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HIGH DENSITY LOGIC FORMATION USING MULTE-DIMENSIONAL LASER

ANNEALING

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority to provisional application no.
62/883,192 filed August 6, 2019 and application no. 16//705,485 filed December 6, 2019, the

entire contents of which are incorporated herein by reference.

BACKGROUND
TECHNICAL FIELD
The present disclosure is directed to microelectronic devices including semiconductor

devices, transistors, and integrated circuits, including methods of microfabrication.

DESCRIPTION OF THE RELATED ART

The “background” description provided herein 18 for the purpose of generally
presenting the context of the disclosure. Work of the presently named inventors, to the extent
it 1s described in this background section, as well as aspects of the description which may not
otherwise qualify as prior art at the time of filing, are neither expressly or impliedly admitted
as prior art against the present invention.

This disclosure relates to microelectronic devices including semiconductor devices,
transistors, and integrated circuits, inchuding methods of microfabrication.

In the manufacture of a semiconductor device (especially on the microscopic scale),
various fabrication processes are executed such as film-forming depositions, etch mask
creation, patterning, material etching and removal, and doping treatments. These processes

are performed repeatedly to form desired semiconductor device elements on a substrate.
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Historically, with microfabrication, transistors have been created in one plane, with
wiring/metallization formed above the active device plane, and have thus been characterized
as two-dimensional (2D) circuits or 2D fabrication. Scaling efforts have greatly increased the
number of transistors per unit area in 2D circuits, yet scaling efforts are running into greater
challenges as scaling enters single digit nanometer semiconductor device fabrication nodes.
Subsequently, while traditional CMOS processes improves signal propagation speed, scaling
from current mamufacturing and chip-design technologies is becoming more difficult and
costly. Semiconductor device fabricators have expressed a desire for three-dimensional (3D)
semiconductor circuits in which transistors are stacked on top of each other.

3D integration, i.e. the vertical stacking of multiple devices, aims to overcome scaling
fimutations experienced 1o planar devices by increasing transistor density in volume rather
than area. Although device stacking has been successtfully demonstrated and implemented by
the flash memory industry with the adoption of 3D NAND, application to random logic
designs is substantially more difficult. 3D integration for logic chips (CPU (central
processing unit), GPU (graphics processing umt), FPGA (field programmable gate array, SoC
{System on a chip}) is being pursued.

There 1s a need for 3D logic circuits for future high-density logic circuits for
maximum use of silicon base area stacked vertically.

It 13 one object of the present disclosure to describe a method to form multiple planes
of transistors. Other objectives include applving laser annealing to change polycrystalline
silicon into single-crystal silicon. The heating amount and duration is targeted to the
polysilicon layer so that the underlying layers are not heated above a predetermined

temperature.
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SUMMARY

In an exemplary embodiment, a method of forming transistor devices is described
which includes forming a first transistor plane on a substrate, the first transistor plane
including a plurality of field effect transistors, depositing a first insulator layer on the first
transistor plane, depositing a first layer of polycrystalline silicon on the first insulator layer;
and annealing the first layer of polycrystalline silicon using laser heating, the laser heating
increasing grain size of the first layer of polycrystalline silicon.

In another exemplary embodiment, a method of forming transistor devices is
described that includes forming a first transistor plane on a substrate, the first transistor plane
including at least one layer of epitaxial film adaptable for forming channels of field effect
transistors, depositing a first insulator layer on the first transistor plane, depositing a first
jayer of polycrystalline silicon on the first insulator layer, annealing the first layer of
polycrystalline silicon using laser heating, the laser heating increasing grain size of the first
fayer of polycrystalline silicon, forming a second transistor plane on the first layer of
polycrystalline silicon having the increased grain size, the second transistor plane being
adaptable for forming channels of field effect transistors, depositing a second insulator layer
on the second transistor plane, depositing a second layer of polycrystalline silicon on the
second insulator layer, and annealing the second layer of polycrystalline silicon using laser
heating, the laser heating increasing grain size of the second layer of polyerystalling silicon.

