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defining anatomical landmarks on or in the orthopedic element using a deep learning network, applying a mask to the orthopedic 
element defined by an anatomical landmark, projecting the spatial data from the first image and the second image to define volume 
data, applying the deep learning network to the volume data to generate a reconstructed three-dimensional model of the orthopedic 
element; and mapping the three-dimensional model of the orthopedic element to the spatial data to determine the position of the three

C dimensional model of the orthopedic element in three-dimensional space.
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SYSTEMS AND METHODS OF USING PHOTOGRAMMETRY FOR 

INTRAOPERATIVELY ALIGNING SURGICAL ELEMENTS 

BACKGROUND OF THE INVENTION 

5 

1. Reference to Related Application 

[0001] This application claims the benefit of priority to U.S. Provisional Application No.  

63/250,906 filed on September 30, 2021. The disclosure of this related application is hereby 

10 incorporated into this disclosure in its entirety.  

2. Technical Field 

[0002] The present disclosure relates generally to the field of orthopedic joint 

15 replacement surgeries and more particularly to using photogrammetry and three-dimensional 

("3D") reconstruction techniques to aid surgeons and technicians in planning and executing 

orthopedic surgeries.  

3. Related Art 

20 

[0003] An objective of hip replacement surgeries is to restore the natural alignment and 

range of motion of the patient's pre-diseased hip. However, this objective can be difficult to achieve 

in practice, because hips comprise not only the articulating bones but also a variety of soft tissue, 

including cartilage, muscle, ligaments, and tendons. In all hip arthroplasties, and especially in 

25 minimally invasive hip arthroplasties , the presence of these soft tissues can severely limit the 

surgeon's visual field. This problem is even more pronounced in patients with a high body mass 

index.  

[0004] In a hip arthroplasty, the pelvis itself is enclosed nearly entirely in soft tissue. In 

a minimally invasive procedure, the main incision eventually exposes the junction of the 

30 acetabulum and the proximal femoral head, but this main incision typically directs the surgeon's 

view across the margin (i.e., perimeter) of the acetabulum. A portal incision extending through one 

or more quadriceps muscles of the operative leg may align with the concave face of the acetabulum, 

but the proximal end of the femur must be dislodged and rotated away from the acetabulum to 

expose this view.  
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[0005] To complicate matters further, the visual field of the operative area through a 

portal incision is generally much more limited than the visual field through the main incision. An 

endoscopic camera may be placed through the portal incision to capture an image of the concave 

acetabular surface, but the concave surface of the acetabulum lacks boney markers (i.e., landmarks) 

5 that can be used to indicate the position of the acetabulum and pelvis reliably. Furthermore, any 

movement of the femur will likely translate to the pelvis through the connective soft tissue, thereby 

undermining the usefulness of any images captured by the endoscopic camera. Use of an 

endoscopic camera therefore would needlessly prolong the procedure and have very limited 

effectiveness in accurately reflecting the position of the acetabulum relative to the proximal femur.  

10 [0006] Artificial hip implants typically comprise an acetabular shell, which the surgeon 

places into a reamed acetabulum of the hip. The acetabular shell may house a liner that functions 

essentially as a bearing with the generally spherically shaped head of the femoral component. The 

femoral component generally comprises a stem, a neck, and the head. When installed, the stem is 

inserted into a resected and reamed proximal end of the femur. The neck connects a proximal end 

15 of the stem to the head. The head in turn, is placed in the artificial acetabular cup, and commonly 

is disposed against the liner of the acetabular cup.  

[0007] Because the surgeon's field of view of the surgical area is so often obstructed by 

soft tissue, surgeons have relied upon external indicia in the past to try to estimate the proper 

alignment of the acetabular cup in the acetabulum. US. Pat. Pub. No. 2013/0165941 to Murphy is 

20 one such example. Other providers offered positioning guides that comprised external horizonal 

and vertical positioning bars designed to resemble the axes of a Cartesian plane. To try to achieve 

an abduction angle of the acetabular cup of about 40 degrees ("") to about 45, the surgeon would 

position the placement guide roughly diagonally to the body longitudinal axis of the patient (i.e., 

an imaginary center line of the body that extends from the patient's head to groin), such that a 

25 horizontal positioning bar would be disposed roughly parallel to the body longitudinal axis. To 

attempt to achieve an anteversion angle of about 100 to about 15°, the surgeon would lift the 

positioning device slightly along the vertical positioning bar relative to the body longitudinal axis.  

[0008] These external indicia did not account for the patient's specific anatomy, nor did 

they account for movement of the pelvis relative to these indicia. For example, it is entirely possible 

30 that when a given patient is lying supine, the patient's left acetabulum may be positioned slightly 

lower than the patient's right acetabulum. Furthermore, many hip arthroplasty procedures require 

repositioning of the patient to make certain incisions or to access certain portions of the surgical 

area. As noted above, movement of the femur is likely to translate to the pelvis through the soft 

tissue. Given the need to reposition the patient multiple times throughout a standard hip 
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arthroplasty, it is unlikely that the pelvis will always be located within the suggested use parameters 

for existing acetabular cup positioning guides that rely upon external indicia.  

[0009] Properly aligning, sizing, and installing the femoral component is even more 

difficult, given that allowing the surgeon to have a direct line of sight to the proximal femur requires 

5 dislocating (and therefore misaligning) the proximal femur from the acetabulum (or the acetabular 

cup as the case may be). As a result, many surgeons have relied upon sound and feel to approximate 

acceptable femoral stem placement. Both the femoral stem and the acetabular cup are impacted into 

their respective bones. A femoral stem that is too large could easily fracture the proximal femur. A 

femoral stem that is too small may subside into the intramedullary canal of the femur over time as 

10 the result of normal use. Subsidence can shorten the patient's gait and place undue pressure on the 

neck, head, and portions of the liner, thereby accelerating wear.  

[0010] Additionally, even if the acetabular cup is placed in the reamed acetabulum at 

desirable angles of abduction and anteversion, and even if an adequately sized femoral stem is 

seated in the proximal femur, the position of the femoral component relative to the acetabular cup 

15 was previously not knowable using conventional technologies. Intraoperative fluoroscopy could be 

used to generate a two-dimensional ("2D") image of the femoral component relative to the 

acetabular component, but the fluoroscopic image lacked sufficient 3D information to ensure 

accurate alignment. For example, with classic fluoroscopy, the pelvic tilt was unknown. As such, 

the orientation of any boney landmarks on the pelvis was also unknown. Without being able to 

20 determine the orientation of the pelvis with precision, it was not possible to use fluoroscopy alone 

to accurately calculate the position of the natural pre-diseased joint line. Furthermore, prolonged 

use of fluoroscopy subjects the patient to excessive radiation.  

[0011] Improper alignment of the femoral component's head relative to the acetabular 

cup could result in a shortening of the operative leg relative to the contralateral leg, dislocation of 

25 the head relative to the acetabular cup, and increased force loading on one part of the acetabular 

cup, liner, head, or neck (which thereby increases the rate of wear and reduced implant longevity).  

Any of these shortcomings can contribute to patient discomfort.  

[0012] As a result, surgeons have had to remain content operating within a fairly large 

margin of error for acetabular cup placement. Despite the available tools and procedures, aligning 

30 a reconstructed hip in a typical hip arthroplasty is based on experience, educated guesses, and 

chance. This problem can be particularly pronounced in minimally invasive hip arthroplasties in 

part because the surgeon's field of view is so restricted.  

35 
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SUMMARY OF THE INVENTION 

[0013] Accordingly, there is a long felt but unresolved need to augment preoperative and 

intraoperative imaging technologies to accurately model the operative joint anatomy and artificial 

endoprosthetic implant when planning and executing hip arthroplasties.  

5 [0014] The problems of limited surgeon visualization of the operative area in minimally 

invasive surgeries using currently available preoperative or intraoperative tools and techniques and 

the attendant problems of misalignment that such lack of visualization can cause can be mitigated 

by exemplary systems or methods for ascertaining a position of an orthopedic element in space 

comprising: using a deep learning network to identify and model an orthopedic element and a 

10 component of an endoprosthetic implant and to map the model of the orthopedic element and the 

model of the endoprosthetic implant to spatial data from an input of at least two separate two

dimensional ("2D") input images of a subject orthopedic element, wherein the first image of the at 

least two separate 2D input images is captured from a first transverse position, and wherein the 

second image of the at least two separate 2D input images is captured from a second transverse 

15 position offset from the first transverse position by an offset angle.  

[0015] In exemplary embodiments, the input images can be radiographic images.  

Without being bound by theory, radiographs may be desirable because radiographs allow for in

vivo analysis that can account for external summation of passive soft tissue structures and dynamic 

forces occurring around the hip, including the effect of ligamentous restraints, load-bearing forces, 

20 and muscle activity.  

[0016] Without being bound by theory, it is contemplated that by mapping the model of 

an orthopedic element and a model of a component of an endoprosthetic implant to spatial data, the 

position of the mapped and modeled orthopedic element can be calculated relative to the mapped 

and modeled implant component. If this system is applied to two or more orthopedic elements and 

25 two or more components of the endoprosthetic implant, the components of the endoprosthetic 

implants can be desirably implanted into their respective orthopedic elements at desirable positions 

and the respective endoprosthetic implant components can be desirably aligned relative to one 

another.  

[0017] It is further contemplated that certain exemplary systems and methods described 

30 herein can be configured to accurately predict the desired size of an implant component relative to 

the adjacent orthopedic element.  

[0018] It is still further contemplated that certain exemplary systems and methods 

described herein can be configured to accurately orient the placement of an endoprosthetic implant 

component relative to an orthopedic element in which the endoprosthetic implant component will 

35 be implanted.  
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BRIEF DESCRIPTION OF THE DRAWINGS 

[0019] The foregoing will be apparent from the following more particular description of 

exemplary embodiments of the disclosure, as illustrated in the accompanying drawings. The 

5 drawings are not necessarily to scale, with emphasis instead being placed upon illustrating the 

disclosed embodiments.  

[0020] FIG. 1 is a simplified X-ray view of the front of a patient depicting an example 

endoprosthetic hip implant in the right hip and a natural left hip.  

[0021] FIG. 2 illustrates a surgeon's typical field of view in a minimally invasive hip 

10 arthroplasty.  

[0022] FIG. 3 is a perspective view of an example acetabular component disposed in a 

reamed acetabulum; FIG. 3 depicts the principle of the abduction angle and the anteversion angle.  

[0023] FIG. 4 depicts a misaligned acetabular cup and a mis-sized femoral stem.  

[0024] FIG. 5 is a flow chart illustrating steps of an exemplary method.  

15 [0025] FIG. 6 is a flow chart illustrating steps of a further exemplary method.  

[0026] FIG. 7 is a schematic depiction of a system that uses a deep learning network to 

identify features (e.g, anatomical landmarks) of a subject orthopedic element to generate a 3D 

model of the subject orthopedic element.  

[0027] FIG. 8 is a schematic depiction of a pinhole camera model used to convey how 

20 principles of epipolar geometry can be used to ascertain the position of a point in 3D space from 

two 2D images taken from different reference frames from calibrated image detectors.  

[0028] FIG. 9A is an image of the subject orthopedic elements taken from the anterior

posterior ("A-P") position that shows an exemplary calibration jig.  

[0029] FIG. 9B is an image of the subject orthopedic elements of FIG. 9A taken at about 

25 450 clockwise from reference frame of FIG. 9A with the calibration jig.  

[0030] FIG. 9C is an image of the subject orthopedic elements of FIG. 9A taken at about 

450 counterclockwise from reference frame of FIG. 9A with the calibration jig.  

[0031] FIG. 10 is a schematic representation depicting how a convolutional neural 

network ("CNN") type deep learning network can be used to identify features (e.g., anatomical 

30 landmarks), including the surface of a subject orthopedic element.  

[0032] FIG. 11 is an exploded view of a modeled endoprosthetic implant.  

[0033] FIG. 12 is a schematic representation of an exemplary system.  

[0034] FIG. 13 is a schematic representation of a system configured to generate a model 

of an orthopedic element and to align components of endoprosthetic implant components using two 
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or more tissue penetrating, flattened, input images taken of the same subject orthopedic element 

from calibrated detectors at an offset angle.  

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 

5 [0035] The following detailed description of the preferred embodiments is presented 

only for illustrative and descriptive purposes and is not intended to be exhaustive or to limit the 

scope and spirit of the invention. The embodiments were selected and described to best explain the 

principles of the invention and its practical application. One of ordinary skill in the art will 

recognize that many variations can be made to the invention disclosed in this specification without 

10 departing from the scope and spirit of the invention.  

[0036] Similar reference characters indicate corresponding parts throughout the several 

views unless otherwise stated. Although the drawings represent embodiments of various features 

and components according to the present disclosure, the drawings are not necessarily to scale and 

certain features may be exaggerated to better illustrate embodiments of the present disclosure, and 

15 such exemplifications are not to be construed as limiting the scope of the present disclosure.  

[0037] Except as otherwise expressly stated herein, the following rules of interpretation 

apply to this specification: (a) all words used herein shall be construed to be of such gender or 

number (singular or plural) as such circumstances require; (b) the singular terms "a," "an," and 

"the," as used in the specification and the appended claims include plural references unless the 

20 context clearly dictates otherwise; (c) the antecedent term "about" applied to a recited range or 

value denotes an approximation with the deviation in the range or values known or expected in the 

art from the measurements; (d) the words, "herein," "hereby," "hereto," "hereinbefore," and 

"hereinafter," and words of similar import, refer to this specification in its entirety and not to any 

particular paragraph, claim, or other subdivision, unless otherwise specified; (e) descriptive 

25 headings are for convenience only and shall not control or affect the meaning of construction of 

part of the specification; and (f) "or" and "any" are not exclusive and "include" and "including" are 

not limiting. Further, the terms, "comprising," "having," "including," and "containing" are to be 

construed as open-ended terms (i.e., meaning "including but not limited to").  

[0038] References in the specification to "one embodiment," "an embodiment," "an 

30 exemplary embodiment," etc., indicate that the embodiment described may include a particular 

feature, structure, or characteristic, but every embodiment may not necessarily include the 

particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring 

to the same embodiment. Further, when a particular feature, structure, or characteristic is described 

in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in 
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the art to affect such feature, structure, or characteristic in connection with other embodiments, 

whether explicitly described.  

[0039] To the extent necessary to provide descriptive support, the subject matter and/or 

text of the appended claims are incorporated herein by reference in their entirety.  

