structured light, passive stereo analysis, active stereo analysis (uses texture
added to the scene by light from the illuminator 140), some other technique to determine

depth of a scene, or some combination thereof.
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[0053] The audio system provides audio content. The audio system includes a transducer
array, a sensor array, and an audio controller 150. However, in other embodiments, the audio
system may include different and/or additional components. Similarly, in some cases,
functionality described with reference to the components of the audio system can be
distributed among the components in a different manner than is described here. For example,
some or all of the functions of the controller may be performed by a remote server.

[0054] The transducer array presents sound to user. The transducer array includes a
plurality of transducers. A transducer may be a speaker 160 or a tissue transducer 170 (e.g., a
bone conduction transducer or a cartilage conduction transducer). Although the speakers 160
are shown exterior to the frame 110, the speakers 160 may be enclosed in the frame 110. In
some embodiments, instead of individual speakers for each ear, the headset 102 includes a
speaker array comprising multiple speakers integrated into the frame 110 to improve
directionality of presented audio content. The tissue transducer 170 couples to the head of
the user and directly vibrates tissue (e.g., bone or cartilage) of the user to generate sound.

The number and/or locations of transducers may be different from what is shown in FIG. 1A.
[0055] The sensor array detects sounds within the local area of the headset 102. The
sensor array includes a plurality of acoustic sensors 180. An acoustic sensor 180 captures
sounds emitted from one or more sound sources in the local area (e.g., a room). Each
acoustic sensor is configured to detect sound and convert the detected sound into an
electronic format (analog or digital). The acoustic sensors 180 may be acoustic wave sensors,
microphones, sound transducers, or similar sensors that are suitable for detecting sounds.
[0056] In some embodiments, one or more acoustic sensors 180 may be placed in an ear
canal of each ear (e.g., acting as binaural microphones). In some embodiments, the acoustic
sensors 180 may be placed on an exterior surface of the headset 102, placed on an interior
surface of the headset 102, separate from the headset 102 (e.g., part of some other
component), or some combination thereof. The number and/or locations of acoustic sensors
180 may be different from what is shown in FIG. 1A. For example, the number of acoustic
detection locations may be increased to increase the amount of audio information collected
and the sensitivity and/or accuracy of the information. The acoustic detection locations may
be oriented such that the microphone is able to detect sounds in a wide range of directions
surrounding the user wearing the headset 102.

[0057] The audio controller 150 processes information from the sensor array that
describes sounds detected by the sensor array. The audio controller 150 may comprise a
processor and a computer-readable storage medium. The audio controller 150 may be

configured to generate direction of arrival (DOA) estimates, generate acoustic transfer
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functions (e.g., array transfer functions and/or head-related transfer functions), track the
location of sound sources, form beams in the direction of sound sources, classify sound
sources, generate sound filters for the speakers 160, or some combination thereof.

[0058] Each of the headset 102 and the additional device 104 of the system 100 may
comprise at least one inertial measurement unit (IMU). For example, as shown in FIG. 1A,
the device 104 comprises an IMU 105, and the headset comprises an IMU 190. Each of the
IMUs 105 and 190 includes at least one or more accelerometers and one or more gyroscopes
configured to measure an acceleration and angular rate caused by movement of the device
104 or headset 102. In some embodiments, the device 104 or the headset 102 comprises a
controller configured to determine positional information based upon measurements
generated by the IMUs (e.g., using a neural network model configured to predict a relative
position of the device 104 to the headset 102, discussed in greater detail below). In other
embodiments, the neural network model is maintained on a separate console (not shown), and
device 104 and the headset 102 are configured to transmit IMU measurements to the separate
console which determines the positional information based on the received information using
the neural network model.

[0059] As shown in FIG. 1A, the IMU 190 of the headset 102 may be located on a
portion of the frame 110 of the headset 102, allowing for the one or more accelerometers and
one or more gyroscopes of the IMU to measure an acceleration and angular rate caused by
movement of the headset 102.

[0060] In some embodiments, the headset 102 and/or the device 104 may further
comprise other types of sensors, such as one or more magnetometers, another suitable type of
sensor that detects motion, a type of sensor used for error correction of the IMU, or some
combination thereof. For example, in some embodiments, the headset 102 and/or the device
104 may include a pressure sensor or altimeter to measure a height of the headset and/or
device, a gyroscopic sensor or a magnetometer to measure an orientation of the headset
and/or device, an ultrasound rangefinder, an ultra-wideband sensor, and/or the like.

[0061] In some embodiments, the headset 102 may provide for simultaneous localization
and mapping (SLAM) for a position of the headset 102 and updating of a model of the local
area. For example, the headset 102 may include a passive camera assembly (PCA) that
generates color image data. The PCA may include one or more RGB cameras that capture
images of some or all of the local area. In some embodiments, some or all of the imaging
devices 130 of the DCA may also function as the PCA. The images captured by the PCA and
the depth information determined by the DCA may be used to determine parameters of the

local area, generate a model of the local area, update a model of the local area, or some
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combination thereof. Furthermore, the IMU 190 may be used to track the position (e.g.,
location and pose) of the headset 102 within the room. Additional details regarding the
components of the headset 102 are discussed below in connection with FIG 6.

[0062] FIG. 1B is a perspective view of a headset 106 implemented as a HMD, in
accordance with one or more embodiments. In embodiments that describe an AR system
and/or a MR system, portions of a front side of the HMD are at least partially transparent in
the visible band (~380 nm to 750 nm), and portions of the HMD that are between the front
side of the HMD and an eye of the user are at least partially transparent (e.g., a partially
transparent electronic display). The HMD includes a front rigid body 115 and a band 175.
The headset 106 includes many of the same components described above with reference to
FIG. 1A, but modified to integrate with the HMD form factor. For example, the HMD
includes a display assembly, a DCA, an audio system, and an IMU 190. FIG. 1B shows the
illuminator 140, a plurality of the speakers 160, a plurality of the imaging devices 130, a
plurality of acoustic sensors 180, and the IMU 190. The speakers 160 may be located in
various locations, such as coupled to the band 175 (as shown), coupled to front rigid body
115, or may be configured to be inserted within the ear canal of a user.

[0063] In some embodiments, a user of an artificial reality system, in addition to wearing
a head-mounted device such as the headset 102 of FIG. 1A or the headset 106 of FIG. 1B,
may also be associated with one or more additional devices located at different positions on
the user’s body. For example, in some embodiments, the user may use a controller device to
perform various actions within the artificial reality environment. In some embodiments, the
controller device comprises a handheld controller held in the user’s hand.

[0064] FIG. 2 is a side view of a handheld controller 200, in accordance with one or more
embodiments. The handheld controller 200 may be an embodiment of the device 104
illustrated in FIG. 1A, and is a controller device configured to be held in a hand of the user.
The handheld controller 200 includes one or more interface elements configured to receive
input from a user of the handheld controller 200, such as a button assembly 210, a trigger
assembly 220, or a combination thereof. The user may use the interface elements to perform
action requests and receive responses from a console of the system . An action request is a
request to perform a particular action. For example, an action request may be an instruction
to start or end capture of image or video data, or an instruction to perform a particular action
within an application. The handheld controller 200 additionally comprises a position sensor
corresponding to an IMU 260. The IMU 260 of the handheld controller 200 may be
correspond to the IMU 105 illustrated in FIG. 1A. In other embodiments, the handheld

controller 100 contains additional components than those listed, e.g., the handheld controller
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200 may have additional interface elements, multiple IMUs 260, and/or other types of
sensors. In the embodiment of FIG. 2, the handheld controller 200 is configured to operate
with one hand of the user; however, in other embodiments, a second handheld controller with
mirror symmetry in relation to the handheld controller 200 may be configured to operate with
the other hand of the user.

[0065] The button assembly 210 contains one or more buttons that each receive input
when at least partially depressed. Each button of the button assembly 210 translates along
one or more axes. In some embodiments, a button translates along a single axis. Translation
of a button along the one or more axes may correspond to various inputs. In one
embodiment, a button only receives an input when the button is depressed by a threshold
distance corresponding to a threshold translation of the button along an axis. In some
embodiments, a button of the button assembly 210 may comprise a capacitive sensor capable
of detecting a proximity of the user’s skin to the button. The button assembly 210 may
comprise a multitude of buttons each configured to receive one or more inputs. In one
embodiment, the button assembly comprises one or more buttons configured as a directional
pad (D-pad) with each button of the D-pad corresponding to a directional input.

[0066] The trigger assembly 220 contains one or more triggers that each receive input
when depressed. Each trigger of the trigger assembly 220 is fixed at a point providing
rotational movement of the trigger about the fixed point. In one embodiment, a trigger only
receives an input when the trigger is rotated more than some threshold degree. In another
embodiment, a trigger may detect a range of angular rotation of the trigger. In some
embodiments, each trigger is a capacitive sensor capable of detecting a proximity of the
user’s skin to the trigger.

