	(19) (12)	(KR) (A)		
(51) 。Int. Cl. ⁷ A61K 31/485		(11) (43)	2003-0034171 2003 05 01	
(21) (22)	10-2003-7003330 2003 03 06 2003 03 06			
(86) (86)	PCT/US2002/21396 2002 07 03	(87) (87)	WO 2003/04030 2003 01 16	
(81)	, , , , 가 , , , , 가 , , , , , , , , , ,	- ', ', ', 가 , ', ', ', ', ', ', ', ', ', ', ', ', ',	, , , , , , , , , , , , , , , , , , ,	
	OA OAPI :	, , , , , ,	, ,가, ,	
(30)	60/329,445 20 60/329,432 20	001 07 06 (US) 001 10 15 (US) 001 10 15 (US) 001 10 15 (US)		
(71)	, 19317	100		
(72)	, - 11791	137		
	, 12590	5		
	, 38138	8861		
	, 19807	3209		

(74)(54)12 5 , 6-12 가 가 HCI (1,4-hydroxydihydromorphinone hydrochloride)

(phenanthrene) -(1 Mℓ 1 mg/Me; 1 Me 1.5 mg/Me; 10 Me 1.5 mg/Mℓ) 5 mg HCI 2 mg, 5 mg (IR) HCI mg (hydroxy epimers) 6 가 가 가 가 가 (compliance) 가 . (Ferrel B et al., Effects of controlled release morphine on quality of life fo r cancer pain *Oncol Nur Forum* 4:521-26, 1989).

4-6 가 .

```
가
                                         가
                                                                                                      가
                                      (Thirwell BR et al., Analgesic response to single and multiple doses o
f controlled-release morphine tablets and morphine oral solution in cancer patients. Cancer 63:2294-97, 19
89; Ferrel B et al., Effects of controlled-release morphine on quality of life for cancer pain. Oncol. Nur. For
um 4:521-26, 1989).
  가
           가
                                                            (hepatio)
                     (
                                           10%
                                                                           6-OH
                12
                                                   12
                                                           24
                                                                                   가
        , '6-OH
                                                                                                         6
                              '6-
                                 가
                                                        )
               4-6
                        가
                                                             가
                                                        가
                                                     6-OH
                   30
                                                          80%
                  , pH 1.2
                                          500 Mℓ
                                                                           USA Paddlo
             37
                               6.8
                                                        50 rpm
60
                                      80%
                                              60
                                                           80%
                                                                                            USA Paddlo
                              37
                                   , pH 1.2
                                                6.8
                                                           500 Mℓ
                                                                          50 rpm
                                                                            15%
                                                                                      50%, 4
                                1
                             45%
                                       80%,
                                               10
                                                                                                 80%
                                                                                                        in
vitro
                                                                            in vitro
                                                                                                   : (a)
                                                                 ; (b) 6-OH
                                      1
                                            8
                                                                                           ; (d)
          1
                 8
                                      ; (c)
                                                     8
                                                            24
                                                                                      1.5
                                                                           0.5
                                                                                                         (e)
                                                                                              1.5
                     6-OH
                                                                               가
                                                                                     0.5
                                                                                    FDA
                                                                                                         (
                                                                        FDA
                    )
```

```
가
                              가 (polyhydric)
                                         6-OH
                                                                    1:3
                                                                              3:1
                                  1:8
                                            8:1
         10:1
                    1:10
                                                                                    가
                                                       . 가
  가
       5 mg
                  80 mg
20 mg
                                                                    20
                                                            8
                                                                 3
 가
                                                가
                                            가
                                                                               (parnoic aci
                           6-OH
                                                                        6-OH
                             가
  6-OH
                          6-OH
           6-OH
                1
                     2
                                                                            6-
                                         (VAS)
                                                     (O mm) '
     100 mm
                                                                   (No Pain)'
                            (100 mm) '
                                                (Extreme Pain)'
                                                                     가
                                                    . VAS
                                                                    (None)=0, 가
                      (mm
                                                                                  (Mild)=
                            )
      (Mpderate)=2
                           (Severe)=3
1,
                                                       6-
                                                                            가 가
                                                                            6-
```

- 4 -

```
가
       가
                                                                                                     가
                                                                    가
                                     (shell)
                                                        가
                                       )
                                                               가
                                                                                     가
                                                                    ),
                                                      (PVP)
                                                                                               (HPMC)
                                                HPMC
                               НРМС
                                                               (inert boad) (spheronizing agent)
12
       24
                                                                      6
                                                                               (CMC)
    (HEC),
                                      (HPC), HPMC,
                                                                                                     가
       가
                                      (a)
(a), (b)
                                                             (b)
                                                                            ( )
                              (c)
```

- 5 -

```
; ( )
                   가
                                              (water-wicking property)
                               (> 10 6)
                                             가
                                            1:9
                                                      9:1
                                                                                    1:3
                                                                           가
  3:1
                                                                              1:1
                                                        가
                                                                     1:3
                                                                               3:1
                                                                            20%
                                                                                      80%
                                       ,
가
                   가
                        1:1
가
             рΗ
                                가-
                                                                       가
                                                                                   가
                                                 가
                                                                               가
                                                                                       가
                                                                                  ,
가
                                                            가
                                    가
                                                      1%
                                                                20%
                0.5
                          16%
      10%
                99%,
                                                        1%
                                                                 20%,
                0%
                          20%
  10%
             75%,
                                                    2%
                                                             15%,
            30%
                       75%
                                                    5%
                                                             10%,
  30%
             75%,
```

