(19) World Intellectual Property Organization International Bureau ## ## (43) International Publication Date 12 June 2008 (12.06.2008) #### PCT ## (10) International Publication Number WO 2008/069594 A1 - (51) International Patent Classification: *G10L 19/00* (2006.01) - (21) International Application Number: PCT/KR2007/006316 (22) International Filing Date: 6 December 2007 (06.12.2007) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: | 60/869,077 | 7 December 2006 (07.12.2006) | US | |------------|-------------------------------|----| | 60/877,134 | 27 December 2006 (27.12.2006) | US | | 60/883,569 | 5 January 2007 (05.01.2007) | US | | 60/884,043 | 9 January 2007 (09.01.2007) | US | | 60/884,347 | 10 January 2007 (10.01.2007) | US | | 60/884,585 | 11 January 2007 (11.01.2007) | US | | 60/885,347 | 17 January 2007 (17.01.2007) | US | | 60/885,343 | 17 January 2007 (17.01.2007) | US | | 60/889,715 | 13 February 2007 (13.02.2007) | US | | 60/955,395 | 13 August 2007 (13.08.2007) | US | | | | | (71) Applicant (for all designated States except US): LG ELECTRONICS INC. [KR/KR]; IP Group 16, Woomyeon-Dong, Seocho-Gu, Seoul 137-724 (KR). - (72) Inventors; and - (75) Inventors/Applicants (for US only): OH, Hyen O [KR/KR]; LG Electronics Inc. IP Group, 16 Woomyeon-dong, Seocho-gu, Seoul 137-724 (KR). JUNG, Yang Won [KR/KR]; LG Electronics Inc. IP Group, 16 Woomyeon-dong, Seocho-gu, Seoul 137-724 (KR). - (74) Agents: KIM, Yong In et al.; KBK & Associates, 15th Floor Yo Sam Building, 648-23, Yeoksam-dong, Kangnam-gu, Seoul 135-080 (KR). - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. - (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, [Continued on next page] (54) Title: A METHOD AND AN APPARATUS FOR PROCESSING AN AUDIO SIGNAL (57) Abstract: A method for processing an audio signal, comprising: receiving a downmix signal in time domain; if the downmix signal corresponds to a mono signal, bypassing the downmix signal; if the number of channel of the downmix signal corresponds to at least two, decomposing the downmix signal into a subband signal, and processing the subband signal using a downmix processing information, wherein the downmix processing information is estimated based on an object information and a mix information is disclosed. ### WO 2008/069594 A1 GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). #### Published: — with international search report #### [DESCRIPTION] #### [Invention Title] A METHOD AND AN APPARATUS FOR PROCESSING AN AUDIO SIGNAL #### [Technical Field] The present invention relates to a method and an apparatus for processing an audio signal, and more particularly, to a method and an apparatus for decoding an audio signal received on a digital medium, as a broadcast signal, and so on. #### [Background Art] While downmixing several audio objects to be a mono or stereo signal, parameters from the individual object signals can be extracted. These parameters can be used in a decoder of an audio signal, and repositioning/panning of the individual sources can be controlled by user' selection. #### [Disclosure] #### [Technical Problem] However, in order to control the individual object signals, repositioning/panning of the individual sources included in a downmix signal must be performed suitably. However, for backward compatibility with respect to the channel-oriented lecoding method (as a MPEG Surround), an object parameter must be converted lexibly to a multi-channel parameter required in upmixing process. #### [Technical Solution] Accordingly, the present invention is directed to a method and an apparatus for processing an audio signal that substantially obviates one or more problems due to limitations and disadvantages of the related art. An object of the present invention is to provide a method and an apparatus for processing an audio signal to control object gain and panning unrestrictedly. Another object of the present invention is to provide a method and an apparatus for processing an audio signal to control object gain and panning based on user selection. Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. #### [Advantageous Effects] The present invention provides the following effects or advantages. First of all, the present invention is able to provide a method and an pparatus for processing an audio signal to control object gain and panning inrestrictedly. Secondly, the present invention is able to provide a method and an paratus for processing an audio signal to control object gain and panning based on user selection. #### [Description of Drawings] The accompanying drawings, which are included to provide a further inderstanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings; - FIG. 1 is an exemplary block diagram to explain to basic concept of rendering a downmix signal based on playback configuration and user control. - FIG. 2 is an exemplary block diagram of an apparatus for processing an audio signal according to one embodiment of the present invention corresponding to the first scheme. - FIG. 3 is an exemplary block diagram of an apparatus for processing an audio signal according to another embodiment of the present invention corresponding to the first scheme. FIG. 4 is an exemplary block diagram of an apparatus for processing an udio signal according to one embodiment of present invention corresponding to he second scheme. FIG. 5 is an exemplary block diagram of an apparatus for processing an udio signal according to another embodiment of present invention corresponding o the second scheme. FIG. 6 is an exemplary block diagram of an apparatus for processing an udio signal according to the other embodiment of present invention orresponding to the second scheme. FIG. 7 is an exemplary block diagram of an apparatus for processing an udio signal according to one embodiment of the present invention corresponding of the third scheme. FIG. 8 is an exemplary block diagram of an apparatus for processing an udio signal according to another embodiment of the present invention corresponding to the third scheme. FIG. 9 is an exemplary block diagram to explain to basic concept of endering unit. FIGS. 10A to 10C are exemplary block diagrams of a first embodiment of a downmix processing unit illustrated in FIG. 7. - FIG. 11 is an exemplary block diagram of a second embodiment of a lownmix processing unit illustrated in FIG. 7. - FIG. 12 is an exemplary block diagram of a third embodiment of a downmix processing unit illustrated in FIG. 7. - FIG. 13 is an exemplary block diagram of a fourth embodiment of a downmix processing unit illustrated in FIG. 7. - FIG. 14 is an exemplary block diagram of a bitstream structure of a compressed audio signal according to a second embodiment of present invention. - FIG. 15 is an exemplary block diagram of an apparatus for processing an audio signal according to a second embodiment of present invention. - FIG. 16 is an exemplary block diagram of a bitstream structure of a compressed audio signal according to a third embodiment of