5 [0040] Recitation of ranges of values herein are merely intended to serve as a shorthand 

method of referring individually to each separate value falling within the range of any sub-ranges 

there between, unless otherwise clearly indicated herein. Each separate value within a recited range 

is incorporated into the specification or claims as if each separate value were individually recited 

herein. Where a specific range of values is provided, it is understood that each intervening value, 

10 to the tenth or less of the unit of the lower limit between the upper and lower limit of that range and 

any other stated or intervening value in that stated range of sub range thereof, is included herein 

unless the context clearly dictates otherwise. All subranges are also included. The upper and lower 

limits of these smaller ranges are also included therein, subject to any specifically and expressly 

excluded limit in the stated range.  

15 [0041] It should be noted that some of the terms used herein are relative terms. For 

example, the terms, "upper" and, "lower" are relative to each other in location, i.e., an upper 

component is located at a higher elevation than a lower component in each orientation, but these 

terms can change if the orientation is flipped 

[0042] The terms, "horizontal" and "vertical" are used to indicate direction relative to an 

20 absolute reference, i.e., ground level. However, these terms should not be construed to require 

structure to be absolutely parallel or absolutely perpendicular to each other. For example, a first 

vertical structure and a second vertical structure are not necessarily parallel to each other. The terms, 

"top" and "bottom" or "base" are used to refer to locations or surfaces where the top is always 

higher than the bottom or base relative to an absolute reference, i.e., the surface of the Earth. The 

25 terms, "upwards" and "downwards" are also relative to an absolute reference; an upwards flow is 

always against the gravity of the Earth.  

[0043] Orthopedic procedures frequently involve operating on a patient's joint. It will 

be understood that ajoint typically comprises a multitude of orthopedic elements. It will further be 

30 appreciated that the exemplary methods and systems described herein can be applied to a variety 

of orthopedic elements. The examples described with reference to FIGS. 1 - 4, 9A - 9C, and 11 

relate to a hip joint for illustration purposes. It will be appreciated that the "orthopedic element" 

100 referenced throughout this disclosure is not limited to the anatomy of ahipjoint, but can include 

any skeletal structure or associated soft tissue, such as tendons, ligaments, cartilage, and muscle. A 

35 non-limiting list of example of skeletal orthopedic elements 100 includes any partial or complete 
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bone from a body, including but not limited to a femur, tibia, pelvis, vertebra, humerus, ulna, radius, 

scapula, skull, fibula, clavicle, mandible, rib, carpal, metacarpal, tarsal, metatarsal, phalange, or 

any associated tendon, ligament, skin, cartilage, or muscle. It will be appreciated that an example 

operative area 170 can comprise several subject orthopedic elements 100. Likewise, it will be 

5 appreciated that an operative area 170 is not limited to the hip operative area that is used as the 

primary example herein, but rather can return to any area of a body that is the target of a surgical 

operation. This may include by non-limiting example, the knee, ankle, spine, shoulder, wrist, hand, 

foot, mandible, skull, rib, and phalanges.  

[0044] FIG. 1 is a simplified representation of an X-ray image of the front of an example 

10 patient's pelvis 110. Both patient's right hip joint 101a and left hip joint 101b are shown. Both 

example hip joints 101a, 101b comprise a number of orthopedic elements 100, including a femur 

105, an acetabulum (see 108 and 111) of the pelvis 110, and connective tissues. The depicted right 

hipjoint 101a (i.e., the hipjoint on the patient's right side, which is depicted on the left side of the 

page) shows an example endoprosthetic hip implant 102 that has been surgically installed into the 

15 patient. The depicted left hipjoint 101b shows an example natural hipjoint for comparison.  

[0045] Referring to the depicted right hip joint 101a, the example endoprosthetic hip 

implant 102 generally comprises an acetabular component 103 and a femoral component 104. It 

will be appreciated that endoprosthetic implants in general can comprise multiple components (e.g., 

an acetabular component 103 and a femoral component 104); these components in turn may be 

20 comprised of multiple subcomponents. In the depicted example, the acetabular component 103 

typically comprises a generally hemispherical acetabular shell 106 and an inner liner 107. The 

acetabular shell 106 is typically made from cobalt chrome, titanium, or other biocompatible metal.  

The inner liner 107 is typically made from a ceramic, metal, polymer, or other biocompatible 

material having a low coefficient of friction and a low wear rate.  

25 [0046] To prepare the native acetabulum (see 108) for the installation of the acetabular 

shell 106, the surgeon first uses a hemispherical reamer to create a generally concave surface in the 

patient's native acetabulum 108 to define a "reamed acetabulum" 111. The reamed acetabulum 111 

is generally complementary to the convex outer surface 109 of the acetabular shell 106. The outer 

surface 109 of the acetabular shell 106 is usually roughened to facilitate engagement to the reamed 

30 acetabulum 111. The roughened surface is also thought to promote osteogenesis into the spaces of 

the roughened surface, thereby increasing the strength of the bond over time.  

[0047] The inner liner 107 typically sits adjacent to an inner concave surface 112 of the 

acetabular shell 106, when the inner liner 107 is in its assembled and installed configuration. The 

inner liner 107 generally functions as a bearing against which the femoral head 113 of the femoral 

35 component 104 articulates once installed.  

8
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[0048] The femoral component 104 typically comprises the femoral stem 115 having a 

distal stem end 115a that is distally disposed from a proximal stem end 115b, a neck 116 having a 

distal neck end 116a engaging the proximal stem end 115b. The neck 116 extends to a head end 

116b. A generally spherically shaped artificial femoral head 113 is disposed at the head end 116b 

5 of the neck 116 in an assembled configuration. In certain exemplary embodiments, the neck 116 

can be selectively detachable from the proximal stem end 115b. Such selectively detachable necks 

116 can be known as "modular necks." 

[0049] It will be appreciated that the acetabular component 103 and the femoral 

component 104, and the subcomponents that comprise the acetabular component 103 or the femoral 

10 component 104 (e.g., the acetabular shell 106, inner liner 107, any fixation fasteners, the femoral 

stem 115, artificial femoral head 113, etc.) are typically provided in one or more surgical kits in an 

uninstalled and unassembled configuration. In an uninstalled and unassembled configuration, a 

component or subcomponent does not physically engage another component or subcomponent.  

Stated another way force is not directly transferred from one component or subcomponent to 

15 another component or subcomponent in an uninstalled and unassembled configuration. In as 

assembled configuration, the components or subcomponents physically contact one another and 

force can be transferred through two or more proximally disposed components or subcomponents.  

In an assembled and installed configuration, the components or subcomponents are in the assembled 

configuration and are also surgically implanted into the patient.  

20 [0050] For comparison, the depicted left hip joint 101b shows the natural femoral head 

126 at the proximal end of the femur 105. The natural femoral head 126 is disposed within the 

natural acetabulum 108 of the pelvis 110. Articular cartilage 123 coats the articular surface of both 

the healthy femoral head 126 and the healthy acetabulum 108.  

[0051] There are many surgical approaches to a typical hip arthroplasty, but most 

25 minimally invasive procedures begin with the surgeon making a six to eight centimeters ("cm") 

incision in the operative leg that is radially proximate to the hip joint capsule. Various muscles and 

tendons are then retracted with surgical instruments to eventually expose the joint capsule. The 

capsule is then pierced, and the surgeon dislocates the natural femoral head 126 from the natural 

acetabulum 108.  

30 [0052] Femoral preparation involves resecting and removing the natural femoral head 

126 from the femur 105. After the natural femoral head 126 is removed, the surgeon may then drill 

a canal into the intramedullary space of newly exposed proximal end 105b of the femur 105. The 

surgeon may then use a femoral broach to expand the space in the intramedullary canal needed to 

accommodate the femoral stem 115. Trial stems may be used to test the sizing and positioning of 

9
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the femoral component 104. Trial components generally have the same dimensions as the actual 

implant components, but the trial components are designed to be installed and removed more easily.  

[0053] Acetabular preparation involves reaming the natural acetabulum 108 to define a 

reamed acetabulum 111. The goal is to create a generally uniform hemispherical space that is 

5 complementary to the generally hemispherical outer surface 109 of the acetabular shell 106. Trial 

acetabular components can be used to try to test the alignment of the acetabular component 103 

relative to the femoral component 104, but visibility is limited and the nature of the procedure 

typically does not permit exhaustive testing of the alignment. Furthermore, because visibility is 

limited, there is a chance that the actual implant components 103, 104 will not be oriented in exactly 

10 the same way as the trial components.  

[0054] It will be appreciated that there are a variety of surgical approaches for a typical 

total hip arthroplasty (e.g., some surgeons choose to approach the hip posteriorly, while other 

choose to approach the hip joint laterally or anteriorly). FIG. 2 illustrates and exemplifies a 

surgeon's typical field of view of a typical hip arthroplasty operative area 170 through the main 

15 incision. Several retractors 14, 16 (which can include a Hohmann retractor or a Cobb elevator in 

some procedures) are used to retract the fascia 11 that is disposed between the area of the initial 

incision and the hip joint capsule. An electrocautery instrument 40 can be used to resect and 

cauterize tissue and to prevent excessive bleeding. The natural femoral head 126 is also shown for 

reference.  

20 [0055] FIG. 2 illustrates how the six to eight cm main incision of the operative area 170, 

the location of the hip joint (see 101a, 101b) relative to the point of incision, and the presence of 

typical surgical instrumentation (e.g., retractors 14, 16, mallets, broaches, reamers, pins, implant 

components, etc.) can significantly interfere with the surgeon's already limited field of view. This 

problem, which can be exacerbated by trying to align the acetabular component 103 and the femoral 

25 component 104 of the endoprosthetic hip implant 102 relative to external indicia that are divorced 

from the orientation of the target's implantation anatomy (e.g., the reamed acetabulum 111 or the 

resected proximal femur 105 in this hip example), can lead to inaccurate alignment of the implant 

components 103, 104 relative to the bones into which they are implanted, and relative to each other.  

This in turn can contribute to the risk of implant dislocation, non-optimal force distribution, faster 

30 wear, failure of the implant, altered gait, general patient discomfort, and the need for further revision 

surgeries which suffer from the same limitations.  

[0056] FIG. 3 is a perspective view of an example acetabular component 103 disposed 

in a reamed acetabulum 111. Although the abduction angle a and the anteversion angle v are 

depicted with reference to the acetabular component 103, it will be appreciated that the femoral 

35 component 104 is also disposed at an abduction angle a and an anteversion angles in the proximal 
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femur 105. The abduction angle a and an anteversion angle V of a component of an endoprosthetic 

implant (e.g., the acetabular component 103 and the femoral component 104) relative to the 

orthopedic element (e.g., the pelvis 110 and 105 proximal femur respectively) into which the 

component of the endoprosthetic implant is implanted can be calculated and determined by those 

5 having ordinary skill in the art.  

[0057] It will be appreciated that a "component of an endoprosthetic implant" can vary 

based upon the type of endoprosthetic implant and the type of operative area 170. For example, 

when the operative area 170 is a hip, a "component of an endoprosthetic implant" can be selected 

from a group comprising an acetabular component 103, a femoral component 104, a trial construct, 

10 instrumentation used in or to facilitate the installation of the endoprosthetic implant or trial implants 

in the patient in the installed position, or combinations thereof In embodiments where the operative 

area 170 is a knee, a "component of an endoprosthetic implant" can be a femoral component of an 

endoprosthetic knee implant, a tibial component of an endoprosthetic knee implant, a trial construct, 

instrumentation used in or to facilitate the installation of the endoprosthetic implant or trial implants 

15 in the patient in the installed position, or combinations thereof 

[0058] To illustrate the principle of the abduction angle a of the acetabular component 

103 relative to the pelvis 110 more clearly, the soft tissue has been omitted in FIG. 3. The abduction 

angle a can be measured by several ways known by those having ordinary skill in the art. One such 

way of visualizing the abduction angle a of the acetabular component 103 is by drawing a diameter 

20 line D extending through the diameter of the rim of the acetabular shell 106 on a coronal plane CP 

relative to a generally horizontal medial-lateral reference line R that is co-planar with the coronal 

plane CP of the diameter line D. In FIG. 3, the reference line R is shown connecting the distalmost 

portions of the right and left ischia 117a, 117b; however, it will be appreciated that other reference 

markers may be used provided that the reference line R extends horizontally, medial-laterally, and 

25 co-planarly coronally with the diameter line D.  

[0059] A shell plane SP is also shown extending coplanar through the rim 2 of the 

acetabular shell 106. Aligning the acetabular shell 106 in three dimensional space can be thought 

to involve the selection of the proper compound angle, the compound angle comprising the 

abduction angle a and the anteversion angle v. The shell plane SP is shown to depict the concept 

30 of acetabular shell alignment in three dimensions more clearly. It will be appreciated that the 

diameter line D, coronal plane CP, shell plane SP, and the medial-lateral reference line R are 

geometric reference elements that are depicted to illustrate the concept of the abduction angle a and 

acetabular alignment generally. These geometric reference elements need not be visible in practice.  

[0060] Many acetabular shells 106 are designed to be installed in the reamed acetabulum 

35 111 at an abduction angle a of about 30° to about 50°. However, this wide margin underscores the 
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difficulty in properly aligning an acetabular shell 106 in the reamed acetabulum 111 using 

conventional methods. Furthermore, the general guidance of having an abduction angle a of about 

300 to about 50° does not account for variability in particular patients.  

[0061] FIG. 3 also illustrates the concept of the anteversion angle 1. The anteversion 

5 angles can be calculated by several ways known to those having ordinary skill in the art. One such 

way to visualize the anteversion angle v of the acetabular shell 106 is to imagine the anteversion 

angles as the rotation of the acetabular shell 106 around the center diameter line D used in the 

abduction angle a visualization. A typical acetabular shell 106 may have an anteversion angle v in 

a range of about 10° to about 30, or about 10° to about 20°, or about 150 to about 25°. It will be 

10 appreciated that in practice, the alignment of the acetabular shell 106 within the reamed acetabulum 

111 is a compound angle comprising both the abduction angle a and the anteversion angle 1.  

Likewise, the alignment of the femoral stem 115 within the intramedullary bore 119 is a compound 

angle comprising both the abduction angle a and the anteversion angle 1.  

[0062] The anteversion angles of the femoral stem 115 typically has the same range of 

15 values of the anteversion angles of the acetabular shell 106 (i.e., a range of about 10 to about 30, 

or about 100 to about 200, or about 150 to about 25) because having a femoral stem 115 that aligns 

with an acetabular shell 106 along a common angle of anteversion (or anteversion plane) is one of 

the alignment parameters of a properly aligned endoprosthetic hip implant 102. Placing the femoral 

stem 115 in the intramedullary canal of the proximal femur 105 such that the longitudinal axis of 

20 the femoral stem is co-linear with the anatomical axis of the femur 105 into which the femoral stem 

115 is placed is another alignment parameter for a properly aligned femoral component 104 relative 

to a properly aligned acetabular component 103 to together define a properly aligned endoprosthetic 

hip implant 102. A third alignment parameter for the femoral stem 115 is the vertical position of 

the artificial femoral head 113 relative to the natural femoral head (see 126) of the operative hip 

25 prior to resection.  

