PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GOG6F 15/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/11562

2 March 2000 (02.03.00)

(21) International Application Number: PCT/US99/19240

(22) International Filing Date: 20 August 1999 (20.08.99)

(30) Priority Data:

60/097,336 20 August 1998 (20.08.98) US

(71) Applicant: RAYCER, INC. [US/US]; 2585 East Bayshore
Road, Palo Alto, CA 94303 (US).

(72) Inventors: DULUK, Jerome, F., Jr., 950 North California
Avenue, Palo Alto, CA 94303 (US). HESSEL, Richard,
E.; 3225 Flemington Court, Pleasanton, CA 94588 (US).
ARNOLD, Vaughn, T.; 621 Canepa Drive, Scotts Valley,
CA 95066 (US). BENKUAL, Jack; 11661 Timber Spring
Court, Cupertino, CA 95014 (US). CUAN, George; 798
Lusterleaf Drive, Sunnyvale, CA 94086 (US). DODGEN,
Steven, L.; 15735 Forest Hill Drive, Boulder Creek, CA
95006 (US). FANG, Emerson, S.; 1197 Wisteria Drive,
Fremont, CA 94539 (US). HSU, Hengwei; 4209 Canfield
Drive, Fremont, CA 94536 (US). TRIVEDI, Sushma, S.;
1208 Rembrandt Drive, Sunnyvale, CA 94087 (US).

(74) Agents: HART, Brian, G. et al.; Flehr Hohbach Test Albritton
& Herbert LLP, Suite 3400, 4 Embarcadero Center, San
Francisco, CA 94111-4187 (US).

(81) Designated States: GB, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: APPARATUS AND METHOD FOR PERFORMING
UNIFIED PRIMITIVE DESCRIPTORS

(57) Abstract

The present invention provides a post tile sorting setup in

graphics pipeline architecture (200). In particular, the present invention
determines a set of clipping points that identify intersections of a primitive
with a tile. The mid-pipeline setup (215) unit is adapted to compute a
minimum depth value for that part of the primitive intersecting the tile.
The mid—pipeline setup unit can be adapted to process primitives with
x—coordinates that are screen based and y-coordinates that are tile based.
Additionally, to the mid-pipeline setup unit is adapted to represent both line
segments and triangles as quadrilaterals, wherein not all of a quadrilateral’s

vertices are required to describe a triangle.

SETUP OPERATIONS IN A 3-D GRAPHICS PIPELINE USING

a tiled GRAPHICS PROCESSO

117

GRAPHICS HARDWARE COMMANDS
FROM I/0 BUS
112

| GRAPHICS PIPEYINE
1200

OTHER PROCESSING
STAGES
210

T
211 212

SETUP
215

218 217

4 |
OTHER PROCESSING
STAGES
220

1
|
1
i
1
[}
1
I
]
I
|
I
1
|
|
MID-PIPELINE !
]
]
i
|
1
|
i
1
1
|
[}
1
|
1
J

SIGNALS TO DISPLAY MONITOR
225

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Buigaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
Lv
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
7w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/11562 PCT/US99/19240

10

15

20

25

APPARATUS AND METHOD FOR PERFORMING SETUP OPERATIONS IN
A 3-D GRAPHICS PIPELINE USING UNIFIED PRIMITIVE DESCRIPTORS

Inventors:
Jerome F. Duluk Jr., Richard E. Hessel, Vaughn T. Amnold, Jack Benkual, George
Cuan, Steven L. Dodgen, Emerson S. Fang, Hengwei Hsu, and Sushma S. Trivedi.

Related Applicati

This application claims the benefit under 35 USC Section 119(e) of U.S.
Provisional Patent Application Serial No. 60/097,336 filed 20 August 1998 and
entitled GRAPHICS PROCESSOR WITH DEFERRED SHADING; which is hereby
incorporated by reference.

This application also claims the benefit under 35 USC Section 120 of U.S.
Patent Application Serial No. 09,213,990 filed December 17, 1998 entitled HOW TO
DO TANGENT SPACE LIGHTING IN A DEFERRED SHADING
ARCHITECTURE (Atty. Doc. No. A-66397);

Serial NO. ..ooovvvecreeenne S 1 10 U , entitled SYSTEM, APARATUS
AND METHOD FOR SPATIALLY SORTING IMAGE DATA IN A
THREE-DIMENSIONAL GRAPHICS PIPELINE (Atty. Doc. No. A-66380);

Serial NO....voeevvereeennens filed e , entitled GRAPHICS
PROCESSOR WITH PIPELINE STATE STORAGE AND RETRIEVAL (Atty. Doc.
No. A-66378); '

Serial NO. ...covvvvvenneenns Jiled o, , entitled METHOD AND
APPARATUS FOR GENERATING TEXTURE (Atty. Doc. No. A-66398);

10

15

20

25

30

WO 00/11562 PCT/US99/19240

Serial NO. ..cocveeerveenen ,filed e , entitled APPARATUS AND
METHOD FOR GEOMETRY OPERATIONS IN A 3D GRAPHICS PIPELINE
(Atty. Doc. No. A-66373);

Serial NO....oovveveveereneen Jfiled o , entitled APPARATUS AND
METHOD FOR FRAGMENT OPERATIONS IN A 3D GRAPHICS PIPELINE (Atty.
Doc. No. A-66399); and

Serial NO....ooovvvveereenenne ,filed oo , entitted DEFERRED SHADING
GRAPHICS PIPELINE PROCESSOR (Atty. Doc. No. A-66360).
Serial NO. voovvvveerveeeeens ,filed v , entitled METHOD AND

APPARATUS FOR PERFORMING CONSERVATIVE HIDDEN SURFACE
REMOVAL IN A GRAPHICS PROCESSOR WITH DEFERRED SHADING
(Attorney Doc. No. A-66386);

Serial NO. .ccovvveveerannn filed e , entitled DEFERRED SHADING
GRAPHICS PIPELINE PROCESSOR HAVING ADVAN CED FEATURES (Atty.
Doc. No. A-66364).

1. Field of the Invention

The present invention relates generally to computer structure and method for
processing three-dimensional (“3-D”) computer graphics in a 3-D graphics processor.
More particularly, the present invention is directed to a computer structure and method
for performing setup operations in a tiled graphics pipeline architecture using unified
primitive descriptors, post tile sorting setup, and tile relative x-values and screen

relative y-values.

2. Background of the Invention

The art and science of three-dimensional (*3-D”) computer graphics concerns
the generation, or rendering, of two-dimensional (“2-D”) images of 3-D objects for
display or presentation onto a display device or monitor, such as a Cathode Ray Tube
or a Liquid Crystal Display. The object may be a simple geometry primitive such as a
point, a line segment, or a polygon. More complex objects can be rendered onto a
display device by representing the objects with a series of connected planar polygons,
such as, for example, by representing the objects as a series of connected planar

triangles. All geometry primitives may eventually be described in terms of one vertex

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-3-

or a set of vertices, for example, coordinate (X, Y, z) that defines a point, for example,
the endpoint of a line segment, or a corner of a polygon.

To generate a data set for display as a 2-D projection representative ofa3-D
primitive onto a computer monitor or other display device, the vertices of the primitive
must be processed through a series of operations, or processing stages in a graphics
rendering pipeline. A generic pipeline is merely a series of cascading processing units,
or stages wherein the output from a prior stage, serves as the input for a subsequent
stage. In the context of a graphics processor, these stages include, for example, per-
vertex operations, primitive assembly operations, pixel operations, texture assembly
operations, rasterization operations, and fragment operations.

The details of the various processing stages, except where otherwise noted, are
not necessary to practice the present invention, and for that reason, will not be
discussed in greater detail herein. A summary of the common processing stages in a
conventional rendering pipeline can be found in the following standard reference:
“Fundamentals of Three-dimensional Computer Graphics”, by Watt, Chapter 5: The
Rendering Process, pages 97 to 113, published by Addison-Wesley Publishing
Company, Reading, Massachusetts, 1989, reprinted 1991, ISBN 0-201-15442-0,
which is hereby incorporated by reference for background purposes only.

Very few conventional graphics pipelines have tiled architectures. A tiled
architecture is a graphic pipeline architecture that associates image data, and in
particular geometry primitives, with regions in a 2-D window, where the 2-D window
is divided into multiple equally size regions. Tiled architectures are beneficial because
they allow a graphics pipeline to efficiently operate on smaller amounts of image data.
In other words, a tiled graphics pipeline architecture presents an opportunity to utilize
specialized, higher performance graphics hardware into the graphic pipeline.

Those graphics pipelines that do have tiled architectures do not perform mid-
pipeline sorting of the image data with respect to the regions of the 2-D window.
Conventional graphics pipelines typically sort image data either, in software at the
beginning of a graphics pipelines, before any image data transformations have taken
place, or in hardware the very end of the graphics pipeline, after rendering the image
into a 2-D grid of pixels.

Significant problems are presented by sorting image data at the very beginning

of the graphics pipelines. For example, sorting image data at the very beginning of the

10

15

20

25

30

WO 00/11562 PCT/US99/19240

“4-

graphics pipelines, typically involves dividing intersecting primitives into smaller
primitives where the primitives intersect, and thereby, creating more vertices. It is
necessary for each of these vertices to be transformed into an appropriate coordinate
space. Typically this is done by subsequent stage of the graphics pipeline.

Vertex transformation is computationally intensive. Because none of these
vertices have yet been transformed into an appropriate coordinate space, each of these
vertices will need to be transformed by a subsequent vertex transformation stage of the
graphics pipeline into the appropriate coordinates space. Coordinate spaces are
known. As noted above, vertex transformation is computationally intensive.
Increasing the number of vertices by subdividing primitives before transformation,
slows down the already slow vertex transformation process.

Significant problems are also presented by spatially sorting image data at the
end of a graphics pipeline (in hardware). For example, sorting image data at the end of
a graphic pipeline typically slows image processing down, because such an
implementation typically "texture maps" and rasterizes image data that will never be
displayed. To illustrate this, consider the following example, where a first piece of
geometry is spatially located behind a second piece of opaque geometry. In this
illustration, the first piece of geometry is occluded by the second piece of opaque
geometry. Therefore, the first piece of geometry will never be displayed.

To facilitate the removal of occluded primitives, an additional value (beyond
color) is typically maintained for each bitmap pixel of an image. This additional value
is typically known as a z-value (also known as a “depth value”). The z-valueis a
measure of the distance from the eyepoint to the point on the object represented by the
pixel with which the z-value corresponds. Removing primitives or parts of primitives
that are occluded by other geometry is beneficial because it optimizes a graphic
pipeline by processing only those image data that will be visible. The process of
removing hidden image data is called culling.

Those tiled graphics pipelines that do have tiled architectures do not perform
culling operations. Because, as discussed in greater detail above, it is desirable to sort
image data mid-pipeline, after image data coordinate transformations have taken place,
and before the image data has been texture mapped and/or rasterized, it 1s also
desirable to remove hidden pixels from the image data before the image data has been

texture mapped and/or rasterized. Therefore, what is also needed is a tiled graphics

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-5-

pipeline architecture that performs not only, mid-pipeline sorting, but mid-pipeline
culling.

In a tile based graphics pipeline architecture, it is desirable to provide a culling
unit with accurate image data information on a tile relative basis. Such image data
information includes, for example, providing the culling unit those vertices defining
the intersection of a primitive with a tile’s edges. To accomplish this, the image data
must be clipped to a tile. This information should be sent to the mid-pipeline culling
unit. Therefore, because a mid-pipeline cull unit is novel and its input requirements
are unique, what is also needed, is a structure and method for a mid-pipeline host file
sorting setup unit for setting up image data information for the mid-pipeline culling
unit.

It is desirable that the logic in a mid-pipeline culling unit in a tiled graphics
pipeline architecture be as high performance and streamlined as possible. The logic in
a culling unit can be optimized for high performance by reducing the number of
branches in its logical operations. For example, conventional culling operations
typically include logic, or algorithms to determine which of a primitive’s vertices lie
within a tile, hereinafter referred to as a vertex/tile intersection algorithm.
Conventional culling operations typically implement a number of different vertices/tile
intersection algorithms to accomplish this, one algorithm for each primitive type.

A beneficial aspect of needing only one such algorithm to determine whether a
line segment’s or a triangle’s vertices lie within a tile, as compared requiring two such
algorithms (one for each primitive type), is that total number of branches in logic
implementing such vertex/tile intersection algorithms are reduced. In other words, one
set of algorithms/set of equations/set of hardware could be used to perform the
vertex/tile intersection algorithm for a number of different primitive types. In light of
this, it would be advantageous to have a procedure for representing different
primitives, such as, for example, a line segment and a triangle, as a single primitive
type, while still retaining each respective primitive type’s unique geometric
information. In this manner, the logic in a mid-pipeline culling unit in a tiled graphics
pipeline architecture could be streamlined.

Other stages of a graphics pipeline, besides a culling unit, could also benefit in
a similar manner from a procedure for representing different primitives as a single

primitive type, while still retaining each respective primitive type unique geometric

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-6-

information. For example, a processing stage that sets up information for a culling
unit could also share a set of algorithms/set of equations/set of hardware for
calculating different primitive information.

In conventional tile based graphics pipeline architectures, geometry primitive
vertices, or x-coordinates and y-coordinates, are typically passed between pipeline
stages in screen based coordinates. Typically x-coordinates and y-coordinates are
represented as integers having a limited number of fractional bits (sub pixel bits).

Because it is desirable to architect a tile based graphics pipeline architecture to
be as streamlined as possible, it would be beneficial to represent x-coordinates and y-
coordinates in with a smaller number of bits to reduce the amount of data being sent to
a subsequent stage of the graphics pipeline. Therefore, what is needed is a structure
and method for representing x-coordinates and y-coordinates in a tile based graphics
pipeline architecture, such the number of bits required to pass vertice information to

subsequent stages of the graphics pipeline is reduced.

3 Summary of the Invention

Heretofore, tile based graphics pipeline architectures have been limited by
sorting image data either prior to the graphics pipeline or in hardware at the end of the
graphics pipeline, no tile based graphics pipeline architecture culling units, no mid-
pipeline post tile sorting setup units to support tile based culling operations, and larger
vertices memory storage requirements.

The present invention overcomes the limitations of the state-of-the-art by
providing structure and method in a tile based graphics pipeline architecture for: (@)a
mid-pipeline post tile sorting setup unit that supplies a mid-pipeline cull unit with tile
relative image data information; (b) a unified primitive descriptor language for
representing triangles and line segments as quadrilaterals and thereby reducing logic
branching requirements of a mid-pipeline culling unit; and, (c) representing each ofa
primitive’s vertices in tile relative y-values and screen relative x-values, and thereby
reducing the number of bits that need to be passed to subsequent stages of the graphics
pipeline accurately, and efficiently represent a primitive’s vertices.

In summary, a mid-pipeline setup unit is one processing stage of a tile based 3-
D graphics pipeline. The mid-pipeline setup unit processes image data in preparation

for a subsequent mid-pipeline culling unit. A mid-pipeline sorting unit, previous to the

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-7-

mid-pipeline setup unit has already sorted the image data with respect to multiple tiles
comprising a 2-D window. The image data including vertices describing a primitive.

In particular, the mid-pipeline setup unit is adapted to determine a set of
clipping points that identify an intersection of the primitive with the tile, and also
adapted to compute a minimum depth value for that part of the primitive intersecting
the tile.

In yet another embodiment of the present invention the primitives x-
coordinates are screen based and the y-coordinates are tile based.

In yet another embodiment of the present invention, the mid-pipeline setup unit
is adapted to represent line segments and triangles as rectangles. Both line segments
and triangles in this embodiment are described with respective sets of four vertices. In
the case of triangles, not all of the vertices are needed to describe the triangle, one

vertice will be will be degenerate, or not described.

4 Brief Description of the Drawi

Additional objects and features of the invention will be more readily apparent
from the following detailed description and appended claims when taken in
conjunction with the drawings, in which:

FIG. 1 is a block diagram illustrate aspects of a system according to an
embodiment of the present invention, for performing setup operations in a 3-D
graphics pipeline using unified primitive descriptors, post tile sorting setup, tile
relative y-values, and screen relative x-values;

FIG. 2 is a block diagram illustrating aspects of a graphics processor according
to an embodiment of the present invention, for performing setup operations in a 3-D
graphics pipeline using unified primitive descriptors, post tile sorting setup, tile
relative y-values, and screen relative x-values;

FIG. 3 is a block diagram illustrating other processing stages 210 of graphics
pipeline 200 according to a preferred embodiment of the present invention;

FIG. 4 is a block diagram illustrate Other Processing Stages 220 of graphics
pipeline 200 according to a preferred embodiment of the present invention;

FIG. 5 illustrates vertex assignments according to a uniform primitive
description according to one embodiment of the present invention, for describing

polygons with an inventive descriptive syntax;

WO 00/11562 PCT/US99/19240

10

15

20

25

30

-8-

FIG. 8 illustrates a block diagram of functional units of setup 2155 according
to an embodiment of the present invention, the functional units implementing the
methodology of the present invention;

FIG. 9 illustrates use of triangle slope assignments according to an
embodiment of the present invention;

FIG. 10 illustrates slope assignments for triangles and line segments according
to an embodiment of the present invention;

FIG. 11 illustrates aspects of line segments orientation according to an
embodiment of the present invention;

FIG. 12 illustrates aspects of line segments slopes according to an embodiment
of the present invention,

FIG. 13 illustrates aspects of point preprocessing according to an embodiment
of the present invention;

FIG. 14 illustrates the relationship of trigonometric functions to line segment
orientations;

FIG. 15 illustrates aspects of line segment quadrilateral generation according to
embodiment of the present invention;

FIG. 16 illustrates examples of x-major and y-major line orientation with
respect to aliased and anti-aliased lines according to an embodiment of the present
invention;

FIG. 17 illustrates presorted vertex assignments for quadrilaterals;

FIG. 18 illustrates a primitives clipping points with respect to the primitives
intersection with a tile;

FIG. 19 illustrates aspects of processing quadrilateral vertices that lie outside
of a 2-D window according to and embodiment of the present mention;

FIG. 20 illustrates an example of a triangle’s minimum depth value vertex
candidates according to embodiment of the present invention;

FIG. 21 illustrates examples of quadrilaterals having vertices that lie outside of
a 2-D window range;

FIG. 22 illustrates aspects of clip code vertex assignment according to
embodiment of the present invention; and,

FIG. 23 illustrates aspects of unified primitive descriptor assignments,

including comer flags, according to an embodiment of the present invention.

WO 00/11562

10

15

20

25

30

9. PCT/US99/19240

5. Detailed Description of Preferred Embodiments of the Invention

The invention will now be described in detail by way of illustrations and
examples for purposes of clarity and understanding. It will be readily apparent to
those of ordinary skill in the art in light of the teachings of this invention that certain
changes and modifications may be made thereto without departing from the spirit or
scope of the appended claims. We first provide a top-level system architectural
description. Section headings are provided for convenience and are not to be
construed as limiting the disclosure, as all various aspects of the invention are
described in the several sections that were specifically labeled as such in a heading.

Pseudocode examples are presented in this detailed description to illustrate
procedures of the present invention. The pseudocode used is, essentially, a computer
language using universal computer language conventions. While the pseudocode
employed in this description has been invented solely for the purposes of this
description, it is designed to be easily understandable by any computer programmer
skilled in the art.

For purposes of explanation, the numerical precision of the calculations of the
present invention are based on the precision requirements of previous and subsequent
stages of the graphics pipeline. The numerical precision to be used depends on a
number of factors. Such factors include, for example, order of operations, number of
operations, screen size, tile size, buffer depth, sub pixel precision, and precision of
data. Numerical precision issues are known, and for this reason will not be described

in greater detail herein.

5.1 System Qverview

Significant aspects of the structure and method of the present invention
include:
(1) a mid-pipeline post tile sorting setup that supports a mid-pipeline sorting unit and
supports a mid-pipeline culling unit; (2) a procedure for uniformly describing
primitives that allows different types of primitives to share common sets of
algorithms/equations/hardware elements in the graphics pipeline; and, (3) tile-relative

y-values and screen-relative x-values that allow representation of spatial data on a

10

15

20

25

30

WO 00/11562 -10- PCT/US99/19240

region by region bases that is efficient and feasible for a tiled based graphics pipeline
architecture. Each of these significant aspects are described in greater detail below.