[0067] The IMU 260 is configured to generate one or more measurement signals in
response to motion of the headset 102. The IMU 260 may correspond to the IMU 105
illustrated in FIG. 1A, and be located on a structure of the handheld controller 200, allowing
for the one or more accelerometers and one or more gyroscopes of the IMU to measure an
acceleration and angular rate caused by movement of the handheld controller 200. In some
embodiments, the IMU 260 comprises a controller configured to determine positional
information based upon measurements generated by the IMU. In other embodiments, the
IMU 260 is configured to transmit sensor information (e.g., IMU measurements) to a separate
device or console which determines the positional information of the handheld controller 200
based on the received information.

[0068] FIG. 3 is a diagram of a user using an artificial reality system configured to

determine positional information using IMUs, in accordance with some embodiments. As
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shown in FIG. 3, a user 305 of an artificial reality system 300 may have a plurality of
components positioned at different portions of their body, including a first component
corresponding to an HMD 310 worn on the user’s head, and a second component
corresponding to a handheld controller 320 held in the user’s hand. The first
component/HMD 310 and second component/handheld controller 320 may correspond to
devices of the system 100 as illustrated in FIG. 1A, e.g., the HMD 310 corresponding to the
headset 102 or 106 of FIG. 1A or 1B, and the handheld controller 320 corresponding to the
device 104 of FIG. 1A or the handheld controller 200 of FIG. 2.

[0069] The HMD 310 comprises a first IMU 315, and the handheld controller 320
comprises a second IMU 325. It is understood that although FIG. 3 illustrates the user 305
having components positioned at certain parts of the user’s body (e.g., head and hand), in
other embodiments, the first and second components may correspond to other types of
components of the artificial reality system positioned at other portions of the user’s body.

For example, in some embodiments, the user 305 may have a component containing an IMU
strapped to the user’s chest in addition to or instead of a component worn on the user’s head
or held in the user’s hand. In some embodiments, the second component 320 may correspond
to a watch or other component worn on the user’s wrist instead of held in the user’s hand. In
some embodiments, at least one of the first or second component may correspond to a
component strapped to the user’s thigh or leg, e.g., an ankle bracelet.

[0070] In addition, in some embodiments, the artificial reality system 300 may comprise
an external console (not shown) separate from the components positioned on the user’s body.
For example, in some embodiments the console is configured to receive data from the HMD
310 and/or handheld controller 320 (e.g., IMU measurements, action requests, etc.), and to
provide content to the HMD 310 and/or handheld controller 320 responsive to the received
data (e.g., visual or audio content to the HMD 310, haptic feedback to the handheld controller
320, etc.).

[0071] When components of the artificial reality system are attached to portions of the
user’s body (e.g., worn on the user’s head and/or held in the user’s hand as shown in FIG. 3),
the movement and relative positions of the components are constrained by human
physiology. For example, the possible positions of the HMD 310 are limited by the possible
positions of the head of the user. For example, the user has a limited range of motion of their
head which is constrained by, e.g., the range of motion of their neck relative to their torso. In
addition, movement of the handheld controller 320 relative to the HMD 310 is constrained by
the range of motion of the user’s arm. For example, the maximum distance to which the

handheld controller 320 may move from the HMD 310 is constrained based upon a length of
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the user’s arm and neck. In addition, paths on which the handheld controller 320 is able to
move relative to the HMD 310 will be limited based upon the degrees of freedom in which
the user’s arm can move. For example, when a user raises or lowers their hand by bending
their forearm, the angular orientation of the handheld controller 320 held in their hand may
change due to the rotation of the user’s forearm, instead of remaining constant throughout the
movement.

[0072] The first and second IMUs 315 and 325 measure angular rate and acceleration
information of the HMD 310 and the handheld controller 320 over time, as the user moves
their body when using the artificial reality system. For example, FIG. 3 illustrates that at a
time 7o, the user 305 may be holding their arm out to the side. At the time o, the first IMU
315 may measure an initial angular rate 81 and an initial acceleration ai-0, while the second
IMU 325 measures an initial angular rate 62-0 and an initial acceleration a2-o (the first
subscript corresponding to IMU, e.g., the first or second IMU, and the second subscript
corresponding to time). At a later time (e.g., time 71), the user 305 has moved their arm
downwards, causing a change in the position and orientation of the handheld controller 320
relative to the HMD 310. At the time 71, the first IMU 315 may measure an angular rate 811
and an acceleration a1-1, while the second IMU 325 measures an angular rate 62.1 and an
acceleration a2-1. In some embodiments, the accelerometer and gyroscope of each IMU
generates acceleration and angular rate data, which is sampled by the IMU to generate the
IMU measurements (e.g., 100 samples per second). As discussed above, these rapidly-
generated IMU measurements may be integrated over time to estimate the position and
angular orientation of the HMD 310 and handheld controller 325. However, any errors in the
IMU measurements may build up over time, causing “drift error.”

[0073] In some embodiments, to limit the effects of drift error, the position of the first
and second components (e.g., handheld controller 320 to the HMD 310) can be determined
using a model constructed based upon the user’s body, e.g., the user’s arm. In other
embodiments involving components positioned at other portions of the user’s body, the
model may be constructed based upon other portions of the user’s body, such as the user’s
neck, torso, head, leg, etc. Because the model is based upon the structure of the user’s body,
physiological constraints of the user’s body are considered when calculating the positions and
orientation of the HMD and handheld controller, limiting the amount of drift error that can be
accumulated. In some embodiments, the model may correspond to a default model, or may
be customized from a default model to match a specific user. However, due to the large

number of joints and degrees of freedom within the human body (e.g., within the human
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arm), manually constructing a model of portions the user’s body and determining positions
using the model may be impractical from a computational standpoint due to the number of
potential calculations involved.

[0074] In some embodiments, a neural network model is trained to predict a relative
position of the handheld controller 320 to the HMD 310 based on received IMU
measurements. The neural network model is configured to receive measurements taken by
the first and second IMUs over time, and, based upon the IMU measurements received over a
predetermined time period (e.g., past 1 second, past 10 seconds, etc.), predict a relative
position of the handheld controller 320 relative to the HMD 310. For example, in some
embodiments, the neural network model uses a set of IMU measurements including a first set
of measurements (81, a1-0), (62-0, a210) corresponding to time fo, a second set of
measurements (81-1, ai1-1), (62-1, a2-1) corresponding to time 71, and any intervening
measurements, and predicts a motion of the handheld controller 320 relative to the HMD 310
between times 7o and #1. For example, in some embodiments, the neural network model may
access a stream of IMU measurement data received from the HMD 310 and handheld
controller 320, and, responsive to a signal to generate a prediction and/or at predetermined
time intervals, uses a set of IMU measurements from the stream corresponding to a previous
time period (e.g., between fo and 1) to predict a motion of the handheld controller 320
relative to the HMD 310 over the time period. The predicted motion may be used to update a
previously determined initial position to generate an updated position. In some embodiments,
the neural network model may predict a set of potential relative positions between the
handheld controller 320 and the HMD 310 based on the IMU measurements corresponding to
the time period, which may be narrowed down to a specific position based upon the
previously-determined initial position. In some embodiments, the neural network model may
further receive initial position information (e.g., initial position, orientation and velocity
information) as an input.

[0075] In some embodiments, a duration of measurements (e.g., time between 7o and #1)
used by the neural network model to generate relative position data may be selected based
upon the needs of the particular application, such as a period of time over which the neural
network model is expected to be used determine the relative position of the first/second
components (e.g., a maximum expected duration in which the controller moves within a
“blind zone™ during which the position of the controller cannot be determined using visual
tracking techniques). In some embodiments, the system maintains multiple neural network
models trained based upon different sequence lengths, which dynamically selects a model

during runtime based upon application needs.
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[0076] In some embodiments, the neural network model is further trained to determine
changes in relative angular position (relative orientation). For example, the model may be
trained against relative orientation changes of the controller with respect to the headset. In
some embodiments, orientation can be represented using Euler Angles (3 parameters or 3 x 1)
or Quaternion notation (4 parameters or 4 x 1). In some embodiment, the neural network
model is trained to predict position and orientation simultaneously, e.g., the network is
trained against a position + orientation ground truth (6 x 1 or 7 x 1 parameters) .

[0077] In some embodiments, a frequency at which the neural network model predicts
relative motion/position of the first and second components, and a time period analyzed by
the neural network model to generate each position are configurable. For example, in some
embodiments, the neural network model may be instructed to generate relative
motion/position predictions more frequently if a previously predicted relative motion exceeds
a threshold amount, in order to generate more granular predictions. In some embodiments,
the length of a time period analyzed by the neural network model may be based upon a
frequency of prediction, or be independent from the prediction frequency (e.g., the neural
network model may be configured to generate a prediction each second, each prediction
based on a previous 10 seconds of IMU data of the first and second components).

[0078] In some embodiments, the neural network model is maintained on an external
console (not shown) separate from the HMD 310 and the handheld controller 320. For
example, each of the first and second IMUs 315 and 325 may generate measurement samples
over time, and transmit the generated measurements to the external console to be fed to the
neural network model maintained on the external console. The neural network model
receives the generated IMU measurements, and predicts a relative motion of the HMD 310
and handheld controller 320, from which the relative positions of the HMD 310 and the
handheld controller 320 can be determined. In other embodiments, the neural network model
may be maintained on the HMD 310 or the handheld controller 320.