[0063] FIG. 4 depicts a misaligned acetabular component 103 relative to the reamed 

acetabulum 111 and a femoral component 104 that is too short for the reamed femoral canal (also 

known as the intramedullary bore 119). As shown, the abduction angle a and the anteversion angle 

v are excessive. When the patient moves his or her hip during normal use, the neck 116 may contact 

30 the rim 2 of the acetabular shell 106. Collectively, the rim 2 and the neck 116 can become a fulcrum 

for a lever that can dislocate the artificial femoral head 113 from the acetabular component 103.  

Additionally, even if the femoral component 104 does not dislocate from the acetabular component 

103, the force distribution of the femoral head 113 relative to the inner liner 107 may be overly 

concentrated in a relatively small area, thereby increasing wear and reducing the longevity of the 

35 implant 102.  
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[0064] FIG. 4 also depicts a femoral stem 115 that is improperly sized and aligned 

relative to the intramedullary bore 119. Improper sizing can occur when the femoral reaming (also 

known as a "broaching") tool does not create an intramedullary bore 119 that is large enough to 

remove cancellous bone that is peripheral to the inner cortical wall 120 of the femur 105. Over time, 

5 the femoral stem 115 will compress any intermediate cancellous bone between the side of the 

femoral stem 115 and the inner cortical wall 120, which will cause the femoral stem to subside in 

the intramedullary bore 119 and to become misaligned relative to the proximal femur 105.  

Variability in broach placement can also lead to a varus tilt in which the longitudinal axis of the 

femoral stem 115 is disposed at a varus angle relative to the anatomical (i.e., central, or longitudinal) 

10 axis of the distal femur 105. For example, it is common that the surgeon will contact the lateral 

cortical wall 120 of the intramedullary canal 119 above the desired location of the femoral stem 

115. The surgeon may stop reaming upon contacting the lateral cortical wall 120 of the 

intramedullary canal 119 thinking that the patient has a narrow intramedullary canal 119 that will 

only accommodate a small femoral stem 115. In reality, the longitudinal axis of the femoral stem 

15 115 is disposed at a varus angle relative to the anatomical axis of the distal femur 105. This 

subsidence and misalignment can ultimately change the length of one of the patient's legs relative 

to the other leg, which in turn alters the patient's gait. A halting gait changes the force distribution 

through the patient's body, which can further accelerate the wear of the endoprosthetic hip implant 

102 as well as the wear of healthy cartilage 123 on the remaining natural hip joint 101b.  

20 [0065] Subsidence and misalignment of the femoral component 104 relative to the distal 

femur 105 can be especially difficult to achieve and to check with traditional 2D radiographs. This 

is because the femoral component 104 is inserted into the proximal femur 105 through the six to 

eight inch main incision. The surgeon's view of insertion is limited by the minimally invasive nature 

of the procedure and the femoral component is no longer visible to the unassisted eye once it enters 

25 the intramedullary bore 119. Traditional 2D intraoperative radiographs (such a fluoroscopic 

images) do not show the third dimension, and therefore cannot provide an accurate real world 

depiction of the operative area 170 in 3D space.  

[0066] Patient comfort and implant longevity are thought to depend in part on the 

placement and sizing of the artificial hip implant 102. In general, the more closely the placement 

30 of a properly sized implant replicates the natural kinematics of the pre-diseasedjoint, the longer the 

implant can be expected to last and the more comfort the patient can be expected to experience.  

[0067] In recent years, it has become possible to use 2D images, such as X-ray 

radiographs, to create 3D models of an operative area. These models can be used preoperatively to 

plan surgeries much closer to the date of the actual surgery. These models can also be used 

35 intraoperatively (e.g, when projected on a display or across a surgeon's field of view).  
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[0068] However, X-ray radiographs have typically not been used as inputs for 3D 

models previously because of concerns about image resolution and accuracy. X-ray radiographs are 

2D representations of 3D space. As such, a 2D X-ray radiograph necessarily distorts the image 

subject relative to the actual object that exists in three dimensions. Furthermore, the object through 

5 which the X-ray passes can deflect the path of the X-ray as it travels from the X-ray source 21 

(typically the anode of the X-ray machine; see FIG. 12) to the X-ray detector 33 (which may include 

by non-limiting example, X-ray image intensifiers, phosphorus materials, flat panel detectors 

"FPD" (including indirect conversion FPDs and direct conversion FPDs), or any number of digital 

or analog X-ray sensors or X-ray film; see FIG. 12). Defects in the X-ray machine (see 1800, FIG.  

10 12) itself or in its calibration can also undermine the usefulness of X-ray photogrammetry and 3D 

model reconstruction. Additionally, emitted X-ray photons have different energies. As the X-rays 

interact with the matter placed between the X-ray source 21 and the detector 33, noise and artifacts 

can be produced in part because of Compton and Rayleigh scattering, the photoelectric effect, 

extrinsic variables in the environment or intrinsic variables in the X-ray generation unit, X-ray 

15 detector, and/or processing units or displays.  

[0069] Moreover, in a single 2D image, the 3D data of the actual subject is lost. As such, 

there is no data that a computational machine 1600 (e.g., a computer) can use from a single 2D 

image to reconstruct a 3D model of the actual 3D object. For this reason, CT scans, MRIs, and other 

imaging technologies that preserve third dimensional data were often preferred inputs for 

20 reconstructing models of one or more subject orthopedic elements (i.e., reconstructing a 3D model 

from actual 3D data generally resulted in more accurate, higher resolution models). However, 

certain exemplary embodiments of the present disclosure that are discussed below overcome these 

issues by using deep learning networks to improve the accuracy of reconstructed 3D models 

generated from X-ray input images.  

25 [0070] There are a variety of methods to generate a 3D model from 2D preoperative or 

intraoperative images. By way of example, one such method may comprise receiving a set of 2D 

radiographic images of an operative area 170 of a patient with a radiographic imaging system, 

computing a first 3D model using epipolar geometry principles with a coordinate system of the 

radiographic imaging system and projective geometry data from the respective 2D images (see 

30 FIGS. 8 and 9A, 9B and 9C). Such an exemplary method may further comprise projecting the first 

3D model on the 2D radiographic images and then adjusting the initial 3D model by registering the 

first and second radiographic images 30, 50 on the first 3D model with an image-to-image 

registration technique. Once the image-to-image registration technique has been applied, a revised 

3D model may be generated. This process can repeat until the desired clarity in achieved.  
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[0071] By way of another example, a deep learning network (also known as a "deep 

neural network" ("DNN"), such as a convolutional neural network ("CNN"), recurrent neural 

network ("RNN"), modular neural network, or sequence to sequence model, can be used to generate 

a 3D model of the subject orthopedic element (i.e., a modeled orthopedic element 100b) from a set 

5 of at least two 2D images of an operative area 170 of a patient. The 2D input images 30, 50, etc.  

are desirably tissue-penetrating images, such as radiographic images (e.g., X-ray or fluoroscopy 

images). In such a method, the deep learning network can generate a model from the projective 

geometry data (i.e., spatial data 43 or volume data 75) from the respective 2D images. The deep 

learning network can have the advantage of being able to generate a mask of the different subject 

10 orthopedic elements 100 (e.g., bones, soft tissues, etc.) in the operative area 170 as well as being 

able to calculate a volume (see 61 , FIG. 7) of one or more imaged orthopedic elements 100. In 

exemplary embodiments, the dimensions of the identified orthopedic element 100 or of the 

component of an endoprosthetic implant assembly 102 can be mapped to spatial data 43 (FIG. 8) 

that is derived from the input images 30, 50 (FIG. 8) to ascertain the position of the identified 

15 orthopedic element 100 or the component of the endoprosthetic implant assembly in 3D space. In 

this manner, the positions of the identified orthopedic element 100 and of the component of the 

endoprosthetic implant (e.g., an acetabular component 104 or a femoral component 103) can be 

ascertained relative to each other. If this information is displayed to the surgeon and is updated in 

real time or near real time based upon the surgeon's repositioning of the implant component relative 

20 to the identified orthopedic element, the surgeon can use exemplary embodiments in accordance 

with this disclosure to accurately align the implant component relative to the identified orthopedic 

element in three dimensions, while bypassing the limited field of view offered by the main incision.  

[0072] It is contemplated that once the system is calibrated as discussed below, new 

tissue-penetrating images (i.e., less than the number of input images needed to calibrate the system) 

25 can be taken intraoperatively to update the reconstructed model of the operative area (e.g., to refresh 

the position of the identified component of the endoprosthetic implant related to another component 

of an endoprosthetic implant or relative to an identified orthopedic element). In other exemplary 

embodiments, the same number of new tissue-penetrating images as the number of input images 

chosen to calibrate the system can be used to refresh the position of the component of the 

30 endoprosthetic implant relative to another component of an endoprosthetic implant, or relative to 

and identified orthopedic element in the system.  

[0073] FIG. 5 is a flow chart outlining the steps of an exemplary method for ascertaining 

a position of an orthopedic element in space. The method comprises: step la calibrating a tissue

penetrating machine, such as a radiographic imaging machine 1800 to determine a mapping 

35 relationship between image points (e.g., XL, XR; FIG.8) and corresponding space coordinates (e.g., 
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x and y coordinates; FIG. 8) to define spatial data 43, step 2a capturing a first image 30 (FIG. 8) 

of an orthopedic element 100 using a radiographic imaging technique, wherein the first image 30 

defines a first reference frame 30a, step 3a capturing a second image 50 (FIG. 8) of the orthopedic 

element 100 using the radiographic imaging technique, wherein the second image 50 defines a 

5 second reference frame 50a, and wherein the first reference frame 30a is offset from the second 

reference frame 50a at an offset angle 0, step 4a using a deep learning network to detect the 

orthopedic element using the spatial data 43, the spatial data 43 defining anatomical landmarks on 

or in the orthopedic element 100, the detected orthopedic element defining an identified orthopedic 

element 100a, step 5a using the deep learning network to apply a mask to the identified orthopedic 

10 element 100a defined by an anatomical landmark, step 6a projecting the spatial data 43 from the 

first image 30 of the identified orthopedic element 100a and the spatial data 43 from the second 

image 50 of the identified orthopedic element 100a to define volume data 75 (FIG. 7), wherein the 

spatial data 43 comprising image points (e.g., XL, XR) disposed within a masked area of either the 

first image 30 or the second image 50 have a first value and wherein the spatial data 43 comprising 

15 image points (e.g., XL, XR) disposed outside of a masked area of either the first image 30 or the 

second image 50 have a second value, wherein the first value is different from the second value, 

step 7a applying the deep learning network to the volume data 75 to generate a reconstructed 3D 

model of the orthopedic element, to define a modeled orthopedic element 100b; and step 8a 

mapping the 3D modeled orthopedic element 100b to the spatial data 43. In other exemplary 

20 embodiments, step 4a can comprise detecting the spatial data 43 defining anatomical landmarks on 

or in the orthopedic element 100 using a deep learning network.  

[0074] FIG. 6 is a flow chart outlining the steps of another exemplary method for 

ascertaining a position of an orthopedic element in space. The method comprises: step lb 

calibrating a tissue-penetrating imaging machine, such as a radiographic imaging machine to 

25 determine a mapping relationship between image points (e.g., XL, XR) and corresponding space 

coordinates (e.g., x and y coordinates) to define spatial data 43, step 2b capturing a first image 30 

of an orthopedic element 100 using a radiographic imaging technique, wherein the first image 30 

defines a first reference frame 30a, step 3b capturing a second image 50 of the orthopedic element 

100 using the radiographic imaging technique, wherein the second image 50 defines a second 

30 reference frame 50a, and wherein the first reference frame 30a is offset from the second reference 

frame 50a at an offset angle 0, step 4b using a deep learning network to detect the orthopedic 

element 100 using the spatial data 43 to define an identified orthopedic element 100a, the spatial 

data 43 defining anatomical landmarks on or in the orthopedic element 100, step 5b using the deep 

learning network to apply a mask to the identified orthopedic element 100a defined by an 

35 anatomical landmark, step 6b projecting the spatial data 43 from the first image 30 of the identified 
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orthopedic element 100a and the spatial data 43 from the second image 50 of the identified 

orthopedic element 100a to define volume data 75, wherein the spatial data 43 comprising image 

points (e.g., XL, XR) disposed within a masked area of either the first image 30 or the second image 

50 have a first value and wherein the spatial data 43 comprising image points (e.g., XL, XR) disposed 

5 outside of a masked area of the either the first image 30 or the second image 50 have a second 

value, wherein the first value is different from the second value, step 7b applying the deep learning 

network to the volume data 75 to generate a reconstructed 3D model of the orthopedic element to 

define a modeled orthopedic element 100b; and step 8b mapping the modeled orthopedic element 

100b to the spatial data 43, wherein the orthopedic element is a reamed acetabulum 111 of a pelvis 

10 110. In other exemplary embodiments, step 4b can comprise detecting the spatial data 43 defining 

anatomical landmarks on or in the identified orthopedic element 100a using a deep learning 

network.  

[0075] It will be appreciated that in certain exemplary embodiments, the deep learning 

network can be the same deep learning network that has been separately trained to perform the 

15 discrete tasks (e.g., identification of the orthopedic element 100 to define an identified orthopedic 

element 100a, applying a mask to the identified orthopedic element 100a, modeling the identified 

orthopedic element 100a to define a modeled orthopedic element 100b, etc.). In other exemplary 

embodiments, a different deep learning network can be used to perform one or more of the discrete 

tasks.  

20 [0076] It is contemplated that exemplary methods and systems in accordance with this 

disclosure may be used in connection with a total hip arthroplasty ("THA"). In such exemplary 

embodiments, the orthopedic element 100 can be a femur 105, femoral head 126, pelvis 110, 

acetabular cavity of the pelvis (e.g., a natural acetabulum 108 or a reamed acetabulum 111), and 

other boney anatomical landmark present in or near the operative area 170. However, it will be 

25 appreciated that nothing in this disclosure limits the application of the exemplary systems and 

methods to use in a THA procedure. It is contemplated that exemplary systems and methods can be 

useful in any surgical procedure in which the presence of a significant amount of tissue obscures 

the view of the orthopedic element 100 or of the operative area 170 generally. Surgeries involving 

the shoulder, knee, or spine can be prime examples. Pediatric cardiothoracic procedures can be 

30 another example. Systems and methods in accordance with the present disclosure can further be 

useful with wrist and ankle procedures even though the surgeon's visual field is generally less 

obscured by surrounding tissue than in shoulder, hip, and spinal procedures.  