80%

```
15%
                     65%
                      (
                                                                )
가
                                                      가
%
        20%
                                                                 FMC
가
          가
                                                   (PA,
                                                                              가
                                      (PA,
         )가
RL
                                                         가
                                                                      , 1:20 1:40)
     RS
                                                    가
                  (NJ,
4
                                                        )가
            가
                                                                 가
                                                                         - 가
  1
     6-
                                          PID
  2
                                 PID
  3
     6-
  4
  5
             1
  6
             2
  7
             3
  8
                           6-
             3
  9
  10
      1>
   3
                                                                              (chopper)
     가
                                                 가
                                                       , 3
                     LOD (loss on drying)가
           10%
                                                                 2-
```

- 7 -

[1]

	1 (%)	2 (%)	
, FCC	25.0	30.0	
, NF	23.0	30.0	
, USP	35.0	40.0	
, NF	10.0	0.0	
, NF	5.0	0.0	
, SD3A() ¹	(10) 1	(20.0) 1	
	100.0	100.0	
1			

1 1

.

[2]

(mg)						
HCI, USP (mg)		5	10	20	40	80
		160	160	160	160	160
	, NF	20	20	20	20	20
	, NF	2	2	2	2	2
		187	1.92	202	222	262
Opadry ()		7.48	7.68	8.08	8.88	10.48
Opadry ()		0.94	0.96	1.01	1.11	1.31

< 2 3>

20 mg 2 1 .1

[3]

	. ",		
	2 (mg)	3 (mg)	4 (mg)
HCI, USP	20	20	20
	360	160	160
, NF	20	20	20
, NF	4	2	2
	404	202	202
()	12	12	9

2, 3 4 USP (Procedure Drug Release) USP 23 in vitro 6-

[4]				
(hr)	2	3 ()	4	
0.5	18.8	21.3	20.1	
1	27.8	32.3	31.7	
2	40.5	47.4	46.9	
3	50.2	58.5	57.9	
4	58.1	66.9	66.3	
5	64.7	73.5	74.0	
6	70.2	78.6	83.1	
8	79.0	86.0	92.0	
10	85.3	90.6	95.8	
12	89.8	93.4	97.3	

) 가 2 3) (CR) 3) CR 2 2 4) CR 가 0.5 ng/Mℓ 12 12 가 (US Food and Drug Administratio 가 8 가 n) 가 24 가 . 가 가

-

AUC (0-t) (Iinear trapezoidal summation) , 0 가

```
 \begin{array}{cc} \mathsf{AUC}_{& (0\text{-inf})} \ \mathsf{0} \\ \mathsf{K}_{& \mathsf{el}} \end{array} 
                                                                                       . AUC _{(0-inf)} = AUC _{(0-t)} + Ct/K _{el} ,
                                   (terminal elimination rate constant)
AUC (0-24) 0
                               24
C_{\text{max}}
T <sub>max</sub>
                           가
K<sub>el</sub>LN()
                                                            가 0.8
                                                                                                                AUC (0-inf)
                          - ; normal-theory)
                                                                                                                               LN-
                                                        AUC (0-inf)
         C _{(max)} , AUC _{(0-24)} , AUC _{(0-t)} ,
                                                                                                                          (ANOVA)
                                                                                                       ,
가
                                                                                                                                        (
           )
      1 -
                                           240 Mℓ
                                                                                             20 mg CR
                        10
                  2
                                (
                                        1A)
                                                                           (
                                                                                   1B)
                                                                                                                             60 Mℓ
                                                                  10 mg/10 Mℓ
                                                                                                              1C)
          180 Mℓ
                               (IR)
                                                                                               (open-label),
            15
                                                            (single-center),
                               10
                                                                                                                  14
                                                                                                                                        (was
hout)
                                                                                                                   1C
8
                     1A
                              1B
                                                       48
                                                                                     . 10 Mℓ
1A
                                             0 (
                                                         ),\ 0.5,\ 1,\ 1.5,\ 2.\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 10,\ 12,\ 14,\ 16,\ 18,\ 20,\ 24,\ 28,\ 32,
                                             1C
                                                                                        0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.
36
        48
5, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16
                                              18
                                              5
```

г	51
L	ິງ

[5]				
(hr)	1A	1B	1C	
0	0.000	0.000	0.0000	
0.25			0.9489	
0.5	0.2941	0.4104	1.3016	
0.75			1.3264	
1	0.5016	0.7334	1.3046	
1.25			1.2041	
1.5	0.5951	0.8192	1.0813	
1.75			0.9502	
2	0.6328	0.7689	0.9055	
2.5			0.7161	

3	0.5743	0.7341	0.6689
4	0.5709	0.6647	0.4879
5	0.7656	0.9089	0.4184
6	0.7149	0.7782	0.3658
7	0.6334	0.6748	0.3464
8	0.5716	0.5890	0.2610
10	0.4834	0.5144	0.2028
12	0.7333	0.6801	0.2936
14	0.6271	0.6089	0.2083
16	0.4986	0.4567	0.1661
18	0.4008	0.3674	0.1368
20	0.3405	0.2970	
24	0.2736	0.2270	
28	0.3209	0.2805	
32	0.2846	0.2272	
36	0.2583	0.1903	
48	0.0975	0.0792	

```
20 mg
              5
                                           5
                                                   5
1C
 6-7
                                                                      가
                            가
                                                 가 가
      가
                                                                                                          )
                                                                                               3
                                                                   (T_{max})
(T_{max})
         (C <sub>max</sub> )가
                                                                                        가
                                                                                                가
가
                                                                                                             )
                 C max
                                                   가
```