[0079] In some embodiments, the console may use the determined positional information
to generate content to be presented to the user 305 (e.g., visual content to be displayed to the
user through a display of the HMD, audio content to be provided to the user through an audio
system of the HMD, haptic feedback to be provided through the handheld controller, etc.).
For example, in some embodiments, the artificial reality system may analyze the relative
position of the second component 320 to the first component 310 to identify one or more
movements or gestures corresponding to action requests, and cause the requested actions to

be performed in the artificial reality system.
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[0080] In some embodiments, the neural network model is initially trained using training
data obtained by instructing a training user (e.g., the user 305) having first and second
components positioned on their body (e.g., wearing the HMD 310 and holding the handheld
controller 320) to perform a variety of movements over time (e.g., moving their arms and/or
head to cause changes in the relative positions of the HMD 310 and handheld controller 320),
during which measurements from the first and second IMUs are received. The IMU
measurements are used to train the neural network model in conjunction with ground truth
information indicating positions of the first and second components generated in parallel with
the IMU measurements (e.g., using a second sensor system). Once the neural network model
is trained, the system may be used by an end user, during which the trained neural network
model may be used to predict relative positions of the first and second components.

[0081] The training may take place in an environment where accurate ground truth
information can be obtained in parallel with the measurements of the IMUs of the first and
second components. For example, in some embodiments, the training user may be located
within a room having a camera system comprising one or more cameras configured to capture
images of the first and second components positioned at different portions of the user’s body.
As the training user moves their body, the cameras capture images of first and second
components, and uses the captured images to determine positional information of the first and
second components. In some embodiments, each component may comprise one or more
locators located at specific positions of the component. Each locator may be a light emitting
diode (LED), a corner cube reflector, a reflective marker, a type of light source that contrasts
with an environment in which the artificial reality system operates, or some combination
thereof. In embodiments where the locators are active (i.e., an LED or other type of light
emitting device), the locators may emit light in the visible band (~380 nm to 750 nm), in the
infrared (IR) band (~750 nm to 1 mm), in the ultraviolet band (10 nm to 380 nm), some other
portion of the electromagnetic spectrum, or some combination thereof. In embodiments
where the locators are passive, the locators may reflect light in the visible band, in the
infrared (IR) band, in the ultraviolet band, some other portion of the electromagnetic
spectrum, or some combination thereof. As the one or more cameras capture images of the
first and second components, the camera system may analyze the captured images and
identify locations of the locators within the captured images to determine a position and/or
orientation of each component. In some embodiments, the training user may be prompted to
perform certain types of motions with their head and/or arms, or to perform certain actions
within an application (e.g., for a gaming system, the training user may be instructed to play

the game with the device).
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[0082] In other embodiments, the ground truth information may be generated by a
different sensor system, such as a DCA implemented as part of each of the first and second
components and configured to determine a position for each component, from which the
relative positions of the first component and the second component can be determined. For
example, in embodiments where the first component 310 corresponds to the headset 102 of
FIG. 1A, the DCA (e.g., comprising the illuminator 140 and imaging devices 130) may be
used to determine positional information for the first component 310.

[0083] By comparing the IMU measurement information received over time with the
ground truth information determined using another sensor system (e.g., camera system or
other type of sensor system), the neural network model is trained to predict the relative
position of the handheld controller 320 relative to the HMD 310 for a human user. Because
the set of potential positions of the first and second components in the training data are
subject to physiological constraints of the user’s body, the neural network is trained to predict
the relative position of the first and second components subject to the physical structure of
the human body. For example, the amount of error of the relative position between the HMD
310 and the handheld controller 320 may be limited or capped due to the physical constraints
of the human body. In addition, because the joints of the human body have certain ranges of
motion, the user may move the handheld controller 320 relative to the HMD 310 more
naturally along certain trajectories, which may be recognized by the neural network during
the training process.

[0084] The neural network model limits an amount of error when determining the relative
positions of the first and second components. As such, in embodiments where a second
sensor system is used to periodically correct the position determined using the IMUs for drift
error, position determination by the second sensor system may be performed with reduced
frequency and/or less precision. For example, in embodiments that use a camera system to
determine absolute positions of the first/second components, the rate of position
determination may be reduced. In addition, the second sensor system may be configured to
operate at lower power and/or lower precision (e.g., the camera system may capture lower
resolution images for determining position and/or comprise fewer cameras compared to that
used for training the neural network model), while the error of the relative positions as
determining using the IMUs is maintained to be below a threshold amount. For example,
when predicting relative positions of the first/second components using a neural network
model, a camera system may be operated at a frame rate that is several times lower in
comparison to systems that simply integrate received IMU measurements to perform

positional determination. In some embodiments, a frequency at which positional information
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from the second sensor system is used to correct for error of positions based upon the IMUs
is configured to not exceed a predetermined amount, e.g., from 30-60Hz to 1Hz or lower.
[0085] In some embodiments, the neural network model may allow for the relative
positions of the HMD 310 and handheld controller 320 to be determined entirely using the
first and second IMUs 315 and 325 (e.g., without the need for a second sensor system).
Because the neural network model limits the amount of potential error of the relative position
between the first and second components (e.g., due to the physical constraints of the human
body), determination of relative positions between the components can be performed based
upon only the IMU measurements while maintaining at least a threshold level of accuracy,
without suffering from the problem of ever-increasing drift error.

[0086] In some embodiments, the neural network model may be used to compensate for
loss of tracking in a second sensor system. For example, in systems that use a camera system
to determine positions of the first and second component based on captured images (e.g., by
detecting the positions of locators on each component in the captured images), tracking can
be lost if the first or second component (or the locators thereon) are obscured from a camera
of the camera system (e.g., due to being covered by the user or by other objects). In some
cases, loss of tracking may cause objects in the artificial environment the depend upon the
determined positions of tracked component to fly away (e.g., due to the determined position
going to infinity due to lost tracking), which may be abrupt and jarring to the user. The
neural network model may be used to predict the relative positions of the first and second
components when tracking is lost. For example, the system may compare the relative
positions predicted using the neural network model with positions determined by the second
sensor system to assess whether the positions or motions of the first and second components
determined by the second sensor system reflect realistic motion (e.g., do not “fly away” or go
to infinity, do not move at an unrealistic speed), and, if not, display content to the user based
upon the relative positions determined by the neural network model and IMUs instead of the
second sensor system until tracking can be reestablished, potentially improving user
experience.

[0087] In some embodiments, the neural network model may determine the relative
positions of the HMD 310 and handheld controller 320 using inputs from the first and second
IMUs 315 and 325, as well as one or more additional sensors. For example, as discussed
above, additional sensors may include a sensor to measure a height of the HMD or handheld
controller (e.g., an altimeter), or an orientation of the HMD or handheld controller (e.g., a
magnetometer or gyroscopic sensor), etc. In some embodiments, the additional sensor data

may be used by the neural network to further refine the relative position information
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determined based on the IMU measurements, allowing for more accurate position
determinations without the use of the second sensor system (e.g., camera system).

[0088] In some embodiments, in addition to or instead of predicting relative position
changes for the last time step in the sequence (e.g., corresponding to a current relative
position), the neural network model is trained to predict a relative position a certain period of
time into the future, e.g., for latency-compensation purposes. For example, as illustrated in
FIG. 3, the neural network may be trained to predict an expected location 330 of the handheld
controller 320 relative to the HMD 310 a set amount of time into the future (e.g., a set
amount of time after 71). In some embodiments, the neural network model outputs data
indicating a position offset of the expected future location 330 from an initial position of the
handheld controller 320 at a beginning of the analyzed time period (e.g., t0), or from a current
position of the handheld controller 320 (e.g., position at #1).

[0089] In some embodiments, the neural network model is trained to predict the expected
future position of the handheld controller 320 corresponding to an amount of time based upon
an expected amount of latency is known. In this way, the predicted future position of the
controller may be used to eliminate “perceived” latency or lag (e.g., by rendering a virtual
object at the expected future position, performing some control function based on the
expected future position, etc.). The neural network is able to take into account the
physiological constraints of the user, and is trained based upon patterns of human motion,
allowing for the expected future position to be predicted with greater accuracy in comparison
to simply extrapolating the expected future position based upon a last measured
velocity/acceleration.

[0090] In some embodiments, a neural network trained for future prediction requires no
architectural change in comparison to a neural network trained to estimate a current position
(e.g., neural network model 400 illustrated in FIG. 4). Instead, when training the neural
network, the ground truth position data corresponding to x ms after a last time step of the
input data may be used, instead of or in addition to current position ground truth.