[0077] The above examples are provided for illustrative purposes and are in no way 

intended to limit the scope of this disclosure. All methods for generating a 3D model from 2D 
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radiographic images of the same subject taken from at least two transverse positions are considered 

to be within the scope of this disclosure.  

[0078] FIGs. 7 and 8 illustrate how the first input image 30 and the second input image 

50 can be combined to create a volume 61 comprising volume data 75 (FIG. 7). In FIG.7, the 

5 imaged operative area 170 is of a knee joint. FIG. 7 provides an example of how a deep learning 

network can take volume data 75 from two calibrated input images 30, 50 that are offset from one 

another by an offset angle 0, can generate one or more modeled orthopedic elements 100b from the 

volume data 75. In FIG. 7, the operative area 170 is that of a knee joint.  

[0079] FIG. 8 illustrates basic principles of epipolar geometry than can be used to 

10 convert spatial data 43 from the respective input images 30, 50 into volume data 75. It will be 

appreciated that the spatial data 43 is defined by a collection of image points (e.g., XL, XR) mapped 

to corresponding space coordinates (e.g., x and y coordinates) for a given input image 30, 50.  

[0080] FIG. 8 is a simplified schematic representation of a perspective projection 

described by the pinhole camera model. FIG. 8 conveys basic concepts related to computer stereo 

15 vison, but it is by no means the only method by which 3D models can be reconstructed from 2D 

stereo images. In this simplified model, rays emanate from the optical center (i.e., the point within 

a lens at which the rays of electromagnetic radiation (e.g., visible light, X-rays, etc.) from the 

subject object are assumed to cross within the imaging machine's sensor or detector array 33 (FIG.  

12). The optical centers are represented by points OL, OR in FIG.8. In reality, the image plane (see 

20 30a, 50a) is usually behind the optical center (e.g., OL, OR) and the actual optical center is projected 

onto the detector array 33 as a point, but virtual image planes (see 30a, 50a) are presented here for 

illustrating the principles more simply.  

[0081] The first input image 30 is taken from a first reference frame 30a, while the 

second input image 50 is taken from a second reference frame 50a that is different from the first 

25 reference frame 30a. Each image comprises a matrix of pixel values. The first and second reference 

frames 30a, 50a are desirably offset from one another by an offset angle 0. The offset angle 0 can 

represent the angle between the x-axis of the first reference frame 30a relative to the x-axis of the 

second reference frame 50a. Stated differently, the angle between the orientation of the orthopedic 

element in the first image and the orthopedic element in the second image can be known as the 

30 "offset angle." 

[0082] Point eL is the location of the second input image's optical center OR on the first 

input image 30. Point eR is the location of the first input image's optical center OL on the second 

input image 50. Points eL and eR are known as "epipoles" or epipolar points and lie on line OL - OR.  

The points X, OL, OR define an epipolar plane.  
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[0083] Because the actual optical center is the assumed point at which incoming rays of 

electromagnetic radiation from the subject object cross within the detector lens, in this model, the 

rays of electromagnetic radiation can actually be imagined to emanate from the optical centers OL, 

OR for the purpose of visualizing how the position of a 3D point X in 3D space can be ascertained 

5 from two or more input images 30, 50 captured from a detector 33 of known relative position. If 

each point (e.g., XL) of the first input image 30 corresponds to a line in 3D space, then if a 

corresponding point (e.g., XR) can be found in the second input image, then these corresponding 

points (e.g., XL, XR) must be the projection of a common 3D point X. Therefore, the lines generated 

by the corresponding image points (e.g., XL, XR) must intersect at 3D point X. In general, if the 

10 value of X is calculated for every corresponding image points (e.g., XL, XR) in two or more input 

images 30, 50, a 3D volume 61 comprising volume data 75 can be reproduced from the two or more 

input images 30, 50. The value of any given 3D point X can be triangulated in a variety of ways. A 

non-limiting list of example calculation methods include the mid-point method, the direct linear 

transformation method, the essential matrix method, the line-line intersection method, and the 

15 bundle adjustment method. Furthermore, in certain exemplary embodiments, a deep learning 

network can be trained on a set of input images to establish a model for determining the position of 

a given point in 3D space based upon two or more input images of the same subject, wherein the 

first input image 30 is offset from the second input image 50 at an offset angle 0. It will further be 

appreciated that combinations of any of the above methods are within the scope of this disclosure.  

20 [0084] It will be appreciated that "image points" (e.g., XL, XR) described herein may 

refer to a point in space, a pixel, a portion of a pixel, or a collection of adjacent pixels. It will also 

be appreciated that 3D point X as used herein can represent a point in 3D space. In certain 

exemplary applications, 3D point X may be expressed as a voxel, a portion of a voxel, or a collection 

of adjacent voxels.  

25 [0085] However, before principles of epipolar geometry can be applied, the position of 

each image detector 33 relative to the other image detector(s) 33 should be determined (or the 

position of a sole image detector 33 must be determined at the point in time in which the first image 

30 was taken and the adjusted position of the sole image detector 33 should be known at the point 

in time in which the second image 50 was taken). It can also be desirable to determine the focal 

30 length and the optical center of the imaging machine 1800. To ascertain this practically, the image 

detector 33 (or image detectors) is/are first calibrated. FIGS. 9A, 9B, and 9C depict calibration jigs 

973A, 973B, 973C relative to subject orthopedic elements 100. In these figures, the example 

orthopedic elements 100 include are the proximal aspect of the femur 105 and the natural 

acetabulum 108 of the pelvis 110 that comprises a hip joint 101.  
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[0086] Although at least two input images 30, 50 are technically required for calibrating 

the exemplary systems described herein, at least three input images 30, 50, 70 can be desirable 

when the input images are radiographic input images and wherein the target operative area 170 

involves a contralateraljoint that cannot be easily isolated from radiographic imaging. For example, 

5 the pelvis 110 comprises contralateral acetabula 108. A direct medial-lateral radiograph of the 

pelvis 110 would show both the acetabulum that is proximal to the detector 33 and the acetabulum 

that is distal to the detector 33. However, because of the positioning of the pelvis 110 relative to 

the detector 33 and because a single 2D radiograph lacks 3D data, the relative acetabula will appear 

superimposed upon one another and it would be difficult for a person or a computational machine 

10 1600 to distinguish which is the proximal and which is the distal acetabulum.  

[0087] To address this issue, at least three input images 30, 50, 70 can be used. In one 

exemplary embodiment, the first input image 30 can be a radiograph that captures an anterior

posterior perspective of the operative area 170 (i.e., an example of a first reference frame 30a). For 

the second input image 50, the patient or the detector 33 can be rotated clockwise (which can be 

15 designated by a positive degree) or counterclockwise (which can be designated by a negative 

degree) relative to the patient's orientation for the first input image 30. For example, for the second 

input image 50, the patient may be rotated plus or minus 45 from the patient's orientation in the 

first input image 30. Likewise, the patient may be rotated clockwise or counterclockwise relative 

to the patient's orientation for the first input image 30. For example, for the third input image 70, 

20 the patient may be rotated plus or minus 45 relative to the patient's orientation in the first input 

image 30. It will be appreciated that if the second input image 50 has a positive offset angle (e.g., 

+ 450) relative to the orientation of the first input image 30, the third input angle 70 desirably has a 

negative offset angle (e.g., - 450) relative to the orientation of the first input image 30 and vice 

versa.  

25 [0088] In exemplary embodiments, the principles or epipolar geometry can be applied 

to at least three input images 30, 50, 70 taken from at least three different reference frames 30a, 

50a, 70a to calibrate exemplary systems.  

[0089] FIG. 9A is an anterior-posterior view of the example orthopedic elements 100 

(e.g., a proximal femur 105, a natural acetabulum 108, a pelvis 110, articular cartilage, other soft 

30 tissue, etc.) in an example operative area 170. That is, FIG. 9A represents a first image 30 taken 

from a first reference frame 30a (e.g., a first transverse position). A first calibration jig 973A is 

attached to a first holding assembly 974A. The first holding assembly 974A may comprise a first 

padded support 971A engaged to a first strap 977A. The first padded support 971A is attached 

externally to the patient's thigh via the first strap 977A. The first holding assembly 974A supports 

35 the first calibration jig 973A that is oriented desirably parallel to the first reference frame 30a (i.e., 
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orthogonal to the detector 33). The calibrationjig 973A is desirably positioned sufficiently far away 

from the desired subject orthopedic elements 100 such that the calibration jig 973A do not overlap 

any subject orthopedic element 100. Overlapping my obscure desirable image data.  

[0090] FIG. 9B is a view of the example orthopedic elements 100 (e.g., a proximal femur 

5 105, a natural acetabulum 108, a pelvis 110, articular cartilage, other soft tissue, etc.) of the example 

operative area 170 of FIG. 9A that is positively offset from the first reference frame 30a by 45°.  

That is, FIG. 9B represents a second input image 50 taken from a second reference frame 50a (e.g., 

a second transverse position). A second calibration jig 973B is attached to the second holding 

assembly 974B. The second holding assembly 974B may comprise a second padded support 971B 

10 engaged to a second strap 977B. The second padded support 971B is attached externally to the 

patient's thigh via the second strap 977B. The second holding assembly 974B supports the second 

calibration jig 973B that is oriented desirably parallel to the second reference frame 50a (i.e., 

orthogonal to the detector 33). The calibrationjig 973B is desirably positioned sufficiently far away 

from the subject orthopedic elements 100 such that the calibration jig 973B does not overlap any 

15 subject orthopedic element 100.  

[0091] FIG. 9C is a view of the example orthopedic elements 100 (e.g., a proximal 

femur 105, a natural acetabulum 108, a pelvis 110, articular cartilage, other soft tissue, etc.) of the 

example operative area 170 of FIG. 9A that is negatively offset from the first reference frame 30a 

by 45°. That is, FIG. 9C represents a third input image 70 taken from a third reference frame 70a 

20 (e.g., a third transverse position). A third calibration jig 973C is attached to the third holding 

assembly 974C. The third holding assembly 974C may comprise a third padded support 971C 

engaged to a third strap 977C. The third padded support 971C is attached externally to the patient's 

thigh via the third strap 977C. The third holding assembly 974C supports the third calibration jig 

973C that is oriented desirably parallel to the third reference frame 70a (i.e., orthogonal to the 

25 detector 33). The calibration jig 973C is desirably positioned sufficiently far away from the subject 

orthopedic elements 100 suchthatthe calibrationjig 973C does notoverlap any subject orthopedic 

element 100.  

[0092] If the system is calibrated preoperatively, the patient may be posited in the 

standing position (i.e., the leg is in extension) because the hipjoint is stable in this orientation (see 

30 FIG. 12). If the system in calibrated intraoperatively, the patient may be lying supine on the 

operating table. Preferably, the patient's distance relative to the imaging machine should not be 

altered during the acquisition of the input images 30, 50, 70. The first, second, and third input 

images 30, 50, 70 need not capture the entire leg, rather the image can focus on the joint that will 

be the subject of the operative area 170.  
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[0093] It will be appreciated that depending upon the subject orthopedic elements 100 

to be imaged and modeled, only a single calibrationjig 973 may be used. Likewise, if a particularly 

long collection of orthopedic elements 100 are to be imaged and modeled, more than one calibration 

jigs 973 may be used.  

5 [0094] Each calibration jig 973A, 973B, 973C is desirably of a known size. Each 

calibration jig 973A, 973B, 973C desirably has at least four or more calibration points 978 

distributed throughout. The calibration points 978 are distributed in a known pattern in which the 

distance from one point 978 relative to the others is known. The distance from the calibration jig 

973 from an orthopedic element 100 can also desirably be known. For calibration of an X-ray 

10 photogrammetry system, the calibration points 978 may desirably be defined by metal structures 

on the calibration jig 973. Metal typically absorbs most X-ray beams that contact the metal. As 

such, metal typically appears very brightly relative to material that absorbs less of the X-rays (such 

as air cavities or adipose tissue). Common example structures that define calibration points include, 

but are not limited to: reseau crosses, circles, triangles, pyramids, and spheres.  

15 [0095] These calibration points 978 can exist on a 2D surface of the calibration jig 973, 

or 3D calibration points 978 can be captured as 2D projections from a given image reference frame.  

In either situation, the 3D coordinate (commonly designated the z coordinate) can be set to equal 

zero for all calibration points 978 captured in the image. The distance between each calibration 

point 978 is known. These known distances can be expressed as x, y coordinates on the image 

20 sensor/detector 33. To map a point in 3D space to a 2D coordinate pixel on a sensor 33, the dot 

product of the detector's calibration matrix, the extrinsic matrix and the homologous coordinate 

vector of the real 3D point can be used. This permits the real world coordinates of a point in 3D 

space to be mapped relative to calibration jig 973. Stated differently, this generally permits the x, y 

coordinates of the real point in 3D space to be transformed accurately to the 2D coordinate plane 

25 of the image detector's sensor 33 to define spatial data 43 (see FIG. 8).  

[0096] The above calibration method is provided as an example. It will be appreciated 

that all methods suitable for calibrating an X-ray photogrammetry system are considered to be 

within the scope of this disclosure. A non-limiting list of other X-ray photogrammetry system 

calibration methods include the use of a reseau plate, the Zhang method, the bundle adjustment 

30 method, direct linear transformation methods, maximum likelihood estimation, a k-nearest 

neighbor regression approach ("KNN"), a convolutional neural network ("CNN") based approach, 

other deep learning methods, or combinations thereof 

[0097] FIG. 7 illustrates the principle of how two calibrated input images 30, 50, when 

oriented along the known offset angle 0, can be back projected into a 3D volume 61 comprising 

35 two channels 65, and 66. The first channel 65 contains all the image points (e.g., XL etc.) of the first 
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input image 30 and the second channel 66 contains all the image points (e.g, XR etc.) of the second 

input image 50. That is, each image point (e.g, pixel) is replicated over its associated back

projected 3D ray. Next, epipolar geometry can be used to generate a volume 61 of the imaged 

operative area 170 comprising volume data 75 from these back projected 2D input images 30, 50.  

5 If a third input image 70 is used, a third channel containing all of the image points of the third input 

image 70 can be present.  

[0098] Referring to FIG. 7, the first input image 30 and the second input image 50 

desirably have known image dimensions. The dimensions may be pixels. For example, the first 

image 30 may have dimensions of 164 x 164 pixels. The second image 50 may have dimensions of 

10 164 x 164 pixels. The dimensions of the input images 30, 50 used in a particular computation 

desirably have consistent dimensions. Consistent dimensions may be desirable for later defining a 

cubic working area of regular volume 61 (e.g, a 164 x 164 x 164 cube). In embodiments, the offset 

angle 0 is desirably 450 between each adjacent input image. However, other offset angles 0 may be 

used in other exemplary embodiments. For example, in FIG. 7, the offset angle 0 is 90.  