present invention. - FIG. 17 is an exemplary block diagram of an apparatus for processing an audio signal according to a fourth embodiment of present invention. - FIG. 18 is an exemplary block diagram to explain transmitting scheme for variable type of object. - FIG. 19 is an exemplary block diagram to an apparatus for processing an audio signal according to a fifth embodiment of present invention. #### [Best Mode] To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method for processing an audio signal, comprising: receiving a downmix signal in time domain; if the downmix signal corresponds to a mono signal, bypassing the downmix signal; if the number of channel of the downmix signal corresponds to at least two, decomposing the downmix signal into a subband signal, and processing the subband signal using a downmix processing information, wherein the downmix processing information is estimated based on an object information and a mix information. According to the present invention, wherein the number of channel of the downmix signal is equal to the number of channel of the processed downmix signal. According to the present invention, wherein the object information is included in a side information, and the side information includes a correlation flag information indicating whether an object is part of at least two channel object. According to the present invention, wherein the object information includes at least one of
an object level information and an object correlation information. According to the present invention, wherein the downmix processing information corresponds to an information for controlling object panning if the number of channel the downmix signal corresponds to at least two. According to the present invention, wherein the downmix processing formation corresponds to an information for controlling object gain. According to the present invention, further comprising, generating a multihannel signal using the processed subband signal. According to the present invention, further comprising, generating a multihannel information using the object information and the mix information, wherein he multi-channel signal is generated based on the multi-channel information. According to the present invention, further comprising, downmixing the lownmix signal to be a mono signal if the downmix signal corresponds to a stereo ignal. According to the present invention, wherein the mix information is generated using at least one of an object position information and a playback configuration information. According to the present invention, wherein the downmix signal is received as a broadcast signal. According to the present invention, wherein the downmix signal is received on a digital medium. In another aspect of the present invention, a computer-readable medium having instructions stored thereon, which, when executed by a processor, causes the processor to perform operations, comprising: receiving a downmix signal in ime domain; if the downmix signal corresponds to a mono signal, bypassing the lownmix signal; if the number of channel of the downmix signal corresponds to at east two, decomposing the downmix signal into a subband signal, and processing he subband signal using a downmix processing information, wherein the lownmix processing information is estimated based on an object information and a nix information. In another aspect of the present invention, an apparatus for processing an audio signal, comprising: a receiving unit receiving a downmix signal in time domain; and, a downmix processing unit bypassing the downmix signal if the downmix signal corresponds to a mono signal, and decomposing the downmix signal into a subband signal and processing the subband signal using a downmix processing information if the number of channel of the downmix signal corresponds to at least two, wherein the downmix processing information is estimated based on an object information and a mix information. It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. [Mode for Invention] Reference will now be made in detail to the preferred embodiments of the resent invention, examples of which are illustrated in the accompanying drawings. Therever possible, the same reference numbers will be used throughout the rawings to refer to the same or like parts. Prior to describing the present invention, it should be noted that most terms is closed in the present invention correspond to general terms well known in the rt, but some terms have been selected by the applicant as necessary and will ereinafter be disclosed in the following description of the present invention. herefore, it is preferable that the terms defined by the applicant be understood on ne basis of their meanings in the present invention. In particular, 'parameter' in the following description means information neluding values, parameters of narrow sense, coefficients, elements, and so on. Iereinafter 'parameter' term will be used instead of 'information' term like an bject parameter, a mix parameter, a downmix processing parameter, and so on, which does not put limitation on the present invention. In downmixing several channel signals or object signals, an object parameter nd a spatial parameter can be extracted. A decoder can generate output signal signal and the object parameter (or the spatial parameter). The output signal may be rendered based on playback configuration and user control y the decoder. The rendering process shall be explained in details with reference the FIG. 1 as follow. FIG. 1 is an exemplary diagram to explain to basic concept of rendering ownmix based on playback configuration and user control. Referring to FIG. 1, a ecoder 100 may include a rendering information generating unit 110 and a endering unit 120, and also may include a renderer 110a and a synthesis 120a astead of the rendering information generating unit 110 and the rendering unit 120. A rendering information generating unit 110 can be configured to receive a ide information including an object parameter or a spatial parameter from an ncoder, and also to receive a playback configuration or a user control from a levice setting or a user interface. The object parameter may correspond to a parameter extracted in downmixing at least one object signal, and the spatial parameter may correspond to a parameter extracted in downmixing at least one channel signal. Furthermore, type information and characteristic information for each object may be included in the side information. Type information and :haracteristic information may describe instrument name, player name, and so on. The playback configuration may include speaker position and ambient information 'speaker's virtual position), and the user control may correspond to a control information inputted by a user in order to control object positions and object gains, and also may correspond to a control information in order to the playback infiguration. Meanwhile the payback configuration and user control can be impresented as a mix