wo 2020/074989 A1 | 0000 KO Y00 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert 3
e Organization > 000 O OO
International Bureau / (10) International Publication Number
(43) International Publication Date = WO 2020/074989 A1l
16 April 2020 (16.04.2020) WIPO I PCT
(51) International Patent Classification: Portsmouth Hampshire PO6 3AU (GB). IBM (CHINA)
GO6N 3/06 (2006.01) INVESTMENT COMPANY LIMITED [CN/CN]J; 25/

F, Pangu Plaza, No.27, Central North 4th Ring Road,
Chaoyang District, Beijing 100101 (CN).

(72) Inventors: ARTHUR, John, Vernon; IBM Corporation,
Almaden Research Center, 650 Harry Road, San Jose, Cal-
ifornia 95120-6099 (US). CASSIDY, Andrew, Stephen;

(25) Filing Language: English IBM Corporation, 11501 Burnet Road, Austin, Texas

78758-3400 (US). FLICKNER, Myron; IBM Corporation,

(21) International Application Number:
PCT/IB2019/058120

(22) International Filing Date:
25 September 2019 (25.09.2019)

(26) Publication Language: English Almaden Research Center, 650 Harry Road, San Jose, Cal-
(30) Priority Data: ifornia 95120-6099 (US). DATTA, Pallab; IBM Corpo-
16/157,852 11 October 2018 (11.10.2018) US ration, Almaden Research Center, 650 Harry Road, San
. Jose, California 95120-609 (US). PENNER, Hartmut;

(71) Applicant: INTERNATIONAL BUSINESS

IBM Corporation, Almaden Research Center, Intellectual
Property Law C4TA/J2B, 650 Harry Road, San Jose, Cali-
fornia 95120-6099 (US). APPUSWAMY, Rathinakumar;
(71) Applicants (for MG only): IBM UNITED KING- IBM Corporation, Almaden Research Center, 650 Harry

DOM LIMITED [GB/GB]; PO Box 41, North Harbour, Road, San Jose, California 95120-6099 (US). SAWADA,

MACHINES CORPORATION [US/US]; New Orchard
Road, Armonk, New York 10504 (US).

(54) Title: DATA REPRESENTATION FOR DYNAMIC PRECISION IN NEURAL NETWORK CORES

Core

100 AL

—102 \

=)
)
)
D
)
e
Q

()
B
06
R
)
%
S

Weaight Block

o
&
0,
35
5
%
%)

input
W< Biock

(09
XX
X
X
L)
X

G5
I

(9
O,
I
*9
5%
0

G
G

. AN

oo
00

BRI ILXSLX LI LK)
1. 0.8.0.0.9-0.4.0.0.9.¢.9.0.0.9.0.0.¢.04:
feletelololototetetetetetetetotetetetes

Intermediate
Block

e N s

FIG. 1

(57) Abstract: Systems for neural network computation are provided. A neural network processor comprises a plurality of neural cores.
The neural network processor has one or more processor precisions per activation. The processor is configured to accept data having
a processor feature dimension. A transformation circuit is coupled to the neural network processor, and is adapted to:receive an input
data tensor having an input precision per channel at one or more features; transform the input data tensor from the input precision to the
processor precision; divide the input data into a plurality of blocks, each block conforming to one of the processor feature dimensions;
provide each of the plurality of blocks to one of the plurality of neural cores. The neural network processor is adapted to compute, by
the plurality of neural cores,output of one or more neural network layers.

[Continued on next page]

WO 2020/074989 A |11} 00 0000 Y 00O

Jun; IBM Corporation, 11501 Burnet Road, Austin, Texas
78758-3400 (US). MODHA, Dharmendra, IBM Corpo-
ration, Almaden Research Center, 650 Harry Road, San
Jose, California 95120-6099 (US). ESSER, Steven, Kyle;
IBM Corporation, Almaden Research Center, 650 Harry
Road, San Jose, California 95120-6099 (US). TABA, Bri-
an, Seisho, IBM Corporation, Almaden Research Center,
650 Harry Road, San Jose, California 95120-6099 (US).
KLAMO, Jennifer; [BM Corporation, 650 Harry Road, Al-
maden Research Center, San Jose, California 95120-6099
(US).

(74) Agent: LITHERLAND, David; IBM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Winches-
ter Hampshire SO21 2JN (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2020/074989 PCT/IB2019/058120

DATA REPRESENTATION FOR DYNAMIC PRECISION IN NEURAL NETWORK CORES
BACKGROUND

[0001] Embodiments of the present disclosure relate to multi-core hardware implementations of neural networks,

and more specifically, to data representation for dynamic precision in neural hetwork cores.
BRIEF SUMMARY

[0002] According to embodiments of the present disclosure, methods of and computer program products for
operating a neural network are provided. In various embodiments, an input data tensor is received at a neural
network processor comprising a plurality of neural cores. The input data tensor has feature dimensions at an input
bit precision. The neural hetwork processor is configured for one or more processor feature dimensions at one or
more processor bit precisions. The input data is transformed from the input bit precision to one of the processor bit
precisions. The input data tensor is divided into a plurality of blocks, each block conforming to one of the processor
feature dimensions. Each of the plurality of blocks is provided to one of the plurality of neural cores. The plurality

of neural cores computes output of one or more neural network layers.