[6]

	A		В		С	
		SD		SD		SD
C _{max}	0.8956	0.2983	1.0362	0.3080	2.9622	1.0999
T _{max}	7.03	4.10	4.89	3.44	0.928	0.398
AUC (0-t)	17.87	6.140	17.16	6.395	14.24	5.003
AUC (0-inf)	19.87	6.382	18.96	6.908	16.99	5.830
T _(1/2el)	10.9	2.68	11.4	2.88	6.96	4.61
: C $_{max}$ ng/M ℓ ; T $_{max}$ (hr), AUC ng \cdot hr/M ℓ , T $_{(1/2el)}$ (hr)						

7 8 , AUC 20 mg

- 11 -

[7]

F rel (1A vs. 1C)	F _{rel} (1B vs. 1C)	F _{rel} (1A vs. 1B)
1.193 ± 0.203	1.121 ± 0.211	1.108 ± 0.152

[8]

F rel (1A vs. 1C)	F _{rel} (1B vs. 1C)	F _{rel} (1A vs. 1B)
0.733 ± 0.098	0.783 ± 0.117	0.944 ± 0.110

2 - CR ;

[9]

9

(hr)	1A	1B	1C
0	0.000	0.000	0.0000
0.25			1.263
0.5	0.396	0.553	1.556
0.75			1.972
1	0.800	1.063	1.796
1.25			1.795
1.5	1.038	1.319	1.637
1.75			1.467
2	1.269	1.414	1.454
2.5			1.331
3	1.328	1.540	1.320
4	1.132	1.378	1.011
5	1.291	1.609	0.731
6	1.033	1.242	0.518
7	0.941	0.955	0.442

8	0.936	0.817	0.372
10	0.669	0.555	0.323
12	0.766	0.592	0.398
14	0.641	0.519	0.284
16	0.547	0.407	0.223
18	0.453	0.320	0.173
20	0.382	0.280	
24	0.315	0.254	
28	0.352	0.319	
32	0.304	0.237	
36	0.252	0.207	
48	0.104	0.077	

.

[10]

	А	А			С			
		SD		SD		SD		
C _{max}	1.644	0.365	1.944	0.465	4.134	0.897		
T _{max}	3.07	1.58	2.93	1.64	0.947	0.313		
AUC (0-t)	22.89	5.486	21.34	5.528	21.93	5.044		
AUC (0-inf)	25.28	5.736	23.62	5.202	24.73	6.616		
T _(1/2el)	12.8	3.87	11.0	3.51	5.01	2.02		
: C _{max} n								

10 , T _{max} 11 12

[11]

F rel (2A vs. 2C)	F _{rel} (2B vs. 2C)	F _{rel} (2A vs. 2B)
1.052 ± 0.187	0.949 ± 0.154	1.148 ± 0.250

[12]

F (0.4 00)	F (0D 00)	E (0.1 0.D)	
F _{rel} (2A vs. 2C)	F _{rol} (2B vs. 2C)	F _{rot} (2A vs. 2B)	
· rei (=) · · · · · · · · · · ·	rei (== :: ==)	rei (=, t ==)	

 0.690 ± 0.105 0.694 ± 0.124 1.012 ± 0.175

1A, 1B, 2A 5 10 1 (2 , CR 2B) , T $_{\text{max}}$ 8 (12) 3 -3A 3C 10 3B 3D 10 14 3B 48 3A 3C 3D 36 2 3A 3B: 3 20 mg 3A 10 240 Mℓ 20 mg 3B 10 240 Mℓ 20 mg 3C 3D: HCI , USP, 1.5 mg/Me 10 Me 3C 10 240 Mℓ 10 mg (6.7 Mℓ) 3D 240 Mℓ 10 mg (6.7 Mℓ) 28 24 가 27 (19 75.0 38 69.6 (64.0)169.0 (117.0 202.0 28 . 4 (7 Mℓ) 0 (), 0.5, 1, 1.5, 2. 3, , 3C 3D (7 M*l*) 3A 3B 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 30, 36 48 (19) 3A 3B 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20 36 3A, 3B, 3C 3D 7 20 mg 13

[13]

1

3C 0558	3D
0559	
0000	0.0000
5074	0.9905
9634	1.0392
9753	1.3089
8777	1.3150
8171	1.2274
9 [.]	753 777

1.5	0.7931	1.0558	0.7109	1.1638
1.75			0.6357	1.0428
2	0.7370	1.0591	0.5851	0.9424
3	0.6879	0.9858	0.4991	0.7924
4	0.6491	0.9171	0.3830	0.7277
5	0.9312	1.4633	0.3111	0.6512
6	0.7613	1.0441	0.2650	0.4625
8	0.5259	0.7228	0.2038	0.2895
10	0.4161	0.5934	0.1768	0.2470
12	0.5212	0.5320	0.2275	0.2660
14	0.4527	0.4562	0.2081	0.2093
16	0.3924	0.3712	0.1747	0.1623
20	0.2736	0.3021	0.1246	0.1144
24	0.2966	0.2636	0.1022	0.1065
30	0.3460	0.3231		
36	0.2728	0.2456	0.0841	0.0743
48	0.1263	0.1241		

[14]

	3A	3A			3C		3D	
		SD		SD		SD		SD
C _{max}	1.7895	0.6531	1.1410	0.4537	2.2635	1.0008	2.2635	1.0008
T _{max}	5.65	9.39	5.57	7.14	0.978	1.14	0.978	1.14
AUC (0-t)	14.27	4.976	11.64	3.869	12.39	4.116	12.39	4.116
AUC (0-inf)	19.89	6.408	17.71	8.471	14.53	4.909	14.53	4.909
T _(1/2el)	21.29	6.559	19.29	5.028	18.70	6.618	18.70	6.618
	12.0	3.64	12.3	3.99	16.2	11.4	16.2	11.4

15 16 .