information, which does not put limitation on the present evention. A rendering information generating unit 110 can be configured to generate a endering information using a mix information (the playback configuration and ser control) and the received side information. A rendering unit 120 can onfigured to generate a multi-channel parameter using the rendering information a case that the downmix of an audio signal (abbreviated 'downmix signal') is not ansmitted, and generate multi-channel signals using the rendering information and downmix in case that the downmix of an audio signal is transmitted. A renderer 110a can be configured to generate multi-channel signals using a nix information (the playback configuration and the user control) and the received ide information. A synthesis 120a can be configured to synthesis the multi-channel ignals using the multi-channel signals generated by the renderer 110a. As previously stated, the decoder may render the downmix signal based on playback configuration and user control. Meanwhile, in order to control the ndividual object signals, a decoder can receive an object parameter as a side information and control object panning and object gain based on the transmitted object parameter. #### 1. Controlling gain and panning of object signals Variable methods for controlling the individual object signals may be provided. First of all, in case that a decoder receives an object parameter and generates the individual object signals using the object parameter, then, can control he individual object signals base on a mix information (the playback configuration, he object level, etc.) Secondly, in case that a decoder generates the multi-channel parameter to be nputted to a multi-channel decoder, the multi-channel decoder can upmix a lownmix signal received from an encoder using the multi-channel parameter. The above-mention second method may be classified into three types of scheme. In particular, 1) using a conventional multi-channel decoder, 2) modifying a multi-channel decoder, 3) processing downmix of audio signals before being inputted to a multi-channel decoder may be provided. The conventional multi-channel decoder may correspond to a channel-oriented spatial audio coding (ex: MPEG Surround lecoder), which does not put limitation on the present invention. Details of three types of scheme shall be explained as follow. #### 1.1 Using a multi-channel decoder First scheme may use a conventional multi-channel decoder as it is without nodifying a multi-channel decoder. At first, a case of using the ADG (arbitrary lownmix gain) for controlling object gains and a case of using the 5-2-5 configuration for controlling object panning shall be explained with reference to IG. 2 as follow. Subsequently, a case of being linked with a scene remixing unit rill be explained with reference to FIG. 3. FIG. 2 is an exemplary block diagram of an apparatus for processing an udio signal according to one embodiment of the present invention corresponding o first scheme. Referring to FIG. 2, an apparatus for processing an audio signal 200 hereinafter simply 'a decoder 200') may include an information generating unit 10 and a multi-channel decoder 230. The information generating unit 210 may eceive a side information including an object parameter from an encoder and a nix information from a user interface, and may generate a multi-channel parameter including a arbitrary downmix gain or a gain modification gain(hereinafter simple 'ADG'). The ADG may describe a ratio of a first gain estimated based on the mix information and the obejct information over a second gain extimated based on the object information. In particular, the information generating unit 210 may generate the ADG only if the downmix signal corresponds to a mono signal. The multi-channel decoder 230 may receive a downmix of an audio signal from an encoder and a multi-channel parameter from the information generating unit 210, and may generate a multi-channel output using the downmix signal and the multi-channel parameter. The multi-channel parameter may include a channel level difference hereinafter abbreviated 'CLD'), an inter channel correlation (hereinafter abbreviated
'ICC'), a channel prediction coefficient (hereinafter abbreviated 'CPC'). Since CLD, ICC, and CPC describe intensity difference or correlation between two channels, and is to control object panning and correlation. It is able to control object positions and object diffuseness (sonority) using the CLD, the ICC, etc. Meanwhile, the CLD describe the relative level difference instead of the absolute level, and energy of the splitted two channels is conserved. Therefore it is anable to control object gains by handling CLD, etc. In other words, specific object cannot be mute or volume up by using the CLD, etc. Furthermore, the ADG describes time and frequency dependent gain for controlling correction factor by a user. If this correction factor be applied, it is able to handle modification of down-mix signal prior to a multi-channel upmixing. Therefore, in case that ADG parameter is received from the information generating unit 210, the multi-channel decoder 230 can control object gains of specific time and frequency using the ADG parameter. Meanwhile, a case that the received stereo downmix signal outputs as a stereo channel can be defined the following formula 1. [formula 1] $$y[0] = w_{11} \cdot g_0 \cdot x[0] + w_{12} \cdot g_1 \cdot x[1]$$ $$y[1] = w_{21} \cdot g_0 \cdot x[0] + w_{22} \cdot g_1 \cdot x[1]$$ where x[] is input channels, y[] is output channels, g_x is gains, and w_{xx} is reight. It is necessary to control cross-talk between left channel and right channel in rder to object panning. In particular, a part of left channel of downmix signal may utput as a right channel of output signal, and a part of right channel of downmix ignal may output as left channel of output signal. In the formula 1, w₁₂ and w₂₁ have be a cross-talk component (in other words, cross-term). The above-mentioned case corresponds to 2-2-2 configuration, which means -channel input, 2-channel transmission, and 2-channel output. In order to perform he 2-2-2 configuration, 5-2-5 configuration (2-channel input, 5-channel ransmission, and 2 channel output) of conventional channel-oriented spatial audio oding (ex: MPEG surround) can be used. At first, in order to output 2 channels for 2-2-2 configuration, certain channel among 5 output channels of 5-2-5 configuration can be set to a disable channel (a fake channel). In order to give cross-talk between 2-transmitted channels and 2-output channels, the above-mentioned CLD and CPC may be adjusted. In brief, gain factor g_x in the formula 1 is obtained using the above mentioned ADG, and weighting factor w_{11} ~ w_{22} in the formula 1 is obtained using CLD and CPC. In implementing the 2-2-2 configuration using 5-2-5 configuration, in order to reduce complexity, default mode of conventional spatial audio coding may be applied. Since characteristic of default