I*I Innovation, Sciences et Innovation, Science and CA 3061233 C 2021/09/21

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 3 06 1 233
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(22) Date de dépét/Filing Date: 2019/11/07 (51) CL.Int./Int.Cl. HO4L 12/12(2006.01),
o A . : . HO4L 7/00(2006.01), HO4L 9/16 (2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2020/04/03 HO4L 9/32(2006.01), HOAW 12/041(2021.01)
(45) Date de délivrance/lssue Date: 2021/09/21 HO4W 12/06 (2021.01), HO4W 12/50 (2021.01),
(30) Priorité/Priority: 2018/10/03 (US16/150.625) HO4W 4/50(2018.01), HO4W 76/14(2018.01)

(72) Inventeurs/Inventors:
MURRAY, BRIAN JEREMIAH, US;
GOPALAKRISHNAN, NARAYANAN, US

(73) Propriétaire/Owner:
CLOVER NETWORK, INC., US

(74) Agent: SMITHS IP

(54) Titre : FOURNITURE DE CONNEXION SECURISEE A L'AIDE D'UNE CLE PRE-PARTAGEE
(54) Title: PROVISIONING A SECURE CONNECTION USING A PRE-SHARED KEY

100

[y

[

(57) Abrégé/Abstract:

Methods and systems related to provisioning a secure connection are disclosed. One disclosed method includes storing a device
secret on a secure element in a first device, storing a mapping from the device secret to a device identifier of the first device on a
cloud architecture, generating a pairing key using a first connection protocol key generator on the secure element and the device
secret, and generating the pairing key using a second connection protocol key generator on the cloud architecture and the device
secret. The method also includes transmitting the pairing key from the cloud architecture to a second device in response to
receiving the device identifier, mutually authenticating the first and second device using the pairing key, and adding the secure
connection to the inter-device connection using the pairing key as stored on the first device and as stored on the second device.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191




ABSTRACT

Methods and systems related to provisioning a secure connection are disclosed. One disclosed
method includes storing a device secret on a secure element in a first device, storing a mapping
from the device secret to a device identifier of the first device on a cloud architecture,
generating a pairing key using a first connection protocol key generator on the secure element
and the device secret, and generating the pairing key using a second connection protocol key
generator on the cloud architecture and the device secret. The method also includes
transmitting the pairing key from the cloud architecture to a second device in response to
receiving the device identifier, mutually authenticating the first and second device using the
pairing key, and adding the secure connection to the inter-device connection using the pairing

key as stored on the first device and as stored on the second device.

34

CA 3061233 2019-11-07



Provisioning a Secure Connection Using a Pre-Shared Key

BACKGROUND

[0001] The establishment of secure connections between communicating devices is essential to
preserve the privacy and data integrity of the information that passes between them. Wireless
connections are particularly vulnerable to attacks from malicious entities that could use other
nearby wireless devices to perform such an attack. Current security methods are designed to
withstand the most common types of attacks, such as man-in-the-middle (MITM) attacks,
denial of service (DoS) attacks, or address resolution protocol (ARP) poisoning attacks. While
many of the nuances of secure communication vulnerabilities are known, the choice of a
specific security configuration for a given set of wireless connected devices is not trivial. For
example, one security configuration may be highly dependent on the unique capabilities of the
software and hardware architectures on a type of device, such as the significant resources
available to a system of a personal computer connected to a wi-fi router. Alternatively,
wirelessly communicating devices may rely on short range communication, such as in the case
of a smartphone using near field communication, to provide a level of security using the limited
range of the wireless transmission. To meet this continually evolving context, new connection
security solutions are under constant development.

[0002] Devices that communicate via wireless inter-device connections often collaborate in a
system or network, as exemplified in the growing paradigm of the Internet of Things (loT). As
many of these devices are dependent on private information, the establishment of secure
connections between two or more devices is a common need in personal, home, and business
settings. One general example that spans these settings includes the secure connection
between a multi-function, personal user device, such as a smart phone, and an application
device, sometimes called a “dongle” or peripheral device. Personal user devices utilize a suite
of communications protocols to maximize security and inter-device compatibility, while
application devices are designed with limited hardware and software in order have a form
factor convenient for personal use and remain market competitive. Driven by this asymmetry

in device functionality, the establishment of a secure connection between a personal user

CA 3061233 2019-11-07



device and an application device can be limited by the application device. Careful consideration
must be given to the design of a system to provision such a connection that has both usability
and security.

[0003] The Transport Layer Security (TLS) protocol is a well-developed, customizable security
protocol that can be used to secure a wireless communicative connection between a personal
user device and an application device. TLS can be configured to provision a secure connection
using symmetric or asymmetric key encryption schemes. Authentication with TLS can be
established using methods defined by the public-key infrastructure (PKI) framework, for
example with the use of certificates signed by a trusted third party. Furthermore, two or more
devices can establish secure communication through a process in which a TLS server is
instantiated on one device while the other devices can communicate with the TLS server as
clients. Subsequently, the server and clients can negotiate the desired key encryption and
authentication schemes through a process called a “handshake,” in which they both agree upon
methods from series of pre-defined executable algorithms and server-client information
transfers. It is of utmost importance that the key encryption and authentication methods
within the handshake are implemented with the unique devices of the system in mind to

enable the maximal security potential of the secure connection.

SUMMARY
[0004] Methods and systems related to provisioning a secure connection to an inter-device
connection are disclosed. One system includes a first device, a second device, and a cloud
architecture. The first device has a secure element that stores a device secret, instantiates a
first connection protocol module, and instantiates a first connection protocol key generator.
The cloud architecture stores a mapping from the device secret to an identification of the first
device and instantiates a second connection protocol key generator. The first connection
protocol key generator and the second connection protocol key generator are both configured
to generate a pairing key using the device secret. The second device has a processor which
instantiates a second connection protocol module, that is communicatively connected to the

first device via the inter-device connection, that is configured to receive the identification of the

CA 3061233 2019-11-07



first device from the first device, and that is configured to exchange the identification of the
first device for the pairing key with the cloud architecture over a network connection. The first
connection protocol module and the second connection protocol module are configured to
mutually authenticate using the pairing key and add the secure connection to the inter-device
connection using the pairing key.

[0005] One disclosed method includes storing a device secret on a secure element in the first
device, and storing a mapping from the device secret to a device identifier of the first device on
a cloud architecture. The method includes generating a pairing key using a first connection
protocol key generator on the secure element and the device secret, and generating the pairing
key using a second connection protocol key generator on the cloud architecture and the device
secret. The method includes transmitting the pairing key from the cloud architecture to the
second device in response to receiving the device identifier. The method includes mutually
authenticating the first and second device using the pairing key as stored on the first device and
as stored on the second device. The method includes adding the secure connection to the
inter-device connection using the pairing key as stored on the first device and as stored on the
second device.

