(19)中华人民共和国国家知识产权局

(12)发明专利

(10)授权公告号 CN 107206778 B (45)授权公告日 2019.05.10

- (21)申请号 201680006638.3
- (22)申请日 2016.02.19
- (65)同一申请的已公布的文献号 申请公布号 CN 107206778 A
- (43)申请公布日 2017.09.26
- (30)优先权数据

2015-038118 2015.02.27 JP 2015-038119 2015.02.27 JP 2015-038128 2015.02.27 JP

- (85)PCT国际申请进入国家阶段日 2017.07.21
- (86)PCT国际申请的申请数据 PCT/JP2016/054862 2016.02.19
- (87)PCT国际申请的公布数据 W02016/136615 JA 2016.09.01
- (73)专利权人 东丽株式会社 地址 日本东京都

- (72)发明人 坂本光隆 中村雅佑美 真锅功 高田育 仲村谕
- (74)专利代理机构 北京市中咨律师事务所 11247
- (51) Int.CI.

B32B 27/36(2006.01) *CO8K 5/10*(2006.01) *CO8L 67/00*(2006.01)

代理人 黄媛 段承恩

(56)对比文件

- CN 1327462 A,2001.12.19,
- CN 1457297 A,2003.11.19,
- JP 2002187963 A,2002.07.05,
- CN 101426646 A, 2009.05.06,
- WO 2007094441 A1,2007.08.23,
- JP 2002302560 A,2002.10.18,

审查员 马莉

权利要求书1页 说明书40页

(54)发明名称

叠层聚酯膜

(57)摘要

本发明的课题是提供一种聚酯膜,使其与金 属板贴合来制成层压金属板时,使基底隐蔽性、 深拉深成型时的耐损伤性良好,或作为遮光带使 用时,收率、加工适应性变得良好。作为解决本发 明课题的方法涉及一种叠层聚酯膜,其特征在 于,是在含有颜料的聚酯A层的两面分别具有含 有蜡的聚酯B1层和聚酯B2层的叠层膜,其满足下 述式(I)和式(II),在B1层、B2层各层中,在200mm ×200mm的范围内的任意位置对水的接触角进行 10次测定时的、水的接触角的变异系数为0%以 四 上10%以下。Wb1>Wa • • • (I)Wb2>Wa • • •

云 定得到的值的标准偏差除以平均值而得的值。)。

1.一种叠层聚酯膜,其特征在于,是在含有颜料的聚酯A层的两面,分别具有含有蜡的聚酯B1层和聚酯B2层的叠层膜,其满足下述式(I)、式(II)和式(III),B1层、B2层各自的表面自由能为27mN/m以上43mN/m以下,在B1层、B2层各层中,在200mm×200mm的范围内的任意位置对水的接触角进行10次测定时的、水的接触角的变异系数为0%以上6%以下,

Wb1>Wa • • • (I) Wb2>Wa • • • (II) Wb1>Wb2 • • • (III)

这里,Wb1、Wb2各自表示B1层和B2层的每单位面积的蜡含量,Wa表示A层的每单位面积的蜡含量,Wb1、Wb2和Wa的单位都是 μ g/cm²,此外,这里,所谓变异系数,是指将10次测定得到的值的标准偏差除以平均值而得的值。

- 2.根据权利要求1所述的叠层聚酯膜,聚酯A层、聚酯B1层、聚酯B2层各层各自的熔点超过250℃且为280℃以下。
- 3.根据权利要求1所述的叠层聚酯膜,聚酯B1层和聚酯B2层的各层包含颜料0质量%以上5质量%以下。
- 4.根据权利要求1所述的叠层聚酯膜,所述叠层聚酯膜的亨特表色系中的色调L值为65以上。
 - 5.根据权利要求1所述的叠层聚酯膜,其厚度为10µm以上40µm以下。
- 6.根据权利要求1所述的叠层聚酯膜,在将膜的总厚度设为t,聚酯A层的厚度设为ta,聚酯B1层的厚度设为tb1,聚酯B2层的厚度设为tb2时,满足下述式(IV)~式(VI),所述t、ta、tb1和tb2的单位都是μm,

 $tb1/tb2>1 \cdot \cdot (IV)$

- $0.05\mu\text{m} \leq |\text{tb1-tb2}| \leq 2\mu\text{m} \cdot \cdot \cdot \text{(V)}$
- $0.08 \le (tb1+tb2)/t \le 0.3 \cdot \cdot (VI)$.
- 7.根据权利要求1所述的叠层聚酯膜,将聚酯B2层层压于金属板来使用。
- 8.一种遮光带,其使用了权利要求1所述的叠层聚酯膜。

叠层聚酯膜

技术领域

[0001] 本发明涉及适合用于层压金属板、遮光带等需要隐蔽性的用途的聚酯膜。

背景技术

[0002] 热塑性树脂膜,尤其是双轴取向聚酯膜具有机械性质、电性质、尺寸稳定性、透明性、耐化学性等优异的性质,因此在磁记录材料、包装材料等多数用途中作为基材膜被广泛使用。此外,对于金属罐用途,为了对罐表面实施鲜艳的印刷,研究了将对金属板层压有白色膜的白色层压金属板进行制罐(例如,专利文献1~3),由于不进行涂装,因而作为不使用有机溶剂的环境低负荷材料提出。此外,关于层压金属板用途,进行了通过含有蜡,来提高内容物的脱模性等的研究(例如,专利文献4~6)。

[0003] 现有技术文献

[0004] 专利文献

[0005] 专利文献1:日本特开2000-177085号公报

[0006] 专利文献2:日本特开2001-212918号公报

[0007] 专利文献3:日本特开平11-262987号公报

[0008] 专利文献4:日本特开2001-220453号公报

[0009] 专利文献5:日本特开2006-130676号公报

[0010] 专利文献6:日本特开2002-302559号公报

发明内容

[0011] 发明所要解决的课题

[0012] 然而,对于专利文献1~3所公开的膜,虽然具有基底隐蔽性,并且制罐成浅拉的形状时没有大的问题,但是在制罐成深拉深的形状时,有在与模具接触的制罐时与模具摩擦而易于产生损伤的问题。专利文献4~6所公开的膜,虽然使膜含有蜡,但主要是用于使内容物的取出性良好的设计,并不是对于赋予深拉深制罐时的耐损伤性而言最佳的设计。此外,在遮光带用途中,有在对膜涂覆粘接层,或进行印刷加工时,膜表面所附着的尘埃等异物成为加工缺陷,遮光带的品质、收率降低这样的问题。另一方面,仅仅对膜涂覆脱模层则有时观察到印刷性的降低,因此要求直至加工前为止具有脱模性,对于涂覆、印刷等加工时所受的热具有涂覆、印刷加工适应性那样的膜。

[0013] 因此,本发明的第1课题的目的在于消除上述缺陷,提供适合用于深拉深成型用的层压金属板、遮光带等用途的聚酯膜。第2课题的目的在于提供虽然是薄膜,但基底隐蔽性和高温下的加工适应性良好的聚酯膜。第3课题的目的在于提供具有高成型加工性、印刷性、隐蔽性,并且高温下的加工性、成型加工时的剥离性优异的白色膜。

[0014] 用于解决课题的方法

[0015] 用于解决第1课题的本发明的第1聚酯膜具有以下构成。即,具有以下构成。

[0016] (1) 一种叠层聚酯膜,其特征在于,是在含有颜料的聚酯A层的两面,分别具有含有

蜡的聚酯B1层和聚酯B2层的叠层膜,其满足下述式(I)和式(II),B1层、B2层各自的表面自由能为27mN/m以上43mN/m以下,在B1层、B2层各层中,在200mm×200mm的范围内的任意位置对水的接触角进行10次测定时的、水的接触角的变异系数为0%以上10%以下。

[0017] Wb1>Wa • • • (I)

[0018] Wb2>Wa • • • (II)

[0019] (这里,Wb1、Wb2各自表示B1层和B2层的每单位面积的蜡含量 ($\mu g/cm^2$),Wa表示A层的每单位面积的蜡含量 ($\mu g/cm^2$)。)此外,这里,所谓变异系数,是指将10次测定得到的值的标准偏差除以平均值而得的值。

[0020] (2)

[0021] 根据(1)所述的叠层聚酯膜,满足下述式(III)。

[0022] Wb1>Wb2 • • • (III)

[0023] (3)

[0024] 根据(1)或(2)所述的叠层聚酯膜,聚酯A层、聚酯B1层、聚酯B2层各层各自的熔点超过250℃且为280℃以下。

[0025] (4)

[0026] 根据权利要求1~3中任一项所述的叠层聚酯膜,聚酯B1层和聚酯B2层的各层包含 颜料0质量%以上5质量%以下。

[0027] (5)

[0028] 根据 (1) \sim (4) 中任一项所述的叠层聚酯膜,所述叠层聚酯膜的亨特表色系中的色调L值为65以上。

[0029] (6)

[0030] 根据 $(1) \sim (5)$ 中任一项所述的叠层聚酯膜,其厚度为 10μ 加以上 40μ 加以下。

[0031] (7)

[0032] 根据 (1) \sim (6) 中任一项所述的叠层聚酯膜,在将膜的总厚度设为t (μm) ,聚酯A层的厚度设为ta (μm) ,聚酯B1层的厚度设为tb1 (μm) ,聚酯B2层的厚度设为tb2 (μm) 时,满足下述式 (IV) \sim 式 (VI)。

[0033] $tb1/tb2>1 \cdot \cdot (IV)$

[0034] $0.05\mu \text{m} \le |\text{tb1-tb2}| \le 2\mu \text{m} \cdot \cdot \cdot \text{(V)}$

[0035] $0.08 \le (tb1+tb2)/t \le 0.3 \cdot \cdot (VI)$

[0036] (8)

[0037] 根据(1)~(7)中任一项所述的叠层聚酯膜,将聚酯B2层层压于金属板来使用。

[0038] (9)

[0039] - 中遮光带,其使用了 $(1) \sim (7)$ 中任一项所述的膜。

[0040] 用于解决第2课题的第2聚酯膜具有以下构成。即,一种聚酯膜,是厚度为10~40μm、亨特表色系中的L值为80以上的聚酯膜,在将膜面内的任意一个方向设为方向X,将与方向X垂直的方向设为方向Y时,在190℃、20分钟时的方向X的热收缩率(Sx)、方向Y的热收缩率(Sy)满足下述式。

[0041] $|S_X - S_Y| \leq 4\% \cdot \cdot \cdot (a)$

[0042] $S_X \leq 5\% \cdot \cdot (b)$

[0043] $S_{V} \leq 5\% \cdot (c)$

[0044] 用于解决第3课题的第3聚酯膜具有以下构成。即,

[0045] 一种叠层膜,其特征在于,在含有空隙的聚酯层(B层)的至少一面,叠层含有蜡的聚酯层(A层),叠层厚度方向上的B层的各空隙(void)的累计厚度的比例相对于膜的总厚度为5~20%,叠层膜的亨特表色系中的L值为80%以上。

[0046] 发明的效果

[0047] 本发明的第1聚酯膜与金属板贴合来制成层压金属板时,使基底隐蔽性、深拉深成型时的耐损伤性良好,或者作为遮光带使用时,收率、加工适应性良好。本发明的第2聚酯膜与金属板贴合,或作为遮光带使用时,发挥对金属板、带赋予高隐蔽性,并且能够在高温下加工的效果。本发明的第3聚酯膜通过与成型构件贴合,从而发挥对成型构件赋予高成型加工性、印刷性、剥离性、隐蔽性,并且能够在高温下加工的效果。

具体实施方式

[0048] 以下,对本发明的聚酯膜进行详细地说明。

[0049] [第1聚酯膜、第2聚酯膜和第3聚酯膜]

[0050] [聚酯]

[0051] 第1聚酯膜、第2聚酯膜和第3聚酯膜中的所谓聚酯,是指二羧酸来源的结构单元 (二羧酸成分) 与二醇来源的结构单元 (二醇成分) 的通过酯键被结合的聚合物。

[0052] 作为二羧酸成分,可举出例如,对苯二甲酸、间苯二甲酸、邻苯二甲酸、1,4-萘二甲酸、1,5-萘二甲酸、2,6-萘二甲酸、4,4'-联苯二甲酸、4,4'-联苯醚二甲酸、4,4'-联苯砜二甲酸等芳香族二羧酸、己二酸、辛二酸、癸二酸、二聚酸、十二烷二酸、环己烷二甲酸等脂肪族二羧酸、和与各种芳香族二羧酸、脂肪族二羧酸的酯衍生物。这些二醇成分除了乙二醇以外可以仅为1种,也可以并用2种以上。

[0053] 此外,作为二醇成分,可举出乙二醇、1,2-丙二醇、1,3-丙二醇、新戊二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,2-环己烷二甲醇、1,3-环己烷二甲醇、1,4-环己烷二甲醇、二甘醇、三甘醇、聚亚烷基二醇、2,2-双(4-羟基乙氧基苯基)丙烷、异山梨醇、螺环二醇等。这些二羧酸成分除了乙二醇以外可以仅为1种,也可以并用2种以上。

[0054] 这些二羧酸成分、二醇成分中,从耐溶剂性、耐热性的观点出发,作为二羧酸成分,优选为对苯二甲酸、间苯二甲酸、2,6-萘二甲酸,作为二醇成分,优选使用乙二醇、1,4-丁二醇、1,4-环己烷二甲醇、异山梨醇、螺环二醇。除了耐溶剂性、耐热性以外,从制造成本的观点出发,最优选为对苯二甲酸与乙二醇的组合。

[0055] 构成第1聚酯膜、第2聚酯膜和第3聚酯膜的聚酯在为由对苯二甲酸与乙二醇的组合形成的、所谓聚对苯二甲酸乙二醇酯的情况下,为下述构成:对苯二甲酸以外的二羧酸成分相对于构成聚酯的全部二羧酸成分100摩尔%优选为0摩尔%以上20摩尔%以下,更优选为0摩尔%以上10摩尔%以下,进一步优选为0摩尔%以上2摩尔%以下,特别优选为0摩尔%,即二羧酸成分仅包含对苯二甲酸成分。如果对苯二甲酸成分以外的二羧酸成分相对于全部二羧酸成分100摩尔%超过20摩尔%,则有时聚酯膜的熔点降低或结晶性降低,而耐热性变得不充分,或厚度不均变大。

[0056] 此外,在构成第1聚酯膜、第2聚酯膜和第3聚酯膜的聚酯为聚对苯二甲酸乙二醇酯

的情况下,为下述构成:乙二醇以外的二醇成分相对于构成聚酯的全部二醇成分100摩尔%优选为0摩尔%以上33摩尔%以下,更优选为0摩尔%以上10摩尔%以下,进一步优选为0摩尔%以上5摩尔%以下,特别优选为0摩尔%,即二醇成分仅包含乙二醇。如果乙二醇以外的二醇成分相对于全部二醇成分100摩尔%超过33摩尔%,则有时聚酯膜的熔点降低或结晶性降低,而耐热性变得不充分,或厚度不均变大。

[0057] [第1聚酯膜]

[0058] 「A层]

[0059] 第1聚酯膜具有含有颜料的聚酯A层是重要的。通过具有含有颜料的聚酯A层,从而适用于层压金属板用途、遮光带用途时的隐蔽性变得良好。此外,本发明的聚酯膜在聚酯A层的两面具有含有蜡的聚酯B1层和聚酯B2层是重要的。通过在聚酯A层的两面,即膜的最表面具有含有蜡的聚酯B1层、聚酯B2层,从而在层压金属板用途中使用时,对于膜的一个面(例如,聚酯B1层),制罐时的耐损伤性变得良好,对于膜的另一个面(例如,聚酯B2层),层压时的输送时尘埃等异物不易附着,层压金属板的品质变得良好。此外,在作为遮光带使用时,能够对两面赋予抑制尘埃等异物附着的效果。

[0060] 「第1聚酯膜]

[0061] [B1层、B2层]

[0062] 第1聚酯膜的B1层、B2层各层中,表面自由能为27mN/m以上43mN/m以下是重要的。通过将B1层、B2层的表面自由能设为27mN/m以上,从而可以使B1层的印刷性、B2层的与金属板的密合性良好。通过将B1层、B2层的表面自由能设为43mN/m以下,从而可以使B1层的制罐时的耐损伤性、B2层的层压金属板的品质良好。这里,所谓表面自由能,是指利用实施例中的测定方法求出的值。第1聚酯膜满足下述式(I)和式(II)是重要的。

[0063] Wb1>Wa • • • (I)

[0064] Wb2>Wa • • • (II)

