wO 2022/164718 A1 |0 0000 K00 0O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
04 August 2022 (04.08.2022)

(10) International Publication Number

WO 2022/164718 Al

WIPO I PCT

1)

@n

22)

@5
(26)
30)

(71)

(72)

International Patent Classification:
GO6F 9/451 (2018.01) GO6F 16/957 (2019.01)

International Application Number:
PCT/US2022/013241

International Filing Date:
21 January 2022 (21.01.2022)

Filing Language: English
Publication Language: English
Priority Data:

17/159,745 27 January 2021 (27.01.2021) US

Applicant: SALESFORCE.COM, INC. [US/US]; Sales-
force Tower, 415 Mission Street, 3rd Floor, San Francisco,
California 94105 (US).

Inventors: CRAIG, Erik; Salesforce Tower, 415 Mission
Street, 3rd Floor, San Francisco, California 94105 (US).
BULAND, Matt; Salesforce Tower, 415 Mission Street,
3rd Floor, San Francisco, California 94105 (US). GAWOR,
Helen; Salesforce Tower, 415 Mission Street, 3rd Floor,

(74)

@81)

San Francisco, California 94105 (US). MARTIN, Kur-
tis; Salesforce Tower, 415 Mission Street, 3rd Floor, San
Francisco, California 94105 (US). ALLEN, Joel Ben-
jamin; Salesforce Tower, 415 Mission Street, 3rd Floor,
San Francisco, California 94105 (US). BLEAKLEY, Dar-
rell, Salesforce Tower, 415 Mission Street, 3rd Floor, San
Francisco, California 94105 (US).

Agent: KUHN, Jeffrey M., Kwan & Olynick LLP, 2000
Hearst Avenue, Ste. 305, Berkeley, California 94709 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP,KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US,UZ, VC, VN, WS, ZA, ZM, ZW.

(54) Title: OPTIMIZED DATA RESOLUTION FOR WEB COMPONENTS

202

204

Client Machine 228 On-demand Computing Services Environment
Module Registry
230 ADG
- 206
Static Analyzer v
214 ki 218
. 226
GUi Renderer Compiler -
-220
: //_\)
vl ADG Resolver 1 WiT€le o Data Layer I 208
AP Component |
224 22—] \Store_J 212
i e 210
Priming 216 ™
Environment 2 i
e | Data | GULAPI Database
Store J}
200
Figure 2

(57) Abstract: An abstract data graph may be constructed at a server. The abstract data graph may include nodes and links between

nodes and may represent computer programming instructions for generating a graphical user interface at a client machine. At least

some of the links may represent dependency relationships between portions of the graphical user interface. The abstract data graph

may be resolved at the client machine to identify data items, which may be retrieved from the server and used to render the graphical
user interface.

[Continued on next page]

WO 2022/164718 A /11000000 00O 00T

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2022/164718 PCT/US2022/013241

OPTIMIZED DATA RESOLUTION FOR WEB
COMPONENTS

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Patent Application No. 17/159,745
5 {Atty. Docket No. A4968US1_SFDCPO6T) titled “OPTIMIZED DATA RESOLUTION
FOR WERB COMPONENTS”, filed January 27, 2021 by Craig et al., which is hereby

incorporated by reference in its entirety and for all purposes.

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material
10 which is subject to copyright protection. The copyright owner has no objection
to the facsimile reproduction by anvone of the patent document or the patent
disclosure as it appears in the United States Patent and Trademark Office

patent file or records but otherwise reserves all copyright rights whatscever

FIELD OF TECHNOLOGY
15 This patent document relates generally to database systems and more
specifically to client-server interactions for presenting information stored in

database systems.

BACKGROUND
“Cloud computing” services provide shared resources, applications, and
20 information to computers and other devices upon request. In cloud computing
environments, services can be provided by one or more servers accessible over
the Internet rather than installing software locally on in-house computer
systems. Users can interact with cloud computing services 1o undertake a wide
range of tasks.
25 One example of a cloud computing service Is a database system. A
database systemn in an on-demand computing services environment may be
used to provide information to a variety of client machines via the internet.

Much of that information may be presented in complex interactive user

WO 2022/164718 PCT/US2022/013241

interfaces, accessed via the internet, that may be used to present large

amounts of information.

OVERVIEW
Disclosed herein are methods, systems, devices, and machine-readable
5 media having instructions stored thereon for performing optimized data
resolution for web components. According to various embodiments, an abstract
data graph may be constructed via a processor at a server in response to a
request for a graphical user interface received from a client machine. The
abstract data graph may include 3 plurality of nodes and a plurality of links
10 betwsen the nodes. The abstract date graph may represent computer
programming instructions for generating the graphical user interface. Selected
ones of the links may represent dependency relationships between portions of
the graphical user interface. The abstract data graph may be transmitted to the
client machine over a network via a communication interface. A plurality of
15 data reguests may be received from the client machine. At least one of the data
reguests may be generated by the client machine based on the abstract data
graph. At least one of the data requests may identify one or more data items
used to render the graphical user interface at the client machine. The one or
more data items may be transmitted to the client machine in response to the
20 data reguests.
in some implementations, a designated one of the plurality of nodes may
represent a graphical user interface component property. The graphical user
interface component property may store a data value associated with a web
component within the graphical user interface. The web component may be an
25 instantiation of an hypertext markup language {HTML} template that is
associated with a shadow document object model {BOM} tree and that is
controlied by a lavaScript custom element application procedure interface
{API).
According to various embodiments, a designated one of the plurality of

30 nodes may represent an import statement, the import statement causing a

WO 2022/164718 PCT/US2022/013241

processor to import a module for generating a designated portion of the
graphical user interface.
According to various embodiments, a designated one of the plurality of
nodes may represent a conditional statement. The conditional statement may
5 define a condition under which a Boolean output value is true. The designated
node may be linked with one or more dependent nodes. The one or more
dependent nodes may be associated with one or more portions of the graphical
usar interface rendered at the client machine if the condition is true,
in some embodiments, a designated one of the plurality of nodes may
10 represent an iteration statement linked with a plurality of dependent nodes
each corresponding with a respective instantiation of a repeated element
within the graphical user interface.
in some embodiments, a first one of the plurality of nodes mavy represent a
JavaScript decorator including a reference to a designated web component
15 within the graphical user interface. The designated web component may be
represented in the shstract data graph by a second one of the plurality of
nodes. The second node may be dependent on the first node.
According to various embodiments, constructing the abstract data graph
may involve selecting for analysis a designated one of a plurality of web
20 components included in the graphical user interface. The plurality of web
components may be arranged in a tree data structure, and the designated web
component may be selected as part of a traversal of the tree data structure. A
designated property node may be constructed within the abstract data graph
and may correspond with a property of the designated web component.
25 Constructing the abstract data graph may include traversing an abstract syntax
tree gssociated with the designated web component.
in some implementations, fransmitting the abstract data graph to the
client machine may involve serializing the abstract data graph by traversing the
abstract data graph and emitting serislized node information for each of a

30 plurality of nodes within the abstract data graph.

23

WO 2022/164718 PCT/US2022/013241

10

20

25

30

According to varicus embodiments, serializing the abstract data graph may
include replacing a first node or subgraph with a reference to a second node or
subgraph duplicating the first node or subgraph.

in some embodiments, the server may be situated within an on-demand
computing services environment that provides on-demand computing services

to a plurality of entities via the internst.

BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and serve only to
provide examples of possible structures and operations for the disclosed
inventive systems, apparatus, methods and computer program products for
optimized data resolution for web components. These drawings in no way limit
any changes in form and detail that may be made by one skilled in the art
without departing from the spirit and scope of the disclosed implementations.

Figure 1 illustrates a static analysis overview method, performed in
accordance with one or more embodiments,

Figure 2 illustrates a diagram of a system, configured in accordance with
one of more embodiments.

Figure 3 illustrates an abstract data graph, arranged in accordance with
one of more embodiments.

Figure 4 illustrates a method for generating an abstract data graph,
performed in accordance with one or more embodiments.

Figure 5 illustrates a method for serializing an abstract data graph,
performed in accordance with one or more embodiments.

Figure 6 illustrates an abstract data graph resolver overview method,
performed in accordance with one or more embodiments.

Figure 7 iHlustrates an abstract data graph resolution method, performed in
accordance with one or more embodiments.

Figure 8 llustrates a diagram that represents linked abstract data graphs,
provided in accordance with one or more embodiments.

Figure 9 illustrates a method for abstract data graph linking, performed in

accordance with one or more embodiments.

WO 2022/164718 PCT/US2022/013241

Figure 10 iHlustrates a progressive page rendering overview method,
performed in accordance with one or more embodiments.

Figure 11 illustrates an example of a system flow for progressive page
rendering, arranged in accordance with one or more embodiments.

5 Figure 12 illustrates an example of a graphical user interface system
configured for progressive page rendering, arranged in accordance with one or
rmore embodiments.

Figure 13 illustrates an example of an abstract data graph, produced in
accordance with one or more embodiments.

10 Figure 14 illustrates a progressive page rendering container rendering
method, performed in accordance with one or more embodiments.

Figure 15 shows a block diagram of an example of an enwvironment 1510
that includes an on-demand database service configured in accordance with
some implementations.

15 Figure 18A shows a system diagram of an example of architectural
components of an on-demand database service environment 1600, configured
in accordance with some implementations.

Figure 186B shows a system diagram further illustrating an example of
architectural components of an on-demand database service environment, in

20 accordance with some implementations.

Figure 17 illustrates one example of a computing device, configured in

accordance with one or more embodiments.

WO 2022/164718 PCT/US2022/013241

DETAILED DESCRIPTION
Techniques and mechanisms described herein provide for web
components that simplify and streamline the accessing and updating of data in
web-based user interfaces. Many user interfaces rely on the web component
5 meta-specification, which itself is a combination of the Custom Elemenis
spcification, the shadow Document Object Model {BOM) specification, the
Hypertext Markup Language (HTML) Template specification, and the
ECMAScript (ES) Module specification. These four specifications combined allow
developers to define their own HTML tags {i.e. custom elements) whose styles
10 are encapsulated and isolated {e.g., a shadow DOM]}, that can be re-stamped
many times {template), and have a consistent way of being integrated into
applications e.g., the ES module).
Web components often require data from software running on the server,
such as records from a datastore. Such data is often dynamically determined.
15 For instance, a user interface may be configured to present information
associated with arbitrarily and/or dynamically selected database records.
However, if the data needed is not determined until components are rendered,
as is done with conventional techniques, then the time involved in retrieving
the data may slow down the rendering process. That is, when using
20 conventional technigues, GUI rendering and updating may be subject to lag and
delay due to serializing the process of GUI component rendering and data
retrieval,
According to various embodiments, techniques and mechanisms described
herein provide for discovering data involved in rendering GUl components. in
25 addition, the ways in which data is shared between a set of GUI components
may be discovered as well. This discovery process may be performed without
requiring the GUI components to be actually loaded in a web browser. In this
way, technigques and mechanisms described herein may provide for faster GUI
rendering, for faster GUI updating, for improved data feiching speed, for
30 improved data fetching efficiency, and for data priming. Alternatively, or

additionally, techniques and mechanisms described herein may provide for the

WO 2022/164718 PCT/US2022/013241

rendering and updating of data-heavy GUI components even when the client
machine is offline.

in particular embodiments, static dependency analysis may be performed.

Static dependency analysis may involve consuming metadata from the compiler

5 of a GUI component. This approach may leverage information such as

JavaScript decorators which are used to declaratively express the data a web

component needs. One such decorator is the @wire decorator used by

Lightning Web Components, available from Salesforce.com. The compiler

metadata provides information such as the data a component depends on, the

10 component hierarchy of the web application, and how the data flows between
related components. Static Analysis can be performed on the compiler
metadata, to construct the Abstract Data Graph (ADG) describing the data
reguirements of the GUI components. Which can be used by other processes,
such as data resolution; 1o fetch and prime data caches.

15 Consider the example of Alexandra, whose job involves using a web
application provided via an on-demand computing services environment. The
web application is complex, and Alexandra often uses it to access information
ahout a wide variety of data records stored in a database systemn accessible via
the on-demand computing services environment. When using conventional

20 technigues, the complex web application can load slowdy, where rendering is
often paused while additional information is retrieved from the server.
However, when the on-demand computing services environment employs
techniques and services described herein, the web application becomes much
more rasponsible, behaving in a manner more similar to a native application. In

25 particular, the system identifies information that the web application is likely to
need, in advance of when the components associated with that information are
rendered. That information is then retrieved in advance, allowing the relevant
components to be rendered guickly using information already available at
Alexandra’s client machine. This speedup improves Alexandra’s efficiency. At

30 the same time, it reduces the number of requests transmitted to, and duplicate
data retrieved from, the on-demand computing services environment. These

reductions improve the overall performance and reduce the costs of the on-

WO 2022/164718 PCT/US2022/013241

demand computing services environment, which can also he passed on to
Alexandra in the form of improved service and reduced on-demand computing
services environment pricas.
Techniques and mechanisms described here may be described with respect
5 to a user interface rendered in a web browser. However, the techniques and
mechanisms are generally applicable to a wide range of user interfaces, such as
for example native applications implemented in operating systems such as
Android, 108, 05X, Linux, and Windows.
According to various embodiments, technigues and mechanisms described

10 herein may be used to facilitate progressive page rendering. Progressive page
rendering involves linking the resolution of an abstract data graph with the
presentation of a “page,” which can be any suitable portion of a user interface.
Upon such linking, data for the page can be retrieved when it is needed rather
than all at once. For instance, a portion of a user interface may be not be

15 displayed until and unless a user selects a “tabbed page” affordance in the user
interface. In such a configuration, data for rendering such user interface items
may be retrieved when the affordance is selected, which may avoid
unnecessarily retrieving data that may not ultimately be used to present user
interface components that are actually displayed on the display screen.