[15]

F _{rel} (3A vs. 3C)	F _{rel} (3B vs. 3D)	F _{rel} (3D vs. 3C)	F _{rel} (3A vs. 3B)
1.040 ± 0.1874	0.8863 ± 0.2569	1.368 ± 0.4328	1.169 ± 0.2041

[16]

F _{rel} (3A vs. 3C)	F _{rel} (3B vs. 3D)	F _{rel} (3D vs. 3C)	F _{rel} (3A vs. 3B)	
				\Box

1.299 ± 0.4638

, (00 ms)	(10 mg)	O.D.
(20 mg)	가 , , , , ,	CR
AUC 7\ . LN- B) LS (Least Squares) C $_{max}$ 58% , I F $_{rel}$ 1.17 , AUC $_{(0-inf)}$ $_{max}$ (5.6), -	, (A) $LS AUC_{(0-t)} AUC_{(0-onf)}$ T_{max}	(18% . . T
, (C) . F rel 1 . T $_{\rm max}$ ((D) LS C $_{\rm max}$ 50% .37 , AUC $_{(0-i)}$. LN- , LS A
, 20 mg 20 r ($^{-t)}$ CR 17% , LS AUC $^{(0-i)}$ F rel (1.0 0.96	A C). LN- , of) (=99%	LS AUC ₍₀ %). AUC _(0-inf)
, 49% . (12 2.5).	. LS C _{max} (half-value duration)	
, 20 mg $$^{\rm 10~mg}$$ C $_{\rm max}$ CR 12% . AUC $_{\rm (0-inf)}$ 0.83)	(B D). LN - F	20 mg , LS _{rel} (0.89
. LN- , LS 46% . T _{ma} . (C _{max}	5.7
. LN- , LS AUC $_{(0-t)}$. F $_{\rm rel}$ 0.97 , AUC $_{(0-24)}$.	1)	B A) .
, 20 mg 20 rd (A C). LN-04.5% . AUC (0-24) F rel (0.83) 0.88 (11 2.2).	ng 10 mg - , AUC _(0-t) L 3.6 .	.S 1
, 20 mg (B D) CR 14% . AUC ₍₀₋₂₄₎ F _{rr} . T _{max} 1.3 (14 3.9).	20 mg . LN- , LS AUC(el (0.87) 5.2 .	

1.470 ± 0.3922

 0.9598 ± 0.2151

 0.8344 ± 0.100

LS AUC $_{(0-t)}$ AUC $_{(0-inf)}$ 20 mg , LS C $_{\rm max}$ 50 30% 7 , , , , . T $_{\rm max}$. 20% LN-20% , T _{max} . LS C _{max} AUC 58% 가 LS AUC (0-t) AUC (0-inf) 20% LS C _(max) AUC 20% . T _{max} 20 mg . LS AUC 20% . , C _{max} 35% . T _{max} AUC 20% 3A, 3B, 3C 3D 6-OH 8

[17]

(hr)	3A	3B	3C	3D
0	0.0069	0.0125	0.0741	0.0000
0.25			0.7258	0.4918
0.5	0.5080	0.1879	1.2933	0.5972
0.75			1.3217	0.7877
1	1.0233	0.4830	1.1072	0.8080
1.25			1.0069	0.7266
1.5	1.1062	0.7456	0.8494	0.7001
1.75			0.7511	0.6472
2	1.0351	0.7898	0.6544	0.5758
3	0.9143	0.7619	0.6196	0.5319
4	0.8522	0.7607	0.4822	0.5013
5	0.8848	0.8548	0.3875	0.4448
6	0.7101	0.7006	0.3160	0.3451
8	0.5421	0.5681	0.2525	0.2616
10	0.4770	0.5262	0.2361	0.2600
12	0.4509	0.4454	0.2329	0.2431
14	0.4190	0.4399	0.2411	0.2113
16	0.4321	0.4230	0.2385	0.2086
20	0.3956	0.4240	0.2234	0.1984
24	0.4526	0.4482	0.2210	0.2135
30	0.4499	0.4708		
36	0.3587	0.3697	0.1834	0.1672
48	0.3023	0.3279		

[18]

	3A		3B		3C		3D	
		SD		SD		SD		SD
C _{max}	1.2687	0.5792	1.1559	0.4848	1.5139	0.7616	0.9748	0.5160
T _{max}	3.61	7.17	5.20	9.52	0.880	0.738	1.30	1.04
AUC (0-t)	22.47	10.16	22.01	10.77	10.52	4.117	9.550	4.281
AUC (0-inf)	38.39	23.02	42.37	31.57	20.50	7.988	23.84	11.37
T _(1/2el)	39.1	36.9	39.8	32.6	29.3	12.0	44.0	35.00

20 mg 10 mg - () 가 20 mg 20 mg 10 mg 9 . 3 1 . 3 가 10 mg 12 9 (CR) 20 mg (IR) 10 mg 6-6-() 20 mg 6-. 19 9 6-