[0065] 这里,Wb1、Wb2各自表示B1层和B2层的每单位面积的蜡含量 (μg/cm²),Wa表示A层的每单位面积的蜡含量 (μg/cm²)。这里,所谓层的每单位面积的蜡含量,是指将层的厚度 (cm) 乘以层所包含的蜡的质量浓度 (μg/cm³)而得的值。通过使Wa小于Wb1、Wb2,从而能够获得使膜含有蜡而使制罐时的耐损伤性、层压金属板的品质良好的效果,同时抑制由于层压加工时、制罐时所受的热而在膜的两面蜡过度地渗出从而印刷性 (例如,聚酯B1层侧)、和膜与金属板的密合性 (例如,聚酯B2层侧)降低。从兼具耐损伤性和印刷性的观点出发,Wb1优选为Wa的2倍以上,更优选为Wa的10倍以上。Wb1优选为6μg/cm²以上,更优选为9μg/cm²以上。此外,从印刷性的观点出发,Wb1优选为20μg/cm²以下。从兼具层压金属板的品质、膜与金属板的密合性的观点出发,Wb2优选为Wa的1.5倍以上,更优选为Wa的5倍以上。Wb2优选为4μg/cm²以上,优选为6μg/cm²以上。此外,从膜与金属板的密合性的观点出发,Wb2优选为10μg/cm²以上,优选为6μg/cm²以上。此外,从膜与金属板的密合性的观点出发,Wb2优选为10μg/cm²以下。关于第1聚酯膜的Wa,可以包含也可以不含0μg/cm²的情况,从聚酯A层、与聚酯B1层和/或聚酯B2层的层间密合性的观点出发,优选大于0μg/cm²。

[0066] 第1聚酯膜中的蜡具有在膜的表面渗出而降低制罐时层压金属板与模具的摩擦的作用,可举出例如,脂肪族羧酸化合物与脂肪族醇化合物的酯化合物、脂肪族羧酸化合物与脂肪族胺化合物的酰胺化合物等。具体而言,可使用硬脂酸硬脂基酯、巴西棕榈蜡、小烛树蜡、米糠蜡、季戊四醇全酯、山萮酸山萮基酯、肉豆蔻酸棕榈基酯、硬脂基甘油三酯等合成

蜡、或天然蜡等。

在第1聚酯膜的B1层、B2层各层中,在200mm×200mm的范围内的任意位置对水的接 触角进行10次测定时的、水的接触角的变异系数为0%以上10%以下是重要的。在制成层压 金属板的情况下,已知为了使深拉深成型时的耐损伤性良好,仅仅增加膜中的蜡的含有浓 度并不能被完全改善。对于使深拉深成型时的耐损伤性良好的方法进行了深入研究,结果 可知在膜表面渗出的蜡均匀地分布着是重要的,作为确认蜡的分布均匀性的指标,已知 200mm×200mm的范围内的任意位置的水的接触角的变异系数是有效的。此外已知,由于有 在膜表面的蜡的量少的部分尘埃等异物选择性地附着的倾向,因此还有通过使蜡的分布均 匀性良好,从而在遮光带用途中使品质良好的效果。在本发明的聚酯膜中,关于水的接触角 的变异系数,从深拉深成型时的耐削减性,使加工制品的品质良好的观点出发,优选为0% 以上8%以下,更优选为0%以上6%以下。在聚酯膜中,作为用于使水的接触角的变异系数 为0%以上10%以下的方法,可举出下述方法:将制造时的流延鼓的表面温度设定为15℃以 下,将膜所含有的蜡固定化于聚酯的分子链间而成为在表面不易渗出的状态,同时使横向 拉伸后的热定形温度为190℃以上,使热定形时间为5秒以上,在热定形工序中一次性渗出 蜡的方法;在热定形中进一步横向拉伸的方法等。流延鼓的表面温度优选为13℃以下,优选 为10℃以下。然而,如果流延鼓的表面温度过低,则有时鼓表面会结露,因此优选将湿度保 持得低。作为使流延鼓的表面温度为15℃以下的方法,可使用降低流延鼓内循环的冷却介 质的温度,或提高每单位时间的流量的方法;利用气室对流延鼓表面吹送冷气的方法;以及 将它们并用的方法等。此外,从用冷气将流延鼓上的膜直接冷却的观点出发,也优选使用利 用气室的方法。

[0068] 另外,作为第1聚酯膜中,聚酯B1层、聚酯B2层的特定方法,求出3层构成中的各表层的每单位面积的蜡含量,将每单位面积的蜡含量多的层设为聚酯B1层,每单位面积的蜡含量少的层设为聚酯B2层。此外,在两表层的每单位面积的蜡含量为相同量的情况下,求出各表层的厚度,将厚度大的层设为聚酯B1层,将厚度小的层设为聚酯B2层。此外,在每单位面积的蜡含量、厚度都相同的情况下,将任意面设为聚酯B1层,将其相反面设为聚酯B2层,进行各种评价。

[0069] 关于第1聚酯膜,在层压金属板用途中使用时,从兼具膜的一个面(例如,聚酯B1层)的制罐时的耐损伤性、和膜的另一个面(例如,聚酯B2层)的与金属板的密合性的观点出发,优选满足下述式(III)。

[0070] Wb1>Wb2 • • • (III)

[0071] 这里,Wb1、Wb2各自表示B1层和B2层的每单位面积的蜡含量。通过使Wb1大于Wb2,从而可以兼具以下特性:制罐时的耐损伤性那样的、优选在膜表面渗出的蜡量多的特性;以及如尘埃等异物附着那样,在膜表面渗出的蜡量少的量时观察到效果,并且蜡量过多时从膜与金属板的密合性的观点出发不优选的特性。

[0072] 关于第1聚酯膜,从在更良好的范围内兼具制罐时的耐损伤性和与金属板的密合性的观点出发,Wb1更优选为Wb2的1.1倍以上,特别优选为1.3倍以上。此外,从作为层压金属板的品质的观点出发,Wb1优选为Wb2的100倍以下。

[0073] 在第1聚酯膜中,作为用于使Wb1>Wb2的方法,可举出下述方法:使聚酯B1层、聚酯B2层的厚度相同,使聚酯B1层的含蜡浓度大于聚酯B2层的含蜡浓度的方法:使聚酯B1层、聚

酯B2层的含蜡浓度相同,使聚酯B1层的厚度大于聚酯B2层的厚度的方法;变更聚酯B1层、聚酯B2层的厚度、含蜡浓度这两者的方法等。从使聚酯B1层、聚酯B2层的原料组成相同,而可以共享制造时的挤出机的观点出发,优选为使聚酯B1层、聚酯B2层的含蜡浓度相同,使聚酯B1层的厚度大于聚酯B2层的厚度的方法。

[0074] [第3聚酯膜]

[0075] [B层]

[0076] 第3聚酯膜在含有空隙的聚酯层 (B层) 的至少一面叠层含有蜡的聚酯层 (A层) 是重要的。

[0077] 通过使B层中形成规定范围的空隙,从而能够兼具成型加工时的膜裂缝的抑制与膜的隐蔽性。此外,通过在B层的一面具有含有蜡的A层,从而可以抑制成型加工时的表面的膜削减。此外,在不具有A层的情况下,有时成型加工时的与模具的滑动性变得不充分,成型性恶化。

[0078] 「第3聚酯膜]

[0079] [空隙的累计厚度、累计长度]

[0080] 关于第3聚酯膜,空隙的累计厚度相对于膜总厚度为5~20%是重要的。如果空隙的叠层厚度相对于膜厚度小于5%,则有时在成型加工时缓冲性消失,加工变得困难,或基底隐蔽性变得不充分。此外,如果空隙的累计厚度相对于膜总厚度超过20%,则有时加工时的操作变得困难,或成型时膜开裂。关于本发明的聚酯膜,从操作性、基底隐蔽性、成型性的观点出发,空隙的累计厚度相对于膜总厚度优选为6~19%,更优选为7~17%,特别优选为10~15%。此外,1个空隙的在膜的厚度方向上的大小优选为0.05μm~0.7μm,更优选为0.1~0.5μm。如果1个空隙的大小变为0.05μm以下,则亨特表色系中的L值降低,基底隐蔽性变得不充分,如果超过0.7μm则以该空隙作为起点,成型时膜开裂这样的不良状况发生。

[0081] 作为用于使第3聚酯膜的各空隙的累计厚度相对于膜总厚度的比例为5~20%的方法,可举出调整拉伸倍率、白色颜料的粒径、热定形处理温度、热定形处理温度时间等制造条件的方法。从生产性的观点出发,优选在双轴拉伸后,将在70~120 \mathbb{C} 、170~210 \mathbb{C} 、210 ~240 \mathbb{C} 下的热处理各自依次实施数秒~数十秒来调整空隙的大小。

[0082] 关于第3聚酯膜,优选使相对于长度方向垂直地切出的膜截面上的面方向的膜长度30µm间所存在的各空隙长度的累计长度相对于膜长度30µm为1~15%。如果面方向的膜长度30µm时的空隙长度的累计长度的比例小于1%,则有时成型加工变得困难,或基底隐蔽性变得不充分。此外,如果空隙长度的累计长度相对于面方向30µm超过15%,则有时加工时的操作变得困难,或成型时膜开裂。特别更优选为2~9%,进一步优选为4~7%。

[0083] 作为用于使第3聚酯膜的面方向的膜长度30μm间所存在的各空隙长度的累计长度相对于膜长度30μm为1~15%的方法,可举出调整拉伸温度、拉伸倍率、白色颜料的粒径、热定形处理温度、热定形处理温度时间等制造条件的方法。从生产性的观点出发,优选为在双轴拉伸后,将在70~120℃、170~210℃、210~240℃下的热处理各自依次实施数秒~数十秒来调整空隙的大小。

[0084] 对于第3聚酯膜,优选B层的空隙的面积率相对于膜的截面积为2~10%。在小于2%的情况下,有时基底的隐蔽性不足。如果超过10%则有时加工时的操作变得困难。作为用于使本发明的空隙的含有率相对于膜整层为2~10%的方法,可举出调整拉伸温度、拉伸

倍率、白色颜料的粒径、热定形处理温度、热定形处理温度时间等制造条件的方法。从生产性的观点出发,优选在双轴拉伸后,将在70~120℃、170~210℃、210~240℃的热处理依次实施数秒~数十秒来调整空隙的大小。

[0085] 所谓空隙面积率,是指利用以下方法来求出的值。将膜包埋于环氧树脂,使用切片机相对于膜的长度方向垂直切出截面,对于该截面,使用日立制作所制S-2100A形扫描型电子显微镜以倍率4000倍拍摄膜的截面。由该照片求出膜厚度和各聚酯层的厚度,在仅空洞部分透明的膜上记录,使用图像分析器(ニレコ株式会社制:ルーゼックスIID),求出厚度20μm×长度30μm的膜截面上观察到的空隙的面积(μm²)。求出该面积与膜面积(600μm²)的面积比率(空隙面积/膜面积)设为空隙面积率。另外,使用由彼此不同的测定视场任意地选择的合计5处的截面照片,作为其平均值来算出。

[0086] [第1聚酯膜]

[0087] [各层的熔点、颜料浓度]

[0088] 关于第1聚酯膜,从抑制层压时、印刷时、制罐时由热引起的膜变形的观点,为了膜表面的蜡浓度均匀化而在高温下实施热定形,即使一次性使蜡渗出也不损害膜平面性的观点出发,优选聚酯A层、聚酯B1层、聚酯B2层的各层各自的熔点超过250℃且为280℃以下。通过使各层各自的熔点处于超过250℃的范围,从而能够进行例如200℃以上那样的高温的热定形,膜表面的蜡浓度被均匀化,制罐时的耐损伤性、加工品的品质变得良好。如果聚酯A层、聚酯B1层、聚酯B2层的各层的熔点为250℃以下,则有时提高热定形温度时,膜被加热直至熔点附近,因此膜的变形变大而平面性恶化,或构成的聚酯的结晶的熔化开始而膜的取向变低,膜会变脆。此外,如果聚酯A层、聚酯B1层、聚酯B2层的各层的熔点超过280℃,则有时熔融挤出性降低而挤出精度变得不充分,膜的厚度不均会变大。作为用于使聚酯A层、聚酯B1层、聚酯B2层的各层的熔点超过250℃且为280℃以下的方法,可使用采用熔点超过250℃且为280℃以下的聚酯原料来制作膜的方法等。

[0089] 关于第1聚酯膜,从制罐时的耐损伤性、或印刷加工时的品质的观点出发,聚酯B1层和聚酯B2层的两层优选包含颜料0质量%以上5质量%以下。第1聚酯膜中的所谓颜料,是指用于对膜赋予基底隐蔽性、颜色等的粉末,作为使膜含有的方法,可使用混合到制造膜时的原料片料等方法。颜料中,作为白色颜料,可举出氧化钛、硫酸钡、碳酸钙、二氧化硅、氧化铝等,其中从隐蔽性、在聚酯中的分散性的观点出发,优选为氧化钛。此外,作为黑色颜料,可举出铁黑、炭黑,作为黄色颜料,可举出缩合偶氮、奎酞酮、异吲哚啉酮、异二氢吲哚、蒽醌、喹吖啶酮、酞菁系等有机颜料、烧成颜料、钒酸铋、氧化铁系等。聚酯B1层和聚酯B2层的颜料浓度更优选为0质量%以上3质量%以下,特别优选为0质量%以上1质量%以下的构成。如果聚酯B1层和/或聚酯B2层包含超过5质量%的颜料,则有时在制罐时对罐带来损伤,或在膜表面所露出的颜料部分不能清晰地印刷,发生印刷缺陷。此外,关于本发明的聚酯膜,从膜的卷曲抑制的观点出发,优选聚酯B1层、聚酯B2层的两层包含颜料0质量%以上5质量%以下,特别优选聚酯B1层与聚酯B2层的颜料浓度为相同量的构成。

[0090] 「第1聚酯膜、第2聚酯膜和第3聚酯膜]

[0091] 「色调L值]

[0092] 关于第1聚酯膜、第2聚酯膜,从基底隐蔽性的观点出发,亨特表色系中的色调L值优选为65以上。如果亨特表色系中的L值小于65,则有时基底隐蔽性变得不充分。关于本发

明的聚酯膜的L值,从使基底隐蔽性更良好的观点出发,优选为75以上,更优选为80以上,特别优选为84以上。亨特表色系中的L值越大则基底隐蔽性越良好,从使制膜性良好的观点出发,L值优选为100以下。

[0093] 作为用于使本发明的聚酯膜的L值为65以上的方法,可举出使聚酯A层含有规定量颜料的方法。在颜料中,作为白色的颜料,可举出氧化钛、硫酸钡、碳酸钙、二氧化硅、氧化铝等,其中优选为氧化钛。在包含氧化钛作为颜料的情况下,可以包含锐钛型氧化钛、金红石型氧化钛中的任一种。在这些白色颜料中,从制造时的裂开性的观点出发,优选为锐钛型氧化钛。作为本发明的聚酯膜,在使用例如锐钛氧化钛的情况下,为了使L值为80以上,虽然根据膜厚度的不同而不同,但优选为相对于膜整体包含3质量%以上40质量%以下的方式,更优选为包含5质量%以上35质量%以下的方式,进一步优选为包含7质量%以上30质量%以下的方式,特别优选为包含15质量%以上25质量%以下的方式。如果相对于膜整体包含小于3质量%的白色颜料,则有时L值变得小于80。此外,如果相对于膜整体包含超过40质量%的白色颜料,则有时白色颜料作为起点而构成膜的聚酯的结晶化过度地进行,在横向拉伸时断裂而得不到双轴拉伸聚酯膜。

[0094] 「第1聚酯膜、第2聚酯膜]

[0095] 「厚度]

[0096] 第1聚酯膜、第2聚酯膜的厚度优选为10μm以上40μm以下。如果厚度小于10μm,则有时加工时的操作性变得困难,或基底隐蔽性变得不充分,或制膜性变得不充分。如果厚度超过40μm,则与金属板的层压变得困难,或在作为电子部件的双面粘接遮光带来使用时,有时电子部件的厚度变大,在小型制品中的使用变得不利。关于本发明的聚酯膜,从操作性、层压性、制品厚度的观点出发,更优选为6~30μm,进一步优选为8~25μm,特别优选为10~20μm。作为用于使第1聚酯膜、第2聚酯膜的厚度为10~40μm的方法,可举出调整聚合物的排出量、流延鼓速度、拉伸倍率等制造条件的方法。

[0097] 关于第1聚酯膜、第2聚酯膜,从兼具制罐时的耐损伤性、层压金属板的品质、以及抑制印刷性(例如,聚酯B1层侧)、膜与金属板的密合性(例如,聚酯B2层侧)的降低的观点出发,在将膜的总厚度设为t(μm),将聚酯A层的厚度设为ta(μm),将聚酯B1层的厚度设为tb1(μm),将聚酯B2层的厚度设为tb2(μm)时,优选满足下述式(IV)~式(VI)。