20 in some implementations, progressive page rendering may involve
wrapping one or more sections of a given user interface in a progressive
container, which is a web component configured for progressive page
rendering. The progressive container may include, for instance, a special
purpose decorator and a unique ID. Then, statically analyzable data

25 dependencies ‘under’ this component are associated with the region of the
page established by instantiating the progressive container.

in some embodiments, a progressive container can deliver a correlation
between an abstract data graph and the actually rendered page. in addition,
the progressive container can provide deeper information, for instance by

30 leveraging other APls. In this way, the data resolution laver may determine

whether or not a given target component will actually present on the screen.

WO 2022/164718 PCT/US2022/013241

According to various embodiments, establishing a linkage between one or
more components with an abstract data graph as well as the screen visibility of
those components may allow the abstract data graph resolver to make
decisions about abstract data graph resclution based on that screen visibility.

5 For example, a connected data resolver acting on the abstract data graph can
decide whether to retrieve {e.g., pre-feich} data for a given portion of a user
interface based on its presence on or absence from the visible screen of an end-
user. Such a decision can provide the basis for a performance optimization, by
avoiding the expenditure of system time retrieving data which a user does not

10 need to look at. Then, the actual retrieval of this data can be deferred to a later
point in time, such as when the user interface portion is selected for rendering

and presentation on the display screen.

According to various embodiments, progressive page rendering provides
15 the ability to decide when and whether to render a component. Such a decision
may be influenced by the state of the abstract data graph resolver. For
example, depending on one or more configuration parameters, a page
component may be authorized for rendering immediately, when the resolver
has started resolving its data dependencies, or when its data dependencies
20 have fully resolved. Such configuration parameters may be spacified by defauit,
or may be configured by, for instance, a graphical user interface component
developer. Such an approach may provide for a smoother and more consistent

page load experience for an end user.
in some implementations, a machine learning approach may be employed
25 to determine improved configuration parameters over time. For example, it it is
determined that the rendering of a particular web component is often delayed
due to data unavailability, a configuration parameter for that web component
may be altered to pre-fetch the data associated with the web component. As
another example, a page component may be sef to render immediately, when
30 the resolver has started resolving its data dependencies, when the resolver has

resolved a designated percentage or number of its data dependencies, or when

WO 2022/164718 PCT/US2022/013241

the resolver has fully resolved its data dependencies, based on the observed
rendering performance of the web component over time.

in some implementations, techniques and mechanisms described herein,
such as progressive page rendering, may provide for graphical user interface

5 portability across different contexts. For instance, progressive data resolution
may be employed in a desktop computing environment, while immediate data
resolution may be employed in a mobile environment in which a mobile
computing device may be likely to experience intermittent connectivity.

in some embodiments, technigues and mechanisms described herein, such

10 as progressive page rendering, may provide greater configurability. For
example, the rendering of a user interface component may be configured to
meet the needs of a particular graphical user interface. As another example, the
portions of a user interface being actively viewed by a user can only be known
at runtime. Progressive page rendering may therefore allow the rendering of

15 the graphical user interface to vary based on user input received after the user
has already started viewing the graphical user interface.

According to various embodiments, technigues and mechanisms described
hersin, such as progressive page rendering, may provide for improved
performance. For example, screen jitter may be reduced. As another example,

20 data for components heing presented on the screen may be prioritized, while
data for components off-screen may be deferred, thus resuiting in faster load
times.

Figure 1 illustrates a static analysis overview method 80, performed in
accordance with one or more embodiments. The method 90 may be performed

25 at one or more computing devices located within an on-demand computing
services environment. An example of a system that may perform the method
90 is shown in Figure 2.

A request for a graphical user interface is received from a client machine at
92. According o various embodiments, the request may be generated by any

30 suitable application at the client machine. For example, a web browser at the

client machine may load a webpage associated with the graphical user

10

WO 2022/164718 PCT/US2022/013241

interface. As another axample, a native application at the client machine may
transmit a request for the graphical user interface,

Component information for the requested graphical user interface is

provided at 94. According to various embodiments, responding to the reguest

5 for the graphical user interface may involve retrieving component definition

information for components included in the requested graphical user interface.

The component definition information may then be used by a compiler to

compile the requested graphical user interface. information for rendering the

graphical user interface at the client machine may then be transmitted to the

10 client machine. Such information may include, but is not limited to: data
retrieved from a database system, Hypertexd Markup Language {HTML)
markup, Javascript instructions, Cascading Style Sheet {58} information, image
data, and sound data.

An abstract data graph is provided for the requested graphical user

15 interface at 96. According to various embodiments, an abstract data graph may
be generated at the server. For instance, the abstract data graph may be
generated as part of the process of compiling the component definitions to
respond to the request for the graphical user interface received at 92.

One or more requests for graphical user interface component data are

20 received at 98. Such requests may be generated based on the abstract data
graph. For instance, while the client machine renders the graphicai user
interface, the client maching may send one or more requests to the on-demand
computing services environment for additional data used to continue to render
and/or update the graphical user interface at the client machine.

25 Graphical user interface component data is transmitted at 110 in response
to the one or more graphical user interface component data requests. The
graphical user interface component data may include any information involved
in rendering and/or updating the graphical user interface, such as data relating
to database objects retrieved from a database system.

30 Figure 2 illustrates a diagram of a system 200, configured in accordance
with one or more embodiments. The system 200 may perform one or more of

the techniques described herein. One or more components shown in the

11

WO 2022/164718 PCT/US2022/013241

system 200 may be implemented within an on-demand computing servicas
environment,

The system 200 includes a client machine 202. The client machine 202
includes a graphical user interface renderar 214, a priming environment 216, an

5 abstract data graph resolver 224, a module registry 228, an abstract data graph
230, a wire APl 218, a data layer 220, and a data store 222.

The system 200 also includes an on-demand computing services
environment 204. The on-demand computing services environment 204
includes a static analyzer 206, a component store 208, a graphical user

10 interface application procedure interface (AP 210, a database 212, and a
compiler 226.

According to various embodiments, the client machine 202 may transmit a
reguest for a graphical user interface to the on-demand computing services
environment 204. For instance, the client machine 202 may transmit the

15 reguest to the graphical user interface AP 210.

in some implementations, to respond to this request, the compiler 226
may retrieve component information from the component store 208, The
comptler may output metadata for sach graphical user interface component
included in the requested graphical user interface. The metadata output by the

20 compiler for a graphical user interface component may be referred to as the
“module definition” or “ModuleDef”,

In some implementations, the meodule definition defines a web
component’s identity. For instance, it includes information such as the source
code for generating a web component, one or more APls associated with

25 retrieving information presented within the web component, one or more data
dependencies associated with the web component, and/or any relationships
between the focal web component and other web component.

in some embodiments, the static analyzer 206 may analyze information
such as module definitions to discover data dependencies and flows between

30 components that are included in a web application. As a result of this analysis,
the static analyzer 206 may produce an abstract data graph 230, which may be

sent to the client machine 202. An example of an abstract data graph is shown

12

WO 2022/164718 PCT/US2022/013241

in Figure 3. Additional information related to the generation of an abstract data
graph is discussed with respect to the method 400 shown in Figure 4. Additional
information related to the serialization of an abstract data graph is discussed
with respect to the method 500 shown in Figure 5.

5 According to various embodiments, the module registry 288 may store
information received from the static analyzer 206. Depending on the context,
any of a variety of types of information may be received from the static
analyzer 206. For instance, the module registry 228 may store the abstract data
graph 230, one or more module definitions, and/or any other information

10 related to the construction of the graphical user interface at the client machine.
According to various embodiments, the graphical user interface renderer
214 may start by invoking the @wire decorator for one or more root web
components in the requested graphical user interface. Resolving that
invocation may involve retrieving information for rendering the root web
15 component. Alternatively, or additionally, the @wire decorator corresponding
with one or more child web components of the root web component may be
invoked. The invacation of the child web components may be racursive, so that
the @wire decorators of the grandchild and great-grandchild web components
are also invoked, until all web components nested below the root web
20 component are rendered. The invocation of the @wire decorators and the
rendering of the child web components may be recursive since the values that
nead to be retrieved for the child web components may depend on properties
of their parent web components.
When using conventional techniques, each invocation of an @wire
25 decorator would be received directly by the wire API 218. However, such an
approach can significantly prolong the rendering process, since the @wire
decorator for a child web component may not be invoked until the data is
retrieved for its parent web components.
in contrast to the conventional techniques, embodiments of technigues
30 and mechanisms described herein provide for the abstract data graph resolver
224 to substantially speed up this process. The invocation of the @wire for the

definition of a root web component may result in the invocation of a rollup

WO 2022/164718 PCT/US2022/013241

module, which may store values for properties of the corresponding root node.

The rollup module may store or access the abstract data graph 230

corresponding to the root component. The rollup module may then begin

resolving the abstract data graph 230 for the root web component. This

5 resolution process may involve preemptively transmitting @wire requests 1o

the wire AP| 218. Moreover, the resclution process may involve batching or

otherwise aggregating @wire requests. For instance, instead of regquesting

RecordA.valuel when valuel is needed for rendering, and then later requesting

RecordA.value2 when valuel is needed for rendering, the abstract data graph

10 resolver 224 may analyze the graph to determine that both valuel and value2
will eventually be neaded, and then request both values at the same time.

According to various embodiments, because the abstract data graph
resolver 224 begins resolving the abstract data graph as soon as the @wire for
the root web component is invoked, the data retrieval process may be able to

15 effectively get ahead of the requests for data from the graphical user interface
renderer 214. Thus, when the graphical user interface render 214 invokes an
@wire decorator for a child, grandchild, greatgrandchild, or deeper child web
component of the root web component, the data needed to fulfill that request
may already be available in the data store 222 because the abstract data graph

20 resolver 224 anticipated that the data eventually would be needed by the
graphical user interface renderer 214, and presemptively retrieved that data by
sending an @wire request itseif. Thus, the abstract data graph resolver 224 acts
as a go-between for the graphical user interface renderer 214 and the wire AP
218, retrieving the data that the graphical user interface renderer 214 will nead

25 in a manner that is preemptive, more efficient, parallelized, and/or involves
fewer requests when compared with conventional technigues.

According to various embodiments, the abstract data graph resolver 224
neads to satisfy data dependencies in an efficient manner. For example, the
abstract data graph resolver 224 cannot simply pick a node at random in the

30 graph and retrieve the dependencies for that node since the ability to resolve
those dependencies may in turn depend on other information that has not yet

been retrieved. Instead, the abstract data graph resolver 224 needs to identify

14

WO 2022/164718 PCT/US2022/013241

which dependencies are ready for retrieval, and which require waiting. Thus, a
node in the abstract data graph may be resolved only when the inputs for
resolving that node are available.
in particular embaodiments, the resolver may also determine the timing for
5 data retrieval. For example, a dependency may be processed as soon as it is
ready for retrieval. As another example, the processing of a dependency may
be delayed in order to batch requests to improve performance. As yet another
example, data dependencies may be fulfilled at different times. For instance,
two dependencies requested at the same time may be returned at different
10 times. As discussed herein, the timing for data retrieval may depend on factors
such as when dependencies are resolved, whether retrieval reguests are
aggregated or batched, or other such considerations.
According to various embodiments, the wire APl 218 may act as an
interface to the data layer 220, which in turn may retrieve information from the
15 on-demand computing services environment 204. For instance, the dats layer
220 may communicate with the graphical user interface AP 210, which may
access the database system 212 to retrieve the requested information. The
data layer 220 may store the retrieved information in the data store 222 so that
the retrieved information may be provided for use by the graphical user
20 interface renderer 214 upon request.
in some implementations, the priming environment 216 may be used to
prime a user interface for offline or partialiy offline use. For instance, additional
requests for data may be generated when it is determined that the graphical
user interface is to be generated in a mobile environment in which internet
25 connectivity is likely to be limited.
According to various embodiments, the data layer 220 and/or data store
222 may be configured in a manner that is context-specific. For example, in the
web context, the data layer 220 may be implemented as a desktop/laptop app
data layer, and the data store 222 may be implemented as an HTTP cache and
30 indexedDB for storing information inside a web browser. As another example,

the mobile context, the data layer 220 may be implemented as a mobile app

15

WO 2022/164718 PCT/US2022/013241

data laver, and the data store 222 may be implemented as a native smart store
associated with a mobile computing device operating system.

Figure 3 illustrates an abstract data graph 300, arranged in accordance
with one or more embodiments. The abstract data graph 300 represents a set

5 of user interface components that may be included in a graphical user
interface. For example, the abstract data graph represents the parentis
definition 302, the parenthiml definition 304, the parentRecordinfo.js
definition 306, the parentRecordinfo.htmi definition 308, the childField.is
definition 310, and the childField.him! definition 312.

10 According to various embodiments, an abstract data graph may include
one or more of various types of nodes. The abstract data graph 300 includes a
non-exhaustive sample of such nodes.

An example of a wire node is illustrated at 326. According to various
embodiments, a wire node represenis an @wire statement within a

15 component. It contains a configuration to represent inputs to the @wire
statement. For instance, the wire node 326 corresponds with a childField
component. The component corresponding to the @wire statement can be
instantiated when the wire node 326 is resolved.