[0006] One system comprises a first device, a second device, a secure element, a cloud
architecture, a first connection protocol key generator, a second connection protocol key
generator, a first connection protocol module, an application, and a second connection
protocol module. The first device and the second device are connected with an inter-device
connection. The first device has a secure element that stores a device secret. The cloud
architecture stores the device secret and a mapping from the device secret to a device
identifier of the first device. The first generation protocol key generator is on the secure
element configured to generate a pairing key using the device secret. The second connection
protocol key generator is on the cloud architecture configured to generate the pairing key using
the device secret. The secure element in the first device instantiates the first connection
protocol module. The second connection protocol module is on the second device. The
application is on the second device, receives the pairing key from the cloud architecture, and

instantiates the second connection protocol module. The cloud architecture is configured to

CA 3061233 2019-11-07



transmit the pairing key to the second device in response to receiving the device identifier. The
first connection protocol module and the second connection protocol module are configured to
mutually authenticate using the pairing key and add a secure connection to the inter-device

connection using the pairing key.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Fig. 1 illustrates a system for provisioning a secure connection to an inter-device
connection between a first device and a second device, aided by a cloud architecture.

[0008] Fig. 2 illustrates the system from Fig. 1 in which the provisioning of the secure
connection uses an OTP key encryption method to generate a pairing key.

[0009] Fig. 3 illustrates a flow chart and block diagram that describes an example OTP key
encryption method used by the system from Fig. 2.

[0010] Fig. 4 illustrates the system from Fig. 2 with added security and communications
elements and modules to the cloud architecture.

[0011] Fig. 5 illustrates the system from Fig. 4 with added elements and modules that enable

the system for use with secure payment data.
DETAILED DESCRIPTION

[0012] Specific methods and systems for provisioning a secure connection between two
devices in accordance with the summary above are provided in this section. The methods and
systems disclosed in this section are nonlimiting embodiments of the invention and are
provided for explanatory purposes only. The detailed disclosure of these specific embodiments
should not be applied to constrict the full scope of the invention.

[0013] In specific embodiments of the invention, a system is provided for adding a secure
connection to an inter-device connection between communicating devices. For example, the
secure connection can be a transport layer security (TLS) connection that utilizes the TLS
protocol along with a shared secret that is either directly provisioned to, or derived on, the two
devices. As another example, the secure connection can be a datagram transport layer security

(DTLS) connection. Throughout this disclosure, TLS will be used as an exemplary connection

CA 3061233 2019-11-07



type and protocol. However, the secure connection can involve other protocols in which a
single key is used to provide both confidentiality and integrity for a bidirectional stream of data.
[0014] The establishment of a secure connection begins with authentication. Authentication is
the process in which a user, device, application, server, cloud architecture, or otherwise-
defined system entity proves its identity to a communicating party. Mutual authentication
between two system entities is a bidirectional authentication process. In TLS protocol, the TLS
server identity is authenticated to protect the client from becoming unwittingly compromised
through sharing private information to a malicious third-party. When bidirectional information
transfer must be safeguarded, for example in a secure communication of a first device and a
second device disclosed herein, mutual authentication is desired. In principal, mutual
authentication can be accomplished using a variety of encryption schemes. For example, the
X.509 public key standard enables an authentication scheme using public keys contained within
signed certificates to authenticate a server to a client in possession of a corresponding private
key. More generally, public/private key encryption methods can be used in a system
established within a public-key infrastructure (PKI) environment. The public/private key
encryption paradigm is made robust using sufficiently complex key generation methods and
authentication methods implemented by trusted third parties. Symmetric keys may also be
used for mutual authentication. A “symmetric key” can refer to a single cryptographic key held
by two communicating parties. The use of symmetric keys for mutual authentication can be
made possible, for example, by both parties having access to a mutually known set of secret
data. Symmetric key encryption and authentication protocols have relatively low
computational and memory requirements, in comparison with public/private keys, and can be
used for an expedient security handshakes in even simple devices.

[0015] Multiple encryption and authentication schemes are available to provision a secure
connection using TLS protocol. The choice of the scheme is negotiated in a process called the
handshake before the provisioning begins. The handshake involves a set of pre-defined
methods known by both communicating parties. One example of a TLS handshake can be
executed as follows. First, a shared secret is generated between a server and a client over an

unsecured connection through the exchange of local session information from the server and

CA 3061233 2019-11-07



client in combination with an agreed upon number or algorithm-generated data set called a
pre-master secret key. Second, the server and client proceed with a secretly agreed upon, pre-
programmed transformation to transform the pre-master secret key into a master secret key.
The transformation should be computationally difficult to reverse as to securely generate an
encryption key with an unsecured connection. A Diffie-Hellman key exchange is one example
method that can be used to carry out the described first and second steps. Third, the master-
secret key is used by both parties to make a message authentication code (MAC) secret key to
be used during the session for the further generation of a symmetric session key that can be
used, again by both parties, to encrypt and decrypt communication data.

[0016] In specific embodiments of the invention, the generation of the secure connection can
be based on a secret data set called a “seed” with which a cryptographic key can be generated.
The seed can be any set of secret data, for example a truly randomly generated number.
Furthermore, the seed can be associated, or “mapped,” to another set of data, such as a device
identifier of a device in the system. A seed mapped in this way can be designated a “device
secret” and can be combined with the device identifier to augment key generation during a
subsequent step. A device can be assigned a device identifier from multiple sources, including a
device serial number, a serial number of an internal component of the device, or any unique
and/or categorizable identifier thereon. In certain embodiments, the device identifier is
sufficient to allow the mapping to determine which seed is associated with the device, but it is
not unique to a specific device. However, the system will tend to be more secure if the seeds
are unique to specific devices. Seeds and, equivalently, device secrets can be utilized in the
system as a shared secret in support of cryptographic key generation such as symmetric key
generation. When multiple seeds are mapped to multiple devices through their respective
device identifiers, the multiple mapped connections can be called a “mapping.”

[0017] In specific embodiments of the invention, the system can provision a secure connection
to an inter-device connection between a first device and a second device, in which a cloud
architecture can be in communication with the second device. In these embodiments, the first
device can have an identification of the first device and can store a seed. Additionally, the

cloud architecture can store the seed as a device secret mapped to the identification of the first

CA 3061233 2019-11-07



device, linking the seed with the first device. The identification of the first device can be a serial
number of the first device. From the seed stored on the first device, a pairing key can be
generated. The first device can transfer the identification of the first device over the inter-
device connection to the second device. The second device can then transmit the identification
of the first device to the cloud architecture. The cloud architecture, in response, can generate a
pairing key from the device secret linked with the identification of the first device and send the
pairing key to the second device. With their respective and identical pairing keys, the first
device and the second device can complete a handshake to provision the secure connection by
accomplishing mutual authentication and cryptographic scheme negotiation.

[0018] The first device can transmit the identification, and any other information that may be
used for the handshake with the second device, to the second device in numerous ways. In
keeping with the example provided directly above, the information can be transmitted using
the same inter-device connection, discussed elsewhere herein, to which the secure connection
will be added. However, the information can also be transmitted using other channels. The
transmission of the information from the first device can depend on the hardware of the first
device. For example, if the first device had a display screen, the information can be displayed
to a user and manually entered on the second device. As another example, the first device
could have an alternative wired or wireless connection with the second device upon which the
information can be delivered.

[0019] The first device, the second device, and the cloud architecture can instantiate modules.
Modules can implement specific approaches for the method steps described herein. Module
steps can be implemented using non-transitory, computer-readable media storing instructions
that can be executed by a processor. Modules on communications devices can be configured to
generate keys, establish and provision connections with other devices, negotiate
communication protocols, and conduct other processes.