[0098] tb1/tb2>1 • • • (IV)

[0099] $0.05\mu \text{m} \le |\text{tb1-tb2}| \le 2\mu \text{m} \cdot \cdot \cdot \text{(V)}$

[0100] $0.08 \le (tb1+tb2)/t \le 0.3 \cdot \cdot (VI)$

[0101] 通过同时满足(IV)式、(V)式、(VI)式,从而可以兼具下述特性:制罐时的耐损伤性那样的、优选在膜表面渗出的蜡量多的特性;以及如尘埃等异物附着那样,在膜表面渗出的蜡量少的量时观察到效果,并且蜡量过多时从膜与金属板的密合性的观点出发不优选的特性,能够不发生聚酯B1层与聚酯B2层的厚度差引起的卷曲,使基底隐蔽性良好。

[0102] [第2聚酯膜]

[0103] 「热收缩率]

[0104] 在向金属板的层压用途中,为了即使因为层压时、印刷时、制罐时所受的热膜也不变形,190℃时的加工适应性是重要的。因此,对于第2聚酯膜,在将膜面内的任意一个方向设为方向X,将与方向X垂直的方向设为方向Y时,190℃、20分钟时的方向X的热收缩率(Sx)、

方向Y的热收缩率(Sv)满足下述(a)~(c)式是重要的。

[0105] $|S_X - S_Y| \le 4\% \cdot \cdot \cdot (a)$

[0106] $S_X \leq 5\% \cdot \cdot (b)$

[0107] Sy \leq 5% • • • (c)

[0108] 如果第2聚酯膜的 | Sx-Sy | 超过4%,则有时与金属的层压时、或向粘接带的加工时产生褶皱,或印刷加工后发生位置偏移。

[0109] 第2聚酯膜的|Sx-Sy|优选为3%以下,更优选为1.5%以下,特别优选为0.6%以下。

[0110] 作为用于使第2聚酯膜的 |Sx-Sy| 为4%以下的方法,可举出下述方法:将纵向拉伸、横向拉伸各自的有效倍率设定为相同值的接近的条件 (例如,使纵向拉伸为3倍,使横向拉伸为3倍,等),使面取向系数为0.8~1.4的方法,使 Δ n为0~30×10⁻³的方法等。这里,所谓面取向系数,是指膜的面内方向的取向的指标,可以测定膜面内的任意一个方向X的折射率 (nX)、与方向X正交的方向Y的折射率 (nY)、厚度方向Z的折射率 (nZ),由fn= (nX+nY) /2-nZ的式子来算出。此外, Δ n是指膜的面内方向的双折射率,由 Δ n=nX-nY求出。

[0111] 如果第2聚酯膜的Sx、Sy分别超过5%,则有时与金属的层压时、或向粘接带的加工时的宽度收缩变大,层压金属板、或双面粘接遮光带的收率降低。Sx、Sy分别优选为4%以下,更优选为3%以下,特别优选为2%以下。

[0112] 作为用于使第2聚酯膜的Sx、Sy分别为5%以下的方法,可举出:使双轴拉伸后的热定形温度为190℃以上的方法;双轴拉伸后,再次进行纵向拉伸和/或横向拉伸,提高面取向来抑制热收缩的方法等。双轴拉伸后的热定形温度优选为190℃以上250℃以下,更优选为200℃以上240℃以下,特别优选为210℃以上230℃以下。此外,在双轴拉伸后再次进行纵向拉伸和/或横向拉伸的情况下,优选不进行初次的横向拉伸后的热定形,或在设定为100~120℃的状态下,再次在130~150℃的范围内进行纵向拉伸和/或横向拉伸。

[0113] 对于第2聚酯膜而言,为了使双轴拉伸后的热定形温度为190℃以上,从膜的品质、耐脆性的观点出发,聚酯膜的熔点优选为230℃以上265℃以下。聚酯膜的熔点更优选为246℃以上260℃以下,进一步优选为250℃以上260℃以下,特别优选为253℃以上257℃以下。如果聚酯膜的熔点小于230℃,则在将热定形温度设定为190℃以上时,膜被加热直至熔点附近,因此膜的变形变大而平面性恶化,或构成的聚酯的结晶的熔化开始而膜的取向变低,有时膜会变脆。此外,在聚酯膜的熔点超过265℃的情况下,熔融挤出性降低而挤出精度变得不充分,有时膜的厚度不均会变大。

[0114] 获得同时兼具厚度、亨特表色系中的L值、190℃20分钟时的热收缩率的全部特性的膜并不容易。例如,对于40μm以下的薄的膜而言,如果要使亨特表色系L值为特定的范围以上,则需要大量含有氧化钛等白色颜料,但如果大量含有白色颜料,则如上所述构成膜的聚合物的结晶化过度地进行,横向拉伸时的断裂变得易于发生。另一方面,通过应用间苯二甲酸共聚聚对苯二甲酸乙二醇酯、1,4-环己烷二甲醇共聚聚对苯二甲酸乙二醇酯等这样的共聚聚酯,使结晶性降低,可以抑制横向拉伸时的断裂,但如果应用共聚聚酯,则聚酯的熔点也会降低,因此从平面性、耐脆性的观点出发,不能充分地提高膜的热定形温度,有时降低190℃热收缩率变得困难。

[0115] 为了获得第2聚酯膜,为了使双轴拉伸后的热定形温度为190℃以上的高温而抑制

热收缩率,应用聚酯的共聚量少,即熔点高、结晶性高的聚酯是重要的。另一方面,为了在薄的厚度下使亨特表色系中的L值为80以上,需要大量含有白色颜料,但聚酯的结晶性变高而易于引起拉伸时的断裂,因此对于实现第2聚酯膜而言,一边使用熔点高并且大量含有白色颜料的结晶性非常高的聚酯,一边为了即使是薄膜在拉伸时也不发生断裂而抑制结晶化的技术变得重要。

[0116] 作为一边使用结晶性高的聚酯一边抑制拉伸时的结晶化的技术,可举出流延时的 热结晶化抑制、通过进行纵向拉伸时的分步拉伸而进行的取向结晶化抑制等。

[0117] 所谓流延时的热结晶化抑制,具体而言,是将流延鼓的表面温度设定为15℃以下,尽量不给予流延鼓上的聚合物进行结晶化的温度历程的方法。流延鼓的表面温度优选为13℃以下,优选为10℃以下。然而,如果流延鼓的表面温度过低,则有时鼓表面结露,因此优选将湿度保持得低。作为使流延鼓的表面温度为15℃以下的方法,可使用降低流延鼓内循环的冷却介质的温度,或提高每单位时间的流量的方法;利用气室对流延鼓表面吹送冷气的方法;和将它们并用的方法等。此外,从用冷气将流延鼓上的膜直接冷却的观点出发,也优选采用使用气室的方法。

[0118] 所谓利用纵向拉伸时的分步拉伸进行的结晶化抑制技术,具体而言,是将由流延工序获得的片在纵向拉伸工序中拉伸时,不是一次性拉伸直至所期望的倍率,而是以两阶段以上反复进行低倍率的拉伸来抑制拉伸时的取向结晶化的方法。在低倍率的拉伸时,一次性的拉伸倍率优选为3倍以下,更优选为2倍以下,进一步优选为1.8倍以下,特别优选为1.5倍以下。此外,纵向拉伸总的拉伸倍率优选为2.5倍以上,更优选为2.7倍以上,特别优选为3倍以上。

[0119] [第2聚酯膜]

[0120] 「表面粗糙度、光泽度]

[0121] 第2聚酯膜优选至少一面的表面粗糙度SRa为7nm以上30nm以下,并且至少一面的入射角60°时的光泽度为80%以上120%以下。通过使至少一面的表面粗糙度SRa为7nm以上30nm以下,从而膜的卷绕性,以及印刷部分的光泽变得良好。至少一面的表面粗糙度SRa更优选为7nm以上20nm以下,进一步优选为7nm以上10nm以下。此外,本发明的聚酯膜通过使至少一面的入射角60°时的光泽度为80%以上120%以下,从而特别是可以使未实施印刷的部分的光泽感良好。入射角60°时的光泽度更优选为80%以上110%以下,特别优选为85%以上100%以下。

[0122] 作为本发明的优选的构成的、使至少一面的表面粗糙度SRa和入射角60°时的光泽度处于规定的范围的方法,可举出使第2聚酯膜为2层以上的构成,在至少一面的层,使构成的白色颜料的含量比剩余的面的层小等。

[0123] 「第2聚酯膜]

[0124] 「机械特性]

[0125] 关于第2聚酯膜,如果将膜面内的任意一个方向设为方向X,将与方向X垂直的方向设为方向Y,则优选方向X的断裂强度(Fx)、方向Y的断裂强度(Fy)、方向X的断裂伸长率(Lx)、方向Y的断裂强度(Ly)分别满足下述式。

[0126] $|F_{X}-F_{Y}| \leq 30 MPa \cdot \cdot \cdot (e)$

[0127] $140\text{MPa} < \text{Fx} \le 200\text{MPa} \cdot \cdot \cdot \text{(f)}$

[0128] $140MPa < Fy \le 200MPa \cdot \cdot (g)$

[0129] $|L_{X}-L_{Y}| \leq 30\% \cdot \cdot \cdot (h)$

[0130] $80\% < Lx \le 195\% \cdot \cdot \cdot (i)$

[0131] $80\% < Ly \le 195\% \cdot \cdot (j)$

[0132] 通过满足(e)式,从而两方向的应变的平衡变得良好,双轴拉伸后的膜的卷曲变得不易发生。此外,通过满足(f)式、(g)式,从而在与金属板的层压、对膜的印刷等中投入至连续输送工序的情况下即使施加高的张力来粘贴膜也不易断裂,操作性变得良好。在使膜与金属板一起变形时,能够不产生裂缝地使其变形。此外,通过满足(h)式,从而两方向的应变的平衡变得良好,双轴拉伸后的膜的卷曲变得不易发生。此外,通过满足(i)式、(j)式,从而在使膜与金属板一起变形时,能够不产生裂缝地使其变形。

[0133] 在第2聚酯膜中,作为用于满足(e) \sim (j)的各式的方法,可举出降低构成聚酯膜的聚酯的共聚量,分别调整纵向与横向的拉伸倍率的方法等。

[0134] 「第2聚酯膜]

[0135] [热处理后的特性变化]

[0136] 从在成型、印刷干燥中受热时,即使发生加热不均外观也不会变得不均匀方面出发,第2聚酯膜优选在至少一面,120℃10分钟热处理前后的入射角60°时的光泽度的变化为0%以上15%以下。120℃10分钟热处理前后的入射角60°时的光泽度的变化更优选为0%以上10%以下,进一步优选为0%以上5%以下。

[0137] 作为使第2聚酯膜的、120℃10分钟热处理前后的入射角60°时的光泽度的变化处于规定的范围的方法,可举出使聚酯膜为2层以上的构成,在至少一面的层,使构成的白色颜料的含量比剩余的面的层小等。可以认为:包含白色颜料等无机粒子的膜起因于表面附近所存在的无机粒子而表面形成凹凸形状,但如果该膜被加热至玻璃化转变温度以上,则以表面积变小的方式产生膜的变形。由于该变形而膜表面的白色颜料潜入膜内部,膜表面的凹凸形状变小,因此热处理后膜的光泽度发生变化。因此,如果在至少一面的层,白色颜料的含量变少,则热处理后潜入膜内部的白色颜料的量减少,因此可以减少光泽度的变化。[0138] 从使制罐后的光泽感良好的观点出发,本发明的聚酯膜的120℃10分钟热处理后

L0138」 从使制罐后的光泽感良好的观点出发,本发明的聚酯膜的120℃10分钟热处理后的光泽度优选为80%以上,更优选为83%以上。此外,从使制罐时的滑动性良好的观点出发,120℃10分钟热处理后的光泽度优选为120%以下。作为使120℃10分钟热处理后的光泽度为80%以上的方法,可举出使本发明的聚酯膜为2层以上的构成,在至少一面的层,使构成的白色颜料的含量比剩余的面的层小等。

[0139] 从膜的成型前后的表面外观变化少的方面出发,第2聚酯膜优选在至少一面,50% 拉伸前后的入射角60°时的光泽度的变化为0%以上20%以下。50%拉伸前后的入射角60°时的光泽度的变化更优选为0%以上15%以下,进一步优选为0%以上10%以下,特别优选为0%以上5%以下。

[0140] 作为在第2聚酯膜的至少一面,用于使50%拉伸前后的入射角60°时的光泽度的变化处于特定的范围的方法,可举出使本发明的聚酯膜为2层以上的构成,在至少一面,使构成的白色颜料的含量比剩余的面的层小,以及通过纵向拉伸时的分步拉伸,使白色颜料的长径预先在面方向上取向,从而在随后被50%拉伸时白色颜料的朝向也不易变化的方法等。

[0141] 从使制罐后的光泽感良好的观点出发,本发明的聚酯膜的50%拉伸后的入射角60°时的光泽度优选为80%以上,更优选为83%以上。此外,从使制罐时的滑动性良好的观点出发,50%拉伸后的入射角60°时的光泽度优选为120%以下。作为使50%拉伸后的入射角60°时的光泽度为80%以上的方法,可举出使本发明的聚酯膜为2层以上的构成,在至少一面的层,使构成的白色颜料的含量比剩余的面的层小等。

[0142] 为了使至少一面的表面粗糙度、光泽度、热处理前后、拉伸前后的光泽度变化处于特别良好的范围,第2聚酯膜优选为在聚酯A层的至少一面具有聚酯B层,在聚酯B层不含白色颜料的构成。然而,在不损害一面的表面粗糙度、光泽度、热处理前后、拉伸前后的光泽度变化的范围内,聚酯B层中,可以包含白色颜料以外的公知的易滑性粒子。本发明的聚酯膜的层数、层构成不受特别限定,从抑制膜的卷曲,兼具贴合于起偏器时的翘曲降低和干涉色抑制的观点出发,优选为B层/A层/B层、B层/A层/B层/A层/B层这样的膜相对于厚度方向对称,并且两表层为聚酯B层的构成。

[0143] 在通过截面观察确认为叠层构成的情况下,可以将截面观察照片的目视大量观察到无机物的层判别为聚酯A层,将少量观察到无机物的层判别为聚酯B层。

[0144] 「第3聚酯膜]

[0145] 「静摩擦系数]

[0146] 关于第3聚酯膜,膜的静摩擦系数μs优选为0.25以下。在静摩擦系数超过0.25的情 况下,有时膜与成型加工夹具的模具的滑动性恶化,成型后的膜产生外观不良。作为使本发 明的静摩擦系数为0.25以下的方法,优选除了使膜表层含有蜡成分以外,还含有无机、有机 粒子。为了仅利用无机、有机粒子就使静摩擦系数µs为0.25以下,需要大量添加粒子,但如 果大量添加粒子,则表面的光泽感变差,印刷性(美观性)变差。此外,在仅仅蜡成分的情况 下,在卷绕膜的工序中膜间的排气变差,生产性变差。使用的粒子只要是膜添加用的公知的 粒子即可,例如,优选为内部粒子、无机粒子、有机粒子。作为无机粒子,例如,可以使用将湿 式和干式二氧化硅、胶态二氧化硅、硅酸铝、氧化钛、碳酸钙、磷酸钙、硫酸钡、氧化铝、云母、 高岭土、粘土等作为构成成分的粒子,作为有机粒子,可以使用将苯乙烯、有机硅、丙烯酸 类、甲基丙烯酸类、聚酯类、二乙烯基化合物等作为构成成分的粒子。其中,优选使用湿式和 干式二氧化硅、氧化铝等的无机粒子和将苯乙烯、有机硅、丙烯酸、甲基丙烯酸、聚酯、二乙 烯基苯等作为构成成分的粒子。进一步,这些内部粒子、无机粒子和有机粒子可以并用两种 以上。作为粒子的添加量,只要是在不损害印刷性(美观性)的范围内的添加即可。此外,作 为使用的蜡成分,只要是上述记载的蜡成分即可,作为添加量,只要是在不损害印刷性(美 观性)的范围内的添加即可。

[0147] 「第3聚酯膜]

[0148] 「表面自由能]

[0149] 第3聚酯膜的利用润湿试剂得到的膜的表面自由能优选为30~35mN/m。如果利用润湿试剂得到的表面自由能小于30mN/m,则有时在印刷加工时发生油墨的印刷遗漏。如果超过35mN/m,则有成型加工时的与模具的剥离性恶化,会粘着于模具的可能性。优选为31~34mN/m,更优选为32~33mN/m。

[0150] 在第3聚酯膜中,为了使利用润湿试剂得到的表面自由能处于这样的范围内,上述蜡的添加量相对于A层的重量优选为0.001~5wt%,更优选为0.1~3wt%,特别优选为0.5

 \sim 2wt%.