Note that this summary section does not specify every embodiment and/or
incrementally novel aspect of the present disclosure or claimed invention. Instead, this
summary only provides a preliminary discussion of ditferent embodiments and corresponding
points of novelty over conventional techniques. For additional details and/or possible

perspectives of the invention and embodiments, the reader is directed to the Detailed
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Diescription section and corresponding figures of the present disclosure as further discussed

below.

BRIEF DESCRIPTION OF THE DRAWINGS
5 A more complete appreciation of this disclosure and many of the attendant advantages
thereof will be readily obtained as the same becormes better understood by reference to the
following detailed description when considered in connection with the accompanying
drawings, wherein:
FIG. 1 1s a cross-sectional schematic view of an example substrate segment herein;
10 FIG. 2 illustrates a layer of silicon dioxide is deposited on the first transistor plane;
FIG. 3 iHustrates a laser anneal exposure converting the polysilicon to an epitaxaal-
like silicon after the laser anneal;
FIG. 4 illustrates an example result after polishing the layer of epitaxial-like silicon;
FIG. 5 illustrates a second transistor plane formed on the anneal and polished layer of
1S crystaliine silicon;
FIG. 6 illustrates how techniques herein can be repeated for any number of transistor
planes; and
FIG. 7 itlustrates that with polysilicon converted to epitaxial-like silicon, what is
supported is growing a new stack of silicon layers.
20
DETAILED DESCRIPTION
In the drawings, like reference numerals designate 1dentical or corresponding parts
throughout the several views. Further, as used herein, the words “a,” “an” and the like

generally carry a meaning of “one or more,” unless stated otherwise. The drawings are
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generally drawn to scale unless specified otherwise or tllusirating schematic structures or
flowcharts.

77 4C

Furthermore, the terms “approximately,” “approximate,” “about,” and similar terms
generally refer to ranges that include the identified value within a margin of 20%, 10%, or
preferably 5%, and any values therebetween.

Aspects of this disclosure include a method to form multiple planes of transistors.
This includes enabling greater than 20 3D nanoplanes of high quality silicon base substrates
followed by enabling processing including laser treatment, cleans, CMP (chemical-
mechanical polishing), and future epitaxial stacks as several optional embodiments. The
multiple transistor planes herein are enabled by laser annealing to change polycrystalline
silicon by increasing grain size, making the polycrystalline silicon function more like
epitaxial silicon or monocrystalline silicon. This enables growing additional epitaxial layers
for more transistor planes including gate-all-around transistor devices. Hach transistor plane
can contain a film stack for making CFET (nmos over pmos) nanoplane layers. Each
additional layer 1s started by capping with an oxide or other insulator, depositing
polycrystalline silicon, using a laser anneal to convert to epitaxial-like silicon, followed by
formation of a given transistor plane, which could be logic and/or memory. For purposes of
this disclosure, epitaxial-like silicon means a silicon crystal layer on which epitaxial crystal
growth can be performed. Epitaxial-like silicon may be any crystalline silicon that can
function as epitaxial silicon, including single crystal silicon, which 1s also referred to as
monocrystalline silicon.

Of course, the order of discussion of the different steps as described herein has been
presented for clarity sake. In general, these steps can be performed in any suitable order.
Additionally, although each of the different features, techniques, configurations, etc. herein

may be discussed in different places of this disclosure, it is intended that each of the concepts
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can be executed independently of each other or in combination with each other. Accordingly,
the present invention can be embodied and viewed in many different ways.

3D integrated circuits address the scaling challenge by stacking 2D dies and
connecting thers in the 3rd dimension. A coromon form of 3D integrated circuit design has
been wafer bonding. Wafer bonding is a method where several thin-film devices are bonded
cumulatively, which allows a large number of device layers. The method involves fabrication
of separate devices in separate wafers, reduction in the thickness of the wafers, providing
front and back leads, and connecting the thinned die to each other. The method has been used
to fabricate 3D integrated circuits with more than three active layers. 3D integrated circuits
are currently used for NAND flash memory in mobile devices. However, the demand for
smaller packages and the move to multi-dimensional planes of logic as well as memory
requires alternative approaches to fabrication.