According to various embaodiments; a configuration input to a wire node

20 may be a literal or a reference to another node in an abstract data graph. For
instance, a configuration input may be a property or an import statement.

An example of an import node is illustrated at 314. The import node 314
represents an import statement in which the getRecord component definition is
imported from the uiRecordApi module. In the abstract data graph 300, the

25 resolution of the wire node 328 depends on the resolution of the import node
314,

in particular embodiments, a given import statement may be represented
by a unigue import node in a graph. For instance, if the import statement
represented by the import node 314 were 1o appear elsewhere in the graphical

30 user interface corresponding to the abstract data graph 300, then the

dependency could be represented by an additional link to the import node 314

16

WO 2022/164718 PCT/US2022/013241

rather than by generating an additional import node. For instance, the import
node 314 exhibits two dependency links in the abstract data graph 300.

An example of a property node is illustrated at 318. The property node 318

represents an identifier for the wire represented by the wire node 3286, In the
5 abstract data graph 300, the resclution of the wire node 326 depends on the
resolution of the property node 318, since the identifier represented by the
property node 318 is needed to instantiate the component represented by the

childField.js component definition 310.
In particuiar embodiments, a property node may include a reference to
10 another node. For instance, the property node 318 depends on the iferation
node 320, since the iteration node 320 returns the identifier needed to resolve

the property node 318.
An example of an iteration node is shown at 320. According to various
embodiments, an iteration node may represent an iteration statement, such as
15 afor or while loop, found in a component. The input of an iteration node may
be linked to a providing abstract data graph node {e.g., a property node or a
wire nodel}. For instance, the input of the Reration node 320 is linked to the
wire node 322,
An example of a conditional node is shown at 324. According to various
20 embodiments, the conditional node represents a conditional statement {e.g.,
an “if” statement} in a component definition. The input of a conditional
statement may be linked to a providing abstract data graph node. For instance,
the conditional statement 324 depends on the wire node 322, Similarly, the
wire node 328 depends on the conditional node 324, and is not rendered unless
25 the condition is true.

Figure 4 iHlustrates a method 400 for generating an abstract data graph,
performed in accordance with one or more embodiments. The method 400
may be performed at one or more computing devices within an on-demand
computing services environment. For instance, the method 400 may be

30 performed when a reguest for a graphical user interface is received from a

client machine, as discussed with respect to the method 20 shown in Figure 1.

17

WO 2022/164718 PCT/US2022/013241

A request to gensrate an abstract data graph associated with a graphical
user interface reguest is receivad at 402. According to various embodiments,
the request may be generated automatically as part of a procedure for
generating a graphical user interface in response to the request received from

5 the client machine.

Metadata for one or more graphical user interface components is
identified at 404. In some implementations, the metadata may include module
definition information output by a campiler. For instance, the module definition
information may be output by the compiler 226 shown in Figure 2.

10 A graphical user interface web component is selected for analysis at 406. In
some implementations, static analysis starts by analyzing the module definition
of the top-level component or components in the web application. In some
implementations, selecting a graphical user interface web component for
analysis may involve creating a node corresponding with the graphical user

15 interface web component in the abstract data graph. The node corresponding
with the graphical user interface web component may then be linked with
other nodes within the abstract data graph, such as child and/or parent nodes.

in particular embodiments, a given abstract data graph may be limited to a
single root component. However, a web application may include multiple root

20 components and hence multiple abstract data graphs. For instance, sach page
within a web application may be treated as a root component, and hence an
abstract data graph can be constructed for each page. Therefore, although the
method 400 shown in Figure 4, and other portions of the description, are
described as generating a single abstract data graph, in some configurations

25 and contexts more than one abstract data graph may be generated, serialized,
sent to the dient maching, and/or used to retrieve component information for
rendering and/or updating the web application at the client machine.

An abstract data graph property node is constructed for each property at
408. According to various embodiments; the module definition may be used to

30 identify properties defined in association with the selected component. Then,
each property included in the module definition may be used to create an

abstract data graph property node that is linked to the selected graphical user

18

WO 2022/164718 PCT/US2022/013241

interface web component. Property nodes of abstract data graph root nodes
may be marked as root property nodes in the abstract data graph.

An abstract data graph data node is constructed at 410 for sach data
dependency. Data dependencies may be identified by analyzing the module

5 definition. Each abstract data graph data node may describe a piece of data
required by the selected graphical user interface web component. Alternatively,
or additionally, an abstract data graph data node may describe configuration
information associated with the data. Configuration information for a data
node may reference the component’s properties, static values, data imported

10 from another module, output of another data node, or any other relevant
information for configuring the data dependency.

At 412, an abstract data graph import node is constructed for each module
dependency in the component. According to various embodiments, the
component may depend on information drawn from one or more external

15 modules in order to function. For example, a data node corresponding to a
getTemplate instruction may need a template from another module, such as a
Details or Righlights module. When such a dependency is detected, an import
node may be constructed to reflect the dependeancy.

An abstract syntax tree {AST) associated with the selected component is

20 identified at 414. in some implementations, an abstract syntax tree may be
generated by the compiler from the selected component’s HTML template. The
abstract syntax tree contains representation of dependencies betwesn
graphical user interface components, such as the markup of the selected
component including tags for other graphical user interface components.

25 Within those tags, attributes are specified which are used to pass data into the
API properties of the child components. The abstract syntax tree also contains
information about the conditional statements, iterations, and slots utilized
within the components markup.

The abstract syntax tree is traversed at 416 o generate iteration and

30 conditional nodes. Traversing the abstract syntax tree may involve executing
any suitable traversal procedure, such as a depth first search starting with the

root node. For sach node traversed, the static analysis retrieves compiler

19

WO 2022/164718 PCT/US2022/013241

metadata for each child component 50 that it can analyze sach child and creats

one or more abstract data graph nodes based on the makeup and data
dependencies of the children. For example, property nodes may be created for

the child’s APl properties, and those property nodes linked to data contained

5 within the root component hased on the attributes specified on the child tags,
within the root component’s markup. As another example, the child’s metadata
may be used to discover data dependencies within the child component, and
abstract data graph data nodes may be created to capture those dependencies.

A determination is made at 418 as to whether to select an additionsl

10 graphical user interface weab component for analysis. Additional graphical user
interface web components may continue to be selected so long as there remain
graphical user interface web components that have not been analyzed. For
example, child graphical user interface web components may be selected for
analysis in a recursive fashion, for instance as part of a depth-first or breadth-

15 first traversal of the module definition information.

in some implementations, after the abstract data graph is generated, the
abstract data graph may be serialized before being sent to the client machine.
Additional details regarding abstract data graph serialization are discussed with
respect to the method 500 shown in Figure 5.

20 According to various embodiments, one or more of the operations shown
in Figure 4 may be performed in an order different than that shown.
Alternatively, or additionally, one or more operations may be performed in
paraliel.

Figure 5 illustrates a method 500 for serializing an abstract data graph,

25 performed in accordance with one or more embodiments. The method 500
may be performed by one of more components within an on-demand
computing services environment. For instance, the method 500 may be
performed by the static analyzer 206 in the system 200 shown in Figure 2. The
method 500 may be performed in order to serialize an abstract data graph for

30 transmission to the client machine.

A request to serialize an abstract data graph is received at 502Z. In some

implementations, the reguest may be generated automatically when an

20

WO 2022/164718 PCT/US2022/013241

ahstract data graph is generated in response to a request for a graphical user

interface received from a client machine. For instance, the completion of the

method 400 shown in Figure 5 may result in the automatic generate of a

request to serialize the generated abstract data graph for transmission to the
5 client machine.

The serialization format is identified at 504. According to various
embodiments, any of a variety of suitable serialization formats may be used.
For instance, a serialization format such as JavaScript Object Notation (50N} or
a generated Javascript module may be used. In some configurations, a standard

10 serialization format may be emploved for all requests.

in particular embodiments, the serialization format may be identified
based on the context, such as the nature of the client machine and/or the
graphical user interface request. Different formats may provide different
advantages. For example, JSON seriglization may be more portable, more

15 human readable, and/or preferable for mobile offtine use. As another example,
a generated JlavaScript module may be better for use in the web browser,

A node in the abstract data graph is selected at 506. According to various
embodiments, the procedure may start by selecting root-level nodes. Then,
child nodes may be selected for analysis in 3 recursive process. The recursive

20 process may function as a depth-first or breadth-first traversal of a tree or
forest data structure,

Duplicate nodes and subgraphs are flattened at 508. In somse
implementations, flattening duplicate nodes and subgraphs may involve
eliminating or reducing duplication in the abstract data graph generated by the

25 compiler. For instance, if the same component appears at different places
within a graphical user interface, the same module definition may appear more
than once within the abstract data graph. To reduce the size of the abstract
data graph, such duplicate entries may be replaced by references to module
definition information already present within the abstract data graph.

30 Serialized node information is emitted at 510. According to various
embodiments, the serialized node information may be a list of atiributes,

attribute values, child nodes, and other such information associated with the

21

WO 2022/164718 PCT/US2022/013241

ahstract data graph node being analyzed. Such information may be emitted in a
format consistent with the format identified at operation 504.
A determination is made at 512 as to whether any unserialized nodes are
remain. As discussed with respect to the operation 508, nodes may be selected
5 syccessively according to a graph traversal procedure such as a depth-first or
breadth-first traversal until all nodes have been serialized. When it is
determined that no unserialized nodes remain, the abstract data graph is
transmitted to the client machine at 514,
Figure 6 iliustrates an abstract data graph resolver overview method 600,

10 performed in accordance with one or more embodiments. The method 800
may he performed at a client machine, such as a desktop computer, a laptop
computer, or a mobile computing device.

A request for a graphical user interface is transmitted at 602.According to
various embodiments, the reguest may be transmitted to a server, such as a

15 server associated with an on-demand computing services environment. The
request may be generated by any suitable application at the client machine. For
example, a web browser at the client maching may load a webpage associated
with the graphical user interface. As another example, a native application at
the client machine may transmit a request for the graphical user interface.

20 An abstract data graph for the requested graphical user interface is
received at 604, In some embodiments, the abstract data graph may be
generated and serialized as discussed with respect to the methods 400 and 500
shown in Figures 4 and 5.

At 606, graphical user interface component information is retrieved based

25 on the abstract data graph. According to various embodiments, the graphical
user interface component information may include any information for
rendering the graphical user interface at the client machine. Such information
may include, but is not limited to: data retrieved from a database system,
Hypertext Markup Language {HTML} markup, Javascript instructions, Cascading

30 Style Sheet {C5S) information, image data, and sound data.

The graphical user interface is rendered at 608 based on the retrieved

graphical user interface component information. According to various

22

WO 2022/164718 PCT/US2022/013241

embodiments, the graphical user interface may be rendered in 3 web browser
or a native application, depending on the context.
A determination is made at 810 as to whether to update the graphical user
interface. In some implementations, the graphical user interface may be
5 updated based on user input. For instance, the graphical user interface may be
updated when a user clicks on a button, provides text information, or performs
other such user input operations. if the graphical user interface is to be
updated, then additional graphical user interface component information may
be retrieved at 606 based on the abstract data graph.

10 Figure 7 illustrates an abstract data graph resolution method 700,
performed in accordance with one orf more embodiments. In some
implementations, the method 700 may be performed by an abstract data graph
resolver, such as the resolver 224 shown in Figure 2.

A reguest to resolve an abstract data graph is received at 702. According to

15 various embodiments, the request may be generated after the abstract data
graph is received from the server. At that point, the rendering of the web
application may begin. At the same time, the abstract data graph associated
with the web application may be resolved to begin fetching the data required
to fully render the web application.

20 Pre-resolution optimization is optionally performed at operation 704, One
or more gptimizations may be performed before, during, or after operations
shown in the method 700. For the purpose of exposition, examples of such
optimizations are discussed below, after the rest of the operations performed
in the method 700 are describad.

25 A queue of ready-to-execute wires is created at 706. According to various
embodiments, a wire is a mechanism for fulfiling a designated dependency.
However, the wire may itself be dependent on other conditions, such as the
availability of data at the client machine. The wire is ready 1o execute to fulfill
the designated dependency when the wire’s own dependencies have already

30 been fulfilled. The resolver maintains a queue of ready-to-execute wires,
separate from the nodes in the graph that represent the dependency in the

state.

WO 2022/164718 PCT/US2022/013241

in particular embodiments, when the abstract data graph resolver is first
initialized, data associated with abstract data graph resolution may not yet have
been retrieved from the server. Accordingly, the queue of ready-to-exscute
wires may initially include only those wires that do not have dependencies, or

5 that have dependencies that may be resolved by the initial request for the
graphical user interface.

A wire is selected from the queue at 708. According to various
embodiments, wires may be selected from the gqueue in any suitable order. For
instance, wires may be selected in a first-in, first-out ordering.

10 The wire is executed at 710. According to various embodiments, executing
the wire may involve transmitting a request to the server to retrieve the
information associated with the wire. For instance, the regquest may be sent to
an APl at the server.

in some contexts, the request may include information determined based

15 on dependency conditions associated with the wire. For example, executing the
wire may involve retrieving one or more fields associated with a database
record. However, the identity of the database record may be known only after a
dependency associated with the wire is first resolved. Thus, in this example, the
reguest may include the identity of the database record.

20 According to various embodiments, a wire may be executed either
asynchronously or synchronously. Which approach is employed may depend
on, for example, the type of the wire,

The state of the corresponding node is updated at 712. Updating the state
of the node may involve marking the node as resolved if the wire execution was

25 successful. Alternatively, the node may be marked in an error state if the wire
execution was unsuccessful.