[0151] 「第3聚酯膜]

[0152] 「颜料]

[0153] 第3聚酯膜所使用的白色颜料的数均粒径优选为0.1~3μm。在数均粒径为0.1μm以下的情况下,有不生成空隙的可能性,有时基底隐蔽性变得不充分。如果数均粒径超过3μm,则有生成大的空隙,在成型加工时以大的空隙作为起点,膜裂缝产生的可能性。优选为0.2~2μm,更优选为0.3~1.0μm的范围。

[0154] 「第3聚酯膜]

[0155] [表面粗糙度]

[0156] 第3聚酯膜的至少一面的表面粗糙度SRa优选为40nm以下。如果表面粗糙度SRa超过40nm,则印刷部分的光泽感不足,美观性变差。优选为35nm以下,更优选为30nm以下的范围。

[0157] 第3聚酯膜可以作为层压用来优选使用。在用于层压的情况下,其基材不受特别限定,可以优选使用于金属、纸、合成树脂等。此外在层压后进行成型加工的用途中也可以优选使用。

[0158] [第1聚酯膜、第2聚酯膜和第3聚酯膜]

[0159] 「用途]

[0160] 第1聚酯膜、第2聚酯膜和第3聚酯膜与金属板贴合来制成层压金属板时,使基底隐蔽性、深拉深成型时的耐损伤性良好,或作为遮光带使用时,收率、加工适应性变得良好,因此在对作为金属罐的材料的钢板、铝板或向该钢板、铝板实施了镀敷等各种表面处理的金属板层压膜,将获得的金属板进行拉深成型、拉延成型加工,制造金属罐的用途等中优选使用。

[0161] 此外,第1聚酯膜、第2聚酯膜和第3聚酯膜优选作为进一步叠层粘着剂层或进行印刷来粘贴于作为电子部件的构成材的塑料构件、玻璃构件的基底而使用的遮光带来使用。

[0162] [第1聚酯膜、第2聚酯膜和第3聚酯膜]

[0163] 「添加剂]

[0164] 第1聚酯膜、第2聚酯膜和第3聚酯膜可以以不使其特性恶化的程度含有各种添加剂,例如,抗氧化剂、耐热稳定剂、耐候稳定剂、紫外线吸收剂、有机系易滑剂、颜料、染料、有机或无机的微粒、填充剂、抗静电剂、成核剂等。

[0165] [第1聚酯膜、第2聚酯膜和第3聚酯膜]

[0166] 「制造方法例]

[0167] 接下来,以下说明第1聚酯膜、第2聚酯膜和第3聚酯膜的优选的制造方法,本发明不限定于这些例子来解释。

[0168] 将聚酯供给至排气式双轴挤出机并熔融挤出。此时,优选将挤出机内在流通氮气气氛下,使氧浓度为0.7体积%以下,树脂温度控制成265℃~295℃。此外,对于各层(在第1聚酯膜的情况下,聚酯B1层、聚酯A层、聚酯B2层)各自,供给于分开的排气式双轴挤出机进行熔融挤出后,使用进料区、多歧管等装置使各熔融挤出聚合物合流而成为叠层状态。另外,在各层含有蜡的情况下,有使供给的聚酯片料的全部量或一部分包含含有蜡的聚酯片料的方法。此外,作为含有蜡的聚酯片料的制造方法,有在聚酯片料的聚合时添加蜡的方

法:使聚酯片料与蜡混合的方法等。

[0169] 接着,通过过滤器、齿轮泵,分别进行异物的除去、挤出量的均整化,由T型模片状地排出至冷却鼓上。此时,通过下述方法使片状聚合物与流延鼓密合,冷却固化,获得未拉伸膜,所述方法是使用施加了高电压的电极利用静电使冷却鼓与树脂密合的静电施加法、在流延鼓与挤出的聚合物片之间设置水膜的流延法、使流延鼓温度为聚酯树脂的玻璃化转变点~(玻璃化转变点-20℃)而进行了挤出的聚合物粘着的方法、或者将这些方法多个组合了的方法。在这些流延法中,在使用聚酯的情况下,从生产性、平面性的观点出发,优选使用静电施加的方法。关于流延鼓的表面温度,在第1聚酯膜中,从抑制由蜡的渗出进行引起的鼓污染的观点出发,在第2聚酯膜中,从兼具隐蔽性与高温下的加工适应性、拉伸性的观点出发,优选为15℃以下。

[0170] 关于第1聚酯膜、第2聚酯膜和第3聚酯膜,从高温下的加工适应性,厚度不均的抑制等观点出发,优选制成双轴取向膜。双轴取向膜可以通过下述方法进行拉伸来获得,所述方法是将未拉伸膜在长度方向上拉伸后在宽度方向上拉伸、或在宽度方向上拉伸后在长度方向上拉伸的逐次双轴拉伸方法、或者将膜的长度方向、宽度方向基本上同时拉伸的同时双轴拉伸方法等。

[0171] 作为这样的拉伸方法中的拉伸倍率,长度方向上优选采用2.8倍以上3.5倍以下,进一步优选采用3倍以上3.3倍以下。此外,期望拉伸速度为1,000%/分钟以上200,000%/分钟以下。此外长度方向的拉伸温度优选为95℃以上130℃以下,优选在拉伸前在85℃预热1秒以上。此外,为了抑制85℃的热收缩率,也优选使拉伸前半温度为100℃以上120℃以下,拉伸中期温度为105℃以上130℃以下,进一步拉伸后半温度为110℃以上150℃以下的方法。

[0172] 为了兼具隐蔽性和高温下的加工适应性,在将包含高浓度的颜料的高结晶性的未拉伸膜进行拉伸的情况下,为了抑制随后的横向拉伸时的断裂,优选使用不一次性拉伸直至所期望的倍率,而以两阶段以上反复进行低倍率的拉伸来抑制拉伸时的取向结晶化的方法。在低倍率的拉伸时,一次性的拉伸倍率优选为3倍以下,更优选为2倍以下,进一步优选为1.8倍以下,特别优选为1.5倍以下。此外,纵向拉伸总的拉伸倍率优选为2.5倍以上,更优选为2.7倍以上,特别优选为3倍以上。

[0173] 作为宽度方向的拉伸倍率,优选为2.8倍以上3.5倍以下,进一步优选为3倍以上3.5倍以下,且优选与长度方向的拉伸倍率一致。宽度方向的拉伸速度期望为1,000%/分钟以上200,000%/分钟以下。

[0174] 然后,可以根据需要进行第二次纵向拉伸。进行第二次纵向拉伸的情况下的拉伸 倍率优选为1倍以上2倍以下,更优选为1.2倍以上1.6倍以下。此外,拉伸温度优选为140℃以上160℃以下。

[0175] 进一步,在双轴拉伸或第二次纵向拉伸后进行膜的热处理。热处理可以在烘箱中、在加热了的辊上等通过以往公知的任意方法来进行。该热处理往往在120℃以上聚酯的熔点以下的温度来进行,优选为190℃以上,更优选为200℃以上。此外,关于热处理时间,为了使蜡向表面的渗出均匀地进行,优选为10秒以上,更优选为15秒以上。此外,从与金属板的层压性的观点出发,热处理时间优选为60秒以下,更优选为30秒以下。

[0176] 进一步,为了提高与印刷层、粘着层等的粘接力,也可以对至少一面进行电晕处

理,或涂覆易粘接层。作为在膜制造工序内设置涂覆层的方法,优选为使用刮棒(メタリングリングバー)、凹版辊等在至少进行了单轴拉伸的膜上均匀地涂布使涂覆层组合物分散于水中而得的物质,一边实施拉伸一边使涂剂干燥的方法,此时,作为易粘接层厚度,优选为0.01μm以上1μm以下。此外,可以在易粘接层中添加各种添加剂,例如,抗氧化剂、耐热稳定剂、紫外线吸收剂、红外线吸收剂、颜料、染料、有机或无机粒子、抗静电剂、成核剂等。作为易粘接层中优选使用的树脂,从粘接性、操作性方面出发,优选为选自丙烯酸系树脂、聚酯树脂和氨基甲酸酯树脂中的至少1种树脂。进一步,也优选使用在140~200℃条件下进行离线退火(オフアニール)。

[0177] 第1聚酯膜、第2聚酯膜和第3聚酯膜可以优选作为在层压于金属板等之后,通过拉深成型、拉延成型而制造的金属罐来使用。此外,通过进行黑色等的印刷,从而可以优选用作智能手机、平板等电子器件的框架上设置的遮光带。

[0178] 实施例

[0179] 本发明中的特性的测定方法和效果的评价方法如下。

[0180] (1) 聚酯的组成

[0181] 将聚酯树脂和膜溶解于六氟异丙醇(HFIP),使用¹H-NMR和¹³C-NMR,对于各单体残基成分、副生二甘醇,定量了含量。在叠层膜的情况下,按照叠层厚度,削取膜的各层,从而采集构成各层单体的成分,进行了评价。另外,关于本发明的膜,由膜制造时的混合比率通过计算,算出组成。

[0182] (2)表面自由能

[0183] 关于在23℃、65%RH的条件下调湿了24小时的叠层膜,使用接触角计(协和界面化学制CA-D型),使用水、乙二醇、甲酰胺和二碘甲烷的4种测定液,使用协和界面化学(株)制接触角计CA-D型,求出相对于膜表面的静态接触角。关于各个液体,将所得的接触角和测定液的表面张力的各成分分别代入下式,关于 $\gamma^{\rm L}$ 、 $\gamma^{\rm H}$ 、 $\gamma^{\rm H}$,解开由4个式子构成的联立方程式。

[0184] $(\gamma^L \gamma_i^L)^{1/2} + 2(\gamma^+ \gamma_i^-)^{1/2} + 2(\gamma_i^+ \gamma^-)^{1/2} = (1 + \cos\theta) [\gamma_i^L + 2(\gamma_i^+ \gamma_i^-)^{1/2}]/2$

[0185] 其中, $\gamma = \gamma^L + 2(\gamma^+ \gamma_-)^{1/2} \gamma_j = \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_i^L + \gamma_j^- \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_i^L + \gamma_j^- \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_i^L + \gamma_j^- \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_i^L + \gamma_j^- \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_i^L + \gamma_j^- \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_i^L + \gamma_j^- \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_i^L + \gamma_j^- \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_i^L + \gamma_j^- \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_i^L + \gamma_j^L + 2(\gamma_j^+ \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_j^L \gamma_j^L + 2(\gamma_i \gamma_j^-)^{1/2}$,这里, $\gamma_i \gamma_$

[0186] 这里所使用的各液体的表面张力使用了通过Oss("Fundamentals of Adhesion", L.H.Lee(Ed.),p153,Plenum ess,New York(1991))而提出的表1的值。

[0187] 「表1]

[0188] 表1

[0189]

	γ	γ ^L	$2(\gamma^+\gamma^-)^{1/2}$	γ +	γ -
水	72.8	21.8	51	25.5	25.5
乙二醇	48	29	19	1.92	47
甲酰胺	58	39	19	2.28	39.6
二碘甲烷	50.8	50.8	~0	_	_

[0190] 另外,关于参考比较例51~62、参考比较例1~7,使用和光纯药(株)制润湿试剂,

按照JIS K6768,实施了膜表面的润湿张力测定。将棉棒浸入润湿试剂,将润湿试剂以约1秒涂布成5mm×100mm的形状,利用涂布2秒后的涂布形状,将成为与刚涂布后形状没有变化的状态的润湿指数设为利用润湿张力得到的表面自由能。

[0191] (3) 膜厚度、层厚度

[0192] 将膜包埋于环氧树脂,用切片机切出膜截面。利用透射型电子显微镜(日立制作所制TEM H7100)以5000倍的倍率观察该截面,求出膜厚度和聚酯各层的厚度。

[0193] (4) 各层的熔点

[0194] 削取膜的各层之后,使用差示扫描量热计(セイコー电子工业制,RDC220),按照 JIS K7121-1987、JIS K7122-1987进行了测定和解析。削取测定用试样5mg,用作样品,将由以20℃/分钟从25℃升温至300℃时的DSC曲线获得的吸热峰的顶点的温度设为膜的熔点。熔点观测到2处以上的情况下,将最大的吸热峰设为各层的熔点。

[0195] (5) 亨特表色系中的L值

[0196] 使用色温表(スガ试验机制,SM-T),按照JIS P812213-1961,测定以亨特方式下的透过模式测定得到的值。对光的入射面各面测定5次,两面合计测定10次。求出合计10次的测定值的平均,将其设为该膜的色调L值。

[0197] (6) 耐损伤性

[0198] 使用橡胶辊同时在加热至250℃的无锡钢板 (钢板)的一面层压评价对象的膜,在 另一面层压东レ制聚酯膜"ルミラーS10" (熔点:255℃,厚度:23μm)。使用拉延成型机、拉深 成型机将获得的层压金属板成型,制作出直径6cm、高度13cm且罐的外侧成为评价对象的膜 侧的圆筒状的罐。关于制作的罐的主体部的外观,按照下述基准以目视进行了评价。

[0199] A:未观察到损伤。

[0200] B:如果对着光,则略微观察到条纹状的损伤,但未观察到钢板的本来表面能够可见的损伤。

[0201] C:观察到1条钢板的本来表面能够可见的损伤。

[0202] D:观察到2条以上钢板的本来表面能够可见的损伤。

[0203] (7) 加工后的品质

[0204] 关于与(6)同样地操作而获得的A4尺寸的层压金属板的、评价对象的膜侧的外观,按照下述基准以目视进行了评价。

[0205] A:未观察到气泡缺陷。

[0206] B:观察到1处以上5处以下长径小于3mm的气泡缺陷,但长径3mm以上的缺陷一处也没观察到。

[0207] C:观察到6处以上长径小于3mm的气泡缺陷,但长径3mm以上的气泡缺陷一处也没观察到。

[0208] D:观察到1处以上长径3mm以上的气泡缺陷。

[0209] (8) 尺寸稳定性

[0210] 将A4尺寸的膜夹入两张A4尺寸的金属框(4边分别各留20mm,将中心切出的形状)并用金属夹具固定。在A4尺寸的膜的中心部以50mm×50mm见方(A4尺寸的长边方向(以下,长边方向)×A4尺寸的短边方向(以下,短边方向))的记号的中心部重叠的方式记入记号之后,以2.5m/分钟的输送速度投入至设定为160℃的5m热风干燥炉。确认从热风干燥炉出来

的膜的格子尺寸、以及膜状态,按照下述基准进行了评价。

[0211] A: 膜的格子尺寸的变化率在长边方向、短边方向上都小于1%, 且未观察到膜的褶皱。

[0212] B: 膜的格子尺寸的变化率在长边方向、短边方向中的任一者小于1%,另一者为 1%以上,且未观察到膜的褶皱。

[0213] C: 膜的格子的尺寸的变化率在长边方向、短边方向上都为1%以上,且未观察到膜的褶皱。

[0214] D: 膜观察到褶皱。

[0215] (9) 印刷性

[0216] 在切出成A4的大小的膜上,使用棒式涂布机涂布按照下述比例混合油墨、溶剂、固化剂而得的热固化型油墨,以使固化后的膜厚成为约5μm。

[0217] 油墨:帝国インキ制造(株)制INQ丝网油墨(971):100重量份

[0218] 溶剂:帝国インキ制造(株)制F-003:10重量份

[0219] 固化剂:帝国インキ制造(株)制240固化剂:3重量份

[0220] 接着,将涂布有热固化型油墨的膜在90℃的热风烘箱中干燥60分钟,使热固化型油墨固化,获得了油墨叠层膜。

[0221] 对获得的油墨叠层膜的油墨叠层面划100个1mm×1mm的方格,粘贴"セロテープ" (注册商标) (ニチバン制CT405AP),以1.5kg/cm²的荷重用手动辊推压后,沿相对于油墨叠层膜呈90度方向迅速地剥离。粘接性通过残存的方格的个数进行4等级评价。