[19]

	20 mg 0.00 0.22 0.59 0.77 0.84		6-		
	20 mg	10 mg	20 mg	10 mg	
0.00		0.00	0.00	0.00	
0.25	0.22	1.08	0.14	0.73	
0.50	0.59	1.69	0.45	1.22	
1.00	0.77	1.19	0.53	0.79	
1.50	0.84	0.91	0.53	0.57	
2.00	0.87	0.75	0.60	0.47	
3.00	0.83	0.52	0.55	0.34	
4.00	0.73	0.37	0.53	0.27	
5.00	0.94	0.36	0.46	0.23	
6.00	0.81	0.28	0.41	0.18	
8.00	0.73	0.20	0.37	0.14	
10.	0.60	0.19	0.35	0.15	
12.0	0.67	0.25	0.32	0.13	
16.0	0.39	0.16	0.29	0.13	
24.0	0.23	0.07	0.29	0.13	
30.0	0.12	0.01	0.17	0.04	
36.0	0.05	0.00	0.11	0.00	

- 1			l		1 !
- 1	48.0	0.00	0.00	Λ Λ7	ΙΛ Λ1
- 1	40.0	U.UU	10.00	0.07	(U.U.)
					4 - 1 - 1

[20]

			[20]		
				6-	
		20 mg	10 mg	20 mg	10 mg
4	0.00	1.10	0.75	0.89	0.72
5	0.00	1.12	0.84	1.15	0.88
6	0.00	1.20	0.92	1.15	0.87
7	0.00	1.19	0.91	1.27	1.00
8	0.00	1.19	0.86	1.29	0.98
9	0.00	1.03	1.07	1.09	1.05
	0.25		2.64		1.70
	0.50		3.12	1.50	2.09
	1.00		2.47	1.70	1.68
	1.50		2.05	1.63	1.55
	2.00		1.78	1.64	1.30
	3.00		1.27	1.47	1.11
	4.00		0.98	1.39	0.98
	5.00		1.01	1.21	0.89
	6.00		0.90	1.06	0.84
	6.25		1.17		0.88
	6.50		1.88		1.06
	7.00		2.12		1.20
	7.50		2.24		1.15
	8.00	1.32	2.01	0.97	1.03
	9.00		1.52		0.90
	10.0	1.32	1.24	0.85	0.84
	11.0		1.11		0.74
	12.0	1.18	0.96	0.79	0.70

[21]

20 mg	10 mg
6-OH	6-OH

AUC (0-t)	14.74	11.54	7.10	5.66	
AUC (0-inf)	15.33	16.40	7.73	8.45	
C _{max} (ng/Mℓ)	1.12	0.68	1.98	1.40	
T _{max} (hr)	5.00	2.00	0.50	0.50	
T (1/2) (hr)	9.25	26.09	10.29	29.48	

```
AUC (0-t)
                                                                                                           , AUC <sub>(0-inf)</sub>
   (parent) 6-OH
                                                                                        (IR)
                                                                                                           (CR)
                                                                      , CR
                                                                                                          가
                                                                                                           CR
                                                                       가
                                                                              .6-OH
                                 , IR
          20 Mℓ
                                                                                                      가
                                                                                           20 mg
    가
                                                             가 20 mg
   5
                                                                                                (ng/mg \cdot M\ell) mg ,
          80 mg
                                                                       ,
가
                                                                                            , 0.02 ng/mg ⋅ Mℓ
                                   6-
     ng
                                                                                                                , 5 mg
       0.1 ng/Mℓ
                                                                                     가
                              80 mg
                                                                               6-OH
                                                                                                                  20 mg
                                                                                     가
                              가
   가
                1
                          3 )
                                                        가
                     가
                                                                                                      가
     5 -
                                                                            4×10 mg
                                                       40 mg
                                                                                   (4 \times 10 \text{ mg})
                                                                   가
                                                                                                           CR
          (40 \text{ mg})
                       IR
                                                                                                            5A
5C
                            10
                                                                                                                    5B
   5D
                                          10
              14
                                                              5B
                                                                                              48
                                                 5A
                                 3C
                                             3D
                                                                             36
                                                                                              2
     5A
            <u>5B</u>:
                    2
                                                40 mg
     5A
                                  10
                                                            240 Mℓ
                                                                                                               40 mg
                                               5B
                                                                                                               10
     240 Mℓ
                                                        40 mg
     <u>5C 5D</u>:
                                 (IR) 4 \times 10 \text{ mg}
```

4×10 mg 10 240 Mℓ 5C 10 240 Mℓ 5D IR 4×10 mg IR 가 28 . 28 , 25 . 4 0 ((7 Mℓ)), 0.25, 0.5, 0.75, 1. 0, 1.5, 2. 3, 4, 5, 6, 8, 10, 12, 24, 36, 48, 60 72 (19) 5A, 5B, 5C 5D 11 13 23

[22]

(hr)	5A	5B	5C	5D
0	0.00	0.00	0.00	0.00
0.25	0.47	0.22	3.34	1.79
0.50	1.68	0.97	7.28	6.59
0.75	1.92	1.90	6.60	9.49
1	2.09	2.61	6.03	9.91
1.5	2.18	3.48	4.67	8.76
2	2.18	3.65	3.68	7.29
3	2.00	2.86	2.34	4.93
4	1.78	2.45	1.65	3.11
5	1.86	2.37	1.48	2.19
6	1.67	2.02	1.28	1.71
8	1.25	1.46	0.92	1.28
10	1.11	1.17	0.78	1.09
12	1.34	1.21	1.04	1.24
24	0.55	0.47	0.40	0.44
36	0.21	0.20	0.16	0.18
48	0.06	0.05	0.04	0.05
60	0.03	0.01	0.01	0.01
72	0.00	0.00	0.00	0.00