A determination is made at 714 as to whether to select an additional wire
from the gueue. According to varicus embodiments, additional wires may
continue to be selected so long as ready-to-execute wires remain in the gueue.

30 In particular embodiments, for instance in the case of an asynchronous
wire execution at 710, the resolver may begin to resolve nodes rather than

continue to execute wires. For example, the resolver may call recursively to

24

WO 2022/164718 PCT/US2022/013241

start the resolution process again with the updated state of the dependency
tree. Such an approach may ensure that any dependent nodes of the newly
processed node will be checked immediately for ready state within the
recursive call and that no watting is necessary.

5 When a dependency is fulfilied, the dependency graph may be resolved
again to see what new nodes are reachable. Accordingly, when it is determined
not to select an additional wire from the queus, then at 716 a node is selected
from the node list at 716. According to various embodiments, nodes may be
selected from the node list in sequence, in parallel, or in any suitable order.

10 A determination is made at 718 as to whether the selected node is in a
ready state. i the selected node is in a ready state, then the wire associated
with the node is added to the queue at 720. In some implementations, after the
resolver has worked through the queue of wires, some of them may have had
their representative node in the dependency graph marked as resolved or in an

15 errorstate, due to either a synchronous or asynchronous call. The resolver may
therafore check previously unready nodes to determing if they have entered a
ready state, for instance due to being dependent on a node that has since heen
rarked as resolved.

A determination is made at 722 as to whether to select an additional node

20 from the node list. According to various embodiments, additional nodes may be
selected until all nodes in the node list have been analyzed.

A determination is made at 724 as to whether the queue contains one or
more ready-to-execute wires. if the queue contains a ready to execute wire,
then a wire may be selected for execution at 708. In some implementations,

25 the resolver may continue to execute the method 700 for as long as the queue
contains ready to execute wires. That is, the resolver may not exit until all wires
in the wire gueue are processed, and all promises have been resolved, ensuring
each reachable node has reached its final state.

According 1o various embodiments, as an alternative to the logical tlow

30 shown in Figure 7, the systermn may wait for all ready to execute wires before
moving on and re-evaluating the tree. Doing may render the process

deterministic. However because of the wide variability in the time it may take a

25

WO 2022/164718 PCT/US2022/013241

wire to executs, many fast or even synchronous wires could be waiting on a
fong running wire. The particular approach employed may therefore bhe
strategicaily determined based on, for instance, characteristics of the user
interface being rendered.

5 in particular embodiments, a node may never enters the ready state, or
may not enter the ready state after a designated period of time or after some
condition or conditions have occurred. Such a situation may result from error or
unresolved dependencies. Such a node may be ignored, and the associated
branch of the dependency treg may be left unprocessed.

10 According to various embodiments, operations shown in Figure 7 may be
performed in an order different than that shown. For example, the resolver
may resolve more than one abstract data graph concurrently. As another
example, two or more operations may be performed recursively and/or in
parallel.

15 In some implementations, static, server-side analysis may involve few or no
opptimizations. One reason for this is that an abstract data graph may be
generated as an accurate representation of the declaraed data need of web
components and their relationship to one another. Ancther reason is that
attempting to optimize before the runtime context is available may

20 inadvertently retrieve information that is unnesded in practice. Relevancy of
some portions of the abstract data graph may be known only at runtime. For
these reasons, an abstract data graph generated at the server may include
redundant or mergeable data nodes. However, if ignored these redundant or
mergeable data nodes may lead to a graph resolution process in which identical

25 data is retrieved more than once, in which an excessive number of data request
are emploved, and/or in which other performance drawbacks are incurrad.

in particular embodiments, one or more optimizations may be employed
to address such issues. Such optimizations may be implemented in a manner
that allows for contextually relevant factors to play a role. For instance, one or

30 more optimizations may be performed pre-resolution. In such a phase,
optimization code may identify nodes in the abstract data graph which may be

optimizad, for example, by establishing pre-resolution and/or post-resolution

26

WO 2022/164718 PCT/US2022/013241

hooks for relevant nodes. Alternatively, or additionally, the shape of the graph
may be manipulated by adding, changing, or removing nodes based on the
known context.

in a first example, an optimization may determine if a given web

5 component is actually relevant to the user. For instance, the optimization may
determine if the given web component is actually being presented. #f it is not
being presented, then the optimization may prevent the retrieval of the
exprassed data needs for that component and its children.

in a second example, duplicate nodes that are known to be contextually

10 relevant may be identified. One example of such a situation may occur when
nodes reflect the same data needs and have identical input chains to the root of
the graph. Such nodes may be recognized, and the graph manipulated at
runtime prior to resolution to prevent multiple retrievals for the same data.

in a third example, nodes that have overlapping needs but that are not

15 entirely duplicates may be identified. One example of such a situation is the
getRecord wire, which can take as a parameter a collection of fields that effect
the ultimate data retrieval behavior. This collection may be combined into a
superset in order to improve data interaction and runtime performance.

As a fourth example, nodes that include data that should be retrieved from

20 alternative sources, such as external APls, may be identified.

As a fifth example, nodes that can be merged together after additional run-
time related relevancy information is known may be identified. Such an
approach may help to combine what would otherwise he multiple server
requests {e.g., for records A, B, and)} into a single server request {e.g., for

25 records A+B+(C).

Figure 8 illustrates a diagram 800 that represents linked abstract data
graphs, provided in accordance with one or more embaodiments. As discussed
herein, in some configurations a web application may be associated with more
than one abstract data graph. For instance, different pages within the same

30 web application may each be associated with a respective abstract data graph.

The diagram 300 includes a Flexipage abstract data graph 802, a Highlights

abstract data graph 804, and a Details abstract data graph 806, These abstract

27

WO 2022/164718 PCT/US2022/013241

data graphs correspond with Flexipage, Highlights, and Details web
components, respectively.

The Flexipage abstract data graph 802 includes a root node 808, The root
node 808 is associated with a web component A, The root node 208 is

5 associated with a child node 810, which identifies the retrieval of a record A for
rendering the web component A,

The child node 810 in turn includes grandchildren nodes 812 and 814, The
grandchild node 812 is a reference to the abstract data graph 804 associated
with the Highlights web component, while the grandchild node 814 is a

10 reference to the abstract data graph 806 associated with the Details web
component.

The Highlights abstract data graph 204 includes a root node 818, which
includes a child node B13 associated with the retrieval of information for
rendering the web component corresponding with the root node 816, Similarly,

15 the Details abstract data graph 806 includes a root node 820, which includes a
child node 822 associated with the retrieval of information for rendering the
web component corresponding with the root node 820,

Thus, the diagram 800 includes an abstract data graph for a Flexipage web
component for presenting a database record. The Flexipage web component in

20 turn links to two different abstract data graphs for other web components that
present highlights and details about the record that is the subject of the
Flexipage web component. Additional details regarding such linkages between
abstract data graphs are discussed with respect to the method 800 shown in
Figure 9.

25 it should be noted that Figure & iHustrates simple abstract data graphs for
the purpose of illustration. In practice an abstract data graph may be much
more complex than those shown in Figure 8.

Figure 9 illustrates a method 900 for abstract data graph linking,
performed in accordance with one or more embodiments. The method 900

30 may be performed at a client machine as part of the resolution of one or more

abstract data graphs associated with a web application.

28

WO 2022/164718 PCT/US2022/013241

According to various embodiments, the method 800 may be performed in
order to address challenges that arise from dynamic rendering of a user
interface. In particular, an abstract data graph may describe a single component
tree. However, at compile time, the content inside a child component that has

5 been code-split or is generated may be unknown. Thus, in the absence of
abstract data graph linking, some requests may be made with only minor
additive properties. For instance, first record A may be requested with fields Al
and AZ. Then shortly thereafter the same record A may be requested with fields
A2 and A3. Accordingly, in order to provide the benefits of abstract data graph

10 resolution, these abstract data graphs may need to be combined at runtime.
Then, record A may be retrieved with fields A1, A2, and A3 all at once, to save a
request and the round trip communication with the server that the reguest
entails.

A request to resolve an abstract data graph parent is received at 902, in

15 some implementations, the request may be received in conjunction with the
method 800 shown in Figure 7. For instance, a root abstract data graph
associated with a web application may be resolved first. The root abstract data
graph that is resolved first may be associated with the highest level web
compaonent that is displayed initially when the web application is loaded. Then,

20 as part of that resolution, any abstract data graph children may be resolved as
shown in Figure 860,

An abstract data graph child is identified at 904. According to various
embodiments, certain wire decorators may return modules or templates.
Which wires are associated with child abstract data graphs may be determined

25 based on, for example, retrieving the information from a whitelist. Such wires
may consistently return an abstract data graph and a module definition.

A determination is made at 906 as to whether to resolve the abstract data
graph child. According to various embodiments, the abstract data graph may be
resolvable when one or more conditions are met. For example, the abstract

30 data graph may be resolved when it becomes known at runtime, for instance
based on one or more operations that occur during or after the rendering of

the web application, such as when the user provides user input that triggers the

29

WO 2022/164718 PCT/US2022/013241

rendering of a particular web component. As ancther example, the abstract
data graph may be resolved when the root properties of the abstract data
graph become known, which allows that data to be passed in for resolution. For
instance, in Figure 8, the abstract data graph 804 associated with the Highlights

5 component cannot be resolved until the recdD is known based on the
resolution of the Flexipage abstract data graph 802,

if the abstract data graph child is to be resolved, one or more abstract data
graph child sub-root properties are mapped at S08. As shown in Figure 8, a link
to a child abstract data graph may be associated with a getTemplate wire, from

10 which root properties are referenced. During merging, these sub-root
properties may be assigned as values to the wire's input attributes. The valuss
may then be usable during the resolution of the subtree.

At 910, a determination is made as to whether a request is needed for the
abstract data graph child. If a reguest is needed, then at 912 the request is

15 added to a queue. According to various embodiments, since many abstract data
graphs may be resolved concurrently, a global queus of reqguests can be used.
i this way, when requests are ready, they can be optimized together even
though they may come from disparate tress. Request batching can make use of
this glohal request gueue to reduce the number of requests required to fetch

20 the required data.

A determination is made at 8914 as to whether to identify an additional
abstract data graph child. According to various embodiments, abstract data
graph children may be rescived recursively until all child abstract data graph of
the parent abstract data graph have been resolved.

25 Figure 10 illustrates a progressive page rendering overview method 1000,
performed in accordance with one orf more embodiments. In soms
implementations, the progressive page rendering overview method 1000 may
be performed at a client machine in communication with a remote computing
system. For instance, the progressive page rendering overview method 1000

30 may be performed as part of the resolution of an abstract data graph during the

rendering of a graphical user interface. As discussed herein, abstract data graph

WO 2022/164718 PCT/US2022/013241

resolution may be performed in parailel with the rendering of the graphical
user interface.

A request to provide a user interface component via progressive page
rendering is received at 1002. According to various embodiments, the reguest

5 may be generated as part of the rendering process. For instance, a graphical
user interface may include a number of web components, one or more of which
rmay be a progressive page container. Examples of progressive page containers
are discussed in additional detail with respect to Figures 11-14. The request to
provide a user interface component via progressive page rendering may be

10 generated when one of these progressive page containers is identified by the
rendering engine.

The user interface component is instantiated at 1004. According to various
embodiments, instantiating the user interface component may involve creating
an instance of a definition corresponding to the user interface component. In

15 addition, a progressive page @wire decorator corresponding with the user
interface component may be invoked.

According to varicus embodiments,; an @wire may be a type of decorator
on a web component, which may be implamented in, for instance, JavaScript. In
general, resclving the invocation of an @wire decorator corresponding with a

20 web component may involve retrieving information for rendering the web
component. However, whereas that resolution may be triggered immediately
for most web components, the resolution of the invocation of an @wire
decaorator corresponding with a progressive page container web component
may be delayed.

25 Cne or more portions of the user interface component are progressively
rendered at 1006, When a user interface component is progressively rendered,
its rendering may be delayed based on one or more considerations. For
example, its rendering may be delayed until an event is detected, such as a user
clicking on a link withing a graphical user interface. Additional details regarding

30 a procedure for progressively rendering a page component are discussed in

additional detail with respect to the method 1400 shown in Figure 14.

WO 2022/164718 PCT/US2022/013241

Figure 11 illustrates an example of a system flow 1100 for progressive page
rendering, arranged in accordance with one or more embodiments. The system
flow 1100 includes progressive page containers 1110, 1120, and 1130 in
communication with an abstract data graph module 1102, The abstract data

5 graph module 1102 includes an abstract data graph resclver 1104, a
progressive page rendering collector 1106, and a progressive page rendering
emitter 1108, The progressive containers include prograssive wires 1132, 1122,
and 1132 as well as progressive content 1114, 1124, and 1134,

According to various embodiments, a user interface may include various

10 numbers of progressive containers. For the purpose of illustration, the system
flow 1100 shows three such containers, and the flow is described with respect
to one of them,

The progressive container 1110 may be instantiated as discussed with
respect to the operation 1004 shown in Figure 10. As discussed, instantiating

15 the progressive container may involve invoking the @wire decorator 1112,
According to various embadiments, the @wire decorator may indicate whether
the progressive content 1114 is locked or unlockad.

in some implementations, when the progressive content is locked, the data
necassary for rendering the progressive content has not yet been retrisved for

20 rendering by the abstract data graph resolver. The state may be changed to
unlocked when that data has been retrieved,

In some embodiments, when the progressive container 1110 is
instantiated, the progressive content 1114 may initially be set to the locked
state. The state of the progressive content 1114 may be changed by the

25 progressive @wire decorator 1112,

According to various embodiments, when an event occurs on the page, a
state change message may be transmitted to the progressive page rendering
collector 1106, The progressive page rendering collector 1106 may record the
state change. In addition, the abstract data graph resolver 1104 may be notified

30 of the event. The nature of the event may vary based on the context. For
example, user input indicating that the user has clicked on a graphical user

interface affordance may be received. As ancther sxample, user input

WO 2022/164718 PCT/US2022/013241

indicating that the user has scrolled down a user interface component may be
received. As yet another example, the svent may indicate that a particular user
interface component has been updated with new information.