As one alternative to wafer bonding, monolithic 3D integrated circuits are built in
layers on a single semiconductor water. With monolithic 3D integrated circuits, there is no
need for aligning, thinning, bonding, or through silicon Vias. However, creation of multiple
thin layers of defect free silicon requires utilizing low temperature bonding and placing layers
on top of active transistor circuitry.

In order to make multi-dimensional planes of logic and memory, a first transistor
plane is formed on a substrate. In practice, monocrystalline silicon is produced from a seed
crystal, then resulting monocrystalline ingots are sliced into wafers and polished, which isan
expensive, time consuming process. The transistor plane is formed through microfabrication
processes. It 1s preferable that this transistor plane be for any type of transistor or logic or
memory. After forming the first transistor plane, polyerystalline silicon is deposited on this
first transistor plane. However, polysilicon is not desirable as a material for integrated

circuits. A single crystal 1s critical for electronics, since grain boundaries, impurities, and



10

15

20

WO 2021/025914 PCT/US2020/043986

crystaliographic defects can significantly impact the local electronic properties of the
material, which in turn affects the functionality, performance, and reliability of the logic
devices by interfering with their proper operation.

In 2D semiconductor fabrication, the single crystal substrate is used for epitaxial
growth and formation of transistor channels. In particular, semiconductor films are grown
epitaxially on semiconductor substrate wafers. For the case of epitaxial growth of a planar
film atop a substrate wafer, the epitaxial film's lattice will have a specific orientation relative
to the substrate wafer's crystalline lattice such as the {001] Miller index of the film aligning
with the [001] index of the substrate.

In order to continue this fabrication process for additional transistor layers, it is
necessary to control crystal orientation above a transistor fayer. As a solution, a laser
annealing process has been developed that enables conversion of polycrystalline silicon into
single crystal silicon without impacting the transistor layers below the polycrystalline silicon.
In some embodiments, multiple transistor planes disclosed herein are enabled by laser
annealing to convert polycrystalline silicon by increasing grain size, making the
polycrystalline silicon function more like epitaxial silicon or monocrystalline silicon. This
enables growing additional epitaxial layers for more transistor planes including gate-all-
around transistor devices.

in one embodiment, a first transistor plane is formed on a substrate in a conventional
2D fabrication process. This transistor plane can be for any type of transistor or fogic or
memory. After forming the first transistor plane, polycrystalline silicon is deposited on the
first transistor plane. The polycrystalline silicon is converted, using a laser anneal process on
upper base substrate planes, to be epitaxial-like silicon. Then a subsequent transistor plane
can be formed, capped with polycrystalline silicon and converted to epitaxial-like silicon.

This process may be repeated for any number of transistor planes.

~d
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In an exemplary embodiment, one CFET fabrication process uses a silicon substrate
and epitaxial grows alternating layers of SiGGe and St up to 8 to 12 total layers. Limiting the
height and/or number of layers in the epitaxial stack can be beneficial for better quality films.
Then the S1Ge 18 removed in the stack sandwich such that 4 to 6 layers of transistor planes are
available to make logic as gate-all-around (GAA) field effect transistors. Two nanoplanes of
transistors can be tied together to make an NMOS or PMOS device. Thus, this fabrication
process only allows for a total of three actual transistor planes. In other words, a vertical
stack of three FETs is possible while keeping within quality specifications. Three levels of
transistors, however, are insufficient to fully enable 3D logic formation for cost effective
solutions. For volume scaling, more and more layers of transistors will be required.

Techniques disclosed herein enable 3D planes of transistors to be at least greater than
twenty planes or levels of high quality FETs. Each plane of transistors can be used to form
any type of transistor including, but not limited to, CFET, planar, FinFET, and memory.
Technigues herein can then be expanded as volume scaling increases.