[0222] A:100个残存

[0223] B:80~99个残存

[0224] C:50~79个残存

[0225] D:0~小于50个残存。

[0226] (10)与金属板的密合性

[0227] 对与(6)同样地操作而获得的层压金属板的评价对象的膜侧划100个1mm×1mm的方格,与(9)同样地操作进行了评价。

[0228] (11) 基底隐蔽性

[0229] 在加热直至比熔点低5℃的温度的无锡钢板 (钢板) 上用油性黑魔术笔 (magic) 记入长度50mm、宽度为0.3mm、1mm以及1.5mm的3种线之后,将锡钢板加热直至比膜的熔点低5℃的温度,在该板上使用橡胶辊来层压膜。目视获得的层压钢板,按照下述基准进行了评价。

[0230] A:3种线都完全不可见。

[0231] B:3种线中,仅1种线可见。

[0232] C:3种线中,2种线可见。

[0233] D:3种线中,3种都可见。

[0234] (12) 耐卷曲性

[0235] 将切出成10cm×10cm的膜置于水平的玻璃板上,测定与玻璃板面垂直方向上的4个角的翘起量,将该4个角中最大的高度设为卷曲高度,按照下述基准进行了评价。

[0236] A:卷曲高度小于1mm。

[0237] B: 卷曲高度为1mm以上且小于3mm

[0238] C:卷曲高度为3mm以上。

[0239] (13) 水的接触角的变异系数

[0240] 关于在23℃、65%RH的条件下,以该条件调湿了24小时的膜,使用接触角计(协和界面化学制CA-D型),测定水的接触角10次。另外,测定进行10次,在200mm×200mm的范围内,不对相同位置测定2次以上,每次变更位置进行测定。相对于获得的10次水的接触角的测定值,分别求出标准偏差和算术平均值,求出将标准偏差除以算术平均值而得的值(%)。

[0241] (14) 聚酯的特性粘度

[0242] 聚酯树脂和膜的特性粘度是将聚酯溶解于邻氯苯酚,使用奥斯特瓦尔德粘度计,在25℃进行了测定。在叠层膜的情况下,可以按照叠层厚度,削取膜的各层,从而评价各层单体的特性粘度。

[0243] (15)每单位面积的蜡含量

[0244] 削取膜的各层之后,通过傅立叶变换红外线吸收分光法-全反射法定量蜡的质量浓度 ($\mu g/cm^3$)。测定使用FTS-60A/896 (GIGILAB制FT-IR) 作为分光器,使用ZnSE (硒化锌) 作为IR元件 (棱镜),以入射角60°反射1次来测定。此时,分辨率设为4cm⁻¹,累计次数设为256次。在定量时,由蜡来源的C-H伸缩振动谱带2850cm⁻¹附近的峰与聚酯中的苯环来源的3050cm⁻¹附近的峰的强度比来求出。另外,定量时利用了使用预先变更了蜡的质量浓度 ($\mu g/cm^3$) 的多个样品而制成的标准曲线。通过将通过定量获得的蜡的质量浓度 ($\mu g/cm^3$) 乘以由(3) 求出的各层的厚度 (cm),从而求出膜的各层的每单位面积所包含的蜡含量 ($\mu g/cm^2$)。

[0245] (16) 膜的熔点

[0246] 使用差示扫描量热计(セイコー电子工业制,RDC220),按照JIS K7121-1987、JIS K7122-1987进行了测定和解析。将聚酯膜5mg用作样品,将由以20℃/分钟从25℃升温直至 300℃时的DSC曲线获得的吸热峰的顶点的温度设为膜的熔点。在观测到2处以上熔点的情况下,将最大的吸热峰设为膜的熔点。

[0247] (17)表面粗糙度

[0248] 使用表面粗糙度计 (小坂研究所制, SE4000) 对两面进行了测定。在触针前端半径 $0.5\mu m$, 测定力 $100\mu N$, 测定长度1mm, 低域截止0.200mm, 高域截止0.000mm的条件下进行测定, 按照 JIS B0601-2001, 求出算术平均粗糙度 SRa (nm)。

[0249] 另外,关于参考比较例51~62、参考比较例1~7,使用三维表面粗糙度计(小坂研究所制,ET4000AK),按照以下条件通过触针法进行了测定。另外,表面粗糙度(SRa)取粗糙度曲面的高度与粗糙度曲面的中心面的高度之差,表示其绝对值的平均值,另外,本发明中的表面粗糙度(SRa)是测定膜的两侧表面,设为数值低的值。

[0250] 针径 2(µmR)

[0251] 针压 10 (mg)

[0252] 测定长度 500 (µm)

[0253] 纵倍率 20000(倍)

[0254] 截止(CUT OFF) 250(μm)

[0255] 测定速度 100(µm/s)

[0256] 测定间隔 5(µm)

[0257] 记录条数 80条

[0258] 滞后宽度 ±6.25 (nm)

[0259] 基准面积 0.1 (mm²)。

[0260] (18) 光泽度

[0261] 按照JIS Z-8741-1997中规定的方法,使用光泽度计(スガ试验机制数字变角光泽度计UGV-5D),测定60°镜面光泽度。测定以n=10进行,将除去了最大值和最小值的8次测定值的平均值设为光泽度。

[0262] (19)190℃20分钟热收缩率

[0263] 将膜沿任意一个方向X和与X方向正交的方向Y分别切出长度70mm×宽度10mm的矩形,作为样品。对样品以50mm的间隔描绘标线,吊挂3g的重物,在加热至190℃的热风烘箱内设置20分钟,进行了加热处理。测定热处理后的标线间距离,由加热前后的标线间距离的变化,通过下述式算出热收缩率。测定是各膜都在X方向和Y方向上实施3个样品,利用平均值进行了评价。

[0264] 热收缩率(%) = $\{(m \pm m) + (m \pm m) - (m \pm m) + (m \pm m) \}$ 从理前的标线间距离) \times 100。

[0265] (20) 断裂伸长率、断裂强度

[0266] 将膜面内的任意一个方向设为方向X,将与方向X正交的方向设为方向Y,切出成150mm×10mm(方向X×方向Y)的矩形,作为样品。使用拉伸试验机(オリエンテック制テンシロンUCT-100),将初始拉伸夹盘间距离设为50mm(L0),拉伸速度设为300mm/分钟,进行拉伸试验,求出样品断裂时的夹盘间距离(L)。关于由(L-L0)/L0×100的计算式求出的值,将10次测定的平均值设为方向X的断裂伸长率(%)。此外,将即将断裂前所测定的强度设为断裂强度(MPa)。切出成150mm×10mm(方向Y×方向X)的矩形,制作样品,方向Y的断裂伸长率也同样地求出。

[0267] (21) 50% 拉伸后的光泽度变化率

[0268] 关于使用膜拉伸机(ブルックナー社制,KARO-IV),以下述条件将膜拉伸之后的膜表面外观,按照以下基准进行样品制作,然后进行光泽度评价。

[0269] 初始样品:100mm×100mm,预热、拉伸温度:120℃,预热时间:20s,拉伸速度:20%/s,拉伸倍率:2倍×1倍

[0270] 光泽度变化率 $(\%) = | 拉伸前光泽度-拉伸后光泽度 | / 拉伸前光泽度 \times 100$

[0271] (22) 120℃10分钟热处理后的光泽度变化率

[0272] 在设定为120℃的热风烘箱中,将切取成100mm×100mm的样品吊挂于烘箱的顶部正中部分,放置10分钟。经过10分钟后,取出样品,进行了光泽度评价。

[0273] 120℃10分钟热处理后光泽度变化率(%)=|热处理前光泽度-热处理后光泽度|/ 热处理前光泽度×100

[0274] (23) 成型性评价

[0275] 将由(11)获得的层压钢板以拉深比3进行拉深加工,目视确认获得的罐,按照下述基准进行了评价。

[0276] A: 膜表面未观察到膜部分的断裂、裂缝。

[0277] B: 膜表面观察到2mm以下的膜部分的断裂、裂缝。

[0278] C: 膜表面观察到超过2mm且5mm以下的膜部分的断裂、裂缝。

[0279] D: 膜表面观察到超过5mm的尺寸的膜部分的断裂、裂缝。

[0280] (24) 光泽感评价

[0281] 关于由(23)获得的罐,按照下述基准进行了评价。

[0282] A:对罐照荧光灯时,相对于罐的整面,轮廓清楚地可见。

[0283] B:对罐照荧光灯时,罐的底面、主体面中的任一面的轮廓模糊地可见,另一者的轮廓清楚地可见。光泽感弱,另一面保持着充分的光泽感。

[0284] C:对罐照荧光灯时,相对于罐的整面,轮廓模糊地可见。

[0285] D:对罐照荧光灯时,罐的底面、主体面中的至少一个表面非常粗糙,轮廓几乎不可见。

[0286] (25) 叠层厚度方向上的B层的空隙的累计厚度相对于膜厚度的比例

[0287] 与(3)同样地拍摄截面照片,在叠层厚度方向上任选地引出5条直线。然后,与厚度方向平行地引出任意的1条直线,将位于该直线上的全部空隙的厚度相加而得的累计厚度 (μm) (V1)相对于膜厚度 (T1)的比例由下述式1算出。任选地引出的5条直线都同样地实施,求出平均值。

[0288] V1/T1×100 • • • • (式1)

[0289] (26) 面方向的累计空隙长度相对于面内方向的膜长度30µm的比例

[0290] 与(3)同样地拍摄截面照片,以与面内方向成为平行的方式引出任意的5条直线之后,求出该任意的直线上的位于膜长度30µm之间的全部空隙的面内方向上的空隙长度(µm)的累计值(V2)。将该累计值相对于面方向30µm的比例由下述式2算出。任意地引出的5条直线都同样地实施,求出平均值。

[0291] $V2/30 \times 100 \cdot \cdot \cdot \cdot (式2)$

[0292] (27) 空隙面积率

[0293] 与(3)同样地拍摄截面照片,在仅空洞部分透明的膜上记录,使用图像分析器(ニレコ株式会社制:ルーゼックスIID),求出厚度20μm×长度30μm的膜截面上观察到的空隙的面积(μm²)。求出该面积与膜面积(600μm²)的面积比率(空隙面积/膜面积)。另外,使用由彼此不同的测定视场任意地选择的合计5处截面照片,作为其平均值算出。

[0294] (28) 静摩擦系数µs

[0295] 使用滑动试验机 (ASTM D 1894-63),以重物200g、接触面积 $7500 \times 7500 mm^2$ 、移动速度150 mm/分钟、移动距离5 mm、初始移动距离10 mm进行了测定。

[0296] (29) 印刷性(美观性)评价

[0297] 通过棒式涂布机方式,在由(11)获得的层压钢板上涂布配合有聚酯树脂和三聚氰胺树脂的油墨,以160℃×10分钟使其干燥,实施印刷,如下判断出印刷后的美观性。

[0298] ②:印刷清晰,缺陷等完全观察不到。

[0299] 〇:印刷清晰,缺陷等几乎观察不到

[0300] ×:印刷不清晰,缺陷也观察到。

[0301] (30) 剥离性

[0302] 以高度30mm、宽度200mm×200mm将模具加热至150℃,进行转印模内成型,如下判定。

[0303] ②:完全没有附着于模具,顺利地脱离。

[0304] ×:具有附着于模具的部分。

[0305] (31) 数均粒径、白色颜料浓度

[0306] 利用等离子体低温灰化处理法从膜的表面除去热塑性树脂,使粒子露出。处理条件选择热塑性树脂被灰化,但粒子没有受到破坏的条件。将其利用扫描型电子显微镜(SEM)进行观察,利用图像分析器处理粒子的图像。改变观察位置,以粒子数1000个以上,进行利用下式的数值处理,将由此求出的数均粒径D设为平均粒径。下式的Di为粒子的等效圆直径,N为粒子数。此外,同时使用X射线显微分析仪来确定白色颜料浓度。

[0307] $D = \sum Di/N \cdot \cdot \cdot \cdot (式3)$

[0308] (32) 莫氏硬度

[0309] 将与莫氏硬度膜中添加的粒子具有相同组成、结构的试验片,或将粉碎成粒子之前的矿物作为试验片,与莫氏硬度测定用的标准矿物彼此刻划,以是否进行刻划来测定。

[0310] (聚酯的制造)

[0311] 供于制膜的聚酯树脂如以下那样准备。

[0312] (聚酯A)

[0313] 作为二羧酸成分的对苯二甲酸成分为100摩尔%,作为二醇成分的乙二醇成分为100摩尔%的聚对苯二甲酸乙二醇酯树脂(特性粘度0.65)。

[0314] (聚酯B)

[0315] 作为二羧酸成分的对苯二甲酸成分为96摩尔%、间苯二甲酸成分为4摩尔%,作为二醇成分的乙二醇成分为100摩尔%的间苯二甲酸共聚聚对苯二甲酸乙二醇酯树脂(特性粘度0.7)。

[0316] (颜料母料1(颜料M1))

[0317] 在聚酯A中以粒子浓度50质量%含有数均粒径1μm的锐钛型氧化钛粒子的聚对苯二甲酸乙二醇酯颜料母料(特性粘度0.65)。

[0318] (颜料母料2(颜料M2))

[0319] 在聚酯A中以粒子浓度50质量%含有数均粒径1 μ m的金红石型氧化钛粒子的聚对苯二甲酸乙二醇酯颜料母料(特性粘度0.65)。

[0320] (颜料母料3(颜料M3))

[0321] 在聚酯A中以粒子浓度50质量%含有数均粒径1µm的锐钛型氧化钛粒子的间苯二甲酸共聚聚对苯二甲酸乙二醇酯颜料母料(特性粘度0.65)。

[0322] (蜡母料1(蜡M1))

[0323] 在聚酯A中含有10质量%巴西棕榈蜡的聚对苯二甲酸乙二醇酯蜡母料(特性粘度 0.62)。

[0324] (蜡母料2(蜡M2))

[0325] 在聚酯A中含有10质量%聚乙烯蜡的聚对苯二甲酸乙二醇酯蜡母料(特性粘度 0.62)。

[0326] (蜡母料3(蜡M3))

[0327] 在聚酯B中含有10质量%巴西棕榈蜡的间苯二甲酸共聚聚对苯二甲酸乙二醇酯蜡母料(特性粘度0.67)

[0328] (聚酯C)

[0329] 作为二羧酸成分的对苯二甲酸成分为100摩尔%,作为二醇成分的乙二醇成分为100摩尔%的聚对苯二甲酸乙二醇酯树脂(特性粘度0.65)。

[0330] (聚酯D)

[0331] 共聚有相对于二醇成分为10摩尔%1,4-环己烷二甲醇的1,4-环己烷二甲醇共聚聚对苯二甲酸乙二醇酯树脂(特性粘度0.75)。

[0332] (聚酯E)

[0333] 作为二羧酸成分的对苯二甲酸成分为80.4摩尔%、间苯二甲酸成分为19.6摩尔%,作为二醇成分的乙二醇成分为100摩尔%的间苯二甲酸共聚聚对苯二甲酸乙二醇酯树脂(特性粘度0.7)。

[0334] (白色颜料母料F)

[0335] 在聚酯C中以粒子浓度50质量%含有数均粒径1µm的锐钛型氧化钛粒子的聚对苯二甲酸乙二醇酯白色颜料母料(特性粘度0.65)。

[0336] (白色颜料母料G)

[0337] 在聚酯C中以粒子浓度50质量%含有数均粒径1µm的金红石型氧化钛粒子的聚对苯二甲酸乙二醇酯白色颜料母料(特性粘度0.65)。

[0338] (粒子母料用)

[0339] 在聚酯C中以粒子浓度2质量%含有数均粒径2.2μm的凝集二氧化硅粒子的聚对苯二甲酸乙二醇酯粒子母料(特性粘度0.65)。

[0340] (粒子母料])

[0341] 在聚酯C中以粒子浓度2质量%含有数均粒径0.7μm的碳酸钙粒子的聚对苯二甲酸乙二醇酯粒子母料(固有浓度0.65)。

[0342] (聚酯」)

[0343] 作为二羧酸成分的对苯二甲酸成分为100摩尔%,作为二醇成分的乙二醇成分为100摩尔%的聚对苯二甲酸乙二醇酯树脂(特性粘度0.65)。

[0344] (聚酯K)

[0345] 作为二羧酸成分的对苯二甲酸成分为80.4摩尔%、间苯二甲酸成分为19.6摩尔%,作为二醇成分的乙二醇成分为100摩尔%的间苯二甲酸共聚聚对苯二甲酸乙二醇酯树脂(特性粘度0.7)。

[0346] (蜡母料聚酯L)

[0347] 在聚酯J中含有0.2%wt%巴西棕榈蜡成分的母料聚合物

[0348] (白色颜料母料M)

[0349] 在聚酯J中以粒子浓度50wt%含有数均粒径0.2µm的锐钛型氧化钛粒子的聚对苯二甲酸乙二醇酯白色颜料母料(特性粘度0.65)。

[0350] (白色颜料母料N)