According to various embodiments, one type of event may indicate that

5 the progressive container is connected. Another type of event may indicate that
the progressive container is visible on the page or is set to be made visible on
the page. Such information may be determined based on user input, as noted
above. Alternatively, or additionally, such information may be determined
based on analyzing a viewpoint associated with the presentation of a graphical

10 user interface. The viewport may indicate a portion of a rendered graphical
user interface that is being actively displayed on a display screen.

in some implementations, the abstract data graph resolver 1104 may
determine whether to retrieve information associated with the progressive
container 1110. The determination may be made at least in part based on the

15 nature of the event. If the event indicates that the progressive container is to
be made visible, then one or more portions of the abstract data graph
corresponding with the prograssive container may be resclved. Resolving the
portions of the abstract data graph may involve, for instance, retrieving data
from a remote computing system if that data has not vet been retrieved.

20 in some embodiments, the abstract data graph resolver 1104 may notify
the progressive page rendering emitter 1108 when one or more portions of the
abstract data graph corresponding with the progressive container 1110 have
been resolved. Then, the progressive page rendering emitter may communicate
with the progressive @wire 1112 associated with the progressive container

25 1110. For instance, the progressive page rendering emitter 1108 may transmit
an unlock message to the progressive @wire 1112,

According to various embodiments, the progressive page rendering
collector 1106 may information the abstract data graph resolver 1104 about
one or more criteria for indicating to the progressive page rendering emitter

30 1108 that the progressive @wire 1112 should be unlocked. For example, an
unlock message may be transmitted immediately. As another example, an

unlock message may be transmitted when the abstract data graph resolver

123
23

WO 2022/164718 PCT/US2022/013241

1104 has resoived the first node of the relevant portion of the abstract data

graph. As vet another example, an uniock message may be transmitted with the

abstract data graph resolver 1104 has resolved the last node of the relevant

portion of the abstract data graph. As still another example, an unlock message
5 may be associated with a minimum delay and/or a maximum delay.

in particular embodiments, the prograssive page rendering emitter 1108
may in certain instances transmit a message to the progressive @wire 1112
instructing the progressive @wire 1112 to lock the progressive content 1114,
For instance, an event may be detected that indicates that the progressive

10 container, though already rendered, should be updated without refreshing the
entire graphical user interface. In such a configuration, the progressive content
1114 may be locked from use in further rendering. Then, the progressive
content 1114 may be updated by the abstract data graph resolver. Finally, the
progressive content 1114 may be unlocked, and the progressive container 1110
15 updated by manipulating the shadow DOM.

Figure 12 illustrates an example of a graphical user interface system 1200
configured for progressive page rendering, arranged in accordance with one or
more embodiments. The graphical user interface systerm includes a document
1202, which includes an instance of a container 1204, The container instance

20 1204 includes a progressive page rendering container 1206,

According to various embodiments, a custom event may report a state
change associated with the progressive page rendering container 1206 to the
abstract data graph roliup module associated with the graphical user interface
rendered based on the document 1202, The custom event may indicate, for

25 instance, that the portion of the rendered document corresponding with the
progressive page rendering container 1206 neads to be rendered soon.

in some implementations, the abstract data graph rollup module 1208
reports the state change to the progressive page rendering collector module
1210. The abstract data graph rollup module 1208 may also send a reqguest to

30 the abstract data graph resolver 1212 to resoclve the portion of the abstract

data graph corresponding with the progressive page rendering container 1206,

WO 2022/164718 PCT/US2022/013241

According to varicus embodiments, the abstract data graph resolver may
resolve the portion of the abstract data graph corresponding with the
progressive page rendering container 1206, Also, the abstract data graph
resolver may instruct the progressive page rendering emitter 1214 to update

5 the progressive context associated with the progressive page rendering
container 1206. As discussed herein, the progressive wire status may be
updated before, during, or after the resolution of the abstract data graph
portion.

in some implementations, the progressive page rendering emitter may

10 emit progressive context wire value 1216 of true, false, or unknown. The value
may be stored as the “shouldRender” value in the progressive page rendering
container 1206.

According to various embodiments, the shouldRender wvalue in the

progressive page rendering container 1206 may be used to determine at 1218

15 whether the progressive page rendering container 1206 should be rendered. i
the shouldRender value is yes, then the intended component 1222 is rendered.
if instead the shouldRender value is ng, then a stencil component 1220 may be
provided as a stand in. The stencil component 1220 may be, for sxample, a
compaonent outline that lacks one or more data elements associated with a fully

20 rendered component. The shouldRender wvalue for the progressive page
rendering container 1206 may be initially set to "no” or “unknown.” The value
may then be updated by the progressive page rendering emitter 1214,

Figure 13 lustrates an abstract data graph 1300, arranged in accordance

with one or more embodiments. The abstract data graph 1300 represents a set

25 of user interface components that may be included in a graphical user
interface. For example, the abstract data graph represents the parentjs
definition 1302, the parent.him! definition 1304, the progressiveContainer.js
definition 1306, the progressiveContainer.htmi definition 1308, the childField.js
definition 1310, and the childField.htmi definition 1312.

30 According to various embodiments, an abstract data graph may include
one or more of various types of nodes. The abstract data graph 1300 includes a

non-exhaustive sample of such nodes.

WO 2022/164718 PCT/US2022/013241

An example of a wire node is iHustrated at 1316, According to various
embodiments, a wire node represents an @wire statement within a
component. It contains a configuration to represent inputs to the @wire
staternent. For instance, the wire node 1316 corresponds with a progressive

5 container component. The component corresponding to the @wire statement
can be instantiated when the wire node 13186 is resolvad.

According to various embodiments, a configuration input to a wire node
may be a literal or a reference to another node in an abstract data graph. For
instance, a configuration input may be a property or an import statement.

10 An example of an import node is illustrated at 1314. The import node 1314
represents an import statement in which the progressiveCTX component
definition is imported from the ppr {i.e,, progressive page rendering) module. In
the abstract data graph 1300, the resolution of the wire node 1316 depends on
the resolution of the import node 1314,

15 in particular embodiments, a given import statement may be represented
by a unique import node in a graph. For instance, if the import statement
represented by the import node 1314 were to appear elsewhere in the
graphical user interface corresponding to the abstract data graph 1300, then
the dependency could be represented by an additional link to the import node

20 1314 rather than by generating an additional import node,

An example of a property node is illustrated at 1318, The property node
1318 represents an identifier for the wire represented by the wire node 1316,
inn the abstract data graph 1300, the resolution of the wire node 1316 depends
on the resolution of the property node 1318, since the identifier represented by

25 the property node 1318 is needed to instantiate the component represented by
the progressiveContainer.js definition 1306.

in particular embodiments, a property node may include a reference to
another node. For instance, the property node 1318 depends on the iteration
node 1320, since the iteration node 1320 returns the identifier needed to

30 resolve the property node 1318,

An example of an iteration node is shown at 1320, According to various

embodiments, an iteration node may represent an iteration statement, such as

WO 2022/164718 PCT/US2022/013241

a for or while loop, found in a component. The input of an iteration node may
be linked to a providing abstract data graph node {g.g., a property node or a
wire node). For instance, the input of the iteration node 1320 is linked to the
wire node 1322,

5 An example of a conditional node is shown at 1324, According to various
embodiments, the conditional node represents a conditional statement {e.g.,
an “if” statement}) in a component definition. The input of a conditional
statement may be linked to a providing abstract data graph node. For instance,
the conditional statement 1324 depends on the wire node 1326,

10 According to various embodiments, an arrangement of nodes in an
abstract data graph may facilitate progressive page rendering. For exampile, the
graphical user interface represented by the abstract data graph 1300 may
include N instances of the progressiveContainer.js component definition 1308,
the progressiveContainer.html component definition 1308, the childField.js

15 component definition 1310, and the childField.html component definition 1312,
depending on the contents of the recordDatafields returned by the iterator
represented by the iterator node 1320,

According to various embodiments, a conditional statement may be used
to indicate when and under what conditions a prograssive container should

20 render. For instance, an instance of the childField.js component definition 1310
and the childField.html component definition 1312 may be rendered when the
conditional 1324 returns “true,” which may be the case when the data involved
in rendering the instance of the child component definition is available.

Figure 14 illustrates a progressive page rendering container rendering

25 method 1400, performed in accordance with one or more embodiments. In
some implementations, the method 1400 may be performed at a cdlient
machine in communication with a remote computing system. For instance, the
method 1400 may be performed when an event is detected indicating that the
contents of a progressive container should be rendered for presentation in a

30 graphical user interface being displayed on a display screen.

A progressive page rendering state change event associated with a

progressive container component instance is detected at 1402, According to

WO 2022/164718 PCT/US2022/013241

various embodiments, the progressive page rendering state change event may

be any event configured to cause a state change associated with the

progressive component instance. Such a configuration parameter may be set

by, for instance, the developer of the web component corresponding with the

5 progressive page container. Exampiles of such a state change svent may include,

but are not limited to: the detection of user input associated with the rendered

graphical user interface, a determination that a viewport associated with the

rendered graphical user interface has changed to include the progressive page

container, a determination that a viewport associated with the rendered

10 graphical user interface has changed in a fashion that indicates that the

contents progressive page container are likely to be viewed in the future,
and/or any other suitable event or combination of svents.

The state change is published from the progressive confainer instance to
the progressive page collector at 1404. In some implementations, publishing

15 the state change may involve transmitting a message to the progressive page
rendering collector that the progressive container is to be made visible.

One or more progressive container instance rendering criteria are
identified at 1406. In some implementations, the rendering criteria may
indicate to the progressive container when the container is available for

20 rendering in the graphical user interface.

According to various embodiments, one or more of a variety of rendering
criteria may be employed. For example, if the delay is set to “none”, then the
content assigned to the progressive page container may be rendered initially,
such as when the progressive page container is instantiated. As another

25 example, if the delay is set to “immediate”, then the progressive page container
may be rendered after the state change message is transmitted. As yet another
example, if the delay is set to “start-in-flight”, then the progressive page
container may be rendered after the abstract data graph resolver begins
resolving abstract data graph nodes associated with the container. Such a

30 condition may be satisfied before data items associated with the progressive
container have been received, and/or before initiating the retrieval of any

recursive data sets. As still another example, if the delay is set to "all-in-flight”,

WO 2022/164718 PCT/US2022/013241

the progressive page container may be rendered after the abstract data graph
resolver begins resolving the last set of unresolved abstract data graph nodes
associated with the container. At this point, all nodes in the abstract data graph
associated with the container are sither fully resolved or are in-flight. As still
5 another example, if the delay is set to “resolved”, the progressive page
container may be rendered after the abstract data graph resolver has fully
resolved all nodes in the abstract data graph associated with the container. At
this point, all of the data required for rendering the container’s subitree has
been received by the client machine. As still another example, a minimum

10 and/or maximum delay {e.g., in milliseconds) may be specified. Such criteria
may be applied instead of, or in addition to, any other criteria.

According to various embodiments, as with the state change event
discussed with respect to the operation 1402, the progressive container
instance rendering criteria may be configured based on the context. For

15 example, a web component application developer may configure one or more
rendering criteria.

in particular embodiments, one or more rendering criteria may be
determined based on a machine learning procedure. For example, if the
rendering of a particular progressive page container tends to be delayed based

20 on the rendering criteria rather than data availability, then the criteria may be
adjusted to render the progressive page container more quickly. However, if
instead the rendering of a particular progressive page container tends to be
delayed based on data availability, then the rendering criteria may be
configured so as to increass the rendering delay.

25 An abstract data graph portion corresponding with the progressive
container instance is resolved at 1408. According to various embodiments,
resolving the abstract data graph portion may involve retrieving one or more
data items from the remote computing system. For instance, resclving the
abstract data graph portion may involve performing one or more of the

30 operations shown in the method 700 in Figure 7.

A progressive container instance rendering status is updated in accordance

with the progressive container instance rendering criteria at 1410. In some

WO 2022/164718 PCT/US2022/013241

implementations, updating the progressive container instance rendering status
may involve transmitting a message from the progressive page rendering
emitter to the progressive page @wire, as discussed with respect to Figure 11,
for example,

5 According to various embodiments, although operation 1410 is shown in
Figure 14 as being performed after operation 1408, the timing of operation
1410 depends on the rendering criteria identified at 1406. For example,
depending on the rendering criteria, the status may be updated before, during,
or after the performance of the operation 1402. As another example,

10 depending on the rendering criteria, the status may be updated before, during,
or after the performance of the operation 1408.