Oune embodiment will now be described with reference to the figures. FIG. lisa
cross-sectional schematic view of an exemplary substrate segment herein. A silicon substrate
or SOI (silicon-on-insulator) substrate 101 is received. A first transistor plane {(circuit plane)
103 15 fabricated on the substrate 101, This first plane can include fully-formed field effect
transistors through metal layer 1 routing or this transistor plane can include the layer(s) to
form channels of transistor devices subsequently. The transistor plane can be CFET devices,
FinFet, Memory, Logic or any devices, Optionally, CFET planes are formed prior to etching
an entire stack of a given transistor plane or of multiple, separated transistor planes.
Accordingly, in a preferred embodiment, there is no restriction on epitaxial stack growth
temperature. Fach plane of silicon can be used for any type of transistor or memory element

without restriction. In one example, forming this first transistor plane can include growing 8
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to 12 layer of alternating SiGe/St using an epitaxial growth process with substantially no
temperature limitations.

After forming the first transistor plane 103, an insulator 1s deposited on the first
transistor plane. FIG. 2 illustrates a layer of silicon dioxide 105 s deposited on the first
transistor plane 103, Other types of oxides or dielectric films can be selected. For most
applications, an insulator 1s deposited to a preferred thickness of 500 to 3000 Angstroms.
Next, polycrystalline silicon (also referred to as polysilicon) 15 deposited. Deposition
temperature is preferably below S80°C. Polysilicon 107 can be deposited using LPCVD
{low-pressure chemical vapor deposition), PECVD {plasma-enhanced chemical vapor
depostition), sputter deposition, or any polysilicon deposition method (even at room
temperature ).

At this point, a first transistor plane 103 has been formed and insulated, and
polysilicon 107 is now on the working surface of the substrate. Polysilicon, however, is not
satisfactory as a material for epitaxial growth and transistor channel materials.
Monocrystalline silicon 1s satisfactory for epitaxial growth. With techniques disclosed
herein, a scanning [aser crystallization treatment is executed. This laser annealing process
increases grain size of the polysilicon so that the resulting layer has sufficiently large grain
boundaries that the resulting layer functions essentially like a layer of monocrystatline silicon
to support epitaxial growth of additional silicon layers. FIG. 3 illustrates a laser anneal
exposure that converts the polysilicon to an epitaxial-like silicon after the laser anneal.

For the scanning laser crystallization treatment, any type of laser can be selected for
use. Example wavelengths for silicon treatment are typically 100nm to 800nm. Either the
wafer can be held stationary and laser scanned across the wafer, or the laser can be fixed in
position while the substrate (wafer) is rotated or moved through the laser. Such scanning

motion allows for any type of laser system to be used. As can be appreciated, an amount of
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energy delivered, scanning rate, and laser system will depend on a given stack/area to be re-
crystallized.

By way of a non-limiting specific example, a laser wavelength (1) and process
conditions that rapidly heats silicon or polysilicon i1s a wavelength of 532 nm, pulse width of
10-15 ns, scanning speed of 14 to 45 cny/s, power 1W to 7W, and beam size of 2 to 3 mum by
40 — 80 um. Scanning time and duration can be adjusted according to a thickness of a given
polysilicon film or area to be scanned. The laser is scanning 15 performed such that just the
polysilicon region will receive the energy (heating effect). The laser scanning is performed
such that the layers, materials, and devices below the oxide insulator can remain less than
400C. In other words, the heating amount and duration is targeted to the polysilicon layer so
that the underlying layers are not heated above a predetermined temperature.

The laser beam 301 melts the polysilicon 107a, which then recrystallizes to a
substantially larger grain size. In one embodiment, the grain size increases are 4 to 10 times
larger atter laser treatment (with typical single crystal grains). Note that with advanced 3D
CFET channels being on the order of 5 nm, the laser annealing technigue herein has
essentially achieved single crystal film properties by reforming grain size to be greater than
100 nanometers. As such, the majority of channels formed with recrystallized polysilicon
will not have a single grain boundary. Additionally, with the laser beam 301 being a
coberent light source, there is no dispersion or significant spreading of the laser beam or loss
of energy. Accordingly for channel scales on the order of single or double digit nanometers,
the layer of polysilicon 107a has grain size increased sufficiently to function as single crystal
silicon for given channels.

