Office de la Propriete Canadian CA 2786991 A1 2011/07/21

Intellectuelle Intellectual Property
du Canada Office (21) 2 786 991
g,lnngL%?rri‘fg:na " mfgtfy”%ya‘r’]‘; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1
(86) Date de depot PCT/PCT Filing Date: 2011/01/12 (51) CLInt./Int.Cl. GO5B 19/00(2006.01)

(87) Date publication PCT/PCT Publication Date: 2011/07/21 (71) Demandeur/Applicant:
(85) Entrée phase nationale/National Entry: 2012/07/12 CRANE MERCHANDISING SYSTEMS, INC., US

o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2011/021006 ROYAL. WILLIAM C.. JR.. US:

(87) N° publication PCT/PCT Publication No.: 2011/088131 PARTYSHEV, VICTOR, UA:
(30) Priorités/Priorities: 2010/01/12 (US61/335,890): ANTILOGOV, ANDREY, UA;
2010/01/12 (USB1/335,891) CANTER, JAMES M., US;

VOYTOVYCH, YAROSLAYV, UA
(74) Agent. KIRBY EADES GALE BAKER

(54) Titre : MECANISME POUR UNE INTERFACE GRAPHIQUE D'UTILISATEUR DE DISTRIBUTEUR AUTOMATIQUE
UTILISANT UN LANGAGE DE BALISAGE EXTENSIBLE (XML) POUR UN EMPLOI POLYVALENT PAR UN CLIENT

54) Title: MECHANISM FOR A VENDING MACHINE GRAPHICAL USER INTERFACE UTILIZING XML FOR A
VERSATILE CUSTOMER EXPERIENCE

e I
Customer : '
- |
nterface » 9: Dlsplayﬁzntmller :
103 l B |
L l

e _ -

Payment System \ - J
107
V N
Heating/ BEEEN storage Media
Refrigeration (& = VMG 112
System . 106 ~ | (Cusomer
110 I Interface

r——: -~ A Description
Delivery Sensing | 1433 j
Sﬁt?m e Y ' Customer]
———— e Dispensing System Intertace :
108 Description |
100 ~113b)

Product Storage .

108 , —

Customer

Intertace

Description

FIGURE 1B L S

(57) Abréegée/Abstract:
Logic 106 for a vending machine customer interface is supplied from one a plurality of markup language descriptions 113a-113n of
the customer Interface contained within storage media 112 in the vending machine 100. Each markup language description Is

:':‘;‘:‘-';:;‘:': Bt N,
R A -:::; N7
> \) Q"’...

I*I] { - . Bon, B R
C an ad a http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C gm0

| SRR RO S 2 _,\‘.s
OPIC - CIPO 191 5

CA 2786991 A1 2011/07/21

en 2 186 991
13) A1

(57) Abrege(suite)/Abstract(continued):

configured to cause the customer Interface to flow between different sets of application states, and contains content that Is
displayed/rendered when respective application states are activated. In response to customer selection of a particular product or
class of products, based on the customer selection, the controller processes customer interface flow and content based upon a
corresponding markup language description to produce the customer interface display.

WO 2011/088 131 A 1 |[HIL 11 HHD Y OO0 R A R0 R

CA 02786991 2012-07-12

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
21 July 2011 (21.07.2011)

(10) International Publication Number

WO 2011/088131 Al

(51)

(21)

(22)

(25)

(26)
(30)

(71)

(72)
(75)

International Patent Classification:
GO05B 19/00 (2006.01)

International Application Number:
PCT/US2011/021006

International Filing Date:
12 January 2011 (12.01.2011)

Filing Language: English
Publication Language: English
Priority Data:

61/335,891 12 January 2010 (12.01.2010) US
61/335,890 12 January 2010 (12.01.2010) US

Applicant (for all designated States except US). CRANE
MERCHANDISING SYSTEMS, INC. [US/US]; 12955
Enterprise Way, Bridgeton, Missour1 63044 (US).

Inventors; and

Inventors/Applicants (for US only). ROYAL, William
C., Jr. [US/US]; 3800 Norwell Court, Oak Ridge, North
Carolina 27310 (US). PARTYSHEYV, Victor [UA/UA];
12 Lesnaya, Kiev, 08170 (UA). ANTILOGOY, Andrey
[UA/UA]; 3/5 Slavgorodskaya St., Ap. 102, Kiev, 03146
(UA). CANTER, James M. [US/US]; 10603 Winchelsea
Drive, Austin, Texas 78750 (US). VOYTOVYCH,
Yaroslav [UA/UA]; 26 6-ya Liniya, Ap. 3, Irpin, 08200
(UA).

(74)

(81)

(84)

Agents: MUNCK, William A. et al.; Munck Carter, LLP,
600 Banner Place Tower, 12270 Coit Road, Dallas, Texas
75251 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, S8Y, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
/M, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

[Continued on next page]

(534) Title: MECHANISM FOR A VENDING MACHINE GRAPHICAL USER INTERFACE UTILIZING XML FOR A VER-
SATILE CUSTOMER EXPERIENCE

S
I
|
Customer . :
Interface e > Dlsplayﬁzntmller i
103 : 14 .
| I
____________ I
P t Syst h)
ayment System . y |
107 < T ;
Heating/ BN ; Storage Media
Refrigeration | > VMO 112
System <
Ay —>] 106 Customer
i Interface
[C—————————— A Description
| Delivery Sensing | 1133
| .
system e
I 5; > D v Customer
] Dispensing System Intertace
108 Description
Product Storage .
108 .
............. Customer
Interface
Description
FIGURE 1B isn

(57) Abstract: Logic 106 for a vending machine cus-
tomer mterface 1s supplied from one a plurality of
markup language descriptions 113a-113n of the cus-
tomer interface contained within storage media 112 in
the vending machine 100. Each markup language de-
scription 1s configured to cause the customer interface
to tlow between different sets ot application states, and
contains content that 1s displayed/rendered when re-
spective application states are activated. In response to
customer selection of a particular product or class of
products, based on the customer selection, the controller
processes customer interface flow and content based
upon a corresponding markup language description to
produce the customer interface display.

CA 02786991 2012-07-12

WO 2011/088131 A1 MMM UL ANV 10 0 A A AR A O

— with amended claims (Art. 19(1))

D

10

15

20

2D

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

MECHANISM [FOR A VENDING MACHINE GRAPHICAIL USER INTERFACE
UTILIZING XML FOR A VERSATILE CUSTOMER EXPERIENCE

TECHNICAL FIRLD

[(0001] The present application relates generally to vending
machines and, more specifically, to dynamic user interaction

within the customer interface to a vending machine.

BACKGROUND
[0002] Conventional vending machines typically follow a set of

simplistic logic-based rules for ensuring that the consumer has

made a valld product selection for purchase, and that enough

credit (money) has been presented by the consumer in return.

Operation of these devices 1s often governed by actions triggered
py events from the system, such as deposit of currency into a
payment system, customer actuation of a selection control, or

F

verification of product delivery by a sensing system.

[(0003] In some situations, 1t 1s desirable to provide a
different customer interface experience depending on the product
or type of product being purchased. For example, machines for

—
p—

vending coffee (American or European style), espresso, and other

hot brewed beverages may necessltate different flow of the

customer i1nteraction to make all requisite selections, especially

1f different brews or flavors are offered.

(0004] There 1s, therefore, a need in the art for a vending

machine enabling different customer interface flow based on

product selection(s).

10

15

20

2

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

2

SUMMARY

[0005] Logic for a vending machine customer interface 1is
supplied from one a plurality of markup language descriptions of

the customer 1interface contalned within storage media in the

vending machine. Each markup language description is configured

N

to cause the customer interface flow between different sets of
application states, and content that is displayed/rendered when
respective application states are activated. In response to
customer selection of a particular product or class of products,

based on the customer selection, the controller processes

customer interface flow and content based upon a corresponding

markup language description to produce the customer interface

display.