[0351] 在聚酯J中以粒子浓度50wt%含有数均粒径0.4μm的锐钛型氧化钛粒子的聚对苯二甲酸乙二醇酯白色颜料母料(特性粘度0.65)。

[0352] (白色颜料母料0)

[0353] 在聚酯 J中以粒子浓度50wt%含有数均粒径2.0µm的锐钛型氧化钛粒子的聚对苯

二甲酸乙二醇酯白色颜料母料(特性粘度0.65)。

[0354] (白色颜料母料P)

[0355] 在聚酯J中以粒子浓度50wt%含有数均粒径0.05µm的锐钛型氧化钛粒子的聚对苯二甲酸乙二醇酯白色颜料母料(特性粘度0.65)。

[0356] (白色颜料母料Q)

[0357] 在聚酯J中以粒子浓度50wt%含有数均粒径3µm的锐钛型氧化钛粒子的聚对苯二甲酸乙二醇酯白色颜料母料(特性粘度0.65)。

[0358] (粒子母料R)

[0359] 在聚酯J中以粒子浓度2wt%含有数均粒径2.2µm的凝集二氧化硅粒子的聚对苯二甲酸乙二醇酯粒子母料(特性粘度0.65)。

[0360] (粒子母料S)

[0361] 在聚酯J中以粒子浓度2wt%含有数均粒径2.2µm的有机粒子的聚对苯二甲酸乙二醇酯粒子母料(固有浓度0.65)。

[0362] (实施例1)

[0363] 使组成如表所示,将原料供给至氧浓度分别设为0.2体积%的分开的排气同方向双轴挤出机,使A层挤出机、B1层挤出机、B2层挤出机的料筒温度为280℃将各层的原料熔融,在进料区内以成为A层/B层/A层的3层构成方式使其合流,使合流后的短管温度为275℃,使口模温度为280℃,从T型模片状地排出至温度控制为10℃的冷却鼓上。此时,使用直径0.1mm的线状电极进行静电施加,使其与冷却鼓密合,一边以气室方式对流延鼓上的聚合物吹送15℃的冷风一边获得了未拉伸片。接着,以长度方向上的预热温度85℃进行1.5秒预热,以拉伸温度115℃在长度方向上进行3倍拉伸,立即用温度控制为40℃的金属辊冷却化。接着利用拉幅式横向拉伸机在预热温度85℃进行1.5秒预热,在拉伸前半温度115℃、拉伸中期温度135℃、拉伸后半温度145℃在宽度方向上进行3.5倍拉伸,直接在拉幅机内,一边以热处理温度200℃,在宽度方向上施加5%的松弛一边进行10秒热处理,获得了膜厚度21μm的双轴取向聚酯膜。

[0364] (实施例2、3)

[0365] 将热处理条件变更为如表所示,除此以外,与实施例1同样地操作,获得了双轴取向聚酯膜。

[0366] (实施例4、5、6、7、8、9、10、11、12、13、14、20、21、22)

[0367] 将膜构成变更为如表所示,除此以外,与实施例1同样地操作,获得了双轴取向聚 酯膜。

[0368] (实施例15)

[0369] 使A层挤出机、B1层挤出机、B2层挤出机的料筒温度为270℃,使短管温度为265℃,使口模温度为270℃,除此以外,与实施例1同样地操作,获得了双轴取向聚酯膜。

[0370] (实施例16)

[0371] 使A层挤出机的料筒温度为270℃,除此以外,与实施例1同样地操作,获得了双轴取向聚酯膜。

[0372] (实施例17)

[0373] 将膜构成、热处理条件变更为如表所示,除此以外,与实施例1同样地操作,获得了

双轴取向聚酯膜。

[0374] (实施例18、19)

[0375] 将膜构成变更为如表所示,除此以外,与实施例17同样地操作,获得了双轴取向聚酯膜。

[0376] (比较例1)

[0377] 设为A层/B1层的2层构成,设为表的膜构成,除此以外,与实施例1同样地操作,获得了双轴取向聚酯膜。

[0378] (比较例2、3、4、5、6)

[0379] 将构成、制造条件变更为如表所示,除此以外,与实施例1同样地操作,获得了双轴取向聚酯膜。

[0380] (比较例7)

[0381] 将冷却鼓的控制温度设为20℃,不吹送气室方式的冷风,除此以外,与实施例1同样地操作,获得了双轴取向聚酯膜。

[0382] [表2]

[0383]

			实施例1	实施例2	实施倒3	实施例4	实施倒品	
	銀成	ı	聚酯A (64度量等) 蘇科MI (6度量等) 端MI (30度量等)	聚酯A (64度量%) 原件NI (6度量%) 端NI (30度量%)	來儲A (64度量%) <i>複</i> 种MI (6度量%) 端NI (30度量%)	聚酯A (49 质量%) 原料MI (6质量%) 蜡MI (45 质量%)	聚酯A (64质量%) 板件M1 (6质量%) 端M1 (30质量%)	
秦聯31是	~ 按	Ç	255	255	255	255	255	
	t b 1	шĦ	m	es	6	8	3	
	Wb 1	" E/cm²	6.4	6.4	6.4	9.6	6.4	
	板料浓度	质量%	89	9	3	3	m	
	组成	I	聚酯A (72 质量%) <i>植科</i> MI Q8质量%)	聚酯A (72 质量%) 颜料MI 28质量%)	聚酯A (72 质量K) 原料N1 Q8质量K)	聚酯A(72质量%) 颜料MI @8质量%)	聚酯4 (71 廣重%) 原料M1 ②8廣重%) 端M1 (1 原量%)	
来點A层	英	ပ္	255	255	255	255	255	
族和政	t 8	шn	16	16	16	16	16	П
	Wa	"R/cm²	0	0		0	17	
	版朴浓度		14	14	14	14	14	
	独成	1	聚酯A(64质量%) 颜料M1(6质量%) 端M1(30质量%)	桑酯A (64県量%) 颜料M1 (6原量%) 端M1 (30质量%)	桑酯A (64原量%) 颜料M1 (6原量%) 端M1 (30质量%)	聚酯A (64烷量%) // / / / / / / / / / / / / / / / / /	聚酯A(64族量%)	
秦監32是	域效	ပ္	255	255	255	255	255	
	t b 2	m m	2	2	2	2	2	
	Wb 2	MR/cm²	4.2	4.2	4.2	4.2	4.2	
	颜料浓度	质量%	3	89	89	က	m	
	膜高厚度t	μm	21	21	21.	21	2.1	
1	以向拉伸倍車	参え	200	200	200	200	25	
制油条件	我们这个你	<u>ب</u> ا ه	200	210	220	200	200	
	热处理时间	4	10	10	13	10	10	П
*	面自由能(B1层)	m//m	41.5	41.5	41.5	40.3	40.3	
*	表面自由能(B2层)	E/NE	42.1	42.1	42.1	42.1	40.8	
大林縣)	水接触角的变异系数 (B1层) 水柱的含化水形皮型 (B2层)	%%	υ.α υ.α	0	4.4	20 00	8	
N N N N N N N N N N N N N N N N N N N	Vb 1 > Wa	2 1	30	0	»c	S C	0	
-	Wb2>Wa	J	0	0	0	0	0	
*	Wb1>Wb2		0	0	0	0	0	
	色调1位	-	73	73	73	73	73	
*李雅	t b 1 / t b 2	1	1.5	1,5	1.5	1.5	1.5	
	tb1-tb2	шn	-					
(tp	b1+tb2)/t	-	0.24	0.24	0.24	0.24	0.24	1
	好损伤性	ī	0	m	V	Ø	O	
*	加工后的品质	1	m	œ	m	ന	m	
	尺寸稳定性	ı	œ	m	m	ന	m	- [
	印刷体	I	В	n	m	മ്പ	m	- [
1	与金属板的密合型	1	m	m	m	m	mo	1
	每 展 賜 職 衛	1	0	2	>	٥	٥	

[0384] [表3]

[[[[[[[[[[[[[[[[[[[[0385]		实施到7 实施到B 实施到9 实施到10 实施到11 实施到12	表盤A (64度量%) 杂盤A (64度量%) 杂盤A (70度量%) 杂盤A (64度量%) 杂盤A (64度量%) 杂罄A (64度量%) 在种M (6质量%) 在种M (6质量%) 在种M (6质量%) 成种M (6质量%) 成料M (6质量%) 域M (30质量%) 域M (30质量%) 域M (30质量%)	255 255 255	2 3	3 3	表館A (62 項量X) 架館A (72 质量X) 架館A (72 质量X) 架館A (72 质量X) 聚館A (72 质量X)	255 255 255	16 16 16	µ R 2 cm² 0 0 0 0 0 0 0 0 0 0 0 0 14 14 20 14 20 14 14 20 14 20 14 14 14 20 14 14 14 14 14 14 14 14 14 14 14 14 14	東電太 (64度量等) 最離 (10度量素) 最極 (64度量素) 最 (64度量素)	°C 255 256 256 256 255	3 1 2 2 2 2	3 0 3 3	24 21 21	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200	10 10 10	415 415 415	41.5 42.1 45.6 42.1	(A)			78 71 76 85	1.7 2.0 1.5 1.5 1.5	0.01	0.14 0.24 0.24		യാ	ααααααααααααααααααααααααααααααααααααααα	000000000000000000000000000000000000000	B (B)
#31.8				I	္မာ	шπ	μg/cm² Æ¥	ı	ပ္	шn	u g/cm²	1	္စာ	mπ	# BY OM	mπ	*	ر پ	4	mN/m	ENN EN	%	ı	1 :		J	ωm		1	ł	1		
#文		3		组成	聚酯31是 站点		Wb 1 颜料浓度		表型A是	t a	Wa	ANT-XI 加成	来略82条	t b 2	Wb 2	膜為厚皮	級向拉伸倍車		热处理时间	表面自由能 (B1层)	表面自由院(B2県) 大海縣省的市路系数(B1県)	水楼敞角的变异系数(B2层)	Wb 1 > Wa	Wb2>Wa	L		tb1-tb2	メン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	和工柜的品质	尺寸稳定性	50 別者	· 1分/ 10 / 10 / 10 / 10 / 10 / 10 / 10 /	中本の本

[0386] [表4]

[0387]

2 日成 2 日成 2 日成 2 日	世界	楽盤A (名成後末) 様本M (名成後末) 255 255 12.8 3 東壁A (72 度後末) 原科M (28度後末) 成科M (28度後末) 成科M (6度後末) を紹本 (6月度末) を紹本 (6月度末)	系能A (6/K 董K) 蘇科(1 (6/K 董K) 華/(1 (30/K 董K)) 255 4.2 4.2 4.2 4.2 4.2 4.2 6.0 6.0 1.4 ※ 整 A (6/K 董K) 蘇科(1 (6/K 董K) 蘇科(1 (6/K 董K) 蘇科(1 (6/K 董K) 蘇科(1 (6/K 董K) 蘇科(1 (6/K 董K)	新聞8 (6 所 後米)		882	(%) ※) ※) ※) ※) ※) ※(*)
	世界/で加 世界/で加 世界/で加 世界/で加 世界/で加 世界/で加 世界/で加 世界/で加 世界/で加 世界/で加 一	255 6 12.8 3 2 255 404M (28度量%) 644M (28度量%) 255 32 0 14 64M (6度量%) 44M (6度量%) 44M (6度量%) 44M (36度量%) 44M (36度量%)	255 4.2 3 3 8 8 8 8 255 6 6 6 1 1 7 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	248 3 6.4 3 ※	255 8 8 8 8 8 8 8 8 8 8 8 8 8		255 3 9.6 0 0 0 0 0 255 16 0 0 20 20
	## ## ## ## ## ## ## ## ## ## ## ## ##	12.8 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 6 7 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 4.2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 9 9 9 9 8 8 9 16 16 16 16 14 ※ 第 8 8 8 (4 5 章 8) 8 8 8 14 8 8 14 8 14 8 14 8 14 8 14 16 16 16 16 16 16 16 16 16 16	(5.4 (5.4 (5.4 (5.4 (5.4 (5.4 (5.4 (5.4		9.6 0 0 0 0 APML 80点量%) 255 16 0 20 20
	#	3 ※	3 ※	3	3 ※職 B (72 原 查 %) 原 种 M 3 C 8 度 卷 %) 1 G 0 1 G 0 1 4	 	
	ル		東部A (12 庚季K) 様件M1 (255 重5) 255 6 0 14 東部A (64度要X) 様件M1 (6度要X) 様料1 (30度重X) 場M1 (30度重X)	聚聯 8 (72 廣臺米) 超井 M3 Q8 廣臺米) 248 16 0 1 4 14 15 16 16	系館 B (72 原量的) 原料M3 08原量的) 248 16 0 14 ※個A (64度量的) 45 MMA (64度量的) 45 MMA (64度量的)		聚聚A (60 原数5) 数单M1 80 原量5) 255 16 0 20 20
	ル	255 32 32 0 14 14 聚樹A (64) 養米) 婚科M (64) 養米) 編M (36) 養米)	255 6 0 14 素離A(64度素X) 療幹MI(6倍度等X) 療料II(6倍度等X) 基MI(30度重X)	248 16 0 1 1 1 4 	248 16 0 0 14 8@A (64 8Y)	**	255 16 0 20 20
	######################################	32 0 14 ※極A (64度等) 極AM (64度等) MM (30度量等) 255 4	6 14 聚酯A(64度量K) 療料M(64度量K) 療料M(30度量K) 温MI(30度量K)	16 14 14 	16 0 14 ※臨A(64度至8)	**	20 20 20 84 (7)
	ル	0 14 聚糖A(645 张5) 蘇M(655 张5) 基M(305 新新) 255	0 和	0 4 4 	0 14 聚酯A(64度量%) +************************************		20 20 路線(2)
	ル	14 聚酯A (64原量X) 植种M (6原量X) 端M (30原量X) 255	14 聚盤A(64度要K) 原件MI(6度要K) 基MI(30度量K) 255	14 聚聚3(64聚烯%) 蘇幹/(36聚素/(36%)/	14 聚盤A(64原量K) 計畫M、64原量K)	桜	20
		聚酯A (64)聚基3) 植种M1 (65)聚基3) MNI (30)聚聚3) 255	聚酯A (64度量K) 原料MI (6度量K) 端MI (30质量K) 255	表面 B (64度量%) 植种M3 (6度量%) 端M3 (30度量%)	聚盤A (64)聚量%)	张 雅 雅	4 (70 原毒化)
		255	255	248	数件M1(50页量N) MN1(30页量N)		端M1 80质量%)
		4			255		255
				2	2		2
		8.4	2.1	4.2	4.2		4.2
		8	3	3	3		0
	μш	42	6	21	21		21
	*	m	~ .	m	m		3
4	e S	3.0	3.0	3.0	3.0		3.0
表面自由能 (81层) 表面自由能 (82层) 水接触角的变异系数 (81层)	2 4	100	10	1007	10		10
表面自由能(82层) 水接触角的变异系数(81层)	m//m	37.8	42.8	415	41.5		10.3
水接触角的变异系数 (B1层)	-	42.1	43.6	42.1	42.1	7	42.1
		2.5	6	7.5	7.5		3
水楼敞角的变异原数 (B2层)		7	10	8.5	8.5		4
Wb1>Wa	1	0	0	0	0		
Wb2>Wa	1	0	0	0	0		0
Wb1>Wb2	1	0	0	0	0		0
色调L位		82	67	73	73		85
1844¥ tb1/tb2		10:	2	1.5	1.5		2:
	ωπ	2		-			-
(tb1+tb2)/t	ι	0.24	0.33	0.24	0.24		0.24
导说给拉	1	Φ;	O	0	Oil		V.
加工后的品质	1	œ	0	œ	m		B
尺寸穩定性		4	0	0	m		æ
4 別体	1	0	മ	0	æ		B
与金属板的密合性	1	0	В	m	O		A
春成隐蔽 在	1	m	0	O	0		V.