Figure 15 shows a block diagram of an example of an environment 1510
that includes an on-demand database service configured in accordance with
some implementations. Erwironment 1510 may include user systems 1512,

15 network 1514, database system 1516, processor system 1517, application
platform 1518, network interface 1520, tenant data storage 1522, tenant data
1523, system data storage 1524, system data 1525, program code 15286,
process space 1528, User Interface {U1) 1530, Application Program interface
{API) 1532, PL/SCQL 1534, save routines 1536, application setup mechanism

20 1538, application servers 1550-1 through 1550-N, system process space 1552,
tenant process spaces 1554, tenant management process space 1560, tenant
storage space 1562, user storage 1564, and application metadata 1566, Some
of such devices may be implemented using hardware or a combination of
hardware and software and may be implemented on the same physical device

25 or on different devices. Thus, terms such as “data processing apparatus,”

"o

“machine,” “server” and “device” as used herein are not limited to a single
hardware device, but rather include any hardware and software configured to
provide the described functionality.

An on-demand database service, implemented using system 1516, may be

30 managed by a database service provider. Some services may store information

from one or more tenants into tables of a common database image to form a

multi-tenant database system {MTS) As used herein, each MTS could include

40

WO 2022/164718 PCT/US2022/013241

one or more logically and/or physically connected servers distributed locally or
across one or more geographic locations. Databases described herein may be
implemented as single databases, distributed databases, collections of
distributed databases, or any other suitable database systam. A database image
5 may include one or more database ohjects. A relational database management
system {RDBMS) or a similar system may exscuie storage and retrieval of
information against these objects.
in some implementations, the application platform 1518 may be a
framework that allows the creation, management, and execution of
10 applications in system 1516, Such applications may be developed by the
database service provider or by users or third-party application developers
accessing the service. Application platform 1518 includes an application setup
mechanism 1538 that supports application developers’ creation and
management of applications, which may be saved as metadata into tenant data
15 storage 1522 by save routines 1536 for execution by subscribers as one or more
tenant process spaces 1554 managed by tenant management process 1560 for
example. invocations to such applications may be coded using PL/SOQL 1534
that provides a programming language style interface extension to AP 1532, A
detailed description of some PL/SCQOL language implementations is discussed in
20 commonly assigned U.S. Patent No. 7,730,478, titled METHOD AND SYSTEM
FCGR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT
ON-DEMAND DATABASE SERVICE, by Craig Weissman, issued on june 1, 2010,
and hereby incorporated by reference in its entirety and for all purposes.
invocations to applications may be detected by one or more system processes.
25 Such system processes may manage retrieval of application metadata 1566 for
a subscriber making such an invocation. Such system processes may also
manage execution of application metadata 1566 as an application in a virtual
machine.
In some implementations, each application server 1550 may handie
30 requests for any user associated with any organization. A load balancing
function {e.g., an F5 Big-IP load balancer} may distribute requests to the

application servers 1550 based on an algorithm such as least-connections,

41

WO 2022/164718 PCT/US2022/013241

round robin, ohserved response time, stc. Each application server 1550 may be

configured to communicate with tenant data storage 1522 and the tenant data

1523 therein, and system data storage 1524 and the system data 1525 therein

to serve reguests of user systems 1512. The tenant dats 1523 may be divided

5 into individual tenant storage spaces 1562, which can be either a physical

arrangement and/or a logical arrangement of data. Within each tenant storage

space 1562, user storage 1564 and application metadata 1566 may be similarly

allocated for each user. For example, a copy of a user's most recently used

{MRU) items might be stored to user storage 1564. Similarly, a copy of MRU

10 items for an entire tenant organization may be stored to tenant storage space

1562, A GUI 1530 provides a user interface and an API 1532 provides an

application programming interface to system 1516 resident processes to users

and/or developers at user systems 1512

System 1516 may implement a web-based user interface generation

15 system. For example, in some implementations, system 1516 may include

application servers configured to implement and execute a varisty of software

applications. The application servers may be configured to provide related dats,

code, forms, webh pages and other information to and from user systems 1512,

Additionally, the application servers may be configured to store information to,

20 and retrieve information from a database system. Such information may

include related data, objects, and/or Webpage content. With a multi-tenant

system, data for muitiple tenants may be stored in the same physical database

object in tenant data storage 1522, however, tenant data may be arranged in

the storage medium{s} of tenant data storage 1522 so that data of one tenant is

25 kept logically separate from that of other tenants. In such a schaeme, one tenant
may not access another tenant’s data, unless such data is expressly shared.

Several elements in the system shown in Figure 15 include conventional,

well-known elements that are explained only briefly here. For example, user

system 1512 may include processor system 1512A, memory system 15128,

30 input system 15120, and output system 1512D. A user system 1512 may be

implemented as any computing device{s) or other data processing apparatus

such as a mobile phone, laptop computer, tablet, desktop computer, or

42

WO 2022/164718 PCT/US2022/013241

network of computing devicas. User system 12 may run an internet browser

allowing a user {.g., a subscriber of an MTS) of user system 1512 to access,

process and view information, pages and applications available from system

1516 over network 1514, Network 1514 may be any network or combination of

5 networks of devices that communicate with one another, such as any one or

any combination of a LAN {local area network], WAN {wide area network),
wireless network, or ather appropriate configuration.

The users of user systems 1512 may differ in their respective capacities,

and the capacity of a particular user system 1512 to access information may be

10 determined at least in part by “permissions” of the particular user system 1512,

As discussed herein, permissions generally govern access to computing

resources such as data objects, components, and other entities of a computing

system, such as a user interface generation system, a social networking system,

and/or a CRM database system. “Permission seis” generally refer to groups of

15 permissions that may be assigned to users of such a computing environment.

For instance, the assignments of users and permission sets may be stored in

one or more databases of System 1516, Thus, users may receive permission to

access certain resgurces, A permission server in an on-demand database service

environment can store criteria data regarding the types of users and permission

20 sets to assign to each other. For example, a computing device can provide to

the server dala indicating an attribute of a user {e.g., geographic location,

industry, role, level of experience, etc.) and particular permissions to be

assigned to the users fitting the attributes. Permission sets meeting the criteria

may be selected and assigned to the users. Moreover, permissions may appear

25 in multiple permission sets. In this way, the users can gain access to the

components of a system.

in some an on-demand dalabase service environments, an Application

Programming Interface {API} may be confizured to expose a collection of

permissions and their assignments to users through appropriate network-based

30 services and architectures, for instance, using Simple Object Access Protocol

{SOAP) Web Service and Representational State Transfer {(REST) APls.

WO 2022/164718 PCT/US2022/013241

in some implementations, a permission set may be presented to an
administrator as a container of permissions. However, sach permission in such
a permission set may reside in a separate APl object exposed in a shared API
that has a child-parent relationship with the same permission set object. This
5 allows a given permission set to scale to millions of permissions for a user while
allowing a developer to take advantage of joins across the APt objecis to query,
insert, update, and delete any permission across the millions of possible
choices. This makes the AP! highly scalable, reliable, and efficient for developers

to use,

10 in some implementations, a permission set APl constructed using the
technigues disclosed herein can provide scalable, reliable, and efficient
mechanisms for a developer to create tools that manage a user's permissions
across various sets of access controls and across types of users. Administrators
who use this tooling can effectively reduce their time managing a user's rights,

15 integrate with external systems, and report on rights for auditing and
troubleshooting purposes. By way of example, different users may have
different capabilities with regard to accessing and modifying application and
database information, depending on a user’s security or permission level, also
called authorization. In systems with a hierarchical role model, users at one

20 permission level may have access to applications, data, and database
information accessible by a lower permission level user, but may not have
access to certain applications, database information, and data accessible by a
user at a higher permission level.

As discussed above, system 1516 may provide on-demand database service

25 to user systems 1512 using an MTS arrangement. By way of example, one
tenant organization may be a company that employs a sales force where gach
salesperson uses system 15186 to manage their sales process. Thus, a user in
such an organization may maintain contact data, leads data, customer follow-
up data, performance data, goals and progress data, etc., all applicable to that

30 user's personal sales process {e.g., in tenant data storage 1522). in this
arrangement, a user may manage his or her sales efforts and cycles from a

variety of devices, since relevant data and applications to interact with {e.g.,

44

WO 2022/164718 PCT/US2022/013241

access, view, madify, report, transmit, calculate, ete} such data may be
maintained and accassed by any user systermn 1512 having network access.

When implemented in an MTS arrangement, system 1516 may separate
and share data between users and at the organization-level in a variety of

5 manners. For example, for certain types of data each user’s data might be
separate from other users’ data regardiess of the organization employing such
users. Other data may be organization-wide data, which is shared or accessibie
by several users or potentially all users form a given tenant organization. Thus,
some data structures managed by system 1516 may be allocated at the tenant

10 level while other data structures might be managed at the user level. Because
an MTS might support multiple tenants including possible competitors, the MTS
may have security protocols that keep data, applications, and application use
separate. in addition to user-specific data and tenant-specific data, system 1516
may also maintain system-level data usable by multiple tenants or other data.

15 Such system-level data may include industry reports, news, postings, and the
like that are sharable betwsen tenant organizations.

in some implementations, user systems 1512 may be client systems
communicating with application servers 1550 to request and update system-
level and tenant-level data from system 1516, By way of example, user systems

20 1512 may send one or more queries requesting data of a database maintained
in tenant data storage 1522 and/or system data storage 1524, An application
server 1550 of system 1516 may automatically generate one or more 5GL
statements {&.g., one or more SGL gqueries) that are designed to access the
requested data. System data storage 1524 may generate query plans to access

25 the requested data from the database.

The database systems described herein may be used for a variety of
database applications. By way of example, each database can generally be
viewed as a collection of objects, such as a set of logical tables, containing data
fitted into predefined caltegories. A “table” is one representation of a data

30 object, and may be used hersin to simplify the conceptual description of
objects and custom objects according to some implementations. It should be

understood that “table” and “object” may be usad interchangeably herein. Each

45

WO 2022/164718 PCT/US2022/013241

table generally contains one or more data categories logically arranged as

columns or fields in a viewable schema. Each row or record of a table contains

an instance of data for each category defined by the fields. For example, a CRM

database may inchude a table that describes a customer with fields for basic

5 contact information such as name, address, phone number, fax number, etc.

Anather table might describe a purchase order, including fields for information

such as customer, product, sale price, date, etc. In some multi-tenant database

systems, standard entity tables might be provided for use by all tenants. For

CRM database applications, such standard entitiss might include tables for

10 case, account, contact, lead, and opportunity data objects, each containing pre-

defined fields. it should be understood that the word “entity” may also be used
interchangeably herein with “object” and “table”.

in some implementations, tenants may be allowed to create and store
custom objects, or they may be allowed to customize standard entities or

15 objects, for example by creating custom fields for standard objects, including
custom index fislds, Commonly assigned U.5. Patent No. 7,779,039, titled
CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by
Weissman st al., issued on August 17, 2010, and hereby incorporated by
reference in its entirety and for all purposes, teaches systems and methods for

20 creating custom objects as well as customizing standard objects in an MTS. In
certain implementations, for example, all custom entity data rows may be
stored in a single multi-tenant physical table, which may contain multiple
logical tables per organization. it may be transparent to customers that their
multiple "tables” are in fact stored in one large table or that their data may be

25 stored in the same table as the data of other customers,

Figure 16A shows a system diagram of an example of architectural
components of an on-demand database service environment 1600, configured
in accordance with some implementations. A client machine located in the
cloud 1804 may communicate with the on-demand database service

30 environment via one or more edge routers 1608 and 1612. A client machine
may include any of the examples of user systems 1512 described above. The

edge routers 1608 and 1612 may communicate with one or more core switches

46

WO 2022/164718 PCT/US2022/013241

1620 and 1624 via firewall 1616, The core switches may communicate with a
load balancer 1628, which may distribute server load over different pods, such
as the pods 1640 and 1644 by communication via pod switches 1632 and 1636.
The pods 1640 and 1644, which may each include one or more servers and/or
5 other computing resources, may perform data processing and other operations
used to provide on-demand services. Components of the environment may
communicate with a database storage 1656 via a database firewall 1648 and a
database switch 1652,
Accessing an on-demand database service environment may involve
10 communications transmitted among a variety of different components. The
environment 1600 is a simplified representation of an actual on-demand
database service environment. For example, some implementations of an on-
demand database service environment may include anywhere from one to
many devices of each type. Additionally, an on-demand database service
15 environment need not include each device shown, or may include additional
devices not shown, in Figures 164 and 16B.
The cloud 1604 refers to any suitable data network or combination of data
networks, which may include the Internet. Client machines located in the cloud
1604 may communicate with the on-demand database service environment
20 1600 to access services provided by the on-demand database service
environment 1600. By way of example, client machines may access the on-
demand database service environment 1600 to retrieve, store, edit, and/or
process user interface information.
in some implementations, the edge routers 1608 and 1612 route packets
25 between the cloud 1604 and other components of the on-demand database
service environment 1600. The edge routers 1608 and 1612 may employ the
Border Gateway Protocol {BGP). The edge routers 1608 and 1612 may maintain
a table of IP networks or ‘prefixes’, which designate network reachability
amang autonomous systems on the internet.
30 in one or more implementations, the firewall 1616 may protect the inner
components of the environment 1800 from internet traffic. The firewall 1616

may block, permit, or deny access to the inner components of the on-demand

a7

WO 2022/164718 PCT/US2022/013241

database service environment 1600 based upon a set of rules and/or other
criteria. The firewall 1616 may act as one or more of a packet filter, an
application gateway, a stateful filter, a proxy server, or any other type of
firewall.