Referring to FIG. 1, there is shown an embodiment of system 100, for
performing setup operations in a 3-D graphics pipeline using unified primitive
descriptors, post tile sorting setup, tile relative x-values, and screen relative y-values.
In particular, FIG.1 illustrates how various software and hardware elements cooperate
with each other. System 100, utilizes a programmed general-purpose computer 101,
and 3-D graphics processor 117. Computer 101 is generally conventional in design,
comprising: (a) one or more data processing units (“CPUs”) 102; (b) memory 106a,
106b and 106¢, such as fast primary memory 106a, cache memory 106b, and slower
secondary memory 106¢, for mass storage, or any combination of these three types of
memory; (c) optional user interface 105, including display monitor 105a, keyboard
105b, and pointing device 105¢; (d) graphics port 114, for example, an advanced
graphics port (“AGP”), providing an interface to specialized graphics hardware; (e) 3-
D graphics processor 117 coupled to graphics port 114 across /O bus 112, for
providing high-performance 3-D graphics processing; and (€) one or more
communication busses 104, for interconnecting CPU 102, memory 106, specialized
graphics hardware 114, 3-D graphics processor 117, and optional user interface 105.

1/O bus 112 can be any type of peripheral bus including but not limited to an
advanced graphics port bus, a Peripheral Component Interconnect (PCI) bus, Industry
Standard Architecture (ISA) bus, Extended Industry Standard Architecture (EISA)
bus, Microchannel Architecture, SCSI Bus, and the like. In a preferred embodiment,
/O bus 112 is an advanced graphics port pro.

The present invention also contemplates that one embodiment of computer 101
may have a command buffer (not shown) on the other side of graphics port 114, for
queuing graphics hardware VO directed to graphics processor 117.

Memory 106a typically includes operating system 108 and one or more
application programs 110, or processes, each of which typically occupies a separate
address space in memory 106 at runtime. Operating system 108 typically provides
basic system services, including, for example, support for an Application Program
Interface (“API”) for accessing 3-D graphics API’s such as Graphics Device Interface,
DirectDraw/Direct3-D and OpenGL. DirectDraw/Direct 3-D, and OpenGL are all

well-known APIs, and for that reason are not discussed in greater detail herein. The

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-11-

application programs 110 may, for example, include user level programs for viewing
and manipulating images.

It will be understood that a laptop or other type of computer, a workstation on a
local area network connected to a server, or a dedicated gaming console can be used
instead of computer can also be used in connection with the present invention.
Accordingly, it should be apparent that the details of computer 101 are not particularly
relevant to the present invention. Personal computer 101 simply serves as a
convenient interface for receiving and transmitting messages to 3-D graphics processor
117.

Referring to FIG. 2, there is shown an exemplary embodiment of 3-D graphics
processor 117, which may be provided as a separate PC Board within computer 101,
as a processor integrated onto the motherboard of computer 101, or as a stand-alone
processor, coupled to graphics port 114 across I/O bus 112, or other communication
link.

Setup 215 is implemented as one processing stage of multiple processing
stages in graphics processor 117. (Setup 215 corresponds to “setup stage 8000," as
illustrated in United States Provisional Patent Application Serial Number
60/097,336).

Setup 215 is connected to other processing stages 210 across internal bus 211
and signal line 212. Setup 215 is connected to other processing stages 220 across
internal bus 216 and signal line 217. Internal bus 211 and internal bus 216 can be any
type of peripheral bus including but not limited to a Peripheral Component
Interconnect (PCI) bus, Industry Standard Architecture (ISA) bus, Extended Industry
Standard Architecture (EISA) bus, Microchannel Architecture, SCSI Bus, and the like.

In a preferred embodiment, internal bus 211 is a dedicated on-chip bus.

5.1.1 Other Processing Stages 210

Referring to FIG. 3, there is shown an example of a preferred embodiment of
other processing stages 210, including, command fetch and decode 305, geometry 310,
mode extraction 315, and sort 320. We will now briefly discuss each of these other
processing stages 210.

Cmd Fetch / Decode 305, or “CFD 305" handles communications with host
computer 101 through graphics port 114. CFD 305 sends 2-D screen based data, such

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-12-

as bitmap blit window operations, directly to backend 440 (see FIG. 4), because 2-D
data of this type does not typically need to be processed further with respect to the
other processing stage in other processing stages 210 or Other Processing Stages 220.
All 3-D operation data (e.g., necessary transform matrices, material and light
parameters and other mode settings) are sent by CFD 305 to the geometry 310.

Geometry 310 performs calculations that pertain to displaying frame geometric
primitives, hereinafter, often referred to as “primitives,” such as points, line segments,
and triangles, in a 3-D model. These calculations include transformations, vertex
lighting, clipping, and primitive assembly. Geometry 310 sends “‘properly oriented”
geometry primitives to mode extraction 315.

Mode extraction 315 separates the input data stream from geometry 310 into
two parts: (1) spatial data, such as frame geometry coordinates, and any other
information needed for hidden surface removal; and, (2) non-spatial data, such as
color, texture, and lighting information. Spatial data are sent to sort 320. The non-
spatial data are stored into polygon memory (not shown). (Mode injection 415 (see
FIG. 4) with pipeline 200).

Sort 320 sorts vertices and mode information with respect multiple regions in a
2-D window. Sort 320 outputs the spatially sorted vertices and mode information on a
region-by-region basis to setup 215.

The details of processing stages 210 are not necessary to practice the present
invention, and for that reason other processing stages 210 are not discussed in further

detail here.

5.1.2 Other Processing Stages 220

Referring to FIG. 4, there is shown an example of a preferred embodiment of
other processing stages 220, including, cull 410, mode injection 415, fragment 420,
texture 425, Phong Lighting 430, pixel 435, and backend 440. The details of each of
the processing stages in Other Processing Stages 220 is not necessary to practice the
present invention. However, for purposes of completeness, we will now briefly
discuss each of these processing stages.

Cull 410 receives data from a previous stage in the graphics pipeline, such as

setup 405, in region-by-region order, and discards any primitives, or parts of

10

15

20

25

30

WO 00/11562 -13 - PCT/US99/19240

primitives that definitely do not contribute to the rendered image. Cull 410 outputs
spatial data that are not hidden by previously processed geometry.

Mode injection 415 retrieves mode information (e.g., colors, material
properties, etc...) from polygon memory, such as other memory 235, and passes ittoa
next stage in graphics pipeline 200, such as fragment 420, as required. Fragment 420
interprets color values for Gouraud shading, surface normals for Phong shading,
texture coordinates for texture mapping, and interpolates surface tangents for use in a
bump mapping algorithm (if required).

Texture 425 applies texture maps, stored in a texture memory, to pixel
fragments. Phong 430 uses the material and lighting information supplied by mode
injection 425 to perform Phong shading for each pixel fragment. Pixel 435 receives
visible surface portions and the fragment colors and generates the final picture. And,
backend 139 receives a tile’s worth of data at a time from pixel 435 and stores the

data into a frame display buffer.

5.2 Setup 215 Qverview

Setup 215 receives a stream of image data from a previous processing stage of
pipeline 200 In a preferred embodiment of the present invention the previous
processing stage is sort 320 (see FIG. 3). These image data include spatial information
about geometric primitives (hereinafter, often referred to as “primitives”) to be
rendered by pipeline 200. The primitives received from sort 320 can include, for
example, filled triangles, line triangles, lines, stippled lines, and points. These image
data also include mode information, information that does not necessarily apply to any
one particular primitive, but rather, probably applies to multiple primitives. Mode
information is not processed by the present invention, but simply passed through to a
subsequent stage of pipeline 200, for example, cull 410, and for this reason will not be
discussed further detail herein.

By the time that setup 215 receives the image data from Sort 320, the
primitives have already been sorted, by sort 320, with respect to regions ina2D
window that are intersected by the respective primitives. Setup 215 receives this
image data on a region-by-region basis. That is to say that all the primitives that
intersect a respective region will be sent to setup 215 before all the primitives that

intersect a different respective region are sent to setup 215, and so on. This means that

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-14 -

sort 320 may send the same primitive many times, once for each region it intersects, or
“touches.” In a preferred embodiment of the present invention, each region of the 2-D
window is a rectangular tile.

Setup 215 receives the image data from sort 320 either organized in “time
order” or in “sorted transparency order.” In time order, the time order of receipt by all
previous processing stages of pipeline 200 of the vertices and modes within each tile is
preserved. That is, for a given tile, vertices and modes are read out of previous stages
of pipeline 200 just as they were received, with the exception of when sort 320 is in
sorted transparency mode.

For purposes of explanation, in sorted transparency mode, “guaranteed
opaque” primitives are received by setup 215 first, before setup 215 receives
potentially transparent geometry. In this context, guaranteed opaque means that a
primitive completely obscures more distant primitives that occupies the same spatial
area in a window. Potentially transparent geometry is any geometry that is not
guaranteed opaque.

Setup 215 prepares the incoming image data for processing by cull 410. Setup
215 processes one tile's worth of image data, one primitive at a time. When it's done
processing a primitive, it sends the data to cull 420 (see FIG. 4) in the form of a
primitive packet 6000 (see Table 6). Each primitive packet 6000 output from setup
215 represents one primitive: a triangle, line segment, or point. We now briefly
describe cull 410 (see FIG. 4) so that the preparatory processing performed by setup
215 (in anticipation of culling) may be more readily understood.

Cull 410 produces the visible stamp portions, or “VSPs” used by subsequent
processing stages in pipeline 200. In a preferred embodiment of the present invention,
a stamp is a region two pixels by two pixels in dimension; one pixel contains four
sample points; and, one tile has 16 stamps (8x8). However, according to the teaching
of the present invention, any convenient number of pixels in a stamp, sample, points in
a pixel, and pixels in a tile may be used.

Cull 410 receives image data from setup 215 in tile order (in fact in the order
that setup 215 receives the image data from sort 320), and culls out those primitives
and parts of primitives that definitely do not contribute to a rendered image. Cull 410
accomplishes this in two stages, the MCCAM cull 410 stage and the Z cull 410 stage.

MCCAM cull 410, allows detection of those memory elements in a rectangular,

WO 00/11562

10

15

20

25

30

-15 - PCT/US99/19240

spatially addressable memory array whose “content” (depth values) are greater than a
given value. Spatially addressable memory is known.

To prepare the incoming image data for processing by MCCAM cull, setup
215, for each primitive: (a) determines the dimensions of a tight bounding box that
circumscribes that part of the primitive that intersects a tile; and, (b) computes a
minimum depth value “Zmin,”for that part of the primitive that intersects the tile. This
is beneficial because MCCAM cull 410 uses the dimensions of the bounding box and
the minimum depth value to determine which of multiple “stamps,” each stamp lying
within the dimensions of the bounding box, may contain depth values less than Zmin.
The procedures for determining the dimensions of a bounding box and the procedures
for producing a minimum depth value are described in greater detail below. (For
purposes of simplifying the description, those stamps that lie within the dimensions of
the bounding box are hereinafter, referred to as “candidate stamps.”)

Z cull 410 refines the work performed by MCCAM cull 410 in the process of
determining which samples are visible, by taking these candidates stamps, and if they
are part of the primitive, computing the actual depth value for samples in that stamp.
This more accurate depth value is then compared, on a sample-by-sample basis, to the
z-values stored in a z-buffer memory in cull 410 to determine if the sample is visible.
A sample-by-sample basis simply means that each sample is compared individually, as
compared to a step where a whole bounding box is compared at once.

For those primitives that are lines and triangles, setup 215 also calculates
spatial derivatives. A spatial derivative is a partial derivative of the depth value.
Spatial derivatives are also known as Z-slopes, or depth gradients. As discussed above,
the minimum depth value and a bounding box are utilized by MCCAM cull 410.

Setup 215 also determines a reference stamp in the bounding box (described in greater
detail below) that contains the vertex with the minimum z-value (discussed in greater
detail below in section 5.4.10). The depth gradients and zref are used by Z-cull 410.
Line (edge) slopes, intersections, and corners (top and bottom) are used by Z-cull 410

for edge walking.

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-16 -

5.2.1 Interface I/0 With Other Processing Stages of the Pipeline

Setup 215 interfaces with a previous stage of pipeline 200, for example, sort
320 (see FIG. 3), and a subsequent stage of pipeline 200, for example, cull 410 (see
FIG. 4). We now discuss sort 320 output packets.

5.2.1.1 Sort 320 Setup 215 Interface

Referring to table 1, there is shown an example of a begin frame packet 1000,
for delimiting the beginning of a frame of image data. Begin frame packet 1000 is
received by setup 215 from sort 320. Referring to table 2, there is shown an example
of a begin tile packet 2000, for delimiting the beginning of that particular tile’s worth
of image data.

Referring to table 4, there a shown an example of a clear packet 4000, for
indicating a buffer clear event. Referring to table 5, there is shown an example of a
cull packet 5000, for indicating, among other things the packet type 5010. Referring
to table 6, there is shown an example of an end frame packet 6000, for indicating by
sort 320, the end of a frame of image data. Referring to table 7, there is shown an
example of a primitive packet 7000, for identifying information with respect to a

primitive. Sort 320 sends one primitive packet 7000 to setup 215 for each primitive.

5.2.1.2 Setup 215 Cull 410 Interface

Referring to table 8, there is shown an example of a setup output primitive
packet 8000, for indicating to a subsequent stage of pipeline 200, for example, cull
410, a primitive’s information, including, information determined by setup 215. Such

setup 215 determined information is discussed in greater detail below.

522 Setup Primitives

To set the context of the present invention, we briefly describe geometric

primitives, including, for example, polygons, lines, and points.

5.2.2.1 Polygons

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-17-

Polygons arriving at setup 215 are essentially triangles, either filled triangles or
line mode triangles. A filled triangle is expressed as three vertices. Whereas, a line
mode triangle is treated by setup 215 as three individual line segments. Setup 215
receives window coordinates (X, y, z) defining three triangle vertices for both line
mode triangles and for filled triangles. Note that the aliased state of the polygon
(either aliased or anti-aliased) does not alter the manner in which filled polygon setup

is performed by setup 215. Line mode triangles are discussed in greater detail below.

5222 Lines

Line segments arriving at setup 215 essentially comprise a width, and two end
points. Setup 215 does not modify the incoming line widths. A line segment may be
stippled. A line segment may be aliased or anti-aliased. a preferred embodiment of the
present invention, a line’s width is determined prior to setup 215. For example, it can
be determined on a 3-D graphics processing application executing on computer 101
(see FIG. 1).

5.2.2.3 Points

Pipeline 200 renders anti-aliased points as circles and aliased points as squares.
Both circles and squares have a width. In a preferred embodiment of the present
invention, the determination of a point’s size and position are determined in a previous

processing stage of pipeline 200, for example, geometry 310.

53 Unified Primitive Descrint

Under the rubric of a unified primitive, we consider a line segment primitive to
be a rectangle and a triangle to be a degenerate rectangle, and each is represented
mathematically as such. We now discuss a procedure for uniformly describing
primitives that allows different types of primitives to share common sets of
algorithms/equations/hardware elements in the graphics pipeline.

Setup 215 describes each primitive with a set of four vertices. Note that not all
vertex values are needed to describe all primitives. To describe a triangle, setup 215
uses a triangle’s top vertex, bottom vertex, and either left corner vertex or right corner
vertex, depending on the triangle's orientation. A line segment, is treated as a

parallelogram, so setup 215 uses all four vertices to describe a line segment. FIG. 16

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-18-

shows example of quadrilaterals generated for line segments. Note that quadrilaterals
are generated differently for aliased and anti-aliased lines. For aliased lines a
quadrilateral’s vertices also depend on whether the line is x-major or y-major. Note
also that while a triangle’s vertices are the same as its original vertices, setup 215
generates new vertices to represent a line segment as a parallelogram.

The unified representation of primitives uses two sets of descriptors to
represent a primitive. The first set includes vertex descriptors, each of which are
assigned to the original set of vertices in window coordinates. Vertex descriptors
include, VtxYMin, VtxYmax, VtxXmin and VtxXmax. The second set of descriptors
are flag descriptors, or corner flags, used by setup 215 to indicate which vertex
descriptors have valid and meaningful values. Flag descriptors include, VtxLeftC,
VitxRightC, LeftCorner, RightCorner, VtxTopC, VtxBotC, TopCorner, and
BottomComer. FIG. 23 illustrates aspects of unified primitive descriptor assignments,
including corner flags.

All of these descriptors have valid values for line segment primitives, but all of
them may not be valid for triangles. Treating triangles as rectangles according to the
teachings of the present invention, involves specifying four vertices, one of which
(typically y-left or y-right in one particular embodiment) is degenerate and not
specified. To illustrate this, refer to FIG. 22, and triangle 20, where a left corner
vertex (VtxLeftC) is degenerate, or not defined. With respect to triangle 10, a right
comer vertex (VtxRightC) is degenerate. Using primitive descriptors according to the
teachings of the present invention to describe triangles and line segments as rectangles
provides a nice, uniform way to setup primitives, because the same (or similar)
algorithms/equations/calculations/hardware can be used to operate on different
primitives, such as, for example, edge walking algorithm in cull 410 (see FIG. 4), thus
allowing for more streamlined implementation of logic. We now describe how the
primitive descriptors are determined.

In a preferred embodiment of the present invention, for line segments
VixYmax, VtxLeftC, VixRightC, LeftCorner, RightCorner descriptors are assigned
when line quadrilateral vertices are generated (see section 5.4.5.1). VixYmin is the
vertex with the minimum y value. VtxYmax is the vertex with the maximum y value.
VtxLeftC is the vertex that lies to the left of the diagonal formed by joining the
vertices VtxYmin and VtxYmax for line segments. VtxRightC is the vertex that lies

10

15

20

25

30

WO 00/11562 -19- PCT/US99/19240

to the right of the diagonal formed by joining the vertices VtxYmin and VtxYmax for
line segments.

Referring to Fig. 5, we will now described one embodiment of how VtxYmin,
VitxYmax, VixLeftC, VtxRightC, LeftCorner, RightComer descriptors are obtained
for triangles. At step 5, the vertices are sorted with respect to the y-direction. The
procedures for sorting a triangles coordinates with respect to y are discussed in greater
detail below in section 5.4.1.1. At step 10, VtxYmin, the vertex with the minimum y
value, and VtxYmax, the vertex with the maximum y value are assigned their
respective values in a similar manner as that described immediately above with respect
to line segments.

At step 15 is determined whether a long y-edge is equal to a left edge. For
purposes of illustrating aspects of mapping to a triangle long x-edge, long y-edge, top
edge, bottom edge, right edge, and left edge, refer to FIG. 8. A triangle has exactly two
edges that share a top most vertex (VtxYmax). Of these two edges, the one edge with
an end point furthest left is the left edge. Analogous to this, the one edge with an end
point furthest to the right is the right edge.

Referring to figure 5, if the long y-edge is equal to the left edge (step 15), at
step 25 LeftComer is set to equal FALSE, meaning that VixLeftC is degenerate, or not
defined. If the long y-edge is not equal to the left edge (step 15), at step 20, procedure
for uniformly describing primitives 500 assigns a value to VtxLeftC and sets
LeftComer equal to TRUE. For triangles, VtxLeftC is the vertex that lies to the left of
the edge of the triangle formed by joining the vertices VtxYmin and VtxYmax
(hereinafter, also referred to as the “long y-edge”). The procedure for determining
whether a triangle has a left corner is discussed in greater detail below 5.4.1.3.

At step 30, it is determined whether the long y-edge is equal to the right edge,
and if so, at step 35, RightCorner is set to equal FALSE, representing that VtxRightC
is degenerate, or undefined. However, if long y-edge is not equal to the right edge
(step 30), at step 40, a value is assigned to VixRightC and RightCorner is set to
TRUE, indicating that VtxRightC contains a valid value. VtxRightC is the vertex that
lies to the right of the long y-edge in the case of a triangle. The procedure for
determining whether a triangle has a right corner is discussed in greater detail below

5.4.1.3.

10

15

20

25

30

WO 00/11562 220 - PCT/US99/19240

Note that in practice VtxYmin, VtxYmax, VtxLefiC, and VtxRightC are
indices into the original primitive vertices. Setup 215 uses VtxYMin, VtxYmax,
VixLeftC, VixRightC, LefiCorner, and RightCorner to clip a primitive with respect to
the top and bottom edges of the tile. Clipping will be described in greater detail below
in section 5.4.6.

