wo 2016/164638 A1 |11 N0FV0 0 0O O OO O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/164638 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

13 October 2016 (13.10.2016) WIPOIPCT
International Patent Classification:
GO6F 9/50 (2006.01)
International Application Number:
PCT/US2016/026520

International Filing Date:
7 April 2016 (07.04.2016)

Filing Language: English
Publication Language: English
Priority Data:

14/682,046 8 April 2015 (08.04.2015) US
Applicant: AMAZON TECHNOLOGIES, INC.

[US/US]; P.O. Box 81226, Seattle, Washington 98108-
1226 (US).

Inventors: WAGNER, Timothy Allen; 410 Terry Avenue
North, Seattle, = Washington 98109-5210 (US).
THOMPSON, Jonathan Paul; 410 Terry Avenue North,
Seattle, Washington 98109-5210 (US).

Agent: ANDERSON, Maria, Culic; Knobbe Martens
Olson & Bear, LLP, 2040 Main Street, 14th Floor, Irvine,
California 92614 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: ENDPOINT MANAGEMENT SYSTEM AND VIRTUAL COMPUTE SYSTEM

AUXILIARY SERVICES 112

ENCROINT MANAGEMENT SYSTEM 106

REGPONSE HANDLER 103

FIG. 1

(57) Abstract: A system for integrating an endpoint management system and a virtual compute system is provided. The system may
be configured to receive a first request to execute a proxy application programming interface (API) associated with a first resource of
a plurality of resources maintained by the endpoint management system, determine, based at least in part on the first request and the
proxy API, an API mapping definition associated with the proxy API, output a second request to execute a program code on the vir -
tual compute system based on the API mapping definition associated with the proxy API, wherein the second request contains in-
formation associated with the first resource, receive a first response from the virtual compute system, wherein the first response con -
tains information regarding the first resource, and output a second response based on the first response received from the virtual
compute system.

WO 2016/164638 PCT/US2016/026520

ENDPOINT MANAGEMENT SYSTEM AND VIRTUAL COMPUTE SYSTEM

CROSS-REFERENCE TO OTHER APPLICATIONS
[0001] The present application’s Applicant previously filed the following U.S. patent
application on September 30, 2014:

Application No. Title
14/502,992 THREADING AS A SERVICE

[0002] Further, the present application’s Applicant is concurrently filing the

following U.S. patent application on April 8, 2015:

Attorney Docket No. Title
ENDPOINT MANAGEMENT SYSTEM PROVIDING
SEAZN.1098A AN APPLICATION PROGRAMMING INTERFACE
PROXY SERVICE
[0003] The disclosures of the above-referenced applications are hereby incorporated

by reference in their entireties.

BACKGROUND

[0004] Generally described, computing devices utilize a communication network, or a
series of communication networks, to exchange data. Companies and organizations operate
computer networks that interconnect a number of computing devices to support operations or
provide services to third parties. The computing systems can be located in a single geographic
location or located in multiple, distinct geographic locations (e.g., interconnected via private or
public communication networks). Specifically, data centers or data processing centers, herein
generally referred to as a “data center,” may include a number of interconnected computing
systems to provide computing resources to users of the data center. The data centers may be
private data centers operated on behalf of an organization or public data centers operated on
behalf, or for the benefit of, the general public.

[0005] To facilitate increased utilization of data center resources, virtualization

technologies may allow a single physical computing device to host one or more instances of

WO 2016/164638 PCT/US2016/026520

virtual machines that appear and operate as independent computing devices to users of a data
center. With virtualization, the single physical computing device can create, maintain, delete, or
otherwise manage virtual machines in a dynamic manner. In turn, users can request computer
resources from a data center, including single computing devices or a configuration of networked
computing devices, and be provided with varying numbers of virtual machine resources.

[0006] In some scenarios, virtual machine instances may be configured according to a
number of virtual machine instance types to provide specific functionality. For example, various
computing devices may be associated with different combinations of operating systems or
operating system configurations, virtualized hardware resources and software applications to
enable a computing device to provide different desired functionalities, or to provide similar
functionalities more efficiently. These virtual machine instance type configurations are often
contained within a device image, which includes static data containing the software (e.g., the OS
and applications together with their configuration and data files, etc.) that the virtual machine
will run once started. The device image is typically stored on the disk used to create or initialize
the instance. Thus, a computing device may process the device image in order to implement the

desired software configuration.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The foregoing aspects and many of the attendant advantages of this disclosure
will become more readily appreciated as the same become better understood by reference to the
following detailed description, when taken in conjunction with the accompanying drawings,
wherein:

[0008] FIG. 1 is a block diagram depicting an illustrative environment for integrating
an endpoint management system and a virtual compute system, according to an example aspect.

[0009] FIG. 2 depicts a general architecture of a computing device providing a
response handler for handling the response received from the virtual compute system, according
to an example aspect.

[0010] FIG. 3 is a flow diagram illustrating a response handling routine implemented

by a response handler, according to an example aspect.

WO 2016/164638 PCT/US2016/026520

[0011] FIG. 4 is a flow diagram illustrating a response handling routine implemented
by a response handler, according to another example aspect.

[0012] FIG.5 is a block diagram illustrating an embodiment of a networked
computing environment including a client computing device and a service provider computer

network.

DETAILED DESCRIPTION

[0013] Enterprises may store and maintain customer data that includes information
about all of their customers. In some cases, the customer data may be spread across multiple
different data storage systems. In such cases, if the system receives a request to search the
customer data for some information, the system would have to look in all of the different data
storage systems holding the customer data for the requested information. The multiple data
storage systems may include duplicative information, so before returning the requested customer
data, the system may need to perform additional processing on the collection of customer data
retrieved from multiple data storage systems (e.g., deduplicate, unify, etc.). The different data
storage systems may have different protocols so each of those storage systems may involve
generating a data request that is customized for the storage system. Further, the number of such
data storage systems may vary depending on the size of the data being stored, and the system may
need to access tens, hundreds, or even thousands of these data storage systems depending on the
nature of the data request.

[0014] To address some of these problems, the enterprise may hire outside
consultants to develop implementations that would satisfy the needs of the enterprise. However,
such an approach may take weeks or months and also cost the enterprise a great deal of monetary
expense.

[0015] Thus, an improved method of allowing users to perform a diversity of tasks in
a relatively simple manner is desired.

[0016] According to aspects of the present disclosure, by integrating an endpoint
management system and a virtual compute system configured to provide low-latency

computational capacity and handle code execution requests, delay (sometimes referred to as

WO 2016/164638 PCT/US2016/026520

latency) associated with handling user requests to the endpoint management system can be
significantly reduced.

[0017] Generally described, aspects of the present disclosure relate to the integration
between (i) an endpoint management system by which users, such as application developers, can
manage and enable exposure of application programming interfaces (“APIs”) usable to cause
execution of program code on a remote or third party system, and (ii) a system for providing
general compute capacity. Specifically, systems and methods are disclosed which facilitate
integration between a virtual compute system that provides low-latency computational capacity
and an endpoint management system that facilitates the handling of user requests to perform
certain tasks by utilizing the services provided by the virtual compute system. The endpoint
management system sends requests to execute program codes to the virtual compute system
based on requests received from one or more user computing systems. Further, the endpoint
management system generates responses back to the user computing systems based on the
responses received from the virtual compute system.

[0018] Specific embodiments and example applications of the present disclosure will
now be described with reference to the drawings. These embodiments and example applications

are intended to illustrate, and not limit, the present disclosure.

Overview of the Computing Environment

[0019] With reference to FIG. 1, a block diagram illustrating an embodiment of a
computing environment 100 will be described. The example shown in FIG. 1 includes a
computing environment 100 in which users of user computing devices 102 may access a variety
of services provided by an endpoint management system 106, a virtual compute system 110,
auxiliary services 112, and backend system(s) 114 via a network 104 A and/or a network 104B.

[0020] In the example of FIG. 1, various example user computing devices 102 are
shown, including a desktop computer, a laptop, and a mobile phone. In general, the user
computing devices 102 can be any computing device such as a desktop, a laptop, a mobile phone
(or a smartphone), a tablet, a kiosk, a wireless device, and other electronic devices. In addition,
the user computing devices 102 may include web services running on the same or different data

centers, where, for example, different web services may programmatically communicate with

WO 2016/164638 PCT/US2016/026520

each other to perform one or more techniques described herein. Further, the user computing
devices 102 may include Internet of Things (IoT) devices such as Internet appliances and
connected devices. Other components of the computing environment 100 (e.g., endpoint
management system 106, virtual compute system 110, and auxiliary services 112) may provide
the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI),
application programing interfaces (API), and/or other programmatic interfaces for utilizing one
or more services offered by the respective components. Such services may include generating
and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user
codes on the virtual compute system 110), configuring one or more APIs (e.g., via the endpoint
management system 106), caching results of execution of user codes and APIs, and/or
monitoring API call usage for security, performance, metering, and other factors, scheduling
event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or
monitoring information related to their requests and/or user codes. Although one or more
embodiments may be described herein as using a user interface, it should be appreciated that such
embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic
interfaces.