CLD is supposed to output 2-channel, it is able to reduce computing amount if the default CLD is applied. Particularly, since here is no need to synthesis a fake channel, it is able to reduce computing amount argely. Therefore, applying the default mode is proper. In particular, only default CLD of 3 CLDs (corresponding to 0, 1, and 2 in MPEG surround standard) is used for decoding. On the other hand, 4 CLDs among left channel, right channel, and center channel (corresponding to 3, 4, 5, and 6 in MPEG surround standard) and 2 ADGs (corresponding to 7 and 8 in MPEG surround standard) is generated for controlling object. In this case, CLDs corresponding 3 and 5 describe channel level lifference between left channel plus right channel and center channel ((l+r)/c) is proper to set to 150dB (approximately infinite) in order to mute center channel. And, in order to implement cross-talk, energy based up-mix or prediction based 1p-mix may be performed, which is invoked in case that TTT mode "bsTttModeLow" in the MPEG surround standard) corresponds to energy-based mode (with subtraction, matrix compatibility enabled) (3rd mode), or prediction mode (1st mode or 2nd mode). FIG. 3 is an exemplary block diagram of an apparatus for processing an audio signal according to another embodiment of the present invention orresponding to first scheme. Referring to FIG. 3, an apparatus for processing an audio signal according to another embodiment of the present invention 300 hereinafter simply a decoder 300) may include a information generating unit 310, a cene rendering unit 320, a multi-channel decoder 330, and a scene remixing unit 350. The information generating unit 310 can be configured to receive a side nformation including an object parameter from an encoder if the downmix signal corresponds to mono channel signal (i.e., the number of downmix channel is '1'), nay receive a mix information from a user interface, and may generate a multi-hannel parameter using the side information and the mix information. The number of downmix channel can be estimated based on a flag information neluded in the side information as well as the downmix signal itself and user relection. The information generating unit 310 may have the same configuration of the former information generating unit 210. The multi-channel parameter is nputted to the multi-channel decoder 330, the multi-channel decoder 330 may have the same configuration of the former multi-channel decoder 230. The scene rendering unit 320 can be configured to receive a side information neluding an object parameter from and encoder if the downmix signal corresponds to non-mono channel signal (i.e., the number of downmix channel is more than '2'), may receive a mix information from a user interface, and may generate a remixing varameter using the side information and the mix information. The remixing varameter corresponds to a parameter in order to remix a stereo channel and generate more than 2-channel outputs. The remixing parameter is inputted to the cene remixing unit 350. The scene remixing unit 350 can be configured to remix the downmix signal using the remixing parameter if the downmix signal is more than 2-channel signal. In brief, two paths could be considered as separate implementations for separate applications in a decoder 300. #### 1.2 Modifying a multi-channel decoder Second scheme may modify a conventional multi-channel decoder. At first, a case of using virtual output for controlling object gains and a case of modifying a levice setting for controlling object panning shall be explained with reference to FIG. 4 as follow. Subsequently, a case of Performing TBT(2x2) functionality in a multi-channel decoder shall be explained with reference to FIG. 5. FIG. 4 is an exemplary block diagram of an apparatus for processing an audio signal according to one embodiment of present invention corresponding to the second scheme. Referring to FIG. 4, an apparatus for processing an audio signal according to one embodiment of present invention corresponding to the second scheme 400 (hereinafter simply 'a decoder 400') may include an information generating unit 410, an internal multi-channel synthesis 420, and an output napping unit 430. The internal multi-channel synthesis 420 and the output napping unit 430 may be included in a synthesis unit. The information generating unit 410 can be configured to receive a side nformation including an object parameter from an encoder, and a mix parameter rom a user interface. And the information generating unit 410 can be configured to generate a multi-channel parameter and a device setting information using the side nformation and the mix information. The multi-channel parameter may have the same configuration of the former multi-channel parameter. So, details of the multi-channel parameter shall be omitted in the following description. The device setting nformation may correspond to parameterized HRTF for binaural processing, which shall be explained in the description of '1.2.2 Using a device setting nformation'. The internal multi-channel synthesis 420 can be configured to receive a multi-channel parameter and a device setting information from the parameter generation unit 410 and downmix signal from an encoder. The internal multi-channel synthesis 420 can be configured to generate a temporal multi-channel output including a virtual output, which shall be explained in the description of '1.2.1 Using a virtual output'. #### 1.2.1 Using a virtual output ## WO 2008/069594 PCT/KR2007/006316 Since multi-channel parameter (ex: CLD) can control object panning, it is and to control object gain as well as object panning by a conventional multi-nannel decoder. Meanwhile, in order to object gain, the decoder 400 (especially the internal nulti-channel synthesis 420) may map relative energy of object to a virtual channel ex: center channel). The relative energy of object corresponds to energy to be educed. For example, in order to mute certain object, the decoder 400 may map nore than 99.9% of object energy to a virtual channel. Then, the decoder 400 especially, the output mapping unit 430) does not output the virtual channel to which the rest energy of object is mapped. In conclusion, if more than 99.9% of bject is mapped to a virtual channel which is not outputted, the desired object can element mute. #### 1.2.2 Using a device setting information The decoder 400 can adjust a device setting information in order to control object panning and object gain. For example, the decoder can be configured to generate a parameterized HRTF for binaural processing in MPEG Surround standard. The parameterized HRTF can be variable according to device setting. It is able to assume that object signals can be controlled according to the following formula 2. [formula 2] $$L_{\text{new}} = a_1 * \text{obj}_1 + a_2 * \text{obj}_2 + a_3 * \text{obj}_3 + .. + a_n * \text{obj}_{n,n}$$ $$R_{\text{new}} = b_1 * obj_1 + b_2 * obj_2 + b_3 * obj_3 + ... + b_n * obj_n$$ where obj_k is object signals, L_{new} and R_{new} is a desired stereo signal, and a_k and b_k are coefficients for object