[0003] According to embodiments of the present disclosure, systems for neural network computation are
provided. A neural network processor comprises a plurality of neural cores. The neural network processor has one
Or more processor precisions per activation. The processor is configured to accept data having a processor feature
dimension. A transformation circuit is coupled to the neural hetwork processor, and is adapted to: receive an input
data tensor having an input precision per channel at one or more features; transform the input data tensor from the
input precision to the processor precision; divide the input data into a plurality of blocks, each block conforming to
one of the processor feature dimensions; provide each of the plurality of blocks to one of the plurality of neural
cores. The neural network processor is adapted to compute, by the plurality of neural cores, output of one or more

neural network layers.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0004] Fig. 1 illustrates a neural core according to embodiments of the present disclosure.

[0005] Fig. 2 illustrates an exemplary Inference Processing Unit (IPU) according to embodiments of the present
disclosure.

[0006] Fig. 3 illustrates a multi-core Inference Processing Unit (IPU) according to embodiments of the present
disclosure.

[0007] Fig. 4 illustrates tranformtation according to embodiments of the present disclosure.

[0008] Fig. §illustrates a method of operating a neural network according to embodiments of the present

disclosure.

WO 2020/074989 PCT/IB2019/058120

[0009] Fig. 6 depicts a computing node according to an embodiment of the present disclosure.
DETAILED DESCRIPTION

[0010] An artificial neuron is a mathematical function whose output is a nonlinear function of a linear combination
of its inputs. Two neurons are connected if the output of one is an input to the other. A weight is a scalar value

encoding the strength of the connection between the output of one heuron and the input of another neuron.

[0011] A neuron computes its output, called an activation, by applying a nonlinear activation function to a
weighted sum of its inputs. A weighted sum is an intermediate result computed by multiplying each input with the
corresponding weight and accumulating the products. A partial sum is a weighted sum of a subset of inputs. A

weighted sum of all inputs may be computed in stages by accumulating one or more partial sums.

[0012] A neural network is a collection of one or more neurons. A neural network is often divided into groups of
neurons called layers. A layer is a collection of one or more neurons that all receive input from the same layers and
all send output to the same layers, and typically perform a similar function. An input layer is a layer that receives
input from a source outside the neural network. An output layer is a layer that sends output to a target outside the
neural network. All other layers are intermediate processing layers. A multilayer neural network is a neural hetwork

with more than one layer. A deep neural network is a multilayer neural network with many layers.

[0013] Atensoris a multidimensional array of numerical values. A tensor block is a contiguous subarray of the

elements in a tensor.

[0014] Each neural network layer is associated with a parameter tensor V, weight tensor W, input data tensor X,
output data tensor Y, and intermediate data tensor Z. The parameter tensor contains all of the parameters that
control neuron activation functions ¢ in the layer. The weight tensor contains all of the weights that connect inputs
to the layer. The input data tensor contains all of the data that the layer consumes as input. The output data tensor
contains all of the data that the layer computes as output. The intermediate data tensor contains any data that the

layer produces as intermediate computations, such as partial sums.

[0015] The data tensors (input, output, and intermediate) for a layer may be 3-dimensional, where the first two
dimensions may be interpreted as encoding spatial location and the third dimension as encoding different features.
For example, when a data tensor represents a color image, the first two dimensions encode vertical and horizontal
coordinates within the image, and the third dimension encodes the color at each location. Every element of the
input data tensor X can be connected to every neuron by a separate weight, so the weight tensor W generally has
6 dimensions, concatenating the 3 dimensions of the input data tensor (input row a, input column b, input feature c)

with the 3 dimensions of the output data tensor (output row i, output column j, output feature k). The intermediate

WO 2020/074989 PCT/IB2019/058120

data tensor Z has the same shape as the output data tensor Y. The parameter tensor V concatenates the 3 output

data tensor dimensions with an additional dimension o that indexes the parameters of the activation function o.

[0016] An element of a layer's output data tensor Y can be computed as in Equation 1 where the neuron
activation function o is configured by the vector of activation function parameters V[i, j, k, :], and the weighted

sum Z[i, j, k] can be computed as in Equation 2.
YIi,j,kl=0(VI[i,j k,:1; Z[i,j, kD)

Equation 1

200, k] = i i 2 Wi, j, k a,b,cl - Xlab,c]

a=1b=1c=1
Equation 2

[0017] For simplicity of notation, the weighted sum in Equation 2 may be referred to as the output, which is
equivalent to using a linear activation function Y[i, j, k] = o(Z[i, j, k]) = Z[i, j, k], with the understanding that

the same statements apply without loss of generality when a different activation function is used.

[0018] In various embodiments, computation of the output data tensor as described above is decomposed into
smaller problems. Each problem may then be solved on one or more neural core, or on one or more core of a

conventional multicore system in parallel.

[0019] A convolution layer exploits spatially local correlations in natural sensor data by enforcing a local
connectivity pattern between neurons in adjacent layers: each neuron receives connections from only a small
region of the input data tensor. The extent of this connectivity is called the receptive field of the neuron. All
neurons that compute elements of the same output feature share the same set of weights and activation function
parameters, called a filter, with a local receptive field. The size of a filter is fixed, irrespective of input size, so a
convolution layer has far fewer free parameters than a fully connected layer with the same input and output

dimensions, and a correspondingly smaller memory footprint.

[0020] For example, in a spatial convolution layer, each filter's receptive field covers only a fraction of the height

and width of the input data tensor, but extends through the full feature depth. Such an architecture ensures that the
filters produce the strongest response to a spatially local input pattern. The layer computes its output by convolving
each filter across the width and height of the input data tensor, computing the dot product between the entries of the

filter and the input data tensor at each location to produce a 2-dimensional activation map for each filter.