[0021] The user computing devices 102 access other components (e.g., endpoint
management system 106, virtual compute system 110, and auxiliary services 112) of the
computing environment 100 over the network 104A. The endpoint management system 106 may
comprise one or more servers or system (e.g., a proxy fleet) which may be configured to manage
execution of endpoint or backend APIs (e.g., as executed on the virtual compute system 110 or
the backend system(s) 114). The endpoint management system 106 may access other
components of the computing environment 100, such as the virtual compute system 110 or the
backend system(s) 114 over the network 104B. The networks 104A and/or 104B may be any
wired network, wireless network, or combination thereof. In addition, the networks 104A and/or
104B may be a personal area network, local area network, wide area network, over-the-air
broadcast network (e.g., for radio or television), cable network, satellite network, cellular
telephone network, or combination thereof. For example, the network 104A and/or 104B may be
a publicly accessible network of linked networks, possibly operated by various distinct parties,

such as the Internet. In some embodiments, the network 104A and/or 104B may be a private or

WO 2016/164638 PCT/US2016/026520

semi-private network, such as a corporate or university intranet, or a publicly accessible network
such as the Internet. In one embodiment, the network 104B may be co-located or located in close
proximity to the endpoint management system 106, such that communication over the network
104B between the endpoint management system 106 and backend system(s) 114 may benefit
from increased performance (e.g., faster and/or more efficient communication). The
network 104 A and/or 104B may include one or more wireless networks, such as a Global System
for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA)
network, a Long Term Evolution (LTE) network, or any other type of wireless network. The
network 104A and/or 104B can use protocols and components for communicating via the
Internet or any of the other aforementioned types of networks. For example, the protocols used
by the network 104A and/or 104B may include Hypertext Transfer Protocol (HTTP), HTTP
Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application
Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or
any of the other aforementioned types of communication networks are well known to those
skilled in the art and, thus, are not described in more detail herein.

[0022] The endpoint management system 106 and the virtual compute system 110 are
depicted in FIG. 1 as operating in a distributed computing environment including several
computer systems that are interconnected using one or more computer networks. The endpoint
management system 106 and/or the virtual compute system 110 could also operate within a
computing environment having a fewer or greater number of devices than are illustrated in
FIG. 1. Thus, the depiction of the computing environment 100 in FIG. 1 should be taken as
illustrative and not limiting to the present disclosure. For example, the computing environment
100 or various constituents thereof could implement various Web services components, hosted or
“cloud” computing environments, and/or peer-to-peer network configurations to implement at
least a portion of the processes described herein.

[0023] Further, the various components of the computing environment 100 may be
implemented in hardware and/or software and may, for instance, include one or more physical or
virtual servers implemented on physical computer hardware configured to execute computer

executable instructions for performing various features that will be described herein. The one or

WO 2016/164638 PCT/US2016/026520

more servers may be geographically dispersed or geographically co-located, for instance, in one
or more data centers.

[0024] In the example of FIG. 1, the endpoint management system 106 includes a
response handler 108. The response handler 108 may be in communication with and access an
endpoint/API mapping definitions data source (not shown) to look up API mapping definition for
a received request. The response handler 108 can, based at least in part on the APl mapping
definition, determine a backend API (or APIs) and backend system(s) to be used to service the
request. The response handler 108 may also be configured to parse and/or analyze requests
received from the user computing systems 102 and/or responses received from the virtual
compute system 110 or the backend system(s) 114, and determine based on the API mapping
definition any appropriate data transformations and mappings of the associated input parameters
to input parameters for a backend API or other program codes. The response handler 108 may
include a request and response parsing unit for processing the response received from other
systems in the computing environment 100, and a pattern matching unit for performing, based on
the information extracted by the request and response parsing unit, a pattern matching using the
definitions previously provided to the endpoint management system 106 by the user. An
example configuration of the response handler 108 is described in greater detail below with
reference to FIG. 2. Although not illustrated in FIG. 1, the endpoint management system 106
may include other components such as a cache manager for caching responses received from
other systems in the computing environment 100, a security manager for managing security and
access to other systems in the computing environment 100, a performance unit for managing
performance related aspects involving requests sent to other systems in the computing
environment 100, and a Software Developer Kit (“SDK”) generation service for enabling users to
generate an SDK based on one or more API mapping definitions (e.g., a user-provided
configuration setting to specify a limit or frequency for how often an API may be called). In
some embodiments, the endpoint management system 106 may comprise multiple systems (e.g.,
an endpoint management system for allowing users to configure one or more APIs and an
endpoint proxy system for managing execution of endpoint or backend APIs on the virtual

compute system 110 or the backend system(s) 114). In some of such embodiments, one or more

WO 2016/164638 PCT/US2016/026520

components described herein as being part of the endpoint management system 106 (e.g.,
response handler 108) may logically reside in such an endpoint proxy system.

[0025] In the example of FIG. 1, the management system 106 is illustrated as being
connected to the network 104A and the network 104B. In some embodiments, any of the
components within the endpoint management system 106 can communicate with other
components (e.g., the user computing devices 102 and backend system(s) 114) of the computing
environment 100 via the network 104A and/or network 104B. In other embodiments, not all
components of the endpoint management system 106 are capable of communicating with other
components of the computing environment 100. In one example, only the response handler 108
may be connected to the network 104A, and other components (e.g., cache manager, performance
unit, etc.) of the endpoint management system 106 may communicate with other components of
the computing environment 100 via the response handler 108.

[0026] The virtual compute system 110 maintains a pool of virtual machine instances
that have one or more software components (e.g., operating systems, language runtimes, libraries,
etc.) loaded thereon. Maintaining the pool of virtual machine instances may involve creating a
new instance, acquiring a new instance from an external instance provisioning service, destroying
an instance, assigning/reassigning an instance to a user, modifying an instance (e.g., containers or
resources therein), etc. The virtual machine instances in the pool can be designated to service
user requests to execute program codes. In the present disclosure, the phrases “program code,”
“user code,” and “cloud function” may sometimes be interchangeably used. The program codes
can be executed in isolated containers that are created on the virtual machine instances. Since the
virtual machine instances in the pool have already been booted and loaded with particular
operating systems and language runtimes by the time the requests are received, the delay
associated with finding compute capacity that can handle the requests (e.g., by executing the user
code in one or more containers created on the virtual machine instances) is significantly reduced.

[0027] Although not illustrated in the example environment of FIG. 1, the virtual
compute system 110 may include a frontend, a warming pool manager, a worker manager, and
other components that collectively provide low-latency computational capacity to other systems
in the computing environment 100. The warming pool manager and the worker manager may

each manage a pool of virtual machine instances (“instances”) (e.g., a warming pool and an

WO 2016/164638 PCT/US2016/026520

active pool, respectively). The instances can be implemented on one or more physical computing
devices in different various geographic regions. Similarly, each of the frontend, the warming
pool manager, the worker manager, and other components of the virtual compute system 110 can
be implemented across multiple physical computing devices. Alternatively, one or more of the
frontend, the warming pool manager, the worker manager, and other components of the virtual
compute system 110 can be implemented on a single physical computing device. In some
embodiments, the virtual compute system 110 may comprise multiple frontends, multiple
warming pool managers, multiple worker managers, and/or other components. The virtual
compute system 110 may comprise any number of warming pools and active pools.

[0028] In the example of FIG. 1, the virtual compute system 110 is illustrated as
being connected to the network 104A and the network 104B. In some embodiments, any of the
components within the virtual compute system 110 can communicate with other components
(e.g., the user computing devices 102 and auxiliary services 112) of the computing environment
100 via the network 104A and/or 104B. In other embodiments, not all components of the virtual
compute system 110 are capable of communicating with other components of the computing
environment 100. In one example, only the frontend may be connected to the network 104A
and/or 104B, and other components of the virtual compute system 110 may communicate with
other components of the computing environment 100 via the frontend.

[0029] The virtual compute system 110 may be configured to handle requests to
execute one or more program codes on the virtual compute system 110. For example, a user may
wish to run a piece of code in connection with a web or mobile application that the user has
developed. One way of running the code would be to acquire virtual machine instances from
service providers who provide infrastructure as a service, configure the virtual machine instances
to suit the user’s needs, and use the configured virtual machine instances to run the code.
Alternatively, the user may send a code execution request to the virtual compute system 110.
Similarly, the endpoint management system 106 may send a request to the virtual compute
system 110 to execute some program codes associated with a request received from a user of the
user computing device 102. The virtual compute system 110 can handle the acquisition and
configuration of compute capacity (e.g., containers, instances, etc., which are described in greater

detail below) based on the code execution request, and execute the code using the compute

WO 2016/164638 PCT/US2016/026520

capacity. The virtual compute system 110 may automatically scale up and down based on the
volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g.,
acquiring too little computing resources and suffering performance issues) or under-utilization
(e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying).
Additional details of the virtual compute system 110 can be found in Application No. 14/502,992,
filed September 30, 2014, titled “THREADING AS A SERVICE,” which is incorporated by
reference in its entirety.

[0030] The auxiliary services 112 may include a monitoring service for managing
monitoring information received from the virtual compute system 110, such as statuses of
containers and instances on the virtual compute system 110; a logging service for managing
logging information received from the virtual compute system 110, such as activities performed
by containers and instances on the virtual compute system 110; and a billing service for
generating billing information associated with executing user code on the virtual compute system
110 (e.g., based on the monitoring information and/or the logging information managed by the
monitoring service and the logging service).

[0031] The backend system(s) 114 may include legacy systems that have protocols
that are not compatible with those of the user computing devices 102 or otherwise not easily
accessible by the user computing devices 102. The backend system(s) 114 may also include

devices that have device-specific protocols (e.g., IoT devices).