15 [0099] In the depicted example, each of the 164 x 164 pixel input images 30, 50 are 

replicated 164 times over the length of the adjacent input image to create a volume 61 having 

dimensions of 164 x 164 x 164 pixels. That is, the first image 30 is copied and stacked behind itself 

at one copy per pixel for 164 pixels while the second image 50 is copied and stacked behind itself 

for 164 pixels such that stacked images overlap to thereby create the volume 61. In this manner, the 

20 volume 61 can be said to comprise two channels 65, 66, wherein the first channel 65 comprises the 

first image 30 replicated n times over the length of the second image 50 (i.e., the x-axis of the 

second image 50) and the second channel 66 comprises the second image 50 replicated m times 

over the length of the first image 30 (i.e., the x-axis of the first image 30), wherein "n" and "n" are 

the length of the indicated image as expressed as the number of pixels (or other dimensions on other 

25 exemplary embodiments) that comprise the length of the indicated image. If the offset angle 0 is 

known, each transverse slice (also known as an "axial slice" by some radiologists) of the volume 

61 creates an epipolar plane comprising voxels that are back projected from the pixels that comprise 

the two epipolar lines. In this manner, projecting spatial data 43 from the first image 30 of the 

subject orthopedic element 100 and the spatial data 43 from the second image 50 of the subject 

30 orthopedic element 100 defines the volume data 75. Using this volume data 75, the 3D 

representation can be reconstructed using epipolar geometric principles as discussed above; the 3D 

representation is consistent geometrically with the information in the input images 30, 50.  

[00100] In exemplary systems and methods for identifying an orthopedic element and/or 

a component of an endoprosthetic implant and in exemplary systems and methods for ascertaining 

35 a position of an orthopedic element and a component of an endoprosthetic implant in space using a 

23



WO 2023/056261 PCT/US2022/077111 

deep learning network, wherein the deep learning network is a CNN, a detailed example of how the 

CNN can be structured and trained is provided. All architecture of CNNs are considered to be within 

the scope of this disclosure. Common CNN architectures include by way of example, LeNet, 

GoogLeNet, AlexNet, ZFNet, ResNet, and VGGNet.  

5 [00101] Preferably, the methods disclosed herein may be implemented on a computer 

platform (see 1600) having hardware such as one or more central processing units (CPU), a random 

access memory (RAM), and input/output (I/O) interface(s).  

[00102] FIG. 10 is a schematic representation of a CNN that illustrates how the CNN can 

be used to identify the edges of a subject orthopedic element 100. Without being bound by theory, 

10 it is contemplated that a CNN may be desirable for reducing the size of the volume data 75 without 

losing features that are necessary to identify the desired orthopedic element 100 or its surface 

topography. The volume data 75 of the multiple back projected input images 30, 50 is a 

multidimensional array that can be known as an "input tensor." This input tensor comprises the 

input data (which is the volume data 75 in this example) for the first convolution. A filter (also 

15 known as a kernel 69) is shown disposed in the volume data 75. The kernel 69 is a tensor (i.e., a 

multi-dimensional array) that defines a filter or function (this filter or function is sometimes known 

as the "weight" given to the kernel). In the depicted embodiment, the kernel tensor 69 is three 

dimensional. The filter or function that comprises the kernel 69 can be programed manually or 

learned through the CNN, RNN, or other deep learning network. In the depicted embodiment, the 

20 kernel 69 is a 3x3x3 tensor although all tensor sizes and dimensions are considered to be within the 

scope of this disclosure, provided that the kernel tensor size is less than the size of the input tensor.  

[00103] Each cell or voxel of the kernel 69 has a numerical value. These values define the 

filter or function of the kernel 69. A convolution or cross-correlation operation is performed 

between the two tensors. In FIG. 10, the convolution is represented by the path 76. The path 76 

25 that the kernel 69 follows is a visualization of the mathematical convolution operation. Following 

this path 76, the kernel 69 eventually and sequentially traverses the entire volume 61 of the input 

tensor (e.g., the volume data 75). The goal of this operation is to extract features from the input 

tensor.  

[00104] Convolution layers 72 typically comprise one or more of the following 

30 operations: a convolution stage 67, a detector stage 68, and a pooling stage 58. Although these 

respective operations are represented visually in the first convolution layer 72a in FIG. 10, it will 

be appreciated that the subsequent convolution layers 72b, 72c, etc. may also comprise one or more 

or all of the convolution stage 67, detector stage 68, and pooling layer 58 operations or 

combinations or permutations thereof Furthermore, although FIG. 10, depicts five convolution 
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layers 72a, 72b, 72c, 72d, 72e of various resolutions, it will be appreciated that more or less 

convolution layers may be used in other exemplary embodiments.  

[00105] In the convolution stage 67, the kernel 69 is sequentially multiplied by multiple 

patches of pixels in the input data (i.e., the volume data 75 in the depicted example). The patch of 

5 pixels extracted from the data is known as the receptive field. The multiplication of the kernel 69 

and the receptive field comprises an element-wise multiplication between each pixel of the 

receptive field and the kernel 69. After multiplication, the results are summed to form one element 

of a convolution output. This kernel 69 then shifts to the adjacent receptive field and the element

wise multiplication operation and summation continue until all the pixels of the input tensor have 

10 been subjected to the operation.  

[00106] Until this stage, the input data (e.g., the volume data 75) of the input tensor has 

been linear. To introduce non-linearity to this data, a nonlinear activation function is then employed.  

Use of such a non-linear function marks the beginning of the detector stage 68. A common non

linear activation function is the Rectified Linear Unit function ("ReLU"), which is given by the 

15 function: 

[00107] ReLU(x) txifx OI 

[00108] When used with bias, the non-linear activation function serves as a threshold for 

detecting the presence of the feature extracted by the kernel 69. For example, applying a 

convolution or a cross-correlation operation between the input tensor and the kernel 69, wherein 

20 the kernel 69 comprises a low level edge filter in the convolution stage 67 produces a convolution 

output tensor. Then, applying a non-linear activation function with a bias to the convolution output 

tensor will return a feature map output tensor. The bias is sequentially added to each cell of the 

convolution output tensor. For a given cell, if the sum is greater than or equal to 0 (assuming ReLU 

is used in this example), then the sum will be returned in the corresponding cell of the feature map 

25 output tensor. Likewise, if the sum is less than 0 for a given cell, then the corresponding cell of the 

feature map output tensor will be set to 0. Therefore, applying non-linear activation functions to the 

convolution output behaves like a threshold for determining whether and how closely the 

convolution output matches the given filter of the kernel 69. In this manner, the non-linear 

activation function detects the presence of the desired features from the input data (e.g., the volume 

30 data 75 in this example).  

[00109] All non-linear activation functions are considered to be within the scope of this 

disclosure. Other examples include the Sigmoid, TanH, Leaky ReLU, parametric ReLU, Softmax, 

and Switch activation functions.  
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[00110] However, a shortcoming of this approach is that the feature map output of this 

first convolutional layer 72a records the precise position of the desired feature (in the above 

example, an edge). As such, small movements of the feature in the input data will result in a 

different feature map. To address this problem and to reduce computational power, down sampling 

5 is used to lower the resolution of the input data while still preserving the significant structural 

elements. Down sampling can be achieved by changing the stride of the convolution along the input 

tensor. Down sampling is also achieved by using a pooling layer 58.  

[00111] Valid padding may be applied to reduce the dimensions of the convolved tensor 

(see 72b) compared to the input tensor (see 72a). A pooling layer 58 is desirably applied to reduce 

10 the spatial size of the convolved data, which decreases the computational power required to process 

the data. Common pooling techniques, including max pooling and average pooling may be used.  

Max pooling returns the maximum value of the portion of the input tensor covered by the kernel 

69, whereas average pooling returns the average of all the values of the portion of the input tensor 

covered by the kernel 69. Max pooling can be used to reduce image noise.  

15 [00112] In certain exemplary embodiments, a fully connected layer can be added after the 

final convolution layer 72e to learn the non-linear combinations of the high level features (such as 

for example, the profile of an imaged natural acetabulum 108, the profile of a reamed acetabulum 

109, or the surface topology of the orthopedic element) represented by the output of the 

convolutional layers.  

20 [00113] When used on an orthopedic element 100, the above description of a CNN type 

deep learning network is one example of how a deep learning network can be "configured to 

identify" an orthopedic element 100 to define an "identified orthopedic element" 100a.  

[00114] The top half of FIG. 10 represents compression of the input volume data 75, 

whereas the bottom half represents decompression until the original size of the input volume data 

25 75 is reached. The output feature map of each convolution layer 72a, 72b, 72c, etc. is used as the 

input for the following convolution layer 72b, 72c, etc. to enable progressively more complex 

feature extraction. For example, the first kernel 69 may detect edges, a kernel in the first convolution 

layer 72b may detect a collection of edges in a desired orientation, a kernel in a third convolution 

layer 72c may detect a longer collection of edges in a desired orientation, etc. This process may 

30 continue until the entire profile of the desired orthopedic element 100 is detected and identified by 

a downstream convolution layer 72.  

[00115] The bottom half of FIG. 10 up-samples (i.e., expands the spatial support of the 

lower resolution feature maps. A de-convolution operation is performed in order to increase the 

size of the input for the next downstream convolutional layer (see 72c, 72d, 72e). For the final 

35 convolution layer 72e, a convolution can be employed with a 1 x 1 x 1 kernel 69 to produce a multi
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channel output volume 59 that is the same size as the input volume 61. Each channel of the multi

channel output volume 59 can represent a desired extracted high level feature. This can be followed 

by a Softmax activation function to detect the desired orthopedic elements 100. For example, the 

depicted embodiment may comprise five output channels numbered 0, 1, 2, 3, 4, wherein channel 

5 0 represents identified background volume, channel 1 represents the identified proximal femur 105, 

channel 2 represents the identified reamed acetabulum 111, channel 3 represents the identified 

acetabular component 103, and channel 4 represents the identified femoral component 104.  

[00116] It will be appreciated that less output channels or more output channels may be 

used in other exemplary embodiments. It will also be appreciated that the provided output channels 

10 may represent different orthopedic elements 100 and components of endoprosthetic implants than 

those listed here.  

[00117] For example, in exemplary embodiments in which the system is configured to 

identify an orthopedic element 100, wherein the orthopedic element 100 is the inner cortical wall 

120 of the proximal femur 105 and in which the system is configured to identify a component of 

15 an endoprosthetic implant, wherein the component of the endoprosthetic implant is a trial 

component construct, the exemplary embodiment may comprise three output channels numbered 

0, 1, 2, wherein channel 0 represents identified background volume, channel 1 represents the inner 

cortical wall 120 of the proximal femur 105, and channel 2 represents the identified femoral 

component 104. A "trial component construct" as used in the above example, when the trial 

20 component construct describes a construct to be used in the proximal femur 105 can include a 

broach, trial neck, and trial head assembly, or a trial stem.  

[00118] In exemplary embodiments in which the system is configured to identify an 

orthopedic element 100, wherein the orthopedic element 100 is the reamed acetabulum 111 of the 

pelvis 110 and in which the system is configured to identify a component of an endoprosthetic 

25 implant, wherein the component of the endoprosthetic implant is an acetabular component 103 or 

a trial acetabular component, the exemplary embodiment may comprise three output channels 

numbered 0, 1, 2, wherein channel 0 represents identified background volume, channel 1 represents 

the reamed acetabulum 111 ofthepelvis 110, and channel 2 represents the an acetabular component 

103 or the trial acetabular component.  

30 [00119] Such exemplary embodiments can optionally comprise additional output 

channels, such as an output channel that represents the outer wall of the proximal femur 105. Other 

output channels can be used to output the abduction angle a and the anteversion angle respectively 

of the identified component of an endoprosthetic implant relative to the identified orthopedic 

element 100a in which the component of the endoprosthetic implant sits. Still other output channels 

35 may be used to output (by way of non-limiting examples) a determined size dimension of the 
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identified orthopedic element, a recommended component type/product model of an endoprosthetic 

implant, a recommended component size of an endoprosthetic implant, a "best fit" output of a 

recommend component or of a recommended component size relative to the dimensions of the inner 

cortical wall 120, an alignment calculation of the longitudinal axis of the femoral component 104, 

5 a trial component construct relative to an anatomical axis of the proximal femur 105, the calculated 

center of the acetabulum, or the alignment of a longitudinal axis of the neck of the femoral 

component 104 relative to the center of the artificial femoral head 113. Combinations of any of the 

foregoing are considered to be within the scope of this disclosure.  

[00120] When used on a component of an endoprosthetic implant or subcomponents 

10 thereof, the above description of a CNN type deep learning network is one example of how a deep 

learning network can be "configured to identify" a component of an endoprosthetic implant (or 

subcomponents thereof) to define an identified component of the endoprosthetic implant. When 

used on an endoprosthetic implant, the above description of a CNN type deep learning network is 

one example of how a deep learning network can be "configured to identify" an endoprosthetic 

15 implant to define an "identified endoprosthetic implant." It will be further understood that when 

applied to multiple orthopedic elements, multiple components of endoprosthetic implants, multiple 

endoprosthetic implants, or combinations thereof, the above description of a CNN type deep 

learning network is one example of how a deep learning network can be "configured to identify" 

multiple orthopedic elements, multiple components of endoprosthetic implants, subcomponents 

20 thereof, multiple endoprosthetic implants, or combinations thereof as the case may be. Other deep 

learning network architectures known or readily ascertainable by those having ordinary skill in the 

art are also considered to be within the scope of this disclosure.  

[00121] In exemplary embodiments, select output channels comprising output volume 

data 59 of the desired orthopedic element 100 can be used to generate a modeled orthopedic element 

25 100b, a modeled component of an endoprosthetic implant (e.g., an acetabular cup 106, a femoral 

stem 115, etc.). In certain exemplary embodiments, the modeled orthopedic element 100b is a 

computer model. In other exemplary embodiments, the modeled orthopedic element 100b is a 

physical model.  