[0020] The first device, the second device, and the cloud architecture can include hardware
elements. Hardware elements can be touch screen displays, flat-screen displays, touch pads,
thumb print readers, image sensors, microphones, speakers, batteries, processors, relative

clocks, absolute clocks, card readers, volatile memories, non-volatile memories, and other

CA 3061233 2019-11-07



ancillary components. Hardware elements can enable wired and wireless communications,
including web servers, modems, configurable radios, wireless transceivers, antennae, radio-
frequency front-ends comprising decoder-encoders, multiplexers, switches, amplifiers, and
filters, and other communications components. Hardware elements directed towards wired
communications can be implemented in conjunction with any data cable type, including
ethernet, token ring, coaxial, optical fiber, serial cable, Cat2, telephone cable, universal serial
bus (USB) cable, or other data cable types used for sending digital information. Alternatively,
data cables can be specific to the communication of video information, in which case the types
of data cables can include s-video, component video, DVI, HDMI, display port, CoaXPress, and
MHL, and other video cable types. Hardware elements directed towards wireless
communications can support any standard type or frequency band, including such standards as
the Wi-Fi / |IEEE 802.11 series, EDGE, the EV-Do series, Flash-ODFM, GPRS, the HSPA standards,
Lorawan, LTE, RTT, the UMTS series, WiMAX, 6LoWPAN, the Bluetooth series, |IEEE 802.15.4-
2006, Thread, UWB, Wireless USB, ZigBee, ANT+, and other communications standards.

[0021] The first device, the second device, and the cloud architecture can have enabling secure
elements that are resistant to tampering or compromising attack. One example of a secure
element is a secure processor that can generally perform as a standard processor at reduced
performance by being altered to limit non-necessary functions for improved security. An
application-specific integrated circuit (ASIC) or a discrete integrated circuit can be designed to
execute only specific, secure functions and not other general-purpose functions, and thus can
be a secure element. An otherwise general-purpose processor can be modified to be a secure
element, or include a secure element, through certain modifications, such as the physical
partitioning of the secure element from the general hardware elements on the same chip. A
secure element can also be placed in the same package as a general processor, but be located
on a different physical chip in that package. Alternatively, a secure element can be secured by
stripping away vulnerable communication paths as to prevent communication with unsecured
elements. Secure elements can have secure storage independent of standard storage. The
secure storage could be isolated physically and logically from the system to which the secure

element is configured to operate with. In another approach, a secure element can be given

CA 3061233 2019-11-07



limited memory as to prevent the manipulation of data, modules, or protocols stored within,
and preclude the possibility of malicious code being locally installed or executed. In one
example, the secure storage can be in the range of two hundred bytes to eight kilobytes.
Secure elements can be permanently installed to the circuit board or chip package to which it is
mounted to prevent physical tampering and removal. Secure elements may be further
protected by tamper resistant packaging, such as an opaque cover, a tear-resistant mesh, a
tamper sensor, a secure element that deletes the secure storage if a tamper is detected, or an
element that destroys the secure element upon removal from the system.

[0022] In specific embodiments of the invention, the first device can be an application device
and the second device can be a personal user device. An application device may be directed
towards one or few applications, and may be optimized with minimal components to approach
minimal cost for manufacture. An application device can be configured to serve a specific
purpose in concert with a personal user device and can therefore be a “peripheral” of the
personal user device. In one example, an application device can have a secure element that can
store private data and instantiate a connection protocol module and a connection protocol key
generator. In another example, an application device can have a data reader with a data
processing module, the latter of which is instantiated by a secure element and communicatively
connected to said data reader. In a third example, an application device can include a secure
element that is a discrete integrated circuit and includes less than twenty kilobytes of writable
secure storage. The second device can be a personal user device, such as a smartphone, tablet,
laptop, or other communications device that can enable cryptographic and authentication
protocols. A personal user device can execute myriad types of applications. For example, a
personal user device can have a processor that instantiates a connection protocol module and
an operating system. In the same example, the personal user device can communicatively
connect with another device, as well as participate in authentication and establishing a secure
connection with that device. Throughout this disclosure the terms “first” and “second” device
will be used to refer to these devices where the use of these terms is meant to include, but not
be limited to, the examples provided above where the first device is an application device and

the second device is a personal user device.

CA 3061233 2019-11-07



[0023] Advantages accrue to embodiments of the invention where the first device is a
peripheral with limited secure memory and a symmetric pairing key can be implemented for
the handshake to provision a secure connection to the second device. By using a symmetric
pairing key for the authentication and encryption handshake, fewer bytes of stored data are
required in the first device through the omission of the certificates that would otherwise be
needed for key generation during the handshake, such as in a public/private key scheme where
private keys can be larger than authentication certificates. Concurrently, advantages accrue to
approaches in which a seed is used for pairing key generation. In these approaches, the seed is
never exposed outside of the secure device. As such, systems in which the secure element on
the first device has sufficient processing resources to execute a cryptographic process using a
pre-injected seed, a desirable tradeoff between the partitions of secure memory directed
towards storage relative to cryptographic computations is provided by reducing the secure
storage required for symmetric key generation. Furthermore, the peripheral can be a low-cost
device provided by an entity responsible for securing the connection, and the second device
can be a readily available device that is provided by a user. This particular cases is particularly
amendable to certain approaches disclosed herein because the pairing key generation
approach is only exposed on the secured peripheral and in the cloud architecture which
provides a high degree of control to the provider of the peripheral while enabling the users to
select from a wide range of devices to take the place of the second device.

[0024] Approaches that utilize symmetric pairing keys provide specific advantages over
approaches that require the use of certificates with respect to authentication methods, in
addition to key generation. Accordingly, the secure connection between the first device and
second device can be added through a TLS handshake that utilizes symmetric keys instead of
certificates. Using the public/private key X.509 standard to instantiate a secure TLS connection
can require both devices to provide certificates for mutual authentication, where each
certificate can be on the order of eight hundred to sixteen hundred bytes in size. In practice,
using asymmetric digital signature methods such as Rivest-Shamir-Adleman (RSA), digital
signature algorithm (DSA), or elliptic curve cryptography (ECC), the first device and the second

device would each have to authenticate with a chain of two to four certificates, with the

10

CA 3061233 2019-11-07



possibility of the matching private keys used for those certificates being even larger than the
certificates themselves, further burdening the secure memory of the first device’s secure
element. Symmetric keys can alleviate this memory burden, comprising key data sizes on the
order of 8 to 16 bytes through the use of smaller initial TLS handshake packets in the mutual
authentication and fewer computations in the key generation process using the seed. Such
approaches avoid public/private key processing times, which can be on the order of one
hundred milliseconds. The benefits of smaller secure storage load and faster cryptographic
processing can provide increased benefit, over their already distinct advantages, in secure
systems designed for secure payments that must also process secure payment keys and
payment authentication certificates with the already limited secure elements.

[0025] In specific embodiments of the invention, benefits accrue when the system includes a
cloud architecture that stores the identity of a set of devices such as a set of peripheral devices.
For example, a manufacturer could create a line of peripherals that utilize the system to
securely connect to any given smartphone. These approaches are beneficial in that the cloud
architecture can monitor the set of devices and maintain a record of compromised devices. In
one example, a first device can be a peripheral device that has become suspected or known to
be compromised, such as in the case where it has been stolen. To prevent insecure
communications with the compromised first device, such findings can be reported in the cloud
architecture. Accordingly, the first device under suspicion can be registered as a device that
has been compromised. The transmission of the pairing key from the cloud architecture to the
second device, as mentioned above, could be preconditioned on the first device not being
registered as compromised in the cloud architecture. This can prevent the second device from
being enabled to authenticate and generate a secure connection with a device that is
compromised.