For laser annealing, air can be used as a medium 303 between the laser beam 301 and
the polysilicon layer 107a to be annealed. Using air as the medium 303 is convenient for

wafer handling considerations. Note, however, that other mediums can be used. For
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example, the substrate can use an immersion in water or oil or other fluids because with a
coherent laser light source many different mediums are available. In some embodiments,
water or chilled water can be used. Using chilled water can be beneficial for substrate
cooling because water has a relative high specific heat capacity. The use of other mediums
(such as chilied water) can act as a cooling effect for the wafer substrate below the
polysilicon. According, such chilling provides two benefits. A chilled medium enables
protection of underlying transistor planes, and also serves to further augment graio size
increases by enabling higher annealing temperatures.

Another embodiment herein uses cryogenic wafer chuck 305 to obtain a maximum
temperature gradient between the laser beam on the polysilicon layer being annealed and the
silicon substrate. A wafer chuck is a device for holding the wafer. Water chucks are typically
round and slightly larger than the wafer size. However, their shape and size may vary
depending on the shape and size of the wafer. A wafer chuck may hold a wafer in place by
applying a vacuum to the backside of the wafer. Other embodiments use a variable
temnperature that spans temperatures from 400K (127C) down to 30K ( -243K) for a laser
anneal system. Example coolants for the laser system can include both liquid nitrogen and
hiquid heliom with two cooling centerpoints {(depending on the desired temperature window)
thereby enabling effective wafer cycling. Laser scanning can be limited to a particular region
of a substrate, or an entire wafer surface.

Following laser treatment, a polishing and/or planarization step can optionally be
executed. FIG. 4 illustrates an example result after polishing the layer of epitaxial-like
silicon. For example, a CMP (chemical-mechanical polishing) step can be executed as one
planarization option. A CMP step can modify polysilicon channel regions to modify a now
large-grained, relatively thick layer to achieve a relatively thin epitaxial-like silicon channel

401. Planarization/polishing are beneficial because surface roughness after laser anneal can
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be higher. This roughness can be reduced by an order of magnitude following CMP and
cleaning steps, thereby thinning the layer of anneal polysilicon. Example cleaning treatments
can include (1) immersing the CMP polished poly-581 film into two mixture solutions
(NH40OH: H202:H20=1:4:20 and HCLH202:H20=1:1:6) at 75°C for 10 minutes to remove
most of the residuals from CMP; (2} immersing the substrate into pure H202 for 10 minutes
to form sacrificial oxide on the poly-8i surface, and (3) removing the sacrificial oxide using
dilute HF solution (HF H20=1:10) for 5 minutes.

With a first transistor plane 103 formed and insulator 105, and with a polysilicon
fayer converted to large grain epitaxial-like crystal silicon 401, any number of additional
transistor planes can be formed. FIG. 5 shows a second transistor plane 501 formed on the
annealed and polished layer of crystalline silicon. Any type of transistors can be formed. For
example, a second plane of CFET can be formed. Each transistor plane herein can itself have
a stack of transistors. Accordingly, in one example a second set 8 to 12 layers of alternating
SiGe/Si can be grown on the substrate. This growth can be executed with current epitaxial
growth processes at temperatures as low as about 300 to 400°C. Note that these are the
second 12 layers on the substrate, thus a total of 24 nanoplanes exist (12 silicon nanoplanes
total, and 12 SiGe nanoplanes total). Thus each transistor plane can have multiple FETs. For
example, the first transistor plane 103 can be fabricated to have a vertical stack of four FETs.
The second transistor plane 501 can also have a vertical stack of four FETs (or two or six. .. }.
Thus, by forming two transistor planes, the substrate can have a total vertical stack of 12
FETs, thereby dramatically increasing transistor count per area (by increasing volume of
transistors).

FIG. 6 illustrates how techniques herein can be repeated for any number of transistor

planes. Each transistor plane can have a single transistor or a stack of transistors or channels.
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With multiple transistors per transistor plane, each additional transistor plane (N+1) 605 can
greatly increase a total number of planes or levels of transistors on the substrate.