Integration Between Endpoint Management System and Virtual Compute System

[0032] In some embodiments, the endpoint management system 106 receives a
request to access one or more resources maintained by the endpoint management system 106
from a user of the user computing devices 102. Upon receiving such a request, the endpoint
management system 106 may communicate with other components of the computing
environment 100 in order to provide what was requested by the user. In some embodiments, the
request may include an HTTP request that specifies the method and resource combination and
one or more other parameters that may be used by the endpoint management system 106 in
performing the requested task. For example, if the requested task is resizing an image that is

provided along with the HTTP request, the endpoint management system 106 may relay that

-10-

WO 2016/164638 PCT/US2016/026520

request to one of the other components (e.g., the virtual compute system 110) of the computing
environment 100 that is suited to perform such a task. The endpoint management system 106
may provide to the virtual compute system 110 all the information necessary to perform the given
task. For example, the endpoint management system 106 may provide to the virtual compute
system 110 the image to be resized and specify the program code to be used to performing the
resizing. In some embodiments, the endpoint management system 106 maintains a database
containing a list of program codes that are associated with different combinations of user
parameters, requested resources, methods, or any combinations thereof. For example, when a
particular resource is accessed by the user (e.g., by using a resource identifier), the endpoint
management system 106 may determine the program code to be used to perform the requested
task based on the information stored in the database. In some embodiments, the endpoint
management system 106 provides the location of the program code associated with the given task
to the virtual compute system 110, and the virtual compute system 110 downloads the program
code at the provided location and executes the program code to perform the given task (e.g.,
image resizing). Once the endpoint management system 106 hears back from the virtual
compute system 110 and is provided with the resized image, the endpoint management system
106 may further provide the resized image to the user who initiated the original request.

[0033] In some embodiments, the request made to the virtual compute system 110 by
the endpoint management system 106 results in an error. The error may be caused by the way the
requested is made (e.g., from the user computing devices 102 to the endpoint management
system 106 or from the endpoint management system 106 to the virtual compute system 110). In
another example, the error may be caused by the way the program code is written (e.g., the
program code may contain bugs). In yet another example, the error may be caused by a
mishandling of the request by the virtual compute system 110 (e.g., computing resource
automatically allocated to handle the request turned out to be too low). In any of these
circumstances, the response handler 108 may determine whether or not there is an error, and
further determine how to complete the original request by the user in view of the identified error.

[0034] The per-request scaling that the virtual compute system 110 provides may be
lined up with the per-request API endpoints of the endpoint management system 106 to provide

users the ability to change the code at any moment. For example, the virtual compute system 110

-11-

WO 2016/164638 PCT/US2016/026520

includes pre-warmed instances that can provide low-latency compute capacity, which allows the
endpoint management system 106 to acquire new compute capacity without having to wait for an
extended period of time (e.g., warmup time needed to get new capacity online, which could take
minutes, during which API requests may be rejected or delayed). Further, the integration of the
endpoint management system 106 with the virtual compute system 110 allows users to run
arbitrary, Turing-complete code, and self-service change at any moment.

[0035] In some embodiments, the virtual compute system 110 may call back into the
endpoint management system 106 access two or more enterprise systems in order to compose the
results. The virtual compute system 110 may provide the custom transforms and higher-order
function capability in this scenario, but the endpoint management system 106 may also add value
by handling the throttling, authentication, telemetry, protocol conversion, etc. into the backend
(or even on the premises) third-party enterprise services. For example, the coupling of the access,
authentication, and other endpoint controls provided by the endpoint management system 106
with a low latency, request-scaled cloud compute capacity provided by the virtual compute
system 110. The endpoint management system 106 provides customer-owned and managed
HTTP[S] endpoints for program codes available to be executed on the virtual compute system
110, including vanity URLSs, customer-controlled authorization mechanisms, public (HTTP

versus HTTPS) and other “web app” features.

Error Handling
[0036] For example, the response handler 108 may have knowledge of the protocols

used by the virtual compute system 110, and how function errors are transmitted back to the
endpoint management system 106. For example, the response handler 108 may be able to
determine, based on the response received from the virtual compute system 110, that the
response handler 108 is communicating with the virtual compute system 110. Based on the
determination that the response handler 108 is communicating with the virtual compute system
110, the response handler 108 can determine what to look for in the response from the virtual
compute system 110. The response received from the virtual compute system 110 may include a
message (e.g., generic description of the result) and a detail (e.g., stack trace). In some

embodiments, the response handler 108 may determine a list of error messages based on the

_12-

WO 2016/164638 PCT/US2016/026520

identity of the system that the response handler 108 is communicating with, and determine
whether the request to the system has resulted in an error based on whether the response from the
system contains any of the error messages in the list. If the response handler 108 determines that
the request to the system (e.g., virtual compute system 110) has resulted in an error, the response
handler 108 generates an error response back to the user who initiated the original request.

[0037] In some implementations, the response handler 108 uses a set of selectors that
can be used to determine, based on the information in the response received from the virtual
compute system 110, which response type should be provided back to the user. In the example
of HTTP requests, the response back to the user may include a particular HTTP status code and a
particular body. For example, the response handler 108 may transform a success response, which
indicates that the execution on the virtual compute system 110 was a success, into a failure, and
conversely, transform a failure response, which indicates that the execution on the virtual
compute system 110 was a failure, into a success, before providing the response back to the caller.
In one example, if the response handler 108 finds the word, “throttle” in the response from the
virtual compute system 110, the response handler 108 may return a 4xx HTTP status code
instead of a 5xx. In another example, if a response from the virtual compute system indicated
that the program code successfully executed but the body of the response from the virtual
compute system includes the phrase, “could not located database,” the response handler 108 may
transform the response into an error (e.g., 5Xx status code instead of 2xx) before providing the
response back to the caller. The response handler 108 may also pull information out from that
response that was passed back from the virtual compute system 110. The response handler 108
can extract a portion (e.g., the payload) of the response received from the virtual compute system
110 and place the extracted portion into the response provided back to the user. In some
embodiments, the extracted portion is transformed into a format that is suitable for the particular

response back to the user.

Examples Errors in Virtual Compute System

[0038] As described above, the virtual compute system 110 may cause the error by
the mishandling of the request or the program code that is otherwise error-free. For example, the

program code (e.g., written in Java or Node.js) running inside the virtual compute system 110

13-

WO 2016/164638 PCT/US2016/026520

(e.g., one of the containers created by the virtual compute system 110) may throw an uncaught
top-level exception. In such a case, the response handler 108 may extract the exception and
generate, based on the extracted exception, an error code that can be included in the response
sent back to the user. For example, the response handler 108 may be configured to shape the
response back to the user in one way for out of memory exceptions, but configured to shape the
response in another way for stack overflow exceptions. In another example, the amount of
computing resources specified by the virtual compute system 110 for executing the program code
may turn out to be insufficient. For example, during execution, the program code may exceed

the amount of allocated resources (e.g., disk, memory, processing power, etc.).

Response-Dependent API Calls

[0039] In some embodiments, the endpoint management system 106 may, based on
the response received from the virtual compute system 110 or other systems in the computing
environment 100 (e.g., backend system(s) 114), identify the characteristics of the received
response, determine whether the destination where the result of the call is to be sent is adapted to
handle results of this type. If the endpoint management system 106 determines that the
destination (e.g., user computing device 102, or other components in the computing environment
100) is adapted to handle the results of this type (e.g., the result is in the format in which the
destination system expects the results to be), the endpoint management system 106 may pass on
the results without further processing the results. On the other hand, the endpoint management
system 106 may process the results to transform the results into the format expected by the
destination system. In some embodiments, the user (or system) who initiated the original request
may specify (e.g., via a user interface provided by the endpoint management system 106) the
details of the transform. For example, the user may have specified to the endpoint management
system 106 how to transform the response from Format A to Format B.

[0040] In some embodiments, the endpoint management system 106 may have
multiple ways of completing the received request, and all of those ways may be parallel and
equivalent. In such embodiments, the endpoint management system 106 may try the different
ways (e.g., by initiating a request corresponding to each of such ways) in parallel or in sequence,

and return the first and/or fastest result to the sender of the request. For example, if the endpoint

_14-

WO 2016/164638 PCT/US2016/026520

management system 106 has access to a storage service that includes many different repositories,
the endpoint management system 106 may query multiple repositories in parallel for an answer,
and the first repository that sends back a response to the endpoint management system 106 will
be chosen and the endpoint management system 106 will forwarded the results of that repository
back to the original caller.

[0041] In another example, the endpoint management system 106 may have access to
an old customer system and a new customer system. The old customer system contains customer
data associated with customers who became customers 5 years ago. Customer data associated
with customers who became customers within the last 5 years is stored in the newer customer
system. When the endpoint management system 106 receives a request, the endpoint
management system 106 may not know whether the request is related to the old customer system
or the new customer system. In such a case, the endpoint management system 106 can send a
request to both places in parallel or in sequence (e.g., try the old system first, and then the new

system if the old system fails or does not return a proper response).

Simple Pass-Through

[0042] In some embodiments, the endpoint management system 106 does not perform
any transformation on the result returned by the virtual compute system 110. For example, the
developer may be happy to have the data that comes back from the backend system, and leave it
in its raw form. In one example, a picture that is uploaded on a storage system may trigger an
event to be generated. The event may cause the virtual compute system to execute a program
code associated with the event. The program code may, upon execution, cause the virtual
compute system to go download the picture that was uploaded to the storage service and
transform the picture into a different size and save it back to the storage service. Based on this
functionality, the developer may wish to make this functionality available to external people. So

the developer may create a new API (e.g., http://imageresizingl23.com/api) and pass in some

parameters (e.g., height and width) as part of the API. The information in the payload (e.g., body
of the request) may be the binary data of the image. That information would just be passed
through untouched. The endpoint management system 106 may determine which program code

to have executed based on a mapping between the APIs and the program codes. This information

-15-

WO 2016/164638 PCT/US2016/026520

would be sent off to the virtual compute system 110, and the virtual compute system 110 would
perform its processing and respond back with different binary data (e.g., image of a different
size). The endpoint management system 106 process the received response and determine that
the API call was successful, and transfer the data back to the caller untouched.

