«» UK Patent Application «GB .»2 148563 A

(43) Application published 30 May 1985

(21) Application No 8426840
(22) Date of filing 24 Oct 1984

(30) Priority data
(31) 8328396

(32) 24 Oct 1983

(33) GB

(71) Applicant

British Telecommunications plc (United Kingdom),
British Telecom Centre, 81 Newgate Street, London

EC1A 7AJ

(72) Inventor
Christopher G Miller

(74) Agent and/or Address for Service
Vivian E Irish,

British Telecom, Intellectual Property Unit, 151 Gower

Street, London WC1E 6BA

(51) INT CL*
GO6F 13/14 HO4L 11/08

(52) Domestic classification
G4A FG

(56) Documents cited
GB 1440103 GB 1392231
(58) Field of search
G4A
HA4K

GB 1249209

(54) Multiprocessor system

(57) A multiprocessor system
consistig of a plurality of slave
processors 10 and a master
processor 11 each connected by a
bus to a common memory 12.
Message transfers are implemented
by the master which scans one-byte
impart areas in the common
memory—each slave processor
only being able to load a pointer to
one said one-byte areas.

The common memory has input
areas corresponding to the source
slave processors, information being
assembled into output queues
corresponding to the destination
processors.

Connection problems are
prevented because once a slave
processor has loaded information to
its one byte area it must pass
control of the bus to another
processor. The system is fast
because the master does not waste
time looking at empty memory.

7~

Fig.1

The drawings originally filed were informal and the print here reproduced is taken from a later filed formal copy.

vV €99811 2499



15

10

11

10

S o ——— — — S

r[5

12

10

-—

10
9}

13

10

/
ollol

10

s R o

10

2~
5\1‘\n rc

10
101110

~-8

Fig.1



[t
e
K g}
(o:0)
oA
v
G2

28

D
N

Q
N

Q
N

|

()
N

N

0_.

s

Q
N

(=)
N

<

)

N

Fig.2




/3

0

DD
—
Visaa
<O
CIe
54 r]
(+P0]

A5 ,,
Fﬁ COMMON BUS REQUEST

MEMORY REGUEST G
| P

FREEZE PROC.

NexiElEs

Mt

COMMON BUS ENABLE

BUS GRANT IN

3
BQUS GRANT OUT
7z

Fig.3.



GB2148563A 1

10

16

20

25

30

35

40

45

50

55

60

65

SPECIFICATION
Multiprocessor system

This invention relates to a multiprocessor sys-
tem in which a bus connects each processor
to a common memory.

Multiprocessor systems employing common
memory for the transfer of information be-
tween processors are known. For example, in
British patent application 2 112 146 a system
is disclosed in which information is transferred
in response to interrupts. In an article by R J
Bowater et al in the IBM technical disclosure
bulletin Volumn 22, No 11, of April 1980 a
system is disclosed in which areas of memory
are scanned in order to locate information
which is to be transferred.

To ensure satisfactory operation of the
above systems, while making efficient use of
the common bus, contention for the bus must
be resolved to ensure that all processors have
access to the common memory. The rate at
which each transfer is preformed (for a given
clock frequency) is determined by the number
of instructions required to perform the trans-
fer. It is therefore an object of the present
invention to provide an improved multiproces-
sor system which provides fast information
transfer while allowing each processor to have
access to the common bus.

According to a first aspect of the invention
there is provided a multiprocessor system,
comprising a master processor, a plurality of
independently controlled slave processors, a
bus for connecting the slave processors and
the master processor to a common memory,
said common memory including:

(a) a plurality of message buffers for stor-
ing messages in which each message
includes a label which identifies a des-
tination slave processor,
an input area associated with each
slave processor such that information
is supplied to an input area only from
its associated slave processor, and
each area occupies the minimum space
required to identify one of said mes-
sage buffers,
an output queue associated with each
slave processor such that the contents
of an output queue are only read by its
associated processor,
the system arranged to transfer information
from a source slave processor to a destination
slave processor, in which:

{e) a source slave processor supplies a
message to an addressed message
buffer and either prior or subsequent
to supplying said message said first
processor loads to its associated area a
message buffer indicator which indi-
cates the position of said addressed
buffer,

(f) the master processor scans all the input

(b)

(c)

70

75

80

85

90

95

100

1056

110

115

120

125

130

areas 1o detect a message buffer indica-
tor, reads the label stored within an
indicated message buffer, and supplies
at least part of the message to the
output buffer associated with the desti-
nation processor, and

each slave processor scans and reads
messages from its associated output
queue.