[0006] Before undertaking the DETAILED DESCRIPTION below, it

may be advantageous to set forth definitions of certain words and
phrases wused throughout this patent document: the terms
“include” and “comprise,” as well as derivatives thereof, mean
inclusion without limitation; the term Y“or,” is inclusive,
meaning and/or; the phrases “associated with” and “associated
therewith,” as well as derivatives thereof, may mean to include,
be 1ncluded within, interconnect with, contain, be contained
within, connect to or with, couple to or with, be communicable
with, cooperate with, interleave, juxtapose, be proximate to, be

F

bound to or with, have, have a property of, or the like; and the

term “controller” means any device, system or part therecof that

controls at least one operation, such a device may be implemented

1n hardware, firmware or software, or some combination of at
least two of the same. It should be noted that the functionality

assoclated with any particular controller may be centralized or

-

distributed, whether locally or remotely. Definitions for

certain words and phrases are provided throughout this patent

document, those of ordinary skill in the art should understand

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

3

that in many, 1f not most instances, such definitions apply to

pricr, as well as future uses of such defined words and phrases.

10

15

2 ()

2D

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

BRIEEF DESCRIPTION OF THE DRAWINGS

[0007] For a more complete understanding of the present

disclosure and 1ts advantages, reference is now made to the
following description taken in conjunction with the accompanying
drawings, 1n which like reference numerals represent like parts:

(0008] FIGURE 1 1llustrates a brewed beverage vending machine

employing markup language descriptions for dynamic customer

interface flow for a graphical user interface according to one

embodiment of the present disclosure;

[0009] FIGURE 1A 1llustrates 1n greater detail the user

interface portion of the brewed beverage vending machine of

FIGURE 1;

[0010] FIGURE 1B 1s a block diagram of selected electrical,

electronic and/or electro-mechanical subsystems within the brewed

beverage vending machine of FIGURE 1;

[(O011] FIGURES ZA and 2B are block diagrams depicting the

—

architecture of and data flow within the hardware and software

control systems within a brewed beverage vending machine
employing markup language descriptions for dynamic customer
interface flow for a graphical user interface according to one

embodiment of the present disclosure;

[0012] FIGURE 3 1s a more detailed block diagram of a content
manager within the architecture of FIGURES 2A and 2B;

[0013] FIGURE 4A deplcts a state diagram for a simplified

1mplementation of the state machine in FIGURE 2;

[0014] FIGURE 4B depicts a state diagram for a realistic

implementation of the state machine in FIGURE 2; and

[0015] FIGURE 5 1s a high level flow diagram for a process of

employing markup language descriptions for dynamic customer
interface flow for a graphical user interface within a brewed

beverage vending machine according to one embodiment of the

present disclosure.

10

15

20

2D

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

DETATLED DESCRIPTION
[0016] FIGURES 1 through 5, discussed below, and the wvarious
embodiments used to describe the principles of the present

disclosure 1n this patent document are by way of illustration

only and should not be construed in any way to limit the scope of

the disclosure. Those skilled in the art will understand that

the principles of the present disclosure may be implemented in
any sultably arranged vending machine.

[0017] FIGURE 1 1llustrates a brewed beverage vending machine

employing markup language descriptions for dynamic customer

interface flow for a graphical user interface according to one

-

embodiment of the present disclosure. The system 100 includes a

cabinet 101 housing the internal components of the vending
machine and 1including a delivery station 102 at which, in the
exemplary embodiment, hot or cold brewed beverages are delivered
to the customer. system 100 also i1includes a graphical user
(customer) 1nterface providing dynamic information to the

—

customer during a vend transaction such as the status of payment

or avallable product selections, and enables the customer to
select products, obtain refunds of currency deposited, and/or
obtain additional information regarding products available or
vend purchase terms. User interface 103, illustrated in greater
detail in FIGURE 1A, includes a graphicai display 104 that, to
the customer using the vending machine, appears physically
divided i1nto a main display area 104a and a plurality of label

display areas 104b-104m by overlying material (e.g., plastic)

11llustrated in phantom in FIGURE 1A. As illustrated, a plurality

F

of user interface contreols 105b-105m (e.g., press-—-activated

switches) corresponds to the plurality of label display areas
l04b~104m. In alternate embodiments, however, a direct touch-
screen display may enable user selection based on the label

display areas.

10

15

20

2D

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

S

(0018] FIGURE 1B 1s a block diagram of selected electrical,

electronic and/or electro-mechanical subsystems within the brewed
beverage vendilng machine of FIGURE 1. The system 100 includes a
central controller 106, which may be implemented as a vending
machine controller (VMC) of the type known in the art, that is
communicably coupled to the graphical user (customer) interface
103. VMC 106 1s also communicably coupled to, and receives
control signals from and may supply control signals to, a payment
system 107 such as a bill acceptor/recycler, a coin mechanism,

—

and/or a credit or debit card payment system, all of which are

known 1n the art. VMC 106 1s communicably coupled to and
controls an electromechanical dispensing system 108, which is

mechanically coupled to or operable with product storage 1009.

VMC 101 1s further communicably coupled to and controls a heating

and/or refrigeration heating system 110, and may be further
communicably coupled to and receive control signals from an

optional delivery sensing system 111.

[0019] As noted above, the exemplary embodiment is preferably
a cofree vending machine for dispensing hot beverages brewed to

order. As such, the product storage 109 will typically include

coffee beans or grounds, or other substances from which a hot
beverage may be brewed (e.g., tea leaves, cocoa powder, etc.) and
cups. The dispensing system 108 will normally include a mixing
chamber for mixing the substance to be brewed with hot water and
a channeling system for delivering the hot brewed beverage. An

- -

example oI the 1internal structure of such a coffee vending

machine 1s found in U.S. Patent Application Serial No. 12/958,172

entitled MODULAR COFFEE BREWER WITH CONTINUQUS FILTER BELT and
filed December 1, 2010, the content of which 1is hereby

incorporated by reference.

(0020] Those skllled in the relevant art will recognize that

the full construction and operation of a vending machine is not

depicted 1n the drawings or described herein. Instead, for

10

15

20)

2D

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

7

F

simplicity and clarity, only so much of a brewed beverage vending

machine as 1s unlique to the present disclosure or necessary for

F

an understanding of the present disclosure is depicted and
described. In alternative wvending machine embodiments, the
product storage 109 may take the form of helical coils holding

snack products, with the dispensing system 108 including motors

for turning the helical cecils. In still other vending machine
embodiments, the product storage 109 may be trays holding
packaged beverages 1n upright position, while the dispensing

system 108 includes an X-Y product retrieval mechanism. Such

designs are known to those skilled in the relevant art. In

addition, the techniques o©of the present disclosure may be

F

implemented 1in other types of systems than vending machines, such

as automated teller machines (ATMs), bus/train/plane ticket

kiosks, fuel dispensers, and self-checkout supermarket registers.

[0021] Vending machines, as well as automated teller machines,
ticket kiosks, fuel dispensers, and self-checkout supermarket

registers, are all “terminal”-like devices that traditionally

have had to manage multilingual interfaces for the general

population, but have not always done this in a flexible manner.

HyperText Markup Language (HTML) interfaces to web sites, on the

other hand, are designed for a global audience, and have
developed techniques and tools that provide sophisticated
infrastructure for dynamic language selection, units of measure
(1ncluding currency), etc. The concept is sometimes referred to
as localization.

(0022] In the present disclosure, system 100 includes storage
media 112 communicably coupled to VMC 106, and may optionally
include a display controller 114 separate from VMC 106 coupled
between customer interface 103 and storage media 112 performing

or facilitating the processes described below. Storage media 112

may take the form of %“flash” memory, Erasable Electrically

10

15

20

2D

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

3

Programmable Read Only Memory (EEPROM), or any other suitable

type of data storage media, preferably non-volatile and adapted

to be overwritten as well as read during the operating lifetime
of the system 100.