[0043] As discussed herein, the identity of the user calling the API may be different
from the identity of the user creating, managing, and otherwise associated with the APL. In the
example above, the former (e.g., first user) may be an end user who desires to resize pictures
using an API and the latter (e.g., second user) may be a developer who configures such an API
with the endpoint management system 106 and/or the virtual compute system 110 makes that
API available to the end user. A relationship may be established between the first user and the
second user before the first user is allowed to access the API associated with the second user. In
some embodiments, the second user may create, manage, or otherwise be associated with a
program code (e.g., a cloud function that can be executed on the virtual compute system 110),
and make the program code available for use by the first user, either independently or in
connection with one of APIs associated with the second user.

[0044] In some embodiments, only the first user, but not the second user, may be
authorized to directly access or otherwise associated with the endpoint management system 106
and/or the virtual compute system 110. For example, the first user may be a customer of the
endpoint management system 106 and/or the virtual compute system 110, and the first user may
be able to directly access the services (e.g., APl management, API proxy service, provision of
compute capacity, etc.) provided by the endpoint management system 106 and/or the virtual
compute system 110. On the other hand, the second user may not be a customer of either
systems. In such an example, APIs and program codes may be invoked on the endpoint
management system 106 and/or the virtual compute system 110 on behalf of the first user, based
on a request from the second user who may not be a customer of either the endpoint management

system 106 or the virtual compute system 110.

Higher Ordered Functions

[0045] In some embodiments, the endpoint management system 106 may take

computations, transformations, other functions as arguments. For example, a developer may use

-16-

WO 2016/164638 PCT/US2016/026520

the endpoint management system 106 to define an API called “bucket-runner” API. The API
would take a collection of names of storage buckets, and the name of a program code that may be
executed in the virtual compute system 110. The endpoint management system 106 cause the
virtual compute system 110 to in sequence go to each of those storage buckets and run the
program code over all the items in the storage bucket. For example, if the specified program
code is a picture resizing function, the developer can use the API to perform bulk resizing.
Similarly, the developer may use the same API to perform bulk deletion, bulk listing, etc.

[0046] The integration of the endpoint management system 106 with the virtual
compute system 110 may allow users to create a parallelizable way to search the files in a storage
system. For example, different users may have different ideas of the different functions (e.g.,
searching for hits, collecting search results, sorting search results, etc.) that may be performed on
the items in the file system. In such an example, the API defined in the endpoint management
system 106 may take four parameters: (i) identity of the storage system, (ii) a search function,
(iii) a collect function, and (iv) a sort function. The search function may indicate whether a given
entry in the storage system is a match (e.g., based on a comparison to a searched item), the
collect function may return a set of values based on a set of keys used for the storage system, and
the sort function may return a sorted set of values based on a provided set of values.

[0047] In order to avoid unnecessary round trips between the client/device and the
server/cloud, the virtual compute system 110 may provide higher-ordered functions through the
endpoint management system 106 that compose or choreograph multiple customer functions.
For example, the virtual compute system 110 may serialize two or more functions (e.g., perform
f() and g() inside a single program code and return the results), parallelize two or more functions
(e.g., perform f() and g() in parallel, possibly in two separate program codes, and return the
results when both functions finish executing), compose two or more functions (e.g., perform
g(f())), perform iteration (e.g., perform f() repeatedly over a set of data), and/or perform aspect-
oriented programming (e.g., provide a function that is given the parameters and responses of
every normal function to create an automatic but fully customizable logger). In the example of
aspect-oriented programming, users may change the logger’s behavior but may not able to

change when/where the logger is applied or the set of permissions that the logger has.

-17-

WO 2016/164638 PCT/US2016/026520

[0048] In some cases, the endpoint management system 106 can retrieve a function
(e.g., the logger) that was used in connection with an earlier request and then apply the function
to later requests (e.g., to actually log a normal function invocation) without requiring either

function to be predetermined or fixed by the endpoint management system 106.

IoT Devices

[0049] In some embodiments, the endpoint management system 106 provides to the
user computing devices 102 a more convenient access to the backend system(s) 114 or other
systems or devices. In some of such embodiments, the endpoint management system 106 may
communicate with an IoT device with device-specific protocols. For example, the IoT device
may have a temperature sensor, and the user can request temperature information from the IoT
device. In another example, the IoT device may be a thermostat and the user may be able to
cause it to set the temperature to a given temperature. Depending on what the device is, it can
have different capabilities. All those capabilities may be managed by some type of API (e.g.,
backend API) that would exist for manipulating the capability. The endpoint management
system 106 may perform the necessary protocol translation and/or data manipulation to allow
users to seamlessly communicate with such IoT devices without having to worry about device-
specific protocols or requirements. For example, the endpoint management system 106 may
query the IoT devices for data or send commands to the IoT devices. The responses received
from those IoT devices may be used to shape the response back to the caller based on the

requirements of the caller.

Svynchronous Invocation Mode

[0050] In some embodiments, where events might be generated from various sources,
and that would cause some program code to run, there may not necessarily be anybody listening
for an answer back from that code execution. In other embodiments, there may be somebody
waiting on the other end, which in this case is the call being made through the endpoint
management system 106. For example, a call may come in through an API, and the endpoint
management system 106 may send a request to execute a program code based on the call to the

virtual compute system 110.

-18-

WO 2016/164638 PCT/US2016/026520

[0051] For example, if the program code involves adding two numbers and the API
call had two strings instead of two numbers, the endpoint management system 106 may, in some
embodiments, generate and send to the virtual compute system 110 a request including the
program code and the two strings. The virtual compute system 110 may return an error based on
the discrepancy between what the program code is expecting as arguments and the provided
arguments.

[0052] The error that the program code produces is information regarding how the
execution of the program code failed. However, the response that the endpoint management
system 106 receives from the virtual compute system 110 may indicate that the request to the
virtual compute system 110 was successfully completed (because the virtual compute system 110
actually performed as promised). For example, the virtual compute system 110 processed the
code execution request, started the program code running, the program code finished running,
and the program code came back with some data (which happens to be error information in this
example). The endpoint management system 106 may process this error information (e.g., via
the error handler 108) and generate a response to be sent back to the caller. The endpoint
management system 106 may use pattern matching to determine what kind of response should be

generated.

Pattern Matching

[0053] The user may provide pattern matching definitions to the endpoint
management system 106 that define what kind of information should be included in the response
back to the caller under which circumstances. For example, one of the errors that the virtual
compute system 110 may return is “invalid arguments.” The pattern matching definition defined
by the user may provide that if the response from the virtual compute system 110 contains the
string “invalid arguments” in the error message, and the endpoint management system 106
should return a HTTP status code 400, which specifies that the user made an error (e.g., passed
on bad arguments). The pattern matching definition may further provide that the string “invalid

parameters” should be included in the body of the response.

-19-

WO 2016/164638 PCT/US2016/026520

Virtual Compute System as a Validator

[0054] In some embodiments, the endpoint management system 106 uses the virtual
compute system 110 as a validator. For example, a backend system 114 (e.g., a legacy system)
may simply crash upon being supplied with incorrect arguments or upon encountering other
errors, instead of returning a nicely formatted error message. In such an example, the endpoint
management system 106, before causing the backend system 114 to execute a given program
code, the endpoint management system 106 may first cause the virtual compute system 110 to
execute the program code for any errors. In some embodiments, assuming the arguments are
determined to be valid, instead of actually performing the operation, the endpoint management
system 106 may forward a request to execute the program code to the legacy system knowing

that the arguments are valid.

Example Configuration of Response Handler

[0055] FIG. 2 depicts a general architecture of a computing system (referenced as
response handler 108) that handles the responses received from other systems in the computing
environment 100. The general architecture of the response handler 108 depicted in FIG. 2
includes an arrangement of computer hardware and software modules that may be used to
implement aspects of the present disclosure. The response handler 108 may include many more
(or fewer) elements than those shown in FIG. 2. It is not necessary, however, that all of these
generally conventional elements be shown in order to provide an enabling disclosure. As
illustrated, the response handler 108 includes a processing unit 190, a network interface 192, a
computer readable medium drive 194, an input/output device interface 196, all of which may
communicate with one another by way of a communication bus. The network interface 192 may
provide connectivity to one or more networks or computing systems. The processing unit 190
may thus receive information and instructions from other computing systems or services via the
network 104A and/or 104B. The processing unit 190 may also communicate to and from the
memory 180 and further provide output information for an optional display (not shown) via the
input/output device interface 196. The input/output device interface 196 may also accept input

from an optional input device (not shown).

-20-

WO 2016/164638 PCT/US2016/026520

[0056] The memory 180 may contain computer program instructions (grouped as
modules in some embodiments) that the processing unit 190 executes in order to implement one
or more aspects of the present disclosure. The memory 180 generally includes RAM, ROM
and/or other persistent, auxiliary or non-transitory computer-readable media. The memory 180
may store an operating system 184 that provides computer program instructions for use by the
processing unit 190 in the general administration and operation of the response handler 108. The
memory 180 may further include computer program instructions and other information for
implementing aspects of the present disclosure. For example, in one embodiment, the memory
180 includes a user interface unit 182 that generates user interfaces (and/or instructions therefor)
for display upon a computing device, e.g., via a navigation and/or browsing interface such as a
browser or application installed on the computing device. Although the example of FIG. 2 is
described in the context of user interfaces, it should be appreciated that one or more
embodiments described herein may be implemented using, additionally or alternatively, any CLlISs,
APIs, or other programmatic interfaces. In addition, the memory 180 may include and/or
communicate with one or more data repositories (not shown), for example, to access program
codes, pattern matching definitions, and/or libraries.