[0026] Specific embodiments of the invention exhibit certain benefits where the first device
does not otherwise require a user interface with high functionality or does not need a user
interface at all. Some device pairing schemes require the user entry of a shared secret to the
application device to enable device pairing via a device interface. For example, one device

could display a code, and the code would then be manually entered on a user interface on a

11

CA 3061233 2019-11-07



second device. The mutual authentication and provisioning of the secure connections, through
the secure storage of the shared secret on the first device, does not require a user to provide
information to the first device for the process to proceed. As such, the first device can be a
peripheral device as described above, with comparatively stringent size and security
requirements with respect to user devices, and can often be constructed without a user
interface.

[0027] Fig. 1 illustrates a system 100 for adding a secure connection 111 to an inter-device
connection 110 between two discrete devices, for example a first device 120 and a second
device 130, in conjunction with a cloud architecture 140. The first device 120 can be a
peripheral, application device, or equivalent device type, of the second device 130. The second
device 130 can be a personal user device, or equivalent device type. The inter-device
connection 110 can be generated using a Bluetooth protocol and standard using a first
Bluetooth module 121 on the first device 120 and a second Bluetooth module 131 on the
second device 130. The secure connection 111 can be instantiated as a TLS connection. The
inter-device connection 110 and the secure connection 111 communicatively connect the first
device 120 and the second device 130 in a bidirectional fashion. Seeds and, equivalently,
device secrets can be used in the system 100 in support the generating of pairing keys that can
be subsequently used by the first device 120 and the second device 130 during the handshake
for mutual authentication and the provisioning of the secure connection 111.

[0028] In specific embodiments of the invention, the system 100 can have a first device 120
with a secure element 122 that stores a device secret, and the cloud architecture 140 can store
a mapping from an identification of the first device 120, such as a hardware identifier, to the
device secret. The secure element 122 can be a discrete secure processor. The system 100 can
also instantiate a first connection protocol key generator 123 and a second connection protocol
key generator 141, on the first device 120 and the cloud architecture 140 respectively. The first
connection protocol key generator 123 and the second connection protocol key generator 141
both can be configured to generate a pairing key using the seed. Key generators 123 and 141
can be implemented by secure elements that can be configured to securely store secret data

sets and perform cryptographic operations, including the generation of a PSK. In one

12

CA 3061233 2019-11-07



configuration, a secure element in communicative connection with a cloud architecture can
store a cryptographic element, such as a key encrypting key (KEK), used to encrypt seeds stored
in the cloud architecture. Seed encryption schemes using a KEK can include, for example,
advanced encryption standard (AES) or data encryption standard (DES) symmetric key
algorithms. Accordingly, a stored seed can be encrypted with a KEK to generate a PSK, wherein
the PSK can be configured to be a pairing key. Furthermore, the first connection protocol key
generator 123 and the second connection protocol key generator 141 both can be PSK
generators compatible with TLS protocols. It is noted that the PSK or pairing key, after
generation, can be used subsequently in additional processes, for example a TLS handshake
where the PSK can be used as an input to enable calculations that ultimately derive the keys
used directly for authentication and encryption.

[0029] Advantages accrue to specific embodiments where the seed is combined with other
device-specific information in the cryptographic process used to generate the pairing key. One
challenge in generating a secure symmetric pairing key with limited memory and processing
capabilities is the process of creating a large and truly random number. Typical algorithms for
this task can take significant calculation resources if performed onboard the device.
Alternatively, a key can be loaded in a certified key injection facility, or a remote equivalent
thereof, but in these environments the amount of available “keying” material can be limited
once the device is deployed. Combining device-specific data with the seed to generate the
pairing key can alleviate this concern. For example, the generation of the pairing key using the
seed can be a combination of the seed and additional device-specific data that is readily
available to the device such as hardware identifiers, serial numbers, and equivalent device data
on the first device.

[0030] Efficient processing of secure and secret information in the system 100 can be
implemented by organizing the information into sets. When a set of seeds are mapped to a set
of device identifications, the set of seeds can be called a set of device secrets. As such, the
mapping can therefore include a set of device secrets and a set of identifications. Furthermore,
the set of identifications, by the correlation of each identification to a unique device, can

identify the set of the devices 150. In some embodiments, the cloud architecture 140 can store

13

CA 3061233 2019-11-07



the set of device secrets and be configured to generate a set of pairing keys using said set of
device secrets. The key generation can be accomplished with the second connection protocol
key generator 141. The cloud architecture 140 can be communicatively connected to the set of
devices 150 via a communicative internet connection 113 to track status of the generated and
stored pairing keys in tandem with the associated set of devices 150. Control of the key pairs
and the associated set of devices 150 at the cloud architecture 140 level provides benefits by
enabling the invalidity of pairing keys and devices when they have become compromised.
[0031] The process of facilitating the necessary information transfer between the first device
120 and cloud architecture 140 to generate the secure connection 111 between the first device
120 and the second device 130 can be mediated by the second device 130 for enhanced
security. First, the second device 130 can be required to authenticate its identity to the cloud
architecture 140 server, for example using an installed application for the delivery of a
password and user name combination, a PKI authentication scheme, or other viable methods.
If the second device 130 authentication is successful, the first device 120 can transmit the
identification of the first device to the second device 130 using the inter-device connection 110,
after which the second device 130 can exchange the identification of the first device to the
cloud architecture 140 in exchange for the pairing key. The transferring of the identification of
the first device to the cloud architecture 140 by the second device 130 can be accomplished, for
example, using a communicative network connection 112. The pairing key can be generated by
the second connection protocol key generator 141, in part using the device secret mapped to
the identification of the first device, and transmitted from the cloud architecture 140 to the
second device 130 in response to receiving the device identifier from the second device 130.
Alternatively, the first device can send its own identity and an identity of the second device
using a direct connection between the first device and the cloud architecture, at which point
the cloud architecture will deliver the pairing key to the second device.

[0032] The system can be in a state where the second device 130 can be in possession of and
securely store the pairing key, and the first device can be in possession of and securely store
the pairing key generated by the first connection protocol key generator 123. In this state, a

first connection protocol module 124 instantiated by the secure element 122 of the first device

14

CA 3061233 2019-11-07



120, and a second connection protocol module 132 instantiated by a processor 133 on the
second device 130, can both be configured to mutually authenticate and add the secure
connection 111 to the inter-device connection 110, using their respective pairing keys. The
processor 133 can instantiate an operating system 134. The first connection protocol module
124 and the second connection protocol module 132 can be TLS modules.