[0023] Within storage media 112 are markup language customer
interface descriptions 113a-113n. As used herein, “markup
language” 1ncludes text-based definitions of user interface

content (rather than purely graphical content rendered by

machine-specific executable code) and includes, by way of
example, HTML and 1n a preferred embodiment eXtensible Markup
Language (XML). The exemplary embodiment of the design disclosed
uses XML to define all the text assoclated with the system

customer 1interface, using a flexible but predetermined grammar

for describing textual elements using XML tags. The XML

description defines all specific textual elements in a dictiocnary

based on these XML tags, grouped by language. This mechanism in

turn 1s used by a flexible language switching mechanism in the

presentation layer of the customer interface. Change of language
15 subsequently driven by a selection event in the customer
interface. The selection event could be associated with pressing
a physical button (such as but not limited to a reprogrammable

—

soft key) on the exterior of the vending machine, or pressing a

“virtual” button on a touchscreen user interface.

(0024] FIGURES ZA and 2B are block diagrams depicting the

F

architecture of and date flow within the hardware and software

control systems within a brewed beverage vending machine
employing markup language descriptions for dynamic customer
interface flow for a graphical user interface according to one
embodiment o©f the present disclosure. The control system

-

architecture 200 incorporates the “separation of concerns” (8oC)

architectural pattern, with components logically grouped based on
whether the respective component 1s actively involved in a

process of concern or 1s merely reactive to the process and/or

10

15

20

2D

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

9

are relatively 1ndependent of the user interface processes. In

the present disclosure, the hardware for system 100 is logically

divided into the user interface components 201 and the components
202 Tor the remalnder of the system. The wuser 1nterface

components 201 1nclude a content manager 203 and presentation

layers PL1 204 and PLZ 205. There 1is preferably one presentation
layer for each user 1nteraction device. Thus presentation layer
PL1 204 1s assoclated with user interface display 104 and
switches 105b-105h (or the touch screen display mentioned above)
1n the exemplary embodiment, while presentation layer PL2 205 is
assoclated with some other user interaction device not shown in
the exemplary embodiment (e.g., a 7-segment display and/or
additional buttons). In embodiments with more than two user
interaction devices, additional presentation layers would be
provided for each such user interaction device.

[0025] The remaining components 202 for system 100 are

logically grouped by process, and may include the same hardware

N

device 1n different components. These are the “rest of the

system” components, or the system components other than the user

interface subsystem. Thus, for example, the product delivery
system (PDS) component 206 1ncludes the VMC 106 and dispensing
system 108, while the monetary (MON) component 207 alsco includes
the VMC 106, and 1includes the payment system 107 as well.
Another component 208 might also include the VMC 106, together
wlith one or more other hardware devices. For 1nstance, a
“"Cabinet” component might be included, encompassing the product
delivery sensing system at the delivery station 102. Components
in the Y“rest of the system” group 202 may wvary, because a
particular embodiment may have the components shown or gquite

F

another set of components, to fulfill the particular system’s

pPUrposes.
[0026] All communication between the logically grouped

components 1s made wvia a dispatcher 201, the system—-wide

10

15

20

2D

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

10

F

messaglng engine. If a component wants to send data and/or an

event notification to one or more other component(s), the

data/event notification is sent in the form of a message to the

dispatcher 209, which forwards that message to all components
previously subscribed to such a message.

[(0027] The content manager component 203 is the root of the

user 1nterface the architecture 200 depicted, providing a data
path connection between the presentation laver(s) 204 and 205 and
the remainder of the system 100. The content manager 203 knows

the language of system messages, interprets incoming data, and

puilds the content for one or more presentation laver
component (s) to display according to the data received from the

remainder of the system in the “forward” data path depicted in

FIGURE Z2A (the path of event or message propagation from the
remailnder of the system to the display 104). Different
activities 1n the system will result in changes to the user
interface content, with an event triggering the change of the
content propagating from some subsystem as a message via the
dispatcher 209 to the content manager 203, and the content
manager 203 determining what needs to be done with the user
interface display content in a response to that event. For
example, when a product 1s prepared and ready, the product
delivery subsystem 206 (or, alternatively, the “Cabinet”
component described above) sends a “Dispensed” message to the
content manager Z203. The content manager then determines (as
described below) what media to display in order to show the user

that the product 1s ready, prompting the user to remove the

product from the delivery port 102.
[0028] When a user makes some input to a user interaction
device, the content manager 203 receives and processes a message

F

from a presentation layer component and, 1f needed, sends the

proper message to the remainder of the system via the “backward”

data path depicted in FIGURE 2B (the path of data propagation

10

15

20

295

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

11

from the user-input to the “rest of the system”). The customer
plays an active role 1n the vending machine operation, such that
when a customer selects an avallable product (by pressing a
key/button, switch or a portion of a touch-screen), the

presentation layer will send a “backward” message to the content

manager with the information identifying the action needed in the

response to the button pressed. Then the content manager will

process the message received and send a message to the remainder

of the system wilith the infermation about the user’s selection,

and/or change 1ts internal state to reflect the user’s input.

P
p—

The content manager serves as an effective firewall, preventing

presentation layers from sending unexpected messages directly to

F

the remainder of the system. The limited set of allowed messages

and the rules of their composition are defined by the system

developer and placed 1n the System Communicater Ceonfiguration

'ile, a configuration file controlling the System Communicator

component of the Content Manager, described 1in further detail
below.

[0029] Each presentation layer is a media rendering engine and

user 1nput acceptor for the specific user interaction device(s).

In the exemplary embodiment, the presentation layer 204 for the

P
p—

fective

user 1lnterface 103 1s Adobe Flash Player, which is an e:

user 1nterface engine for many devices that handles vector
graphics, animation and video streams and supports scripting
(ActionScript) and supports user input screen objects. Another
example of a possible presentation laver for the ATLAS

-

Architecture 1s a web browser (e.g. Mozilla Firefox, Microsoft

nternet Explorer or Apple Safari), which provide a similar set

of content rendering and user interaction functionality.
[0030] Thus, each presentation layer has two majior functions:

rendering content and accepting user input. Content rendering

starts by receiving a “content pack” from the content manager.

Acceptance of user 1nput occurs when a user presses a key or

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

12

makes some another user input device interaction, and results in
a “backward” message sent back from a presentation laver to the
content manager. A presentation layver 1s usually implemented as
engine and adaptor pair, where the engine is a ready-to-use
application (e.g. Flash Player), and the adaptor is a special
application allowing a presentation layer engine to communicate
via the Dispatcher messaging. Bowever, presentation layer may be
implemented as a single application by jeoining both adaptor and
engine functionality within a single executable.

[0031] FIGURE 3 1s a more detailed block diagram of a content

o

manager within the architecture of FIGURES 2A and 2B, showing the

internal components, internal communication paths, and the manner

P

1in which the content manager 203 communicates to the rest of the

system. When the system 100 (by some of the components) wants to

change or update the content on any portion of the user interface

display 104, a message is sent to the content manager 203 (on a

forward data path 1s flowing left-to-right in FIGURE 3). The

content manager 203 receives incoming messages from dispatcher

209 from the remainder of the system by a configurable
communlcation component, the system communicator 301. The system
communicator 301 parses receilved messages and then sends data
and/or event notifications to a model cache 302, the component
responsible for tracking the state of the system 100 and
notifying other content manager components of state changes. A
state machine component 303 controls the state of the user
interface (e.qg. idle state, product selection, product

preparation, thank-you screen, etc.). A mapper 304 performs

event and data mapping from the system’s state Co the content
displayed on the user interface display. A product list service
305, which 1s a vending machine-specific component of the content
manager 203, maintains the product cataleg, a set of products
that the wvending machine has available for sale, with proper text

and media and arranged into selection screens for a user. System

10

15

20

295

30

CA 02786991 2012-07-12

WO 2011/088131 PCT/US2011/021006

13

communicator 301 also provides access to the presentation lavers
(on a reverse data path 1s flowing right-to-left in FIGURE 3),
which render the content 1intc display devices and receive the

user’s 1nput as described above.