control. An object information of the object signals obj_k may be estimated from an object parameter included in the transmitted side information. The coefficients a_k , b_k which are defined according to object gain and object panning may be estimated rom the mix information. The desired object gain and object panning can be adjusted using the coefficients a_k , b_k . The coefficients a_k , b_k can be set to correspond to HRTF parameter for sinaural processing, which shall be explained in details as follow. In MPEG Surround standard (5-1-5₁ configuration) (from ISO/IEC FDIS 23003-1:2006(E), Information Technology – MPEG Audio Technologies – Part1: MPEG Surround), binaural processing is as below. [formula 3] $$\mathbf{y}_{\mathsf{B}}^{n,k} = \begin{bmatrix} y_{\mathsf{L}_{\mathsf{B}}}^{n,k} \\ y_{\mathsf{R}_{\mathsf{B}}}^{n,k} \end{bmatrix} = \mathbf{H}_{2}^{n,k} \begin{bmatrix} y_{\mathsf{m}}^{n,k} \\ D(y_{\mathsf{m}}^{n,k}) \end{bmatrix} = \begin{bmatrix} h_{11}^{n,k} & h_{12}^{n,k} \\ h_{21}^{n,k} & h_{22}^{n,k} \end{bmatrix} \begin{bmatrix} y_{\mathsf{m}}^{n,k} \\ D(y_{\mathsf{m}}^{n,k}) \end{bmatrix}, \quad 0 \le k < K$$ where y_B is output, the matrix \mathbf{H} is conversion matrix for binaural processing. [formula 4] $$\mathbf{H}_{1}^{l,m} = \begin{bmatrix} h_{11}^{l,m} & h_{12}^{l,m} \\ h_{21}^{l,m} & -\left(h_{12}^{l,m}\right)^{*} \end{bmatrix}, \quad 0 \le m < M_{\text{Proc}}, 0 \le l < L$$ The elements of matrix H is defined as follows: #### [formula 5] $$h_{11}^{l,m} = \sigma_{L}^{l,m} \left(\cos \left(IPD_{B}^{l,m}/2 \right) + j \sin \left(IPD_{B}^{l,m}/2 \right) \right) \left(iid^{l,m} + ICC_{B}^{l,m} \right) d^{l,m}$$ #### [formula 6] $$\begin{split} \left(\sigma_{\mathrm{X}}^{l,m}\right)^{2} &= \left(P_{\mathrm{X,C}}^{m}\right)^{2} \left(\sigma_{\mathrm{C}}^{l,m}\right)^{2} + \left(P_{\mathrm{X,L}}^{m}\right)^{2} \left(\sigma_{\mathrm{L}}^{l,m}\right)^{2} + \left(P_{\mathrm{X,Ls}}^{m}\right)^{2} \left(\sigma_{\mathrm{Ls}}^{l,m}\right)^{2} + \left(P_{\mathrm{X,R}}^{m}\right)^{2} \left(\sigma_{\mathrm{R}}^{l,m}\right)^{2} + \left(P_{\mathrm{X,Rs}}^{m}\right)^{2} \left(\sigma_{\mathrm{R}}^{l,m}\right)^{2} + \dots \\ & P_{\mathrm{X,L}}^{m} P_{\mathrm{X,R}}^{m} \rho_{\mathrm{L}}^{m} \sigma_{\mathrm{L}}^{l,m} ICC_{3}^{l,m} \cos\left(\phi_{\mathrm{L}}^{m}\right) + \dots \\ & P_{\mathrm{X,L}}^{m} P_{\mathrm{X,Rs}}^{m} \rho_{\mathrm{R}}^{m} \sigma_{\mathrm{L}}^{l,m} \sigma_{\mathrm{R}}^{l,m} ICC_{3}^{l,m} \cos\left(\phi_{\mathrm{R}}^{m}\right) + \dots \\ & P_{\mathrm{X,Ls}}^{m} P_{\mathrm{X,Rs}}^{m} \rho_{\mathrm{Ls}}^{m} \sigma_{\mathrm{Ls}}^{l,m} \sigma_{\mathrm{Rs}}^{l,m} ICC_{2}^{l,m} \cos\left(\phi_{\mathrm{Ls}}^{m}\right) + \dots \\ & P_{\mathrm{X,Ls}}^{m} P_{\mathrm{X,Rs}}^{m} \rho_{\mathrm{Rs}}^{m} \sigma_{\mathrm{Ls}}^{l,m} \sigma_{\mathrm{Rs}}^{l,m} ICC_{2}^{l,m} \cos\left(\phi_{\mathrm{Rs}}^{m}\right) + \dots \end{split}$$ #### [formula 7] #### 1.2.3 Performing TBT(2x2) functionality in a multi-channel decoder FIG. 5 is an exemplary block diagram of an apparatus for processing an audio signal according to another embodiment of present invention corresponding to the second scheme. FIG. 5 is an exemplary block diagram of TBT functionality in multi-channel decoder. Referring to FIG. 5, a TBT module 510 can be configured to receive input signals and a TBT control information, and generate output signals. The TBT module 510 may be included in the decoder 200 of the FIG. 2 (or in particular, the multi-channel decoder 230). The multi-channel decoder 230 may be implemented according to the MPEG Surround standard, which does not put limitation on the present invention. [formula 9] $$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{W}\mathbf{x}$$ where \mathbf{x} is input channels, \mathbf{y} is output channels, and \mathbf{w} is weight. The output y_1 may correspond to a combination input x_1 of the downmix multiplied by a first gain w_{11} and input x_2 multiplied by a second gain w_{12} . The TBT control information inputted in the TBT module 510 includes elements which can compose the weight \mathbf{w} (\mathbf{w}_{11} , \mathbf{w}_{12} , \mathbf{w}_{21} , \mathbf{w}_{22}). In MEPG Surround standard, OTT(One-To-Two) module and TTT(Two-To-Three) module is not proper to remix input signal although OTT module and TTT module can upmix the input signal. In order to remix the input signal, TBT (2x2) module 510 (hereinafter bbreviated 'TBT module 510') may be provided. The TBT module 510 may can be igured to receive a stereo signal and output the remixed stereo signal. The weight \mathbf{v} may be composed using CLD(s) and ICC(s). If the weight term $w_{11} \sim w_{22}$ is transmitted as a TBT control information, the lecoder may control object gain as well as object panning using the received veight term. In transmitting the weight term \mathbf{w} , variable scheme may be provided. At first, a TBT control information includes cross term like the w_{12} and w_{21} . Secondly, a TBT control information does not include the cross term like the w_{12} and w_{21} . Thirdly, the number of the term as a TBT control information varies adaptively. At first, there is need to receive the cross term like the w₁₂ and w₂₁ in order to control object panning as left signal of input channel go to right of the output channel. In case of N input channels and M output channels, the terms which number is NxM may be transmitted as TBT control information. The terms can be quantized based on a CLD parameter quantization table introduced in a MPEG Surround, which does not put limitation on the present invention. Secondly, unless left object is shifted to right position, (i.e. when left object is moved to more left position or left position adjacent to center position, or when only level of the object is adjusted), there is no need to use the cross term. In the ase, it is proper that the term except for the cross term is transmitted. In case of N aput channels and M output channels, the terms which number is just N may be cansmitted. Thirdly, the number of the TBT control information varies adaptively coording to need of cross term in order to reduce the bit rate of a TBT control information. A flag information 'cross_flag' indicating whether the cross term is resent or not is set to be transmitted as a TBT control information. Meaning of the lag information 'cross_flag' is shown in the following table 1. [table 1] meaning of cross_flag | cross_flag | meaning | |------------|--| | 0 | no cross term (includes only non-cross term) | | | (only w_{11} and w_{22} are present) | | 1 | includes cross term | | | $(w_{11}, w_{12}, w_{21}, and w_{22} are present)$ | In case that 'cross_flag' is equal to 0, the TBT control information does not not not not the cross term, only the non-cross term like the w_{11} and w_{22} is present. Otherwise ('cross_flag' is equal to 1), the TBT control information includes the cross