In a preferred embodiment of the present invention, for line segments
VtxXmin, VtxXmax, VtxTopC, VtxBotC, TopCorner, BottomCorner descriptors are
assigned when the line quad vertices are generated (see section 5.4.5.1). VtxXmin is
the vertex with the minimum x value. VtxXmax is the vertex with the maximum x
value. VtxTopC is the vertex that lies above the diagonal formed by joining the
vertices VtxXmin and VtxXmax for parallelograms. VtxBotC is the vertex that lies
below the long x-axis in the case of a triangle, and below the diagonal formed by
joining the vertices VtxXmin and VtxXmax.

Referring to figure 7, we now describe procedure for determining a set of
unified primitive descriptors for a triangle primitive with respect to the x-coordinates.
In particular, we illustrate how VtxXmin, VtxXmax, VtxTopC, VtxBotC, TopCorner,
BottomCorner descriptors are obtained.

At step 5, for the vertices are sorted with respect to the x-direction. The
procedures for sorting a triangles coordinates with respect to x are discussed in greater
detail below in section 5.4.1.4. At step 10, VtxXmin and VtxXmax are assigned
values as for the discussion immediately above with respect to line segments. At step
15 it is determined whether the triangle’s long x-edge is equal to the triangles top
edge, and if so, at step 20, TopCorner is set to equal false indicating that VtxTopC is
degenerate, or not defined. The top edge is a triangle has to edges that share the
maximum x-vertex (VtxXmax). The topmost of these two edges is the “top edge.”
analogous to this, the bottom most of these two edges is the “bottom edge.”

If the triangle’s long x-edge is not equal to the triangles top edge (step 15), at
step 25, VtxTopC is assigned an appropriate value and TopComner is set to equal
TRUE, indicating that VtxTopC contains a valid value. The appropriate value for
VitxTopC is the vertex that lies above the edge joining vertices VtxXmin and
VtxXmax (hereinafter, this edge is often referred to as the “long x-edge”). The
procedure for determining whether a triangle has a top corner is discussed in greater

detail below 5.4.1.5.

10

15

20

25

30

WO 00/11562 _21- PCT/US99/19240

At step 30, it is determined whether the long x-edge is equal to the bottom
edge, and if so, at step 40, BottomCorner is set to equal FALSE, indicating that
VtxBotC is degenerate, or not defined. If the long x-edge is not equal to the bottom
edge (step 30), then an appropriate value is assigned to VtxBotC and BottomCorner is
set to equal TRUE, indicating that VtxBotC contains a valid value. The appropriate
value for VtxBotC is the vertex that lies below the long x-axis. The procedure for
determining whether a triangle has a bottom corner is discussed in greater detail below
5.4.1.5.

Note, that in practice VixXmin, VtxXmax, VtxTopC, and VitxBotC are indices
into the original triangle primitive. Setup 215 uses VtxXmin, VtxXmax, VtxTopC,
VtxBotC, TopCorner, and BottomCorner to clip a primitive with respect to the left and
right edges of a tile. Clipping will be described in greater detail below.

To illustrate the use of the unified primitive descriptors of the present
invention, refer to FIG. 23, where there is shown an illustration of multiple triangles
and line segments described using vertex descriptors and flag descriptors according to
a preferred embodiment of the unified primitive description of the present invention.

In this manner the procedure for uniformly describing primitives allows
different types of primitives to share common sets of algorithms/equations/hardware

elements in the graphics pipeline.

5.4 High Level Functional Unit Architecture

Setup’s 215 I/O subsystem architecture is designed around the need to process
primitive and mode information received from sort 315 (see FIG. 3) in a manner that is
optimal for processing by cull 410 (see FIG. 4). To accomplish this task, setup 215
performs a number of procedures to prepare information about a primitive with respect
to a corresponding tile for cull 410.

As illustrated in FIG. 8, an examination of these procedures yields the
following functional units which implement the corresponding procedures of the
present invention: (a) triangle preprocessor 2, for generating unified primitive
descriptors, calculating line slopes and reciprocal slopes of the three edges, and
determining if a triangle has a left or right corner; (b) line preprocessor 2, for
determining the orientation of a line, calculating the slope of the line and the

reciprocal, identifying left and right slopes and reciprocal slopes, and discarding end-

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-22-

on lines; (c) point preprocessor 2, for calculating a set of spatial information required
by a subsequent culling stage of pipeline 200; (d) trigonometric unit 3, for calculating
the half widths of a line, and trigonometric unit for processing anti-aliased lines by
increasing a specified width to improved image quality; (d) quadrilateral generation
unit 4, for converting lines into quadrilaterals centered around the line, and for
converting aliased points into a square of appropriate width; (d) clipping unit 5, for
clipping a primitive (triangle or quadrilateral) to a tile, and for generating the vertices
of the new clipped polygon; () bounding box unit 6, for determining the smallest box
that will enclose the new clipped polygon,; (f) depth gradient and depth offset unit 7,
for calculating depth gradients (dz/dx & dz/dy) of lines or triangles — for triangles, for
also determining the depth offset; and, (g) Zmin and Zref unit 8, for determining
minimum depth values by selecting a vertex with the smallest Z value, and for
calculating a stamp center closest to the Zmin location.

FIG. 8 illustrates a preferred embodiment of the present invention where
triangle preprocessor unit 2, line preprocessor unit 2, and point preprocessor unit 2 are
located the same unit 2. However, other in yet other embodiments, each respective unit
can be implemented as a different unit.

In one embodiment of the present invention, input buffer 1 comprises a queue
and a holding buffer. In a preferred embodiment of the present invention, the queue is
approximately 32 entries deep by approximately 140 bytes wide. Input data packets
from a subsequent process in pipeline 200, for example, sort 320, requiring more bits
then the queue is wide, will be split into two groups and occupy two entries in the
queue. The queue is used to balance the different data rates between sort 320 (see
FIG. 3) and setup 215. The present invention contemplates that sort 320 and setup 215
cooperate if input queue 1 reaches capacity. The holding buffer holds vertex
information read from a triangle primitive embrace the triangle into the visible edges
for line mode triangles.

Output buffer 10 is used by setup 215 to queue image data processed by setup
215 for delivery to a subsequent stage of pipeline 200, for example, cull 410.

As discussed above, FIG. 8 also illustrates the data flow between the functional
units that implement the procedures of the present invention.

The following subsections detail the architecture and procedures of each of

these functional units.

WO 00/11562 93 PCT/US99/19240

10

15

20

25

30

5.4.1 Triangle Preprocessing
For triangles, Setup starts with a set of vertices, (x0, y0, z0), (x1, y1, z1), and

(x2,y2, z2). Setup 215 assumes that the vertices of a filled triangle fall within a valid
range of window coordinates, that is to say, that a triangle’s coordinates have been
clipped to the boundaries of the window. This procedure can be performed by a
previous processing stage of pipeline 200, for example, geometry 310 (see FIG. 3).

In a preferred embodiment of the present invention, triangle preprocessing unit
2 first generates unified primitive descriptors for each triangle that it receives. Refer to
section 5.3 for greater detailed discussion of unified primitive descriptors.

The triangle preprocessor: (1) sorts the three vertices in the y direction, to
determine the top-most vertex (VtxYmax), middle vertex (either, VtxRightC or
VixLeftC), and bottom-most vertex (VtxYmin); (2) calculates the slopes and
reciprocal slopes of the triangles three edges; (3) determines if the y-sorted triangle has
a left corner (LeftCorner) or a right corner (RightCorner); (5) sorts the three vertices in
the x-direction, to determine the right-most vertex (VtxXmax), middle vertex, and left-
most vertex (VtxXmin); and, (6) identifies the slopes that correspond to x-sorted Top
(VtxTopC), Bottom (VtxBotC), or Left.

5.4.1.1 Sort With Respect to the Y Axis
The present invention sorts the filled triangles vertices in the y-direction using,

for example, the following three equations.

Y,GeY, = (Y, > Y,) | ((Y1 ==Y0) & (X1 >X0))
Y,GeY, = (Y,>Y) | ((Y2=Y1) & (X2>X1))
Y,GeY, = (Y,>Y,) | ((YO==Y2) & (X0>X2))

With respect to the immediately above three equations: (a) “Ge” represents a
greater than or equal to relationship; (b) the “|” symbol represents a logical “or”; and,
(c) the “&” symbol represents a logical “and.”

Y1GeYO0, Y2GeY1, and YOGeY?2 are Boolean values.

The time ordered vertices are VO, V1, and V2, where VO is the oldest vertex,

and V2 is the newest vertex.

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-24 -

Pointers are used by setup 215 to identify which time-ordered vertex
corresponds to which Y-sorted vertex, including, top (VtxYmax), middle (VtxLeftC or
VtxRightC), and bottom (VtxYmin). For example,

YsortTopSrc = {Y,GeY, & 'Y, GeY,, Y,GeY, & !Y,GeY,, 'Y,GeY, & Y ,GeY,}
YsortMidSre = {Y,GeY, A Y, GeY,, Y,GeY, @ !Y,GeY,, 'Y,GeY, ® Y,GeY,}
YsortBotSrc = {!Y,GeY, & Y,GeY,, 'Y,GeY, & Y,GeY,, Y,GeY, & 'Y GeY,}

YsortTopSrc represents three bit encoding to identify which of the time
ordered vertices is VtxYmax. YsortMidSrc represents three bit encoding to identify
which of the time ordered vertices is VtxYmid. YsortBotSrc represents three bit
encoding to identify which of the time ordered vertices 1s VtxYmin.

Next, pointers to map information back and forth from y-sorted to time
ordered, time ordered to y-sorted, and the like, are calculated. Analogous equations are

used to identify the destination of time ordered data to x-sorted order.

YsortOdest = {!Y,GeY, & Y,GeY,, 'Y,GeY, @ Y ,GeY,, Y,GeY, & 'Y, GeY,}
Ysortldest = {Y,GeY, & !Y,GeY,, Y,GeY, o !Y,GeY,, 'Y,GeY, & Y,GeY,}
Ysort2dest = {Y,GeY, & 'Y, GeY,, Y,GeY, @ 'Y, GeY,, !Y,GeY, & Y,GeY,}

The symbol “!” represents a logical “not.” YsortOdest represents a pointer that
identifies that VO corresponds to which y-sorted vertex. Ysortldest represents a
pointer that identifies that V1 corresponds to which y-sorted vertex. Ysort2dest
represents a pointer that identifies that V2 corresponds to which y-sorted vertex.

Call the de-referenced sorted vertices: Vi = (Xy, Y1, Z1), Vg = (Xp, Yg, Zp),
and V, = (X, Yy Zy), Where V has the largest Y and Vj has the smallest Y. The
word de-referencing is used to emphasize that pointers are kept. V; is VixYmax, Vy is
VitxYmin, and Vy, is VixYmid.

Reciprocal slopes (described in greater detail below) need to be mapped to
labels corresponding to the y-sorted order, because VO, V1 and V2 part-time ordered
vertices. SO1, S12, and S20 are slopes of edges respectively between: (a) VO and V1,
(b) V1 and V2; and, (c) V2 and V0. So after sorting the vertices with respect to y, we

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-25-

will have slopes between V; and V,,, V; and Vg, and V,, abd V. In light of this,

pointers are determined accordingly.
V;and Vy;, V; and Vg, and

A preferred embodiment of the present invention maps the reciprocal slopes to
the following labels: (a) YsortSTMSrc represents STM (V. and V,,) corresponds to
which time ordered slope; (b) YsortSTBSrc represents STB (V; and V;) corresponds
to which time ordered slope; and, (c) YsortSMBSrc represents SMB (V,, and V)

corresponds to which time ordered slope.

//Pointers to identify the source of the slopes (from time ordered to y-sorted). “Source”
//simply emphasizes that these are pointers to the data. ,
//encoding is 3bits, “one-hot” {S12, S01, S20}. One hot means that only one bit can
be a /““one.”

//1,0,0 represents S12; 0,1,0 represents S01; 0,0,1 represents S20.

YsortSTMSrc = { Ysortldest[0] & !'Ysort2dest[0],
'YsortOdest[0] & !'Ysortldest[0],
'Ysort2dest[0] & !'YsortOdest[0] }
YsortSTBSrc = { Ysortldest[1] & !'Ysort2dest[1],
'YsortOdest[1] & !Ysortldest[1],
'Ysort2dest[1] & !'YsortOdest[1] }
YsortSMBSrc = { !'Ysortldest[2] & !'Ysort2dest[2],
'YsortOdest[2] & !Ysortldest[2],
'Ysort2dest[2] & !'YsortOdest[2] }

The indices refer to which bit is being referenced .

Whether the middle vertex is on the left or the right is determined by
comparing the slopes dx2/dy of line formed by vertices v[i2] and v[il], and dx0/dy of
the line formed by vertices v[i2] and v[i0]. If (dx2/dy > dx0/dy) then the middle
vertex is to the right of the long edge else it is to the left of the long edge. The

computed values are then assigned to the primitive descriptors. Assigning the x

10

15

20

WO 00/11562 PCT/US99/19240

-26 -

descriptors is similar. We thus have the edge slopes and vertex descriptors we need

for the processing of triangles.

5.4.1.2 Slope Determination

The indices sorted in ascending y-order are used to compute a set of (dx/dy)
derivatives. And the indices sorted in ascending x-order used to compute the (dy/dx)
derivatives for the edges. The steps are (1) calculate time ordered slopes S01, S12,
and, S20; (2) map to y-sorted slope STM, SMB, and STB; and, (3) do a slope
comparison to map slopes to SLEFT, SRIGHT, and SBOTTOM.

The slopes are calculated for the vertices in time order. That is, (X0, YO0)
represents the first vertex, or “V0" received by setup 215, (X1, Y1) represents the
second vertex, or “V2" received by setup 215, and (X2, Y2) represents the third vertex,
or V3 received by setup 215.

Sy, -_—|:_021 NN (Slope between V1 and VO0.).
dxly, X=X

S, = Q} _NTh (Slope between V2 and V1.).
Ldx), x-x

Ldx by X, — X,

S, = ﬂ’} _ N (Slope between VO and V2.).

In Other Processing Stages 220 in pipeline 200, the reciprocals of the slopes
are also required, to calculate intercept points in clipping unit 5 (see FIG. 8). In light
of this, the following equations are used by a preferred embodiment of the present

invention, to calculate the reciprocals of slopes, S01, S12, and S20:

SN,, = li.fd_x_} =0 "% (Reciprocal slope between V1 and VO0.).
g =Y

10

15

20

25

WO 00/11562 PCT/US99/19240

-27-

SM) =|:@} 7 (Reciprocal slope between V2 and V1.).
dy 12 y2 _yl

SN,, = l:fi_)_ch _hT% (Reciprocal slope between VO and V2.).
dyly M=V

Referring to FIG. 9, there are shown examples of triangle slope assignments.
A left slope is defined as slope of dy/dx where “left edge” is defined earlier. A right
slope is defined as slope of dy/dx where “right edge” is defined earlier. A bottom
slope is defined as the slope of dy/dx where the y-sorted “bottom edge” is defined

earlier. (There is also an x-sorted bottom edge.)

5.4.1.3 Determine Y-sorted Left Corner or Right Corner

Call the de-referenced reciprocal slopes SNTM (reciprocal slope between VT
and VM), SNTB (reciprocal slope between VT and VB) and SNMB (reciprocal slope
between VM and VB). These de-referenced reciprocal slopes are significant because
they represent the y-sorted slopes. That is to say that they identify slopes between y-
sorted vertices.

Referring to FIG. 10, there is shown yet another illustration of slope
assignments according to one embodiment of the present invention for triangles and
line segments. We will now describe a slope naming convention for purposes of
simplifying this detailed description.

For example, consider slope "SIStrtEnd," "S1" is for slope, "Strt" is first vertex
identifier and "End" is the second vertex identifier of the edge. Thus, SI'YmaxLeft
represents the slope of the left edge — connecting the VixYMax and VixLeftC. If lefiC
is not valid then, SIYmaxLeft is the slope of the long edge. The letter r in front
indicates that the slope is reciprocal. A reciprocal slope represents (y/ x) instead of (
x/y).

Therefore, in this embodiment, the slopes are represented as {SI'YmaxLeft,
SlYmaxRight, S1LeftYmin, SIRightYmin} and the inverse of slopes (y/ x)
{rS1XminTop, rSIXminBot, rSITopXmax, rSIBotXmax}.

WO 00/11562 PCT/US99/19240

10

15

20

25

30

-28 -

In a preferred embodiment of the present invention, setup 215 compares the
reciprocal slopes to determine the LeftC or RightC of a triangle. For example, if
YsortSNTM is greater than or equal to YsortSNTB, then the triangle has a left corner,
or "LeftC" and the following assignments can be made: (a) set LeftC equal to true
("1"); (b) set RightC equal to false ("0"); (c) set YsortSNLSrc equal to YsortSNTMSrc
(identify pointer for left slope); (d) set YsortSNRSrc equal to YsortSNTBSrc (identify
pointer for right slope); and, (¢) set YsortSNBSrc equal to YsortSNMBSrec (identify
pointer bottom slope).

However, if YsortSNTM is less than YsortSNTB, then the triangle has a right
corner, or "RightC" and the following assignments can be made: (a) set LeftC equal to
false ("0"); (b) RightC equal to true ("1"); (¢) YsortSNLSrc equal to YsortSNTBSrc
(identify pointer for left slope); (d) sortSNRSrc equal to YsortSNTMSrc (identify
pointer for right slope); and, (e) set YsortSNBSrc equal to YsortSNMBSrc (identify

pointer bottom slope).

5.4.1.4 Sort Coordinates With Respect to the X Axis

The calculations for sorting a triangle’s vertices with respect to “y” also need
to be repeated for the triangles vertices with respect to “x,” because an algorithm used
in the clipping unit 5 (see FIG. 8) needs to know the sorted order of the vertices in the
x direction. The procedure for sorting a triangle’s vertices with respect to “x” is
analogous to the procedure’s used above for sorting a triangle’s vertices with respect

(13 2

to “y,” with the exception, of course, that the vertices are sorted with respect to “x,”
not “y.” However for purposes of completeness and out of an abundance of caution to
provide an enabling disclosure the equations for sorting a triangles vertices with
respect to “x” are provided below.

For the sort, do six comparisons, including, for example:
XGeXy =X, >Xp) | (X1 =X0) & (Y1>Y0))
X,GeX, =X, >X) | (X2=XD) & (Y2>Y1]))

X,GeX, = (X, > X,) | ((X0=X2) & (YO >Y2))

The results of these comparisons are used to determine the sorted order of the
vertices. Pointers are used to identify which time-ordered vertex corresponds to which

Y-sorted vertex. In particular, pointers are used to identify the source (from the time-

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-29.-

ordered (VO0, V1 and V2) to X-sorted (“destination” vertices VL, VR, and VM)). As

noted above, “source” simply emphasizes that these are pointers to the data.

XsortRhtSrc = {X,GeX, & 'X,GeX,, X,GeX, & 'X,GeX, X ,GeX, & X,GeX,}
XsortMidSre = {X,GeX, A 1X,GeX,, X,GeX, @ !X,GeX,, 1X,GeX, @ X,GeX,}
XsortLftSrc = {IX,GeX, & X,GeX,, 1X,GeX, & X,GeX,, X,GeX,, & !X, ,GeX,}

Next, setup 215 identifies pointers to each destination (time-ordered to X-

sorted).

XsortOdest = {!X1GeX0 & X0GeX2, 1X1GeX0 X0GeX2, X1GeX0 & !X0GeX2}.
Xsortldest = {X1GeX0 & !X2GeX1, X1GeX0 !X2GeXl1, !X1GeX0 & X2GeX1}.
Xsort2dest = {X2GeX1 & 1X0GeX2, X2GeX1 'X0GeX2, !X2GeX0 & X0GeX2}.

Call the de-referenced sorted vertices VR = (XR, YR, ZR), VL = (XL, YL,
ZL), and VM = (XM, YM, ZM), where VR has the largest X and VL has the smallest
X. Note that X sorted data has no ordering information available with respect to Y or
Z. Note also, that X, Y, and Z are coordinates, “R” equals “right,” “L” = “left,” and
“M” equals “middle.” Context is important: y-sorted VM is different from x-sorted
VM.