When user 1input appears, the

system communicator 301 receives a “backward” message

from the
respective presentatlion laver and places the received data into

the model cache 302,

which then notifies the rest of the content

manager components of the data

reception. affected

Anvy

components process that data and update

the user 1nterface
display content and/or send a message to the remainder of the

system 100.
[0032]

Briefly stated, the model cache 302 is a mirror of the

current system state, and represents the Model i1n the Model View

Controller (MVC)

standard pattern for user interface development,

which constitutes all the data representing the system with which

a user 1nteracts. Since the Model is not directly available in

the architecture 200,

the model state 1s “cached.”

System 100

communicates with the content manager 203 by messages, with every

or both.

message carrylng an event or a data update, To be able

£ill

to supply every needed data to

a user i1nterface screen, the

content manager stores the last wvalue for each information field

obtalined

from the system, “caches” those wvalues within the

1.e.,

o
—

model cache. The model cache 302 is implemented as storage of

named data entries (“variables”) each having a name and wvalue,

which are both text strings (preferably Unicode text strings so

that the system 1s 1nternationalization and localization ready).

When a value of some data from the model cache 1s needed (such

as credit value of current vend state) that wvalue is requested by

varlable name

(which serves as

a “key”, An example o©of model

cache content 1s provided in TA

BLE I below:

' Variable Name

Variable Value

“Tdle”

\\$3.50ﬂ'

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

14

language “ENT

T TN T AT TN T ARMALL L A A I AR T I T N T T T I T I T IR TTERTTEN
T T T I I T ETTIrYT ArY LLL BN L amllllas an mans s mmn am T T T TR ——-_—

TABLE

Model cache variable wvalues are used to store textual data and
numeric data (in textual form), and may further be used to store
any data format, 1ncluding XML (which is used to carry complex
data). Even bilnary data may be stored in a model cache wvariable
(1f needed) using BEX or any other binary-to-text encoding. As a
general purpose varlable storage, the model cache 302 is also
used to store transit data inside content manager 203, such as
user input messages and the state machine current data. The
model cache 302 1s sultable to store large amounts of data,
limited only by available system memory, although non-economic

-

use of storage space may compromlse system performance.

[0033] Another significant model cache function is notification.

Many content manager components want to know 1f the model cache
data 1s changed. TIor example, user interface display content may
pe updated when an established credit changes. The model cache
302 thus 1ssues notifications for all the interested components
for every variable update, so that the model cache not only
tracks the state of the system but alsc propagates events of

updates, which are primary drivers of the user interface screen

update. Note that update notification is issued for every update

case, 1ncluding update cases where the update carries the same
value as already stored in the wvariable wvalue such that the
actual wvariable wvalue will not change. This propagates clear
events without any data change, and, wvice versa, to not miss the
event of update even 1f data was not changed.

[0034] A content developer use model cache wvariables by

referencing the variables in the content manifest file 306, as

data sources for user interface filling and, most importantly, as

-

triggers of a screen redraw/update. The mechanisms of wvariable

use 1n the manifest file (not shown in FIGURE 3) are described

10

15

20

CA 02786991 2012-07-12

WO 2011/088131 PCT/US2011/021006
15
below. Model cache wvarilables are divided into several
categories, by “owner” - a component of content manager 203 that

sets vwvalues o©of these wvariables.

content manager owned vwvariables,

Variable categories are:

system varlables, |user

variables, and 1internal wvariables. The content manager’s

variables are system independent

and not affected by any

configuration file and are listed in TABLE below:
Variable Name Description
state | The current state of the state machine.

. This variable is the primary driver of

the user screen content change and is in

constant use by manifest rules.

StateMachine.action An incomiH§ event for the state machine.

state machine.

---- MAmIILL

Thls wvarlable 1s for transit data path

from i1ncoming system messages to the

A content developer

should not use this wvariable directly,
because 1t i1s the mission of the state
machine to handle incoming events;

however such ability exists.

......
------------ -

TABLE IT

[0035] System variables are variables representing the system

state; their handling is the primary

o

function of the model cache

302. Every system variable receives a particular property of the

system with an 1ncoming update-notification message from the

system. Examples of system wvariables may be a credit wvalue, a

progress percentage of a product preparation, a temperature of a

product, and so on. System wvarlables are system-dependent,

representing the data being received from the system according to

F

a message dictlonary - a system—specific set of messages. System

variable names are defined by system communicator configuration

file 306, a confiquration file commanding the content manager 203

10

15

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

16

on how to 1lnterpret messages from the remainder of the system.

P

Different embodiments of the architecture 200 machines may have

different sets of system variables, so a content developer should

-

ask the system developer for a list of current system variables

and thelr meanilng. System variables used 1n the exemplary
vending machline embcdiment are listed in TABLE below:

' Variable Name Description
credit Current credit (escrow), or the amount of

money entered by user 1ntco the machine.

DispensePercent A percentagghof product preparation
progress.
DispenseTIme The réﬁéining time until product

preparation 1s complete.

-

COStT Cost of a particular produéf_;giected.

This 1s requested by the Product Catalog

Service component from the system.

total | Total cost of all product (s) selected.
Jagods A Boolean value of the Jug operation
| mode..
TABLE I1]

For any particular application, two files defining system—-to-
content—-manager communication may need to be analyzed to obtain
names and meanings o©f the system wvariables: the message
dictionary file (not shown in FIGURE 3), which is the list of all

the messages going through a particular system, and the system

communicator configuration file 306, which defines what messaqges

o

are accepted by the content manager and which fields of these

accepted messages are used 1n what way (usually the fields are

placed in model cache wvariables). These two files are used by
the system communicator component 301 of the content manager 203

and are described 1in further detail below.

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

17

[00306] User varlables are variables used by content developer

in the manifest file. The manifest file 1s specified at the

F

start of the content manager 203 by the “-m” command line

argument. A content developer 1s free to introduce user
varlables within the manifest file, and to set and use their
values. User wvarlables may have any possible names that do not
conflict with other model cache wvariable names. A typical

P

example 1s the Ylanguage” variable, which stands for the

o
—

currently selected user i1nterface language and may have values o:

“EN" (English), “FR” (French), “RU” (Russian), etc. Since a
content developer has direct write access to the model cache 302
via the manifest file, avoidance cof model cache wvariable name
collision 1s important. Mistakenly writing intec an already used
model cache variable will have unpredictable results because
components of the content manager use model cache variables and

assume they have correct values and correct moments of update.

System files (such as the message dictionary, the system
communicator confiliguration file 306, the state machine
configuration file, etc.) may not be accessible to content
developer.

[0037] The state machine 303 controls the user interface state

and 1s, conceptually, a set of states, a current state, and a set
of rules defining state-to-state transitions in a response to

input signals. State machine implementation within the content

manager 203 serves 1s asynchronous, event-driven, fully

configurable via a configuration file (which defines all states

and allowed -—- possibly conditional -- transitions between
states). The state machine output 1s 1ts pure state, taking

input from the model cache component 302 of the content manager

203 for both 1ncoming events and data used to compute state

transition conditions.

[0038] FIGUR.

L]

4A depilicts a state diagram for a simplified

implementation of the state machine in FIGURE 2. After a vending

10

15

20

2D

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

18

machine 1s started, 1t goes 1nto an “Idle” state until a customer
starts an i1nteracticn with the machine, at which time the machine
goes 1ntec Y“Product Selection” state. Once the customer has
selected and paid for a product, the machine transitions into a
“"Product Preparation” state until a “Product is Ready” state 1is

reached, at which time the machine prompts the user to take the

product. After the product 1s removed, the machine displays

“Thank You” for a moment, and then returns into the “Idle”™ state.