[00122] Although the above example described the use of a three dimensional tensor 

30 kernel 69 to convolve the input volume data 75, it will be appreciated that the general model 

described above can be used with 2D spatial data 43 from any of the calibrated input images 30, 

50, 70. In other exemplary embodiments, a machine learning algorithm (i.e., a deep learning 

network (such as for example, a CNN)) can be used after calibration of the imaging machine 1800 

but before 2D to 3D reconstruction. That is, the CNN can be used to detect features (e.g., anatomical 

35 landmarks) of a subject orthopedic element 100 from the first reference frame 30a, the second 
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reference frame 50a, or the third reference frame 70a of the 2D input images 30, 50, 70. In 

exemplary embodiments, a CNN may be used to identify high level orthopedic elements (e.g., the 

proximal femur 105 and a portion of the surface topology of the subject orthopedic element 100), 

components of an endoprosthetic implant (e.g., the acetabular cup 106, femoral stem 115, etc.) or 

5 the endoprosthetic implant itself (e.g. the hip endoprosthetic implant 102) from the 2D input images 

30, 50, 70. The CNN may then optionally apply a mask or an outline to the detected orthopedic 

element 100, component of an endoprosthetic implant, or the endoprosthetic implant itself It is 

contemplated that if the imaging machine 1800 is calibrated, and if the CNN identified multiple 

corresponding image points (e.g., XL, XR) of features between the at least two input images 30, 50, 

10 then the transformation matrices between the reference frames 30a, 50a of a subject orthopedic 

element 100, component of an endoprosthetic implant, or the endoprosthetic implant itself can be 

used to align the multiple corresponding image points in 3D space. In this manner, the position of 

the points in 3D space can be determined to correspond to a set of coordinates in 3D space. In this 

manner, the 3D points can be said to be "mapped" to spatial data. A deep learning network that is 

15 capable of modeling this relationship in this manner or in other manners developed by the deep 

learning network can be said to be "configured to map" the identified orthopedic element, the 

identified component of the endoprosthetic implant, and/or the endoprosthetic implant itself (as the 

case may be) to spatial data ascertained by the first input image 30 and the second input image 50 

(and optionally the third input image 70 or further input images or 'new' refreshing images) to 

20 thereby determine the position of the identified orthopedic element 100a, the identified component 

of the endoprosthetic implant, and/or the endoprosthetic implant itself (as the case may be) in three 

dimensional space.  

[00123] In embodiments wherein any of the first input image 30, the second input image 

50, or the third input image 70 are radiographic X-ray images (including, but not limited to 

25 fluoroscopic radiographic images), training a CNN can present several challenges. By way of 

comparison, CT scans typically produce a series of images of the desired volume. Each CT image 

that comprises a typical CT scan can be imagined as a segment of the imaged volume. From these 

segments, a 3D model can be created relatively easily by adding the area of the desired element as 

the element is depicted in each successive CT image. The modeled element can then be compared 

30 with the data in the CT scan to ensure accuracy. One drawback of CT scans is that CT scans expose 

the patient to excessive amounts of radiation (about seventy times the amount radiation of one 

traditional radiograph).  

[00124] By contrast, radiographic imaging systems typically do not generate sequential 

images that capture different segments of the imaged volume; rather, all of the information of the 

35 image is flattened on the 2D plane. Additionally, because a single radiographic image 30 inherently 
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lacks 3D data, it is difficult to check the model generated by the epipolar geometry reconstruction 

technique described above with the actual geometry of the target orthopedic element 100. To 

address this issue, the CNN can be trained with CT images, such as digitally reconstructed 

radiograph ("DRRs") images. By training the deep learning network in this way, the deep learning 

5 network can develop its own weights (e.g., filters) for the kernels 69 to identify a desired orthopedic 

element 100 or surface topography of a subject orthopedic element 100. Because X-ray radiographs 

have a different appearance than DRRs, image-to-image translation can be performed to render the 

input X-ray images to have a DRR-style appearance. An example image-to-image translation 

method is the Cycle-GAN image translation technique. In embodiments in which image-to-image 

10 style transfer methods are used, the style transfer method is desirably used prior to inputting the 

data into a deep learning network for feature detection.  

[00125] The above examples are provided for illustrative purposes and are in no way 

intended to limit the scope of this disclosure. All methods for generating a 3D model of the subject 

orthopedic element 100 from 2D radiographic images of the same subject orthopedic element 100 

15 taken from at least two transverse positions (e.g., 30a, 50a) are considered to be within the scope 

of this disclosure.  

[00126] Determining the metes and bounds of a particular identified orthopedic element 

100a component of the endoprosthetic implant, and/or the endoprosthetic implant, component of 

the endoprosthetic implant, and/or the endoprosthetic implant itself and their precise coordinates in 

20 3D space, permits the position of the identified orthopedic element 100a, component of the 

endoprosthetic implant, and or the endoprosthetic implant, component of the endoprosthetic 

implant, and or the endoprosthetic implant to be known while bypassing the limited field of view 

offered to the surgeon through the main incision. If the position of the identified orthopedic element 

100a is known, and if the position of the identified component of the endoprosthetic implant is 

25 known, then this information can be used to check against the desired alignment parameters of the 

implant component relative to the identified orthopedic element 100a into which the implant 

component is installed (e.g. an acetabular shell 106 installed into a reamed acetabulum 111, a 

femoral stem 115 installed into the intramedullary canal of the proximal femur 105, etc.).  

[00127] Likewise, if the position of a first component of an endoprosthetic implant (e.g., 

30 the acetabular component) is known relative to a second component of the endoprosthetic implant 

(e.g., the femoral component) in three dimensions, then the surgeon can use the exemplary systems 

and methods described herein to evaluate the placement and therefore the alignment of the first 

component relative to the second component. The surgeon may re-image the operative area to 

update the position of the first component relative to the second component at subsequent time 

35 intervals until the surgeon is satisfied with the alignment. It is contemplated that such alignment 
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may be performed intraoperatively to mitigate the problems of misaligned components of multi

component endoprosthetic implants.  

[00128] In certain exemplary embodiments that comprise using a deep learning network 

to add a mask or an outline to the detected 2D orthopedic element 100 from the respective input 

5 images 30, 50, 70 only the 2D masks or outlines of the identified orthopedic element 100 component 

of the endoprosthetic implant, and/or the endoprosthetic implant can be sequentially back projected 

in the manner described with reference to FIGs. 7 and 8 supra to define a volume 61 of the 

identified orthopedic element 100, component of the endoprosthetic implant, and/or the 

endoprosthetic implant. In this exemplary manner, a modeled orthopedic element 100b, modeled 

10 component of the endoprosthetic implant, and/or a modeled endoprosthetic implant may be 

generated.  

[00129] FIG. 11 is a close up of a modeled endoprosthetic implant 102b comprising 

several modeled endoprosthetic implant components, namely, a modeled acetabular component 

103b and a modeled femoral component 104b. The modeled acetabular component 103b comprises 

15 a modeled acetabular shell 106b and a modeled acetabular liner 107b. The modeled femoral 

component 104b comprises a modeled femoral stem 115b, modeled femoral stem neck 116b, and 

modeled artificial femoral head 113b.  

[00130] An exemplary system or method may further comprise calculating a center of the 

acetabulum. Such an exemplary system or method may still further comprise aligning a longitudinal 

20 rotational axis of a femoral stem implant with the center of the acetabulum. In still other exemplary 

systems or methods, the longitudinal axis of the femoral stem 115 can be aligned (i.e., co-linear) 

with the longitudinal axis of the femur 105. In still other exemplary systems and methods, the 

rotational axis of the neck of the femoral stem 115 can be aligned with the center of the artificial 

femoral head 113. In still other exemplary systems and methods, the position of the artificial head 

25 113 can be aligned (e.g., vertically) with the pre-diseased natural femoral head based upon input 

images of the natural femoral head. In such exemplary embodiments, the longitudinal axis of the 

femoral stem 115 is desirably co-linear with the anatomical axis of the femur 105 and the femoral 

stem 115 is desirably disposed at an anteversion angle e in the range of about 10 to about 30°, 

desirably about 15° to about 25.  

30 [00131] A computer platform, having hardware such as one or more central processing 

units (CPU), a random access memory (RAM), and input/output (I/O) interface(s) can receive at 

least two 2D radiographic images taken at different orientations along a transverse plane. The 

orientations can be orthogonal to each other (i.e., the first reference frame has an offset angle 0 of 

900 relative to the second reference frame). However, in embodiments in which the orthopedic 

35 elements 100 comprise ahipjoint 101, at least three 2D radiographic input images can be desirable 
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to avoid interference from the contralateral acetabulum. In such exemplary embodiments, the offset 

angle 0 can be desirably 450 among adjacent reference frames. Other obtuse or acute offset angles 

0 can be used in other exemplary embodiments.  

[00132] Referring to FIG. 12, an exemplary system for ascertaining a position of an 

5 orthopedic element 100 and a component of an endoprosthetic implant in space can comprise: a 

tissue-penetrating imaging machine 1800 (such as a radiographic imaging machine, fluoroscopy 

machine, etc.) comprising an emitter 21 and a detector 33, wherein the detector 33 of the 

radiographic imaging machine 1800 captures a first input image 30 (FIGS. 8 and 9A) in a first 

transversion position 30a (FIGS. 8 and 9A) and a second input image 50 (FIGS. 8 and 9B) in a 

10 second transverse position 50a (FIGS. 8 and 9B), wherein the first transverse position 30a is offset 

from the second transverse position 50a by an offset angle 0 (FIG. 8). In exemplary embodiments 

involving at least three input images, the detector 33 of the radiographic imaging machine 1800 

captures a third input image 70 (FIGS. 8 and 9C) in a third transverse position 70a (FIGS. 8 and 

9C), wherein the third transverse position 70a is offset from the second transverse position 50a and 

15 the first transverse position 30a by two separate offset angles 01, 02.  

[00133] The exemplary system can further comprise a transmitter 29 (FIG. 12), and a 

computational machine 1600 (see FIG. 13 for further details) wherein the transmitter 29 transmits 

the first input image 30 and the second input image 50 (and optionally the third input image 70 if 

present) from the detector 33 to the computational machine 1600, and wherein the computational 

20 machine 1600 is configured to identify an orthopedic element 100a, component of an 

endoprosthetic implant, subcomponent of a component of an endoprosthetic implant, or the 

endoprosthetic implant itself using one of the deep learning methods discussed herein. It will be 

appreciated that the exemplary systems disclosed herein can be used pre-operatively, 

intraoperatively, and/or post operatively.  

25 [00134] In certain exemplary embodiments, an exemplary system may further comprise 

a display 19.  

[00135] FIG. 12 is a schematic representation of an exemplary system comprising a 

radiographic imaging machine 1800 comprising an X-ray source 21, such as an X-ray tube, a filter 

26, a collimator 27, and a detector 33. In FIG. 12, the radiographic imaging machine 1800 is shown 

30 from the top down. The depicted radiographic imaging machine 1800 is a type of tissue-penetrating 

imaging machine. A patient 1 is disposed between the X-ray source 21 and the detector 33. The 

radiographic imaging machine 1800 may be mounted on a rotatable gantry 28. The radiographic 

imaging machine 1800 may take a first radiographic input image 30 of the patient 1 from a first 

reference frame 30a. The gantry 28 may then rotate the radiographic imaging machine 1800 by an 

35 offset angle. The radiographic imaging machine 1800 may then take the second radiographic input 
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image 50 from the second reference frame 50a. It will be appreciated that other exemplary 

embodiments can comprise using multiple input images taken at multiple offset angles 0. For 

example, in a hip arthroplasty, the radiographic imaging machine 1800 may be further rotated (or 

the patient rotated) to capture a third radiographic input images 70 from a third reference frame 

5 70a. In such embodiments, the offset angle may be less than or greater than 90 between adjacent 

input images.  

[00136] It will be appreciated that the offset angle need not be exactly 90 degrees in every 

embodiment. An offset angle having a value within a range that is plus or minus 45 degrees is 

contemplated as being sufficient. In other exemplary embodiments, an operator may take more than 

10 two images of the orthopedic element using a radiographic imaging technique. It is contemplated 

that each subsequent image after the second image can define a subsequent image reference frame.  

For example, a third image can define a third reference frame, a fourth image can define a fourth 

reference frame, the n thimage can define an nth reference frame, etc.  

[00137] In other exemplary embodiments comprising three input images and three distinct 

15 reference frames, each of the three input images may have an offset angle 0 of about 60 degrees 

relative to each other. In some exemplary embodiments comprising four input images and four 

distinct reference frames, the offset angle 0 may be 45 degrees from an adjacent reference frame.  

In an exemplary embodiment comprising five input images and five distinct reference frames, the 

offset angle 0 may be about 36 degrees from the adjacent reference frame. In exemplary 

20 embodiments comprising n images and n distinct reference frames, the offset angle 0 can be 180/n 

degrees.  

[00138] It is further contemplated that embodiments involving multiple images, 

especially more than two images do not necessarily have to have regular and consistent offset 

angles. For example, an exemplary embodiment involving four images and four distinct reference 

25 frames may have a first offset angle at 85 degrees, a second offset angle at 75 degrees, a third offset 

angle at 93 degrees, and a fourth offset angle at 107 degrees.  

[00139] A transmitter 29 then transmits the first input image 30 and the second input 

image 50 to a computational machine 1600. The computational machine 1600 can use a deep 

learning network to identify an orthopedic element 100a, component of an endoprosthetic implant, 

30 subcomponent of a component of an endoprosthetic implant, or the endoprosthetic implant itself in 

any manner that is consistent with this disclosure.  

[00140] FIG. 12 also depicts another embodiment in which the output data from the 

computational machine 1600 is transmitted to a display 19. A display 19 can depict a modeled 

endoprosthetic implant 102b. The display may optionally display any of the items identified by the 

35 exemplary systems and methods described herein, including but not limited to the identified 
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endoprosthetic implant, component of the endoprosthetic implant or subcomponent thereof, or one 

or more orthopedic elements. In exemplary embodiments, it is contemplated that the identified 

component of the endoprosthetic implant, or the representative model of the component of the 

endoprosthetic implant can be superimposed on the identified orthopedic element into which the 

5 component of the endoprosthetic implant will be seated (e.g., the femoral component and the 

proximal femur respectively). The superimposition can be calculated and displayed using the 

mapped spatial data of the respective identified elements (e.g., the component of the endoprosthetic 

implant and the orthopedic element into which the component of the endoprosthetic implant will 

be seated).  

10 [00141] In this manner, the surgeon and others in the operating room can have a near real 

time visualization of the component of the endoprosthetic implant and the target orthopedic element 

in three dimensions and their alignment relative to one another.  

[00142] Furthermore, because the spatial data of an identified component of the 

endoprosthetic implant and because the spatial data of the identified orthopedic element can be 

15 obtained from exemplary systems described herein, the degree of alignment can be calculated and 

further displayed on a display 19 in exemplary system embodiments. For example, a calculated 

abduction angle a of the identified component of the endoprosthetic implant can displayed on a 

display. By way of another example, calculated anteversion angle v of the identified component of 

the endoprosthetic implant is displayed on a display 19. By way of yet another example, the vertical 

20 position of the artificial head 113 can be displayed and superimposed on a reconstructed 3D image 

of the natural femoral head (see 126) of the operative hip based upon preoperative planning input 

images 30, 50, 70. By way of still yet another example, the display 19 may optionally display a 

"best fit" percentage in which a percentage reaching or close to 100% reflects the alignment of an 

identified component of an endoprosthetic implant (e.g., a femoral component 104) relative to a 

25 reference orthopedic element.  