[0033] In specific embodiments of the invention, a data reader 125 can be on the first device
120. The data reader 125 can be configured for securely reading data from secure data
sources. For example, the data reader 125 can read secure data from: a data storage device,
such as a USB drive; a device comprising a magnetic strip, such as a credit card; a device
comprising an integrated circuit, such as an integrated circuit card {ICC); a user, such as a user
with a biometric; nearby near field communications (NFC) supplied by a device, such as a
smartphone; a barcode, such as identifying barcode on a physical item; or an image, such as the
image of a personal check. In every embodiment, the data reader 125 can take the form of a
device or system able to receive secure data, for example with reference the example
embodiments above, a USB reader, a card reader, an ICC reader, an NFC communications
device, a biometrics reader, a barcode scanner, or an image sensor. These examples merely
show possible configurations of the data reader 125 and do not limit the embodiments that are
encompassed by the complete scope of the invention. A data processing module 126,
instantiated on the secure element 122, can subsequently receive the data through a
communicative connection with the data reader 125. The data processing module 126 can
interpret analog signals received from the data reader 125 and convert them into digital
information. The data processing module 126 can also encrypt the received information and
control the transfer of information out of secure element 122. The first device 120 is
configured to transmit the digital information to the second device 130 using the secure
connection 111.

[0034] In specific embodiments of the invention, the methods for adding a secure connection
can be performed using a one-time password (OTP) method that generates an encryption key
with a finite validity period. The key validity period can be any amount of time, such as the

duration of a transaction, the duration of a log-in session, or a pre-determined and fixed

15

CA 3061233 2019-11-07



amount of time. Benefits follow from the implementation of an OTP key generation method as
the limited key validity period minimizes the opportunity of an attacker to use a MITM replay or
playback attack, in which a valid data packet can be deliberately delayed or improperly
repeated to induce a security malfunction. OTP methods described herein can be applied to
the connection protocol key generators on the first device 120 and the cloud architecture 140.
[0035] Fig. 2 illustrates a system 200 for implementing an OTP key encryption method that can
require specific modules and elements in addition to the modules and elements inherited from
system 100. The first device 120 can have a first real time clock 227 that can be instantiated on
the secure element 122 and can generate a first time stamp. The first device 120 can also have
a first connection protocol key generator 223 that is configured to generate a pairing key from a
device secret using the first time stamp from the first real time clock 227. In one example, the
first time stamp incorporated pairing key can be an OTP key. The cloud architecture 140 can
instantiate a second real time clock 242 that can generate a second time stamp. The real time
can be loaded into the first device 120 in a secure facility before the device is deployed. Since
the real time clock 227 is real time, it can be used in synchronized cryptographic approaches
with cloud architecture 140 for the rest of its life as long as the real time clock 227 is not
disturbed. The cloud architecture 140 can also have a second connection protocol key
generator 241 that is configured to generate a pairing key from a device secret using the
second time stamp from the second real time clock 242. In one example, the second time
stamp incorporated pairing key can be an OTP key. In using the first connection protocol key
generator 223 and the second connection protocol key generator 241 using a device secret and
a time stamp to generate pairing keys, PSKs, TLS PSKs, or equivalent encrypted keys, these keys
can acquire the qualities of an OTP key and a limited time validity.

[0036] In specific embodiments of the invention, OTP key generation methods can contain
multiple steps that are identically followed by the first device 120 and the cloud architecture
140 to generate a symmetric set of pairing keys. The following described steps below are one
example of the set of identical, multiple steps described above. In a first step, the keying data
sets to be used by the key generator, such as a seed or device secret, can be provisioned. The

provisioning of this information to the first device can 120 be conducted while the device isin a

16

CA 3061233 2019-11-07



secure key injection facility or remotely using a remote key injection protocol. In a second step,
the OTP key generation algorithm, and the algorithm parameters, can be chosen. In one
example, the algorithm can be a hash-based message authentication code (HMAC) key
generation algorithm. In another example, the algorithm parameters can comprise: a key
generation interval that sets a time when a generated key can become invalid and a new one
should be generated; a secure hashing algorithm, such as from the SHA series cryptographic
hash functions published by the United States National Institute of Standards and Technology
that mathematically operate on the device secret data sets to create a hash output used as
source data for the key generation; a truncation length that determines the amount of source
data to be used, which must be less than the length of the hash output; and other parameters
used for key generation. In a third step, the OTP key generation algorithm can identify the data
sets that will be used as a seed, which can be a device secret. In a fourth step, a time stamp
can be generated by a real time clock. In one example, the real time cited on the time stamp
can be defined as the current Unix epoch time, which is the time elapsed in seconds from the
beginning of January 1%, 1970, coordinated universal time. In a fifth step, the pairing key can
be computed using the OTP key generation algorithm using the selected parameters. In one
example, the generated OTP pairing key can be in binary format.

[0037] Fig. 3 illustrates an example OTP key generation method 300 in accordance with the
generation of a pairing key by a connection protocol key generator. The method 300 can start
with the provisioning of the keying data sets 301 used by the key generator, such as a seed or
device secret with additional device identifier information. Next, the instantiation of the OTP
key generation algorithm 302 can proceed. The algorithm can be chosen from a set of
algorithms during step 302 if multiple algorithms are available in the set. The OTP generation
algorithm can be any viable algorithm, such as a request for comments (RFC) standard method
as developed by the Internet Engineering Task Force. In some embodiments of method 300,
the HMAC algorithm can be chosen as the OTP key generation algorithm. In one example
implementation of the HMAC algorithm, the parameters include the hash function, h, the
device secret, S, and the real time clock generated time stamp, T. The algorithm can import the

parameters 303 necessary to define key generation execution. Finally, the pairing key can be

17

CA 3061233 2019-11-07



generated 304 by computing the OTP algorithm, where the pairing key can be configured to be
usable as a PSK for TLS protocols. When applied to the key generator modules used in system
200, the specific implementation of the method 300 can vary. However, certain mechanisms
need to be identically deployed to assure that the key generator module in the cloud
architecture 140 and on the first device 120 agree regarding which implementation to apply at
any given time. In some approaches, the cloud architecture 140 and the first device 120 receive
instructions prior to the generation of a pairing key regarding which implementation to apply
for the next key generated.

[0038] In specific approaches to the invention, the cloud architecture 140 can include elements
and modules that enhance the functionality and security of methods and systems described
herein. The cloud architecture 140 can include a hardware security module (HSM). HSMs can
be similar to secure elements in that they can provide layers of security unavailable to generic
elements. However, HSMs are distinguished from secure elements per se because HSMs are
designed to store, generate, process, categorize, and transfer encryption keys. Accordingly,
HSMs can include any type of secure element to accomplish these ends, such as a secure
processor, secure data storage, encryption modules, decryption modules, key generators,
clocks, secure input elements to receive remote control commands, and other secure elements.
HSMs can be installed locally on a device as a secure element. Alternatively, HSMs can be
operated remotely and transfer secure information, such as an encryption key, to the system of
interest over a secure connection. HSMs with advanced functionality can be utilized in a
system back-end architecture, such as a cloud architecture 140, where the system back-end
design is not limited by, for example, hardware component size, processing resources, or
battery energy storage. The modules, elements, and hardware used in one embodiment to
implement an HSM can be considered equivalent to another HSM embodiment regardless of
the HSM installation location, such as a device or a cloud architecture, unless defined
otherwise. It is also noted that while an HSM is integral to the security of its elements and
modules and hence the system, the process does not absolutely require an HSM to execute the
disclosed method steps. These steps may be carried out by a generic processor supported by

the necessary elements and modules if the application’s security requirements are sustained.