[0057] In addition to and/or in combination with the user interface unit 182, the
memory 180 may include a request and response parsing unit 186 and a pattern matching unit
188 that may be executed by the processing unit 190. In one embodiment, the user interface unit
182, request and response parsing unit 186, and pattern matching unit 188 individually or
collectively implement various aspects of the present disclosure, e.g., parsing the response
received from other systems of the computing environment 100, performing a pattern matching
based on pattern matching definitions accessible by the endpoint management system 106,
generating a response back to the original user initiating the request, etc. as described herein.

[0058] The request and response parsing unit 186 processes the response received
from other systems in the computing environment 100 (e.g., virtual compute system 110), and
extracts information embedded in the response. The pattern matching unit 188, based on the
information extracted by the request and response parsing unit 186, performs a pattern matching

using the definitions previously provided to the endpoint management system 106 by the user.

21-

WO 2016/164638 PCT/US2016/026520

[0059] While the request and response parsing unit 186 and the pattern matching unit
188 are shown in FIG. 2 as part of the response handler 108, in other embodiments, all or a
portion of the request and response parsing unit 186 and the pattern matching unit 188 may be
implemented by other components of the endpoint management system 106 and/or another
computing device. For example, in certain embodiments of the present disclosure, another
computing device in communication with the endpoint management system 106 may include
several modules or components that operate similarly to the modules and components illustrated

as part of the response handler 108.

Example Response Handling Routine #1

[0060] Turning now to FIG. 3, a routine 300 implemented by one or more
components of the endpoint management system 106 (e.g., the response handler 108) will be
described. Although routine 300 is described with regard to implementation by the endpoint
management system 106, one skilled in the relevant art will appreciate that alternative
components may implement routine 300 or that one or more of the blocks may be implemented
by a different component or in a distributed manner.

[0061] At block 302 of the illustrative routine 300, the endpoint management system
106 receives a first request to execute a proxy API associated with a first resource of a plurality
of resources maintained by endpoint management system 106. For example, the first request
may include an HTTP request that specifies the method and resource combination and one or
more other parameters that may be used by the endpoint management system 106 in performing
the requested task.

[0062] Next, at block 304, the endpoint management system 106 determines, based at
least in part on the first request and the proxy API, an API mapping definition associated with the
proxy APL. For example, the endpoint management system 106 may determine based on the API
mapping definition any appropriate data transformations and mappings of the associated input
parameters to input parameters for a backend API or other program codes.

[0063] At block 306, the endpoint management system 106 outputs a second request
to execute a program code on the virtual compute system 110 based on the API mapping

definition associated with the proxy API. The virtual compute system 110 may be configured to

0.

WO 2016/164638 PCT/US2016/026520

provide request-based computational capacity and execute program codes in one or more
containers created thereon. The second request may contain information associated with the first
resource (e.g., identified by a resource identifier), such as one or more parameters included in the
first request and/or a program code (or an indication of where the program code is stored). For
example, based on the particular resource accessed by the user (e.g., identified using a resource
identifier included in the request), the endpoint management system 106 may determine the
program code to be used to perform the requested task based on the information available to the
endpoint management system 106 (e.g., a database containing a list of program codes that are
associated with different combinations of user parameters, requested resources, methods, or any
combinations thereof).

[0064] At block 308, the endpoint management system 106 receives a first response
from the virtual compute system 110. The first response may contain information regarding the
first resource and/or the result of executing the program code associated with the first resource.
The response may contain information regarding an error that occurred during the execution of
the program code associated with the first resource.

[0065] At block 310, the endpoint management system 106 outputs a second response
based on the first response received from the virtual compute system 110. The endpoint
management system 106 may output the second response back to the user who initiated the first
request. The second response may include a portion that is identical to another portion of the
first response received from the virtual compute system 110. In another example, the endpoint
management system 106 processes a portion of the first response and includes the processed
portion in the second response.

[0066] While the routine 300 of FIG. 3 has been described above with reference to
blocks 302-308, the embodiments described herein are not limited as such, and one or more
blocks may be omitted, modified, or switched without departing from the spirit of the present

disclosure.

Example Response Handling Routine #2

[0067] Turning now to FIG. 4, a routine 400 implemented by one or more

components of the virtual compute system 110 (e.g., the response handler 108) will be described.

23

WO 2016/164638 PCT/US2016/026520

Although routine 400 is described with regard to implementation by the endpoint management
system 106, one skilled in the relevant art will appreciate that alternative components may
implement routine 400 or that one or more of the blocks may be implemented by a different
component or in a distributed manner.

[0068] At block 402 of the illustrative routine 400, the endpoint management system
106 receives from a caller a request to access a first resource of a plurality of resources
maintained by the endpoint management system 106. The request may contain one or more
request parameters and a uniform resource identifier (URI) associated with the first resource.
The URI may identify a program code to be executed in connection with completing the request,
and the request parameters may identify the arguments with which the program code is to be
executed.

[0069] Next, at block 404, the endpoint management system 106 generates a code
execution request to execute the program code associated with the first resource. The code
execution request may contain information identifying the program code and information that
indicates the identity of the caller. In some embodiments, the code execution request may
indicate, additionally or alternatively, that the request is being sent by the endpoint management
system 106 and/or that the program code is associated with a particular user of the endpoint
management system 106 different from the caller.

[0070] At block 406, the endpoint management system 106 sends the generated code
execution request to the virtual compute system 110 to cause the virtual compute system 110 to
execute the program code identified by the code execution request.

[0071] At block 408, the endpoint management system 106 receives a response from
the virtual compute system, wherein the response is based on executing the program code
associated with the first resource.

[0072] At block 410, the endpoint management system 106 processes the received
response based on a pattern matching definition made available (e.g., by a user of the endpoint
management system 106 who defined the API associated with the first resource) to the endpoint
management system prior to the receipt of the request to access the first resource. The pattern
matching definition may include a plurality of conditional checks configured to determine

whether a corresponding plurality of strings are contained in the received response.

24-

WO 2016/164638 PCT/US2016/026520

[0073] At block 412, the endpoint management system 106 sends a return response to
the caller based on a result of the processing based on the pattern matching definition.

[0074] While the routine 400 of FIG. 4 has been described above with reference to
blocks 402-412, the embodiments described herein are not limited as such, and one or more
blocks may be omitted, modified, or switched without departing from the spirit of the present
disclosure.

[0075] FIG. 5 is a block diagram illustrating an embodiment of a networked
computing environment 500 including one or more client computing devices (“clients’) 102 in
communication with a service provider computer network 501 through a communication
networks 104A and/or 104B. The networked computing environment 500 may include different
components, a greater or fewer number of components, and can be structured differently. For
example, there can be more than one service provider computer networks 501 so that hosting
services or data storage services can be implemented across the multiple service provider
computer networks 501 based, for example, on established protocols or agreements. As another
example, the service provider computer network 501 may include more or fewer components and
some components may communicate with one another through the communication
networks 104A and/or 104B.

[0076] Illustratively, the client 102 can be utilized by a customer of the service
provider computer network 501. In an illustrative embodiment, the client 102 includes necessary
hardware and software components for establishing communications with various components of
the service provider computer network 501 over the communication networks 104A and/or
104B, such as a wide area network or local area network. For example, the client 102 may be
equipped with networking equipment and browser software applications that facilitate
communications via the Internet or an intranet. The client 102 may have varied local computing
resources such as central processing units and architectures, memory, mass storage, graphics
processing units, communication network availability and bandwidth, etc. In one embodiment,
the client 102 may have access to or control over a virtual machine instance hosted by the service
provider computer network 501. The client 102 may also have access to data storage resources

provided by the service provider computer network 501.

25-

WO 2016/164638 PCT/US2016/026520

[0077] With continued reference to FIG. 5, according to one illustrative embodiment,
the service provider computer network 501 may include interconnected components such as the
endpoint management system 106, endpoint proxy system 132, one or more host computing
devices 510, a storage management service 503, and one or more storage systems 507, having a
logical association of one or more data centers associated with one or more service providers.
The endpoint management system 106 may be implemented by one or more computing devices.
For example, the endpoint management system 106 may be implemented by computing devices
that include one or more processors to execute one or more instructions, memory, and
communication devices to communicate with one or more clients 102 or other components of the
service provider computer network 501. In some embodiments, the endpoint management
system 106 is implemented on one or more servers capable of communicating over a network. In
other embodiments, the endpoint management system 106 is implemented by one or more virtual
machines in a hosted computing environment. Illustratively, the endpoint management system
106 can proxy APl management and configuration and other relevant functionalities disclosed
herein.

[0078] The endpoint proxy system 132 may also be implemented by one or more
computing devices. In some embodiments, the endpoint proxy system 132 is implemented on
one or more computing devices capable of communicating over a network. In other
embodiments, the endpoint proxy system 132 is implemented by one or more virtual machines
instances in a hosted computing environment. The endpoint proxy system 132 may receive and
respond to electronic requests to execute proxy APIs and communicate with backend systems
114 as described herein.

[0079] Each host computing device 510 may be a physical computing device hosting
one or more virtual machine instances 514. The host computing device 510 may host a virtual
machine instance 114 by executing a software virtual machine manager 122, such as a
hypervisor, that manages the virtual machine instance 114. The virtual machine instance 114
may execute an instance of an operating system and application software.