[23]

	5A	5A		5B		5C		5D	
		SD		SD		SD		SD	
C _{max}	2.79	0.84	4.25	1.21	9.07	4.09	12.09	5.42	
T _{max}	2.26	2.52	1.96	1.06	0.69	0.43	1.19	0.62	
AUC (0-t)	35.70	10.58	38.20	11.04	36.00	12.52	51.35	20.20	
AUC (0-inf)	40.62	11.38	41.17	10.46	39.04	12.44	54.10	20.26	
T (1/2el)	12.17	7.57	10.46	5.45	11.65	6.18	9.58	3.63	

24 25 .

[24]

F _{rel} (5D vs. 5C)	F _{rel} (5B vs. 5A)
1.3775	1.0220

[25]

F _{rel} (5D vs. 5C)	F _{rol} (5B vs. 5A)
	representation of the second o
1.4681	1.0989

5A, 5B, 5C 5D 6-OH 12 . 26 .

[26]

	6-				
(hr)	5A	5B	5C	5D	
0	0.00	0.00	0.00	0.00	
0.25	0.27	0.05	2.36	0.50	
0.50	1.32	0.31	5.35	1.98	
0.75	1.37	0.59	4.53	2.97	
1	1.44	0.82	3.81	2.87	
1.5	1.46	1.09	2.93	2.58	
2	1.46	1.28	2.37	2.29	
3	1.39	1.14	1.69	1.72	
4	1.25	1.14	1.33	1.26	
5	1.02	1.00	1.14	1.01	
6	0.93	0.86	0.94	0.86	
8	0.69	0.72	0.73	0.77	
10	0.68	0.67	0.66	0.75	
12	0.74	0.66	0.70	0.77	
24	0.55	0.52	0.54	0.61	
36	0.23	0.30	0.28	0.27	
48	0.18	0.20	0.20	0.19	
60	0.09	0.10	0.09	0.09	
72	0.06	0.06	0.04	0.05	

[27]

	5A	5A		5C			5D	
		SD		SD		SD		SD
C _{max}	1.88	0.69	1.59	0.63	6.41	3.61	3.79	1.49
T _{max}	1.48	1.18	2.73	1.27	0.73	0.47	1.18	0.74
AUC (0-t)	28.22	10.81	26.95	11.39	33.75	10.29	32.63	13.32
AUC (0-inf)	33.15	11.25	32.98	10.68	37.63	17.01	36.54	13.79
T _(1/2el)	17.08	7.45	21.92	8.41	16.01	6.68	16.21	7.42

가

, 12

(57)

1. 5 mg 80 mg , 0.

1 ng/Ml 7.5 ng/Ml .

2.1 , 5 mg 10 mg

1 , 5 mg 10 mg , 0.12 ng/Me 1.0 ng/Me

3.

, 10 mg 20 mg , 0.3 ng/Me 1.6 ng/Me

.

4.1 , 20 mg 40 mg ,

0.5 ng/Me 3.5 ng/Me

5.1 , 40 mg 80 mg ,

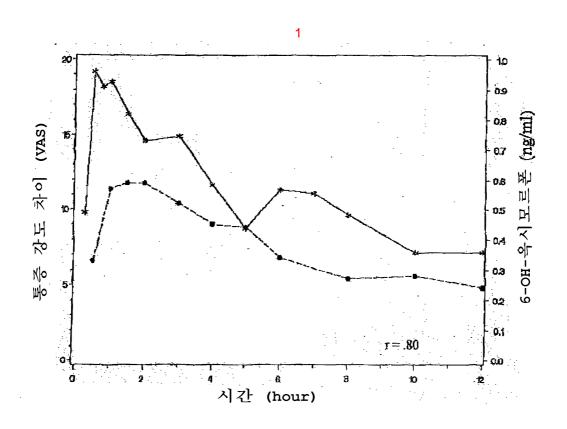
, 40 mg 80 mg , 1.5 ng/Mℓ 7.5 ng/Mℓ

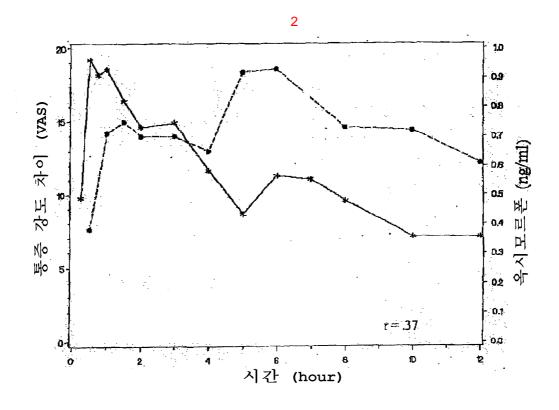
6.1 , 0.17 ng/Me 0.75 ng/Me

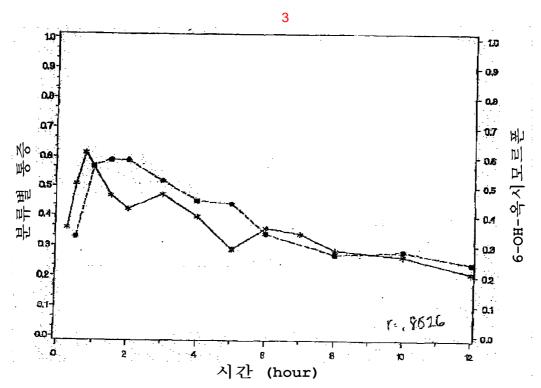
7.