The slopes calculated above, need to be mapped to labels corresponding to the
x-sorted order, so that we can identify which slopes correspond to which x-sorted
edges. To accomplish this, one embodiment of the present invention determines
pointers to identify the source of the slopes (from time ordered to x-sorted). For

example, consider the following equations:

XsortSRMSrc = {!Xsortldest[0] & !Xsort2dest[0],
'XsortOdest[0] & !Xsortldest[0],
'Xsort2dest[0] & !XsortOdest[0] };

XsortSRLSrc = {!Xsortldest[1] & !Xsort2dest[1],
!XsortOdest[1] & !Xsortldest[1],
Xsort2dest[1] & !XsortOdest[1] }; and,

XsortSMLSrc = {!Xsortldest[2] & !Xsort2dest[2],

10

15

20

25

30

WO 00/11562 -30- PCT/US99/19240

XsortOdest[2] & !Xsortldest[2],
Xsort2dest[2] & !XsortOdest[2] },
where, XsortSRMSrc represents the source (VO0, V1, and V2) for SRM slope between
VR and VM; XsortSRLSrc represents the source for SRL slope, and XsortSMLSrc
represents the source for SML slope.
Call the de-referenced slopes XsortSRM (slope between VR and VM),
XsortSRL (slope between VR and VL) and XsortSML (slope between VM and VL).

5.4.1.5 Determine X Sorted Top Corner or Bottom Corner and Identify Slopes

Setup 215 compares the slopes to determine the bottom corner (BotC or
BottomCorner) or top corner (TopC or TopCorner) of the x-sorted triangle. To
illustrate this, consider the following example, where SRM represents the slope
between x-sorted VR and VM, and SRL represents the slope coming x-sorted VR and
VL. If SRM is greater than or equal to SRL, then the triangle has a BotC and the
following assignments can be made: (a) set BotC equal to true ("1"); (b) set TopC
equal to false ("0"); (c) set XsortSBSrc equal to XsortSRMSrc (identify x-sorted bot
slope); (d) set XsortSTSrc equal to XsortSRLSrc (identify x-sorted top slope); and, (€)
set XsortSLSrc equal to XsortSMLSrc (identify x-sorted left slope).

However, if SRM is less than SRL, then the triangle has a top corner
(TopCorner or TopC) and the following assignments can be made: (a) set BotC equal
to false; (b) set TopC equal to true; (c) set XsortSBSrc equal to XsortSRLSrc (identify
x-sorted bot slope); (d) set XsortSTSrc equal to XsortSRMSrc (identify x-sorted top
slope); and, (e) set XsortSLSrc equal to XsortSMLSrc (identify x-sorted left slope).

V0, V1, and V2 are time ordered vertices. SO01, S12, and S20 are time ordered
slopes. X-sorted VR, VL, and VM are x-sorted right, left and middle vertices. X-
sorted SRL, SRM, and SLM are slopes between the x-sorted vertices. X-sorted ST,
SB, and SL are respectively x-sorted top, bottom, and left vertices. BotC, if true

means that there is a bottom corner, likewise for TopC and top comer.

5.4.2 Line Segment Preprocessing

The object of line preprocessing unit 2 (see figure 6) is to: (1) determine
orientation of the line segment (a line segment’s orientation includes, for example, the

following: (a) a determination of whether the line is X-major or Y-major; (b) a

10

15

20

25

30

WO 00/11562 231 - PCT/US99/19240

determination of whether the line segment is pointed right or left (Xcnt); and, (c) a
determination of whether the line segment is pointing up or down (Ycnt).), this is
beneficial because Xcnt and Yent represent the direction of the line, which is needed
for processing stippled line segments; and (2) calculating the slope of the line and
reciprocal slope, this is beneficial because the slopes are used to calculate the tile
intersection pointed also passed to cull 410 (see FIG. 4).

We will now discuss how this unit of the present invention determines a line

segment’s orientation with respect to a corresponding tile of the 2-D window.

5.42.1 Line Orientation

Referring to FIG. 11, there is shown an example of aspects of line orientation
according to one embodiment of the present invention. We now discuss an exemplary
procedure used by setup 215 for determining whether a line segment points to the right
or pointing to the left.

DX01=X1-X0.

If DXO01 is greater than zero, then setup 215 sets XCnt equal to “up,” meaning
that the line segment is pointing to the right. In a preferred embodiment of the present
invention, “up” is represented by a “1,” and down is represented by a “0.” Otherwise,
if DXO1 is less than or equal to zero, setup 215 sets XCnt equal to down, that is to say
that the line segment is pointing down. DXO1 is the difference between X1 and X0.

We now illustrate how the present invention determines whether the line

segment points up or down.

DY01=Y1-Y0;
IfDYO01 >0,
Then, Ycnt = up, that is to say that the line is pointing up.

Else, Ycnt = dn, that is to say that the line is pointing down.

// Determine Major = X or Y (Is line Xmajor or Ymajor?)
If DX01| >= |DYO01]
Then Major =X
Else Major=Y

5

10

15

20

25

WO 00/11562 -32- PCT/US99/19240

5.4.2.2 Line Slopes
Calculation of line’s slope is beneficial because both slopes and reciprocal
slopes are used in calculating intercept points to a tile edge in clipping unit 5. The

following equation is used by setup 215 to determine a line’s slope.

S _l:d_y:l _yl_yO
o= =
dx |y, X% —%,

The following equation is used by setup 215 to determine a line’s reciprocal

slope.

SN, =[ﬁ} =H"%
dy o1 yl_yO

FIG. 12 illustrates aspects of line segment slopes. Setup 215 now labels a
line’s slope according to the sign of the slope (S,,) and based on whether the line is
aliased or not. For non-antialiased lines, setup 215 sets the slope of the ends of the
lines to zero. (Infinite dx/dy is discussed in greater detail below).

If S,, is greater than or equal to 0: (a) the slope of the line’s left edge (S,) is set
to equal S,,; (b) the reciprocal slope of the left edge (SN,) is set to equal SN;; (c) if
the line is anti-aliased, setup 215 sets the slope of the line’s right edge (Sy) to equal -
SN,,, and setup 215 sets the reciprocal slope of the right edge (SNy) to equal -S;;; (d)
if the line is not antialiased, the slope of the lines right edge, and the reciprocal slope
of right edge is set to equal zero (infinite dx/dy); (e) LeftCorner, or LeftC is set to
equal true (“1"); and, (f) RightCorner, or RightC is set to equal true.

However, if S, less than 0: (a) the slope of the line’s right edge (Sg) is set to
equal S,,; (b) the reciprocal slope of the right edge (SNy) is set to equal SN,,; (c) if the
line is anti-aliased, setup 215 sets the slope of the line’s left edge (S,) to equal -SN,,
and setup 215 sets the reciprocal slope of the left edge (SN,) to equal -S;;; (d) if the
line is not antialiased, the slope of the lines left edge, and the reciprocal slope of left
edge is set to equal zero; () LeftCorner, or LeftC is set to equal true (*1"); and, (f)

RightCorner, or RightC is set to equal true.

10

15

20

25

30

WO 00/11562 -33. PCT/US99/19240

Note the commonality of data:(a) SR/SNR; (b) SL/SNR; (c) SB/SNB (only for
triangles);(d) LeftC/RightC; and, (e) the like.

To discard end-on lines, or line that are viewed end-on and thus ,are not

visible, setup 215 determines whether (y, —y, =0) and (x, — x, = 0), and if so, the

line will be discarded.

5.4.2.3 Line Mode Triangles

Setup 215 receives edge flags in addition to window coordinates (x, y, z)
corresponding to the three triangle vertices. Referring to table 6, there is shown edge
flags (LineFlags) 5, having edge flags. These edge flags 5 tell setup 215 which edges
are to be drawn. Setup 215 also receives a “factor” (see table 6, factor
(ApplyOffsetFactor) 4) used in the computation of polygon offset. This factor is
factor “f” and is used to offset the depth values in a primitive. Effectively, all depth
values are to be offset by an amount equal to offset equals max [|Zx|,|Zy|] plus factor.
Factor is supplied by user. Zx is equal to dx/dz. Zy is equal to dy/dz. The edges that
are to be drawn are first offset by the polygon offset and then drawn as ribbons of
width w (line attribute). These lines may also be stippled if stippling is enabled.

For each line polygon, setup 215: (1) computes the partial derivatives of z
along x and y (note that these z gradients are for the triangle and are needed to
compute the z offset for the triangle; these gradients do not need to be computed if
factor is zero); (2) computes the polygon offset, if polygon offset computation is
enabled, and adds the offset to the z value at each of the three vertices; (3) traverses
the edges in order; if the edge is visible, then setup 215 draws the edge using line
attributes such as the width and stipple (setup 215 processes one triangle edge at a
time); (4) draw the line based on line attributes such as anti-aliased or aliased, stipple,
width, and the like; and, (5) assign appropriate primitive code to the rectangle
depending on which edge of the triangle it represents and send it to Cull 410. A
“primitive code” is an encoding of the primitive type, for example, 01 equals a

triangle, 10 equals a line, and 11 equals a point.

5.4.2.4 Stippled Line Processing
Given a line segment, stippled line processing utilizes “stipple information,”

and line orientation information (see section 5.2.5.2.1 Line Orientation) to reduce

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-34 -

unnecessary processing by setup 215 of quads that lie outside of the current tile’s
boundaries. In particular, stipple preprocessing breaks up a stippled line into multiple
individual line segments. Stipple information includes, for example, a stipple pattern
(LineStipplePattern) 6 (see table 6), stipple repeat factor (LineStippleRepeatFactor) r
8, stipple start bit (StartLineStippleBit] and StartLineStippleBitl), for example stipple
start bit 12, and stipple repeat start (for example, StartStippleRepeatFactor0) 23
(stplRepeatStart)).

In a preferred embodiment of pipeline 200, Geometry 315 is responsible for
computing the stipple start bit 12, and stipple repeat start 23 offsets at the beginning
of each line segment. We assume that quadrilateral vertex generation unit 4 (see FIG.
8) has provided us with the half width displacements.

Stippled Line Preprocessing will break up a stippled line segment into multiple
individual line segments, with line lengths corresponding to sequences of 1 bitsin a
stipple pattern, starting at stpiStart bit with a further repeat factor start at
stplRepeatStart for the first bit. To illustrate this, consider the following example. If
the stplStart is 14, and stplRepeat is 5, and stplRepeatStart is 4, then we shall paint the
14th bit in the stipple pattern once, before moving on to the 15th, i.e. the last bit in the
stipple pattern. If both bit 14 and 15th are set, and the Oth stipple bit is nor set, then
the quad line segment will have a length of 6.

In a preferred embodiment of the present invention, depth gradients, line
slopes, depth offsets, x-direction widths (xhw), and y-direction widths (yhw) are
common to all stipple quads if a line segment, and therefore need to be generated only
once.

Line segments are converted by Trigonometric Functions and Quadrilateral
Generation Units, described in greater detail below (see sections 5.2.5.X and 5.2.5.X,
respectively) into quadrilaterals, or “quads.” For antialiased lines the quads are

rectangles. For non-antialiased lines the quads are parallelograms.

5.4.3 Point Preprocessing
Referring to FIG. 13, there is shown an example of an unclipped circle 5

intersecting parts of a tile 15, for illustrating the various data to be determined.

WO 00/11562 PCT/US99/19240

10

15

20

25

30

-35-

CY 20 represents circle’s 5 topmost point, clipped by tile’s 15 top edge, in tile
coordinates. CYj 30 represents circle’s 10 bottom most point, clipped by tile’s 15
bottom edge, in tile coordinates.Y ., 25 represents the distance between CY 20 and
CY; 30, the bottom of the unclipped circle 10. X0 35 represents the “x” coordinate of
the center 5 of circle 10, in window coordinates. This information is required and used
by cull 410 to determine which sample points are covered by the point.

This required information for points is obtained with the following

calculations:

Vo= Yo, Zy) (the center of the circle and the Zmin);

Y=Y, + width/2;

Y, =Y, — width/2;

DY =Y, - bot (convert to tile coordinates);

DY = Yy — bot (convert to tile coordinates);

Y,GtTop = DY, >= ‘d16 (check the msb);

YLtBot = DY < ‘d0 (check the sign);

if (Y,GtTop) then CY = tiletop, else CY = [DY],y (in tile coordinates);

if (YpLtBot) then, CY} = tilebot, else CYy = [DY}];, (in tile coordinates); and,
Yoffset = CY; - DYy,

5.4.4 Trigonometric Functions Unit

As discussed above, setup 215 converts all lines, including line triangles and
points, into quadrilaterals. To accomplish this, the trigonometric function unit 3 (see
FIG. 8) calculates a x-direction half-width and a y-direction half-width for each line
and point. (Quadrilateral generation for filled triangles is discussed in greater detail
above in section 5.4.1). Procedures for generating vertices for line and point
quadrilaterals are discussed in greater detail below in section 5.4.5.

Before trigonometric unit 3 can determine a primitive’s half-width, it must first
calculate the trigonometric functions tan 6, cos 0, sin 0. In a preferred embodiment of
the present invention, setup 215 determines the trigonometric functions cos 0 and sin
0 using the line’s slope that was calculated in the line preprocessing functional unit

described in great detail above. For example:

WO 00/11562 36 PCT/US99/19240

10

15

20

25

tand cosd=

tand =S sinf=t———
10 J1+tan® & x/1+tan 7

In yet another embodiment of the present invention the above discussed
trigonometric functions are calculated using lookup table and iteration method, similar
to rsqrt and other complex math functions. Rsqrt stands for the reciprocal square root.

Referring to FIG. 14, there is shown an example of the relationship between
the orientation of a line and the sign of the resulting cos 6 and sin 6. As is illustrated,
the signs of the resulting cos 0 and sin 6 will depend on the orientation of the line.

We will now describe how setup 215 uses the above determined cos 6 and sin
0 to calculate a primitive’s “x” direction half-width (“HWX”) and a primitive’s “y”
direction half width (“HWY”). For each line, the line’s half width is offset distance in
the x and y directions from the center of the line to what will be a quadrilateral’s
edges. For each point, the half width is equal to one-half of the point's width. These
half-width’s are magnitudes, meaning that the x-direction half-widths and the y-
direction half-width’s are always positive.

For purposes of illustration, refer to FIG. 15, where there is shown three lines,
an antialiased line 1405, a non-aliased x-major line 1410, and a non-aliased y-major
line 1415, and their respective associated quadrilaterals, 1420, 1425, and 1430. Each
quadrilateral 1420, 1425 and 1430 has a width (“W”), for example, W 1408, W1413,
and W 1418. In a preferred embodiment of the present invention, this width “W” is
contained in a primitive packet 6000 (see table 6). (Also, refer to FIG. 16, where there
are shown examples of x-major and -major aliased lines in comparison to an anti-
aliased line.).

To determine an anti-aliased line’s half width, setup 215 uses the following

equations:

HWX=%|sin6’|

HWY=—V2K|cos«9|

WO 00/11562 PCT/US99/19240

10

15

20

-37-

To determine the half width for an x-major, non-anti-aliased line, setup 215

uses the following equations:

HWX =0

my ="
2

To determine the half width for a y-major, non-anti-aliased line, setup 215 uses

the following equations:

HWX=—I/Z
2
HWY =0

To determine the half-width for a point, setup 215 uses the following

equations:

HWX = —VK
2

HWY = —V—V—
2

5.4.5 Quadrilateral Generation Unit

Quadrilateral generation unit 4 (see FIG. 8): (1) generates a quadrilateral
centered around a line or a point; and, (2) sorts a set of vertices for the quadrilateral
with respect to a quadrilateral’s top vertex, bottom vertex, left vertex, and right vertex.
With respect to quadrilaterals, quadrilateral generation unit 4 converts anti-aliased
lines into rectangles; (b) converts non-anti-aliased lines into parallelograms; and, (c)
converts aliased points into squares centered around the point. (For filled triangles, the
vertices are just passed through to the next functional unit, for example, clipping unit 5
(see FIG. 8)). We now discuss an embodiment of a procedure that quadrilateral

generation unit 4 takes to generate a quadrilateral for a primitive.

WO 00/11562

10

15

20

25

18- PCT/US99/19240

5.4.5.1. Line Segments ‘

With respect to line segments, a quadrilateral’s vertices are generated by taking
into consideration: (a) a line segment’s original vertices (a primitive’s original vertices
are sent to setup 215 in a primitive packet 6000, see table 6, WindowX0 19,
WindowYO0 20, WindowZ0 21, WindowX1 14, WindowY1 15, WindowZ1 16,
WindowX2 9, WindowY?2 10, and, WindowZ2 11); (b) a line segment’s orientation
(line orientation is determined and discussed in greater detail above in section
5.2.5.2.1); and, (c) a line segment’s x-direction half-width and y-direction half-width
(half-widths are calculated and discussed in greater detail above in section 5.2.5.4). In
particular, a quadrilateral vertices are generated by adding, or subtracting, a line
segment’s half-widths with respect to the line segment’s original vertices.

If a line segment is pointing to the right (Xcnt > 0) and the line segment is
pointing up (Yxnt > 0) then setup 215 performs the following set of equations to

determine a set of vertices defining a quadrilateral centered on the line segment:

QY0=Y0-HWY 0X0=X0+HWX
QY1=Y0+HWY OX1=X0- HWX
QY2=Y1- HWY OX2 = X1+ HWX
QY3=Y1+HWY and OX3=X1-HWX 4o

QV0, VQV1, QV2, and QV3 are a quadrilateral vertices. The quadrilateral vertices
are, as of yet un-sorted, but the equations were chosen, such that they can easily be
sorted based on values of Ycnt and Xcnt.

To illustrate this please refer to FIG. 17, illustrating aspects of pre-sorted
vertex assignments for quadrilaterals according to an embodiment of the present
invention. In particular, quadrilateral 1605 delineates a line segment that points right
and up, having vertices QV0 1606, QV1 1607, QV2 1608, and QV3 1609.

If a line segment is pointing to the left (Xcnt < 0) and the line segment is
pointing up, then setup 215 performs the following set of equations to determine set of

vertices defining a quadrilateral centered on the line segment:

WO 00/11562

10

15

QY0 =YO0+HWY
QY1=Y0- HWY
QY2 =Y1+HWY

-39-

0X0=X0- HWX
OX1=X0+HWX
0X2 = X1- HWX

QY3=Y1-HWY _, OX3=X1+HWX

PCT/US99/19240

To illustrate this, consider that quadrilateral 1610 delineates a line segment that
points left and up, having vertices QV0 1611, QV1 1612, QV2 1613, and QV3 1614.
If a line segment is pointing to the left (Xcnt < 0) and the line segment is

pointing down (Yent < 0), then setup 215 performs the following set of equations to

determine a set of vertices defining a quadrilateral centered on the line segment:

QY0 =Y0+HWY
OY1=Y0- HWY
QY2 =Y1+HWY

OX0=X0+HWX
OX1=X0- HWX
0X2 = X1+ HWX

QY3=Y1-HWY _, 0X3=X1-HWX

To illustrate this, consider that quadrilateral 1615 delineates a line segment that
points left and down, having vertices QV0 1616, QV1 1617, QV2 1618, and QV3
1619.

If a line segment is pointing right and the line segment is pointing down, then
setup 215 performs the following set of equations to determine a set of vertices

defining a quadrilateral centered on the line segment:

QY0=Y0-HWY 0X0=X0-HWX
QY1=Y0+HWY OX1=X0+HWX
QY2=Y1-HWY 0X2=X1-HWX
QY3=Y1+HWY and 0X3= X1+ HWX

To illustrate this, consider that quadrilateral 1620 delineates a line segment that

points right and down, having vertices QV0 1621, QV1 1622, QV2 1623, and QV3

1624.

WO 00/11562 - 40 - PCT/US99/19240

10

15

20

25

30

In a preferred embodiment of the present invention, a vertical line segment is
treated as the line segment is pointing to the left and top. A horizontal line segment is
treated as if it is pointing right and up.

These vertices, QX0, QX1, QX2, QX3, QY0, QY1, QY2, AND QY3, for each
quadrilateral are now reassigned to top (QXT, QYT, QZT), bottom (QXB, QYB,
QZB), left (QXL, QYL, QZL), and right vertices (QXR, QYR, QZR) by quadrilateral
generation functional unit 4 to give the quadrilateral the proper orientation to sort their
vertices so as to identify the top list, bottom, left, and right most vertices, where the Z-
coordinate of each vertex is the original Z-coordinate of the primitive.