WO 2020/074989 PCT/IB2019/058120

[0021] Stacking the feature maps for all filters forms the full output data tensor for the convolution layer. Every
element in the output data tensor can thus also be interpreted as an output of a neuron that looks at a small region

in the input and shares filter parameters with neurons in the same output feature map.

[0022] It will be appreciated that the size of a convolution layer's output data tensor is a function of the size of the
input data tensor, the size of the filters, and the stride with which the filters are applied to the input data tensor. The
stride parameters stride_a, stride_b, and stride_c define the distance between each filter application, a value
of 1 signifying that each filter application is shifted one pixel along the relevant dimension of the input data tensor.

Larger stride values reduce the computational load by computing only a subset of the possible output pixels.

[0023] It will further be appreciated that in various convolutions, zero padding may be applied to the input data
tensor in order to vary the output data tensor size relative to the input data tensor size, for example to make those
sizes equal. Padding may be omitted in various examples for simplicity of explanation, but it will be apparent that

padding may be included in various embodiments without departing from the scope of the present disclosure.

[0024] In a convolution layer, the 6-dimensional weight tensor contains many repeated blocks, since all elements
of the same output feature share the same filter weights that are replicated at each output location. The shared
filter weights can be described more compactly by a dense 4-dimensional filter tensor F that contains all of the
filters that compute output features of the layer, and is indexed by the output feature dimension (output feature k)

and 3 filter input dimensions (filter row r, filter column s, filter feature ¢).

R T
20500 = Y " Fllr, 5,60 XlaG 18,60, B), v, £1)]

r=1s=1t=1
Equation 3

[0025] In Equation 3, the range of the 7, s, £ summations may be reduced for i, j, k coordinates near the edges
of the output data tensor to accommodate boundary conditions, which are omitted here for simplicity. The accessor
function a (i, r; A) computes the row coordinate a of the input data tensor element to be multiplied by filter weight
Flk,r,s,t] in order to compute output data element Y[, j, k], where A is a set of constants that parameterize the
row coordinate calculation, such as striding parameter stride_a and padding parameter pad_a. Analogous

accessor functions 8(j, s; B) and y(r, t; I') compute the column and feature coordinates b and c.

[0026] In various embodiments, convolution as described above is decomposed into smaller problems. Each
problem may then be solved on one or more neuromorphic core or on one or more core of a conventional multicore

system in parallel.

WO 2020/074989 PCT/IB2019/058120

[0027] In some embodiments, the input data tensor is decomposed along its row and column dimensions into
blocks that extend the entire length of its feature dimension. In such embodiments, a neural core receives an input
data tensor block and the whole filter tensor F. To correctly compute convolutions for pixels at boundaries of the
input data tensor blocks, input data tensor blocks may be generated such that they overlap. Alternatively, partial

sums from multiple neural cores may be summed together to arrive at a final result.

[0028] Neural Networks are useful for a variety of tasks, such as image classification. Low precision and/or
constrained neural network hardware accelerators can implement such tasks using fewer bits of precision for
neuron activations (values sent between layers) and parameters (such as neuron-to-neuron weights) compared to
conventional computers (e.g., CPUs and GPUs). This saves silicon area as well as compute energy without

sacrificing task performance (such as classification accuracy).

[0029] However, reduced precision substrates face challenges such as transformation of inputs, which may be
high precision, into a compatible low-precision representation. Such low-precision representations may require
specific formats, such as vectors of inputs rather than scalars. In addition, hardware precision is fixed is fabrication
time, yet different neural networks and different layers within a single neural network may benefit from varied levels

of precision.

[0030] To address these and other shortcomings of alternative approaches, the present disclosure provides
systems and methods enabling a low-precision hardware neural network substrate to receive high-precision data in
various formats, transduce it into a compatible low-precision vector representation, and implement flexible-precision

computations.

[0031] With reference now to Fig. 1, a heural core according to embodiments of the present disclosure is
depicted. A neural core 100 is a tileable computational unit that computes one block of an output tensor. A neural
core 100 has M inputs and N outputs. In various embodiments, M = N. To compute an output tensor block, a
neural core multiplies an M x 1 input data tensor block 101 with an M x N weight tensor block 102 and
accumulates the products into weighted sums that are stored in a 1 x N intermediate tensor block 103. A O x N
parameter tensor block contains the O parameters that specify each of the N neuron activation functions that are

applied to the intermediate tensor block 103 to produce a 1 x N output tensor block 105.

[0032] Multiple neural cores may be tiled in a neural core array. In some embodiments, the array is 2-

dimensional.

[0033] A neural network model is a set of constants that collectively specify the entire computation performed by
a neural network, including the graph of connections between neurons as well as the weights and activation

function parameters for every neuron. Training is the process of modifying the neural network model to perform a

WO 2020/074989 PCT/IB2019/058120

desired function. Inference is the process of applying a neural network to an input to produce an output, without

modifying the neural network model.

[0034] An inference processing unit is a category of processors that perform neural network inference. A neural

inference chip is a specific physical instance of an inference processing unit.