[00143] For example, in embodiments wherein the identified component of an 

endoprosthetic implant is the femoral component 104, the reference orthopedic element can be the 

native proximal femur 105 of the operative joint that was identified and reconstructed in accordance 

with any of the embodiments of this disclosure from preoperative planning input images. In such 

30 exemplary embodiments, the alignment best fit percentage can consider the anteversion angle v of 

the identified femoral component 104, the varus-valgus position of the femoral stem 115 of the 

femoral component 104 relative to the anatomical axis of the femur 105, the anterior-posterior angle 

of the femoral stem 115 in the intramedullary canal of the femur 105 of the operative hip joint 101 

and the vertical, horizontal, and anterior-posterior position of the artificial femoral head 113 relative 

35 to the natural femoral head (see 126) of the operative hipjoint 101 prior to resection. Combinations 
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of any of the forgoing embodiments of what can be displayed on the display 19 are considered to 

be within the scope of this disclosure.  

[00144] In embodiments in which the identified component of an endoprosthetic implant 

is a femoral component of a hip implant and in which the identified orthopedic element is the 

5 proximal femur into which the femoral component will be inserted and seated, exemplary systems 

may display the varus or valgus angle of the longitudinal axis of the femoral component relative to 

the anatomical axis of the femur (i.e., the central axis of the femur extending through the 

intramedullary canal of the femur).  

[00145] Exemplary systems may further comprise one or more databases. One or more 

10 databases can comprise a list of types of components of an endoprosthetic implant and associated 

component size dimensions for the types of components (e.g., different product models of a 

particular component) in the list of components of the endoprosthetic implant. In exemplary 

embodiments, a database can comprise a list of sizes for components of one particular type of 

component of an endoprosthetic implant.  

15 [00146] The computational machine can compare the dimensions of the identified 

component of an endoprosthetic implant with the values stored in the database. The computation 

machine may then select or display a recommended type of component and/or a recommended size 

of a particular component from the values stored in the database based upon how closely the 

dimensions of the identified component of the endoprosthetic implant match the dimensions of the 

20 values stored in the database. In this way, a computational machine 1600 can be said to "configured 

to select" a recommended type of component of an endoprosthetic implant based on the determined 

size dimensions of the identified orthopedic element in three dimensional space. Likewise, in this 

way, a computational machine 1600 can be said to be "configured to recommend a size of a 

component of an endoprosthetic implant" based on the determined size dimensions of the identified 

25 orthopedic element in three dimensional space.  

[00147] This display 19 may take the form of a screen. In other exemplary embodiments, 

the display 19 may comprise a glass or plastic surface that is worn or held by the surgeon or other 

people in the operation theater. Such a display 19 may comprise part of an augmented reality device, 

such that the display shows the 3D model in addition to the wearer's visual field. In certain 

30 embodiments, such a 3D model can be superimposed on the actual operative joint. In yet other 

exemplary embodiments, the 3D model can be "locked" to one or more features of the operative 

orthopedic element 100, thereby maintaining a virtual position of the 3D model relative to the one 

or more features of the operative orthopedic element 100 independent of movement of the display 

19. It is still further contemplated that the display 19 may comprise part of a virtual reality system 

35 in which the entirety of the visual field is simulated.  
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[00148] Although X-ray radiographs from an X-ray imaging system may be desirable 

because X-ray radiographs are relatively inexpensive compared to CT scans and because the 

equipment for some X-ray imaging systems, such as a fluoroscopy system, are generally 

sufficiently compact to be used intraoperatively, nothing in this disclosure limits the use of the 2D 

5 images to X-ray radiographs unless otherwise expressly claimed, nor does anything in this 

disclosure limit the type of imaging system to an X-ray imaging system. Other 2D images can 

include by way of example: CT-images, CT-fluoroscopy images, fluoroscopy images, ultrasound 

images, positron emission tomography ("PET") images, and MRI images. Other imaging systems 

can include by way of example: CT, CT-fluoroscopy, fluoroscopy, ultrasound, PET, and MRI 

10 systems.  

[00149] Preferably, the exemplary methods can be implemented on a computer platform 

(e.g., a computational machine 1600) having hardware such as one or more central processing units 

(CPU), a random access memory (RAM), and input/output (I/O) interface(s). An example of the 

architecture for an example computational machine 1600 is provided below with reference to FIG.  

15 7.  

[00150] FIG. 13 generally depicts a block diagram of an exemplary computational 

machine 1600 upon which one or more of the methods discussed herein may be performed in 

accordance with some exemplary embodiments. In certain exemplary embodiments, the 

computational machine 1600 can operate on a single machine. In other exemplary embodiments, 

20 the computational machine 1600 can comprise connected (e.g., networked) machines. Examples of 

networked machines that can comprise the exemplary computational machine 1600 include by way 

of example, cloud computing configurations, distributed hosting configurations, and other 

computer cluster configurations. In a networked configuration, one or more machines of the 

computational machine 1600 can operate in the capacity of a client machine, a server machine, or 

25 both a server-client machine. In exemplary embodiments, the computational machine 1600 can 

reside on a personal computer ("PC"), a mobile telephone, a tablet PC, a web appliance, a personal 

digital assistant ("PDA"), a network router, a bridge, a switch, or any machine capable of executing 

instructions that specify actions to be undertaken by said machine or a second machine controlled 

by said machine.  

30 [00151] Example machines that can comprise the exemplary computational machines 

1600 can include by way of example, components, modules, or like mechanisms capable of 

executing logic functions. Such machines may comprise tangible entities (e.g., hardware) that is 

capable of carrying out specified operations while operating. As an example, the hardware may be 

hardwired (e.g., specifically configured) to execute a specific operation. By way of example, such 

35 hardware may have configurable execution media (e.g., circuits, transistors, logic gates, etc.) and a 
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computer-readable medium having instructions, wherein the instructions configure the execution 

media to carry out a specific operation when operating. The configuring can occur via a loading 

mechanism or under the direction of the execution media. The execution media selectively 

communicate to the computer-readable medium when the machine is operating. By way of an 

5 example, when the machine is in operation, the execution media may be configured by a first set of 

instructions to execute a first action or set of actions at a first point in time and then reconfigured 

at a second point in time by a second set of instructions to execute a second action or set of actions.  

[00152] The exemplary computational machine 1600 may include a hardware processor 

1697 (e.g., a CPU, a graphics processing unit ("GPU"), a hardware processor core, or any 

10 combination thereof, a main memory 1696 and a static memory 1695, some or all of which may 

communicate with each other via an interlink (e.g., a bus) 1694. The computational machine 1600 

may further include a display unit 1698, an input device 1691 (preferably an alphanumeric or 

character-numeric input device such as a keyboard), and a user interface ("UI") navigation device 

1699 (e.g., a mouse or stylus). In an exemplary embodiment, the input device 1691, display unit 

15 1698, and UI navigation device 1699 may be a touch screen display. In exemplary embodiments, 

the display unit 1698 may include holographic lenses, glasses, goggles, other eyewear, or other AR 

or VR display components. For example, the display unit 1698 may be worn on a head of a user 

and may provide a heads-up-display to the user. The input device 1691 may include a virtual 

keyboard (e.g., a keyboard displayed virtually in a virtual reality ("VR") or an augmented reality 

20 ("AR") setting) or other virtual input interface.  

[00153] The computational machine 1600 may further include a storage device (e.g., a 

drive unit) 1692, a signal generator 1689 (e.g., a speaker) a network interface device 1688, and one 

or more sensors 1687, such as a global positioning system ("GPS") sensor, accelerometer, compass, 

or other sensor. The computational machine 1600 may include an output controller 1684, such as a 

25 serial (e.g., universal serial bus ("USB"), parallel, or other wired or wireless (e.g., infrared ("IR") 

near field communication ("NFC"), radio, etc.) connection to communicate or control one or more 

ancillary devices.  

[00154] The storage device 1692 may include a machine-readable medium 1683 that is 

non-transitory, on which is stored one or more sets of data structures or instructions 1682 (e.g., 

30 software) embodying or utilized by any one or more of the functions or methods described herein.  

The instructions 1682 may reside completely or at least partially, within the main memory 1696, 

within static memory 1695, or within the hardware processor 1697 during execution thereof by the 

computational machine 1600. By way of example, one or any combination of the hardware 

processor 1697, the main memory 1696, the static memory 1695, or the storage device 1692, may 

35 constitute machine-readable media.  
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[00155] While the machine-readable medium 1683 is illustrated as a single medium, the 

term, "machine readable medium" may include a single medium or multiple media (e.g., a 

distributed or centralized database, or associated caches and servers) configured to store the one or 

more instructions 1682.  

5 [00156] The term "machine-readable medium" may include any medium that is capable 

of storing, encoding, or carrying instructions for execution by the computational machine 1600 and 

that cause the computational machine 1600 to perform any one or more of the methods of the 

present disclosure, or that is capable of storing, encoding, or carrying data structures used by or 

associated with such instructions. A non-limited example list of machine-readable media may 

10 include magnetic media, optical media, solid state memories, non-volatile memory, such as 

semiconductor memory devices (e.g., electronically erasable programmable read-only memory 

("EEPROM"), electronically programmable read-only memory ("EPROM"), and magnetic discs, 

such as internal hard discs and removable discs, flash storage devices, magneto-optical discs, and 

CD-ROM and DVD-ROM discs.  

15 [00157] The instructions 1682 may further be transmitted or received over a 

communications network 1681 using a transmission medium via the network interface device 1688 

utilizing any one of a number of transfer protocols (e.g., internet protocol ("IP"), user datagram 

protocol ("UDP"), frame relay, transmission control protocol ("TCP"), hypertext transfer protocol 

("HTTP"), etc.). Example communication networks may include a wide area network ("WAN"), a 

20 plain old telephone ("POTS") network, a local area network ("LAN"), a packet data network, a 

mobile telephone network, a wireless data network, and a peer-to-peer ("P2P") network. By way 

of example, the network interface device 1688 may include one or more physical jacks (e.g., 

Ethernet, coaxial, or phone jacks) or one or more antennas to connect to the communications 

network 1681.  

25 [00158] By way of example, the network interface device 1688 may include a plurality of 

antennas to communicate wirelessly using at least one of a single-input multiple-output ("SIMO"), 

or a multiple-input single output ("MISO") methods. The phrase, "transmission medium" includes 

any intangible medium that is capable of storing, encoding, or carrying instructions for execution 

by the computational machine 1600, and includes analog or digital communications signals or other 

30 intangible medium to facilitate communication of such software.  

[00159] Exemplary methods in accordance with this disclosure may be machine or 

computer-implemented at least in part. Some examples may include a computer-readable medium 

or machine-readable medium encoded with instructions operable to configure an electronic device 

to perform the exemplary methods described herein. An example implementation of such an 

35 exemplary method may include code, such as assembly language code, microcode, a higher-level 

38



WO 2023/056261 PCT/US2022/077111 

language code, or other code. Such code may include computer readable instructions for performing 

various methods. The code may form portions of computer program products. A computational 

machine 1600 that can execute computer readable instructions for carrying out the methods and 

calculations of a deep learning network can be said to be "configured to run" a deep learning 

5 network. Further, in an example, the code may be tangibly stored on or in a volatile, non-transitory, 

or non-volatile tangible computer-readable media, such as during execution or other times.  

Examples of these tangible computer-readable media may include, but are not limited to, removable 

optical discs (e.g., compact discs and digital video discs), hard drives, removable magnetic discs, 

memory cards or sticks, include removable flash storage drives, magnetic cassettes, random access 

10 memories (RAMs), read only memories (ROMS), and other media.  

[00160] It is further contemplated that the exemplary methods disclosed herein may be 

used for preoperative planning, intraoperative planning or execution, or postoperative evaluation of 

the implant placement and function.  

[00161] An exemplary method for ascertaining a position of an orthopedic element in 

15 space can comprise: calibrating a radiographic imaging machine to determine a mapping 

relationship between image points and corresponding space coordinates to define spatial data; 

capturing a first image of an orthopedic element using a radiographic imaging technique, wherein 

the first image defines a first reference frame; capturing a second image of the orthopedic element 

using the radiographic imaging technique, wherein the second image defines a second reference 

20 frame, and wherein the first reference frame is offset from the second reference frame at an offset 

angle; using a deep learning network to detect the orthopedic element using the spatial data, the 

spatial data defining anatomical landmarks on or in the orthopedic element; using the deep learning 

network to apply a mask to the orthopedic element defined by an anatomical landmark; projecting 

the spatial data from the first image of the desired orthopedic element and the spatial data from the 

25 second image of the desired orthopedic element to define volume data, wherein the spatial data 

comprising image points disposed within a masked area of either the first image or the second image 

have a first value and wherein the spatial data comprising image points disposed outside of the 

masked area of either the first image or the second image have a second value, wherein the first 

value is different from the second value; applying the deep learning network to the volume data to 

30 generate a reconstructed three-dimensional model of the orthopedic element; and mapping the 

three-dimensional model of the orthopedic element to the spatial data.  

[00162] In an exemplary embodiment, an exemplary method can further comprise using 

the deep learning network to perform a style transfer on the first image and the second image. In an 

exemplary embodiment, the style transfer converts the spatial data from the radiographic imaging 

35 technique into dynamic digital radiography data.  
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[00163] In an exemplary embodiment, the first value is a positive value.  

[00164] In an exemplary embodiment, the second value is a negative value.  

[00165] In an exemplary embodiment, the exemplary method further comprises 

projecting the reconstructed three-dimensional model on a display.  

5 [00166] In an exemplary embodiment, the deep learning network comprises a 

convolutional neural network.  

[00167] In an exemplary embodiment, the radiographic imaging technique is 

fluoroscopy.  

[00168] In an exemplary embodiment, the method is performed intraoperatively.  

10 [00169] In an exemplary embodiment, the orthopedic element is an acetabulum of a 

pelvis.  

[00170] In an exemplary embodiment, the exemplary method further comprises 

calculating a center of the acetabulum.  

[00171] In an exemplary embodiment, the exemplary method further comprises aligning 

15 a longitudinal rotational axis of a neck of the femoral stem (e.g., a component of an endoprosthetic 

implant) with the center of the acetabulum.  

[00172] In an exemplary embodiment, the exemplary method further comprises aligning 

the acetabular shell (e.g., a component of an endoprosthetic implant) with the reamed acetabulum 

of the patient.  

20 [00173] In an exemplary embodiment, the exemplary method further comprises aligning 

the femoral stem (e.g., a component of an endoprosthetic implant) in the intramedullary canal of 

the reamed proximal femur of the patient.  

[00174] In an exemplary embodiment, the method further comprises aligning a 

longitudinal axis of a femoral stem (e.g., a component of an endoprosthetic implant) with the 

25 anatomical (i.e., center) axis of the femur.  