[0091] FIG. 4 is a diagram of a neural network model that may be trained to predict
relative positions of components of an artificial reality system, in accordance with some
embodiments. The neural network model 400 may be stored and maintained on a console in
communication with the first and second components containing the first and second IMUs
(e.g., IMUs 315 of 325 of FIG. 3), on the first component or the second component (e.g., a
headset or HMD, and/or a handheld controller), or some combination thereof. The neural

network model 400 comprises a plurality of layers, including an input layer 405, at least one
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intermediate layer (e.g., intermediate layers 410 and 415), a dense layer 420, and output pose
estimate layer 425.

[0092] The input layer 405 is configured to receive IMU measurement data from at least
a first IMU and a second IMU. In some embodiments, the first and second IMUs may
correspond to a headset or HMD and a handheld controller respectively (e.g., IMU 315 of the
HMD 310, and IMU 325 of the handheld controller 320, as illustrated in FIG. 3). In some
embodiments, the IMUs corresponds to a plurality of channels of data (e.g., 12 channels).
For example, in some embodiments, each IMU has 6 channels (e.g., 3 for gyro, and 3 for
accel X/Y/Z), and the system comprises two IMUs (e.g., one on the headset, and one on the
handheld controller). In other embodiments, a different number of channels may be used
(e.g., if only accelerometer data is used, then only 6 channels would be needed). In other
embodiments, the system may comprise additional IMUs, and the input layer is configured to
receive a greater number of channels. For example, the headset or controller may comprise
additional IMUs (e.g., increasing the number of channels to 18 or more). In some
embodiments, there may be separate left and right controllers, each having a respective IMU.
In some embodiments, there can be additional sensors at different locations, e.g., elbow,
chest, leg IMU.

[0093] In some embodiments, the input layer 405 may also receive additional inputs from
other sensors. For example, in addition to raw IMU measurements generated by the first and
second IMUs, the input layer 405 may receive additional parameters such as an initial
position (if known), one or more velocity parameters (e.g., obtained by integrating IMU
acceleration data over a time period, or from one or more additional sensors), orientation
information (e.g., generated by fusing accelerometer and gyroscopic information to obtain an
orientation vector with respect to gravity), etc.

[0094] In some embodiments, the input layer is configured to receive batches of input
sequences corresponding to IMU measurements generated over a time period of up to a
predetermined length. For example, in some embodiments, the IMUs are configured to
generate, for each second of data, 100 samples. The input layer 405 may contain sufficient
channels to receive up to a certain number of IMU samples corresponding to a predetermined
time period, such as 10 seconds, resulting in input layer 405 receiving 1000 samples at a time
(e.g.. 12 x 1000 channels).

[0095] The neural network model 400 further comprises a plurality of intermediate
layers. For example, FIG. 4 illustrates a first intermediate layer 410 and a second
intermediate layer 415. In some embodiments, each intermediate layer comprises a plurality

of long short-term memory (LSTM) units configured to, when unrolled, match a length of an
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IMU input sequence received at the input layer 405. For example, in an embodiment where
the input layer is configured to receive up to 1000 samples at a time, each intermediate layer
represents a number of LSTM cells (e.g., 192 LSTM cells) each unrolled 1000 times. In
some embodiments, the number of LSTM cells is selected based upon a complexity of the
problem (e.g., to achieve a balance between computational efficiency and performance). In
addition, although FIG. 4 illustrates the intermediate layers of the neural network model 400
as comprising LSTM cells, it is understood that in other embodiments, other types of neural
network nodes, such as Recurrent Neural Network (RNN) units, Gated Recurrent Units
(GRU), etc. may be used.

[0096] In some embodiments, the plurality of intermediate layers includes a first
intermediate layer 410 configured to return intermediate sequences, and a last intermediate
layer (e.g., second intermediate layer 415) configured to return final values corresponding to
a last unrolling step for each LSTM (e.g., 192 x 1).

[0097] In some embodiments, the neural network model 400 further comprises a dense
layer 420. The dense layer 420 is configured to receive an output of the final intermediate
layer (e.g., second intermediate layer 415) corresponding to a last unrolling step value for
each LSTM, and maps the received values to the pose estimate layer 425.

[0098] The neural network model 400 further comprises a pose estimate layer 425
configured to receive an output of the dense layer 420 and generate position change (e.g., X,
y, Z position change) indicating a relative motion of the second component relative to the first
component over the analyzed time period (e.g., 10 seconds). For example, in some
embodiments, the pose estimate layer 425 returns a 3 x 1 vector of 3 numbers, either a
floating point vector or integer vector corresponding to X, Y and Z position delta in 3-D
space, e.g., [0, 1, -2.5], would mean O cmin X, 1 ¢cm, in Y and 2.5 cm in -Z direction. Itis
understood that in other embodiments, different representations of position and/or orientation
can be used, e.g., cartesian, cylindrical or spherical coordinate systems for delta position or,
Euler angles, axis-angle representation or Quaternion notation for relative orientation.

[0099] In some embodiments, the position information generated by the pose estimate
layer 425 indicates a position change of the second component (e.g., hand controller) relative
to the first component (e.g., HMD), in a coordinate system of the first component (e.g., a
head coordinate system or HMD coordinate system). In some embodiments, determining
relative position in terms of the user’s head coordinate system instead of a room coordinate
system or global coordinate system may improve the accuracy of the neural network model in
predicting the relative positions, as the user’s head coordinate system is able to more

accurately account for the physiological constraints of the user’s body. For example, when a
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user performs a particular arm motion, the physiological constraints of the user’s body may
be the same regardless of which direction the user is facing when performing the motion. In
some embodiments, the neural network model may receive input information corresponding
to a sensor (e.g., IMU) on the user’s body or torso, and predict the position of the hand
controller using a body or torso coordinate system instead of a head coordinate system. In
some embodiments, the position of the hand controller may be predicted relative to a
modified head coordinate system that is constrained along one or more axes. For example, in
some embodiments, the user’s modified head coordinate system is constrained such that the
z-axis remains aligned with a gravity vector, even if the user tilts their head (e.g., where the
gravity vector is determined using a gyroscopic sensor on the HMD worn by the user).
[00100]  Although FIG. 4 illustrates the neural network model using intermediate LSTM
layers, it is understood that in other embodiments, other types of NN architectures, such as
Gated Recurrent Unit Network (GRU), Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN) Architectures and their combinations, may be used.

[00101] FIG. 5 is a diagram of another neural network model that may be trained to predict
relative positions of components of an artificial reality system, in accordance with some
embodiments. In contrast to the LSTM-based neural network illustrated in FIG. 4, the neural
network 500 illustrated in FIG. 5 is based on a CNN architecture. In some embodiments, the
neural network model may be trained to perform position tracking (e.g., predicting relative
position changes for the last time step in the sequence) and/or, as discussed above, future
position prediction/latency compensation.

[00102]  Similar to the neural network model 400, the neural network model 500 may be
stored and maintained on a console in communication with the first and second components
containing the first and second IMUs (e.g., IMUs 315 of 325 of FIG. 3), on the first
component or the second component (e.g., a headset or HMD, and/or a handheld controller),
or some combination thereof. The neural network model 500 comprises a plurality of layers,
including an input layer 505, decimation layer 510, CNN layers 515, dense layers 520, and
one or more output layers 525. In some embodiments, the neural network model may further
comprise a feed forward path 530.

[00103] The input layer 505 is configured to receive batches of input sequences
corresponding to IMU measurements generated over a time period of up to a predetermined
length. For example, in some embodiments, the input layer 505 is configured to receive sets
of input sequences corresponding to a set number of time steps (e.g., 128 time steps at a
time). Each input sequence corresponding to a particular time step may comprise a plurality

of features, such as a time stamp, IMU measurement data (e.g., linear acceleration
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parameters, angular acceleration parameters) from at least a first IMU and a second IMU
(e.g., corresponding to a headset or HMD and a handheld controller, respectively). In
addition, in some embodiments, similar to as discussed above in relation to FIG. 4, the input
layer 505 may also receive additional inputs from other sensors. For example, the plurality of
features included in the input sequence may, in addition to include IMU measurements
generated by the first and second IMUs, include one or more position parameters (e.g., based
upon a previous position determination, or generated using a second sensor system, such as a
camera system, if available), one or more orientation parameters (e.g., based upon a previous
orientation determination, or generated using a separate sensor, such as a gyroscopic sensor,
magnetometer, etc.), one or more velocity parameters (e.g., generated by integrating IMU
acceleration data over a previous time period, or generated using a separate sensor), or some
combination thereof. In some embodiments, the input layer 505 may compute one or more
additional parameters not received as part of the input sequence (e.g., integrating a plurality
of previously received IMU acceleration parameters to determine a velocity parameter).
[00104] In some embodiments, the neural network model 500 performs decimation on the
received input sequences at a decimation layer 510. For example, in some embodiments,
input sequence data may be received at a first rate (e.g., at 500 samples per second, or
500Hz). However, the neural network model 500 may be able to produce results of a
sufficient accuracy using samples produced at a second, slower rate (e.g., between 50 and
100Hz). As such, the neural network 500 may use the decimation layer to decimate the
received samples by a specified amount, e.g., by averaging sets of consecutive sample to
generate a smaller number of aggregated samples. For example, in some embodiments, the
decimation layer 510 is configured to average sets of 8 consecutive samples or 16
consecutive samples to generate a smaller number of samples, e.g., decimating a received set
of samples corresponding to 128 time steps to aggregated samples corresponding to 16 time
steps or 8 time steps.