In a preferred arrangement a slave proces-
sor must request use of the bus from the
master processor before said slave may access
the common memory. The master processor
may issue a bus acknowledge signal to a
highest priority slave processor after receiving
a bus request signal from any of the slave
processors if the master does not itself require
to access the common memory. Preferably the
highest priority slave processor will relay a
bus acknowledge signal to the next priority
slave processor if said highest priority slave
does not require to access the common mem-
ory and so on until all the slaves have re-
ceived a bus acknowledge signal.

Preferably, after reading a message the
master processor replaces the label which
identifies the destination processor with a la-
bel which identifies the source processor be-
fore writing the whole of said message to the
associated output queue of the destination
processor. Each message may include a chain
pointer which may identify a further message
which is to be supplied to the associated
output queue of the destination processor.

In a preferred arrangement the common
memory also includes a plurality of data
buffers into which data is supplied by a
source slave processor and ownership of the
data buffer is transferred to a destination slave
processor. Preferably each message also in-
cludes a data pointer which may identify a
data buffer to a destination processor such
that on receiving said message said destina-
tion processor takes over the ownership and
has sole use of said data buffer.

In a preferred arrangement messages are
written into an output queue in a cyclic man-
ner and the master processor records the
position where the last write occurred to each
of said queues. Preferably each slave erases
information from its associated output queue
thus leaving the positions blank once said
data has been read by said slave. A slave may
then stop reading from its associated output
queue after detecting one blank. Preferably a
slave may scan information in its output
queue without erasing said information in an
attempt to locate a specific message and on
detecting said message said slave will return
to the unattended information in said queue.
A slave may also periodically read a predeter-
mined location in its associated output queue
out of sequence and on detecting a crash
command at said predetermined location said
slave processor will attempt to retain syn-

(9)



GB2148563A 2

10

15

20

25

30

36

40

45

50

55

60

65

chronisation with the master processor.

Preferably the input areas consist of single
consecutive memory locations and the maxi-
mum number of message buffers is deter-
mined by the word length of said locations.

The invention will now be described by way
of example only with reference to the accom-
panying Figures of which:

Figure 1 is a schematic representation of a
multiprocessor testing apparatus for testing a
packet switching network;

Figure 2 is a partial memory map for a
common memory which forms part of the
multiprocessor testing apparatus; and

Figure 3 is a circuit for allowing each pro-
cessor of the multiprocessor system to obtain
access to the common memory.

A packet switching network 1 is shown
schematically in Fig. 1 having four synchro-
nous terminals 2 and three asynchronous ter-
minals 3. Information transferred over the
asynchronous terminals must be interfaced to
the packet switching environment by means
of packet assembler/dissemblers shown
generally by 4. Each synchronous and asyn-
chronous terminal is respectively connected to
a synchronous port 5 or an asynchronous port
6 of a multiprocessor testing system 7. The
testing system includes a VDU /keyboard ter-
minal 8 and a disc drive 9 allowing test
programs to be loaded which generate a plu-
rality of calls over a wide range of speeds and
record the response of the network 1 to said
calls.

The multiprocessor testing system 7 con-
sists of twelve slave processors 10 (each
based on a Zilog Z80 microprocessor) and a
similar master processor 11. Ports 2 and 3
are grouped into pairs and each pair is inter-
faced to the system 7 by one of the slave
processors 10. Of the remaining four proces-
sors one controls the operation of the VDU
and keyboard 8, one implements CCITT X256
level 2 protocol, a third formats information
for displaying on the VDU, and a fourth
provides X25 level 3 and organises network
tests. The master processor 11 controls the
operation of the disc drive 9 and performs a
central role with respect to the movement of
information within the multiprocessor system.