[0035] Referring to Fig. 2, an exemplary Inference Processing Unit (IPU) is illustrated according to embodiments
of the present disclosure. IPU 200 includes a memory 201 for the neural network model. As described above, the
neural network model may include the synapse weights for a neural network to be computed. |PU 200 includes an
activation memory 202, which may be transient. Activation memory 202 may be divided into input and output
regions, and stores neuron activations for processing. IPU 200 includes a neural computation unit 203, which is
loaded with a neural network model from model memory 201. Input activations are provided from activation
memory 202 in advance of each computation step. Outputs from neural computation unit 203 are written back to

activation memory 202 for processing on the same or another neural computation unit.

[0036] In various embodiments a scheduler 204 is included in IPU 200. In such embodiments, all operations in
the IPU are directed by the scheduler. As set out below, central and/or distributed schedulers may be provided in
various embodiments. A global scheduler may be referred to as a chip microengine, while a local scheduler may be
referred to as a core microengine or local controller. In various embodiments a scheduler comprises one or more

microengines, microcontrollers, state machines, CPUs, or other controllers.

[0037] Referring to Fig. 3, a multi-core Inference Processing Unit (IPU) is illustrated according to embodiments of
the present disclosure. IPU 300 includes a model memory 301 for the neural network model. As described above,
the neural network model may include the synapse weights for a neural network to be computed. |PU 300 includes
an activation memory 302, which may be transient. Activation memory 302 may be divided into input and output
regions, and stores neuron activations for processing. In some embodiments, IPU 300 includes an instruction

memory 307 for storing chip-level instructions.

[0038] IPU 300 includes a plurality of cores 303 in an array 305. Each core 303 includes a neural computation
unit 333, which is loaded with a neural network model from model memory 301. Each core also include a local
activation memory 332, Input activations are provided from local activation memory 332 in advance of each
computation step. Outputs from neural computation unit 333 are written back to activation memory 332 for

processing on the same or another neural computation unit,

[0039] In various embodiments a global scheduler 304 is included in IPU 300. In various embodiments, a local
core controller 334 is included on each core 303. In such embodiments, the direction of operations is shared
between the global scheduler (chip microengine) and the local core controller (core microengine). In some

embodiments, a chip-level instruction memory 306 is provided for storing chip-level instruction for execution by chip

WO 2020/074989 PCT/IB2019/058120

microengine 304. In some embodiments, core 303 includes a core-level instruction memory 336 for storing core-

level instructions for execution by core microengine 334.

[0040] At 311, compute instructions are loaded from instruction memory 301 to each core 303 by global scheduler
304. At 312, parameters (e.g., neural network/synaptic weights) are loaded from model memory 301 to each core
303 by global scheduler 304. At 313, neural network activation data are loaded from data memory 302 to each core
303 by global scheduler 304. At 314, the cores in matrix 305 perform computation to generate output neuron
activations. In particular, the computation comprises applying the input synaptic weights to the input activations. It
will be appreciated that various methods are available for performing such computations, including in silico
dendrites, as well as vector multiplication units. At 315, the results from computation are stored in data memory
302. These stages may be pipelined, in order to provide efficient usage of the neural computation unit on each

core.

[0041] It will be appreciated that inputs and outputs may be transferred from local activation memory 332 to global
activation memory 302 according to the requirements of a given neural network. Likewise, the model memory and
instruction memory may have both chip-level and core-level components. At the core level, at 341, compute
instructions are loaded to local instruction memory 336. At 342, parameters (e.g., heural network/synaptic weights)
are loaded to model memory 331. At 343, neural network activation data are loaded to data memory 332, At 344,
the computation unit 332 computed output activations or partial sums. At 345, the results from computation are

outputted from data memory 332. These stages may be pipelined, in order to provide efficient usage of each core.

[0042] With reference now to Fig. 4, transformation is illustrated according to embodiments of the present
disclosure. In various embodiments, transformation from high precision to low precision and/or from scalar to
vector is provided. In particular, a transformation block can receive high-precision data in various formats and
transduce it into a hardware-compatible low-precision representation. Likewise, a transformation block can receive

various formats of scalar or vector data and transduce it into a hardware-compatible vector representation.

[0043] Aninputimage (e.g., 401) is often 3-color channels (e.g., RGB), each with 8-bits of precision (coding 0-
255). If, for example, the hardware uses R bits to represent each activation channel (where R < 8), various
approaches may be used to cast to R-bit precision.

o Each 8-bit value may be cast to an R-bit value by removing the 8 — R least significant bits (for example, in
cases where all 8 bits of precision are not required).

o Each 8-bit value can be cast to 8/R R-bit values (e.g,, for R = 2, 8/2 = 4 2-bit values are used).

o Each 8-bit value can be cast to less than 8/R R-bit values (e.g., for R = 2, 2 2-bit values may be used,

dropping the 4 least significant bits).

WO 2020/074989 PCT/IB2019/058120

[0044] Aninputimage (e.g., 401) of size W x H X C may be represented as W x H C-element vectors or

W x H x C scalars, where W is input width, H is input height, and C is the input number of channels or colors. If,
for example, the hardware uses T-element vectors as inputs, there are several ways to cast to T-element vectors.
o If T > C, each C-element vector can be directly mapped to a T-element vector with T — C zero entries,
resulting in W x H T-element vectors.

o If T > C, upto T/C pixels can be packed into each T-element vector. For example,if C =3 and T =
24, 8 pixels can be packed, for example into a 4 x 2 patch with a stride of 4 in width and 2 in height, resulting in
W /4 x H /2 T-element vectors.

o If T > C, upto T/C pixels can be packed into each T-element vector in a manner that optimizes for
computation in the next layer. For example, if C = 3 and T = 24 and the next layer implements a 8 x 8
convolution with a stride of 4, 8 pixels can be packed, such as a 8 x 1 patch with a stride of 4, resulting in

W /4 x H T-element vectors. Now the next layer need only implement a 1 x 8 convolution across the resulting
input, optimizing hardware utilization.

o If T < C, each C-element vector can be unpacked into C /T T-element vectors, resulting in

W x H x C/T T-element vectors. Forexample, if C = 4 and T = 2, each 4-element vector can be unpacked

into 2 2-element vectors, resulting in W x H x 2 2-element vectors.