[00105] The CNN layers 515 correspond to a multi-layer CNN model. For example, in
some embodiments, the CNN layers 515 may correspond to a 7-layer CNN, where each layer
includes batch normalization, and a rectified linear unit (ReLu), and generates one or more
features from the received set of input sequences, e.g., encoded information relating to
motion of the first and/or second IMUs in a tensor format.

[00106] The dense layers 520 may comprise a first dense layer corresponding to a non-
linear activation function with ReL.u and dropout, and a second fully-connected dense layer
with no ReLu or dropout. In some embodiments, the dense layers 520 are configured to

receive an output of a final CNN layer, and map the received values to the output layer 525.
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[00107] The output layer 525 receives an output of the dense layers 520 and generates
pose information, which may include position change information (e.g., X, y, z position
change), orientation information, or a combination thereof. In embodiments where the neural
network is performing position tracking, the position information may indicate a distance
travelled within the analyzed time window (e.g., between fo and 71). On the other hand, if
performing future position prediction or latency compensation, the position change
information indicates a distance the second component is expected to travel during a future
time period (e.g., 50ms after 71). For example, in some embodiments, the output layer 525
returns a 3 x 1 vector of 3 numbers, corresponding to X, Y, and Z position delta in 3-D space,
indicating a distance and direction that the second component is expected to travel during the
future time period. In some embodiments, the output layer 525 may return a 6 x 1 vector or a
7 x 1 vector corresponding to position and orientation. In other embodiments, other formats
for expressing position and/or orientation information may be used (e.g., a 12 x 1 vector or 3
x 4 array corresponding to 3 x 1 position information and 9 x 1 rotation matrix expressing
orientation information). In some embodiments, the output vector may indicate a coordinate
in a head coordinate system of the user.

[00108] In some embodiments, the output layer 525 comprises a first encoder layer that
outputs a set of coefficients for a position determination function, and a second output layer
that outputs the final position information. The position determination function is a function
indicating an expected path of the second component over a future time period. For example,
in some embodiments the position determination function is a cubic polynomial function of a
time that outputs a three-dimensional pose vector, having coefficients corresponding to
bias/position, velocity, acceleration, and jerk. In some embodiments, the polynomial function
may be divided into three polynomial functions corresponding to X, Y, and Z coordinate
axes. As such, the encoder layer may output a set 12 coefficients (e.g., corresponding to
bias/position, velocity, acceleration, and jerk coefficients for each function). In some
embodiments, the output coefficients may also include coefficients for a function for
determining orientation information.

[00109] In some embodiments, the output layer 525 determines coefficients for a position
determination function to allow for position information to be determined for a range of
future time steps. This is because the latency values of a system may not be known
beforehand, and may change based on how the system is being used (e.g., based on a
particular application that the user is using). For example, if the user is using the first and
second components to navigate a menu that is not very graphics intensive, latency may be

low. On the other hand, if the user is using the first and second components to play a
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graphically-intensive game, latency may be higher. In some embodiments, the neural
network 500 is trained using information corresponding to a range of latency values (e.g.,
between 10 and 100 ms of latency).

[00110] The second output layer receives the coefficients generated by the encoder layer,
and determines position information for one or more time steps using the position
determination function. In some embodiments, the second output layer receives a specific
latency value, and determines position information corresponding to a time step
corresponding to the received latency value. In other embodiments, the second output layer
uses the position determination function to generate a plurality of positions corresponding to
a plurality of time steps, e.g., to be used by another processing element to select a specific
position based upon a specific latency value.

[00111] In some embodiments, the neural network model may, in addition to outputting
relative position information of the second component, also be trained to output orientation
information. In other embodiments, orientation information may instead be determined using
one or more additional sensors, such as by fusing accelerometer and gyroscopic information
obtain an orientation vector with respect to gravity, using a magnetometer to determine
magnetic north, and/or the like.

[00112] In some embodiments, the neural network 500 includes a velocity feed-forward
path 530. As discussed above, a simple way of predicting a future relative position of a
component (e.g., controller) is to extrapolate a current velocity of the component multiplied
by an expected time value (e.g., latency value). In some embodiments, the neural network
model 500 receives current velocity information as part of an input sequence at the input
layer 505, or determines a current velocity using received acceleration information, and uses
the velocity information to determine an extrapolated relative position to be used as a
baseline for predicting an expected future position of the component. In some embodiments,
the neural network 500 may further take into account a current acceleration when
extrapolating the expected relative position of the component. In some embodiments, the
neural network feeds forward the velocity (and/or acceleration) information via the velocity
feed forward path 530, to be extrapolated at a later layer (e.g., by the output layer 525).
[00113] In some embodiments, the neural network 500 is trained to use the extrapolated
relative position as a baseline value when predicting an expected future relative position. In
some embodiments, the neural network 500 is trained to predict an offset of the future
relative position from the extrapolated relative position. For example, the output layer 525
may determine an output of the position determination function that corresponds to an offset

from an extrapolated position, where the extrapolated position is received via the velocity
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feed forward path 530 or determined based on velocity information received via the feed
forward path 530. The output layer 525 applies the predicted offset to the extrapolated
relative position to determine a final relative position prediction.

[00114] FIGs. 6A and 6B illustrate flowcharts of processes for training and using a neural
network model for predicting relative position of components of an artificial reality system
using IMUs, in accordance with one or more embodiments. The processes shown in FIGs.
6A and 6B may be performed by components of an artificial reality system (e.g., artificial
reality system 300 illustrated in FIG. 3). Other entities may perform some or all of the steps
in FIGs. 6A and 6B in other embodiments. Embodiments may include different and/or
additional steps, or perform the steps in different orders. In some embodiments, the
processes of FIGs. 6A and 6B are performed by components of different artificial reality
systems. For example, the training process of FIG. 6A may be performed using a first
artificial reality system to train the neural network model, which may then be loaded onto a
second artificial reality system to be used by an end user (e.g., based on the process of FIG.
6B). In some embodiments, the neural network model for the artificial reality system is pre-
trained. For example, the neural network model may be initially trained as a default model,
and downloaded to each a plurality of artificial reality systems.

[00115] FIG. 6A illustrates a flowchart of a process for training the neural network model
for predicting relative positions between components using IMUs, in accordance with some
embodiments. The artificial reality system receives 610, over a time period, positional
information from a first IMU of a first component of the artificial reality system positioned at
a first position on a user’s body, and a second IMU of a second component of the artificial
reality system positioned at a second position on the user’s body. In some embodiments, the
first component corresponds to an HMD worn on the head of the user, while the second
component corresponds to a handheld controller held in a hand of the user. The received
positional information may comprise a plurality of IMU measurement samples generated by
the first and second IMUs over the time period, each indicating an angular rate and an
acceleration of the first or second IMU. In some embodiments, the artificial reality system
may further receive additional positional information for one or more additional sensors.
[00116] In some embodiments, the first and second components are positioned on a body
of a training user, who may be instructed to move their body during the time period, such that
the received positional information corresponds to different positions of the first and second
components over the time period. For example, where the first and second components
correspond to an HMD and a handheld controller, the user may turn their head and move

their arm in various directions. In some embodiments, the artificial reality system may
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prompt the user to move their body in certain ways in order to achieve adequate coverage of
different positions in the training data. In some embodiments, the user may perform a variety
of different motions expected to be performed when controlling the artificial reality system.
For example, in systems in which the user may perform predetermined gestures using the first
and second components to generate action requests, the user may be prompted to perform
such gestures to ensure they are reflected in the training data. In some embodiments, the
system may prompt the user to perform additional types of motions that may not be directly
related to controlling the artificial reality system, in order to capture a more diverse set of
possible movements.

[00117] The artificial reality system receives 620, over the time period, positional
information of the first and second components generated using a ground truth sensor system.
In some embodiments, training of the neural network model may occur in a controlled
environment where a ground truth sensor system is used to determine absolute positions of
the first and second components in order to generate ground truth information for use in
training the model. In some embodiments, the ground truth sensor system comprises one or
more tracking cameras to capture images of the first and second components positioned at
different positions on the user’s body. In some embodiments, the first and second
components may comprise one or more locators at specific positions on the first and second
components, which may be used to determine a position of the first and second components
using the captured images. In other embodiments, other types of sensor systems usable to
determine positional information of the first and second components, e.g., a DCA
implemented as part of the first and/or second component, one or more magnetic sensors,
and/or the like, may be used. The positional information generated by the second sensor
system may indicate absolute positions of the first and second components over the time
period, which, combined with the IMU measurements from the first and second IMUs
indicating angular rate and acceleration of the first and second IMUs over the time period,
may form a training data set for training the neural network model.