18

CA 3061233 2019-11-07



[0039] In specific approaches to the invention, the cloud architecture 140 can include a
database to securely store the information needed to log the collection of keys, devices, device
identifiers, device secrets, and related tracking and provisioning information. The database can
remain secure while residing outside of the HSM through an implementation of data
encryption, for example by using a key encrypting key technique that is described below. The
cloud architecture 140 can include a web server to receive, store, process, and deliver
information from the cloud architecture 140 securely to another device in the system, such as
the second device 130. The web server can establish a secure connection, for example by
forming a TLS connection secured with a hypertext transfer protocol secure (HTTPS), with
another device after the connecting device has provided the required credentials, such as a
device identifier. After the secure connection has been established, private information, such
as pairing keys, may be transmitted over the secure connection.

[0040] Fig. 4 illustrates an example cloud architecture 140 in system 400 that can include an
HSM, a database, and a webserver for secure key generation and transmission involving the
cloud architecture 140, in addition to the modules and elements inherited from systems 100
and 200. In one example, a hardware security module 443 can store a key encrypting key and
instantiate the second connection protocol key generator 241 to enable the generating of a
pairing key on the cloud architecture 140. KEKs can provide a layer of security on the data sets
that are used to generate encryption keys at a later encryption steps, such as pairing key or a
PSK. A KEK used in this way can complement the encryption steps implemented, for example,
by a second connection protocol key generator 241 that uses an OTP encryption algorithm with
a second time stamp from a second real time clock 242. A KEK can be used to encrypt a device
secret on the cloud architecture 140 to create an encrypted device secret. Since the pairing key
can be generated with a device secret associated with a mapping to an identifier of a device, a
database 444 on the cloud architecture 140 can contain the necessary information to provision
the key generator 241 at the appropriate time. As such, the database 444 can contain the
mapping while storing the device secret as an encrypted device secret and retrieve the
encrypted device secret using the device identifier. The encrypted device secret must be

decrypted prior to being used for key generation and can be so decrypted by decryption

19

CA 3061233 2019-11-07



module 445 as instantiated on the hardware security module 443. After decryption, the second
connection protocol key generator 241 on the cloud architecture 140 can be used, with the
device secret, to generate the pairing key. In one example, the second real time clock 242 can
be instantiated on the cloud architecture 140 and off the hardware security module 443. In
another valid example, the second real time clock 242 can be instantiated on the hardware
security module 443 and retain the same functionality with additional security.

[0041] In one example, the cloud architecture 140 can contain a web server 446 configured to
receive a device identification from a second device 130 to authenticate the second device 130,
can access the mapping from the database 444 using the device identification, and can transmit
the pairing key to the second device 120 after accessing the mapping to forward the TLS
handshake, the process of mutual authentication and provisioning a secure connection 111 to
the inter-device connection 110 between the first device 120 and the second device 130. In
another example, the second device 130 can have two, separated TLS connection protocol
modules 432 and 435. TLS connection protocol module 432 can be instantiated on the
processor 133 to provision the secure connection 111 in line with methods described for the
second connection protocol module 132, where the secure connection 111 can be a TLS
connection. TLS connection protocol module 435, a third connection protocol module of
system 400, can also be instantiated on the processor 133 while remaining functionally
separate from TLS connection protocol 432, or it could be instantiated elsewhere on the second
device 130. TLS connection protocol module 435 can form a connection 412 with the web
server 446 from the second device 130. The connection 412 can be authenticated and
encrypted using HTTPS protocols.

[0042] Authentication of the second device 130 to the web server 446 on the cloud
architecture 140 can enable unique security mechanisms such as the prevention of the cloud
architecture from provisioning a pairing key to a malicious party. In some embodiments of the
invention, the authentication of the second device 130 to the cloud architecture 140 can be
implemented using an application installed on the second device 130. The application can be
configured to be managed by the operating system 134 and instantiated by the processor 133

using the operating system 134. The application can be implemented using a method to verify

20

CA 3061233 2019-11-07



the identity of the user of the second device 130. The application can use the elements and
modules on the second device 130 to aid in the task of user identification. The application can,
for example, perform second device 130 authentication by asking the user to input a username
and password using display device and input device technologies, such as a touch screen
display, that can be relayed to the web server 446 for authentication. The process by which the
user provides private user information to authenticate is generally called knowledge-based
authentication. Related methods may include different or additional security questions, such as
personal identification numbers (PINs), personal user questions answered before hand and
accessible to the web server 446, or even pictographic questions. In other authentication
processes, the application can ask for a user biometric, such as a finger print, voice command,
retina scan, or facial recognition image, supplied to the application through the sensor
elements on the second device 130. In another scenario, since the second device 130 is usually
not burdened by the same element and module restrictions as the first device 120, the second
device 130 can implement standard authentication and cryptographic protocols, such as by
using certificates and private/public key cryptography. Authentication by the application can
incorporate the second connection protocol module 132, or equivalently TLS connection
protocol module 432, to be part of the application. In another example, authentication by the
application can incorporate TLS connection protocol module 435. As part of the application,
the protocol module can be used to exchange the identification of the first device 120 for a
pairing key upon authentication of the second device 130 via the application, for example over
connection 412. In other words, the transmission of the pairing key from the cloud architecture
140 in this exchange can be preconditioned on the application authentication process of the
second device 130.

[0043] Communications between the second device 130 and the cloud architecture 140 can be
conducted by TLS connection protocol module 435 on the second device 130 with the web
server 446 on the cloud architecture 140. TLS connection protocol modules 435 can provision
connection 412 with standard wireless protocols as described above, including TLS protocols.
The TLS protocol can use HTTPS to establish a secure connection. In some embodiments, the

second device 130 can be a smart phone and TLS connection protocol module 435 can be the

21

CA 3061233 2019-11-07



native TLS connection protocol module configured by the original equipment manufacturer
(OEM) or by original operating system install. If such a TLS connection protocol models 435 is
used to communicate with cloud architecture 140, additional layers of cryptographic security
may be implemented within the TLS connection provisioned by the module when required by
the sensitive nature of the private data being transported through device 130. In alternative
embodiments, TLS connection protocol module 432 can be used to communicated with
webserver 446. In these embodiments, TLS connection protocol module 432 can be
instantiated by the application and can be enabled to connect to the web server 446 over a
connection other than a websocket protocol.

[0044] Fig. S illustrates system 500 that can perform secure payment transactions with secure
payment and secure storage modaules, in addition to the modules and elements inherited from
systems 100, 200, and 400. These secure payment and secure storage modules can also
support authentication and cryptographic processes, such as the TLS handshake between the
first device 120 and the second device 130. To this end, the first device 120 can have a secure
payment logic module 526 on secure element 122. The secure payment logic module 526 can
incorporate the properties of the data processing module 126 that enable it to receive and
process data from the data reader 125. As the data reader 125 can receive payment
information in the data supplied to it, the secure payment logic module 526 can receive and
further process secure payment information according to secure payment standards, such as
the payment card industry data security standard. The second device 130 can process secure
information using an application 536, which can also function as described above with respect
to the TLS connection protocol modules. The application 536 can be instantiated by the
processor 133 and instantiate payment logic module 537 that can work in concert with secure
payment logic module 526 over the secure connection 111. In some embodiments of the
invention, the first device 120 can receive payment information related to a payment
transaction at data reader 125, and process the payment information at secure payment logic
module 526 to be in condition to send to payment logic module 537 over the secure connection
111. The payment information can be further processed by the application 536 with the

payment logic module 537 and relevant portions of the payment information may be sent

22

CA 3061233 2019-11-07



elsewhere, for example over a connection established by one of the TLS connection protocol
modules.