Thus, the state machine illustrated by FIGURE 4A has states
“Idle”, “Product Selection”, “Product Preparation”, “Product is
Ready” and “Thank You”™, and a set of well defined rules of state-
to—-state transition by certain events, provided certain
conditions are met as shown on the transition’s arrow.

[0039] State machine implementation within the content manager

203 works according to state machine rules represented machine-

readable form and placed in an XML configuration file: the state

machine configuration file (not shown in FIGURES 2 and 3). The

syntax of the state machine configuration file represents the

same states, transitions and rules as a state diagram, but in
textual form, with every state defined as an XML element,
containing nested elements for every state-to-state transition,
ocpticnally equipped with conditions required for transition to
cccur. Thus the content may submit an original or update state

machine to a system developer 1n direct XML form. The XML syntax

cf the state machine 1llustrated by FIGURE 4A follows:
<?xml version="1.0" encoding="utf-8"?>
<StateMachineRules 1nitalState="Idle">

<state name="Idle">

<transition event="user action" targetstate="Product

Selection" />

</state>

<state name="Product Selection">»

<transltlion event="product is selected"

10

15

20

2

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

19

targetstate="Product Preparation">
<condition money="enough"/>
</transition>
</state>
<state name="Product Preparation">
<transition event="preparation complete"
targetstate="Product Is Ready"/>
</state>
<state name="Product Is Ready">
<transition event="product removed" targetstate="Thank
You"/>
</sta£e>
<state name="Thank You'>
<transition timeout="10" targetstate="Idle"/>
</state>

</StateMachineRules>

<?xml ...> 18 a standard XML file header 1in 8-bit UCS

Transformation Format (UTF-8) UNICODE file encoding, necessary

for internationalization and locallzation reasons and

particularly to write a text in different languages.

<StateMachineRules ..> is the root element of the state machine

P

XML configuration file, with the “initalState” attribute of the

root element sets the state machine 1nitial state to “Idle”; the

<state ..> element defines the rules for a particular state of the

state machine, a state named “Idle” in this case; child elements

-

of the <state> element define possible transitions from this

state; the <transition ..> element denotes a possible transition

from the current state to a target state defined. by attribute
“targetstate”, where the transition takes place when an event

defined by Yevent” attribute is occurred; the <condition ..>

element sets a condition which must be met for transition to

occur, with the money="enocugh" attribute means that the model

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

20

varliable money should have the wvalue of "enough" for that
transition to occur. Along with external incoming events,
another source of the state machine transiticons is timeout,

generated by the state machine engine when the State Machine has

been in a specified state for a specified amount of time. When

-
p—

the state machine persists in a state with the timeout set for

F

the specified periocd of time, the timeocut rule is activated and

the state machline executes the transition specified by this rule

(1f any conditions specified for this transition are present and

met) .

[0040] FIGURE 4B deplcts a state diagram for a realistic

implementation of the state machine in FIGURE 2. The XML syntax

of the state machine illustrated by FIGURE 4B follows:

<?xml version="1.0" encoding="UTF-8"7?2>

<StateMachineRules 1nitalState="SystemBoot">

<state name="SystemBoot">

<transition event="S5YS.BootProgress"

targetstate="SystemBoot" />

<transition event="Configuration.ProductCatalogue"

targetstate="Idle" />

—

<transitlion event="Vend.FatalError"
targetstate="0OutOfService" />
</state>
<state name="Idle">
<transition event="Money.Credit"
targetstate="ProductSelection">
<condition mcname="credit" wvalue=""[1-G][0-9]*"
do="regexp"/>
</transition>
<transition event="UI.ScreenTap"
targetstate="ProductSelection"/>
<transition event="Configuration.ProductCatalogue"

targetstate="Idle"/>

10

15

20

25

30

CA 02786991 2012-07-12

WO 2011/088131 PCT/US2011/021006

21

<transition event="Vend.FatalError"
targetstate="0utOfService” />
</state>
<state name="ProductSelection”>
<transition event="Configuration.ProductCatalogue”

targetstate="PriceChanged” />

<transition event="UI.DispenseBasket™”
targetstate="PrcoductDispense”>
<condition mcname="total"” value=""[1-9] [0-9]*"
do="regexp”" />
</transition>
<transition event="Vend.Cancel”
targetstate="ThankYou">
<condition mcname="credit" wvalue=""[1-9][0-8]*"
do="regexp" />
</transition>
<transiticn event="Vend.Cancel"
targetstate="ThankYou">
<condition mcname="total"” value=""[1-9] [0-0]*"
do="regexp"/>
</transition>

<transiticon event="Vend.AddToRasketFail"

targetstate="ProductNotValidated" />

<transition timeout="120" targetstate="Idle">
<condition mcname="credit"” wvalue="0"/>
</transition>

<transition event="Vend.FatalError"”

targetstate="0OutOfService"/>
<transltiocon event="Vend.NonFatalError"
targetstate="NonFatalError"/>
</state>
<state name="ProductNotValidated">

<transition timeout="10"

10

15

20

25

30

CA 02786991 2012-07-12

WO 2011/088131 PCT/US2011/021006

22

targetstate="ProductSelection"/>
</state>
<state name="ProductDispense’>
<transiticn event="Vend.DispenceStart”
targetstate="ProductDispensing”/>
<transition event="Vend.VendComplete”
targetstate="ThankYou"/>

<transiticn event="Vend.FatalError"

targetstate="0utOfService”" />
<transition event="Vend.NonFatalError"
targetstate="NonFatalError" />
</state>
<state name="ProductDispensing”>
<transitilion event="Vend.DispenseProgress"”
targetstate="ProductDispensing” />
<transiticn event="Vend.Dispensed"”

targetstate="ProductReady" />

<transiticn event="Vend.FatalError"

targetstate="0utOfService" />
<transition event="Vend.NonFatalError"
targetstate="NonFatalError"/>
</state>
<state name="ProductReady">
<transilition event="Vend.ProductRemoved"”
targetstate="ProductDispense™/>
<transiticn event="Vend.FatalError"
targetstate="0ut0fService" />
</state>
<state name="ThankYcu">
<transition timecut="10"
targetstate="ProductSelecticn"/>
<transition event="UI.ScreenTap"”

targetstate="ProductSelection™/>

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

23

<transition event="Monev.Credit"
targetstate="ProductSelection">
<conditiocn mcname="credit” value="0" do="noteq"/>

</transitiocn>

<transition event="Vend.FatalError™

targetstate="0OutQfService”" />

</state>

<state name="OutOfService™>

<transition event="SYS.BootProgress”

targetstate="SystemBooct" />

</state>

<state name="NonkatalError">
<transition timeout="10"
targetstate="ProductSelection”/>
</state>
<state name="PriceChanged">
<transiticn timeout="10"
targetstate="ProductSelection"/>
<transiticon event="Mcney.Credit”
targetstate="ProcductSelection"/>
</state>
<transition event="Vend.FatalError"
targetstate="0utOfService” />

</StateMachineRules>

[0041] Mapper 304 1s the content manager component performing
two mapplng operations, event mapping and data mapping, from the
system to the user, both controlled by a content developer by

rules defined i1n the content manifest file. Mapping operations

performed by mapper 304 route informaticn from the syvstem to the

AL

Event mapping” carries the transfer

user 1nterface display 104.

F

of events or of the moment of data change, and the “data mapping”

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

24

performs the data transfer. In other words, the mapper 304 is

the event and data flow processor controlled by manifest file.