term. Besides, a flag information 'reverse_flag' indicating whether cross term is present or non-cross term is present is set to be transmitted as a TBT control nformation. Meaning of flag information 'reverse_flag' is shown in the following table 2. [table 2] meaning of reverse_flag | reverse_flag | meaning | |--------------|---| | 0 | no cross term (includes only non-cross term) (only w ₁₁ and w ₂₂ are present) | | 1 | only cross term (only w_{12} and w_{21} are present) | In case that 'reverse_flag' is equal to 0, the TBT control information does not not not not the cross term, only the non-cross term like the w_{11} and w_{22} is present. Otherwise ('reverse_flag' is equal to 1), the TBT control information includes only he cross term. Futhermore, a flag information 'side_flag' indicating whether cross term is resent and non-cross is present is set to be transmitted as a TBT control nformation. Meaning of flag information 'side_flag' is shown in the following table [table 3] meaning of side_config | side_config | meaning | |-------------|---| | 0 | no cross term (includes only non-cross term) (only w ₁₁ and w ₂₂ are present) | | 1 | includes cross term $(w_{11}, w_{12}, w_{21}, and w_{22} are present)$ | | 2 | reverse (only w_{12} and w_{21} are present) | Since the table 3 corresponds to combination of the table 1 and the table 2, etails of the table 3 shall be omitted. # 1.2.4 Performing TBT(2x2) functionality in a multi-channel decoder by odifying a binaural decoder The case of '1.2.2 Using a device setting information' can be performed 'ithout modifying the binaural decoder. Hereinafter, performing TBT icnctionality by modifying a binaural decoder employed in a MPEG Surround ecoder, with reference to FIG. 6. FIG. 6 is an exemplary block diagram of an apparatus for processing an udio signal according to the other embodiment of present invention orresponding to the second scheme. In particular, an apparatus for processing an udio signal 630 shown in the FIG. 6 may correspond to a binaural decoder necluded in the multi-channel decoder 230 of FIG. 2 or the synthesis unit of FIG. 4, which does not put limitation on the present invention. An apparatus for processing an audio signal 630 (hereinafter 'a binaural lecoder 630') may include a QMF analysis 632, a parameter conversion 634, a spatial synthesis 636, and a QMF synthesis 638. Elements of the binaural decoder 630 may have the same configuration of MPEG Surround binaural decoder in MPEG Surround standard. For example, the spatial synthesis 636 can be configured to consist of 1 2x2 (filter) matrix, according to the following
formula 10: [formula 10] $$\mathbf{y}_{\mathsf{B}}^{n,k} = \begin{bmatrix} y_{\mathsf{L}_{\mathsf{B}}}^{n,k} \\ y_{\mathsf{R}_{\mathsf{B}}}^{n,k} \end{bmatrix} = \sum_{i=0}^{N_q-1} \mathbf{H}_2^{n-i,k} \mathbf{y}_0^{n-i,k} = \sum_{i=0}^{N_q-1} \begin{bmatrix} \mathbf{h}_{11}^{n-i,k} & \mathbf{h}_{12}^{n-i,k} \\ \mathbf{h}_{21}^{n-i,k} & \mathbf{h}_{22}^{n-i,k} \end{bmatrix} \begin{bmatrix} y_{\mathsf{L}_{\mathsf{0}}}^{n-i,k} \\ y_{\mathsf{R}_{\mathsf{0}}}^{n-i,k} \end{bmatrix}, \quad 0 \le k < K$$ with y_0 being the QMF-domain input channels and y_B being the binaural output channels, k represents the hybrid QMF channel index, and i is the HRTF ilter tap index, and n is the QMF slot index. The binaural decoder 630 can be configured to perform the above-mentioned functionality described in subclause 1.2.2 Using a device setting information'. However, the elements h_{ij} may be generated using a multi-channel parameter and a mix information instead of a nulti-channel parameter and HRTF parameter. In this case, the binaural decoder 500 can perform the functionality of the TBT module 510 in the FIG. 5. Details of the elements of the binaural decoder 630 shall be omitted. The binaural decoder 630 can be operated according to a flag information binaural_flag'. In particular, the binaural decoder 630 can be skipped in case that a lag information binaural_flag is '0', otherwise (the binaural_flag is '1'), the binaural decoder 630 can be operated as below. [table 4] meaning of binaural_flag | binaural_flag | Meaning | |---------------|---| | 0 | not binaural mode (a binaural decoder is deactivated) | | 1 | binaural mode (a binaural decoder is activated) | ## 1.3 Processing downmix of audio signals before being inputted to a multihannel decoder The first scheme of using a conventional multi-channel decoder have been xplained in subclause in '1.1', the second scheme of modifying a multi-channel ecoder have been explained in subclause in '1.2'. The third scheme of processing ownmix of audio signals before being inputted to a multi-channel decoder shall explained as follow. FIG. 7 is an exemplary block diagram of an apparatus for processing an udio signal according to one embodiment of the present invention corresponding o the third scheme. FIG. 8 is an exemplary block diagram of an apparatus for processing an audio signal according to another embodiment of the present nvention corresponding to the third scheme. At first, Referring to FIG. 7, an ipparatus for processing an audio signal 700 (hereinafter simply 'a decoder 700') nay include an information generating unit 710, a downmix processing unit 720, and a multi-channel decoder 730. Referring to FIG. 8, an apparatus for processing an audio signal 800 (hereinafter simply 'a decoder 800') may include an nformation generating unit 810 and a multi-channel synthesis unit 840 having a multi-channel decoder 830. The decoder 800 may be another aspect of the decoder 700. In other words, the information generating unit 810 has the same configuration of the information generating unit 710, the multi-channel decoder 830 has the same nit 840 may has the same configuration of the downmix processing unit 720 and rulti-channel unit 730. Therefore, elements of the decoder 700 shall be explained in etails, but details of elements of the decoder 800 shall be omitted. The information generating unit 710 can be configured to receive a side iformation including an object parameter from an encoder and a mix information om an user-interface, and to generate a multi-channel parameter to be outputted the multi-channel decoder 730. From this point of view, the information enerating unit 710 has the same configuration of the former information enerating unit 210 of FIG. 2. The downmix processing parameter may correspond a parameter for controlling object gain and object panning. For example, it is able o change either the object position or the object gain in case that the object signal is ocated at both left channel and right channel. It is also able to render the object ignal to be located at opposite position in case that the object signal is located at nly one of left channel and right channel. In order that these cases are performed, he downmix processing unit 720 can be a TBT module (2x2 matrix operation). In ase that the information generating unit 710 can be configured to generate ADG lescribed with reference to FIG 