[0045] In anillustrative example of transformation, input image 401 is 256 x 256 x 3, and the underlying
hardware uses 4-bit activations and 32-element vectors. Inputimage 401 is distributed among a 4 x 4 array of
cores 402. To complete a convolution, each core requires a (32 + 3) x (32 + 3) x 3 portion of original image
401 fora 7 x 7 x 3 filter. Using a multiple-row scratch pad memory 402, the 1 x 7 X 3(x 4) most significant
bits are packed into a 21-element vector (of 4 bits per element), which fits within the 32-element platform vector
404. As pictured, a column stride of 2 is used, resulting in some data duplication, but sizing the data for the

convolutional layers.

[0046] The result of this transformationis that a 7 x 7 x 3 filter becomes a 7 x 1 x 21 filter. Vector utilization
is 21/32 = 66%. The packed image tensor 405, 406 is 256x128x32, so each core (in 4 x 4 array 402) receives

a32 x 16 x 32 portion of the tensor (a tensorlet).

[0047] As pictured, the input blocks may be double buffered, alternately processing one tensor 405 while sending

the prior tensor 406 into core array 402.

[0048] It will be appreciated that the example given above is but one potential configuration of the input data

tensor. For example, a swatch size of 4x7x1 gives vector utilization of 24.5/32 = 77%.

WO 2020/074989 PCT/IB2019/058120

[0049] In various embodiments, flexible precision transformation is provided. In an exemplary neural network,
each neural network layer computes low precision activations, each represented with R bits, using low precision
weights, each represented by S bits. As described above, neurons in a layer receive inputs, X (with elements x;),
from one (or more) preceding layers. Each neuron computes its state, Y, based on the input and a set of weights,
W (with elements w;), applied to the inputs, where the result is added to a bias and run through a nonlinear

activation function, . For example, to compute a single neuron activation, Y = a(b + X x;w;).

[0050] Inthe underlying hardware, R bits of precision are used to represent each output and input activation
value, given by Y and x;. S bits of precision are used to represent each weight value, given by w;. For a given
network structure, each layer may need a different minimum precision to maintain high performance (e.g.,
classification accuracy). One approach is to build hardware with the maximum precision needed and use that
precision for all layers. However, such an approach is inefficient in energy and area. Accordingly, the present
disclosure provides an iterative approach that can implement any necessary precision by trading off time for

precision.

[0051] Toincrease activation precision beyond R bits, a modified nonlinear activation function is used to first
compute the most-significant R bits, zero them (such as by shifting), then compute the next most significant R bits,
and repeat. To compute R * M bits of precision would require M steps (which may be pipelined with subsequent

operations). The limit of precision is set by the precision of the partial sum before the nonlinearity: b + Y, x;w;.

[0052] To increase weight precision beyond S bits, an iterative approach is applied. To compute S = N bits of
weight precision, N steps are used. For each step, the partial sum update is computed with S bits, starting with the
most significant. After each update, the partial sum, P, is multiplied by (up to) 25 (which can be implemented with
a bit shift) to credit the more significant bits appropriately. When P is updated with the least significant S bits it is
not multiplied by 25.

[0053] Forexampleif S =1 and N = 4, the S = N bit precision weight w; is stored and used as 4 parts;
wiq = |wi /25 WV w = (wi —wi 1) /252D w5 = (Wi — wig —w;) /250wy, =

|(wi — w1 — wip —wy5)/25° W4,

[0054] The partial sum P is then aggregated as follows across the multiple partial sum computations:
P=20

Fork = 1: N — 1 (3 steps in the above example)

P=P+ inwi_k

WO 2020/074989 PCT/IB2019/058120

10

P=P=x25

P=P +2xiwi_k

[0055] Accordingly, the present disclosure provides a transcoding circuit that takes in various scalar, vector,
matrix, or tensor formats and outputs a tensor format compatible with target underlying neural network hardware. In
various embodiments, high-precision data is transduced into low-precision data, compatible with the underlying
neural network hardware. In some embodiments, scalar, vector, matrix, or tensor formatted input is transformed
into a specific vector, matrix, or tensor format, compatible with the underlying neural network hardware. In various
embodiments, flexible precision transformation is provided. In some embodiments, flexible precision transformation

is implemented by iterating sequentially.

[0056] The present disclosure provides flexible-precision neural network computation by using one or more low-
precision compute elements. In some embodiments, flexible precision is achieved with low-precision elements by

iterating sequentially.

[0057] Referring now to Fig. 5, a method of operating a neural network is illustrated according to embodiments of
the present disclosure. At 501, an input data tensor is received at a neural network processor comprising a plurality
of neural cores. The input data tensor has feature dimensions at an input bit precision. The neural network
processor is configured for one or more processor feature dimensions at one or more processor bit precisions. At
502, the input data tensor is transformed from the input bit precision to one of the processor bit precisions. At 503,
the input data tensor is divided into a plurality of blocks, each block conforming to one of the processor feature
dimensions. At 504, each of the plurality of blocks is provided to one of the plurality of neural cores. At 505, the

plurality of neural cores computes output of one or more neural network layers.