To accomplish this goal, quadrilateral generation unit 4 uses the following
logic. If a line segment is pointing up, then the top and bottom vertices are assigned
according to the following equations: (a) vertices (QXT, QYT, QZT) are set to
respectively equal (QX3, QY3, Z1); and, (b) vertices (QXB, QYB, QZB) are set to
respectively equal (QX0, QYO0, Z0).

If a line segment is pointing down, then the top and bottom vertices are
assigned according to the following equations: (a) vertices (QXT, QYT, QZT) are set
to respectively equal (QX0, QYO, Z0); and, (b) vertices (QXB, QYB, QZB) are set to
respectively equal (QX3, QY3, Z1).

If a line segment is pointing right, then the left and right vertices are assigned
according to the following equations: (a) vertices (QXL, QYL, QZL) are set to
respectively equal (QX1, QY1, Z0); and, vertices (QXR, QYR, QZR) are set to
respectively equal (QX2, QY2, Z1). Finally, if a line segment is pointing left, the left
and right vertices are assigned according to the following equations: (a) vertices
(QXL, QYL, QZL) are set to respectively equal (QX2, QY2, Z1); and, (b) vertices
(QXR, QYR, QZR) are set to respectively equal (QX1, QY1, Z0).

5.4.1.2 Aliased Points
An aliased point is treated as a special case, meaning that it is treated as if it

were a vertical line segment.

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-41 -

5.4.6 Clipping Unit

For purposes of the present invention, clipping a polygon to a tile can be
defined as finding the area of intersection between a polygon and a tile. The clip
points are the vertices of this area of intersection.

To find a tight bounding box that encloses parts of a primitive that intersect a
particular tile, and to facilitate a subsequent determination of the primitive’s minimum
depth value (Zmin), clipping unit 5 (see FIG. 8), for each edge of a tile: (1) selects a
tile edge from a tile (each tile has four edges), to determine which, if any of a
quadrilateral’s edges, or three triangle edges, cross the tile edge; (b) checks a clip
codes (discussed in greater detail below) with respect to the selected edge; (c)
computes the two intersection points (if any) of a quad edge or a triangle edge with the
selected tile edge; (d) compare computed intersection points to tile boundaries to
determine validity and updates the clip points if appropriate.

The “current tile” is the tile currently being set up for cull 410 by setup 215.
As discussed in greater detail above, a previous stage of pipeline 200, for example,
sort 320, sorts each primitive in a frame with respect to those regions, or tiles of a
window (the window is divided into multiple tiles) that are touched by the primitive.
These primitives were sent in a tile-by-tile order to setup 215. It can be appreciated,
that with respect to clipping unit 5, setup 215 can select an edge in an arbitrary
manner, as long as each edge is eventually selected. For example, in one embodiment
of clipping unit 5 can first select a tile’s top edge, next the tile’s right edge, next the
tile’s bottom edge, and finally the tiles left edge. In yet another embodiment of
clipping unit 5, the tile edges may be selected in a different order.

Sort 320 (see FIG. 3) provides setup 215 the x-coordinate (TileXLocation) for
the current tile’s left tile edge, and the y-coordinate (TileXLocation) for the bottom
right tile edge via a begin tile packet (see table 2). For purposes of this description,
the tile’s x-coordinate is referred to as “tile x,” and the tiles y-coordinate is referred to
as “tile y.” To identify a coordinate location for each edge of the current tile, clipping
unit 5 sets the left edge of tile equal to tile x, which means that left tile edge x-
coordinate is equal to tile x + 0. The current tile’s right edge is set to equal the tiles
left edge plus the width of the tile. The current tile’s bottom edges set to equal tile y,
which means that this y-coordinate is equal to tile y + 0. Finally, the tile’s top edge is

set to equal and the bottom tile edge plus the height of the tile in pixels.

WO 00/11562 PCT/US99/19240

10

15

20

25

30

-42 -

In a preferred embodiment of the present invention, the width and height of a
tile is 16 pixels. However, and yet other embodiments of the present invention, the

dimensions of the tile can be any convenient size.

5.4.6.1 Clip Codes

Clip codes are used to determine which edges of a polygon, if any, touch the
current tile. (A previous stage of pipeline 200 has sorted each primitive with respect to
those tiles of a 2-D window that each respective primitive touches.). In one
embodiment of the present invention, clip codes are Boolean values, wherein “0"
represents false and “1" represents true. A clip code value of false indicates that a
primitive does not need to be clipped with respect to the edge of the current tile that
particular clip code represents. Whereas, a value of true indicates that a primitive does
need to be clipped with respect to the edge of the current tile that that particular clip
code represents.

To illustrate how one embodiment of the present invention determines clip
codes for a primitive with respect to the current tile, consider the following
pseudocode, wherein there is shown a procedure for determining clip codes. As noted
above, the pseudocode used is, essentially, a computer language using universal
computer language conventions. While the pseudocode employed here has been
invented solely for the purposes of this description, it is designed to be easily
understandable by any computer programmer skilled in the art.

In one embodiment of the present invention, clip codes are obtained as follows
for each of a primitives vertices. C[i] = ((v[i].y > tile_ymax) << 3)]| (([i].x <
tile_xmin) << 2)|| ((v[i].y < tile_ymin) << 1)|| (v[i].x > tile_xmax)), where, for each
vertex of a primitive: (a) C[i] represents a respective clip code; (b) v[i].y represents a y
vertex; (c) tile_ymax represents the maximum y-coordinate of the current tile; (d)
v[i].x represents an x vertex of the primitive; (€) tile_xmin represents the minimum x-
coordinate of the current tile; () tile_ymin represents the minimum y-coordinates of
the current tile; and, (g) tile_xmax represents the maximum x-coordinate of the current
tile. In this manner, the boolean values corresponding to the clip codes are produced.

In yet another embodiment of the present invention, clip codes are obtained
using the following set of equations: (1) in case of quads then use the following

mapping, where “Q” represents a quadrilaterals respective coordinates, and TileRht,

WO 00/11562 -43 - PCT/US99/19240

10

15

20

25

30

TileLft, TileTop and TileBot respectively represent the x-coordinate of a right tile
edge, the x-coordinate of a left tile edge, the y-coordinate of a top tile edge, and the y-

coordinate of a bottom tile edge.

(X0, YO0) = (QXBot, QYBot); (X1,Y1) = (QXLft, QYLf);
(X2,Y2) = (QXRht, QYRht); (X3,Y3) = (QXTop, QY Top);

//left

ClpFlagL[3:0] = {(X3 <= TileLft), (X2 <= TileLft), (X1 <= TileLft), (X0 <= TileLft)}
//right

ClpFlagR[3:0] = {(X3 >= TileRht), (X2 >= TileRht), (X1 >= TileRht), (X0 >=
TileRht)}

// down

ClpFlagD[3:0] = {(Y3 <= TileBot), (Y2 <= TileBot), (Y1 <= TileBot), (Y0 <=
TileBot)}

/[ap

ClpFlagU[3:0] = {(Y3 >= TileTop), (Y2 >= TileTop), (Y1 >= TileTop), (YO >=
TileTop)}

(ClpFlag[3] for triangles is don't care.). ClpFlagL[1] asserted means that
vertex 1 is clipped by the left edge of the tile (the vertices have already been sorted by
the quad generation unit 4, see FIG. 8). ClpFlagR[2] asserted means that vertex2 is
clipped by right edge of tile, and the like. Here are “clipped” means that the vertex

lies outside of the tile.

5.4.6.2 Clipping Points

After using the clip codes to determine that a primitive intersects the
boundaries of the current tile, clipping unit 5 clips the primitive to the tile by
determining the values of nine possible clipping points. A clipping point is a vertex of
a new polygon formed by clipping (finding area of intersection) the initial polygon by

the boundaries of the current tile. There are nine possible clipping points because

WO 00/11562 - 44 - PCT/US99/19240

10

15

20

25

30

there are eight distinct locations were a polygon might intersect a tile’s edge. For
triangles only, there is an internal clipping point which equals y-sorted VtxMid. Of
these nine possible clipping points, at most, eight of them can be valid at any one time.
For purposes of simplifying the discussion of clipping points in this
specification, the following acronyms are adopted to represent each respective clipping
point: (1) clipping on the top tile edge yields left (PTL) and right (PTR) clip vertices;
(b) clipping on the bottom tile edge is performed identically to that on the top tile
edge. Bottom edge clipping yields the bottom left (PBL) and bottom right (PBR) clip
vertices; (c) clipping vertices sorted with respect to the x-coordinate yields left
high/top (PLT) and left low/bottom (PLB) vertices; (d) clipping vertices sorted with
respect to the y-coordinate yields right high/ top (PRT) and right low/bottom (PRB);
and, (e) vertices that lie inside the tile are assigned to an internal clipping point (PI).
Referring to FIG. 18, there is illustrated clipping points for two polygons, a rectangle

10 and a triangle 10 intersecting respective tiles 15 and 25.

5.4.6.3 Validation of Clipping Points

Clipping unit 5 (see FIG. 8) now validates each of the computed clipping
points, making sure that the coordinates of each clipping point are within the
coordinate space of the current tile. For example, points that intersect the top tile edge
may be such that they are both to the left of the tile. In this case, the intersection
points are marked invalid.

In a preferred embodiment of the present invention, each clip point has an x-
coordinate, a y-coordinate, and a one bit valid flag. Setting the flag to “0" indicates
that the x-coordinate and the y-coordinate are not valid. If the intersection with the
edge is such that one or both off a tile’s edge corners (such corners were discussed in
greater detail above in section are included in the intersection, then newly generated
intersection points are valid.

A primitive is discarded if none of its clipping points are found to be valid.

The pseudo-code for an algorithm for determining clipping points according to

one embodiment of the present invention, is illustrated below:

Notation Note: P = (X, Y), eg. PT =(XT, YT);
Line(P1,P0) means the line formed by endpoints P1 and PO;

WO 00/11562 _45 - PCT/US99/19240

// Sort the Clip Flags in X

XsortClpFlagL[3:0] = LftC & RhtC ? ClpFlagL[3:0] :

ClpFlagL[XsortMidSrc,XsortRhtSrc,XsortLftSrc,XsortMidSrc], where indices of clip
5 flags 3:0 referred to vertices. In particular. O represents bottom; 1 represents left; 2

represents right; and 3 represents top. For example, ClipFlagL[2] refers to time order

vertex 2 is clipped by left edge. XsortClipFlagL[2] refers to right most vertex.

10

15

20

25

30

XsortClpFlagR[3:0] = LftC & RhtC ? ClpFlagR[3:0] :
ClpFlagR[XsortMidSrc,XsortRhtSrc,XsortLftSrc,XsortMidSrc]
XsortClpFlagD[3:0] = LftC & RhtC ? ClpFlagD[3:0] :
ClpFlagD[XsortMidSrc,XsortRhtSrc,XsortLftSrc,XsortMidSrc]
XsortClpFlagU[3:0] = LftC & RhtC ? ClpFlagU[3:0] :
ClpFlagU[XsortMidSrc,XsortRhtSrc,XsortL{tSrc,XsortMidSrc]

// Sort the Clip Flags in Y

YsortClpFlagL[3:0] = LfiC & RhtC ? ClpFlagL[3:0] :
ClpFlagL[YsortTopSrc,YsortMidSrc,YsortMidSrc, Y sortBotSrc]
YsortClpFlagR[3:0] = LftC & RhtC ? ClpFlagR[3:0] :
ClpFlagR[YsortTopSrc,YsortMidSrc,Y sortMidSrc, Y sortBotSrc]
YsortClpFlagD[3:0] = LftC & RhtC ? ClpFlagD[3:0] :
ClpFlagD[YsortTopSrc,YsortMidSrc, YsortMidSrc, Y sortBotSrc]
YsortClpFlagU[3:0] = LftC & RhtC ? ClpFlagU[3:0] :
ClpFlagU[YsortTopSrc, YsortMidSrc, YsortMidSre, Y sortBotSrc]

// Pass #1 Clip to Left Tile edge using X-sorted primitive

// For LeftBottom: check clipping flags, dereference vertices and slopes
If (XsortClipL[0]) // bot vertex clipped by TileLeft)
Then
Pref= (quad) ?7P2
BotC ? XsortRhtSrc-mux(P0, P1, P2)
TopC ? XsortRhtSrc~-mux(P0, P1, P2)

WO 00/11562 - 46 - PCT/US99/19240

10

15

20

25

30

Slope = (quad)? SL : BotC ? XsortSBTopC ? XsortSB
Else
Pref= (quad) ?7P0:
BotC ? XsortMidSrc®mux(P0, P1, P2)
TopC ? XsortRhtSrc
Slope = (quad) ?7SR:
BotC ? XsortSL
TopC ? XsortSB
EndIf

YLB = Yref + slope * (TileLeft - Xref)

// For LeftBottom: calculate intersection point, clamp, and check validity

IntYLB = (XsortClpFIgL[1]) ? Yref + slope * (TileLeft - Xref) :
XsortLftSrc-mux(YO0, Y1, Y2)

ClipYLB = (intYLB < TileBot) ? TileBot :

IntXBL

ValidYLB = (intYBL <= TileTop)

/[For LeftTop: check clipping flags, dereference vertices and slopes
If (XsortClpFlagL[3]) // Top vertex clipped by TileLeft)
Then
Pref= (quad) ?7P2:
BotC ? XsortRhtSrc~-mux(P0, P1, P2):
TopC ? XsortRhtSrc~mux(P0, P1, P2):
Slope = (quad) ?SR:
BotC ? XsortST
TopC ? XsortST
Else
Pref = (quad) ?7P3:
BotC ? XsortRhtSrc~-mux(P0, P1, P2)
TopC ? XsortMidSrc~-mux(P0, P1, P2)

10

15

20

25

30

WO 00/11562 PCT/US99/19240

_47 -

Slope = (quad) ? SL :
BotC 7 XsortST :
TopC ? XsortSL
EndIf

YLT = Yref + slope * (TileLeft - Xref)

// For LeftTop: calculate intersection point, clamp, and check validity
IntYLT = (XsortClpFlgL[1]) ? Yref + slope * (TileLeft - Xref)
XsortLftSrc-mux(YO0, Y1, Y2)
ClipYLT = (intYLT > TileTop) ? TileTop :
IntYLT
ValidYLT = (intYLT >= TileBot)

// The X Left coordinate is shared by the YLB and YLT

ClipXL = (XsortClpFlgl[1]) ? TileLeft : _
XsortLftSrc~-mux(X0, X1, X2)

ValidClipLft = ValidYLB & ValidYLT

// Pass #2 Clip to Right Tile edge using X-sorted primitive

//For RightBot: check clipping flags, dereference vertices and slopes
If (XsortClpFlagR[0]) //Bot vertex clipped by TileRight
Then
Pref= (quad) ?P0:
BotC ? XsortMidSrc~-mux(PO0, P1, P2)
TopC ? XsortRhtSrc~-mux(P0, P1, P2)
Slope = (quad) ?7SR:
BotC ? XsortSL
TopC 7 XsortSB
Else
Pref= (quad) ?7P2:
BotC ? XsortRhtSrc~mux(P0, P1, P2)

10

15

20

25

30

WO 00/11562

- 48 -

TopC ? XsortRhtSrc-mux(PO0, P1, P2)
Slope = (quad) 7 SL :
BotC ? XsortSB
TopC ? XsortSB
EndIf

// For RightBot: calculate intersection point, clamp, and check validity

IntYRB = (XsortClpFlgR[2]) ? Yref + slope * (TileRight - Xref) :
XsortRhtSrc-mux(YO0, Y1, Y2)

ClipYRB = (intYRB < TileBot) ? TileBot :

IntYRB

ValidYRB = (intYRB <= TileTop)

//For RightTop: check clipping flags, dereference vertices and slopes
If (XsortClpFlagR[3]) // Top vertex clipped by TileRight
Then
Pref= (quad) ?7P3:
BotC ? XsortRhtSrc~mux(P0, P1, P2)
TopC ? XsortMidSrc~mux(P0, P1, P2)
Slope = (quad) ? SL :
BotC ? XsortST :
TopC ? XsortSL
Else
Pref= (quad) ?7P2:
BotC ? XsortRhtSrc-mux(P0, P1, P2)
Topc ? XsortRhtSrc~-mux(P0, P1, P2)
Slope = (quad) ?S8R:
BotC ? XsortST
TopC ? XsortST
EndIf
YRT = Yref + slope * (TileRight - Xref)

// For RightTop: calculate intersection point, clamp, and check validity

PCT/US99/19240

10

15

20

25

30

WO 00/11562

-49 . PCT/US99/19240

IntYRT = (XsortCipFlgR[2]) ? Yref + slope * (TileRight - Xref)
XsortRhtSrc-mux(YO0, Y1, Y2)
ClipYRT = (intYRT > TileTop) ? TileTop :
IntYRT
Valid YRT = (intYRT >= TileBot)

// The X right coordinate is shared by the YRB and YRT

ClipXR = (XsortClpFIgR[2]) ? TileRight :
XsortRhtSrc~mux(X0, X1, X2)

ValidClipRht = ValidYRB & ValidYRT

// Pass #3 Clip to Bottom Tile edge using Y-sorted primitive

// For BottomLeft: check clipping flags, dereference vertices and slopes
If (YsortClpFlagD[1]) /I Left vertex clipped by TileBot)
Then
Pref= (quad) ?7P3:
LeftC ? YsortTopSrc-mux(P0, P1, P2)
RhtC ? YsortTopSrc-mux(P0, P1, P2)

Slope = (quad) ? SNL :
LeftC ? YsortSNL
RightC ? YsortSNL
Else
Pref= (quad) ?7P1:
LeftC ? YsortMidSrc-mux(P0, P1, P2)
RhtC ? YsortTopSrc~mux(P0, P1, P2)
Slope = (quad) ?SNR:
LeftC ? YsortSNB
RightC ? YsortSNL
EndIf

// For BottomLeft: calculate intersection point, clamp, and check validity

IntXBL = (YsortClpFlIgD[0]) ? Xref + slope * (TileBot - Yref) :

10

15

20

25

30

WO 00/11562 =50 - PCT/US99/19240

YsortBotSrc-mux(XO0, X1, X2)
ClipXBL = (intXBL < TileLeft) ? TileLeft :
IntXBL
ValidXBL = (intXBL <= TileRight)

//For BotRight: check clipping flags, dereference vertices and slopes
If (YsortClpFlagD[2]) // Right vertex clipped by TileBot)
Then

Pref= (quad) ?7P3:
LeftC ? YsoftTopSrc-mux(P0, P1, P2)
RhtC ? YsoftTopSrc-mux(P0, P1, P2)

Slope = (quad) ?SNR:
LeftC ? YsortSNR
RightC ? YsortSNR
Else
Pref= (quad) ?7P2:

LeftC ? YsortTopSrc-mux(P0, P1, P2)
RhtC ? YsortMidSrc~mux(P0, P1, P2)
Slope = (quad) ? SNL :
LeftC ? YsortSNR :
RightC ? YsortSNB
EndIf

// For BotRight: calculate intersection point, clamp, and check validity
IntXBR = (YsortClpFigD[0]) ? Xref + slope * (TileBot - Yref)
YsortBotSrc-mux(X0, X1, X2)
ClipXBR = (intXBR > TileRight) ? TileRight :
IntXTR
ValidXBR = (intXBR >= TileLeft)

// The Y bot coordinate is shared by the XBL and XBR
ClipYB = (YsortClpFlgD[0]) ? TileBot :
YsortBotSrc-mux(YO0, Y1, Y2)

WO 00/11562

10

15

20

25

30

-51-

ValidClipBot = ValidXBL & ValidXBR

// Pass #4 Clip to Top Tile edge using Y-sorted primitive

//For TopLeft: check clipping flags, dereference vertices and slopes
If (ClpFlagU[1]) /[Left vertex clipped by TileTop
Then
Pref= (quad) ?7P1:
LftC ? YsortMidSrc~mux(P0, P1, P2)
RhtC ? YsortTopSrc~mux(P0, P1, P2)
Slope = (quad) 7 SNR :
LeftC ? YsortSNB
RightC ? YsortSNL
Else
Pref= (quad) ?7P3:
LftC ? YsortTopSrc-mux(P0, P1, P2)
RhtC ? YsortTopSrc~mux(PO, P1, P2)
Slope = (quad) ? SNL :
LeftC ? YsortSNL
RightC ? YsortSNL
EndIf

// For topleft: calculate intersection point, clamp, and check validity

IntXTL = (YsortClpFlgU[3]) ? Xref + slope * (TileTop - Yref) :
YsortTopSrc~mux(X0, X1, X2)

ClipXTL = (intXTL < TileLeft) ? TileLeft :

IntXTL

ValidXTL = (intXTL <= TileRight)

//For TopRight: check clipping flags, dereference vertices and slopes
If (YsortClpFlagU[2]) // Right vertex clipped by TileTop
Then

PCT/US99/19240

WO 00/11562 _50- PCT/US99/19240

10

15

20

25

30

Pref= (quad) 7P2:
LftC ? YsortTopSrc~mux(P0, P1, P2)
RhtC ? YsortMidSrc-mux(PO, P1, P2)
Slope = (quad) ?SNL:
LeftC ? YsortSNR :
RightC ? YsortSNB
Else
Pref= (quad) ?7P3:
LAiC ? YsoftTopSrc-mux(PO, P1, P2)
RhtC ? YsoftTopSrc~mux(PO, P1, P2)
Slope = (quad) ?SNR :
LeftC ? YsortSNR :
RightC ? YsortSNR
EndIf

// For TopRight: calculate intersection point, clamp, and check validity
IntXTR = (YsortClpFlgU[3]) ? Xref + slope * (TileTop - Yref)
YsortTopSrc-mux(X0, X1, X2)
ClipXTR = (intXTR > TileRight) ? TileRight :
IntXTR
Valid XTR = (intXTR >= TileLeft)

// The Y top coordinate is shared by the XTL and XTR

ClipYT = (YsortClpFlgU[3]) ? TileTop :
YsortTopSrc~-mux(Y0, Y1, Y2)

ValidClipTop = ValidXTL & ValidXTR

The 8 clipping points identifed so far can identify points clipped by the edge of
the tile and also extreme vertices (ie topmost, bottommost, leftmost or rightmost) that
are inside of the tile. One more clipping point is needed to identify a vertex that is

inside the tile but is not at an extremity of the polygon (ie the vertex called VM)

// 1dentify Internal Vertex

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-53-

(ClipXI, ClipY]) = YsortMidSrc-mux(P0, P1, P2)
ClipM = XsortMidSrc~mux(Clip0, Clip1, Clip2)
ValidClipl = !(ClpFIgL[YsortMidSrc]) & !(ClpFigR[YsortMidSrc])
& I(ClpFlgD[YsortMidSrc]) & !(ClpFlgU[YsortMidSrc])

Geometric Data Required By Cull 410

Furthermore, some of the geometric data required by Cull Unit is determined
here.