[0045] In commercial settings where secure payments are used and customer interactions are
expected, the enhanced usability of the system 500 is desired. To improve the processing
speed at which a secure connection can be provisioned, the first device 120 can aid in the
processing time required to conduct a handshake by providing a key identity hint whenever the
secure protocol permits. The hint can be generated on the first device 120 as a data set that
includes data from first device 120 along with the identification of the first device. For
example, the hint can be a combination of the device identifier along with a time stamp. The
timestamp can be provided by a secure clock operating on the first device such as clock 227 in
the examples above.

[0046] In some embodiments of the invention, the secure modules can be added to enable the
secure and local storage of critical and private data used for the TLS handshake. On the cloud
architecture 140, the hardware security module 443 can include secure storage module 547 to
store a KEK used for the generation of a TLS PSK or a pairing key. On the first device 120, the
secure element 122 can include secure storage module 528 to store a loaded device secret. In
some approaches in which a device secret is used to generate a PSK for a TLS handshake, the
secure storage can be less than twenty kilobytes.

[0047] The hardware security module 443 on the cloud architecture 140 is a configurable
module. In one example, the hardware security module 443 can be configured to operate
without a control module, suitable for instances when a small set of cryptographic commands
are necessary. In a different example, the hardware security module 443 can be given
commands with a control module, such as a control computer, to enable the execution of
stored programs. In this example, the control computer can accommodate one of many
configurations, such as an isolated module in communicative connection with the secure
storage module 547 or, alternatively, fully incorporated into the web server 546.

[0048] In some embodiments of the invention, methods can be implemented to verify the state
of security in the second device 130 in order to halt operations if it has been compromised. The

application 536 on the second device 130 can transmit location telemetry, for example GPS

23

CA 3061233 2019-11-07



coordinates, to the cloud architecture 140 for the duration of the application 536 installation to
store a data set of credible locations for use of the second device 130 with the first device 120
on which machine learning algorithms can learn. If it has been determined from the learning
algorithm analysis that a second device 130 has been compromised, the cloud architecture 140
can be instructed to halt the transmission of pairing keys to that second device 130.

[0049] While the specification has been described in detail with respect to specific
embodiments of the invention, it will be appreciated that those skilled in the art, upon attaining
an understanding of the foregoing, may readily conceive of alterations to, variations of, and
equivalents to these embodiments. Any of the method steps discussed above can be
conducted by a processor operating with a computer-readable non-transitory medium storing
instructions for those method steps. The computer-readable medium may be memory within a
personal user device or a network accessible memory. The terminal can be a computer
terminal, a smartphone, a point of sale terminal, a repeater, a beacon, a sensor, or any other
device that collects and transmits secure information. Although examples in the disclosure
were generally directed to TLS, any number of communication protocols with similar
characteristics in terms of providing both security and authentication to a two-way stream of
communication could be used in its place. These and other modifications and variations to the
present invention may be practiced by those skilled in the art, without departing from the

scope of the present invention, which is more particularly set forth in the appended claims.

24

CA 3061233 2019-11-07



WHAT IS CLAIMED IS:

1. A system for provisioning a secure connection to an inter-device connection,
comprising:

a first device having a secure element, wherein the secure element: (i) stores a
device secret; (ii) instantiates a first connection protocol module; and (iii) instantiates
a first connection protocol key generator;

a cloud architecture that: (i) stores a mapping from the device secret to an
identification of the first device; and (ii) instantiates a second connection protocol key
generator;

wherein the first connection protocol key generator and the second connection
protocol key generator are both configured to generate a pairing key using the device
secret;

wherein the first connection protocol key generator generates the pairing key
using a first time stamp generated on the first device;

wherein the second connection protocol key generator generates the pairing key
using a second time stamp generated in the cloud architecture; and

a second device that: (i) has a processor which instantiates a second connection
protocol module; (i1) is communicatively connected to the first device via the inter-
device connection; (iii) is configured to receive the identification of the first device
from the first device; and (iv) is configured to exchange the identification of the first
device for the pairing key with the cloud architecture over a network connection;

wherein the pairing key is symmetrical pre-shared key generated using identical
steps on the first device and in the cloud architecture;

wherein the first connection protocol module and the second connection protocol
module are configured to: (i) mutually authenticate using the pairing key; and (ii) add
the secure connection to the inter-device connection using the pairing key upon said

mutual authentication.

2. The system from claim 1, further comprising:

25

Date Regue/Date Received 2021-03-30



a data reader on the first device; and

a data processing module instantiated by the secure element and communicatively
connected to the data reader for receiving data,

wherein the first device is configured to transmit data reader data to the second

device using the secure connection.

3. The system from claim 2, wherein:

the second device is a personal user device;

the processor instantiates an operating system;

the first device is a peripheral of the second device;

the secure element is a discrete secure processor;

the first and second connection protocol modules are transport layer security
(TLS) modules;

the first and second connection protocol key generators are TLS pre-shared key
(PSK) generators;

the pairing key is a PSK; and

the secure connection is a TLS connection.

4. The system from claim 1, further comprising:

a first real time clock instantiated on the secure element;

wherein the first connection protocol key generator is configured to use the first
time stamp from the first real time clock to generate the pairing key from the device
secret;

a second real time clock instantiated on the cloud architecture; and

wherein the second connection protocol key generator is configured to use the
second time stamp from the second real time clock to generate the pairing key from

the device secret.

5. The system from claim 1, wherein the cloud architecture further comprises:

26

Date Regue/Date Received 2021-03-30



a hardware security module storing a key encrypting key and instantiating the
second connection protocol key generator;

a database containing the mapping, wherein the database stores the device secret
as an encrypted device secret; and

a decryption module instantiated on the hardware security module and configured

to decrypt the encrypted device secret using the key encrypting key.

6. The system from claim 1, wherein the cloud architecture further comprises:
a web server configured to receive the identification of the first device from the
second device, access the mapping using the identification of the first device, and

transmit the pairing key to the second device after accessing the mapping.

7. The system from claim 6, further comprising:

an HTTPS connection between the web server and the second device; and

a third connection protocol module instantiated on the second device and
configured to form the HTTPS connection with the web server;

wherein the second and third connection protocol modules are separate TLS

modules.

8. The system from claim 1, further comprising:

an operating system and an application of the operating system that are
instantiated by the processor on the second device;

wherein the second connection protocol module is part of the application;

wherein the application is configured to authenticate the second device to the
cloud architecture; and

wherein the cloud architecture is configured to precondition the exchange of the
identification of the first device for the pairing key with an authentication of the

second device via the application.

27

Date Regue/Date Received 2021-03-30



9. The system from claim 1, wherein the secure element:
is a discrete integrated circuit; and

includes less than 20 kilobytes of writable secure storage.