[00175] An exemplary method for ascertaining a position of an orthopedic element in 

space comprises: calibrating a radiographic imaging machine to determine a mapping relationship 

between image points and corresponding space coordinates to define spatial data; using a 

radiographic imaging technique to capture a first image of an orthopedic element, wherein the first 

30 image defines a first reference frame; using the radiographic imaging technique to capture a second 

image of the orthopedic element, wherein the second image defines a second reference frame, and 

wherein the first reference frame is offset from the second reference frame at an offset angle; using 

a neural network to detect the orthopedic element using the spatial data, the spatial data defining an 

anatomical landmark on or in the orthopedic element; using the deep learning network to apply a 

35 mask to the orthopedic element defined by the anatomical landmark; projecting the spatial data 
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from the first image of the desired orthopedic element and the spatial data from the second image 

of the desired orthopedic element to define volume data, wherein the spatial data comprising image 

points disposed within a masked area of either the first image or the second image have a positive 

value and wherein the spatial data comprising image points disposed outside of a masked area of 

5 either the first image or the second image have a negative value; applying the deep learning network 

to the volume data to generate a three-dimensional model of the orthopedic element; and mapping 

the three-dimensional model of the orthopedic element to the spatial data, wherein the orthopedic 

element is an acetabulum of a pelvis.  

[00176] In an exemplary embodiment, the orthopedic element is resected or reamed 

10 during a surgical procedure.  

[00177] In an exemplary embodiment, the method further comprises using the deep 

learning network to perform a style transfer on the first image and the second image.  

[00178] In an exemplary embodiment, the style transfer converts the spatial data from the 

radiographic imaging technique into dynamic digital radiography data.  

15 [00179] In an exemplary embodiment, the first value is a positive value.  

[00180] In an exemplary embodiment, the second value is a negative value.  

[00181] In an exemplary embodiment, the method further comprises projecting the 

reconstructed three-dimensional model on a display.  

[00182] In an exemplary embodiment, the deep learning network comprises a 

20 convolutional neural network.  

[00183] In an exemplary embodiment, the radiographic imaging technique is fluoroscopy.  

[00184] In an exemplary embodiment, the method is performed intraoperatively.  

[00185] In an exemplary embodiment, the method further comprises calculating a center 

of the acetabulum.  

25 [00186] In an exemplary embodiment, the method further comprises aligning a 

longitudinal rotational axis of a neck of femoral stem rotationally with a center of the artificial 

femoral head and the longitudinal axis of the femoral stem with the anatomical axis of the 

intramedullary canal of the femur into which the femoral stem is placed.  

[00187] In an exemplary embodiment, the exemplary method further comprises aligning 

30 the acetabular shell (e.g., a component of an endoprosthetic implant) with the reamed acetabulum 

of the patient.  

[00188] In an exemplary embodiment, the exemplary method further comprises aligning 

the femoral stem (e.g., a component of an endoprosthetic implant) in the intramedullary canal of 

the reamed proximal femur of the patient.  
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[00189] In an exemplary embodiment, the method further comprises aligning a 

longitudinal axis of a femoral stem (e.g., a component of an endoprosthetic implant) with the 

anatomical axis of the femur into which the femoral stem is placed.  

[00190] An exemplary system for ascertaining a position of an orthopedic element and a 

5 component of an endoprosthetic implant in space comprises: a tissue-penetrating imaging machine; 

a first input image, the first input image taken by the tissue penetrating imaging machine from a 

first reference frame, the first image depicting a calibration jig; a second input image, the second 

input image taken by the tissue penetrating imaging machine from a second reference frame, the 

second reference frame being offset from the first reference frame, the second image depicting the 

10 calibration jig; and a computational machine configured to run a deep learning network, wherein 

the deep learning network is configured to identify an orthopedic element and a component of an 

endoprosthetic implant to define an identified orthopedic element and an identified component of 

the endoprosthetic implant, and to map the identified orthopedic element and the identified 

component of the endoprosthetic implant to spatial data ascertained by the first input image and the 

15 second input image to thereby determine the position of the identified orthopedic element and the 

identified component of the endoprosthetic implant in three dimensional space.  

[00191] In an exemplary embodiment, the system further comprises a third input image, 

the third input image is taken by the tissue penetrating imaging machine from a third reference 

frame, the third image depicting the calibration jig.  

20 [00192] In an exemplary embodiment of the system, the deep learning network is further 

configured to identify multiple orthopedic elements and multiple components of the endoprosthetic 

implant to define multiple identified orthopedic elements and multiple identified components of the 

endoprosthetic implant.  

[00193] In still further exemplary embodiments of the system, a first identified component 

25 of the multiple identified components of the endoprosthetic implant is an acetabular component of 

a hip endoprosthetic implant and a second identified component of the multiple identified 

components of the endoprosthetic implant is a femoral component of a hip endoprosthetic implant.  

[00194] In an exemplary embodiment of the system, the identified component of the 

endoprosthetic implant is an acetabular shell and the identified orthopedic element is a reamed 

30 acetabulum proximate to the acetabular shell.  

[00195] In an exemplary embodiment of the system, the identified component of the 

endoprosthetic implant is a femoral stem and the identified orthopedic element is an intramedullary 

canal of a femur proximate to the femoral stem.  

[00196] In an exemplary embodiment of the system, the identified orthopedic element is 

35 modeled in three dimensions to define a modeled orthopedic element.  
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[00197] In an exemplary embodiment, the modeled orthopedic element is displayed on a 

display.  

[00198] In an exemplary embodiment, the identified component of the endoprosthetic 

implant is modeled in three dimensions to define a modeled component of the endoprosthetic 

5 implant.  

[00199] In an exemplary embodiment, the modeled component of the endoprosthetic 

implant is displayed on a display.  

[00200] In an exemplary embodiment, a calculated abduction angle of the identified 

component of the endoprosthetic implant is displayed on a display.  

10 [00201] In an exemplary embodiment, a calculated anteversion angle of the identified 

component of the endoprosthetic implant is displayed on a display.  

[00202] An exemplary system for recommending a type of a component of an 

endoprosthetic implant to be surgically implanted into a patient, the system comprising: a tissue 

penetrating imaging machine; a first input image, the first input image taken by the tissue 

15 penetrating imaging machine from a first reference frame, the first image depicting a calibration 

jig; a second input image, the second input image taken by the tissue penetrating imaging machine 

from a second reference frame, the second reference frame being offset from the first reference 

frame, the second image depicting the calibration jig; a computational machine configured to run a 

deep learning network, wherein the deep learning network is configured to identify an orthopedic 

20 element to define an identified orthopedic element, and to map the identified orthopedic element to 

spatial data ascertained by the first input image and the second input image to thereby define 

determined size dimensions of the identified orthopedic element in three dimensional space; and a 

database, the database comprising a list of types of components of an endoprosthetic implant and 

associated component size dimensions for the types of components in the list of components of the 

25 endoprosthetic implant, wherein the computational machine is further configured to select a 

recommended type of component of an endoprosthetic implant based on the determined size 

dimensions of the identified orthopedic element in three dimensional space.  

[00203] In an exemplary embodiment, the system further comprises a third input image, 

the third input image is taken by the tissue penetrating imaging machine from a third reference 

30 frame, the third image depicting the calibration jig.  

[00204] In an exemplary embodiment, the identified orthopedic element is the internal 

geometry of a bone before or after reaming or before or after broaching.  

[00205] In an exemplary embodiment, the computational machine is configured to run a 

best fit algorithm to select a recommended component of an endoprosthetic implant based on the 

35 determined size dimensions of the identified orthopedic element.  
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[00206] An exemplary system for determining the size of a component of an 

endoprosthetic implant to be surgically implanted into a patient, the system comprising: a tissue 

penetrating imaging machine; a first input image, the first input image taken by the tissue 

penetrating imaging machine from a first reference frame, the first image depicting a calibration 

5 jig; a second input image, the second input image taken by the tissue penetrating imaging machine 

from a second reference frame, the second reference frame being offset from the first reference 

frame, the second image depicting the calibration jig; a computational machine configured to run a 

deep learning network, wherein the deep learning network is configured to identify an orthopedic 

element to define an identified orthopedic element, and to map the identified orthopedic element to 

10 spatial data ascertained by the first input image and the second input image to thereby define 

determined size dimensions of the identified orthopedic element in three dimensional space; and a 

database, the database comprising a list of components of an endoprosthetic implant and associated 

component size dimensions for the components in the list of components of the endoprosthetic 

implant, wherein the computational machine is further configured to recommend a size of a 

15 component of an endoprosthetic implant based on the determined size dimensions of the identified 

orthopedic element in three dimensional space.  

[00207] In an exemplary embodiment, the system further comprises a third input image, 

the third input image being taken by the tissue penetrating imaging machine from a third reference 

frame, the third image depicting the calibration jig.  

20 [00208] In an exemplary embodiment, the identified orthopedic element is the internal 

geometry of a bone before or after reaming or before or after broaching.  

[00209] In an exemplary embodiment, the computational machine is configured to run a 

best fit algorithm to select a recommended component of an endoprosthetic implant based on the 

determined size dimensions of the identified orthopedic element.  

25 [00210] It is to be understood that the present invention is by no means limited to the 

particular constructions and method steps herein disclosed or shown in the drawings, but also 

comprises any modifications or equivalents within the scope of the claims known in the art. It will 

be appreciated by those skilled in the art that the devices and methods herein disclosed will find 

utility.  

30 
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CLAIMS 

What is claimed is: 

1. A system for ascertaining a position of an orthopedic element and a component of an 

endoprosthetic implant in space comprising: 

5 a tissue-penetrating imaging machine; 

a first input image, the first input image taken by the tissue penetrating imaging 

machine from a first reference frame, the first image depicting a calibration jig; 

a second input image, the second input image taken by the tissue penetrating imaging 

machine from a second reference frame, the second reference frame being offset from the 

10 first reference frame, the second image depicting the calibration jig; and 

a computational machine configured to run a deep learning network, wherein the deep 

learning network is configured to identify an orthopedic element and a component of an 

endoprosthetic implant to define an identified orthopedic element and an identified 

component of the endoprosthetic implant, and to map the identified orthopedic element and 

15 the identified component of the endoprosthetic implant to spatial data ascertained by the 

first input image and the second input image to thereby determine the position of the 

identified orthopedic element and the identified component of the endoprosthetic implant 

in three dimensional space.  

2. The system of claim 1 further comprising a third input image, the third input image 

20 taken by the tissue penetrating imaging machine from a third reference frame, the third 

image depicting the calibration jig.  

3. The system according to any of claims I to 2, wherein the deep learning network is 

further configured to identify multiple orthopedic elements and multiple components of 

the endoprosthetic implant to define multiple identified orthopedic elements and multiple 

25 identified components of the endoprosthetic implant.  

4. The system of claim 3, wherein a first identified component of the multiple 

identified components of the endoprosthetic implant is an acetabular component of a hip 

endoprosthetic implant and wherein a second identified component of the multiple 

identified components of the endoprosthetic implant is a femoral component of a hip 

30 endoprosthetic implant.  

5. The system according to any of claims 1 to 4, wherein the identified component of 

the endoprosthetic implant is an acetabular shell and wherein the identified orthopedic 

element is a reamed acetabulum proximate to the acetabular shell.  

45



WO 2023/056261 PCT/US2022/077111 

6. The system according to any of claims 1 to 5, wherein the identified component of 

the endoprosthetic implant is a femoral stem and wherein the identified orthopedic element 

is an intramedullary canal of a femur proximate to the femoral stem.  

7. The system according to any of claims 1 to 6, wherein the identified orthopedic 

5 element is modeled in three dimensions to define a modeled orthopedic element.  

8. The system of claim 7, wherein the modeled orthopedic element is displayed on a 

display.  

9. The system according to any of claims 1 to 8, wherein the identified component of 

the endoprosthetic implant is modeled in three dimensions to define a modeled component 

10 of the endoprosthetic implant.  

10. The system of claim 9, wherein the modeled component of the endoprosthetic 

implant is displayed on a display.  

11. The system according to any of claims I to 10, wherein a calculated abduction angle 

of the identified component of the endoprosthetic implant is displayed on a display.  

15 12. The system according to any of claims 1 to 11, wherein a calculated anteversion 

angle of the identified component of the endoprosthetic implant is displayed on a display.  

20 

25 
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calibrating a radiographic imaging machine to determine a mapping relationship between

la
image points and corresponding space coordinates to define spatial data

2a using a radiographic imaging technique to capture a first image of an orthopedic

element, wherein the first image defines a first reference frame

3a
using the radiographic imaging technique to capture a second image of the orthopedic

element, wherein the second image defines a second reference frame, and wherein the first

reference frame is offset from the second reference frame at an offset angle

4a using a deep learning network to detect the orthopedic element using the spatial data,

the detected orthopedic element defining an identified orthopedic element, the spatial

data defining an anatomical landmark on or in the orthopedic element

5a using the deep learning network to apply a mask to the identified orthopedic element

defined by an anatomical landmark

6a projecting spatial data from the first image of the identified orthopedic element and

spatial data from the second image of the identified orthopedic element to define volume

data, wherein spatial data having comprising image points disposed within a masked area

of either the first image or the second image have a positive value and wherein spatial data

comprising image points disposed outside of a masked area of either the first image or the

second image have a negative value

7a applying the deep learning network to the volume data to generate a three-dimensional

model of the orthopedic element to thereby define a modeled orthopedic element

8a mapping the three-dimensional model of the orthopedic element to the spatial data

FIG. 5
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calibrating a radiographic imaging machine to determine a mapping relationship between

1b
image points and corresponding space coordinates to define spatial data

2b using a radiographic imaging technique to capture a first image of an orthopedic

element, wherein the first image defines a first reference frame

3b using the radiographic imaging technique to capture a second image of the orthopedic

element, wherein the second image defines a second reference frame, and wherein the first

reference frame is offset from the second reference frame at an offset angle

4b using a deep learning network to detect the orthopedic element using the spatial data, to

define an identified orthopedic element, the spatial data defining an anatomical landmark on

or in the orthopedic element

5b

using the deep learning network to apply a mask to the identified orthopedic element

6b
projecting spatial data from the first image of the identified orthopedic element and

spatial data from the second image of the identified orthopedic element to define volume

data, wherein spatial data having comprising image points disposed within a masked area

of either the first image or the second image have a positive value and wherein spatial data

comprising image points disposed outside of a masked area of either the first image or the

second image have a negative value

7b applying the deep learning network to the volume data to generate a three-dimensional

model of the orthopedic element to thereby define a modeled orthopedic element

8b mapping the modeled orthopedic element to the spatial data,

wherein the orthopedic element is a reamed acetabulum of a pelvis

FIG. 6
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