FIG. 7 illustrates that with polysilicon converted to epitaxial-like silicon 401, what 1s
supported is growing a new stack of silicon layers. For example, epitaxial growth can be
executed to form alternating layers of silicon 701b and silicon germanium 701a, being grown
from the epitaxial-like silicon 401. After growing this stack of silicon layers, the entire
nanoplane stack 701 can be etched to form channels and future source/drain regions. In ap
example embodiment, the Nano plane stack is grown in one flow with alternating layers of
Si(Ge/Si/81Ge/Si and etched. The channel region 1s cut in the y direction to form the future
source/drain regions. Then the S5iGe layers are removed leaving planes of Si. Since adjacent
regions of Silicon are open, a 360 degree dielectric (referred to as GAA - gate all around) is
formed on each channel region followed by a metal gate electrode designed for NMOS and
PMOS devices. Then the source/drain region is at the end side of the channel.

Thus, techniques herein enable multiple transistor planes, which increase density in
3D CFET and other advanced logic applications. Techniques herein can be integrated with
CFET flows, finFET flows, memory flows, and other flows. With the option to hold a
substrate stationary during laser anneal, or to move the substrate through a wafer beam, many
types of faser systems can be used for annealing herein. Techniques provide enhanced
performance and reliability for microfabrication. Better silicon formation comes from better
silicon properties for improved mobility, Idsat, Idoff, Vic control, and other beneficial
properties. Any type of logic, transistor type (including, for example, CFET, PLANER,
Finfet) may be fabricated on each new plane of epitaxial-like silicon created by laser anneal.
Processes herein can continue to stack vertically to achieve needed 3D Density for N+ 1

transistor/logic/memory planes.

e
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In the preceding description, specific details have been set forth, such as a particular
geometry of a processing system and descriptions of various components and processes used
therein. It should be understood, however, that techniques herein may be practiced in other
embodiments that depart frors these specific details, and that such details are for purposes of
explanation and not limitation. Embodiments disclosed herein have been described with
reference to the accompanying drawings. Simtlarly, for purposes of explanation, specific
numbers, materials, and configurations have been set forth 1n order to provide a thorough
understanding. Nevertheless, embodiments may be practiced without such specific detatls.
Components having substantially the same functional constructions are denoted by like
reference characters, and thus any redundant descriptions may be omitted.

Various technigues have been described as multiple discrete operations to assist in
understanding the various embodiments. The order of description should not be construed as
to imply that these operations are necessarily order dependent. Indeed, these operations need
not be performed in the order of presentation. Operations described may be performed in a
different order than the described embodiment. Various additional operations may be
performed and/or described operations may be omitted in additional embodiments.

“Substrate” or “target substrate” as used herein generically refers to an object being
processed in accordance with the invention. The substrate may include any material portion
or structure of a device, particularly a semiconductor or other electronics device, and may, for
example, be a base substrate structure, such as a semiconductor wafer, reticle, or a layer on or
overlying a base substrate structure such as a thin film. Thus, substrate is not limited to any
particular base structure, underlying layer or overlying layer, patterned or un-patterned, but
rather, is contemplated to include any such laver or base structure, and any combination of
layers and/or base structures. The description may reference particular types of substrates,

but this is for illustrative purposes only.
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Those skilled in the art will also understand that there can be many variations made to
the operations of the techniques explained above while still achieving the same objectives of
the invention. Such variations are intended to be covered by the scope of this disclosure. As
such, the foregoing descriptions of embodiments of the invention are not intended to be
limiting. Rather, any limitations to embodiments of the invention are presented in the

following claims.
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CLAIMS:

1. A method of forming transistor devices, the method comprising:

forming a first transistor plane on a substrate, the first transistor plane including a
plurality of field effect transistors;

depositing a first insulator layer on the first transistor plane;

depositing a first layer of polycrystatline silicon on the first insulator layer; and

annealing the first layer of polyerystalline silicon using laser heating, the laser heating

increasing grain size of the first layer of polycrystalline silicon.