The master processor 11 and each slave
processor 10 may access 64K memory posi-
tions. Half of this addressable memory takes
the form of local memory which is unique to
each processor. The remaining 32K is used to
address common memory 12 located on a
common services board 13. Each processor
10,11 has access to the common memory 12
over a common bus 14—the bus is essen-
tially controlled by the master 11 and each
slave 10 must request use of the bus 14. The
common services board 13 also includes a
clock 15 (which generates timing signals for
all of the processors 10,11 in the multiproces-
sor system 7) and may include another Z80

70

75

80

85

90

95

100

105

110

1156

120

125

130

microprocessor for organising the functions it
is required to perform.

The local memory of each slave processor
10 and the local memory of the master pro-
cessor 11 consists of 2K of ROM and 30K of
RAM. Application programs are loaded into
the RAM from the disc 9 while the instruc-
tions held by the ROM control the transfer of
information within the system 7. The multi-
processing system 7 may therefore operate in
accordance with the present invention before
application programs are loaded to the proces-
sors. The software of each processor uses the
common memory for transferring information
by arranging said common memory into a
plurality of blocks, however, these blocks do
not determine the physical arrangement of the
common memory which is 32K of standard
RAM.

A partial memory map for the common
memory is shown in Fig. 2. The memory has
twelve one-byte input areas 20, a plurality of
eight-byte message buffers 21, twelve sixty-
four-byte output queues 22 and a 255 data
buffers 23.

Each of the twelve output queues 22 is
uniquely associated with one of the slave
processors 10. Information is supplied to a
slave processor 10 by loading said informa-
tion to its associated output queue. However
information can only be loaded into an output
queue by the master processor 11. The mas-
ter processor knows the location in each out-
put queue 22 where it last loaded data. The
next load therefore immediately follows on in
a cyclic fashion.

The master 11 has control over the com-
mon bus 14 and slave processors 10 must
request bus access. Any of the slave proces-
sors 10 may issue a bus request at any time
which is ignored by the master if the master
11 is itself accessing the common memory.
When the master 11 no longer requires the
common memory it issues a bus acknowledge
signal which is supplied to a slave processor
10 having the highest priority. This slave
processor 10 will then access the memory or
pass the bus acknowledge signal to the next
slave processor and so on. The arrangement is
known as a daisy chain and the circuit for
performing this operation is described below
with reference to Fig. 3.

When a slave processor 10 has control of
the bus said slave will read any information
waiting in its associated output queue 22.
Like the master processor stores the position
in each output queue where it last imple-
mented a write so each slave processor knows
the last byte to be read. After reading infor-
mation from a memory location in its output
queue a slave processor erases that informa-
tion, ie it loads blanks. On implementing a
read to its output queue a slave processor will
read information until it encounters a blank.
Therefore if no information is waiting in an



GB2148563A 3

10

15

20

25

30

35

40

45

50

55

60

65

output queue the associated slave processor
will only read one byte and then pass a bus
acknowledge signal to the next slave proces-
sor in the daisy chain.

The above details how information is trans-
ferred from the master 11 to a slave 10. This
procedure is also followed when a slave com-
municates with another slave which ensures
the master has control over all information
transfers. If a slave 10 is required to send
information to the master 11 or to another
slave it does so using one of the message
buffers 21. The master 11 determines which
message buffers 21 are available for each
slave and more message buffers 21 may be
requested by a slave during operation of the
system 7. If a first slave (a source) wishes to
send a message to a second slave (a destina-
tion) then the source slave processor 10 re-
quests use of the common bus 14. When the
source slave receives a bus acknowledgement
signal it writes an 8-byte message into a
message buffer 21, and then writes a mes-
sage buffer indicator to the area 20 associated
with the source processor. The source proces-
sor only has one associated area which en-
sures that control of the bus will be passed to
another processor.

Each 8-byte message is generated in accor-
dance with a defined structure. The first byte
is a chain pointer which allows message
buffers to be chained thus maintaining queues
of messages. The maximum number of mes-
sages which may be chained is restricted to
the number of message buffers 21 which are
available to a slave processor. Therefore each
slave will have to pass control of the bus to
the master 11 to ensure that said slave has
free buffer space.