5 in some implementations, the core switches 1620 and 1624 may be high-
capacity switches that transfer packets within the environment 1600. The core
switches 1620 and 1624 may be configured as network bridges that quickly
route data between different components within the on-demand database
service environment. The use of two or more core switches 1620 and 1624 may

10 provide redundancy and/or reduced latenay.
in some implementations, communication between the pods 1640 and
1644 may be conducted via the pod switches 1632 and 1636, The pod switches
1632 and 1636 may facilitate communication between the pods 1640 and 1644
and client machines, for example via core switches 1620 and 1624. Also or
15 alternatively, the pod switches 1632 and 1636 may facilitate communication
between the pods 1640 and 1644 and the database storage 1656. The load
balancer 1628 may distribute workload between the pods, which may assist in
improving the use of resources, increasing throughput, reducing response
times, and/or reducing overhead. The load balancer 1628 may include
20 multilayer switches to analyze and forward traffic.
in some implementations, access to the database storage 1656 may be
guarded by a database firewall 1648, which may act as a computer application
firewall operating at the database application layer of a protocol stack. The
database firewall 1648 may protect the database storage 1656 from application
25 attacks such as structure query language (SQL) injection, database rootkits, and
unauthorized information disclosure. The database firewall 1648 may include a
host using one or more forms of reverse proxy services to proxy traffic before
passing it o a gateway router and/or may inspect the contents of database
traffic and block certain content or database requests. The database firewall
30 1648 may work on the SQL application leve! atop the TCR/IP stack, managing

applications’ connection to the database or SQL management interfaces as well

48

WO 2022/164718 PCT/US2022/013241

as intercepting and enforcing packets traveling to or from a database network
or application interface.
In some implementations, the database storage 1656 may be an on-
demand database system shared by many different organizations. The on-
5 demand database service may employ a single-tenant approach, a multi-tenant
approach, a virtualized approach, or any other type of database approach.
Communication with the database storage 1656 may be conducted via the
database switch 1652, The database storage 1656 may include various software
components for handling database queries. Accordingly, the database switch
10 1657 may direct database gueries transmitted by other components of the
environment {e.g., the pods 1640 and 1644) to the correct components within
the database storage 1656.
Figure 16B shows a system diagram further illustrating an example of
architectural components of an on-demand database service environment, in
15 accordance with some implementations. The pod 1644 may be used to render
services to user{s) of the on-demand database service environment 1600, The
pod 1844 may include one or more content batch sarvers 16864, content search
servers 1668, query servers 1682, file servers 1686, access control system {ACS)
servers 1680, batch servers 1684, and app servers 1688, Also, the pod 1644
20 may include database instances 1690, quick file systems {QFS} 1692, and
indexers 1694. Some or all communication between the servers in the pod 1644
may be transmitted via the switch 1636,
in some implementations, the app servers 1688 may include a framework
dedicated to the execution of procedures {e.g., programs, routines, scripts) for
25 supporting the construction of applications provided by the on-demand
database service environment 1600 via the pod 1644, One or more instances of
the app server 1688 may be configured to execute all or a portion of the
operations of the services described herein.
in some implementations, as discussed above, the pod 1644 may include
30 one or more database instances 1690. A database instance 1690 may be
configured as an MTS in which different organizations share access to the same

database, using the techniques described above. Database information may be

49

WO 2022/164718 PCT/US2022/013241

transmitted to the indexer 16324, which may provide an index of information
available in the database 1690 to file servers 1686, The GFS 1692 or other
suitable filesystem may serve as a rapid-access file system for storing and
accessing information available within the pod 1644, The QFS 1682 may

5 suypport volume management capabilities, allowing many disks to be grouped
together into a file system. The QFS 1692 may communicate with the database
instances 1690, content search servers 1668 and/or indexers 1694 to identify,
retrieve, move, and/or update data stored in the network file systems {NFS)
1696 and/or other storage systams.

10 in some implementations, one or more query servers 1682 may
communicate with the NFS 1696 to retrieve and/or update information storad
outside of the pod 1644. The NFS 1896 may allow servers located in the pod
1644 to access information over a network in a manner similar to how local
storage is accessed. Queries from the query servers 1622 may be fransmitted to

15 the NFS 1896 via the load balancer 16238, which may distribute resource
requests over various resgurces available in the on-demand database service
environment 1600, The NFS 1696 may also communicate with the QFS 1692 to
update the information stored on the NFS 1696 and/or to provide information
to the QFS 1692 for use by servers located within the pod 1644,

20 in some implementations, the content batch servers 1664 may handle
requests internal to the pod 1644, These requests may be long-running and/or
not tied to a particular customer, such as requests related to log mining,
cleanup work, and maintenance tasks. The content search servers 1668 may
provide query and indexer functions such as functions allowing users to search

25 through content stored in the on-demand database service environment 1600.
The file servers 1686 may manage requests for information stored in the file
storage 1698, which may store information such as documents, images, basic
farge objects (BLOBs), etc. The query servers 1682 may be used to retrieve
information from one or more file systems. For example, the query system

30 1682 may receive requests for information from the app servers 1688 and then
transmit information queries to the NFS 1696 located outside the pod 1644,

The ACS servers 1680 may control access to data, hardware resources, or

50

WO 2022/164718 PCT/US2022/013241

software resources called upon to render services provided by the pod 16844,
The hatch servers 1684 may process hatch jobs, which are used to run tasks at
specifiad times. Thus, the batch servers 1684 may transmit instructions to other
servers, such as the app servers 1688, to trigger the batch jobs.

5 While some of the disclosed implementations may be described with
reference to a system having an application server providing a front end for an
on-demand database service capable of supporting multiple tenants, the
disclosed implementations are not limited to multi-tenant databases nor
deployment on application servers. Some implemeantations may be practiced

10 using various database architectures such as ORACLE®, DB29 by IBM and the
like without departing from the scope of present disciosure.

Figure 17 illustrates one example of a computing device. According to
various embodiments, a system 1700 suitable for implementing embodiments
described herein includes a processor 1701, a memory module 1703, a storage

15 device 1705, an interface 1711, and a bus 1715 {e.g., a PCI bus or other
interconnection fabric.) System 1700 may operate as variety of devices such as
an application server, a database server, or any other device or service
describad herein. Although a particular configuration is described, a varisty of
alternative configurations are possible. The processor 1701 may perform

20 operations such as those described herein. Instructions for performing such
operations may be embodied in the memaory 1703, on one or more non-
transitory computer readable media, or on some other storage device. Various
specially configured devices can also be used in place of or in addition to the
processar 1701, The interface 1711 may be configured to send and receive data

25 packets over a network. Examples of supported interfaces include, but are not
limited to: Ethernet, fast Ethernet, Gigabit Ethernet, frame relay, cable, digital
subscriber line {D51), token ring, Asynchronous Transfer Mode {ATM), High-
Speed Serial Interface (HSSH, and Fiber Distributed Data Interface {FDDI). These
interfaces may include ports appropriate for communication with the

30 appropriate media. They may also include an independent processor and/or

volatile RAM. A computer system or computing device may include or

51

WO 2022/164718 PCT/US2022/013241

communicate with a monitor, printer, or other suitable display for providing
any of the results mentioned herein to a user,
Any of the disclosed implementations may be embaodied in various types of
hardware, software, firmware, computer readable media, and combinations
5 thereof. For example, some techniques disclosed herein may be implemented,
at lzast in part, by computer-readable media that include program instructions,
state information, etc., for configuring a computing system to perform various
services and operations described herein. Examples of program instructions
include both machine code, such as produced by a compiler, and higher-leval
10 code that may be executed via an interpreter. Instructions may be embodiad in
any suitable language such as, for example, Apex, lava, Python, T+, C, HTML,
any other markup language, JavaScript, ActiveX, VBScript, or Perl. Bxamples of
computer-readable media include, but are not limited to: magnetic media such
as hard disks and magnetic tape; optical media such as flash memory, compact
15 disk {CD} or digital versatile disk {DVD); magneto-optical media; and other
hardware devices such as read-only memory {"ROM”} devices and random-
access memaory {“RAM”} devices. A computer-readable medium may be any
combination of such storage deviges.
in the foregoing specification, various technigues and mechanisms may
20 have been described in singular form for clarity. Howsver, it should be noted
that some embodiments include multiple iterations of a technique or multiple
instantiations of a mechanism unless otherwise noted. For example, a system
uses a processor in a variety of contexts but can use muitiple processors while
remaining within the scope of the present disclosure unless otherwise noted.
25 Similarly, various technigues and mechanisms may have been described as
including a connection between two entities. However, a connaction does not
necessarily mean a direct, unimpeded connection, as a variety of other entities
{e.g., bridges, controllers, gateways, etc.} may reside between the two entities.
in the foregoing specification, reference was made in detsil to specific
30 embodiments including one or more of the best modes contemplated by the
inventors. While various implementations have been described herein, it should

be understood that they have been presented by way of example only, and not

52

WO 2022/164718 PCT/US2022/013241

limitation. For example, some technigues and mechanisms are described herein
in the context of on-demand computing environments that include MTSs.
However, the techniques of disciosed herein apply to a wide variety of
computing environments. Particular embodiments may be implemented
5 without some or all of the specific details described herein. in other instances,
well known process operations have not been described in detail in order to
avoid unnecessarily obscuring the disclosed technigques. Accordingly, the
breadth and scope of the present application should not be Himited by any of
the implementations described herein, but should be defined only in

10 accordance with the claims and their equivalents.

WO 2022/164718 PCT/US2022/013241

CLAIMS
1. A method comprising:
constructing an abstract data graph via a processor at a server in response
to a request for a graphical user interface received from a client machineg, the
5 abstract data graph including a plurality of nodes and a plurality of links
between the nodes, the abstract data graph representing computer
programming instructions for generating the graphical user interface, selected
ones of the links representing dependeancy relationships between portions of
the graphical user interface;
10 transmitting the abstract data graph to the clisnt machine over a network
via a communication interface;
receiving from the client maching a plurality of data requests, at least one
of the data requests being generated by the dient machine based on the
abstract data graph, at least one of the data requests identifying one or more
15 data items used to render the graphical user interface at the client maching;
and
transmitting the one or more data items to the client machine in response

to the data requests.

20 2. The method recited in claim 1, wherein a designated one of the plurality of
nodes represents a graphical user interface component property, the graphical
user interface component property storing a data value associated with a web

component within the graphical user interface.

25 3. The method recited in daim 2, wherein the web component is an
instantiation of an hypertext markup language [HTML) template that is
associated with a shadow document object model {DOM} tree and that is
controlled by a JavaScript custom element application procadure interface
{API).

30
4. The method recited in any of claims 1-3, wherein a designated one of the

plurality of nodes represents an import statement, the import statement

54

WO 2022/164718 PCT/US2022/013241

causing a processor to import a module for generating a designatad portion of

the graphical user interface.

5. The method recited in any of claims 1-4, wherein 3 designated one of the
5 plurality of nodes represents a conditional statement, the conditional
statement defining a condition under which a Boolean output value is trug, the
designated node being linked with one or more dependent nodes, the one or
more dependent nodes being associated with one or more portions of the
graphical user interface rendered at the client machine if the condition is true.
10
&. The method recited in any of claims 1-5, wherein a designated one of the
plurality of nodes represents an iteration statement, the iteration statement
being linked with a plurality of dependent nodes, each of the plurality of
dependent nodes corresponding with a respective instantiation of a repeated

15 element within the graphical user interface.

7. The method recited in any of claims 1-6, wherein a first one of the plurality of
nodes represents a JavaScript decorator, wherein the lavaScript decorator
includes a reference to a designated web component within the graphical user
20 interface, and wherein the designated web component is represented in the
abstract data graph by a second one of the plurality of nodes, and wherein the

second node is dependent on the first node.

8. The method racited in any of claims 1-7, wherein constructing the abstract
25 data graph comprises:
selecting for analysis a designated one of a plurality of web components

included in the graphical user interface.

9. The method recited in claim 8, wherein the plurality of web components are

30 arranged in a free data structure, and wherein the designated web component

is selected as part of a traversal of the tree data structure.

55

WO 2022/164718 PCT/US2022/013241

10. The method recited in claim 8, wherein constructing the abstract data graph
further comprises:

constructing a designated property node within the abstract data graph,
the designated property node corresponding with a property of the designated

5 web component.

11. The method recited in claim 8, wherein constructing the abstract data graph
further comprises:
fraversing an abstract syntax tree associated with the designated web

18 component,

12. The method recited in any of claims 1-11, wherein transmitting the abstract
data graph to the client machine comprises serializing the abstract data graph
by traversing the abstract data graph and emitting serialized node information

15 for each of a plurality of nodes within the abstract data graph.

13. The method recited in any of claims 1-12, wherein serializing the abstract
data graph includes replacing a first node or subgraph with a reference to a
second node or subgraph, the second node or subgraph duplicating the first

20 node or subgraph.

14. The method recited in any of claims 1-13, wherein the server is situated
within an on-demand computing services environment that provides on-

demand computing services to a plurality of entities via the internet.

15. A computing system comprising:

a processor operable to construct an abstract data graph in response to a
reguest for a graphical user interface received from a client maching, the
abstract data graph including a plurality of nodes and a plurality of links

30 between the nodes, the abstract data graph representing computer

programming instructions for generating the graphical user interface, selected

56

WO 2022/164718 PCT/US2022/013241

ones of the links representing dependeancy relationships between portions of
the graphical user interface;
a communication interface operable to transmit the abstract data graph to
the client machine over a network via a communication interface; and
5 an application procedure interface operable to receive from the dient
machine a plurality of data requests, at least one of the data reqguests being
generated by the client machine based on the abstract data graph, at least one
of the data requests identifying one or more data items used to render the
graphical user interface at the client machine, wherein the communication
10 interface is further operable to transmit the one or more data items to the

client machine in response to the data requests.