2. in order to control object gain, the downmix processing parameter may include parameter for controlling object panning but bject gain. WO 2008/069594 PCT/KR2007/006316 Furthermore, the information generating unit 710 can be configured to ceive HRTF information from HRTF database, and to generate an extra multi-annel parameter including a HRTF parameter to be inputted to the multi-channel ecoder 730. In this case, the information generating unit 710 may generate multi-annel parameter and extra multi-channel parameter in the same subband domain and transmit in syncronization with each other to the multi-channel decoder 730. The extra multi-channel parameter including the HRTF parameter shall be oplained in details in subclause '3. Processing Binaural Mode'. The downmix processing unit 720 can be configured to receive downmix of a audio signal from an encoder and the downmix processing parameter from the formation generating unit 710, and to decompose a subband domain signal using abband analysis filter bank. The downmix processing unit 720 can be configured generate the processed downmix signal using the downmix signal and the ownmix processing parameter. In these processing, it is able to pre-process the ownmix signal in order to control object panning and object gain. The processed ownmix signal may be inputted to the multi-channel decoder 730 to be upmixed. Furthermore, the processed downmix signal may be outputted and laybacked via speaker as well. In order to directly output the processed signal via peakers, the downmix processing unit 720 may perform synthesis filterbank using he prepossed subband domain signal and output a time-domain PCM signal. It is ble to select whether to directly output as PCM signal or input to the multihannel decoder by user selection. The multi-channel decoder 730 can be configured to generate multi-channel utput signal using the processed downmix and the multi-channel parameter. The nulti-channel decoder 730 may introduce a delay when the processed downmix ignal and the multi-channel parameter are inputted in the multi-channel decoder 30. The processed downmix signal can be synthesized in frequency domain (ex: 2MF domain, hybrid QMF domain, etc.), and the multi-channel parameter can be synthesized in time domain. In MPEG surround standard, delay and synchronization for connecting HE-AAC is introduced. Therefore, the multi-channel decoder 730 may introduce the delay according to MPEG Surround standard. The configuration of downmix processing unit 720 shall be explained in detail with reference to FIG. $9 \sim FIG$. 13. #### 1.3.1 A general case and special cases of downmix processing unit FIG. 9 is an exemplary block diagram to explain to basic concept of rendering unit. Referring to FIG. 9, a rendering module 900 can be configured to generate M output signals using N input signals, a playback configuration, and a user control. The N input signals may correspond to either object signals or channel signals. Furthermore, the N input signals may correspond to either object arameter or multi-channel parameter. Configuration of the rendering module 900 in be implemented in one of downmix processing unit 720 of FIG. 7, the former endering unit 120 of FIG. 1, and the former renderer 110a of FIG. 1, which does not ut limitation on the present invention. If the rendering module 900 can be configured to directly generate M hannel signals using N object signals without summing individual object signals orresponding certain channel, the configuration of the rendering module 900 can e represented the following formula 11. [formula 11] $$C = RO$$ $$\begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_M \end{bmatrix} = \begin{bmatrix} R_{11} & R_{21} & \cdots & R_{N1} \\ R_{12} & R_{22} & \cdots & R_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ R_{1M} & R_{2M} & \cdots & R_{NM} \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_N \end{bmatrix}$$ Ci is a ith channel signal, O_j is jth input signal, and \mathbf{R}_{ji} is a matrix mapping jth nput signal to ith channel. If R matrix is separated into energy component E and de-correlation component, the formula 11 may be represented as follow. [formula 12] $$C = RO = EO + DO$$ $$\begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_M \end{bmatrix} = \begin{bmatrix} E_{11} & E_{21} & \cdots & E_{N1} \\ E_{12} & E_{22} & \cdots & E_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ E_{1M} & E_{2M} & \cdots & E_{NM} \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_N \end{bmatrix} + \begin{bmatrix} D_{11} & D_{21} & \cdots & D_{N1} \\ D_{12} & D_{22} & \cdots & D_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ D_{1M} & D_{2M} & \cdots & D_{NM} \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_N \end{bmatrix}$$ It is able to control object positions using the energy component E, and it is ble to control object diffuseness using the de-correlation component D. Assuming that only i^{th} input signal is inputted to be outputted via j^{th} channel and k^{th} channel, the formula 12 may be represented as follow. [formula 13] $$\begin{aligned} \mathbf{C}_{jk_i} &= \mathbf{R}_i \mathbf{O}_i \\ \begin{bmatrix} C_{j_i} \\ C_{k_i} \end{bmatrix} &= \begin{bmatrix} \alpha_{j_i} \cos(\theta_{j_i}) & \alpha_{j_i} \sin(\theta_{j_i}) \\ \beta_{k_i} \cos(\theta_{k_i}) & \beta_{k_i} \sin(\theta_{k_i}) \end{bmatrix} \begin{bmatrix} o_i \\ D(o_i) \end{bmatrix} \end{aligned}$$ α_{j_i} is gain portion mapped to j^{th} channel, β_{k_i} is gain portion mapped to k^{th}
thannel, θ is diffuseness level, and $D(o_i)$ is de-correlated output. Assuming that de-correlation is omitted, the formula 13 may be simplified as follow. [formula 14] $$\mathbf{C}_{jk_{-}i} = \mathbf{R}_{i}\mathbf{O}_{i}$$ $$\begin{bmatrix} C_{j_{-}i} \\ C_{k_{-}i} \end{bmatrix} = \begin{bmatrix} \alpha_{j_{-}i}\cos(\theta_{j_{-}i}) \\ \beta_{k_{-}i}\cos(\theta_{k_{-}i}) \end{bmatrix} o_{i}$$ If weight values for all inputs mapped to certain channel are estimated cording to the above-stated method, it is able to obtain weight values for each namel by the following method. 1) Summing weight values for all inputs mapped to certain channel. For example, in case that input 1 O_1 and input 2 O_2 is inputted and output channel corresponds to left channel L, center channel C, and right channel R, a total weight values $\alpha_{L(tot)}$, $\alpha_{C(tot)}$, $\alpha_{R(tot)}$ may be obtained as follows: [formula 15] $$\alpha_{L(tot)} = \alpha_{L1}$$ $$\alpha_{C(tot)} = \alpha_{C1} + \alpha_{C2}$$ $$\alpha_{R(tot)} = \alpha_{R2}$$ where α_{L1} is a weight value for input 1 mapped to left channel L, α_{C1} is a veight value for input 1 mapped to center channel C, α_{C2} is a weight value for nput2 mapped to center channel C, and α_{R2} is a weight value for input 2 mapped o right channel R. In this case, only input 1 is mapped to left channel, only input 2 is mapped to right channel, input 1 and input 2 is mapped to center channel together. 