[0080] In some embodiments, host computing devices 510 may be associated with
private network addresses, such as IP addresses, within the service provider computer network

501 such that they may not be directly accessible by clients 102. The virtual machine instances,

-26-

WO 2016/164638 PCT/US2016/026520

as facilitated by the virtual machine manager 122 and endpoint management system 106, may be
associated with public network addresses that may be made available by a gateway at the edge of
the service provider computer network 501. Accordingly, the virtual machine instances 514 may
be directly addressable by a client 102 via the public network addresses. One skilled in the
relevant art will appreciate that each host computing device 510 would include other physical
computing device resources and software to execute multiple virtual machine instances or to
dynamically instantiate virtual machine instances. Such instantiations can be based on a specific
request, such as a request from a client 102.

[0081] The storage management service 503 can be associated with one or more
storage systems 507. The storage systems 507 may be servers used for storing data generated or
utilized by virtual machine instances or otherwise provided by clients. Illustratively, the storage
management service 503 can logically organize and maintain data in data storage volumes. For
example, the storage management service 503 may perform or facilitate storage space allocation,
input/output operations, metadata management, or other functionalities with respect to volumes.

[0082] In some embodiments, a volume may be distributed across multiple storage
systems, may be replicated for performance purposes on storage systems in different network
areas. The storage systems may be attached to different power sources or cooling systems, may
be located in different rooms of a datacenter or in different datacenters, or may be attached to
different routers or network switches.

[0083] In an illustrative embodiment, host computing devices 510 or storage
systems 507 are considered to be logically grouped, regardless of whether the components, or
portions of the components, are physically separate. For example, a service provider computer
network 501 may maintain separate locations for providing the host and storage components.
Additionally, the host computing devices 510 can be geographically distributed in a manner to
best serve various demographics of its users. One skilled in the relevant art will appreciate that
the service provider computer network 501 can be associated with various additional computing
resources, such additional computing devices for administration of content and resources, and the

like.

27

WO 2016/164638 PCT/US2016/026520

Other Considerations

[0084] It will be appreciated by those skilled in the art and others that all of the
functions described in this disclosure may be embodied in software executed by one or more
physical processors of the disclosed components and mobile communication devices. The
software may be persistently stored in any type of non-volatile storage.

(3

[0085] Conditional language, such as, among others, “can,” “could,” “might,” or
“may,” unless specifically stated otherwise, or otherwise understood within the context as used,
is generally intended to convey that certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps. Thus, such conditional language is not
generally intended to imply that features, elements and/or steps are in any way required for one or
more embodiments or that one or more embodiments necessarily include logic for deciding, with
or without user input or prompting, whether these features, elements and/or steps are included or
are to be performed in any particular embodiment.

[0086] Any process descriptions, elements, or blocks in the flow diagrams described
herein and/or depicted in the attached figures should be understood as potentially representing
modules, segments, or portions of code which include one or more executable instructions for
implementing specific logical functions or steps in the process. Alternate implementations are
included within the scope of the embodiments described herein in which elements or functions
may be deleted, executed out of order from that shown or discussed, including substantially
concurrently or in reverse order, depending on the functionality involved, as would be understood
by those skilled in the art. It will further be appreciated that the data and/or components
described above may be stored on a computer-readable medium and loaded into memory of the
computing device using a drive mechanism associated with a computer readable storage medium
storing the computer executable components such as a CD-ROM, DVD-ROM, or network
interface. Further, the component and/or data can be included in a single device or distributed in
any manner. Accordingly, general purpose computing devices may be configured to implement
the processes, algorithms, and methodology of the present disclosure with the processing and/or

execution of the various data and/or components described above.

8-

WO 2016/16

[0087]

4638 PCT/US2016/026520

It should be emphasized that many variations and modifications may be made

to the above-described embodiments, the elements of which are to be understood as being among

other acceptable examples. All such modifications and variations are intended to be included

herein within the scope of this disclosure and protected by the following claims.

[0088]
clauses:
1.

compute fleet,

devices

commu

Embodiments of the disclosure can be described in view of the following

A system adapted to provide low-latency computational capacity from a virtual

the system comprising:

an endpoint management system comprising one or more hardware computing
adapted to execute specific computer-executable instructions and in

nication with a virtual compute system configured to provide low-latency

computational capacity, wherein the endpoint management system is configured to at

least:

receive from a caller a request to access a first resource of a plurality of
resources maintained by the endpoint management system, wherein the request
contains one or more request parameters and a uniform resource identifier (URI)
associated with the first resource,

generate a code execution request to execute a program code associated
with the first resource, wherein the code execution request contains information
identifying the program code and the caller;

send the generated code execution request to the virtual compute system to
cause the virtual compute system to execute the program code identified by the
code execution request;

receive a response from the virtual compute system, wherein the response
18 based on executing the program code associated with the first resource;

process the received response based on a pattern matching definition made
available to the endpoint management system prior to the receipt of the request to
access the first resource, wherein the pattern matching definition comprises a
plurality of conditional checks configured to determine whether a corresponding

plurality of strings are contained in the received response; and

29.

WO 2016/164638 PCT/US2016/026520

send a return response to the caller based on a result of the processing

based on the pattern matching definition.

2. The system of Clause 1, wherein the virtual compute system is further configured
to:

maintain a plurality of virtual machine instances on one or more physical
computing devices, wherein the plurality of virtual machine instances comprise a
warming pool comprising virtual machine instances having one or more software
components loaded thereon and waiting to be assigned to a user, and an active pool
comprising virtual machine instances currently assigned to one or more users;

receive a request associated with a caller to execute a program code on the virtual
compute system, wherein the program code is defined by a customer of the virtual
compute system, wherein the request includes information identifying the program code,
the caller initiating the request , and an amount of computing resources to be used for
executing the program code;

select from the warming pool or the active pool a virtual machine instance to
execute the program code;

create a container in the selected virtual machine instance based on the identified
amount of computing resources; and

cause the identified program code to be loaded from an electronic data store in
communication with the virtual compute system onto the container and to be executed in
the container.
3. The system of Clause 1, wherein the endpoint management system is further

configured to:

determine that the received response contains a success string indicating a
successful execution of the program code, wherein the success string is searched in the
received response as part of one of the plurality of conditional checks;

transform the success string into an error string that is compatible with the caller,
wherein the error string is associated with an execution error during the execution of the

program code; and

-30-

WO 2016/164638 PCT/US2016/026520

generate the return response based on the error string, wherein the return response
indicates that the execution of the program code resulted in the execution error.

4. A system, comprising:

an endpoint management system comprising one or more hardware computing
devices adapted to execute specific computer-executable instructions and in
communication with an electronic data store configured to store application programming
interface (API) mapping definitions and in communication with a virtual compute system
configured to provide request-based computational capacity and execute a program code
in a container created thereon, wherein the endpoint management system is configured to
at least:
receive a first request to execute a proxy API associated with a first
resource of a plurality of resources maintained by the endpoint management
system;
determine, based at least in part on the first request and the proxy API, an
API mapping definition associated with the proxy API;
output a second request to execute a program code on the virtual compute
system based on the API mapping definition associated with the proxy API,
wherein the second request contains information associated with the first resource;
receive a first response from the virtual compute system, wherein the first
response contains information regarding the first resource; and
output a second response based on the first response received from the
virtual compute system.

3. The system of Clause 4, wherein the first request specifies the program code and a
plurality of data storage systems that each store data objects, wherein the endpoint management
system is further configured to cause the virtual compute system to execute the program code on
each data object stored in the plurality of data storage systems.

6. The system of Clause 4, wherein the endpoint management system is further
configured to process the first response using a pattern matching definition stored in the endpoint

management system to access the first resource, wherein the pattern matching definition

31-

WO 2016/164638 PCT/US2016/026520

comprises a plurality of conditional checks configured to determine whether a corresponding
plurality of strings are contained in the first response.
7. The system of Clause 6, wherein the endpoint management system is further
configured to:
determine, based on the processing of the first response using the pattern matching
definition, that the first response is free of errors; and
in response to a determination that the first response is free of errors, output a
third request to a backend system, wherein the third request contains information
associated with the program code to be executed by the backend system.
8. The system of Clause 6, wherein the endpoint management system if further
configured to:
determine that the first response contains a success string indicating a successful
execution of the program code by the virtual compute system, wherein the success string
is searched in the first response as part of one of the plurality of conditional checks;
transform the success string into an error string that is compatible with a caller
initiating the first request, wherein the error string is associated with an execution error
during the execution of the program code by the virtual compute system; and
generate the second response based on the error string, wherein the second
response indicates that the execution of the program code resulted in the execution error.
9. The system of Clause 4, wherein the virtual compute system is further configured
to, in response to receiving the second request from the endpoint management system, execute
the program code identified by the second request,
wherein the first response contains a first portion that is identical to a second portion of
the second response, wherein the first and second portions represent data processed during the
execution of the program code by the virtual compute system.
10. The system of Clause 4, wherein the virtual compute system is further configured
to:
maintain a plurality of virtual machine instances on one or more physical
computing devices, wherein the plurality of virtual machine instances comprise a

warming pool comprising virtual machine instances having one or more software

32-

WO 2016/164638 PCT/US2016/026520

components loaded thereon and waiting to be assigned to a user, and an active pool
comprising virtual machine instances currently assigned to one or more users;
receive a request associated with a caller to execute a program code associated
with a user on the virtual compute system, wherein the program code is defined by a
customer of the virtual compute system, wherein the request includes information
identifying the program code, the caller initiating the request, and an amount of
computing resources to be used for executing the program code;
select from the warming pool or the active pool a virtual machine instance to
execute the program code;
create a container in the selected virtual machine instance based on the identified
amount of computing resources; and
cause the identified program code to be loaded from an electronic data store in
communication with the virtual compute system onto the container and to be executed in
the container.
11. A computer-implemented method comprising:
as implemented by one or more computing devices configured with specific
executable instructions,
receiving a first request to execute a proxy application programming
interface (API) associated with a first resource of a plurality of resources
maintained by an endpoint management system;
determining, based at least in part on the first request and the proxy API,
an API mapping definition associated with the proxy API;
outputting a second request to execute a program code on a virtual
compute system configured to provide request-based computational capacity and
execute a program code in a container created thereon, wherein the second request
is based on the API mapping definition associated with the proxy API and
contains information associated with the first resource;
receiving a first response from the virtual compute system, wherein the

first response contains information regarding the first resource; and

-33-

WO 2016/164638 PCT/US2016/026520

outputting a second response based on the first response received from the
virtual compute system.