Byte 2 is a data pointer which uniquely
defines one of the 255 64-byte data buffers
23. The bulk of any information which is to
be sent from a source slave processor 10 is
placed in a data buffer 23, for example a
packet to be sent or a packet received from
line. In this embodiment each data buffer has
64 bytes but essentially they may be of any
suitable length. When a destination processor
receives a data pointer it takes over the own-
ership of the data buffer identified by the
pointer and may then access the information
contained within said buffer. Therefore the
butk of information transferred between pro-
cessors does not have to be physically trans-
ferred from one memory location to another
memory location.

Byte 3 is a message destination label which
identifies the destination slave processor 10.
On reading this byte the master processor
knows which output queue 22 the message is
to be written to, ie the one associated with
the destination processor. However before the
message is written to an output queue 22 the
destination label is replaced with a source
label which identifies the source processor to

70

75

80

85

90

95

100

105

110

115

120

125

130

the destination processor.

The fourth byte describes the message func-
tion, for example, take over the data buffer 23
identified by the data pointer (byte 2), or send
out a test frame etc. Bytes b to 8 are message
parameters the meaning of which is deter-
mined by the message function.

Any of the slave procesors 10 may also be
provided with the facility of looking ahead in
their output queues 22. If they are waiting for
a specific message, for example the answer to
a question, then they may scan and ignore
several messages until the awaited message is
found. The message is then acted upon, a
market left to the effect that this message
must not be read again, and the slave proces-
sor returns to the start of the previously
ignored messages. Of course a slave 10 can-
not look further than the 64 bytes of the
cyclic output queue 22 and messages are not
erased while they are being scanned.

in addition to organising the transfer of
information, as described above, the master
processor 11 must also ensure that all the
slaves are operating in synchronism. On de-
tecting that something has gone wrong with a
slave processor the master loads a one byte
crash command to a predetermined position
24 in the slaves’ associated output queue.
Each slave is arranged to periodically scan its
respective predetermined position and on find-
ing a crash command will set about regaining
synchronisation with the rest of the system
while temporarily halting its external activities.

A slave processor 10 calls for memory
access on (to be precise just after) the rising
edge of a clock pulse and the common ser-
vices board 13 provides a bus acknowledge-
ment signal on the falling edge. Since by the
time the bus acknowledgement signal is avail-
able all processors that require a common
memory access will have asserted their re-
quirement, this allows contention for use of
the bus to be solved by the daisy chain
arrangement.

The Bus control logic for each slave proces-
sor 10 is shown in Fig. 3 and is designed to
request use of the common memory bus only
when necessary (ie the processor is attempt-
ing to access the common memory) and to
hold the processor frozen until the bus be-
comes available. When a slave processor sets
its address line A15 high, indicating a require-
ment for a memory access to the common
memory, the output of gate 30 will be forced
low. When the memory request signal from
the slaves’ CPU goes active (low), half a clock
cycle later, the output of gate a 31 will be
allowed to go high which will clock a zero into
a D-type bistable 32. The output of gate 31
being high will automatically force the output
of a gate 33 high, thereby making this pro-
cessor’'s bus grant out signal false which will
inhibit any processors of lower priority from
accessing the bus. When "“‘Bus grant in"’ goes



GB2148563A 4

10

16

20

25

30

35

40

45

50

55

60

65

low (and this will depend on the common
services board being ready for an access at
the same time as no other processors up-
stream requiring access) bistable 33 is preset.
This transition will clock a zero into a latch 34
(since the output from gate 31 and hence the
preset input is high) which means that com-
mon bus enable becomes true. Note that
during the period when bistable 33 has its Q
output low the CPU is held in a wait condi-
tion. When released the processor will operate
the necessary signals to achieve the required
memory access and when finished the mem-
ory request signal will go high again which
forces the output from gate 31 low, presetting
latch 34 and re-enabling the bus-grant daisy
chain via gate 33. A little later the A15 line
from the CPU will go low again and the bus is
released for the next cycle.