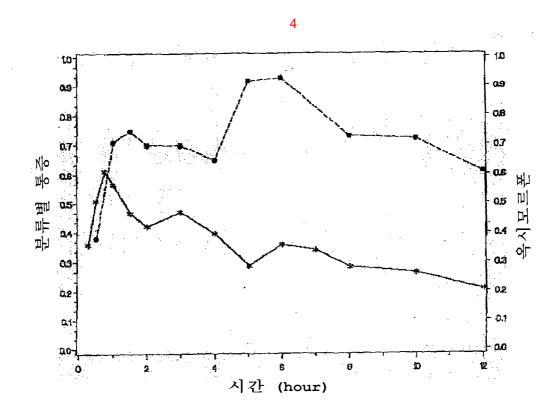
3	,				0.4 ng/Mℓ	1.4 ng/Mℓ	
8.	,				0.9 ng/Mℓ	3.0 ng/Mℓ	
9. 5	,				1.9 ng/ Mℓ	6.0 ng/ M ℓ	
10. 5 mg		,	2		0.12 ng/Mℓ	0.4 ng/ M ℓ	
11 . 10 mg		,	3		0.3 ng/ Mℓ	0.9 ng/ Mℓ	
12. 20 mg		,	4		0.5 ng/ M ℓ	1.6 ng/Mℓ	
13. 40 mg		,	5		1.5 ng/Mℓ	3.5 ng/ M ℓ	
14. 80 mg		,	5		3.5 ng/Mℓ	7.5 ng/Mℓ	
15. , 10			0.15 ng/ Mℓ	0.35 ng/M ℓ			
16. , 11			0.5 ng/Mℓ	0.75 ng/Mℓ			
17. , 12			0.75 ng/Mℓ	1.4 ng/Mℓ			
18. , 13			2.0 ng/Ml	3.0 ng/Mℓ			
19. , 14			4.0 ng/Ml	6.5 ng/M l			
20. 05 ng/Mℓ	5 mg 5.0 ng/M <i>Q</i>	80 mg 6-OH		,			0.
21.	o.o ng/me	0 011					•

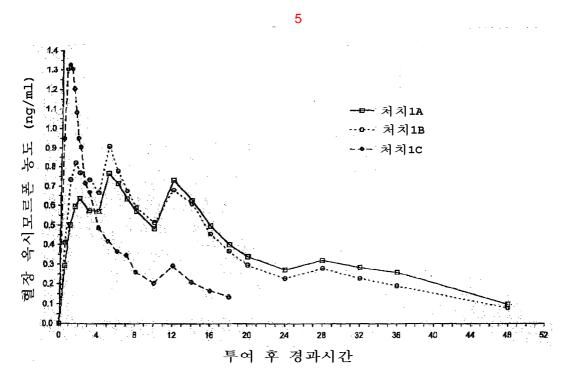
20	, 0.05 ng/Mℓ	5 mg 0.6 ng/Mℓ	10 mg 6-OH		,		
20	22. , 0.1 ng/Mℓ	10 mg 1.25 ng/Mℓ	20 mg 6-OH		,		
20	23. , 0.2 ng/Mℓ	20 mg 2.5 ng/M0	40 mg 6-OH		,		
20	24. , 0.4 ng/Mℓ	40 mg 5.0 ng/Mℓ	80 mg 6-OH		,		
21	25.			0.1 ng/ Mℓ	0.4 ng/ Mℓ	6-OH	
22	26.			0.2 ng/ Mℓ	0.8 ng/ Mℓ	6-OH	
23	27.			0.4 ng/Mℓ	1.6 ng/Mℓ	6-OH	
24	28.			0.8 ng/ M ℓ	3.2 ng/Mℓ	6-OH	
5 mg -OH	29.	,	, 21		0.05 ng/ Mℓ		6
10 n - OH	30. ng	,	, 21		0.1 ng/ Mℓ	0.6 ng/ Mℓ	6
20 n - OH		,	, 22		0.2 ng/ Mℓ	1.2 ng/Mℓ	6
40 n -OH	32. ng	,	, 23		0.4 ng/Mℓ	2.4 ng/Mℓ	6
80 n -OH	33. ng	,	, 24		0.8 ng/ Mℓ	4.8 ng/ Mℓ	6
	0.4						

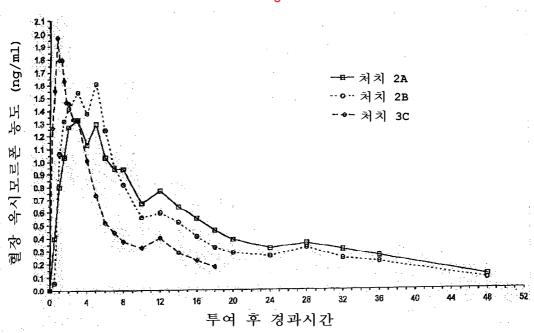

34.