[0042] Mapping 13 the process of conversicn of system—driven

data 1ntc a user acceptable form. The mapper 304 is responsible

—

for “decoration” of the raw data coming from the system. The

data coming from the system contains raw data fields such as a

credlt value, a process progress percentage, or a temperature,

but the i1nformation going from the system misses user interface
centent data, such as 1mages, sounds, animations, videco, and

localized text. The system sends events and data updates in a

machine—specific form, as messages containing a name of the
event, such as “VendComplete” or “DispensingStarted”, or a data
update, 1n a form of messages, like “Temperature” with data
payload of "98", meaning that a product temperature is currently
88°C. The task of the mapper 304 is to convert these data into a
form of presentation layer directives, which allow a presentation
layer to display the data 1in the user-readable, proﬁerly
visualised, internaticnalized and localized format, and

conforming to the user interface artistic design concept. The

task of the user Interface subsystem 201 of the architecture 200

1s to convert raw data from the system into user—-acceptable and
user—convenient (user—entertaining) form. Such “decoration” is
done mostly by mapper component 304, directed by the manifest
file provided by a content creator.

(004 3] There are three tvpes of manifest directives: content
manager directives (CM directives), data mapping directives, and
presentation layer directives (PL directives). Content manager
directives are executed solely by the content manager. Data
mapplng directives are pre-processed by the content manager 203
and then are executed by presentation layer. Presentation laver
directives are transferred to the presentation layer unchanged,

and are executed by presentation lavyer(s).

10

15

20

295

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

25

[0044] When the state of the system 100 changes, the system

notifies the content manager 203 that an event cccurred or of its

state data change by a message sent via the dispatcher 209. By
reception of such an update, the received event and/or updated

data 1s reflected 1n the model cache 302, and the model cache 302

F

in turn notifies the mapper 304 of the system's state change

(update). Mapper 304 starts 1ts event mapping operations in the

response to the signal received from the model cache 302.

[(0045] The result of the mapplng prcocess 15 the user interface
display content belng sent tc a presentation laver’s root module
in a form acceptable by the presentation laver. Thus the result

-

of the mapping proccess, and the output of the mapper 304, is a

presentation layer transaction, which 1s XML data containing the
exact directives for the presentation laver of what
media/application to load/unload at which target/layer and what
data to send to each medla/application on 1ts target path. A
presentation layer transaction 1s generated by mapper 304 for
every 1ndividual event mappiling coperation, and contains the same
content as a rule action but with data mapping directives
substituted by the actual data.

[0046] Content developers control the mapper 304 cperaticn by
means of the manifest file, by defining event mapping rules and
data mappling directives therein. The content developer also
specifies presentation layer directives inside rule actions, but
these directives command presentation layer(s) 204, 205, not the
content manager 203.

(0047] The manifest file 1s an XML file that defines user

interface coperations 1in the response to system events and data

updates. The manifest file defines event mapping rules and data
mapplng directives processed by the content manager itself, and
presentation layer directives executed by the presentation
laver’s root module. The syntax of the manifest file is divided

by two parts: a content manager driven syntax of rules and data

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

26

mapping directives, and a presentation lavyer driven syntax of
presentation layer directives dependent on the particular
presentation layer 1mplementation. The manifest file serves as a

F

root of a content package, a package of files forming the custom

user 1nterface design for a system according to the present

disclosure.

(0048] Every manifest rule has an associated condition that,

when met, results 1n the rule becoming “active” and vice versa,

—

(1.e., 1f, after some data update, a rule conditiocon becomes

false, the rule goces 1intc an “inactive” state). When a rule

becomes active, the mapper 304 executes the entry action for the

rule, and when the rule becomes i1nactive, the mapper 304 executes

the exit acticn feor the rule.

[0049] After receiving an update notification, the mapper 304

1mmediately searches the manlfest for the rules matching the

recelived update. If matching rules are found, the mapper 304

takes actions defined by these rules, composing a presentation

-

layer transactlon 1ncluding a set of data for one or more

presentation layer(s) to display on the user screen. The event

mapping mechanism 135 the primary driver of the user interface

display content filling, change and refresh. Everv update to the

user 1nterface display 1s a result of the event mapping process,

and the user 1nterface display 15 updated when and only when the

manlifest specifies a rule for such an event. Conversely, when

the fact of a data change must be displayed on the user interface
display, a rule for this event must be introduced intc the
manifest that defines the content to place on the displav in
order tc reflect the update.

[0050] Data mapping takes place when an entry or exit action
of a manifest rule 13 executed. When a particular system data
update changes a particular manifest rule’s activity state, the
mapper 304 executes the entry or exit action defined by this

rule. A rule action contains a set of presentation laver

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

27

directives mixed with “data mapping” directives which command the
mapper 304 to 1nsert the current system data from the model cache
302 1into the content being composed.

[0051] The product catalcg 1s the set of data related to the
current load of products within a vending machine and their place
in the user interface. The product catalog is separate from the

manlifest file to allow a vending machine operator to alter the

machine locad whlile keeplng the user interface design stable and
unchanged, to exclude cost and challenges related to user
interface design customization per every machine set of products

change. The product catalog contains data for each product,

representing a product 1dentificaticn, a product name (for each

language 1n which the user interface operates), product

descriptive text (for each language), product images, the product

price and product options, with their identifiers, images, text

and pricing. In addition, the product catalog specifies the

-

place of each of the products in the catalog (page and position

on page) as part of the catalcocg corganization and pagination. The
product catalog contains an entry for each product being loaded
into the vending machine, which 1ncludes the product name and
descriptive/promotional text (in all supported languages),
product 1mages per each display mode (active/inactive,
small/medium/large, static/animated), and also implementation-—

speclific fields. The product catalog also contains the product

arrangement per selection page, and asscociates an option

selection screen for each of products where option selecticon is

regulred.

[0052] The product list service 305 is a functional block of

the content manager 203 processing the product catalecg by
composing required content to display product selection screens,
allowing a customer to navigate the catalog to select products

and choose 1ndividual product options, and so on. The product

list service 305 1s vending machine specific functicnality within

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

28

the content manager. Applications other than a vending machine
may not use the product list service component 305 at all, or may
employ the product catalcg and product list service for other
purpeoses such as malntaining a list of user selectable items
crganlzed 1into a multi-page catalcocg. The state of the product

catalog changes during a machine operation under the control of

the product delivery service (PDS) component 206 of the
architecture 200. The PDS 206 contrels product availability and
pricing and other aspects of the product cataleg, while the
content manager’s duty 1s product catalog “decoration” - that is,
assoclation of media and localized text to each individual
product/option, association of a product page to the page

templates and so on.

[0053] The current product catalcg data is sent by the PDS

compenent 206 to the content manager 203 in a short form, missing

user—interface context such as media files, internaticnalized
text fields and the like. The product list service performs the
task of “decoration” of the product catalcg by associating the

product data with the media to display on the user screen.

Another function of the product list service is maintaining a

“pagination” of the product catalogue, the partitioning of the

F

entire catalog into individual pages and maintenance of user

—

navigation through the seguence of pages. Decoration of the

product catalog starts with every product catalog update received

from the PDS compcnent 206, In this process, the product list

service builds a dynamic part of the manifest file and submits

that data to the mapper component 304 to process. The dynamic

—

part of the manifest file 1is responsible for product catalog

operation and is built by the product list Ssrvice component
using “templates” declared 1in the product list service

configuration file.

(0054] The system communicator 301 is the content manager

component that faciltates all the communication with the rest of

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

29

the system. The system communicator 301 knows the format of the

system messadges flowing through the dispatcher 209, interprets

and processes those messages by using a system message definition

file (Message Dictionary XML file) and its own configuration file

(system communicator configuration file 306). The system

communicator 301 1s contreolled by the system communicator

configuration file 306, which 1s system—dependent and is provided

by the system developer. This configuraticon file lists all

messages that the content manager 203 must process, together with

what data should be extracted from each message and where the
message should be routed inside the content manager 203. The
system communicator configuraticn file 306 also lists all allowed
outgoiling messages and rules of their composition.