2. The method of claim 1, further comprising:

forming a second transistor plane on the first layer of polyerystalline silicon, the
second transistor plane including the at least one layer of epitaxial film adaptable for forming
channels of field effect transistors;

depositing a second insulator layer on the second transistor plane,

depositing a second layer of polycrystalline stlicon on the second insulator layer; and

annealing the second layer of polycrystalline silicon using laser heating, the laser

heating increasing grain size of the second layer of polycrystalline silicon.

3. The method of claim 1, wherein annealing the first layer of polycrystalline silicon
includes increasing a grain size sufficient to convert the first layer of polycrystalline silicon to

a monocrystalline silicon film.

4. The method of claim 2, further comprising planarizing the first layer of

polycrystalline silicon prior to depositing the second transistor plane.
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5. The method of claim 2, where the first transistor plane includes multiple levels of
transistors in which one field-effect transistor is positioned directly above a second field

effect transistor.

6. The method of claim 1, wherein the annealing the first layer of polycrystalline
slicon using laser heating 15 performed such that the heating amount and duration is targeted
to the polvervstalline silicon and the underlying lavers are not heated above a predetermined

temperature.

7. The method of claim 1, further comprising:
growing alternating S51Ge and Si layers on the first layer of polycrystalline silicon

converted to epitaxial silicon.

8. The method of claim 1, wherein the annealing the second layer of polycrystalline
siltcon using laser heating includes laser heating with chilled water as a medium between the

laser beam and the polysilicon layer.

9. The method of claim 1, wherein the substrate is held by a wafer chuck, and
wherein the annealing the second layer of polycrystalline silicon using laser heating
includes laser heating while the second layer of polycrystalline silicon is in a cryogenic

coolant.

10. The method of claim 9, wherein the cryogenic coolant is at a temperature in a

range of 400K to 30K.

[
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11. A method of forming transistor devices, the method comprising:

torming a first transistor plane on a substrate, the first transistor plane including at
least one layer of epitaxial film adaptable for forming chanuels of field effect transistors;

depositing a first insulator layer on the first transistor plane;

depositing a first layer of polycrystalline silicon on the first insulator layer;

annealing the first layer of polycrystalline silicon using laser heating, the laser heating
increasing grain size of the first layer of polycrystalline silicon;

torming a second transistor plane on the first layer of polyerystalline silicon having
the increased grain size, the second transistor plane being adaptable for forming channels of
field effect transistors;

depositing a second insulator layer on the second transistor plane;

depositing a second layer of polycrystaliine silicon on the second insulator layer; and

annealing the second layer of polverystalline silicon using laser heating, the laser

heating increasing grain size of the second layer of polycrystalline silicon,

12. The method of claim 11, wherein the first transistor plane includes multiple
epitaxial films sufficient to form one field-effect transistor positioned directly above a second

field effect transistor.

13. The method of claim 11, further comprising, forming a first etch mask on the

substrate and using the first etch mask to etch both the first transistor plane and the second

transistor plane.
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14, The method of claim 11, wherein annealing the first layer of polycrystalline
silicon includes increasing a grain size sufficient to convert the first layer of polycrystalline

silicon to a monocrystalline silicon film.

15. The method of claim 11, where the second transistor plane includes multiple
fevels of transistors in which one field-effect transistor 1s positioned directly above a second

field effect transistor.

16. The method of claim 11, wherein the annealing the first layer of polycrystalline
stlicon using laser heating 1s performed such that the heating amount and duration is targeted
to the polysilicon silicon and the underlying layers are not heated above a predetermined

temperature.

17. The method of claim 11, further comprising:
growing alternating S1Ge and St layers on the second layer of polycrystaliine silicon

converted to epitaxial silicon,

18 The method of claim 11, wherein the annealing the second layer of polycrystalline
siltcon using laser heating includes laser heating with chilled water as a medium between the

laser beam and the polysilicon layer.

19. The method of claim 11, wherein the substrate 1s held by a wafer chuck, and
wherein the annealing the second taver of polycrystalline silicon using laser heating
includes laser heating while the second layer of polycrystalline stlicon is in a cryogenic

coolant.
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20. The method of claim 19, wherein the cryogenic coolant is at a temperature in a

range of 400K to 30K.
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