[00118] The artificial reality system trains 630 the neural network model based on the
received IMU measurements and ground truth information indicating the positions of the first
and second components. The neural network model uses IMU data corresponding a
predetermined time period (e.g., 1 second, 10 seconds, etc.), and predicts a relative motion of
the second component relative to the first component over the predetermined time period.
The predicted relative motion is used to determine a relative position of the first and second
components, which is compared to the ground truth information indicating positions of the

first and second components to generate feedback data for training the neural network model.
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[00119] In addition, as discussed above, in some embodiments, the neural network model
may be trained to predict a certain period of time into the future, e.g., for latency
compensation purposes. In such cases, the predicted relative position of the first and second
components is compared to ground truth data corresponding to position measured a set
amount of time (e.g., between 10 and 100 ms) after the end of the predetermined time period,
instead of at the end of the predetermined time period.

[00120] In some embodiments, the training method of FIG. 6A may be performed with
over multiple time periods and/or with multiple training users, to generate a more diverse set
of training data, such that the neural network model is applicable to a general population of
potential users. In addition, in some embodiments, an end user of the artificial reality system
may perform additional training on the neural network model, in order to calibrate the neural
network model to more accurately reflect the body of the specific end user.

[00121] In some embodiments where the neural network model is configured to receive
input sequences containing additional data beyond raw IMU measures (e.g., position
parameters, velocity parameters, and/or other parameters received from one or more
additional sensors), the neural network model may perform regularization during training to
prevent the model from placing too much weight on specific parameters. For example, in
some embodiments, if a weight value associated with a specific parameter becomes too large
during training relative to weight values of other parameters, the weight value may be
reduced or penalized, to ensure that the neural network model does not over rely on any
single parameter.

[00122] FIG. 6B illustrates a flowchart of a method for position determination of
components of an artificial reality system using IMUSs, in accordance with some
embodiments. The artificial reality system receives 650, as the user uses the artificial reality
system, measurement data from the first and second IMUs indicating angular rate and
acceleration information of the first and second IMUs. The first IMU is located on a first
component of the artificial reality system positioned at a first position on a user’s body (e.g.,
an HMD worn on the user’s hand), while the second IMU is located on a second component
of the artificial reality system positioned at a second position on the user’s body (e.g., a
handheld controller held in a hand of the user). In some embodiments, the artificial reality
system may further receive additional measurement data for one or more additional sensors.
[00123] The artificial reality system uses 660 a trained neural network model (e.g., a
neural network model trained using the process described in relation to FIG. 6A) to predict a
relative position of the first and second components. In some embodiments, the neural

network model uses as input IMU data corresponding to a predetermined time period (e.g., a
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previous 1 second, previous 10 seconds, etc.) to predict a motion of the second component
relative to the first component during the time period. The predicted motion may be used to
update an initial position and determine an updated relative position of the second component
to the first component. In some embodiments, the initial position may be determined using a
visual tracking system, or based upon a prompt to the user to initially orient the first and
second components in a certain way (e.g., “touch your head with the controller to start™). In
some embodiments, the system may use a past history of motion as determined by the neural
network model as an indication of absolute position, or to deduce an initial position. For
example, responsive to a determination that the controller moved 5 feet up, deducing that the
controller was being held down, and it was moved up such that the arm is extended upwards.
[00124] In some embodiments, the neural network model may predict a relative position of
the first and second components a certain period of time into the future, e.g., to predict future
position/orientation with approximately 10-100 ms into the future, based on an expected level
of latency. This is essentially a way to do pose extrapolation in time into the future, and
absorb latency induced by the system, e.g., eliminating “‘perceived” latency or lag by
predicting where the controller will be some period of time into the future. As discussed
above, training the neural network model for future prediction requires no architectural
change, but instead uses ground truth position data from x ms into the future for training
instead of current position ground truth.

[00125] The artificial reality system optionally periodically adjusts 670 the determined
relative position of the second component to the first component based on measurements
from a second sensor system. In some embodiments, the second sensor system may comprise
a tracking camera system, visual odometry system, magnetic sensors, or other type of sensor
system usable to determine absolution position information of the first and second
components. The second sensor system may be different from the ground truth sensor system
used to generate the ground truth data for training the model described in relation to FIG. 6A.
For example, in some embodiments, training of the neural network model may take place in a
controlled environment prior to the artificial reality system being used by an end user (e.g., in
a controller room having multiple high-resolution cameras), while the second sensor system
may comprise one or more sensors located on the first or second components, or can be set up
by the end-user of the artificial reality system.

[00126] In some embodiments, because the use of the neural network model to predict
relative position and movement of the first and second components may limit an amount of
error that is able to accumulate in determining the relative position between the first and

second components, the second sensor system may be used to adjust the determined relative
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position less frequently in comparison to systems in which the positions of the components is
determined by integrating the receiving IMU measurements, or be configured to run in a
lower power or lower resolution mode. For example, in embodiments where the second
sensor system comprises a camera system configured to capture images of the first and
second components from which positional information of the first and second components
can be determined, the camera system may comprise fewer cameras than the ground truth
sensor system used for the initial training of the neural network model (e.g., as described in
relation to FIG. 6A) and/or lower resolution cameras.

[00127] In addition, in some embodiments the artificial reality system may update the
neural network model based upon measurements and/or positional information obtained using
the second sensor system. For example, in some embodiments, the trained neural network
model may initially correspond to a baseline or default model. As a specific end user uses the
artificial reality system, the neural network model may be updated based on absolute position
information determined using the second sensor system, to further train the neural network
model based on the body of the specific user.

[00128] FIG. 7 illustrates an artificial reality system 700, in accordance with one or more
embodiments. In some embodiments, the artificial reality system 700 comprises a headset
705 which may correspond to the headset 102 of FIG. 1A or the HMD 106 of FIG. 1B, and a
controller device 710 which may correspond to the handheld controller 200 of FIG. 2. The
artificial reality system 700 may operate in a virtual reality environment, an augmented
reality environment, a mixed reality environment, or some combination thereof. The headset
705 and the controller device 710 may be coupled to a console 715. While FIG. 7 shows an
example system 700 including one headset 705 and one controller device 710, in other
embodiments any number of these components may be included in the system 700. For
example, in some embodiments a user may wear the headset 705 while also operating two
different controller devices 710 (e.g., one in each hand). In some embodiments, there may be
multiple headsets each having an associated controller device 710, with each headset and
controller device 710 communicating with the console 715. In alternative configurations,
different and/or additional components may be included in the system 700 (e.g., an audio
system for providing audio content to the user). Additionally, functionality described in
conjunction with one or more of the components shown in FIG. 7 may be distributed among
the components in a different manner than described in conjunction with FIG. 7 in some
embodiments. For example, some or all of the functionality of the console 715 may be
provided by the headset 705.
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[00129] The headset 705 includes the display assembly 730, an optics block 735, one or
more position sensors 740, and a DCA 745. Some embodiments of headset 705 have
different components than those described in conjunction with FIG. 7. Additionally, the
functionality provided by various components described in conjunction with FIG. 7 may be
differently distributed among the components of the headset 705 in other embodiments, or be
captured in separate assemblies remote from the headset 705.

[00130] The display assembly 730 displays content to the user in accordance with data
received from the console 715. The display assembly 730 displays the content using one or
more display elements (e.g., the display elements 120 illustrated in FIG. 1A). A display
element may be, e.g., an electronic display. In various embodiments, the display assembly
730 comprises a single display element or multiple display elements (e.g., a display for each
eve of auser). Examples of an electronic display include: a liquid crystal display (LCD), an
organic light emitting diode (OLED) display, an active-matrix organic light-emitting diode
display (AMOLED), a waveguide display, some other display, or some combination thereof.
Note in some embodiments, the display element 730 may also include some or all of the
functionality of the optics block 735.

[00131] The optics block 735 may magnify image light received from the electronic
display, corrects optical errors associated with the image light, and presents the corrected
image light to one or both eyeboxes of the headset 705. In various embodiments, the optics
block 735 includes one or more optical elements. Example optical elements included in the
optics block 735 include: an aperture, a Fresnel lens, a convex lens, a concave lens, a filter, a
reflecting surface, or any other suitable optical element that affects image light. Moreover,
the optics block 735 may include combinations of different optical elements. In some
embodiments, one or more of the optical elements in the optics block 735 may have one or
more coatings, such as partially reflective or anti-reflective coatings.

[00132] Magnification and focusing of the image light by the optics block 735 allows the
electronic display to be physically smaller, weigh less, and consume less power than larger
displays. Additionally, magnification may increase the field of view of the content presented
by the electronic display. For example, the field of view of the displayed content is such that
the displayed content is presented using almost all (e.g., approximately 110 degrees
diagonal), and in some cases, all of the user’s field of view. Additionally, in some
embodiments, the amount of magnification may be adjusted by adding or removing optical
elements.