Geometric data required by cull:

CullXTL and CullXTR. These are the X intercepts of the polygon with the
line of the top edge of the tile. They are different from the PTL and PTR in that PTL
and PTR must be within or at the tile boundaries, while CullXTL and CullXTR may
be right or left of the tile boundaries. If YT lies below the top edge of the tile then
CullXTL=CullXTR=XT.

CullYTLR : the Y coordinate shared by CullXTL and CullXTR

(CullXL, CullYL) : equal to PL, uniess YL lies above the top edge. In which case, it
equals (CullXTL , CullYTLR)
(CullXR, CullYR) : equal to PR, unless YR lies above the top edge. In which case, it
equals (CullXTR , CullYTLR)

// CullXTL and CullXTR (clamped to window range)
CullXTL = (IntXTL < MIN) ?MIN : IntXTL
CullXTR = (IntXTR > MAX) 7MAX :IntXTR

// (CullXL, CullYL) and (CullXR, CullYR)

VitxRht = (quad) ?P2 :YsortMidSrc~mux(PO0, P1, P2)

VtxLft = (quad) ?P1 : YsortMidSrc~mux(P0, P1, P2)

(CullXL, CullYL)temp = (YsortClipL clipped by TileTop) ?(IntXTL, IntYT) :VtxLft
(CullXL, CullYL) = (CullXLtemp < MIN) ? (ClipXL, ClipYLB) :CullXLtemp

(CullXR, CullYR)temp = (YsortClipR clipped by TileTop) ?(IntXTR, IntYT) :VtxRht
(CullXR, CullYR) = (CullXRtemp > MAX) ?(ClipXR, ClipYRB) :CullXRtemp

10

15

20

25

30

WO 00/11562

_54 - PCT/US99/19240

// Determine Cull Slopes
CulISR, CulISL, CullSB = cvt (YsortSNR, YsortSNL, YsortSNB)

5.4.6.4 Quadrilateral Vertices Outside of Window

With wide lines on tiles at the edge of the window, it is possible that one or
more of the calculated vertices (see section 5.4.5.1) may lie outside of the window
range. Setup can handle this by carrying 2 bits of extra coordinate range, one to allow
for negative values, one to increase the magnitude range. In a preferred embodimant
of the present invention, the range and precision of the data sent to cull 410 (14.2 for x
coordinates) is just enough to define the points inside the window range. The data cull
410 gets from setup 215 includes the left and right corner points. In cases where a
quad vertex falls outside of the window range, Setup 215 will pass the following
values to cull 410: (1) If tRight.x is right of the window range then clamp to right
window edge; (2) If tLeft.x is left of window range then clamp to left window edge;
(3) If v[VtxRightC].x is right of window range then send vertex rLow (that is, lower
clip point on the right tile edge as the right corner); and, (4) If v[VtxLeftC].x is left of
window range then send 1Low (that is, the lower clip point on the left tile edge as the
left comer). This is illustrated in FIG. 19, where there is shown an example of
processing quadrilateral vertices outside of a window. (Fig 18 corresponds to Figure
51 in United States Provisional Patent Application Serial Number 60/097,336). FIG.
22 illustrates aspects of clip code vertex assignment.

Note that triangles are clipped to the valid window range by a previous stage of
pipeline 200, for example, geometry 310. Setup 215, in the current context, is only
concerned with quads generated for wide lines. Cull 410 (see FIG. 4) needs to detect
overflow and underflow when it calculates the span end points during the rasterization,
because out of range x values may be caused during edge walking. If an overflow or
underflow occurs then the x-range should be clamped to within the tile range.

We now have determined a primitive’s intersection points (clipping points)
with respect to the current tile, and we have determined the clip codes, or valid flags.
We can now proceed to computation of bounding box, a minimum depth value (Zmin),

and a reference stamp, each of which will be described in greater detail below.

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-55-

5.4.7 Bounding Box

The bounding box is the smallest box that can be drawn around the clipped
polygon.

The bounding box of the primitive intersection is determined by examining the clipped
vertices (clipped vertices, or clipping points are described in greater detail above). We
use these points to compute dimensions for a bounding box.

The dimensions of of the bounding box are identified by BXL (the left most of
valid clip points), BXR (the right most of valid clip points), BYT (the top most of
valid clip points), BYB (the bottom most of valid clip points) in stamps. Here, stamp
refers to the resolution we want to determine the bounding box to.

Finally, setup 215 identifies the smallest Y (the bottom most y-coordinate of a
clip polygon). This smallest Y is required by cull 410 for its edge walking algorithm.

To illustrate a procedure, according to one embodiment of present invention,
we now describe pseudocode for determining such dimensions of a bounding box.

The valid flags for the clip points are as follows: ValidClipL (needs that clip points
PLT and PLB are valid), ValidClipR, ValidClipT, and ValidClipB, correspond to the
clip codes described in greater detail above in reference to clipping unit 5 (see FIG. 8).

“PLT” refers to “point left, top.” PLT and (ClipXL, ClipyLT) are the same.

BXLtemp = min valid(ClipXTL, ClipXBL);
BXL = ValidClipL ? ClipXL : BXLtemp;

BXRtemp = max valid(ClipXTR, ClipXBR);
BXR = ValidClipR ? ClipXR : BXRtemp;

BYTtemp = max valid(ClipYLT, ClipYRT);
BYT = ValidClipT ? ClipYT : BY Ttemp;

BYBtemp = min valid(ClipYLB, ClipYRB);
BYB = ValidClipB ? ClipYB : BYBtemp;

CullYB = trunc(BYB)subpixels (CullYB is the smallest Y value);

10

15

20

25

30

WO 00/11562

56 PCT/US99/19240

//expressed in subpixels -- 8x8 subpixels = 1 pixel; 2x2 pixels = 1 stamp.

We now have the coordinates that describe a bounding box that circumscribes
those parts of a primitive that intersect the current tile. These xmin (BXL), xmax
(BXR), ymin (BYB), ymax (BYT) are in screen relative pixel coordinates and need to

be converted to the tile relative stamp coordinates.

Screen relative coordinates can describe a 2048 by 2048 pixel screen. As
discussed above, in a preferred embodiment of the present invention, tiles are only 16
by 16 pixels in size. By expressing coordinates as tile relative, we can save having to
store many bits by converting from screen coordinates to tile relative coordinates.
Converting from screen coordinates to tile relative coordinates is simply to ignore (or
truncated) the most significant bits. To illustrate this, consider the example: it takes 11
bits to describe 2048 pixels, whereas it takes only 4 bits to describe 16 pixels.
discarding the top 7 bits will yield a tile relative value. We now illustrate a set of
equations for converting x-coordinates and y-coordinates from screen based values to

tile relative values.

This can be accomplished by first converting the coordinates to tile relative
values and then considering the high three bits only (i.e. shift right by 1 bit). This
works; except when xmax (and/or ymax) is at the edge of the tile. In that case, we

decrement the xmax (and/or ymax) by 1 unit before shifting.

// The Bounding box is expressed in stamps

BYT = trunc(BYT - 1 subpixel)stamp;
BYB = trunc(BYB)stamp;

BXL = trunc(BXL)stamp; and,

BXR = trunc(BXR - 1 subpixel)stamp.

5.4.8 Depth Gradients and Depth Offset Unit
The object of this functional unit is to:

Calculate Depth Gradients Zx = dz/dx and Zy = dz/dy

10

15

20

25

30

WO 00/11562

PCT/US99/1924
-57- /US99/19240

Calculate Depth Offset O, which will be applied in the Zmin & Zref subunit
Determine if triangle is x major or y major
Calculate the ZslopeMjr (z gradient along the major edge)

Determine ZslopeMnr (z gradient along the minor axis)

In the case of triangles, the input vertices are the time-ordered triangle vertices
(X0, Y0, Z0), (X1, Y1, Z1), (X2, Y2, Z2). For lines, the input vertices are 3 of the
quad vertices produced by Quad Gen (QXB, QYB, ZB), (QXL, QYL, ZL), (QXR,
QYR, ZR). In case of stipple lines, the Z partials are calculated once (for the original

line) and saved and reused for each stippled line segment.

In the case of line mode triangles, an initial pass through this subunit is taken
to calculate the depth offset, which will be saved and applied to each of the triangle's
edges in subsequent passes. The Depth Offset is calculated only for filled and line

mode triangles and only if the depth offset calculation is enabled.

5.4.8.1 Depth Gradients

The vertices are first sorted before being inserted in to the equation to calculate
depth gradients. For triangles, the sorting information is was obtained in the triangle
preprocessing unit described in greater detail above. (The information is contained in
the pointers YsortTopSrc, YsortMidSre, and YsortBotSrc.). For quads, the vertices
are already sorted by Quadrilateral Generation unit 4 described in greater detail above.
Note: Sorting the vertices is desirable so that changing the input vertex ordering will
not change the results.

We now describe pseudocode for sorting the vertices:
If triangles:

X'0 = YsortBotSrc-mux(x2,x1,x0); Y'0= YsortBotSrc~-mux(y2,y1,y0);

X'1 = YsortMidSrc~mux(x2,x1,x0); Y'0 = YsorMidSrc-mux(y2,yl ,y0);

X'2 = YsortTopSrc~mux(x2,x1,x0); Y'0= YsortTopSrc~mux(y2,y1,y0)

To illustrate the above notation, consider the following example where X’ =
ptr->mux(x2, x1, x0) means: if ptr == 001, then X = x0; if ptr == 010, then X’ = x1;
and, if ptr == 100, then X’ = x2.

10

15

20

25

WO 00/11562 58 PCT/US99/19240

If Quads:
X0=QXB Y'0=QYB
X1=QXL Y'1=QYL
X2 =QXR Y2=QYR

The partial derivatives represent the depth gradient for the polygon. They are

given by the following equation:

_& _ Yo)z, —2') = (', =Y'o)22 = 29)
& (¥1-£0)(2— yo)— (x2 = x0)(/1 = ¥')

Zy

& (x1—x0)(z'2—2')— (x'2— x'0)(z'1 — 2')

) T (= 202 y'o) — (¥ = X0) -y '0)

Zy

5.4.8.2 Depth Offset 7 (see FIG. 8)

The depth offset for triangles (both line mode and filled) is defined by
OpenGL® as:

O =M * factor + Res * units, W here:

M = max(|ZX, |ZY]) of the triangle;

Factor is a parameter supplied by the user;

Res is a constant; and,

Units is a parameter supplied by the user.

The "Res*units" term has already been added to all the Z values by a previous
stage of pipeline 200, for example, geometry Geometry 310. So Setup's 215 depth
offset component becomes:

O =M * factor * 8
Clamp O to lie in the range (-224,+224)

The multiply by 8 is required to maintain the units. The depth offset will be
added to the Z values when they are computed for Zmin and Zref later.

In case of line mode triangles, the depth offset is calculated once and saved and

applied to each of the subsequent triangle edges.

10

15

20

25

30

WO 00/11562 PCT/US99/19240

.59 -

54821 Determine X major for triangles
In the following unit (Zref and 7Zmin Subunit) Z values are computed using an
"edge-walking" algorithm. This algorithm requires information regarding the

orientation of the triangle, which is determined here.

YT= YsortTopSrc—~mux(y2,y1,yO);
YB = YsortBotSrc-mux(y2,y1 ,y0);
XR= XsortRhtSrc~mux(x2,x1,x0);
XL = XsortLftSrc~mux(x2,x1 ,x0);
DeltaYTB=YT - YB;

DeltaXRL = XR - XL;

If triangle:

Xmajor = [DeltaXRL|>= |DeltaY TB|

If quad

Xmajor = value of Xmajor as determined for lines in the TLP subunit.

An x-major line is defined in OpenGL® specification. In setup 215, an x-
major line is determined early, but conceptually may be determined anywhere it is

convenient.

54822 Compute ZslopeMjr and ZslopeMnr

(Z min and Z ref SubUnit) are the ZslopeMjr (Z derivative along the major
edge), and ZslopeMnr (the Z gradient along the minor axis). Some definitions: (a)
Xmajor Triangle: If the triangle spans greater or equal distance in the X dimension than
the y dimension, then it is an Xmajor triangle, else it is a Ymajor triangle; (b) Xmajor
Line: if the axis of the line spans greater or equal distance in the x dimension than the
y dimension, then it is an Xmajor line, else it is a Ymajor line; (c) Major Edge (also
known as Long edge). For Xmajor triangles, it is the edge connecting the Leftmost

and Rightmost vertices. For Ymajor triangles, it is the edge connecting the Topmost

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-60 -

and Bottommost vertices. For Lines, it is the axis of the line. Note that although, we
often refer to the Major edge as the "long edge" it is not necessarily the longest edge.
It is the edge that spans the greatest distance along either the x or y dimension; and, (d)
Minor Axis: If the triangle or line is Xmajor, then the the minor axis is the y axis. If
the triangle or line is Ymajor, then the minor axis is the x axis.

To compute ZslopeMjr and ZslopeMnr:

If Xmajor Triangle:

ZslopeMjr = (ZL - ZR) / (XL - XR) ZslopeMnr =ZY
If Ymajor Triangle:

ZslopeMjr=(ZT - ZB) / (YT - YB) ZslopeMnr =ZX
If Xmajor Line & (xCntUp=yCntUp)

ZslopeMjr = (QZR - QZB) / (QXR - QXB) ZslopeMnr =ZY
If Xmajor Line & (xCntUp != yCntUp)

ZslopeMijr = (QZL - QZB) / (QXL - QXB) ZslopeMnr =ZY
If Ymajor Line & (xCntUp==yCntUp)

ZslopeMijr = (QZR - QZB) / (QYR - QYB) ZslopeMnr =ZX
If Ymajor Line & (xCntUp != yCntUp)

ZslopeMjr = (QZL - QZB) / (QYL - QYB) ZslopeMnr = ZX

54.8.2.3 Special Case for Large Depth Gradients

It is possible for triangles to generate arbitrarily large values of Dz/Dx and
Dz/Dy. Values that are too large present two problems caused by fixed point data
paths and errors magnified by a large size of a depth gradient.

In a preferred embodiment of the present invention, because cull 410 has a
fixed point datapath that is capable of handling Dz/Dx and Dz/Dy of no wider than
35b. These 35b are used to specify a value that is designated T27.7 (a two's
complement number that has a magnitude of 27 integer bits and 7 fractional bits)
Hence, the magnitude of the depth gradients must be less than 2727.

As mentioned above, computation of Z at any given (X,Y) coordinate would be
subject to large errors, if the depth gradients were large. In such a situation, even a
small error in X or Y will be magnified by the depth gradient. Therefore, in a preferred
embodiment of the present invention, the following is done in case of large depth

gradients, where GRMAX is the threshold for the largest allowable depth gradient (it

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-61 -

is set via the auxiliary ring - determined and set via software executing on, for

example, computer 101-- see FIG. 1:

If (([Dz/Dx| > GRMAX) or (|Dz/Dy| > GRMAX))
Then
If Xmajor Triangle or Xmajor Line
Set ZslopeMnr = 0;
Set Dz/Dx = ZslopeMjr;
Set Dz/Dy = 0,
If Ymajor Triangle or Ymajor Line
Set ZslopeMnr = 0;
Set Dz/Dx = 0; and,
Set Dz/Dy = ZslopeMjr.

5.4.82.4 Discarding Edge-On Triangles

Edge-on triangles are detected in depth gradient unit 7 (see FIG. 8). Whenever
the Dz/Dx or Dz/Dy is infinite (overflows) the triangle is invalidated. However,
edge-on line mode triangles are not discarded. Each of the visible edges are to be
rendered. In a preferred embodiment of the present invention the depth offset (if

turned on) for such a triangle will however overflow, and be clamped to +/- 2"24.

5.4.8.2.5 Infinite dx/dy

An infinite dx/dy implies that an edge is perfectly horizontal. In the case of
horizontal edges, one of the two end-points has got to be a corner vertex (VtxLeftC or
VtxRightC). With a primitive whose coordinates lie within the window range, Cull
410 (see FIG. 4) will not make use of an infinite slope. This is because with Cull’s
410 edge walking algorithm, it will be able to tell from the y value of the left and/or
right corner vertices that it has turned a corner and that it will not need to walk along
the horizontal edge at all.

In this case, Cull’s 410 edge walking will need a slope. Since the start point
for edge walking is at the very edge of the window, any X that edge walking calculates

with a correctly signed slope will cause an overflow (or underflow) and X will simply

10

15

20

25

30

WO 00/11562 PCT/US99/19240
.62 -

be clamped back to the window edge. So it is actually unimportant what value of
slope it uses as long as it is of the correct sign.

A value of infinity is also a don’t care for setup’s 215 own usage of slopes.
Setup uses slopes to calculate intercepts of primitive edges with tile edges. The
equation for calculating the intercept is of the form X = X,+_Y *dx/dy. In this case,
a dx/dy of infinity necessarily implies a _Y of zero. Ifthe implementation is such that

zero plus any number equals zero, then dx/dy is a don’t care.

Setup 215 calculates slopes internally in floating point format. The floating
point units will assert an infinity flag should an infinite result occur. Because Setup
doesn’t care about infinite slopes, and Cull 410 doesn’t care about the magnitude of
infinite slopes, but does care about the sign, setup 215 doesn’t need to express infinity.
To save the trouble of determining the correct sign, setup 215 forces an infinite slope

to ZERO before it passes it onto Cull 410.

5.49 Zminand Zref

We now compute minimum z value for the intersection of the primitive with
the tile. The object of this subunit is to: (a) select the 3 possible locations where the
minimum Z value may be; (b) calculate the 7's at these 3 points, applying a correction
bias if needed; (c) sSelect he minimum Z value of the polygon within the tile; (d) use
the stamp center nearest the location of the minimum Z value as the reference stamp
location; (¢) compute the Zref value; and, (f) apply the Z offset value.