10. The system from claim 1, wherein:

the mapping includes a set of device secrets and a set of identifications;

the set of identifications identify a set of devices;

the cloud architecture is communicatively connected to the set of devices via the
internet; and

the second connection protocol key generator is configured to generate a set of

pairing keys using the set of device secrets.

11. A method for provisioning a secure connection to an inter-device connection

between a first device and a second device, comprising:

storing a device secret on a secure element in the first device;

storing a mapping from the device secret to a device identifier of the first device
on a cloud architecture;

generating a first time stamp on the first device;

generating a second time stamp in the cloud architecture;

generating a pairing key using: (i) a first connection protocol key generator on the
secure element; (ii) the first time stamp; and (ii1) the device secret;

generating the pairing key using: (i) a second connection protocol key generator
on the cloud architecture; (ii) the second time stamp; and (iii) the device secret;

transmitting the pairing key from the cloud architecture to the second device in
response to receiving the device identifier from the second device;

mutually authenticating the first and second devices using the pairing key as
stored on the first device and as stored on the second device; and

adding the secure connection to the inter-device connection using the pairing key

as stored on the first device and as stored on the second device.

28

Date Regue/Date Received 2021-03-30



wherein the pairing key is a symmetrical pre-shared key generated using identical

steps on the first device and in the cloud architecture.

12. The method of claim 11, further comprising:
receiving data using a data reader on the first device; and
transferring the data from the first device to the second device using the secure

connection.

13. The method from claim 12, wherein:

the second device is a personal user device with an operating system;

the first device is a peripheral of the second device;

the secure element is a discrete secure processor;

the first and second connection protocol key generators are TLS pre-shared key
(PSK) generators;

the pairing key is a PSK; and

the secure connection is a TLS connection.

14. The method from claim 11, further comprising:

generating the first time stamp using a first real time clock on the secure element;
and

generating the second time stamp using a second real time clock on the cloud

architecture.

15. The method from claim 11, further comprising:

encrypting the device secret on the cloud architecture to create an encrypted
device secret;

retrieving the encrypted device secret from a database of the cloud architecture

using the device identifier;

29

Date Regue/Date Received 2021-03-30



decrypting the encrypted device secret using a hardware security module of the
cloud architecture before generating the pairing key using the second connection
protocol key generator on the cloud architecture and the device secret; and

wherein the second connection protocol key generator is instantiated by the

hardware security module.

16. The method from claim 11, further comprising:

receiving the device identifier from the second device using a web server of the
cloud architecture;

wherein the transmitting of the pairing key from the cloud architecture to the

second device uses the web server.

17. The method from claim 16, further comprising:

forming an HTTPS connection between the web server and the second device
using a TLS connection protocol module instantiated on the second device;

wherein a separate TLS protocol module adds the secure connection to the inter-

device connection.

18. The method from claim 11, further comprising:
instantiating an application using an operating system on the second device;
authenticating the second device to the cloud architecture using the application;
and
preconditioning a transmission of the pairing key from the cloud architecture to

the second device on with an authentication of the second device via the application.

19. The method from claim 11, wherein the secure element:
is a discrete integrated circuit; and

includes less than 20 kilobytes of writable secure storage.

30

Date Regue/Date Received 2021-03-30



20. The method from claim 11, further comprising:

storing a set of device secrets on the cloud architecture; and

generating a set of pairing keys using the set of device secrets on the cloud
architecture;

wherein the mapping includes a set of identifications; and

wherein the set of identifications identify a set of devices.

21. The method from claim 11, further comprising:
generating a third time stamp using a real time clock on the cloud architecture;
generating a key identity hint on the second device using the third time stamp and
the device identifier; and
transmitting the key identity hint from the second device to the first device while

adding the secure connection to the inter-device connection.

22. The method from claim 11, further comprising:
registering a third device as compromised in the cloud architecture; and
preconditioning a transmission of the pairing key from the cloud architecture to
the second device on the first device not being registered as compromised in the cloud

architecture.

23. The method from claim 11, further comprising:

generating the inter-device connection using a first Bluetooth module on the first
device and a second Bluetooth module on the second device;

transmitting the device identifier from the first device to the second device using
the inter-device connection; and

transmitting the device identifier from the second device to the cloud architecture

using a network connection.

24. The method from claim 11, further comprising:

31

Date Regue/Date Received 2021-03-30



generating the first time stamp using a first real time clock on the secure element;

wherein the pairing key is a one time use pairing (OTP) key.

25. A system comprising:

a first device;

a second device with an inter-device connection to the first device;

a secure element in the first device storing a device secret;

a cloud architecture storing the device secret and a mapping from the device
secret to a device identifier of the first device;

a first connection protocol key generator on the secure element configured to
generate a pairing key using the device secret;

wherein the first connection protocol key generator generates the pairing key
using a first time stamp generated on the first device;

a second connection protocol key generator on the cloud architecture configured
to generate the pairing key using the device secret;

wherein the second connection protocol key generator generates the pairing key
using a second time stamp generated in the cloud architecture;

a first connection protocol module instantiated by the secure element;

a second connection protocol module on the second device;

an application on the second device that receives the pairing key from the cloud
architecture and instantiates the second connection protocol module;

wherein the cloud architecture is configured to transmit the pairing key to the
second device in response to receiving the device identifier from the second device;

wherein the first connection protocol module and the second connection protocol
module are configured to: (i) mutually authenticate using the pairing key; and (ii) add
a secure connection to the inter-device connection using the pairing key; and

wherein the pairing key is a symmetrical pre-shared key generated using identical

steps on the first device and in the cloud architecture.

26. The system from claim 25, further comprising:

32

Date Regue/Date Received 2021-03-30



a data reader on the first device; and

a data processing module instantiated by the secure element and communicatively
connected to the data reader for receiving data,

wherein the first device is configured to transmit data reader data to the second

device using the secure connection.

27. The system from claim 26, wherein:

the second device: (1) is a personal user device; and (i1) has a processor;

the processor instantiates an operating system;

the first device is a peripheral of the second device;

the secure element is a discrete secure processor;

the first and second connection protocol modules are transport layer security
(TLS) modules;

the first and second connection protocol key generators are TLS pre-shared key
(PSK) generators;

the pairing key is a PSK key; and

the secure connection is a TLS connection.

28. The system from claim 26, further comprising:

a first real time clock instantiated on the secure element;

wherein the first connection protocol key generator is configured to use the first
time stamp from the first real time clock to generate the pairing key from the device
secret;

a second real time clock instantiated on the cloud architecture; and

wherein the second connection protocol key generator is configured to use the
second time stamp from the second real time clock to generate the pairing key from
the device secret; and

wherein the pairing key is a one time use pairing key.

33

Date Regue/Date Received 2021-03-30



00T

CA 3061233 2019-11-07



00T
¢ 'Ol

0stT

CA 3061233 2019-11-07



TRG. 3 3/5

300

(Seed, Device ID)
301

:

HMAC (h, S, T)
302

I

@ —> (hl SI T)
303

:
(Pairing Key)
304

CA 3061233 2019-11-07



4/5

0SsT

00v
¥ 'Ol

CA 3061233 2019-11-07



5/5

0sT

00S

S 'Old

CA 3061233 2019-11-07






	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - CLAIMS
	Page 28 - CLAIMS
	Page 29 - CLAIMS
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - DRAWINGS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - REPRESENTATIVE_DRAWING