[00133] In some embodiments, the optics block 735 may be designed to correct one or

more types of optical error. Examples of optical error include barrel or pincushion distortion,
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longitudinal chromatic aberrations, or transverse chromatic aberrations. Other types of
optical errors may further include spherical aberrations, chromatic aberrations, or errors due
to the lens field curvature, astigmatisms, or any other type of optical error. In some
embodiments, content provided to the electronic display for display is pre-distorted, and the
optics block 735 corrects the distortion when it receives image light from the electronic
display generated based on the content.

[00134] The IMU 740 may correspond to the IMU 190 illustrated in FIGs. 1A and 1B, and
comprises at least one accelerometer to measure translational motion (forward/back,
up/down, left/right) and at least one gyroscope to measure rotational motion (e.g., pitch, yaw,
roll). In some embodiments, the IMU 740 rapidly samples the measurement signals of the
accelerometer and gyroscope to generate measurements usable to calculate a position of the
headset 705. For example, the generated measurements may be used as input to a trained
neural network model (e.g., maintained by a tracking module 760) to predict a position of a
reference point on the headset 705 (e.g., a relative position to another component on the
user’s body, such as the controller device 710). The reference point is a point that may be
used to describe the position of the headset 705. While the reference point may generally be
defined as a point in space, however, in practice the reference point is defined as a point
within the headset 705.

[00135] The DCA 745 generates depth information for a portion of the local area. The
DCA includes one or more imaging devices and a DCA controller. The DCA 745 may also
include an illuminator. Operation and structure of the DCA 745 is described above with
regard to FIG. 1A.

[00136] In some embodiments, the headset 705 further comprises a second position sensor
750 configured to generate data indicating a position of the headset 705. In some
embodiments, the second position sensor 750 is configured to determine an absolute position
of the headset 705, e.g., a position of the headset 705 relative to a static reference point in the
surrounding environment (e.g., corresponding to the console 715, a fixed point in a room,
etc.). In some embodiments, the second position sensor 750 may be implemented as part of
the DCA 745, in which the position of the headset 705 may be determined based upon the
generated depth information. In other embodiments, instead of a second position sensor 750
included as part of the headset 705, the second sensor system may comprise a separate
camera system configured to capture images of the headset 705 to determine the position
and/or orientation of the headset 705. For example, in some embodiments, the headset 705
may include one or more locators, which may be used by the determine a position of the

headset 705 using images captured by the camera system.
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[00137] The controller device 710 may correspond to a handheld device such as a
handheld controller (e.g., the handheld controller 200 of FIG. 2), and is a device that allows a
user to send action requests and receive responses from the console 715. An action request is
arequest to perform a particular action. For example, an action request may be an instruction
to start or end capture of image or video data, or an instruction to perform a particular action
within an application. In some embodiments, the user sends action requests using an I/O
interface 770 of the controller device 710, which may include one or more input elements,
such as one or more buttons, triggers, joysticks, etc. In addition, in some embodiments, an
action request may be sent based upon a movement or position of the controller device 715
(e.g., determined based upon the IMU 775 of the controller device 710). An action request is
communicated to the console 715, which performs an action corresponding to the action
request. In some embodiments, the I/0 interface 770 may provide haptic feedback to the user
in accordance with instructions received from the console 715. For example, haptic feedback
is provided when an action request is received, or the console 715 communicates instructions
to the controller device 710 causing the I/O interface 770 to generate haptic feedback when
the console 715 performs an action.

[00138] The IMU 775 of the controller device 710 may be similar to the IMU 740 of the
headset 705, comprising at least one accelerometer to measure translational motion
(forward/back, up/down, left/right) and at least one gyroscope to measure rotational motion
(e.g., pitch, yaw, roll). The IMU 775 rapidly samples the measurement signals of the
accelerometer and gyroscope to generate measurements usable to calculate a position of the
controller device 710. For example, the generated measurements may be used as input to a
trained neural network model (e.g., maintained by the tracking module 760 of the console
715) to predict a position of a reference point on the controller device 710 (e.g., a relative
position to another component on the user’s body, such as the headset 705). The reference
point is a point that may be used to describe the position of the controller device 710. While
the reference point may generally be defined as a point in space, however, in practice the
reference point is defined as a point within the headset 705.

[00139] The console 715 provides content to the headset 705 for processing in accordance
with information received from the headset 705 and the controller device 710. In the
example shown in FIG. 7, the console 715 includes an application store 755, a tracking
module 760, and an engine 765. Some embodiments of the console 715 have different
modules or components than those described in conjunction with FIG. 7. Similarly, the
functions further described below may be distributed among components of the console 715

in a different manner than described in conjunction with FIG. 7. In some embodiments, the
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functionality discussed herein with respect to the console 715 may be implemented in the
headset 705, or a remote system.

[00140] The application store 755 stores one or more applications for execution by the
console 715. An application is a group of instructions, that when executed by a processor,
generates content for presentation to the user. Content generated by an application may be in
response to inputs received from the user via movement of the headset 705 or the controller
device 710 (e.g., action requests received at the I/O interface 770). Examples of applications
include: gaming applications, conferencing applications, video playback applications, or
other suitable applications.

[00141] The tracking module 760 tracks movements of the headset 705 and the controller
device 710 using information from IMUs 740 and 775. The tracking module 760 comprises a
trained neural network model configured to receive measurement data captured by the IMUs
740 and 775 over a predetermined time period, and predict a relative motion of the controller
device 710 relative to the headset 705 over the time period. The tracking module 760 uses
the predicted motion to determine a relative position of the controller device 710 to the
headset 705. In some embodiments, the trained neural network model may correspond to the
neural network model 400 illustrated in FIG. 4, and is trained based on the process illustrated
in FIG. 5A. Although FIG. 7 illustrates the tracking module as located on the console 715, it
is understood that in some embodiments, at least a portion of the tracking module may be
implemented on a different device, such as the headset 705.

[00142] In some embodiments, the tracking module 760 may further be configured to
periodically adjust one or more relative positions determined using the trained neural network
model using position information determined based upon the DCA 745, the second position
sensor 750, or some combination thereof. For example, the tracking module 760 determines
a position of a reference point of the headset 705 in a mapping of a local area based on
information from the headset 705. The tracking module 760 may also determine positions of
an object or virtual object.

[00143] Additionally, in some embodiments, the tracking module 760 may use portions of
data indicating a position of the headset 705 and/or controller device 710 (e.g., as determined
using the trained neural network model),the second position sensor 760, and/or
representations of the local area from the DCA 745, to predict a future location of the headset
705. The tracking module 760 provides the estimated or predicted future position of the
headset 705 or the controller device 710 to the engine 765.

[00144] The engine 765 executes applications and receives position information,

acceleration information, velocity information, predicted future positions, or some
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combination thereof, of the headset 705 and/or controller device 710 from the tracking
module 760. Based on the received information, the engine 765 determines content to
provide to the headset 705 for presentation to the user. For example, if the received
information indicates that the user has looked to the left, the engine 765 generates content for
the headset 705 that mirrors the user’s movement in a virtual local area or in a local area
augmenting the local area with additional content. Additionally, the engine 765 performs an
action within an application executing on the console 715 in response to an action request
received from the controller device 710 and provides feedback to the user that the action was
performed. The provided feedback may be visual or audible feedback via the headset 705 or
haptic feedback via the controller device 710.

[00145] One or more components of system 700 may contain a privacy module that stores
one or more privacy settings for user data elements. The user data elements describe the user
or the headset 705. For example, the user data elements may describe a physical
characteristic of the user, an action performed by the user, a location of the user of the
headset 705, a location of the headset 705, an HRTF for the user, etc. Privacy settings (or
“access settings™) for a user data element may be stored in any suitable manner, such as, for
example, in association with the user data element, in an index on an authorization server, in
another suitable manner, or any suitable combination thereof.

[00146] A privacy setting for a user data element specifies how the user data element (or
particular information associated with the user data element) can be accessed, stored, or
otherwise used (e.g., viewed, shared, modified, copied, executed, surfaced, or identified). In
some embodiments, the privacy settings for a user data element may specify a “blocked list”
of entities that may not access certain information associated with the user data element. The
privacy settings associated with the user data element may specify any suitable granularity of
permitted access or denial of access. For example, some entities may have permission to see
that a specific user data element exists, some entities may have permission to view the
content of the specific user data element, and some entities may have permission to modify
the specific user data element. The privacy settings may allow the user to allow other entities
to access or store user data elements for a finite period of time.

[00147] The privacy settings may allow a user to specify one or more geographic locations
from which user data elements can be accessed. Access or denial of access to the user data
elements may depend on the geographic location of an entity who is attempting to access the
user data elements. For example, the user may allow access to a user data element and
specify that the user data element is accessible to an entity only while the user isin a

particular location. If the user leaves the particular location, the user data element may no
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longer be accessible to the entity. As another example, the user may specify that a user data
element is accessible only to entities within a threshold distance from the user, such as
another user of a headset within the same local area as the user. If the user subsequently
changes location, the entity with access to the user data element may lose access, while a new
group of entities may gain access as they come within the threshold distance of the user.
[00148] The system 700 may include one or more authorization/privacy servers for
enforcing privacy settings. A request from an entity for a particular user data element may
identify the entity associated with the request and the user data element may be sent only to
the entity if the authorization server determines that the entity is authorized to access the user
data element based on the privacy settings associated with the user data element. If the
requesting entity is not authorized to access the user data element, the authorization server
may prevent the requested user data element from being retrieved or may prevent the
requested user data element from being sent to the entity. Although this disclosure describes
enforcing privacy settings in a particular manner, this disclosure contemplates enforcing
privacy settings in any suitable manner.