CLAIMS

1. A multiprocessor system, comprising a
master processor, a plurality of independently
controlled slave processors, a bus for connect-
ing the slave processors and the master pro-
cessor to a common memory, said common
memory including:

(a) a plurality of message buffers for stor-
ing messages in which each message
includes a label which identifies a des-
tination slave processor,
an input area associated with each
slave processor such that information
is supplied to an input area only from
its associated slave processor, and
each area occupies the minimum space
required to identify one of said mes-
sage buffers,
an output queue associated with each
slave processor such that the contents
of an output queue are only read by its
associated processor,
the system arranged to transfer information
from a source slave processor to a destination
slave processor, in which:

(e) a source slave processor supplies a
message to an addressed message
buffer and either prior or subsequent
to supplying said message said source
processor loads to its associated area a
message buffer indicator which indi-
cates the position of said addressed
buffer,

(f) the master processor scans all the input
areas to detect a message buffer indica-
tor, reads the label stored within an
indicated message buffer, and supplies
at least part of the message to the
output buffer associated with the desti-
nation processor, and
each slave processor scans and reads
messages from its associated output
queue.

2. A multiprocessor system according to
claim 1 in which a slave processor must

(b)

(c)

(9)

70

75

80

85

90

95

100

1056

110

115

120

125

130

request use of the bus from the master pro-
cessor before said slave may access the com-
mon memory.

3. A multiprocessor system according to
claim 2 in which the master processor issues
a bus acknowledge signal to a highest priority
slave processor after receiving a bus request
signal from any of the slave processors if the
master does not itself require to access the
common memory.

4. A multiprocessor system according to
claim 3 in which the highest priority slave
processor will relay a bus acknowledge signal
to the next priority slave processor if said
highest priority slave does not require to ac-
cess the common memory and so on until all
the slaves have received a bus acknoledge
signal.

5. A multiprocessor system according to
any of claims 1 to 4 in which after reading a
message the master processor replaces the
label which identifies the destination proces-
sor with a label which identifies the source
processor before writing the whole of said
message to the associated output queue of
the destination processor.

6. A multiprocessor system according to
any of claims 1 to 5 in which each message
includes a chain pointer which may identify a
further message which is to be supplied to the
associated output queue of the destination
processor.

7. A multiprocessor system according to
any of claims 1 to 6 in which the common
memory also includes a plurality of data
buffers into which data is supplied by a
source slave processor and ownership of the
data buffer is transferred to a destination slave
processor.

8. A multiprocessor system according to
claim 7 in which each message includes a
data pointer which may identify a data buffer
to a destination processor such that on receiv-
ing said message said destination processor
takes over the ownership and has sole use of
said data buffer.

9. A multiprocessor system according to
any of claims 1 to 8 in which messages are
written into an output queue in a cyclic man-
ner and the master processor records the
position where the last write occurred to each
of said queues.

10. A multiprocessor system according to
claim 9 in which each slave erases informa-
tion from its associated output queue thus
leaving the positions blank once said data has
been read by said slave.

11. A multiprocessor system according to
claim 10 in which a slave will stop reading
from its associated output queue after detect-
ing one blank.

12. A multiprocessor system according to
claim 10 or claim 11 in which a slave may
scan information in its output queue without
erasing said information in an attempt to



GB2 148 563A

5

10

16

20

locate a specific message and on detecting
said message said slave will return to the
unattended information in said queue.

13. A multiprocessor system according to
any of claims 9 to 12 in which each slave
processor periodically reads a predetermined
location in its associated output queue out of
sequence and on detecting a crash command
at said predetermined location said slave pro-
cessor will attempt to retain synchronisation
with the master processor.

14. A multiprocessor system according to
any of claims 1 to 13 in which the input areas
consist of single consecutive memory loca-
tions and the maximum number of message
buffers is determined by the word length of
said locations.

15. A multiprocessor system as described
herein with reference to Figs. 1 to 3.

16. A packet switching network testing
system as described herein with reference to
Figs. 1 to 3.

Printed in the United Kingdom for

Her Majesty’s Stationery Office, Dd 8818935, 1985, 4235.
Published at The Patent Office, 25 Southampton Buildings,
London, WC2A 1AY, from which copies may be obtained.