[0058] Referring now to Fig. 6, a schematic of an example of a computing node is shown. Computing node 10 is
only one example of a suitable computing node and is not intended to suggest any limitation as to the scope of use
or functionality of embodiments described herein. Regardless, computing node 10 is capable of being implemented

and/or performing any of the functionality set forth hereinabove.

[0059] In computing node 10 there is a computer system/server 12, which is operational with numerous other
general purpose or special purpose computing system environments or configurations. Examples of well-known
computing systems, environments, and/or configurations that may be suitable for use with computer system/server
12 include, but are not limited to, personal computer systems, server computer systems, thin clients, thick clients,
handheld or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable
consumer electronics, network PCs, minicomputer systems, mainframe computer systems, and distributed cloud

computing environments that include any of the above systems or devices, and the like.

WO 2020/074989 PCT/IB2019/058120

11

[0060] Computer system/server 12 may be described in the general context of computer system-executable
instructions, such as program modules, being executed by a computer system. Generally, program modules may
include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or
implement particular abstract data types. Computer system/server 12 may be practiced in distributed cloud
computing environments where tasks are performed by remote processing devices that are linked through a
communications network. In a distributed cloud computing environment, program modules may be located in both

local and remote computer system storage media including memory storage devices.

[0061] As shown in Fig. 6, computer system/server 12 in computing node 10 is shown in the form of a general-
purpose computing device. The components of computer system/server 12 may include, but are not limited to, one
Of more processors or processing units 16, a system memory 28, and a bus 18 that couples various system

components including system memory 28 to processor 16.

[0062] Bus 18 represents one or more of any of several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a
variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard
Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics
Standards Association (VESA) local bus, Peripheral Component Interconnect (PCl) bus, Peripheral Component

Interconnect Express (PCle), and Advanced Microcontroller Bus Architecture (AMBA).

[0063] Computer system/server 12 typically includes a variety of computer system readable media. Such media
may be any available media that is accessible by computer system/server 12, and it includes both volatile and non-

volatile media, removable and non-removable media.

[0064] System memory 28 can include computer system readable media in the form of volatile memory, such as
random access memory (RAM) 30 and/or cache memory 32. Computer system/server 12 may further include other
removable/non-removable, volatile/non-volatile computer system storage media. By way of example only, storage
system 34 can be provided for reading from and writing to a non-removable, non-volatile magnetic media (not
shown and typically called a "hard drive"). Although not shown, a magnetic disk drive for reading from and writing
to a removable, non-volatile magnetic disk (e.g., a "floppy disk"), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be provided. In
such instances, each can be connected to bus 18 by one or more data media interfaces. As will be further depicted
and described below, memory 28 may include at least one program product having a set (e.g., at least one) of

program modules that are configured to carry out the functions of embodiments of the disclosure.

[0065] Programiutility 40, having a set (at least one) of program modules 42, may be stored in memory 28 by way

of example, and not limitation, as well as an operating system, one or more application programs, other program

WO 2020/074989 PCT/IB2019/058120

12

modules, and program data. Each of the operating system, one or more application programs, other program
modules, and program data or some combination thereof, may include an implementation of a networking
environment. Program modules 42 generally carry out the functions and/or methodologies of embodiments as

described herein.

[0066] Computer system/server 12 may also communicate with one or more external devices 14 such as a
keyboard, a pointing device, a display 24, etc.; one or more devices that enable a user to interact with computer
system/server 12; and/or any devices (e.g., hetwork card, modem, etc.) that enable computer system/server 12 to
communicate with one or more other computing devices. Such communication can occur via Input/Output (1/0)
interfaces 22. Still yet, computer system/server 12 can communicate with one or more networks such as a local
area network (LAN), a general wide area network (WAN), and/or a public network (e.g., the Internet) via network
adapter 20. As depicted, network adapter 20 communicates with the other components of computer system/server
12 via bus 18. It should be understood that although not shown, other hardware and/or software components could
be used in conjunction with computer system/server 12. Examples, include, but are not limited to: microcode,
device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and data archival

storage systems, etc.

[0067] The present disclosure may be embodied as a system, a method, and/or a computer program product.
The computer program product may include a computer readable storage medium (or media) having computer

readable program instructions thereon for causing a processor to carry out aspects of the present disclosure.

[0068] The computer readable storage medium can be a tangible device that can retain and store instructions for
use by an instruction execution device. The computer readable storage medium may be, for example, but is not
limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic
storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list
of more specific examples of the computer readable storage medium includes the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable
read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc
read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded
device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable
combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as
being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing

through a fiber-optic cable), or electrical signals transmitted through a wire.

[0069] Computer readable program instructions described herein can be downloaded to respective

computing/processing devices from a computer readable storage medium or to an external computer or external

WO 2020/074989 PCT/IB2019/058120

13

storage device via a network, for example, the Internet, alocal area network, a wide area network and/or a wireless
network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface
in each computing/processing device receives computer readable program instructions from the network and
forwards the computer readable program instructions for storage in a computer readable storage medium within the

respective computing/processing device.

[0070] Computer readable program instructions for carrying out operations of the present disclosure may be
assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any
combination of one or more programming languages, including an object oriented programming language such as
Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming
language or similar programming languages. The computer readable program instructions may execute entirely on
the user's computer, partly on the user’'s computer, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for
example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry
including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable
logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the
computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the

present disclosure.