Additional Configuration Information

[00149] The foregoing description of the embodiments has been presented for illustration;
it is not intended to be exhaustive or to limit the patent rights to the precise forms disclosed.
Persons skilled in the relevant art can appreciate that many modifications and variations are
possible considering the above disclosure.

[00150] Some portions of this description describe the embodiments in terms of algorithms
and symbolic representations of operations on information. These algorithmic descriptions
and representations are commonly used by those skilled in the data processing arts to convey
the substance of their work effectively to others skilled in the art. These operations, while
described functionally, computationally, or logically, are understood to be implemented by
computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it
has also proven convenient at times, to refer to these arrangements of operations as modules,
without loss of generality. The described operations and their associated modules may be
embodied in software, firmware, hardware, or any combinations thereof.

[00151]  Any of the steps, operations, or processes described herein may be performed or
implemented with one or more hardware or software modules, alone or in combination with
other devices. In one embodiment, a software module is implemented with a computer
program product comprising a computer-readable medium containing computer program
code, which can be executed by a computer processor for performing any or all the steps,

operations, or processes described.
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[00152] Embodiments may also relate to an apparatus for performing the operations
herein. This apparatus may be specially constructed for the required purposes, and/or it may
comprise a general-purpose computing device selectively activated or reconfigured by a
computer program stored in the computer. Such a computer program may be stored in a
non-transitory, tangible computer readable storage medium, or any type of media suitable for
storing electronic instructions, which may be coupled to a computer system bus.
Furthermore, any computing systems referred to in the specification may include a single
processor or may be architectures employing multiple processor designs for increased
computing capability.

[00153] Embodiments may also relate to a product that is produced by a computing
process described herein. Such a product may comprise information resulting from a
computing process, where the information is stored on a non-transitory, tangible computer
readable storage medium and may include any embodiment of a computer program product
or other data combination described herein.

[00154] Finally, the language used in the specification has been principally selected for
readability and instructional purposes, and it may not have been selected to delineate or
circumscribe the patent rights. It is therefore intended that the scope of the patent rights be
limited not by this detailed description, but rather by any claims that issue on an application
based hereon. Accordingly, the disclosure of the embodiments is intended to be illustrative,

but not limiting, of the scope of the patent rights, which is set forth in the following claims.
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CLAIMS:

1. A system comprising:

a first component configured to be positioned at a first portion of a user’s body,
the first component comprising at least a first inertial measurement unit
(IMU) configured to generate first measurements indicating motion of the
first component;

a second component configured to be positioned at a second portion of the user’s
body, comprising a least a second IMU configured to generate second
measurements indicating motion of the second component, wherein a set
of potential positions of the first component and the second component is
determined by physiological constraints of the first portion and the second
portion of the user’s body; and

a controller configured to:

receive first measurements from the first IMU and the second
measurements from the second IMU,

predict a position of the first component relative to the second
component using a trained neural network model trained using
the set of potential positions.

2. The system of claim 1, wherein the first component is a head-mounted device
(HMD) configured to be worn on the user’s head, and the second component is a handheld
device configured to be held in a hand of the user.

3. The system of claim 1 or claim 2, wherein the position of the first component
relative to the second component predicted by the trained neural network corresponds to an
expected position of the first component relative to the second component corresponding to a
future time.

4. The system of any preceding claim, wherein the controller is configured to
receive ground truth information for training the neural network model from a camera system
configured to capture images of the first component and the second component; and
preferably wherein the ground truth information comprises position information of the first
component and the second component corresponding to a time after a time period during
which measurements from the first IMU and the second IMU are received.

5. The system of any of claims 1 to 3, wherein the controller is further
configured to periodically receive information indicating positions of the first and second
components from an additional sensor, and to periodically use the received information to

correct an error of the predicted position.
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6. The system of any preceding claim, wherein the trained neural network model
is configured to:
receive a set of first measurements from the first IMU and a set of second
measurements from the second IMU corresponding to a predetermined
period of time; and
predict a motion of the first component relative to the second component over the
predetermined period of time;
wherein the controller is further configured to predict the position of the first
component relative to the second component by updating an initial
position based upon the motion predicted by the trained neural network
model; or preferably wherein the trained neural network is configured to:
receive a set of first measurements from the first IMU and a set of second
measurements from the second IMU corresponding to a predetermined
period of time; and
predict an expected motion of the first component relative to the second
component over a future time period following the predetermined period
of time;
wherein the controller is further configured to predict the position of the first
component relative to the second component by updating an initial
position based upon the motion predicted by the trained neural network
model, and wherein the position corresponds to an expected future position
of the first component relative to the second component; and preferably
wherein the trained neural network is configured to:
receive velocity information indicating a current velocity of the first component
relative to the second component;
extrapolate an expected future position estimate using the received velocity
information corresponding to a future point in time;
predict an expected offset from the expected future position estimate
corresponding to the future point in time; and
apply the expected offset to the expected future position estimate to predict the
expected future position of the first component relative to the second
component at the future point in time.
7. The system of any preceding claim, wherein the trained neural network model
is a long short-term memory (LTSM) network which when unrolled matches a length of a set

of first measurements from the first IMU and a set of second measurements from the second
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IMU corresponding to a predetermined period of time; or preferably wherein the trained
neural network model is a convolutional neural network (CNN) model.

8. The system of any of claims 1 to 4 or 6 to 7, wherein the controller is further
configured to:

track positions of the first component and second component based upon received
information indicating positions of the first and second components from
an additional sensor;

compare the predicted position of the first component relative to the second
component predicted using the trained neural network model to the
positions of the first and second components received from the additional
sensor;

determine whether the additional sensor has lost tracking, based upon the
comparison; and

responsive to determining that the additional sensor has lost tracking, adjust the
tracked positions of the first component and second component based on
the predicted position.

9. A method comprising;

receiving, from a first inertial measurement unit (IMU), first measurements
indicating motion of a first component, wherein the first component is
positioned at a first portions of a user’s body;

receiving, from a second IMU, second measurements indicating motion of a
second component positioned at a second portion of the user’s body,
wherein a set of potential positions of the first component and the second
component is determined by physiological constraints of the first portion
and the second portion of the user’s body; and

predicting a position of the first component relative to the second component
using a trained neural network model trained using the set of potential
positions.

10. The method of claim 9, wherein the first component is a head-mounted device
(HMD) configured to be worn on the user’s head, and the second component is a handheld
device configured to be held in a hand of the user.

11. The method of claim 9 or claim 10, wherein the position of the first
component relative to the second component predicted by the trained neural network
corresponds to an expected position of the first component relative to the second component

corresponding to a future time.
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12. The method of any of claims 9 to 11, further comprising:
at the trained neural network model:
receiving a set of first measurements from the first IMU and a set of
second measurements from the second IMU corresponding to a
predetermined period of time,
predicting a motion of the first component relative to the second
component over the predetermined period of time; and
predicting the position of the first component relative to the second component by
updating an initial position based upon the motion predicted by the trained
neural network model; or preferably further comprising:
at the trained neural network model:
receive a set of first measurements from the first IMU and a set of
second measurements from the second IMU corresponding to a
predetermined period of time,
predicting an expected motion of the first component relative to the
second component over a future time period following the
predetermined period of time; and
predicting the position of the first component relative to the second component by
updating an initial position based upon the motion predicted by the trained
neural network model, wherein the position corresponds to an expected
future position of the first component relative to the second component.
13. The method of claim 9, further comprising:
tracking positions of the first component and second component based upon
received information indicating positions of the first and second
components from an additional sensor;
comparing the predicted position of the first component relative to the second
component predicted using the trained neural network model to the
positions of the first and second components received from the additional
sensor;
determining whether the additional sensor has lost tracking, based upon the
comparison; and
responsive to determining that the additional sensor has lost tracking, adjusting the
tracked positions of the first component and second component based on
the predicted position.

14. A computer readable non-transitory storage medium, storing instructions for:
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receiving, from a first inertial measurement unit (IMU), first measurements
indicating motion of a first component, wherein the first component is
positioned at a first portions of a user’s body;
receiving, from a second IMU, second measurements indicating motion of a
second component positioned at a second portion of the user’s body,
wherein a set of potential positions of the first component and the second
component is determined by physiological constraints of the first portion
and the second portion of the user’s body; and
predicting a position of the first component relative to the second component
using a trained neural network model and the set of potential positions.
15. The computer readable non-transitory storage medium of claim 14, wherein
the first component is a head-mounted device (HMD) configured to be worn on the user’s
head, and the second component is a handheld device configured to be held in a hand of the

user.
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