[0055] The main document controlling the system’ s

communication 1s the message dictionary, an XML document defining

every message’s structure and data lcocad. The system communicator

configuration file 306 1s dependent on the message dictionary

since 1t refers to message names and data fields listed in the

message dictionary file. Every accepted incoming message updates

the model cache component 302 of the content manager 203, filling

appropriate variable(s) with updated data or, if the only

message’s sense 1s an event, filling a special event variable

wlth the proper event name. The model cache 302 in turn notifies

the rest of the content manager components that the update

occurred, resulting in the user interface content being generated
and sent to the user screen. Filling of both message dictiocnary
and system communlcator configuration files is a system developer

F

responsibillity because those files are part of the system logic.

An example of a single message dicticnary XML syntax follows:
<Message EventId="3" Topic="Money’” name="Credit’”>
<Descripticn>
Monetary will publish the current credit amount.

</Description>

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

30

<Publishers>
MON
</Publishers>
<Subscribers>
CM, PDS
</Subscribers>
<Pavload>

—

<Item Description="The value of credit” name=“"Credit”

type=ffintff/>
</Paylcad>

</Message>

[0056] To process the “Credit” message, the system
communicator configuration file 306 will contain the code:
<Messageln name="Credit” mcname="StateMachine.action”
mcvalue=“"Money.Credit’>

<Item name="Credit” mcname="credit”/>

</Payload>

</Messageln>

The system communicator configuration file syntax example shown

above 1llustrates the processing of the “Credit” message by the

content manadger. The <MessagelIn> element defines an incoming

message and all action the system communicator will take upon a

F

recepticn of “Credit” message. The attribute name="Credit”

defines the name of the message; mcname="StateMachine.action”

defines the model Ccche wvariable “StateMachine.acticn” to be set

by reception of this message to the wvalue defined by the

mcvalue="Money.Credlt” attribute. This will give the state

g iy

machine an 1i1nput event of name "Money.Credit"”, because of the

function of the "StateMachiline.acticn™ wvariable. The <Item> child

element of <Messageln> defines the processing of the data load of

the message, where name="Credlt" attribute selects the data field

D

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

31

of the message to process, and the mcname="credit"™ attribute

defines the target model cache variable in which the message data

of the "Credit" data field will be placed. Note that in this

example, the wvalue of credit may be updated after the state

machine received the credit change notification. To assure the

F

correct order of the data update, the system developer should

choose the order of operators 1n the system communicator

configuration file,

[0057] FIGURE 5 1s a high level flow diagram for a process of

employing markup language descriptions for dynamic customer

interface flow for a graphical user interface within a brewed

beverage vendlng machline according to one embodiment of the

present disclosure. The content manifest file defines the user

interface content composition according to the changes in the
system’s state, and thus may be employed in conjunction with
<StateMachineRules>, <state>, <transition> and <condition>

elements to dynamically control flow of the user interface

displays.
[0058] The <StateMachineRules> element is the root element of
the state machine configuration XML file. The mandatory

"lnitalState” attribute defines the initial state name, the name
gf the state which will be loaded at the content manager startup.
The nested elements of the <StateMachineRules> element are
<state> elements, one per each state. An example of XML syntax
for <StateMachineRules> elements follows:

<StateMachineRules 1nitalState="VerifyFlash">

[0059] The <state> element defines an individual state on the

state machine 303, 1ncluding the state name and the list of

possible transitions from this state (where transitions may be

conditiconal). The mandatory “name” attribute defines the state’s

name. The nested <transition> elements define the possible

transitions from thilis state. The <state> element is always a

10

15

20

23

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

32

a—

child of <StateMachineRules> element. An example of XML syntax

for <state> elements follows:

<state name="ProductSelection">

[0060] The <transition>» element defines an individual
transition from a state machine’s state. The <transition>
element 1s always a 1lst level child of a <state> element. A
transition from a state machine state may be caused by incoming
state machine event or a timeout. Every transition may be caused
by only one reason. A transition may be conditional if contains
nested <condition> element(s). Transition will not occur if all
of 1ts conditions are not met. The “event” attribute defines the

incomlng event name that triggers this transition. The “timeout”

attribute sets the timeout value for this state in milliseconds:

the transition will occur when this time is expired. Multiple
timeout transitions may be specified for a single state. One
transition must have one and only one of the “event” and

“timeout” attributes, they are mutually exclusive for a single

transition. The mandatory “targetstate” attribute defines the

name of the target state for this transition. An example of XML

syntax for <transition> elements follows:

<transiticon event="Vend.Cancel" targetstate="ThankYou">

[0061] The <condition> element defines a single condition for
a state machine’s transition. The parent element should be
<transition> element defining the transition to which this

condltlion pbelongs. All conditions must be met for a transition

to occur; 1n other words, 1f a transition has multiple

conditions, those conditions are logically ANDed, and if a

logical OR between conditions is desired, multiple transitions

should be speclified for the ORed conditions. The mandatory
attribute “mcname” specifies the model-cache variable name which

value will be compared to the desired value specified by “value”

attribute. The mandatory attribute “value” specifies the desired

F

value to which the wvalue o

the model-cache variable specified by

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

33

"mcname” attribute will be compared. The optional attribute “do”

defines a name of a speclal operation to perform to check this

condition, for example regular expression matching if do="regexp”

or not-equal condition if do="noteqg”. Examples of XML syntax for
<condltion> elements follows:
<condition mcname="PowerSave" wvalue="1"/>

<condition mcname="total" wvalue=""[1-9][0-9]1*" do="regexp"/>

The <condition> element is particularly useful in providing a

dynamlic user i1nterface flow. Thus, for example, a customer may

F

order elther caffeinated or decaffeinated caffé latte, made with

nonfat milk, skim milk or whole milk. Obviously, fewer options

would be avallable (or required) when ordering an espresso.

Thus, the customer’s beverage selection necessitates a different

flow of the customer 1nteraction to make all requisite selections
for a caffe latte than would be required for a customer ordering
an espresso. Thus, the <condition> element might include an

mcname attribute of “Product” and value attribute of

"DECAFFE CAFE LATTE" 1n specifying a particular transition from
one ordering state to the next, while a separate transition

element would specify a different state transition for ordering

an espresso.

[0062] The process 500 of employing markup language

descriptions for dynamic customer interface flow depicted in

FIGURE 5 begins with an event occurring. A determination is made

by the mapper 304 of whether the event triggers a state

transition (step 501). I so, any <condition> specified by

<transition> 1s checked for satisfaction (step 503). Based on
whether the <condition> 1s satisfied, the content identified by
the respective <transition> element 1s selected to be processed
by mapper 304 and rendered by the presentation layer for display
(step 504).

10

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

34

F

[0063] The present disclosure enables dynamic customization of

flow for the content to be displayed in the customer interface
wlthin a vending machine using XML content definition based on
<condltion> speclfied 1n the <transition>» element. User
interface flows are thus dynamically generated, and may be
updated to accommodate new products or other changes in the
cfferings.

[0064] Although the present disclosure has been described with

exemplary embodiments, wvarious changes and modifications may be

suggested to one skilled in the art. It is intended that the
present disclosure encompass such changes and modifications as

fall within the scope of the appended claims.

10

15

20

25

30

CA 02786991 2012-07-12

WO 2011/088131 PCT/US2011/021006

39

AMENDED CLAIMS
received by the International Bureau on 12 may 2011 (12.05.2011)

1. A system dynamically setting user interface flow for
display on a vending machine customer interface, comprising:

a display 103 configured to display content to a customer;

one or more memories 112 configured to store a value for two
or more eXtensible Markup Language (XML) transition variables
specifying transitions from first user interface content to
either of second or third user interface content, at least one of
the transition wvariables specifying a condition relating to a
customer selection; and

a controller 106 configured to generate updates for display
content, the controller selecting one of the second or third user
interface content based on whether the condition is satisfied,

wherein, responsive to the controller selecting one of the
second or third user interface content, the display renders
display content dynamically selected from the second and third
user interface content based on a value for the at least one XML

transition variable.