12. The computer-implemented method of Clause 11, further comprising causing the
virtual compute system to execute the program code on each data object stored in a plurality of
data storage systems, wherein the first request specifies the program code and the plurality of
data storage systems that each store data objects.

13. The computer-implemented method of Clause 11, further comprising processing
the first response using a pattern matching definition stored in the endpoint management system
to access the first resource, wherein the pattern matching definition comprises a plurality of
conditional checks configured to determine whether a corresponding plurality of strings are
contained in the first response.

14. The computer-implemented method of Clause 13, further comprising:

determining, based on the processing of the first response using the pattern
matching definition, that the first response is free of errors; and

in response to a determination that the first response is free of errors, outputting a
third request to a backend system, wherein the third request contains information
associated with the program code to be executed by the backend system.

15. The computer-implemented method of Clause 13, further comprising:

determining that the first response contains a success string indicating a successful
execution of the program code by the virtual compute system, wherein the success string
is searched in the first response as part of one of the plurality of conditional checks;

transforming the success string into an error string that is compatible with a caller
initiating the first request, wherein the error string is associated with an execution error
during the execution of the program code by the virtual compute system; and

generating the second response based on the error string, wherein the second

response indicates that the execution of the program code resulted in the execution error.

34-

WO 2016/164638 PCT/US2016/026520

16. A computer-readable, non-transitory storage medium storing computer executable
instructions that, when executed by one or more computing devices, configure the one or more
computing devices to perform operations comprising:

receiving a first request to execute a proxy application programming interface
(API) associated with a first resource of a plurality of resources maintained by an
endpoint management system;

determining, based at least in part on the first request and the proxy API, an API
mapping definition associated with the proxy API;

outputting a second request to execute a program code on a virtual compute

system configured to provide request-based computational capacity and execute a

program code in a container created therein, wherein the second request is based on the

APl mapping definition associated with the proxy API and contains information

associated with the first resource;

receiving a first response from the virtual compute system, wherein the first
response contains information regarding the first resource; and

outputting a second response based on the first response received from the virtual
compute system.

17. The computer-readable, non-transitory storage medium of Clause 16, wherein the
operations further comprise causing the virtual compute system to execute the program code on
each data object stored in a plurality of data storage systems, wherein the first request specifies
the program code and the plurality of data storage systems that each store data objects.

18. The computer-readable, non-transitory storage medium of Clause 17, wherein the
operations further comprise providing a result of the execution of the program code to a second
program code, wherein the program code is supplied by the second request and the second
program code is supplied by a request different from the second request.

19. The computer-readable, non-transitory storage medium of Clause 16, wherein the
operations further comprise processing the first response using a pattern matching definition
stored in the endpoint management system to access the first resource, wherein the pattern
matching definition comprises a plurality of conditional checks configured to determine whether

a corresponding plurality of strings are contained in the first response.

-35-

WO 2016/164638 PCT/US2016/026520

20. The computer-readable, non-transitory storage medium of Clause 19, wherein the
operations further comprise:
determining, based on the processing of the first response using the pattern matching
definition, that the first response is free of errors; and
in response to a determination that the first response is free of errors, outputting a third
request to a backend system, wherein the third request contains information associated with a
program code to be executed by the backend system.
21. The computer-readable, non-transitory storage medium of Clause 19, wherein the
operations further comprise:
determining that the first response contains a success string indicating a successful
execution of the program code by the virtual compute system, wherein the success string
is searched in the first response as part of one of the plurality of conditional checks;
transforming the success string into an error string that is compatible with a caller
initiating the first request, wherein the error string is associated with an execution error
during the execution of the program code by the virtual compute system; and
generating the second response based on the error string, wherein the second
response indicates that the execution of the program code resulted in the execution error.
22. The system of Clause 4, wherein the second request contains information
identifying at least one of (i) a caller initiating the first request, (ii) a user associated with the

program code, or (iii) the endpoint management system.

-36-

WO 2016/16

4638 PCT/US2016/026520

WHAT IS CLAIMED IS:

L.

compute fleet,

devices

commu

A system adapted to provide low-latency computational capacity from a virtual

the system comprising:

an endpoint management system comprising one or more hardware computing
adapted to execute specific computer-executable instructions and in

nication with a virtual compute system configured to provide low-latency

computational capacity, wherein the endpoint management system is configured to at

least:

receive from a caller a request to access a first resource of a plurality of
resources maintained by the endpoint management system, wherein the request
contains one or more request parameters and a uniform resource identifier (URI)
associated with the first resource,

generate a code execution request to execute a program code associated
with the first resource, wherein the code execution request contains information
identifying the program code and the caller;

send the generated code execution request to the virtual compute system to
cause the virtual compute system to execute the program code identified by the
code execution request;

receive a response from the virtual compute system, wherein the response
18 based on executing the program code associated with the first resource;

process the received response based on a pattern matching definition made
available to the endpoint management system prior to the receipt of the request to
access the first resource, wherein the pattern matching definition comprises a
plurality of conditional checks configured to determine whether a corresponding
plurality of strings are contained in the received response; and

send a return response to the caller based on a result of the processing

based on the pattern matching definition.

37-

to:

WO 2016/164638 PCT/US2016/026520

2. The system of Claim 1, wherein the virtual compute system is further configured

maintain a plurality of virtual machine instances on one or more physical
computing devices, wherein the plurality of virtual machine instances comprise a
warming pool comprising virtual machine instances having one or more software
components loaded thereon and waiting to be assigned to a user, and an active pool
comprising virtual machine instances currently assigned to one or more users;

receive a request associated with a caller to execute a program code on the virtual
compute system, wherein the program code is defined by a customer of the virtual
compute system, wherein the request includes information identifying the program code,
the caller initiating the request , and an amount of computing resources to be used for
executing the program code;

select from the warming pool or the active pool a virtual machine instance to
execute the program code;

create a container in the selected virtual machine instance based on the identified
amount of computing resources; and

cause the identified program code to be loaded from an electronic data store in
communication with the virtual compute system onto the container and to be executed in
the container.

3. The system of Claim 1, wherein the endpoint management system is further

configured to:

determine that the received response contains a success string indicating a
successful execution of the program code, wherein the success string is searched in the
received response as part of one of the plurality of conditional checks;

transform the success string into an error string that is compatible with the caller,
wherein the error string is associated with an execution error during the execution of the
program code; and

generate the return response based on the error string, wherein the return response

indicates that the execution of the program code resulted in the execution error.

-38-

WO 2016/164638 PCT/US2016/026520

4. A system, comprising:
an endpoint management system comprising one or more hardware computing
devices adapted to execute specific computer-executable instructions and in
communication with an electronic data store configured to store application programming
interface (API) mapping definitions and in communication with a virtual compute system
configured to provide request-based computational capacity and execute a program code
in a container created thereon, wherein the endpoint management system is configured to
at least:
receive a first request to execute a proxy API associated with a first
resource of a plurality of resources maintained by the endpoint management
system;
determine, based at least in part on the first request and the proxy API, an
API mapping definition associated with the proxy API;
output a second request to execute a program code on the virtual compute
system based on the API mapping definition associated with the proxy API,
wherein the second request contains information associated with the first resource;
receive a first response from the virtual compute system, wherein the first
response contains information regarding the first resource; and
output a second response based on the first response received from the
virtual compute system.

5. The system of Claim 4, wherein the first request specifies the program code and a
plurality of data storage systems that each store data objects, wherein the endpoint management
system is further configured to cause the virtual compute system to execute the program code on
each data object stored in the plurality of data storage systems.

6. The system of Claim 4, wherein the endpoint management system is further
configured to process the first response using a pattern matching definition stored in the endpoint
management system to access the first resource, wherein the pattern matching definition
comprises a plurality of conditional checks configured to determine whether a corresponding

plurality of strings are contained in the first response.