[0388] [表5] [0389] 表5

28/40 页

[0390]

			I	实施例19	实施例20	实施例21	实施例22
		组成	-	聚酯 A (70 质量%) 蜡 M1 (30质量%)	聚酯A (64质量%) 颜料M1 (6质量%) 蜡M1 (30质量%)	聚酯A(64质量%) 颜料M1(6质量%) 網M1(30质量%)	聚酯A (64质量%) 颜料M1 (6质量%) 蜡M1 (30质量%)
	聚酯B1层	越点	2"	255	255	255	255
- 1	1	t b 1	μm	2 1	3	3	3
	1	Wb 1	µg/cm²	4.2	6.4	6.4	6.4
Į		颜料浓度	质量X	0	3	3	3
	聚酯A层 .	组成	-	聚酯A (60 质量%) 颜料M1 (10质量%)	聚酯 A (72 质量 N) 颜料 M1 (28质量 N)	聚酯A (72质量%) 颜料M1 (28质量%)	聚酯 A (94 质量%) 颜料 ML (6 质量%)
膜构成	東端 A 房	煤点	ής ή	255	255	255	255
1	1	t a	μm	16	16	16	16
	Ì	Wa		0	0	0	0
	1	颜料浓度	μg/cm² 廣量%	20	14	14	3
	聚酯B2层	组成	-	聚酯 A (70质量%) 蛸M1 (30质量%)	聚酯A (64质量%) 颜料M1 (6质量%) 蜡M1 (30质量%)	聚酯A (64质量%) 颜料M1 (6质量%) 蜡M1 (30质量%)	聚酯A (64质量%) 颜料M1 (6质量%) 網M1 (30质量%)
i	来聞D2点	熔点	°C	255	255	255	255
		t b 2	μm	2	3	2.7	2
		Wb2	ug/om ²	4.2	6.4	5.7	4.2
		颜料浓度	质量为	0	3	3	3
	膜	总厚度t	μm	20	22	21.7	21
		拉伸倍率	倍	3	3	3	. 3
1 选条件	横向:	拉伸倍率	倍	3.5	3.5	3.5	3.5
125 16-21	热处	理温度	°C	220	200	200	200
		理时间	炒	10	10	10	10
Į.	表面自	由能(31层)	mN/m	42.1	41.5	41.5	41.5
	表面自	由能(B2层) 变异系数(B1层)	mN/m	42.1	41.5	41.7	42.1
	个供取用的:	文并系数(31层) 交异系数(B2层)	%	4 4	7.5 7.5	7.5	7.5
		<u>文弁赤数 (52/6)</u> 1 > W a	%	<u> </u>	7.5 O	8 O	8.5
		2>Wa	_	8	 8	. 8	Q
}		>Wb2		×	×	×	O O 64
- 1		调L值		85	74	74	64
ant 43.14		/tb2	-	1	1	1.1	1.5
膜特性		-tb2	μm	i		0.3	1
h		-tb2)/t	7.11	0.20	0.27	0.26	0.24
-		损伤性	-	В	C	C	C
T I		后的品质	-	В	В	В	B
1		稳定性		В	В	B	В
		P剧性		В	В	В	В
		板的密合性	-	A	C	В	В
	基层	、隐蔽性	-	A	C	C	D
F		卷曲性	-	В	A	В	В

[0391] [表5-2]

Real Land Real Land Real Land Real Land Real Land Real Land Real Land Real Land Real Land Real Land Real Land Real Land Real Land Real Land Real Land Land Real Land Land Real Land Land Land Land Land Land Land Land				比較例	比較例2	比較例3	比較例4	比較包5	比較例6	比較例7
Web Ref. on 255		植成	ı		聚酯A (94 质量%) 颜料M1 (6 质量%)	聚酯A (64塔量%) 核科M1(6烷量%) 場M1(30烷量%)	聚酯A (64度量%) 颜料MI (6度量%) 端MI (30质量%)	聚酯A (64塔曼%) 核科M1 (6塔曼%) 端M1 (30烷曼%)	聚酯A (64度量%) 旋件MI (6度量%) 端MI (30度量%)	聚酯A (64度量%) 核科MI (6度量%) 端MI (30度量%)
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	聚酯31层	域	Ç	255	255	255	255	255	255	255
## WD 1 WD 1 WD 2 WD 2		101	μm	m	000	m	200	0	m	200
		MP 1	#R/cm'	6.4	00	6.4	6.4	6.4	6.0	4.0
大学報点 1		组成			聚酯A (72 质量%) 颜料MI (28质量%)	表示(72 庆量光) 成件M1 (28庆量光)	聚酯A (72 质量%) 原料MI (86 量%)	表酯A (72 质量%) 颜料MI (28质量%)	聚酯A (62 质量%) 旋件M1 (28度量%)	系略A (72 長量%) 新科M1 (28 長量%)
The control of the		4	ç		255	955	255	255	4年81(6万重3)	255
W		80	m _m	16	9.	16	16	16	16	16
A		Wa	" R/cm²	0	0	0	0	0	6.8	0
東端 一		质料浓度	质量%	14	14	14	14	14	14	14
# 255	M C0.38	無成	ı	ı	聚酯A(64质量%) 颜料M1(6质量%) 端M1(30质量%)	泵站A (94 质量%) 放料ML (6 质量%)	聚酯A (64质量%) 核科M1(6质量%) 端M1(30质量%)	聚酯A (64质量%) 颜料M1(6质量%) 端M1(30质量%)	聚酯A(64成量%) 颜料M1(6成量%) 端M1(30质量%)	発配A (64後登%) 航井M1 (6度量%) 端M1 (30度量%)
Th D	Wac H	域	္		255	255	255	255	255	255
Wh		t b 2	μm	-	2		2	2	2	2
# # # #		Wb 2	"MR/cm"	1	4.2	0	4.2	4.2	4.2	4.2
# 無数		板件次度	质量%	1	က	က	23	0	m	on ;
#		製造庫度は	III M	18	21	21	21	21	27	7.7
株式		白拉伸係車	物物	es e	000	200	38	80 00	60 ee	00 00 u
表表面的 (1) </td <td>-</td> <td>AL 20 30 A</td> <td>ļ</td> <td>200</td> <td>200</td> <td>000</td> <td>190</td> <td>230</td> <td>200</td> <td>200</td>	-	AL 20 30 A	ļ	200	200	000	190	230	200	200
表表情の表示 (15) 415 415 415 415 415 415 415 415 415 415 421 4	***	外理时间		10	10	10	10	9	10	10
未提展的度系数(3.4) mn/m — 42.1 42.1	表面自	由能(B1星)	E	41.5	45.6	41.5	41.5	41.5	41.5	41.8
大株性的変子系数(31条) % 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5	表面自	由能(B2基)			42.1	45.6	42.1	42.1	42.1	42.4
Web 5 Was Web We	水块敷角的水块料料	1变异系数 (B1层) 亦 E E E E E (B) E)		7.5	7.5	7.5	12.5	11.5	7.5	000
Wb 2>Wa 2>Wa 2>Wa 2>Wa 2>Wa 2>Wa 2>Wa 2>Wa	Wb	1 > Wa	L	C	×	i C	C	O	×	
Wb1>Wb2 Wb2 Wb2 Wb2 Wb2 Wb2 Wb2 Wb2 Wb2 W2 W	Wb	2>Wa) 1	0	×	0	100	×	0
t b m l m l m l m l m l m l m l m l m l m	Wb	1>Wb2	ı	-	×	0	0	0	0	0
tbi/tb2		5.湖上位	ı	73	73	73	73	73	73	73
tbl-tb2 μm				1	1.5	1.5	1,5	1.5	1.5	1.5
- - 0.24		1-tb2	m#	1	-	-		1	-	-
	(tb1	+tb2)/t	i	1	0.24	0.24	0.24	0.24	0.24	0.24
	*	计损伤性	1	В	D	8	D	Q	С	Q
	An I	二后的品质	_	D	В	D	۵	Θ	4	ω
	×	寸稳定性		8	ω.	۵۱	۵	മി	œ	en)
		印刷体	1	œ	∢	œ	œ i	8	۵	m
0 0	与全人	易板的密合性	1	4	m	٧	۵	മ	۵	В
	*	张陽談性	1	c	C	0	-	C		C

[0393] (

[0392]

(参考实施例1)

[0394] 使组成如表所示,将原料供给至氧浓度设为0.2体积%的排气同方向双轴挤出机,

使挤出机料筒温度为280℃,使原料进行熔融,使口模温度为280℃,从T型模片状地排出到温度控制为10℃的冷却鼓上。此时,使用直径0.1mm的线状电极进行静电施加,使其与冷却鼓密合,一边以气室方式对流延鼓上的聚合物吹送15℃的冷风一边获得了未拉伸片。接着,以长度方向上的预热温度85℃进行1.5秒预热,以拉伸温度115℃在长度方向上进行3倍拉伸,立即用温度控制为40℃的金属辊冷却化。接着,利用拉幅式横向拉伸机在预热温度85℃进行1.5秒预热,在拉伸前半温度115℃、拉伸中期温度135℃、拉伸后半温度145℃在宽度方向上进行3.5倍拉伸,直接在拉幅机内,一边在热处理温度210℃,在宽度方向上施加5%的松弛一边进行热处理,获得了膜厚度20μm的双轴取向聚酯膜。

[0395] (参考实施例2、3)

[0396] 将热处理温度变更为如表所示,除此以外,与参考实施例1同样地操作,获得了厚度20µm的双轴取向聚酯膜。

[0397] (参考实施例4、5、6)

[0398] 将厚度变更为如表所示,除此以外,与参考实施例1同样地操作,获得了双轴取向聚酯膜。

[0399] (参考实施例7)

[0400] 使组成如表所示,将原料供给至氧浓度分别设为0.2体积%的分开的排气同方向 双轴挤出机,使A层挤出机料筒温度为280℃,使B层挤出机料筒温度为270℃进行熔融,在进料区内以成为A层/B层/A层的3层构成的方式使其合流,使合流后的短管温度为275℃,使口模温度为280℃,从T型模片状地排出至温度控制为10℃的冷却鼓上。然后,与参考实施例1同样地操作,获得了厚度20μm的双轴取向聚酯膜。

[0401] (参考实施例8、9、10、13、14、15、16、17)

[0402] 将组成变更为如表所示,除此以外,与参考实施例7同样地操作,获得了双轴取向聚酯膜。

[0403] (参考实施例11、12)

[0404] 将叠层比变更为如表所示,除此以外,与参考实施例7同样地操作,获得了双轴取向聚酯膜。

[0405] (参考比较例1、2、3、5、7)

[0406] 将组成、厚度、制造条件变更为如表所示,除此以外,与参考实施例7同样地操作,获得了双轴取向聚酯膜。

[0407] (参考比较例6)

[0408] 将厚度变更为如表所示,除此以外,与实施例5同样地操作,获得了双轴取向聚酯 膜。

[0409] (参考比较例4)

[0410] 将厚度变更为如表所示,除此以外,与参考实施例6同样地操作,获得了双轴取向聚酯膜。

[0411] 「表6]

[0412]

[0413] [表7]

[0414]

			参考实施到 7	◆本状落虫 B	今本状第至 9	参考宗第至10	参考实施到1.1	
	超其	I	聚酯C (61层量%) 白色质种母科F (36层量%) 粒子母科B (3层量%)	聚酯C(51质量%) 白色颜料母科F(46质量%) 粒子母科H(3质量%)	聚酯D(51 质量%) 白色旋种母科P(46质量%) 粒子母科H(3质量%)	聚酯区(51 质量%) 白色/颜料母科F(46质量%) 粒子母科H(3质量%)	聚酯C (51 质量%) 白色颜料母科F (46质量%) 粒子母科H (3质量%)	聚酯C (51 质量%) 白色质料母科F (46质量%) 粒子母科H (3质量%)
	3	七	三G (100/本体炎)	EG (100本4%)	EG (94.9条4%) OHDM(5.1条4%)	EG (100本4%)	EG (100# 4%)	EG (100本年%)
聚糖A层	411	二族族	TPA (100本本版)	TPA (100季本%)	TPA (100季本%)	T.P.A. (90 基 4公) IPACI 0 等 4%)	TPA (100本年%)	TPA (100本本%)
	顺镀	Ş	255	255	247	235	255	255
	1层的厚度	m #	16	16	16	16	18	14
膜构成	白色颜料	* 英	机依型氧化依 18	优依变取化依 23	机体型氧化铁 23	优依型机化依 23	优 依型氧化依 23	現依亞氧化欽
	在家	1	聚酯C(85原量%) 白色颜料母科F(12原量%) 粒子母科H(3质量%)	聚酯C(97层量%) 粒子母科H(3质量%)	聚酯C(97 质量%) 粒子母科H(3质量%)	聚酯C (97 质量%) 粒子母科B(3质量%)	聚酯C (97 质量%) 粒子碎料H(3质量%)	杂酯C (97 质量%) 粒子母科H (3质量%)
秦船 8条	****	99	EG (100 本金約	EG (100季 体系) TPA (100季 体系)	EG (100/# 45%)	EG (100本水気) TPA (100本水気)	EG (100本水) TPA (100本水)	EG (100条体系) TPA (100条体系)
	域效	ပ္	255	255	255	255	255	255
	1层的厚度	ωπ	2	2	2	2		E7).
	白色教科	本本	机铁型氧化铁	1 0	100	10	100] C
	海	1	R/A/R	R/A/R	B/A/B	B/Å/B	B/A/B	B/A/B
	基数	w.	0	m	m	m	m	m
	展界度	ωπ	20	20	20	20	20	20
	展的体点	ပ္	255	255	247	235	255	255
	放向拉伸倍車	*	8	8	က	, co	0	0
制造事件 操	我向拉作传来	*	3.5	3.5	3.5	3.5	3.5	8.5
*	格处理温度	ပ္ ရ	210	210	200	195	210	210
190℃20分中	V-8-46 (Sv)	RW	2.0	200	4.5	4.7	300	2.4
発大器手	Sx-Sy	36	0.5	0.5	0.2	0.2	9:0	9.0
表面相极度	A原制品	nn.		ı	1	ı		1
SRa	B基制面	ωu	30	26	26	28	26	28
	X方的(FX)	MPa	138	156	130	123	145	160
断聚极度	Y方向 (Fy)	MPa	143	167	128	117	140	186
	Fx-Fy	MPa	5	11	2	9	5	9
	X 25 FO (L.X.)	e:	120	160	185	18/	130	60
膜棒法 后数件长单	Y方向(Ly)	Se :	110	155	190	194	124	160
	Lx-Ly	84	10	ړو	ړو	,	ي و	£ 0
	LA	1	80	84	84	84	85	83
	光泽度	æ	34	800	886	98	80.00	98
120℃10分件	-	×	76	83	85	986	80	88
热处理光泽度		×	മാ	15.3	13,3	12.2	18.4	12.2
50%社会事務准	_	ж	69	82	83	85	80	200
***************************************	拉伸前后变化率	SK.	9.71	16.3	15.3	13,3	18.4	13.3
4	おけば年本	1	ma a	A	n	>\c	<<	∢0
	路景和学 位	3	n	₹(*	1	1	0
*	444					~		4

[0415] [表8]

[0416]

(3.5 元 4) 会 最 4 元 4 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日				参考实施例13	参考实施例14	参考实施例15	参考实施例16		参考实施到17
Real		質す	ı	聚酯C(S1质量%) 白色质中群型(46质量%) 粒子母群H(3质量%)	聚酯C(S1原谱%) 白色液料中料F(46质谱%) 粒子由料H(3后谱%)	聚酯C(33质量%) 白色颜料母科P(46质量%) 粒子母科H(1质量%)	聚酯C(75原量%) 白色颜料母科F(22质量%) 粒子母科H(3质量%)		聚酯E(51质量%) 白色颜料母料E(46质量%) 粒子母科H(3质量%)
Annual			**	EG (100本水%)	EG (1004-4%)	EG (1004-45)	EG (100季体炎)		EG (100年本党)
	次 個 A		1.88	TPA (1004 4:%)	TPA (100季本別)	TPA (1004年4年%)	TPA (100季年%)		TPA (90 条 45%) PA(10条45%)
Real Park		域效	Ç	255	255	255	256		235
A D D D D D D D D D D D D D D D D D D		1条约库度	шn	16	16	16	32		16
		白色裁样	券表 质量%	全红石型氧化体 23	税依型氧化依 23	机仗型氧化仗 23	机依型氧化依	25	说休型氧化铁 23
Activity Activit	膜构成	概言	ı		表酯C (97度量K) 粒子母科R (3度量K)	聚酯C (99度量%) 粒子母科I (1度量%)	表础C (97度量%) 粒子牵料B (3度量%)	教職の	及組C (97度量%) 位子母科H (3度量%)
No. 10.00 No.			101	FG (100# #%)	EG (100俸年%)	EG (100庫 年間)	EG (100庫体系)	EG (EG (100季本%)
株式	N W W W W W W W W W W W W W W W W W W W		一次	TPA (100条4%)	TPA (100學年%)	TPA (1004-4%)	(100季年級)	TPA	100季本祭
Math Math Math Math Math Math Math Math		域	္စ	265	255	255	255		255
株式		1条约序度	ШŊ	2	2	2	Ą		2
株式		台巴斯科	***	10	Ic	10			0
Activity		400	4 1		B/Å/B	A	A		A/B
Activity		A &	*		3	e	3	4	
Manual Angle		膜序度	m n	20	20	20	40	2	0
Machine of the manual of th		最も存出	ပ္	255	255	255	255	23	9
No. 1940 No. 1940		以向拉伸倍率	*	89	3.5	3	3.9	2.9	3
Machine Mac		横向拉伸倍率	*	3.5	3	3.5	3.9	es	
190 V 10 O 1		战处理温度	ပ္	210	198	210	198	361	_
株式	190020		e.	m,	4.8		4.7	4.8	
Authority Authority National Nation	地大學	1	aP. z	2,5	5.5	2.6	0.0	4.6	
Acception Acc	1	+	r.	6.0	0.	0.0	7'		
#報酬機構	表的概念	1	W.	180	30	1	31	16	
#報報表 T24の(F.7) NF3 156 140 167 167 195 195 187 187 187 187 187 187 187 187 187 187			MPa	145	154	156	198	12:	
Fx-Fy NFa 11 14 11 14 11 14 11 14 11 14 11 14 11 14	春秋 宿		MPa	92	140	167		-	
Name		L	MPa	-	14		9	9	
140 181 155 149		X 37 40 (L x)	ze.	145	153	160	145	198	
120 T 100		L	3/2	140	181	155	149	16	8
L/4 E 6 84 84 80 大学家名子序表 5 103 80 80 大学家名子序表 5 83 82 82 大学家名子序表 5 153 165 137 137 本学者子表本 5 163 163 179 179 工程学者 5 163 164 78 179 女女子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子	_	L	2	2	28	2	4		
大学成 大学			1	86	84	84	80		34
快速の表示後		光泽度	S.	86	96	103	95		98
機能的変化素 5 16.3 16.4 16.5 18.7 日本地の変化素 5 16.2 18.6 7.8 17.9 日本地で変化素 5 6 7 7 17.9 日本地で変化素 6 7 7 0 0 日本地で変化素 7 0 0 0 0 日本地で変化素 6 0 0 0 0 日本地で変化素 6 0 0 0 0	120010	Н	¥2.	83	82	87	82		88
数水体点等度	热处理先		25	15.3	14.6	15.5	13.7	-	2.2
40 min per	\$ 08 St. Ab	_	×	82	81	95	78		35
0004 A < 0	C Limburg	\neg	×	16.3	15.6	7.8	17.9	13	23
C A A C		お上本本の	i	V	0	∢	0		
A		器模技学会		A	<.	V	0	,	-
		成型柱子合	ı	0	m	٥	A	ď.	