[0071] Aspects of the present disclosure are described herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer program products according to embodiments of the
disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer

readable program instructions.

[0072] These computer readable program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks. These computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in

a particular manner, such that the computer readable storage medium having instructions stored therein comprises

WO 2020/074989 PCT/IB2019/058120

14

an article of manufacture including instructions which implement aspects of the function/act specified in the

flowchart and/or block diagram block or blocks.

[0073] The computer readable program instructions may also be loaded onto a computer, other programmable
data processing apparatus, or other device to cause a series of operational steps to be performed on the computer,
other programmable apparatus or other device to produce a computer implemented process, such that the
instructions which execute on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[0074] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and computer program products according to various embodiments
of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module,
segment, tensorlet, block, or portion of instructions, which comprises one or more executable instructions for
implementing the specified logical function(s). In some alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of

special purpose hardware and computer instructions.

[0075] The descriptions of the various embodiments of the present disclosure have been presented for purposes
of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications
and variations will be apparent to those of ordinary skill in the art without departing from the scope of the described
embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the
practical application or technical improvement over technologies found in the marketplace, or to enable others of

ordinary skill in the art to understand the embodiments disclosed herein.

WO 2020/074989 PCT/IB2019/058120

15

CLAIMS

1. A method comprising:

receiving an input data tensor at a neural network processor comprising a plurality of neural cores,
the input data tensor having feature dimensions at an input bit precision,

the neural network processor being configured for one or more processor feature dimensions at one or
more processor bit precisions;

transforming the input data tensor from the input bit precision to one of the processor bit precisions;
dividing the input data tensor into a plurality of blocks, each block conforming to one of the processor feature
dimensions;

providing each of the plurality of blocks to one of the plurality of neural cores;

computing, by the plurality of neural cores, output of one or more neural network layers.

2. The method of claim 1, wherein the input data tensor comprises an image.

3. The method of claim 1, wherein transforming the input data tensor comprises removing least significant
bits.

4, The method of claim 1, the neural network processor being configured for a predetermined number of

features, wherein transforming the input data tensor comprises dividing input features into a plurality of feature sets,

each having less than or equal to the predetermined number of features .

5. The method of claim 1, wherein dividing the input data tensor comprises zero-padding the plurality of

blocks in one of the feature dimensions to conform with one of the processor feature dimensions.
6. The method of claim 1, wherein dividing the input data tensor comprises packing the input data tensor.
7. The method of claim 6, wherein packing the input data tensor comprises:
reorganizing input features to load unused processor feature dimensions with data from non-feature dimensions of
the input features.
8. The method of claim 1, wherein the neural network processor is configured to:
compute a plurality of fixed precision partial sums; and

combine the plurality of fixed precision partial sums into complete sums.

9. The method of claim 8, wherein the plurality of fixed precision partial sums are intermediate results.

WO 2020/074989 PCT/IB2019/058120

16
10. The method of claim 9, wherein the intermediate results are weighted sums of a subset of inputs.
1. The method of claim 8, wherein the neural network processor is configured to iteratively compute a partial

sum from the plurality of fixed precision partial sums.

12. A system comprising:

a neural network processor comprising a plurality of neural cores, the neural network processor having one
Of more processor precisions per activation, the processor being configured to accept data having a processor
feature dimension;

a transformation circuit coupled to the neural network processor, and adapted to:
receive an input data tensor having an input precision per channel at one or more features;
transform the input data tensor from the input precision to the processor precision;
divide the input data tensor into a plurality of blocks, each block conforming to one of the processor feature
dimensions;

provide each of the plurality of blocks to one of the plurality of neural cores; and wherein
the neural network processor is adapted to compute, by the plurality of neural cores, output of one or more neural

network layers.

13. The system of claim 12, wherein the input data tensor comprises an image.

14, The system of claim 12, wherein transforming the input data tensor comprises removing least significant
bits.

15. The system of claim 12, wherein transforming the input data tensor comprises dividing each channel into a

plurality of values having less than or equal to the processor precision.

16. The system of claim 12, wherein dividing the input data tensor comprises zero-padding the plurality of

blocks in a feature dimension to conform with the processor feature dimension.

17. The system of claim 12, wherein dividing the input data tensor comprises packing the input data tensor.
18. The wherein of claim 17, wherein packing the input data tensor comprises:

reorganizing input features to load unused processor feature dimensions with data from non-feature dimensions of

the input features.

19. The system of claim 12, wherein the neural network processor is configured to:

WO 2020/074989 PCT/IB2019/058120

17

compute a plurality of fixed precision partial sums; and

combine the plurality of fixed precision partial sums into complete sums.

20. The system of claim 19, wherein the plurality of fixed precision partial sums are intermediate results.
21, The system of claim 20, wherein the intermediate results are weighted sums of a subset of inputs.
22. The system of claim 19, wherein the neural network processor is configured to iteratively compute a partial

sum from the plurality of fixed precision partial sums.

23. A system comprising:

aneural network processor comprising a plurality of neural cores, the neural network processor being
configured for one or more processor feature dimensions at one or more processor bit precisions; and

a transformation circuit coupled to the neural network processor, and adapted to:
receive an input data tensor having feature dimensions at an input bit precision;

transform the input data tensor from the input bit precision to one of the processor bit precisions;
divide the input data tensor into a plurality of blocks, each block conforming to one of the processor feature
dimensions;

provide each of the plurality of blocks to one of the plurality of neural cores; and wherein

the plurality of neural cores is adapted to compute the output of one or more neural network layers.