2. The system of claim 1, wherein the value of the two or
more XML transition variables are each associated with an XML
state variable to which the first user interface content

corresponds.

3. The system of claim 2, wherein a customer selection

determines whether the condition is satigfied.

4 . The system of claim 1, wherein the memory is configured
to store the value of the XML transition variables in a model

cache.

5. The system of c¢laim 4, wherein the controller 1is

configured to execute a content manager generating XML data for

AMENDED SHEET (ARTICLE 19)

CA 02786991 2012-07-12

WO 2011/088131 10 PCT/US2011/021006

the display content, the content manager looking up values for
XML variables referenced by the condition within the model cache.

6. The system of claim 5, whereiln the content manager

5 includes the model cache and a mapper mapping XML data to

presentation layer data rendered to generate the display content.

7. The system of claim 5, wherein the content manager
includes a configuration file 1dentifying one or more XML

10 wvariables corresponding to the condition.

8. The system of claim 5, wherein the content manager
includes a state machine controlling a state of the content

manager and transitions between states by the content manager.

15
9. A vending machine including the system of claim 1, the
vending machine further comprising:
a cabinet housing the display, the memory and the
controller; and
20 a product delivery system configured to deliver products in

response to signals generated by the controller based upon a

customer’s selections within the customer interface.

10. The vending machine of claim 9, wherein the vending

25 machine is configured to delivery brewed beverages.

AMENDED SHEET (ARTICLE 19)

10

15

20

25

30

CA 02786991 2012-07-12
WO 2011/088131 1 PCT/US2011/021006

11. A method of dynamically setting user interface flow for
display on a vending machine customer interface, comprising:

displaying content to a customer;

storing a value for two or more eXtensible Markup Language
(XML) transition variables specifying transitions from first user
interface content to either of second or third user interface
content, at least one of the transition variables specifying a
condition relating to a customer selection;

generating updates for display content by selecting one of
the second or third user interface content based on whether the
condition 1s satisfied; and

rendering the selected one of the second or third user
interface content, dynamically selected based on a value for the

at least one XML transition variable.

12. The method of c¢laim 11, wherein the value of the two or
more XML transition variables are each associated with an XML
state wvariable to which the first user interface content

corresponds.

13. The method of claim 12, wherein a customer selection

determines whether the condition is8 satisfied.

14. The method of claim 11, further comprising storing the

value of the XML transition wvariables in a model cache.

15. The method of claim 14, further comprising executing a
content manager generating XML data for the display content, the
content manager looking up values for XML variables referenced by

the condition within the model cache.

AMENDED SHEET (ARTICLE 19)

CA 02786991 2012-07-12
WO 2011/088131 42 PCT/US2011/021006

16. The method of claim 15, further comprising mapping XML
data to presentation layer data rendered to generate the display
content.

17. The method of claim 15, providing a configuration file

5 1l1dentifying one or more XML variables corresponding to the

condition.

18. The method of claim 15, wherein the content manager
includes a state machine controlling a state of the content

10 manager and transitions between states by the content manager.

19. A method of claim 11, further comprising:

delivering products in response to signals generated based

upon a customer’s selections within the customer interface.

15

20. The method of claim 19, further comprising delivering

brewed beverages.

AMENDED SHEET (ARTICLE 19)

WO 2011/088131

100

AAAAAAA

CA 02786991 2012-07-12

1/8

P |

.
,L_.........._ ;
o

VAVAVAVAVES,

FIGURE 1

PCT/US2011/021006

WO 2011/088131

105b

1050& %

105e&

105f&
1059&

CA 02786991 2012-07-12

2/8
104
l / -
1043
104b . 104h
:::::::::fj ,IZ.:::::::::
104c | | 104
::::::::1 I_::::::::
104d 11 104]
:::::::::E I:::::::::Z
104 | | 104
_________ J
104

FIGURE 1A

PCT/US2011/021006

CA 02786991 2012-07-12

WO 2011/088131 PCT/US2011/021006
3/8
o
Customer . :
nterface e ___» Dlsplayﬁzntmller :
103 — :
—_ L o o _ |
P t Syst A
ayment System — J |
107 :
| v v
l Heating/ Storage Media
Refrigeration |¢ VMO 112
System <1 ¢ e \
3; i 106 Customer
- = Interface
r=—: - = A Description
Delivery Sensmg | 1133]
System P ——— ‘
5;11 Customer l
- — = r Dlspensmg System l Interface

108 Description
199 l [1130
Product Storage - .
108 , —_—
R Customer
Interface

Description :
FIGURE 1B [_ I

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

4/8

Disbatcher
209

o FIGURE 2A

Dispatcher
208

{____Q____________i__?__"_} {
| Other MON PDS |, |
| 208 207 || 208 |!
| | o
l 202 I

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

5/8

Content Manager
203

State Machine . —
303

Mapper

A S

T
Model Cache
System = P
Communicator 302 System

Communicator
301 =
— 301
| . W/ A
Configuration | — :
I
I
I
I
|
I
I
I

vl

5['3'2 Product List
= I Service < —

305

FIGURE 3

WO 2011/088131

CA 02786991 2012-07-12

product selected

6/8
start s
timeout a User
action
Product
Selection
product
removed

Product
1S
Ready

Product
Preparation

preparation
is complete

FIGURE 4A

money="enough”

PCT/US2011/021006

CA 02786991 2012-07-12

WO 2011/088131 PCT/US2011/021006

718

™y, Cerlizmatinn ProchaiGalaogus

. S:iSB:}ch:mnmﬁ o
IF¥lind —
ﬁﬁ.aw:w
Vend FatalBiy hionay.Clodt, .
v , JI-ECI?M.TM Timeout |eredi -G

VapdFatlEnol

La.Sccm-:':nTaD. '
Tl by 10008

Vend. ratakr op— .
S i
Tisser™ e : ;
onralalEier Yond NanFslalslier User. CkButonPissasd, Uss .Pmdu:tse-chd
Tiomiant
Pmducl}lo{\falldalég " 3

- end SeectionValidats e
U validateds ke s

'.f;:- eﬂbl:rfgl&éﬁﬁ |

M N vand.NonFawiEnol Vznd.SelectionVakdaed
sod FalolEmor e |:-a{?ab;dwhu¢] \I
Prodact’falldaﬁ_;{{.-;:. i
\“—H\{gndﬁamﬁrrul
)
Vord FalaiEno
Yeld DigpensaShi
Vend NenfolalErer BroducDitpensing
Vot EaislEn al Vool Capansed gress
vend PlcdictRemoved Thngout,
~ (r ProduciRondy Usar ScrmenTys,
Koney. Cradil

You id VandZonspl ola

Vendtatalkrice

FIGURE 4B

CA 02786991 2012-07-12
WO 2011/088131 PCT/US2011/021006

8/8

501
y |/

vent tngger statq/
transition? /

yes 502
4

Determine
<condition>

: 503
/

<condition> /
satisfied? /

yes 504

No——p

Select identified

I content

"" —rerrr-rrre——

FIGURE 5

Payment System

107

Heating/
Refrigeration
System
110

System
111

Delivery Sensing :

K
Customer . :
Interface e Dlsplayﬁzntmller :
103 : = .
L I
J A i
7
v V_
Storage Media
VMC B 112
106 ' Customer
Interface
7 Description
113a]
A Customer 1
Dispensing System Interface
108 Description |
113b
FProduct Storage .
108 ,. :
Ccustomer
Interface
Description
FIGURE 1B sn

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - abstract drawing