[0417] [表9]

			奉考比较例2	参考比较例3	** KAKA **	◆考班收 到3	0 W W W W W O	- 1
	*	1	聚酯C(S1质量%) 白色质料母科P(46质量%) 粒子母科B(3质量%)	聚酯目 (61质量%) 白色颜料母料P (36原量%) 粒子母科B (3质量%)	聚酯C (47质量%) 白色质料母科P (50质量%) 粒子母科H (3质量%)	聚酯C(S1质量%) 白色颜料母科P(46质量%) 粒子母科B(3质量%)	聚酯C(61成量%) 白色颜料中科F(36质量% 粒子母科B(3质量%)	<u>~</u>
		**	EG (100本 年%)	EG (100)本本化)	EG (100本体系)	EG (100本水份)	EG (100本本%)	Ш
教館A展	拉灰	二聚聚	TPA (100季年%)	TPA (90 學 4代)	TPA (100 4 4%)	TPA (100季本%)	TPA (100 奉 4%)	
	域被	ပ္	255	235	255	255	255	l
	1展约序度	m m	9.9	18	9'5	18	41	П
		种类	优铁型乳化铁	我依然也免失	领体型氧化铁	银铁型氧化铁	我依然教化女	
	お見楽学	质量%	23	24	25	23	18	Н
膜构成	額家	ı	聚酯C (67度量%) 粒子母科H (3质量%)	聚酯E (97质量%) 粒子母科H (3质量%)	1	聚酯C (97版量%) 粒子母科H (3质量%)	ı	
		10.	EG (100 奉本%)	EG (100 奉本家)		EG (100 奉 本場)		П
聚酯B基	数成	一大學學	TPA (100 奉4%)	TPA (100本体製)	1	TPA (100 奉 年%)	1	
	域效	ပ္	255	255	1	255	ı	
	1.保约序度	mπ	0.2	2	-	2	1	
	40 年44	种类	-		***		1	
	H CAN	表量 \$	0	0	1	0]	
	构成		B/A/B	B/A/B	٨	B/A/B	A	
	是数	*	e	က	-	က	-:	
	跟母虎	μm	20	20	9.5	20	41	
100	跳的烙点	သ	255	235	255	255	255	
城市	联向拉伸倍率	*	2.8	3	3	4	3	
制造条件 操句	锁向拉伸倍率	*	2.8	3.5	3.5	33	3.5	
	热处亚温度	သူ	193	195	210	195	210	
100171046		26	5.6	5.1	4.7	7.4	3.4	
女子会会	_	S.	6.7	4.7	4.2	3.3	2.7	
	Sx-Sy	æ	1.1	0.4	0.5	4.	0.7	-
表面积极度	A.是侧面	uu	11	-	37	1	32	
SRs	B是侧面	UIL	26	26	1	26	1	
	X方向(Fx)	MPa	106	120	125	152	141	
斯梨研 成	Y 方向(Fy)	MPa	109	115	122	138	145	
	FX-Fy	MPa	69	9	3	14	4	
	X方何(Lx)	*	65	190	70	148	82	
新股份长率	Y方向(Ly)	200	20	198	65	178	75	١.
版字字	x - x	20	15		100	30	7	
	LA		72	84	79	84	86	
	光净度	2/0	000	800	78	95	07	
120℃10分秒		36	83	84	89	82	89	ı
热处理光泽度		70	15.3	14.3	12.8	13.7	18.1	
	Н	2/2	82	86	58	81	89	
50%社体光净度	1.4	36	16.3	12.2	25.6	14.7	18.1	ŀ
	各只有公司	1	0	0	٥	٥	A	
	李永孝媛戲	-	Q	A	0	A	A	
	今京地區地	-		A	0	æ		ı
	100							

[0419]

[0418]

(参考实施例51)

[0420] 使组成如表11-1所示,供给至原料的氧浓度设为0.2体积%的排气同方向双轴挤

出机,混合成表10的A层栏中记载的组成,在150℃进行3小时真空干燥,供给至单轴挤出机(A层)。进一步,混合成表10-1的B层栏中记载的组成,也进行干燥并供给至其它单轴挤出机(B层)。将这些聚合物作为其它流路,在280℃进行熔融,在进料区以成为A层/B层/A层(叠层比1/10/1)的方式叠层,从T型模片状地排出至温度控制为15℃的冷却鼓上。此时,使用直径0.1mm的线状电极进行静电施加,使其与冷却鼓密合,获得了未拉伸片。接着,以长度方向上的预热温度100℃进行1.5秒预热,以拉伸温度101℃在长度方向上进行3.1倍拉伸,立即用温度控制为40℃的金属辊冷却化。接着,利用拉幅式横向拉伸机在预热温度110℃进行1.5秒预热,在拉伸温度115℃在宽度方向上进行3.6倍拉伸,直接通过辊加热方式进行100℃的加热处理,然后在拉幅机内,在热处理温度200℃实施3秒,在220℃实施4秒,一边在宽度方向上施加7%的松弛一边进行热处理,获得了叠层膜。

[0421] (参考实施例52~56)

[0422] 将组成变更为如表11-1所示,除此以外,与参考实施例51同样地操作,获得了叠层膜。

[0423] (参考实施例57)

[0424] 将组成变更为如表11-1所示,设为A/B的二层构成,除此以外,与参考实施例51同样地操作,获得了叠层膜。另外,在隐蔽性、成型性、印刷性评价中,在B层侧层压有钢板。

[0425] (参考实施例58)

[0426] 将组成变更为如表11-1所示,将热处理温度变更为236℃,除此以外,与参考实施例51同样地操作,获得了叠层膜。

[0427] (参考实施例59)

[0428] 在长度方向上进行2.5倍拉伸,在宽度方向上进行3倍拉伸,除此以外,与参考实施例58同样地操作,获得了叠层膜。

[0429] (参考实施例60~61)

[0430] 将组成变更为如表11-1、表11-2所示,在长度方向上进行3.7倍拉伸,在宽度方向上进行4.3倍拉伸,将热处理温度变更为210℃,除此以外,与参考实施例51同样地操作,获得了叠层膜。

[0431] (实施例62)

[0432] 将组成变更为如表11-2所示,将热处理温度变更为210℃,除此以外,与参考实施例51同样地操作,获得了叠层膜。

[0433] (参考比较例51~54)

[0434] 将组成变更为如表11-2所示,除此以外,与参考实施例51同样地操作,获得了叠层 膜。

[0435] (参考比较例55)

[0436] 将组成变更为如表11-2所示,将热处理温度变更为236℃,除此以外,与参考实施例51同样地操作,获得了叠层膜。

[0437] (参考比较例56~57)

[0438] 将组成变更为如表11-2所示,将热处理温度变更为180℃,除此以外,与参考实施例51同样地操作,获得了叠层膜。[表10-1]

[0439]

表10-1	0-1											
		参考实施例51	秦孝实施到52	参考实施到53	奉考实施例54	参考实施到55	参考农港到56	秦孝实施到57	参考实施例58	秦孝实施到59	奉考实施到60	
构成	构成 全层构成	A/B/A	A/B/A	A/B/A	A/B/A	A/B/A	A/B/A	A/B	A/B/A	A/B/A	A/B/A	
	右无全有辦成今		0	0	0	0	0	0	0	0	0	
A.F.	粒子种类	二氧化硅粒子	二氧化硅粒子	二氧化硅粒子	二氧化硅粒子	二氧化硫粒子	二氧化硅粒子	二氧化硅粒子	二氧化硅粒子	二氧化硅粒子	二氧化硅粒子	
	粒子的某氏硬度	7	7	7	7	7	7	7	7	7	7	
	全层厚度方向上的空隙的累计厚度 相对于羰总厚度的比例(%)	0.9	12.0	19.0	12.0	16.5	12.0	16.5	8.0	7.0	17.0	
8	空隙的面方向的原子长度 相对于面方向30 μ=的比例 (紧)	2.5	6.0	9.5	6.0	8.0	0.9	9.0	4.5	4.0	9.0	
	相对于膜禁层的空隙会有率(%)	2.5	5.0	7.5	5.0	6.8	9.0	7.6	3.2	3.2	7.0	
	白色颜料的会有率 (wt.%)	20.0	22.0	35.0	22.0	30.0	22.0	28.0	18.0	18.0	22.0	
	白色颜料的平均效径 (以四)	0.2	0.4	2.0	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
	白色原	98	06	86	90	102	06	66	83	82	93	
	非保養原表 IIS	0.18	0.18	0.18	0.24	0.18	0.18	0.18	0.18	0.18	0.18	
**	190℃、20分种时的长度方向的热收输率(%)	8	က	3	3	3	3	3	2	2	5	
	表面粗糙度 SRa (nm)	20	20	20	20	20	35	20	20	20	20	
	表面自由能(mN/m)	32	32	32	34	31	. 31	32	32	32	32	
	東京東	0	0	0	0	0	0	0	0	0	0	
	認義性	0	0	0	0	0	0	0	0	0	0	
本志	印刷加工性	0	0	0	0	0	0	0	0	0	0	
	印刷性(美观性)	0	0	0	0	0	0	0	0	0	0	
	李樂本	0	0	6	0	0	0	0	0	0	0	

[0440] [表10-2]

[0441]

1	7 0									
		奉考实施例67	奉考实施纠62	奉考比较纠51	奉考比较例52	秦孝比较的53	参考比较到54	拳者比较到55	奉考比较例56	奉考比较例 57
构成	全层构成	A/B/A	A/B/A	A/8/A	A/B/A	A/B/A	A/B/A	A/B/A	A/B/A	A/B/A
	有无含有蜡成分	0	0	×	0	0	0	×	0	0
A.E.	粒子种类	有机粒子	二氧化硅粒子							
	粒子的果氏硬度	3	7		7		7	7	7	7
	叠层厚度方向上的空隙的黑计厚度 相对于膜范厚度的比例(%)	17.0	13.0	12.0	1.5	28.0	1.5	1.5	21.0	2.0
B展	空隙的面方向的黑外长度 相对于面方向30 μ=的比例 (K)	0.6	6.5	6.0	8.0	14.0	8.0	0.8	11.0	0.8
	相对于膜垫层的空隙含有率(%)	0.7	5.4	5.0	9.0	7.5	9.0	9.0	10.0	8.0
	白色颜料的含有率 (wt%)	22.0	18.0	22.0	22.0	35.0	28.0	18.0	22.0	22.0
	白色颜料的平均粒径 (μm)	0.4	0.4	0.4	0.05	3.0	0.05	0.05	0.4	0.4
	46.8	66	85	06	79	105	95	79	. 96	88
	特摩察系数 U.S	0.13	0.18	0.26	0.26	0.18	0.26	0.13	0.18	0.18
李本	190℃、20分钟时的长度方向的热收输单(%)	2	4	8	3	3	9	2	11	18
	表面板模模 SRa (nm)	20	20	20	20	20	20	09	50	20
	表面自由能 (mN/m)	32	32	32	38	32	28	45	32	34
	成型性	0	0	Δ	∇	×	∇	×	Δ	0
	防旋性	0	0	0	0	0	0	×	0	0
本本	印刷加工法	0	0	0	0	0	0	0	×	×
	印斯性 (美現性)	0	0	0	0	0	×	×	0	0
	並 等在	0	0	×	×	0	0	×	0	0

[0442] [表11-1]

38/40 页

文	11-1										-
		李考实施例51	参考实施例52	参考实施例 53	拳考实施例 54	参考实施例 55	李孝亲施例56	参考实施例 57	参考实施例 58	参考实施例59	66
	聚酯1的比例(wt%)	17	17	17	57	7	2	1.1	11	17	
	聚酯K的比例 (wt%)	-	-	-	,	-	1		_	1	
A.A.	编母样表唱L的比例(wt%)	30	80	60	40	06	06	08	80	80	
	粒子母科R的比例 (wt%)	3	3	8.	3	3	8	3	3	က	
	粒子母科S的比例(wt%)	-	ı	-	-	-	-	-	-		
	聚酯1的比例 (wt%)	99	26	30	26	40	99	44	64	64	
	聚酯K的比例 (#1%)	,	1	1	_	-	-	-	1	-	
	白色颜料母科M的比例 (w:%)	40	1	1	-	,	-	-	-	,	
8/8	白色颜料母科N的比例 (W1%)	-	44	-	44	60	44	56	36	36	
	白色颜料母科0的比例(W1%)	-	1	0/	1	,	-	t	-	-	
	白色颜料母科P的比例 (WI%)	-	-	-			1	-	1		
	白色数科母科(10的比例 (W1%)	,		ı	1	-	1	,	1	1	

[0444]

[0443]

[表11-2]

		参考实施到 61	奉考实施例 62	拳者比较例 51	奉考比较例 52	奉考比較例 53	李孝比校例54	奉考比較到55	奉考比較例56	秦孝比校创 57	
	数据161分(wt%)	17	17	66	11	17	1	80	. 17		
	表 Bax 69 15 分 (*1%)		-	-	-		-	-		57	
A.F.	城母科聚酯L的比例 (mt.%)	. 80	80	. 1	20	80	97	-	80	40	
	拉子母科R的比例(#1%)	1	3	3	3	3	3	20	3	3	
	粒子母科S的比例(#1%)	9	1	_	-	1	ı	1	-	1	
	菜幣1的比例(wt%)	56	64	56	56	30	44	64	56	1	
	聚酯K的比例(wt%)		1	-	1	-	-	1	-	56	
	白色颜料母科M的比例(wt%)	1	-	-	-	1	1	1	1	1	
8层	白色颜料母科N的比例(wt%)	44	36	44	1	-	1		44	44	
	白色颜料母料0的比例 (wt%)	_	-	,	1	ı	1	1	-	1	
	白色颜料母料P的比例 (wt%)	-	-	,	44		56	36	-	1	
	台色版料母料(构比例(wt%)	ı	ı		. 1	70	1	ı	1	1	

[0445]

[0446] 产业可利用性

[0447] 本发明涉及适合用于层压金属板、遮光带等需要隐蔽性的用途的聚酯膜,使其与

金属板贴合来制成层压金属板时,使基底隐蔽性、深拉深成型时的耐损伤性良好,或作为遮光带使用时,收率、加工适应性变得良好,因此优选用于层压金属板、遮光带等需要隐蔽性的用途。