-390-

WO 2016/164638 PCT/US2016/026520

7. The system of Claim 6, wherein the endpoint management system is further
configured to:
determine, based on the processing of the first response using the pattern matching
definition, that the first response is free of errors; and
in response to a determination that the first response is free of errors, output a
third request to a backend system, wherein the third request contains information
associated with the program code to be executed by the backend system.
8. The system of Claim 6, wherein the endpoint management system if further
configured to:
determine that the first response contains a success string indicating a successful
execution of the program code by the virtual compute system, wherein the success string
is searched in the first response as part of one of the plurality of conditional checks;
transform the success string into an error string that is compatible with a caller
initiating the first request, wherein the error string is associated with an execution error
during the execution of the program code by the virtual compute system; and
generate the second response based on the error string, wherein the second
response indicates that the execution of the program code resulted in the execution error.
9. The system of Claim 4, wherein the virtual compute system is further configured
to, in response to receiving the second request from the endpoint management system, execute
the program code identified by the second request,
wherein the first response contains a first portion that is identical to a second portion of
the second response, wherein the first and second portions represent data processed during the
execution of the program code by the virtual compute system.
10. The system of Claim 4, wherein the virtual compute system is further configured
to:
maintain a plurality of virtual machine instances on one or more physical
computing devices, wherein the plurality of virtual machine instances comprise a
warming pool comprising virtual machine instances having one or more software
components loaded thereon and waiting to be assigned to a user, and an active pool

comprising virtual machine instances currently assigned to one or more users;

-40-

WO 2016/164638 PCT/US2016/026520

receive a request associated with a caller to execute a program code associated
with a user on the virtual compute system, wherein the program code is defined by a
customer of the virtual compute system, wherein the request includes information
identifying the program code, the caller initiating the request, and an amount of
computing resources to be used for executing the program code;
select from the warming pool or the active pool a virtual machine instance to
execute the program code;
create a container in the selected virtual machine instance based on the identified
amount of computing resources; and
cause the identified program code to be loaded from an electronic data store in
communication with the virtual compute system onto the container and to be executed in
the container.
11. A computer-implemented method comprising:
as implemented by one or more computing devices configured with specific
executable instructions,
receiving a first request to execute a proxy application programming
interface (API) associated with a first resource of a plurality of resources
maintained by an endpoint management system;
determining, based at least in part on the first request and the proxy API,
an API mapping definition associated with the proxy API;
outputting a second request to execute a program code on a virtual
compute system configured to provide request-based computational capacity and
execute a program code in a container created thereon, wherein the second request
is based on the API mapping definition associated with the proxy API and
contains information associated with the first resource;
receiving a first response from the virtual compute system, wherein the
first response contains information regarding the first resource; and
outputting a second response based on the first response received from the

virtual compute system.

41-

WO 2016/164638 PCT/US2016/026520

12. The computer-implemented method of Claim 11, further comprising causing the
virtual compute system to execute the program code on each data object stored in a plurality of
data storage systems, wherein the first request specifies the program code and the plurality of
data storage systems that each store data objects.

13. The computer-implemented method of Claim 11, further comprising processing
the first response using a pattern matching definition stored in the endpoint management system
to access the first resource, wherein the pattern matching definition comprises a plurality of
conditional checks configured to determine whether a corresponding plurality of strings are
contained in the first response.

14. The computer-implemented method of Claim 13, further comprising:

determining, based on the processing of the first response using the pattern
matching definition, that the first response is free of errors; and

in response to a determination that the first response is free of errors, outputting a
third request to a backend system, wherein the third request contains information
associated with the program code to be executed by the backend system.

15. The computer-implemented method of Claim 13, further comprising:

determining that the first response contains a success string indicating a successful
execution of the program code by the virtual compute system, wherein the success string
is searched in the first response as part of one of the plurality of conditional checks;

transforming the success string into an error string that is compatible with a caller
initiating the first request, wherein the error string is associated with an execution error
during the execution of the program code by the virtual compute system; and

generating the second response based on the error string, wherein the second

response indicates that the execution of the program code resulted in the execution error.

42-

PCT/US2016/026520

WO 2016/164638

1/5

801 Y HINYH ISNOJSTY

801 WHLISAS INAWAOYNYN INIOJON

A

gyl
HOM LN

Zhi SADINGES AMVITIXNY

Y0l

MHOMLIN
v L Al
SERIIEY
0Lt WEALSAS FLNAWOD TYNLYIA SNILNNOO
=0

/Qo“

[4

PCT/US2016/026520

WO 2016/164638

2/5

LN ONIHOLVIN NH3LLYd

AOVALELNI 20IA30 LNdLNO/LNGNI

891

LINM ONISHYd 3SNOGS T ANV 1SAN03Y

o3y~

A WNIGIN 318YAY3d 4diNdNoS

FOVAHILNI HAIOMLEN

LINN ONISSI00Hd

WALSAS ONLLYHEJO
81 ~
LINM FOVARE LN H350
Z8i S
AOWIN
08i <

AATANYH 35NOdS 3

mow\\

WO 2016/164638 PCT/US2016/026520
3/5

300 '\\q

302
¥ /

RECEIVE A FIRST REQUEST TO EXECUTE A PROXY AP ASSOCIATED
WITH A FIRST RESOURCE OF A PLURALITY OF RESOQURCES
MAINTAINED BY AN ENDPOINT MANAGEMENT SYSTEM

304
; 4

DETERMINE, BASED AT LEAST IN PART ON THE FIRST REQUEST AND
THE PROXY AP AN AP MAPPING DEFINITION ASSOCIATED WITH THE
PROXY AP

2
. o 306
OUTRPUT A SECOND REQUEST TO EXECUTE A PROGRAM CODE ON A

ASSOCIATED WITH THE PROXY AP

308
¥ £ i

RECEIVE A FIRST RESPONSE FROM THE VIRTUAL COMPUTE SYSTEM,
WHEREIN THE FIRST RESPONSE CONTAINS INFORMATION
REGARDING THE FIRST RESQURCE

310
¥ /-JC

OUTPUT A SECOND RESPONSE BASED ON THE FIRST RESPONSE
RECEIVED FROM THE VIRTUAL COMPUTE SYSTEM

WO 2016/164638 PCT/US2016/026520

10 —\\\q

4/5

(START E

402
/,

RECEIVE A REQUEST TO ACCESS A FIRST RESOURCE OF A
PLURALITY OF RESOURCES MAINTAINED BY AN ENDPOINT
MANAGEMENT SYSTEM

404
4 f

GENERATE A CODE EXECUTION REQUEST TO EXECUTE A
PROGRAM CODE ASSOCIATED WITH THE FIRST RESOURCE

406
3 -

SEND THE GENERATED CODE EXECUTION REQUEST TO A VIRTUAL
COMPUTE SYSTEM CONFIGURED TO PROVIDE COMPUTATIONAL
CAPACITY

408
v -

RECEIVE A RESPONSE FROM THE VIRTUAL COMPUTE SYSTEM,
WHEREIN THE RESPONSE 18 BASED ON EXECUTING THE PROGRAM
CODE ASSOCIATED WITH THE FIRST RESOURCE

. /‘40

PROCESS THE RECEIVED RESPONSE BASED ON A PATTERN
MATCHING DEFINITION MADE AVAILABLE 7O THE ENDPOINT
MANAGEMENT SYSTEM

_‘ 42

SEND A RETURN RESPONSE TO THE CALLER BASED ON A RESULT
OF THE PROCESSING BASED ON THE PATTERN MATCHING
DEFINITION

PCT/US2016/026520

WO 2016/164638

5/5

=<
—
i

SWALSAS ONIOVY

XS
RaLe FIg faxe
WA WA WA
706 £as
I0INNTS —
o INFWID YN 725
NTILSAS JOVHOLS OYNYIINA
NALSAS FOVHO e DAL B I YNV A
1
J0IATA SNILNINOD LSCH
WILSAS WILSAS INTFWIOYNYA
AXO¥d INIOdANT INIOJaN
V05 MHOMLIN HILNNOD H3AIAOEd IDIANES

I

omr
g WHOMIIN

\

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/026520

A. CLASSIFICATION OF SUBJECT MATTER

INV. GOD6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched {classification system followed by classification symbols)

Documentation searshed other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 2 663 052 Al (NETFLIX, INC.) 1-15
13 November 2013 (2013-11-13)
abstract
paragraphs [0001] - [0002]
paragraph [0004]
paragraph [0007]
paragraph [0009]
paragraph [0017]
paragraphs [0023] - [0031]
paragraph [0039]
paragraph [0048]
figure 3
X US 20107064299 Al (KACE NETWORKS, INC.) 1-15
11 March 2010 (2010-03-11)
the whole document
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" documentwhich may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or sannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

'&" document member of the same patent family

Date of the actual completion of the international search

27 June 2016

Date of mailing of the international search report

05/07/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswilk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Tomas Blanch, F

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/026520
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category” | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 20107198972 Al (UMBEHOCKER) 1-15
5 August 2010 (2010-08-05)
the whole document
A US 2010/269109 Al (CARTALES) 1-15

21 October 2010 (2010-10-21)
the whole document

Form PCT/ISA210 (continuation of second sheet) [Aptil 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent famlly members

International application No

PCT/US2016/026520
Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 2663052 Al 13-11-2013 EP 2663052 Al 13-11-2013
US 2013318154 Al 28-11-2013

US 2010064299 Al 11-03-2016 CN 102150105 A 10-08-2011
DE 112009002168 T5 12-01-2012
GB 2475011 A 04-05-2011
US 2010064299 Al 11-03-2010
US 2013198764 Al 01-08-2013
WO 2010030703 Al 18-03-2010

US 2010198972 Al 05-68-2010 CN 102292698 A 21-12-2011
CN 102292699 A 21-12-2011
EP 2394212 Al 14-12-2011
EP 2394213 Al 14-12-2011
US 2010198972 Al 05-08-2010
Us 2010199037 Al 05-08-2010
US 2010199276 Al 05-08-2010
US 2014297782 Al 02-10-2014
WO 2010090883 Al 12-08-2010
WO 2010090899 Al 12-08-2010

US 2010269109 Al 21-10-2010 EP 2419828 A2 22-02-2012
US 2010269109 Al 21-10-2010
WO 2010121017 A2 21-10-2010

Form PCT/ISA210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - wo-search-report
	Page 50 - wo-search-report
	Page 51 - wo-search-report