16. The computing system recited in claim 15, wherein a designated one of the
plurality of nodes represents a graphical user interface component property,
15 the graphical user interface component property storing a data value
associated with a web component within the graphical user interface, and
wherein the web component is an instantiation of an hypertext markup
language (MTML) template that is associated with a shadow document object
model {DOM) tree and that is controlled by a JavaScript custom element

20 application procedure interface {API).

17. The computing system recited in claim 15 or claim 16, wherein a designated
one of the plurality of nodes represents an import statement, the import
statement causing a processor to import a module for generating a designated

25 portion of the graphical user interface.

18. The computing system recited in any of claims 15-17, wherein a designated
one of the plurality of nodes represents a conditional statement, the
conditional statement defining a condition under which a Boolean output value
30 is true, the designated node being linked with one or more dependent nodes,

the one or more dependent nodes being associated with one or more portions

57

WO 2022/164718 PCT/US2022/013241

of the graphical user interface rendered at the client machine if the condition is

true.

18. The computing system recited in any of claims 15-18, wherein a first one of
5 the plurality of nodes represents a JavaScript decorator, wherein the lavaScript
decaorator includes a reference to a designated web component within the
graphical user interface, and wherein the designated wseb component is
represented in the abstract data graph by a second one of the plurality of
nodes, and wherein the second node is dependent on the first node.
10
20, One or more non-transitory computer-readable media having instructions
stored thereon for performing a method, the method comprising:
constructing an abstract data graph via a processor at a server in response
to a request for a graphical user interface received from a client machineg, the
15 abstract data graph including a plurality of nodes and & plurality of links
between the nodes, the abstract data graph representing computser
programming instructions for generating the graphical user interface, selected
ones of the links representing dependeancy relationships between portions of
the graphical user interface;
20 tfransmitting the abstract data graph to the client machine over a network
via a communication interface;
receiving from the client maching a plurality of data requests, at least one
of the data requests being generated by the dient machine based on the
abstract data graph, at least one of the data requests identifying one or more
25 data items used to render the graphical user interface at the client maching;
and
transmitting the one or more data items to the client machineg in response

to the data requests.

30 21 Asystem comprising:
means for constructing an abstract data graph via a processor at a server in

response to a request for a graphical user interface received from a client

58

WO 2022/164718 PCT/US2022/013241

maching, the abstract data graph including a plurality of nodes and a plurality of
links between the nodes, the abstract data graph representing computer
programming instructions for generating the graphical user interface, selected
ones of the links representing dependency relationships bebweesn portions of
5 the graphical user interface;

means for transmitting the abstract data graph to the dient machine over
a network via a communication interface;

means for receiving from the client machine a plurality of data requests, at
least one of the data requests being generated by the client machine based on

10 the abstract data graph, at least one of the data requests identifying one or

more data items used to render the graphical user interface at the dient
machine; and

means for transmitting the one or more data items 1o the client machine in
response to the data reguests.

15

59

WO 2022/164718 PCT/US2022/013241

1/17
/wli}@
Static Analysis Overview
Method
i f«-—102

Receive request for a graphical user
interface {GUI) from a client machine

v /-—1()4

Provide component information for the
reguested GUI to the client machine

‘L 106

Provide abstract data graph {ADG] for the
reguested GUI to the client machine

‘L 108

Receive one or more requests for GUI
component data from the client machine
based on the ADG

é 110

Transmit GUl component data to the
client machine in response to the one or
more GUi component data requests

Figure 1

Z 8.n8i4

PCT/US2022/013241

2/17

L e |

d¥ NS

JUBLULIOHIALT
mﬂml\ Fuiuiid

1o o> 777 v~ ;

wauodwa)

id¥
JsAet elRQ S5 [EP 1aNO53Y Oy

A

&
¥

apduwios i2iepusy NS
mmmi\

wﬂml\ .W.HNE\

momi\ JazAeUY 1818 » -

ARsigoy SInpo
N[44

JUBLILONALT 5301AJ85 Buindion puswIBp-uQ AUYIBIA JUBYD

WO 2022/164718

poz~" B

PCT/US2022/013241

3/17

WO 2022/164718

324

¢
L

e

o Yidt ors

312"

Figure 3

WO 2022/164718 PCT/US2022/013241

@ji? ff-m«fiQG
(Abstract Data Graph (ADG}>
Generation Method
; fwaaz

Receive a request to generate an ADG
associated with a GUl request

‘L /-——1104

identify metadata for one or more GUJ
web components

et Selact a GUL web component for analysis
é f-mf-'iﬁg

Construct an ADG property node for each
property in the component

éﬂ /v—-til()

Construct an ADG data node for each
data dependency in the component

é, /»-mf-’ilz

Yoo Construct an ADG import node for each
module dependency in the component

% /--414

identify an abstract syntax tree {AST)
associated with the selected component

é, f«-—«filﬁ

Traverse the AST to generate iteration
and conditional nodes

% /,«will%

Select an additional GUI web component
for analysis?

Figure 4

WO 2022/164718

PCT/US2022/013241
5/17
/~5€30
< Abstract Data Graph
Serialization Method
E f—mEGZ
Receive a request to serialize an ADG
! 504
identify serialization format
+ /r—SOﬁ
B Select a node in the ADG
! 508
Flatten duplicate nodes and subgraphs
Yes i 510
Emit serialized node information
! 512
< Do any unserialized nodes remain?
;
M 514

Transmit the ADG to the client machine

Figure b

WO 2022/164718 PCT/US2022/013241

6/17
fm6€30
ADG Resolver
Overview Method
E /»-—602

Transmit request for a graphical user
interface {GUY

& /’“”664

Receive abstract data graph (ADG) for the
reguested GUI

i 606

Retrieve GUI component information

hased on the ADG
i 608
Yes Render the GUI based on the retrieved
GUI component information
i 610

—< Update the graphical user interface?

E
No

Figure 6

WO 2022/164718

_<

—a

<

Yes

PCT/US2022/013241
7/17 200
s
< ADG Resolution Method >
E fm?az
Receive a request to resolve an ADG
i, fw?Oéi
Perform pre-resclution optimization
! 706
Create a queue of ready-to-execute wires
Select a wire from the gqueue
NP f"“"?l@
Execute the wire
i 712
Update the state of the corresponding
node
. f»w?lzi
Select an additional wire from the
gueus?
4 No 716
Select a node from the node list
i, /‘“"718
Is the selected node in a ready state?
4 Yes 720
Add the wire associated with the node to
the gueus No
é /.«--?zz

Select an additional node from the node >_

é No /«»M?Z&

—<

Does the gueue contain one or more
ready-to-execute wires?

v NO

Figure 7

WO 2022/164718 PCT/US2022/013241

8/17
_/»—802
i' _____ ADG: Flexipage 'i
| Root Property | 808 |
I A I
| \ /mglﬁ |
I wire{getRecord, A, I
| fid, Name}) |
| wire{getTemplate, |
highlights, rec.ld}
: : 804
I I i' T T 7 ADG: Highlights
Taxi {16
| | | Root Property |
| | | id: rec.id
| | 818
| L T_ —
wire{getRecord, A,
| o814 1 (x.¥2Z)
I wirg{getTemplate, I I
| details, rec.id} | L ———- - - ———
I I
| | 806
| L .
820
| | | Root Propeny -
| | | il rec.id
| | I 337
| | <
| | I wire{getRecord, A,
| | I X.Y.Z])
I
| | Lo
I I
L o o — — — — — — — — — |
®_.800

Figure 8

WO 2022/164718

a9/17
/~9GG
Abstract Data Graph Linking
Method
! fmga:}z

Receive a request to resolve an abstract
data graph (ADG} parent

] 904
— identify an ADG child
! —906
< Resolve the ADG child?
i
Yes 908
Map ADG child sub-root properties
910
Yes ‘é -
is a request needed for the ADG
child?
i
Yes 912
Add the request to a queue
I 914

m< identify an additional ADG child?

Figure 9

PCT/US2022/013241

No

WO 2022/164718 PCT/US2022/013241

10/17
Progressive Page Rendering
Overview Method

Receive a request to provide a user
interface component via progressive page

rendering
! 1004
Instantiate the user interface component
! —1006

Progressively render one or more
portions of the user interface component

Figure 10

WO 2022/164718 PCT/US2022/013241

11/17

Abstract data graph module

/«-—-11(34

Abstract data graph resolver

" Connected

1106

Unlock

j,r«li?»@
Progressive Progressive
Container Progrossive Container
1112 / 1132
L Container v L
Progressive /’“1122 Progressive
@wire : @wire
Progressive
Lock/ @wire Lock/
Unlock Unlock
1114-\) Lock/ 1134“\\\
Progressive 1124_.\\ Unlock Progressive
Content o Content
Progressive
Content

Figure 11

WO 2022/164718 PCT/US2022/013241

12/17
f»--l.fZGZ /~1212
Document 1908 / adgResolver
L 1210 1214
adgRollup " L X Y L ;
ppriollector pprEmitter
Y
CustomEvent
‘melziﬁ
fwl?;{}d @wire
: ProgressiveContext
Container /wlz% /
pprContainer Be
@wire{ProgressiveContext,
{cid:Scid} shouldRender;
. A
1218
NQ (((((((((((((2
Stencil intended
Component {{Component

Figure 12

PCT/US2022/013241

WO 2022/164718

1302

13/17

1322

1320

i
7
7y e (4]
&Y
7
s [«
W7y
73
(]
1%
bss
[
ot
=
[
7 \
4 <t
nepey,
7 -
% %)
%, \ 14 “\\;
jid 4
ey 45 [(e8]
Sorrs P4 P
Yrtos St
7 e, vl
M @ ., % T
o o s
77 T vore,
2224
il
s,

1300

Figure 13

WO 2022/164718 PCT/US2022/013241

14/17
/ﬁMOG
Progressive Page Rendering {PPR}
Container Rendering Method
/-—1402

Detect a PPR state change event associated with a
progressive container component instance

; 1404

Publish the state change from the progressive
container instance to the progressive page coliector

i —1406

identify one or more progressive container instance
rendering criteria

; —1408

Resolve an abstract data graph portion corresponding
with the progressive container instance

L 1410

Update a progressive container instance rendering
status in accordance with the progressive container
instance rendering criteria

Figure 14

WO 2022/164718 PCT/US2022/013241
15/17
//'1522
e { T —)
(s — 1523
4> Tenant Space o 1562
System
Data Tenant Data T 1564
Storage +— 1525
—1 Application MetaData [| T 1566
N e
\\\ieinant Databy
Application
M hSe"cup 183 Tenant Management Process §ystem
echanism 1538 1560 ;ﬁsc;ss \ 1516
Save Routines ———
1536
Tenant 1 Tenant 2 Tenant N
PL/S0QL Process Pmcess Process
1534 MM,/ Process
Application 1554 Space 1578
Platf 1518
PN 2223 Program Code 1526 i Processor System 1517
APEH1532 Ut 1530
Appl. |~1550 - Appl. 1550y
Server Server

A\

Netwaork Interface 1520

Environment
1510
Network
1514
1512
Processor Memory User
System 1512A1{ | System 15128 System

input System
1512¢

Cutput
System 153120

Figure 15

1512

User
System

WO 2022/164718 PCT/US2022/013241

1620
1608 éii%

;1616/§£0ﬁ3¥\&:
IS 'S

1604¢ -
&:3“R§;§jj?& e & "~ 1656
‘ e/ Database
SN Acnvekx .K)gLoad\% ,f)iAcnve ~f Storage
A=) Hrewall Balancer i ;DB Switch
1612~ gdge Core 1624 Irewa
Router 2 . Switch &—1636
Switch 2 -
1600

1644
Pod 4

Figure 16A

Switch 4 ¢

Cantent
Batch

/ SerVErs Content

Search

1690 servers (iQery
Servers

Database
Enstanse

Database

1692
instance

1686 1698

= s/ File
Balancer Féga,g re 168 Storage

WO 2022/164718 PCT/US2022/013241

17/17

System 1700

Processor
1701

interface
1711

Memory 1703 Bus 1715

Storage
Device 1705

Figure 17

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2022/013241

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO06F9/451 G06F16/957

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2020/351175 Al (VENKITESWARAN KEVIN 1-21

[US] ET AL) 5 November 2020 (2020-11-05)

claims 1-12

paragraph [0019] - paragraph [0134]

figures 1-9
A US 2011/289476 Al (PLETTER DANIEL L [US] 1-21

ET AL) 24 November 2011 (2011-11-24)
paragraph [0097] - paragraph [0273]

I:‘ Further documents are listed in the continuation of Box C.

‘z‘ See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

6 May 2022

Date of mailing of the international search report

16/05/2022

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Rackl, Giinther

Form PCT/ASA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2022/013241
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2020351175 Al 05-11-2020 CN 113748410 A 03-12-2021
EP 3963442 Al 09-03-2022
Us 2020345207 A1 05-11-2020
Us 20203459221 A1 05-11-2020
Us 2020351175 A1l 05-11-2020
Us 2020351176 Al 05-11-2020
Us 2022070067 Al 03-03-2022
WO 2020223268 Al 05-11-2020
US 2011289476 Al 24-11-2011 Us 2011289140 A1l 24-11-2011
Us 2011289141 A1l 24-11-2011
Us 2011289425 Al 24-11-2011
Us 2011289476 Al 24-11-2011
Us 2011289479 Al 24-11-2011
Us 20151959080 Al 16-07-2015
Us 2019138283 Al 09-05-2019

Form PCT/ASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - wo-search-report
	Page 80 - wo-search-report