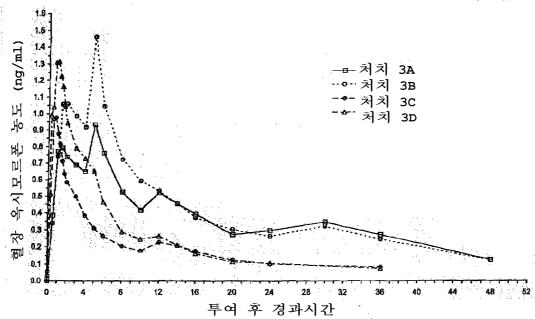

	,	29	0.1 ng/Mℓ	0.25 ng/ M ℓ	6-OH	
	35.		0.0 /M4	0.5 (M4	0.011	
	,	30	0.2 ng/Mℓ	0.5 ng/Mℓ	6-OH	
	36.		0.4 ng/Mℓ	1.0 ng/Mℓ	6-OH	
	,	31				
	37.	32	0.8 ng/Mℓ	2.0 ng/Mℓ	6-OH	
	, 38.	02				
	,	33	1.6 ng/Mℓ	4.0 ng/Mℓ	6-OH	
	39.	5 mg 80 mg 0.02 ng/mg ⋅ Mℓ		,		12
39	40.	, 5 mg				
39	41.	, 10 mg				
39	42.	, 20 mg				
39	43.	, 40 mg				
39	44.	, 80 mg				·
,	45.	12		0.13 ng/Mℓ		
,	46.					
,	41	12		0.25 ng/Mℓ		
	47.	12		0.5 ng/ M @		
, '	42			 		
	48.	12		1.0 ng/Mℓ		
,	43 49 .		•			
, ,	43. 44	12	<u>.</u>	2.0 ng/ M @		

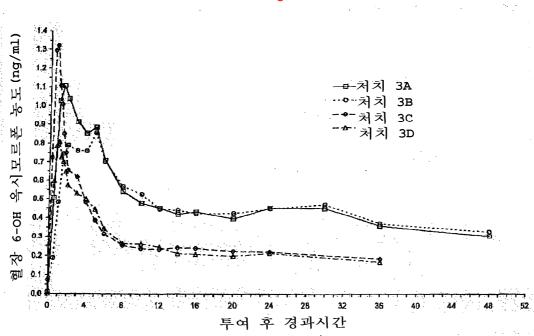

	50.	5 mg 80 mg			12
	0	.010 ng/mg · Me 6-OH		,	12
50	51.	5 mg			
50	52. ,	10 mg			
50	53.	20 mg			
50	54.	40 mg			
50	55.	80 mg			
	56. , 51	12		0.065 ng/Mℓ 6-OH	
	57.	12		0.13 ng/ Mℓ 6-OH	
	, 52 58.	12	·	0.25 ng/M0 - 6 - OH	
	, 53	12	·	0.25 ng/Mℓ 6-OH	
	59. , 54	12		0.5 ng/Mℓ 6-OH	
	60. , 55	12		1.0 ng/Mℓ 6-OH	
	61.	5 mg 80 mg	12	, 0.025 ng/mg · Mℓ	8 12
61	62.	5 mg			
61	63.	10 mg			
61	64.	20 mg			
61	65.	40 mg			

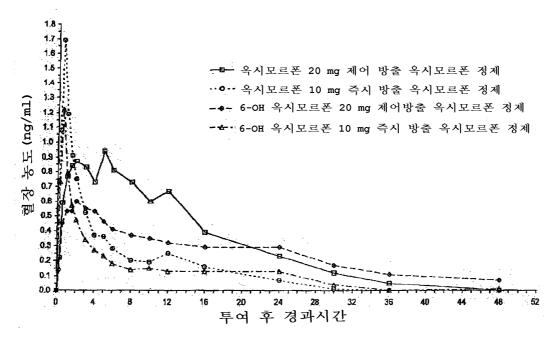

61	66.	,		80 mg					
	67.		5 mg	80 mg	12	, 2	0.03 ng/mg ⋅ Mℓ	8 6-OH	12
67	68.	,		5 mg					
67	69.	,		10 mg					
67	70.	,		20 mg					
67	71.	,		40 mg					-
67	72.	,		80 mg					
5 mg	73.	mg	12			0.02 ng/mg ⋅ Mℓ			, 8
	74.								
73	75 .	,		가	5 mg			•	
73	76.	,		가	10 mg				
73		,		가	20 mg				
73	77.	,		가	40 mg				
73	78.	,		가	80 mg				
5 mg 8	79.	80 mg	12 6-OH			0.014 ng/mg ⋅ Mℓ			,
79	80.	,		가	5 mg				
79	81.	,		가	10 mg				
79	82.	,		가	20 mg				

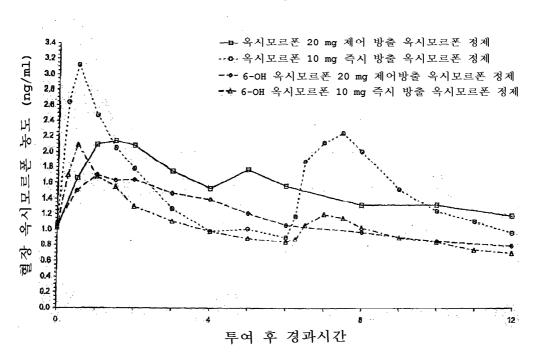

83. 79 가 40 mg 84. 79 가 80 mg 85. 5 mg 80 mg 0.5 1.5 86. 5 mg 80 mg 6-OH (AUC _(0-inf)) 1.5 가 0.5 87. 5 mg 80 mg 12 (AUC ₍ 0 가 0.5 0-inf)) 6-OH











8

9