24, A method comprising:
receiving an input data tensor,
the input data tensor having an input precision per channel at one or more features;
transforming the input data tensor from the input precision to a processor precision of a neural network
processor,
the neural network processor being configured to accept data having a processor feature dimension;
dividing the input data tensor into a plurality of blocks, each block conforming to one of the processor
feature dimensions;
providing each of the plurality of blocks to one of the plurality of neural cores, and wherein
the neural network processor is adapted to compute, by the plurality of neural cores, output of one or more neural

network layers.

PCT/IB2019/058120

¥o0/g
ndino

2 0 e o i A
g_‘_.\ €01 — 1001d

S1RIPaLLIBI|

1/6

EOOOGHOONNEEE

OO XX e 50
Ya0ig WBlem, Rt tototototeteP Mam >

\ e |

Nor\ _\QT\

WO 2020/074989

N 00}

PCT/IB2019/058120

WO 2020/074989

2/6

v0C ,/,

¢ Ol

\

XXX XXX XXX X XXX XXX XXX
(auiBusouoy) Jenpayog

7/ 1BPOI
YIOMIBN [BInSpN
10} Alowapy

[

¥

AloWwBy -
UoHeAloy
jusisues |

¥
m‘

il

Iy

e PYRUII. R

3
N

nding

nduyy

[

_\QN\

N@N\

<
L
od

PCT/IB2019/058120

WO 2020/074989

3/6

¢ Ol

v0€
>

\

s (BLiBusouolpy) senpayog

7, 18PO
WOMIBN [RINeN
10} Riowejy

/

SN NS NN N XN
“

PR § EX XXX LN EX XXX

TN
_ EINEEIN IO
v, -l 0N O
e FRXXX] CX¥IX] Seoes induj

ENERERERNER]

L0E \

j]
o
o2

A0 E

:Au :Au :O

PCT/IB2019/058120

4/6

WO 2020/074989

N
: / > 20V
Ha Ha
w/m m\.w y.i J
BRHPPO SRR
Jusilie) ¢=9pUIS
55 iRk -£0v
o0y 45 £x/ X}
GOV - |
. usag \\\%
IR \

WO 2020/074989

5/6

200

PCT/IB2019/058120

Receive input Data

— 501

4

Transform Data

— 902

¥

Divide Data

— 503

4

Distribute Data to Cores

— 904

¥

Compute Layer

— 505

FIG. 5

PCT/IB2019/058120

WO 2020/074989

6/6

9 "0l

(s)eomaq | ol
ewaxyg |
QN;/ %
Joydepy MomeN @m%ﬂmwcm w—p Aejdsi(]
t T N
ﬂ 4 e
i P %/ww
m A Nm,/
\ o Hin
O[> °WED BuISS80i1d
woshs | /
abelolg e gl
R
e Kowspy /om
/ —Cl
8¢ Isnisg/wBIsAg endwo)

INTERNATIONAL SEARCH REPORT International application No.
PCT/1B2019/058120

A. CLASSIFICATION OF SUBJECT MATTER
GO6N 3/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6N,GO6F,GO6K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPLEPODOC,CNPAT,CNKLIEEE: neural, network, core, multi, data, representation, processor, tensor, image, picture, input,
output, divide, block, dimension, transform, precision, layer

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A CN 107633010 A (CENTRAL SOUTH UNIVERSITY) 26 January 2018 (2018-01-26) 1-24
description, paragraphs [0039]-[0106], and figures 1-5

A CN 104641385 A (INTERNATIONAL BUSINESS MACHINES CORPORATION) 20 May 1-24
2015 (2015-05-20)
the whole document

A US 2016155047 A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 02 June] 1-24
2016 (2016-06-02)
the whole document

A JP H09128428 A (NEC CORPORATION) 16 May 1997 (1997-05-16) 1-24
the whole document

A WO 2017168275 Al (INTERNATIONAL BUSINESS MACHINES CORPORATION et al.) 1-24
05 October 2017 (2017-10-05)
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
«A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the
to be of particular relevance principle or theory underlying the invention
«g” earlier application or patent but published on or after the international «X» document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive step
«1» document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other «y» document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
“0” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

«p>» document published prior to the international filing date but later than . &

e] document member of the same patent famil;
the priority date claimed P Y

Date of the actual completion of the international search Date of mailing of the international search report
29 November 2019 30 December 2019
Name and mailing address of the ISA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing WANG,Yang
100088
China
Facsimile No. (86-10)62019451 Telephone No. (86-10)53961523

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/1B2019/058120

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)
CN 107633010 A 26 January 2018 None
CN 104641385 A 20 May 2015 us 2015379393 Al 31 December 2015
Jp 2015534172 A 26 November 2015
DE 112013003349 T5 19 March 2015
uUs 2015254551 Al 10 September 2015
WO 2014041443 Al 20 March 2014
uUs 2016155047 Al 02 June 2016 us 2015242743 Al 27 August 2015
us 2015262059 Al 17 September 2015
us 2014032464 Al 30 January 2014
JP H09128428 A 16 May 1997 None
WO 2017168275 Al 05 October 2017 GB 2557780 A 27 June 2018
DE 112017000855 TS 25 October 2018
JP 2019515367 A 06 June 2019
us 2017286825 Al 05 October 2017

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report