There are possibly 9 valid clipping points as determined by the Clipping
subunit. The minimum Z value will be at one of these points. Note that depth
computation is an expensive operation, and therefore is desirable to minimize the
number of depth computations that need to be carried out. Without pre-computing any
Z values, it is possible to reduce the 9 possible locations to 3 possible Z min locations
by checking the signs of ZX and ZY (the signs of the partial z derivatives in x and y).

Clipping points (Xmin0, Ymin0, Valid), (Xmin1, Yminl, Valid), (Xmin2,
Ymin2, Valid) are the 3 candidate 7min locations and their valid bits. It is possible
that some of these are invalid. Itis desirable to remove invalid clipping points from
consideration. To accomplish this, setup 215 locates the tile corner that would

correspond to a minimum depth value if the primitive completely covered the tile.

10

15

20

25

30

WO 00/11562 PCT/US99/19240
-63-

Once setup 215 has determined that tile corner, then setup 215 need only to compute
the depth value at the two nearest clipped points.

These two values along with the z value at vertex i1 (Clip Point PI) provide us
with the three possible minimum z values. Possible clip points are PTL, PTR, PLT,
PLB, PRT, PRB, PBR, PBL, and PI (the depth value of PLis always depth value of y-
sorted middle (ysortMid)). The three possible depth value candidates must be
compared to determine the smallest depth value and its location. We now know the
minimum z value and the clip vertex it is obtained from. In a preferred embodiment of
the present mentioned, Z-value is clamped to 24 bits before sending to Cull 410.

To to illustrate the above, referred to the pseudocode below for identifying

those clipping point that are minimum depth value candidates:
Notational Note:
ClipTL = (ClipXTL, ClipYT, ValidClipT), ClipLT = (ClipXL, YLT,

ValidClipL) , etc

If (ZX>0) &(ZY>0) //MinZ is toward the bottom left

Then (Xmin0, Ymin0)= ValidClipL ? ClipLB
ValidClipT ? ClipTL

: ClipRB
ZminOValid = ValidClipL | ValidClipT | ValidClipR

(Xminl, Yminl) = ValidClipB ? ClipBL
ValidClipR ? ClipRB

: ClipTL
ZminlValid = ValidClipL | ValidClipB | ValidClipT

(Xmin2, Ymin2) = Clipl
Zmin2Valid = (PrimType == Triangle)

If (ZX>0) & (ZY<0) // Min Z is toward the top left
Then
(Xmin0, Ymin0) = ValidClipL ? ClipLT

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-64-
ValidClipB ? ClipBL
: ClipRT ,
Zmin0OValid = ValidClipL | ValidClipB | ValidClipR
(Xminl, Yminl) = ValidClipT ? ClipTL
ValidClipR ? ClipRT
: ClipBL
ZminlValid = ValidClipT | ValidClipR | ValidClipB

(Xmin2, Ymin2) = ClipI
Zmin2Valid = (PrimType == Triangle)

If (ZX<0) & (ZY>0) // Min Z is toward the bottom right

Then (Xmin0, Ymin0) = ValidClipR ? ClipRB
ValidClipT ~ ? ClipTR

: ClipLB
Zmin0Valid = ValidClipR | ValidClipT | ValidClipL

(Xminl, Yminl) = VvalidClipB ? ClipBR

ValidClipL ? ClipLB
: ClipTR
Zminl1Valid = ValidClipB | ValidClipL | ValidClipT

(Xmin2, Ymin2) = Clipl
Zmin2Valid = (PrimType == Triangle)

If (ZX<0) & (ZY<0) // Min Z is toward the top right

Then (Xmin0, Ymin0)= ValidClipR ? ClipRT
ValidClipB ? ClipBR
: ClipLT

ZminOValid = ValidClipR | ValidClipB | ValidClipL

10

15

20

25

30

WO 00/11562

ValidClipL

ZminlValid =

PCT/US99/19240
- 65 -

(Xminl, Yminl)= ValidClipT ? ClipTR-
? ClipLT
: ClipBR

ValidClipT | ValidClipL | ValidClipB

(Xmin2, Ymin2) = ClipI
Zmin2Valid = (PrimType == Triangle)

Referring to FIG. 20, there is shown in example of Zmin candidates.

5.4.9.1 The Z Calculation Algorithm

The following algorithm’s path of computation stays within a triangle and will

produce intermediate Z values that are within the range of 224 (this equation will not

cause from massive cancellation due to use of limited precision floating point units).

For a Y major triangle:

Zdest =
1

2

&)

4)

+ (Ydest - Ytop) * ZslopeMjr

+ (Xdest - ((Ydest - Ytop) * DX/Dylong + Xtop)) * ZslopeMnr

+ Ztop

+ offset

Line (1) represents the change in Z as you walk along the long edge down to

the appropriate Y coordinate. Line (2) is the change in Z as you walk in from the long

edge to the destination X coordinate.

For an X major triangle the equation is analogous:

Zdest =
M

@

+ (Xdest - Xright) * ZslopeMjr

+ (Ydest - ((Xdest - Xright) * Dy/Dxlong + Yright)) * ZslopeMnr

10

15

20

25

30

WO 00/11562 PCT/US99/19240

- 66 -

+ Ztop
3)

+ offset

“4)

For dealing with large values of depth gradient, the values specified in special

case for large depth gradients (discussed in greater detail above) are used.
5.49.2 Compute Z's for Zmin candidates

The 3 candidate Zmin locations have been identified (discussed above in
greater detail). Remember that a flag needs to be carried to indicate whether each

7Zmin candidate is valid or not.

Compute: If Ymajor triangle:

Zmin0 = + (Ymin0 - Ytop) * ZslopeMjr + (Xmin0 - ((Ymin0 - Ytop) *
DX/Dylong + Xtop)) * ZslopeMnr (note that Ztop and offset are NOT
yet added).

If Xmajor triangle:

Zmin0 = + (Xmin0 - Xright) * ZslopeMjr + (Ymin0 - ((XminO - Xright) * DX/Dylong
+ Xtop)) * ZslopeMnr (note that Zright and offset are NOT yet added).

A correction to the zmin value may need to be applied if the xmin0 or ymin0 is
equal to a tile edge. Because of the limited precision math units used, the value of
intercepts (computed above while calculating intersections and determining clipping
points) have an error less than +/- 1/16 of a pixel. To guarantee then that we compute
a Zmin that is less than what would be the infinitely precise Zmin, we apply a Bias to

the zmin that we compute here.

If xminO is on a tile edge, subtract [dZ/dY|/16 from zminQ;
If ymin0 is on a tile edge, subtract |dZ/dX}/ 16 from zminl,;

10

15

20

25

30

WO 00/11562 PCT/US99/19240

-67 -

If xmin0 and yminO are on a tile corner, don't subtract anything; and,
If neither xmin0 nor yminO are on a tile edge, don't subtract anything.

The same equations are used to compute Zminl and Zmin2

5493 Determine Zmin
The minimum valid value of the three Zmin candidates is the Tile's Zmin. The
stamp whose center is nearest the location of the Zmin is the reference stamp.The

pseudocode for selecting the Zmin is as follows:

ZminTmp = (Zminl < Zmin0) & ZminlValid | 1Zmin0Valid ? Zmin1 : Zmin0;
ZminTmpValid = (Zminl < Zmin0) & Zmin1Valid | 1Zmin0Valid ? Zmin1Valid :
ZminQValid; and,

Zmin = (ZminTmp < Zmin2) & ZminTmpValid | 1Zmin2Valid ? ZminTmp : Zmin2.

The x and y coordinates corresponding to each Zmin0, Zminl and Zmin2 are
also sorted in parallel along with the determination of Zmin. So when Zmin is

determined, there is also a corresponding xmin and ymin.

5.4.10 Reference Stamp and Z ref
Instead of passing Z values for each vertex of the primitive to cull 410, Setup

passes a single Z value, representing the Z value at a specific point within the
primitive. Setup chooses a reference stamp that contains the vertex with the minimum
z. The reference stamp is the stamp the center is closest to the location of Zmin has
determined in section 5.4.9.3. (Coordinates are called xmin, ymin.). That stamp center
is found by truncating the xmin and ymin values to the nearest even value. For
vertices on the right edge, the x-coordinates are decremented and for the top edge the
y-coordinate is decremented before the reference stamp is computed to ensure

choosing a stamp center that is within tile boundaries.

Logic Used to Identify the Reference Stamp

The reference Z value, “Zref” is calculated at the center of the reference stamp.
Setup 215 identifies the reference stamp with a pair of 3 bit values, xRefStamp and
yRefStamp, that specify its location in the Tile. Note that the reference stamp is

10

15

20

25

30

WO 00/11562 -68 - PCT/US99/19240

identified as an offset in stamps from the corner of the Tile. To get an offset in screen
space, the number of subpixels in a stamp are multiplied. For example: x = x tile
coordinate multiplied by the number of pixels in the width of a tile plus xrefstamp
multiplied by two. This gives us an x-coordinate in pixels in screen space.

The reference stamp must touch the clipped polygon. To ensure this, choose
the center of stamp nearest the location of the Zmin to be the reference stamp. In the
7min selection and sorting, keep track of the vertex coordinates that were ultimately
chosen. Call this point (Xmin, Ymin).

If Zmin is located on rht tile edge, then clamp Xmin = tileLft+7stamps
If Zmin is located on top tile edge, then clamp:

Ymin = tileBot + 7stamps;
Xref = trunc(Xmin)stamp + 1pixel (truncate to snap to stamp resolution); and,

Yref = trunc(Ymin)stamp + 1pixel (add 1pixel to move to stamp center).

Calculate Zref using an analogous equation to the zMin calculations.
Compute:

If Ymajor triangle:

Zref =+ (Yref - Ytop) * ZslopeMjr + (Xref - ((Yref - Ytop) * DX/Dylong + Xtop)) *
ZslopeMnr (note that Ztop and offset are NOT yet added).

If Xmajor triangle: Zref= + (Xref - Xright) * ZslopeMjr + (Yref - ((Xref -
Xright) * DX/Dylong + Xtop)) * ZslopeMnr (note that Zright and offset are NOT yet
added).

5.4.10.1 Apply Depth Offset
The Zmin and Zref calculated thus far still need further Z components added.
If Xmajor:
(2) Zmin = Zmin + Ztop + Zoffset,
(b) Clamp Zmin to lie within range (-2"24, 2°24); and
(c) Zref = Zref + Ztop + Zoffset.
If Ymajor:
(2) Zmin = Zmin + Zright + Zoffset;

10

15

20

25

WO 00/11562 69 PCT/US99/19240

(b) clamp Zmin to lie within range (-2"24, 2724); and,
(c) Zref = Zref + Zright + Zoffset.

5.4.11 Xand Y coordinates passed to Cull 410

Setup calculates Quad vertices with extended range. (s12.5 pixels). In cases
where a (iuad vertex does fall outside of the window range, Setup will pass the
following values to Cull 410:

If XTopR is right of window range then clamp to right window edge

If XTopL is left of window range then clamp to left window edge

If XrightC is right of window range then pick RightBot Clip Point

If XlefiC is left of window range then pick LeftBot Clip Point

Yhbot is always the min Y of the Clip Points

Referring to FIG. 21, there are shown example of out of range quad vertices.
5.4.11.1 Title Relative X-coordinates and Y-coordinates

Sort 320 sends screen relative values to setup 215. Setup 215 does most
calculations in screen relative space. Setup 215 then converts results to tile relative
space for cull 410. Cull 410 culls primitives using these coordinates. The present
invention is a tiled architecture. Both this invention and the mid-pipeline cull unit 410
isnovel. Cull 410 requires a new type of information that is not calculated by
conventional setup units. For example, consider the last 21 elements in setup output
primitive packet 6000 (see table 6). Some of these elements are tile relative which

helps efficiency of subsequent processing stages of pipeline 200.

WO 00/11562 70 PCT/US99/19240

Table 1
Example of begin frame packet 1000

BeginFramePacket

parameter bits/packet Starting bit Source Destination/Value
Header 5 send unit
Block3DPipe 1 0 SwW BKE
WinSourcel 8 1 SW BKE
WinSourceR 8 9 SwW BKE
WinTargetL 8 17 SW BKE duplicate wi
WinTargetR 8 25 sSw BKE duplicate wi
WinXOffset 8 33 SW BKE tiles are duz
WinYOffset 12 41 SW BKE
PixelFormat 2 53 SW BKE
SrcColorKeyEnable3D 1 55 SW BKE
DestColorKeyEnable3D 1 56 SW BKE
NoColorBuffer 1 57 sSw PIX, BKE
NoSavedColorBuffer 1 58 SwW PIX,BKE
NoDepthBuffer 1 59 SwW PIX, BKE
NoSavedDepthBuffer 1 60 SwW PIX, BKE
NoStencilBuffer 1 61 SW PIX, BKE
NoSavedStencilBuffer 1 62 sSwW PIX, BKE
StencilMode 1 63 SW PIX
DepthOutSelect 2 64 SW PIX
ColorOutSelect 2 66 sSw PIX
ColorOutOverflowSelect 2 68 SW PIX
PixelsVert 11 70 sSwW SRT,BKE
PixelsHoriz 11 81 Sw SRT
SuperTiieSize 2 92 SW SRT
SuperTileStep 14 94 SW SRT
SortTranspMode 1 108 sSw SRT, CUL
DrawFrontleft 1 109 sSwW SRT
DrawFrontRight 1 110 SW SRT
DrawBackLeft 1 111 SwW SRT
DrawBackRight 1 112 SW SRT
StencilFirst 1 113 SW SRT
BreakPointFrame 1 114 sSw SRT
120

WO 00/11562

BeginTilePacket

71 -

Table 2

PCT/US99/19240

Example of begin tile packet 2000

parameter bits/packet Starting bit Source Destination
PktType 5 0
FirstTileinFrame 1 0 SRT STP to BKE
BreakPointTile 1 1 SRT STP to BKE
TileRight 1 2 SRT BKE
{ TileFront 1 3 SRT BKE
T TileXLocation 7 4 SRT STP,CUL,PIX,BKE
) TileYLocation 7 11 SRT STP,CUL,PIX,BKE
TileRepeat 1 18 SRT CuL
TileBeginSubFrame 1 19 SRT CuL
BeginSuperTile 1 20 SRT STP to BKE for perf coul
OverflowFrame 1 21 SRT PIX,BKE
WriteTileZS 1 22 SRT BKE
BackendClearColor 1 23 SRT PIX, BKE
BackendCiearDepth 1 24 SRT CUL, PIX, BKE
BackendClearStencil 1 25 SRT PIX,BKE
ClearColorValue 32 26 SRT PIX
ClearDepthValue 24 58 SRT CUL, PIX
ClearStencilValue 8 82 SRT PiX

©
(2]

WO 00/11562

72 -

Table 3
Example of clear packet 3000

PCT/US99/19240

Srt2StpClear
parameter bits/packet Starting bit Source Destination/Value
Header 5 0
PixelModeindex 4 0
ClearColor 1 4 SwW CUL, PIX
ClearDepth 1 5 SwW CUL, PIX
ClearStencil 1 6 SwW CUL, PIX
ClearColorValue 32 7 Sw SRT,PIX
ClearDepthValue 24 39 SwW SRT,CUL, PIX
ClearStenciiValue 8 63 SW SRT, PIX
SendToPixel 1 71 sSwW SRT, CUL
72
ColorAddress 23 72 MEX Ml
ColorOffset 8 95 MEX MU
ColorType 2 103 MEX MIJ
ColorSize 2 105 MEX MiJ
112

WO 00/11562

5
parameter
SrtOutPktType
10
CullFlushAll
reserved

OffsetFactor

Table 4

PCT/US99/19240

Example of cull packet 4000

bits/packet Starting Bit Source

Destination

5 SRT
1 0 sSw
1 1 SW
24 2 Sw

STP

cuL
CuL
STP

WO 00/11562

.74 -

Table 5
Example of end frame packet 5000

PCT/US99/19240

EndFramePacket
parameter bits/packet Starting bit Source Destination/Value
Header 5 0
InterruptNumber 6 0 SW BKE
SoftEndFrame 1 6 SW MEX
BufferOverfiowOccurred 1 7 MEX MEX,SRT

PCT/US99/19240

WO 00/11562
- 75 -
Table 6
Example of primitive packet 6000
parameter bits/packet Starting Address Source Destination
SrtOutPktType 5 [} SRT STP
ColorAddress 23 5 MEX MU
ColorOffset 8 28 MEX MU
ColorType 2 36 MEX MiJ, STP

ColorSize 2 38 MEX M
LinePointWidth 3 40 MEX STP

Muitisample 1 43 MEX STP,CUL,PIX
CullFlushOveriap 1 44 Sw CcuL
| DoAlphaTest 1 45 GEO CuUL
DoABlend 1 46 GEO CUL
V \D DepthFunc 3 47 SW CuL
3 wéhTestEnabled 1 50 Sw CuL
\ epthMask 1 51 sW cuL
w \olygonLineMode 1 52 SW STP
pplyOffsetFactor 1 53 SwW STP
B e=——lineFlags 3 54 GEO STP
\¢ ~LineStippleMode 1 57 sSwW STP
] =—tineStipplePattern 16 58 SW STP
—lineStippleRepeatFactor 8 74 SW STP
q -—=WindowX2 14 82 GEO STP
[O=———windowY2 14 96 GEO STP
I ~windowz2 26 110 GEO STP
) I} = suniLineStippleBit2 4 136 GEO STP
=——— StastStippleRepeatFactor2 8 140 GEO STP
\ X ~—windowX1 14 148 GEO STP
‘ v indowY1 14 162 GEO STP
“=WindowZ1 26 176 GEO STP
‘7 === StartLineStippieBit1 4 202 GEO STP
3 — StartStippleRepeatFactort 8 206 GEO STP
o E~Windowxo 14 214 GEO STP
WindowY0 14 228 GEO STP
o, _M—windowzo 26 242 GEO STP
V¥ =~ stariLineStippleBit0 4 268 GEO STP
8 272 GEO STP

(ﬁ ~™===- StartStippleRepeatFactor0

280

WO 00/11562 76 PCT/US99/19240
Table 7
Example of setup output primitive packet 7000
Parameter Bits Starting bit _ Source Destination Comments
StpOutPktType 5 STP CuUL
ColorAddress 23 0 MEX MiJ
ColorOffset 8 23 MEX MU
ColorType 2 31 MEX MU 0= strip 1 = fan 2 = line 3=point
" These 6 bits of colortype, colorsize, and
ColorSize 2 33 MEX Ml colorEdgeld are encoded as EESSTT.
ColorEdgeid 2 35 STP CuL 0 = filled, 1 = vOv1, 2 = viv2, 3= v2v0
LinePointWidth 3 37 GEO CuL
Multisample 1 40 SRT CUL,FRG,PIX
CuliFlushOverlap 1 41 GEO CcuL
DoAlphaTest 1 42 GEO CuL
DoABlend 1 43 GEO CUL
DepthFunc 3 44 SwW CuUL
DepthTestEnable 1 47 sSw CuL
DepthMask 1 48 SwW CuL
dZdx a5 49 STP cuL z partial along x; T27.7 (set to zero for points)
dzdy a5 84 STP cuL z partial along y; T27.7 (set to zero for points)
1 => triangle 2 => line, and 3=> point Thisis in
addition to ColorType and ColorEdgelD. This is
incorporated so that CUL does not have to decode
PrimType 2 119 STP cuL ColorType. STP creates unified packets for
triangles and lines. But they may have different
aliasing state. So CUL needs to know whether the
packet is point, line, or triangle.
LeftValid 1 121 STP CuL LeftComer valid? (don't care for points)
Rightvalid 1 122 STP cuL RightComer valid? (don't care for points)
Left and right intersects with top tile edge. Also
contain xCenter for point. Note that these points are
XleftTop 24 123 STP cuL used to start edge walking on the left and right
edge respectively. So these may actually be
outside the edges of the tile. (11.13)
XrightTop 24 147 STP cuL
YLRTop 8 171 STP CuL Bbox Ymax. Tile relative. 5.3
x window coordinate of the left corner (unsigned
XleftCorner 24 179 STP CuL fixed point 11.13). (don't care for points)
tilerelative y coordinate of left corner (unsigned
Yi
eftComer 8 203 st cuL 5.3). (don't care for points)
x window coordinate of the right comer, unsigned
XrightComer 24 211 STP CcuL fixed point 11.13. (don't care for points)
: tile-relative y coordinate of right comer 5.3; also
YrightComer 235 sTP cuL contains Yoffset for point
YBot 8 243 STP cuL Bbox Ymin. Tile relative. 5.3
DxDyLeft 24 254 STP cuL slope of the left edge. T14.9 (don't care for points)
DxDyRight 24 275 STP cuL siope of the right edge, T14.9 (don't care for points)
DxDyBot 24 209 STP cuL :l:i:?s ;:f the bottom edge, T14.9 (don't care for
XrefStamp 3 323 STP CuL ref stamp x index on tile (set to zero for points)
YrefStamp 3 326 STP CuL ref stamp y index on tile (set to zero for points)
ZRefTile 32 329 STP CUL Ref z value, §28.3
XmaxStamp 3 361 STP CuL Bbox max stamp x index
XminStamp 3 364 STP CuL Bbox min stamp x index
YmaxStamp 3 367 STP cuL Bbox min stamp y index
YminStamp 3 370 STP CuL Bbox max stamp y index
ZminTile 24 373 STP cuL min Z of the prim on tile

402

WO 00/11562 PCT/US99/19240

- 77 -
Table of Contents
-90-
3 Summary of the INVENtON .+ .. oo vt ettt ie et eeee it eeeenn -6-
4 Brief Description of the DrawingscoiilL.. -7-
5 Detailed Description of Preferred Embodiments of the Invention -9-
5.1 System Overview -9-
5.1.1 Other Processing Stages 210 -11-
5.1.2 Other Processing Stages 220 -12-
5.2 Setup 215 Overview -13-
52.1 Interface I/0 With Other Processing Stages of the Pipeline
-16-
5.2.1.1 Sort 320 Setup 215 Interface -16-
5.2.1.2 Setup 215 Cull 410 Interface -16-
5.2.2 Setup Primitives -16 -
5.2.2.1 Polygons -16 -
52.2.2 Lines -17-
5.2.2.3 Points -17-
5.3 Unified Primitive Description -17-
5.4 High Level Functional Unit Architecture . -21-
5.4.1 Trangle Preprocessing -23-
5.4.1.1 Sort With Respect to the Y Axis -23-
5.4.1.2 Slope Determination -26-

5.4.1.3 Determine Y-sorted Left Corner or Right Corner
-27-
5.4.1.4 Sort Coordinates With Respect to the X Axis -28 -
5.4.1.5 Determine X Sorted Top Comner or Bottom Corner
and Identify Slopes -30-

10

15

20

25

30

WO 00/11562

78 - PCT/US99/19240
5.42 Line Segment Preprocessing -30-
5.4.2.1 Line Orientation -31-
5.4.2.2 Line Slopes -32-
5.4.23 Line Mode Triangles -33-
5.4.2.4 Stippled Line Processing -33-
5.44 Trigonometric Functions Unit -35-
5.4.5 Quadrilateral Generation -37-
5.4.5.1. Line Segments -38-
5.4.1.2 Aliased Points -40-
5.4.6 Clipping Unit -4] -
5.4.6.1 Clip Codes -42 -
5.4.6.2 Clipping Points -43 -
5.4.6.3 Validation of Clipping Points -44 -

5.4.6.4 Quadrilateral Vertices Outside of Window
-54-
5.4.7 Bounding Box -55-
5.4.8 Depth Gradients and Depth Offset Unit -56-
5.4.8.1 Depth Gradients -57-
5.4.8.2 Depth Offset -58-
5.4.8.2.1 Determine X major for triangles -59-
5.4.8.2.2 Compute ZslopeMjr and ZslopeMnr - 59 -

5.4.8.2.3 Special Case for Large Depth Gradients
-60 -
5.4.8.2.4 Discarding Edge-On Triangles -61-
5.4.8.2.5 Infinite dx/dy -61 -
549 ZminandZ ref -62-
5.4.9.3 Determine Zmin -67-
5.4.10 Reference Stamp and Z ref - 67 -
5.4.10.1 Apply Depth Offset -68-
5.4.11 Xand Y coordinates passed to Cull 410 - 69 -

10

15

20

WO 00/11562 - 79 - PCT/US99/19240

5.4.11.1 Title Relative X-coordinates and Y -coordinates

-69 -
6.0 Claims ..ottt e e e -70-
7.0 Abstract of the DISCIOSUIE oot it -72 -
Table 1 .. -73 -
TablE 2 .o e -74 -
Table 3 . -75 -
Table 4 .. e -76 -
Table S .o e e e e e e -77 -
Table 6 . ..o e e -78 -
Table 7 .o -79 -

10

15

20

25

30

WO 00/11562 . 80 - PCT/US99/19240
6.0 Claims
WHAT IS CLAIMED IS:
1. In a tile based 3-D graphics pipeline, a system for post tile sorting setup,
comprising:

a mid-pipeline setup unit, adapted to:

(a) receive image data from a previous stage of the graphics pipeline, the image
data comprising vertices describing a primitive, the image data having already been
sorted with respect to a tile in a 2-D window, the window having been divided into a
plurality of tiles;

(b) compute set of vertices defining an area of intersection between the
primitive and the tile; and,

(c) calculate a minimum depth value for that part of the primitive intersecting

the tile.

2. In a tile based 3-D graphics pipeline, a system for post tile sorting setup,
comprising:

a mid-pipeline setup unit, adapted to:

(a) receive image data from a previous stage of the graphics pipeline, the image
data comprising vertices describing a primitive, wherein the x-coordinates are screen
based and the y-coordinates are tile based, the image data having already been sorted
with respect to a tile in a 2-D window, the window having been divided into a plurality
of tiles;

(b) determine a set of clipping points defining an area of intersection between
the primitive and the tile; and,

(c) compute a minimum depth value for that part of the primitive intersecting

the tile.

3. In a 3-D graphics pipeline, a system for uniformly representing primitives as

quadrilaterals, comprising:

WO 00/11562 81 PCT/US99/19240

a mid-pipeline primitive preprocessing unit adapted to represent a line segment
and a triangle as a rectangle, wherein both the line segment and the triangle are
described with a respective set of four vertices, and wherein not all of the vertices of

the respective set of four vertices are needed to describe the triangle.

WO 00/11562 PCT/US99/19240

1 /7 23
e ‘ P IPERATIONS
LR PEForMING SETV
1NSA\JS3—D Gé)APHtcs PVPELINE USING UNIFVED

DESCRIPTORS, POST TILE SORTING SETUS
PR)MW%V_&‘ RELATIVE Y- YALUES , AND, SCREEN

RELATIVE X —=VALUES

|
! !
I Memory |
[106~ |
! Operating System !
! 108 |
' — 1
Application programs [
10 1o l

2

L ,
|

114

|

My Stegs

(eq- Md(qkj

3

User Interface

WO 00/11562

2/ 23

GRAPHICS PROCESSO

117

GRAPHICS HARDWARE COMMANDS

FROM I/0 BUS
112

| GRAPHICS PIPELINE

12

00

OTHER PROCESSING
STAGES
210

! 1

211 212

y I

MID-PIPELINE
SETUP
215

| t

216 217

v I

OTHER PROCESSING
STAGES
220

SIGNALS TO DISPLAY MONITOR

225

FIG. 2

PCT/US99/19240

WO 00/11562 PCT/US99/19240
3/ 23

OTHER PROCESSING STAGES 210

CMD FETCH / DECODE 305

A

\ 4

GEOMETRY 310

A

v

MODE EXTRACTION 315

F N

Y

SORT 320

21 212

FIG. 3

WO 00/11562

216 217

OTHER PROCESSING
STAGES 220

CULL 410

A

Y

MODE INJECTION 415

A

A 4

FRAGMENT 420

F Y

Y

TEXTURE 425

A

A4

BACKEND 440

FIG. 4

PCT/US99/19240

WO 00/11562 PCT/US99/19240
5/ 23

EMBOUCIMENT FOR UNIFIED
PRIMITIVE DESCRIPTION

VERTICES

SO l

-
SORT VERTICES
WITH RESPECT

TO Y-DIRECTION

\ > j

~

A

(N
ASSIGN VixYmin
and VtxYmax

10

ASSIGN VixLeftC;
SET LeftCorner =

LeftCorner =
FALSE (VixLeftC

ONG Y-EDGE

_—(== ?) —
TRUE NO LEFISEDGE ?) —YES™\5 DEGENERATE)
20 25
RightCorner =
e, FALSE (VixRightC
is DEGENERATE)
35
+
ASSIGN
VixRightC: SET
RigthCorner =
TRUE
40
END \e

FIG. 5

WO 00/11562 PCT/US99/19240
6 / 23

Mc\\op\\/\o\ Lovvs)(-Ec\ﬁf, 5 Lo\r\j V—Ed‘j‘c,)
“Top Bdge Bolom Bdge = Rgni Edge
AN oft Ed%e/

o
> Mo .
v (\?XJQ’
i
(\eft+ edce) i
\/(*n\\/mm
e
P ed%

>/\
Vs X oy

Vix X 1

X-long edge
(o tonn edge.)

WO 00/11562 PCT/US99/19240
7/ 23

EMBODIMENT FOR UNIFIED
PRIMITIVE DESCRIPTION ‘

VERTICES

h 4

-
SORT VERTICES
WITH RESPECT

TO X-DIRECTION

5

o J

N

A 4

-
ASSIGN VitxXmin
and VtxXmax

~

10

ASSIGN VixTopC;

SET TopCorner = NO——(==TOP EDGE ?
TRUE
. 15

TopCorner =
FALSE (VtxTopC
IS DEGENERATE)

FALSE (VixBotC i

~YES DEGENERATE

BottomCorner = }
S

ASSIGN VixBotC;
SET BottomCorner
= TRUE
35

A

END e

<

WO 00/11562 PCT/US99/19240
8 / 23

Lorchons) Unibs of Sehp 218
™~

From e T

input Buffer e l
i Y
Triangle/ Line[™ pA
/ Point be—
Preprocessing
x
Trig Functions fe—
4 3

Data Queues x -
Clipping S Depth
Gradient
and Depth ‘7
Offset
" d Y
Bounding Box LG 9
Zmin & Zref [
Caleulati
X X h 4
Output buffer — 12
foCut)

ne. ©

PCT/US99/19240

WO 00/11562

/23

9

NVIE

L

ado|s woyog an

10

WA

adojs 1ybry

ile}

an
/O@ al

adojs ya

IA WA IA

ado|s Yo

adojs woyog

Right slope

AN

f).w;-.h:::m‘.ﬂ.?.,, I N S

2 r:sfi

WO 00/11562 PCT/US99/19240

10 /23

Exampies of Olope Ass\vvywmn’? o Trangle

ond Line dcoments
- ~.

VixXmin
VixYmax g VixYmax
. VixYmax
VixXmin SiYmaxRiaht .

N Stopnn Yoo gt
SiBotXmin SIYmaxRicht /\ T VXT0P /
SiYmaxdeft SiXmaxTop fo SiXmaxToo /5" S omaBot

I SiXmaxBot SIRightYmin SIYmaxRight
VixBo SixmaxBot SlYmaxtett ' Sivmaxteft |
vd.ettC : VbXmax) SIXmaxTop

SiLeftYmin VboYmi VixYmin) VixRightC
min VoxXmax A VixBorC
SiBotXmin
VixYmax SiRightYmin
5 a 20
VixTopC & 2 25 VxXmax 7 _
VixYmax © -g VixRightC Vix¥min
r > X VboXmax VixXmin
237 Si¥maxkeft
SiTopXmin / X SiXmaxTop SlYmaxRight
SiYmaxet ~ SfRightymi IXmaxBot
SiXmaxBot VoXmin é <)
VixYmin, > E _g VixRightC VixYmax
£3 7 vixBotc VixXm
28 ° SixmaxToo o ax
VixYmi X 30 SiYmaxLett
VitxXmin _\c/
VixXmax VixTopC
VixYmax qumgx VixLeft
pXmin] sixmaxgot
SITopXmin StYmaxRight
SiYmax.eft i . /
3 S SIXmaxTop (7, 6 Sl¥maxRight SiLeftYmin
SiXmaxTop
VixLeftC /
v min SiXmaxBot SiBotXmin VixRightC .
. bXmax @VixYmin
SlymaxRight SlYmaxLeft VixXmin
SIBotXmin
SiLeftYmin \ YRR
VixBotC ./ n
VixYmin
VixTopC SIXmaxToo
VixYmax SIYmaxRight
ViTopC &8 vixmax
VitxYmax X ——
g 59 ViRigntc s N oXmax
- 5 g SMTopXmin VixRightC
SiYmaxLeft
STopXmin SfRightymi
SlYmaxiett n
StXmaxBot
IRag:tYrm VodehC
SIXmaxBot VoXmin
VitxYmin) SIBotXmin .
VbBotC VoXmi ég vixYmin SiLeftYmin VixYmin
xx VoBotC VitxBotC
83
(17

PCT/US99/19240

WO 00/11562

/23

11

91

A=Jolep
ug=judA
dn=juox

2

N
9h

(s1€'0.2]=0

X=lole
ud=judA
dn=judX

logg'siel=

1 9\

A=lolepy A=lolepy

ug=judA dn=judA

ug=judx ug=judx
‘A A

=€ (se1'06l=0

A

lo2z's20)= ©
X=lofepy X=loley
ug=judA dn=uoA
ug=judx ug=judx
F> . Mu.\/ aof
=t ogr'sell=6 TR
)
[szz'osil= © N

usy oquaiag fusimbag 2uv jo

WO 00/11562
12/

PCT/US99/19240

23

Aspeolfs of Line Se%merw Slope S

N

o Sa= ~SNy,
S5
Su0
antialiased

S0

non-antialiased

FiG

Line Slopes

2.0
SL= ’SNOI
Sa=So,
Sqi<0
antialiased
4o
Sa=Sq
S=0
sﬂ\ <0

© rezreseried magriudes of rfrie
S I0es 372 IONLCares ang tan e set
10 a7y Torvenuent corecty S 3red vae

ncn-antialiased

|2

PCT/US99/19240

WO 00/11562

/23

13

Ll

L/

07—

ss9001da1d Julod

Qz —9A0

oh ST - 19SHOA

A0

£¢ -ox

WO 00/11562 PCT/US99/19240
14 / 23

Lne Segmenf Orienfahons Rlaheiship
+D Tr\c}MO(V\Q,h/:\Q Fonchon's

-

Neg

XCnt=dn XCnt=dn XCnt=up
YCnt=up YCnt=dn YCnt=dn
cos <0 cos <0 cos>0
sin>0 sin<0 sin< 0

Fle. 1t

PCT/US99/19240

WO 00/11562

/23

15

8l

51

Jolew-A
aur7 paseijejjuyUoN

14

Jofews-x
aur] paselfeljuyuoN

8aurq paseienuy
lerdy

/_oz\mﬁf\,USV@ fgxydz ﬂ.\,ﬁdm/@ +§W§mmm @..\;il\

WO 00/11562 PCT/US99/19240
16 / 23

L -) .
Syy s €D O A= . o A G~iea g
' : L L - .k : ;
oot APARIC R I W i (o‘“ﬂﬂ/@ Mo G I R LR,

x-major line y-major line anti-aliased
aliased line aliased line line
——

e o

WO 00/11562

17 / 23
riearted Cleviey lloawun s 3
[ICIGIOAN

Qv, 109 Qv, 1eiy

av, av, (1O
HoORy 16I3

Qv
"JD’) Qv,
/ovo v, \el2
o6 o1 1 :
o0 XCnt=Up XCnt=Dn - XCnt=Dn
YCnt=Up YCnt=Up YCnt=Dn

PCT/US99/19240

XCnt=Up
YCnt=Dn

PCT/US99/19240

WO 00/11562

/23

18

S 94

8¢
oh
(pijeA Jou) b
ay
d$)
5 \m/ ¥ bt
7L (plEs 108
(ien ou) & /
d0O he (piieA jou)
» \ .8 d
ST 0% bz
(0) n_
I|leA jou
EA- vm_Pn_JwQ
(Piea jou) |
1 5

spuod buiddin

WO 00/11562
19 /23

Pfou.ssn‘qa Qu avilateral \er Nes

subsikt ofF & Window

~

VixXmax
VixRightC

tRight

12

new
tRight

processing of quad

VixLeftC : =
VtxXipé
tRight
vertices outside the

tLeft
\new
new tleft
VixLeftQ
window by .

Y
T/ tRight tRight

tLeft " b tLeft >
- tieft el
- VixLettC VixRightC N
CUL block needs to
detect window overflow
[») (and undertflow) during

rasterization

PCT/US99/19240

WO 00/11562 PCT/US99/19240
20 /23

- ’ &\l
o LA A)

Lxarmple of ™M wmom Dep
Veviex Cundidates.
AN

Z,>0 (Z decreases to the left)
8 Z,>0 (Z decreases to the bottom)
Then the 3 candidate Zmin
/ A locations are at Vg, Veg and V,

FlG. 1D

WO 00/11562 PCT/US99/19240
21 /23

EXQmpE of LdodS -Hc\\j\\(\7 \/erhcgs Qoﬁ-s‘de
& Wimdow Kange

Quads with Vertices

autside of Window Range |

!
l

— ST TepR TXTooLeXTopR
(XLeRC YLenC) * Top "‘“"‘T YTop XL=nC YiehD) Yiop
g
i
g |
(RARQMC. YRQAIC) rRomCl (a&wn C. rRAMC)
* b1
Yot (xeonC yiencC)]
1
XTopL I
(XenC YLERC) XTopR ,m,“.,m,,;; ATopexfos
YTop o
(ALaMC Mo
XRGNIC, YROMCT)
(XRgmC. YRGAIC) H
< Y80t XLoRC.YYBAC) (AR@AIC. YRIGMC)
8ot
vBot
XTopL m,;._q'ropg x'repu';opa
XTopR (ARQNIC. YRgMC)
XRgntC. YRQNC) (AR .gmc qumC)
(XLENC YLenC) h vBar
(ALsnC YienC) {XLenC YLefiC) « Yoot
XTopt ————r———— [
i XTopR T xTopR lp'w@ TopR
gl vl C.
(XtentC.viont) | - YRaC)
(aLenC yLenC)
(XRQMC. vRﬁﬂag) R-gruC VRQMC) 4
| YBox

FIC. 2)

WO 00/11562 PCT/US99/19240
22/ 23

Cxanmvle dllusha' 3 Aspc G o f
Cllv Codr Vertey Asacipnendt

N

Flo A7

WO 00/11562 PCT/US99/19240
23 /23

Cxa’-\'\!}(@f OL U'/\\hed p""‘\\.hN WCYWJM{‘ A'\ ‘ '

7
' ?

- mc\uc\mq lovne v 'f-i'fl.js .

VixRightC

VixRightC
VixBotC

txRightC
VixBotC

VixBotC

Vtx¥Ymin

VixYmin
VixXmin
VixTopC VixTopC Voxma VitxTopC
Vixymax vixYmax o —yoRightC VixYmax
|
qe
N 1’ q5
Vixteft RIghiC
VixXm# x
ymin VixLett txYmin
Vb@BotC VixXmin VoBotC

Unified primitive representation. Vertex descriptors and corner flags are shown.
Note that all corner flags are valid for lines.

FIG 23

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/19240

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOG6F 15/00
US CL : 345/418, 345/419, 345/506

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 345/418, 345/419, 345/506

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X.E US 5,977,977 A (KAJIYA et al.) 02 November 1999 1-3
(fig 9A and 9B, col. 12, line 61 to col. 38; col. 14, lines 2-42; col.
18, line 29 to col 19, line 25; col. 21, lines 3-44; figure 10)
Y,P US Re.36,145 A (DeAGUIAR et al.) 16 March 1999, ALL 1-3
D Further documents are listed in the continuation of Box C. D See patent family annex.
. Special categories of cited documents: T later document published after the intemnational filing date or priority

AT document defining the general state of the art which is not considered
to be of particular relevance

‘E* earlier document published on or after the international filing date

‘L document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other
special reason (as specified)

°* document referring to an oral disclosure, use, exhibition or other
means

°pe document published prior to the international filing date but later than
the priority date claimed

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

Y document of particular relevance; the claimed invention cannot be
considered to nvolve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

14 JANUARY 2000

Date of mailing of the international search report

07 FEB 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington. D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

o N
MARK R. POWEE W
Telephone No. (703) 305-3

Form PCT/ISA/210 (second sheet)(July 1992) »

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