2) Summing weight values for all inputs mapped to certain channel, then dividing the sum into the most dominant channel pair, and mapping decorrelated signal to the other channel for surround effect. In this case, the dominant channel pair may correspond to left channel and center channel in case that certain input is positioned at point between left and center. - 3) Estimating weight value of the most dominant channel, giving attenuated correlated signal to the other channel, which value is a relative value of the estimated weight value. - 4) Using weight values for each channel pair, combining the de-correlated signal properly, then setting to a side information for each channel. # 1.3.2 A case that downmix processing unit includes a mixing part orresponding to 2x4 matrix FIGS. 10A to 10C are exemplary block diagrams of a first embodiment of a lownmix processing unit illustrated in FIG. 7. As previously stated, a first embodiment of a downmix processing unit 720a (hereinafter simply 'a downmix processing unit 720a') may be implementation of rendering module 900. First of all, assuming that $D_{11}=D_{21}=aD$ and $D_{12}=D_{22}=bD$, the ormula 12 is simplified as follow. [formula 15] $$\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} E_{11} & E_{21} \\ E_{12} & E_{22} \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \end{bmatrix} + \begin{bmatrix} aD & aD \\ bD & bD \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \end{bmatrix}$$ The downmix processing unit according to the formula 15 is illustrated FIG. 1A. Referring to FIG. 10A, a downmix processing unit 720a can be configured to ypass input signal in case of mono input signal (m), and to process input signal in ase of stereo input signal (L, R). The downmix processing unit 720a may include a e-correlating part 722a and a mixing part 724a. The de-correlating part 722a has a e-correlator aD and de-correlator bD which can be configured to de-correlate uput signal. The de-correlating part 722a may correspond to a 2x2 matrix. The nixing part 724a can be configured to map input signal and the de-correlated ignal to each channel. The mixing part 724a may correspond to a 2x4 matrix. Secondly, assuming that $D_{11}=aD_1$, $D_{21}=bD_1$, $D_{12}=cD_2$, and $D_{22}=dD_2$, the formula 12 is simplified as follow. [formula 15-2] $$\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} E_{11} & E_{21} \\ E_{12} & E_{22} \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \end{bmatrix} + \begin{bmatrix} aD_1 & bD_1 \\ cD_2 & dD_2 \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \end{bmatrix}$$ The downmix processing unit according to the formula 15 is illustrated FIG. 10B. Referring to FIG. 10B, a de-correlating part 722' including two de-correlators D_1 , D_2 can be configured to generate de-correlated signals $D_1(a*O_1+b*O_2)$, $D_2(c*O_1+d*O_2)$. Thirdly, assuming that $D_{11}=D_1$, $D_{21}=0$, $D_{12}=0$, and $D_{22}=D_2$, the formula 12 is simplified as follow. [formula 15-3] $$\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} E_{11} & E_{21} \\ E_{12} & E_{22} \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \end{bmatrix} + \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \end{bmatrix}$$ The downmix processing unit according to the formula 15 is illustrated FIG. 0C. Referring to FIG. 10C, a de-correlating part 722" including two de-correlators D_1 , D_2 can be configured to generate de-correlated signals $D_1(O_1)$, $D_2(O_2)$. # 1.3.2 A case that downmix processing unit includes a mixing part corresponding to 2x3 matrix The foregoing formula 15 can be represented as follow: [formula 16] $$\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} E_{11} & E_{21} \\ E_{12} & E_{22} \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \end{bmatrix} + \begin{bmatrix} aD(O_1 + O_2) \\ bD(O_1 + O_2) \end{bmatrix}$$ $$= \begin{bmatrix} E_{11} & E_{21} & \alpha \\ E_{12} & E_{22} & \beta \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \\ D(O_1 + O_2) \end{bmatrix}$$ The matrix $\bf R$ is a 2x3 matrix, the matrix $\bf O$ is a 3x1 matrix, and the $\bf C$ is a 2x1 matrix. FIG. 11 is an exemplary block diagram of a second embodiment of a downmix processing unit illustrated in FIG. 7. As previously stated, a second embodiment of a downmix processing unit 720b (hereinafter simply 'a downmix processing unit 720b') may be implementation of rendering module 900 like the downmix processing unit 720a. Referring to FIG. 11, a downmix processing unit Note the configured to skip input signal in case of mono input signal (m), and to cocess input signal in case of stereo input signal (L, R). The downmix processing nit 720b may include a de-correlating part 722b and a mixing part 724b. The deprelating part 722b has a de-correlator D which can be configured to de-correlate uput signal O₁, O₂ and output the de-correlated signal D(O₁+O₂). The deprelating part 722b may correspond to a 1x2 matrix. The mixing part 724b can be onfigured to map input signal and the de-correlated signal to each channel. The nixing part 724b may correspond to a 2x3 matrix which can be shown as a matrix in the formula 16. Furthermore, the de-correlating part 722b can be configured to de-correlate a lifference signal O₁-O₂ as common signal of two input signal O₁, O₂. The mixing part 724b can be configured to map input signal and the de-correlated common ignal to each channel. # 1.3.3 A case that downmix processing unit includes a mixing part with several matrixes Certain object signal can be audible as a similar impression anywhere without being positioned at a specified position, which may be called as a 'spatial sound signal'. For example, applause or noises of a concert hall can be an example of the spatial sound signal. The spatial sound signal needs to be playback via all speakers. If the spatial sound signal playbacks as the same signal via all speakers, it hard to feel spatialness of the signal because of high inter-correlation (IC) of the gnal. Hence, there's need to add correlated signal to the signal of each channel gnal. FIG. 12 is an exemplary block diagram of a third embodiment of a downmix coessing unit illustrated in FIG. 7. Referring to FIG.12, a third embodiment of a pwnmix processing unit 720c (hereinafter simply 'a downmix processing unit 20c') can be configured to generate spatial sound signal using input signal O_i , hich may include a de-correlating part 722c with N de-correlators and a mixing art 724c. The de-correlating part 722c may have N de-correlators D_1 , D_2 , ..., D_N which can be configured to de-correlate the input signal O_i . The mixing part 724c may have N matrix R_i , R_k , ..., R_i which can be configured to generate output signals P_i , P_i , ..., P_i which can be configured to generate output signals P_i , P_i , ..., P_i using the input signal P_i and the de-correlated signal P_i . The P_i natrix can be represented as the following formula. [formula 17] $$\mathbf{C}_{j_i} = \mathbf{R}_j \mathbf{O}_i$$ $$C_{j_{-}i} = \begin{bmatrix} \alpha_{j_{-}i} \cos(\theta_{j_{-}i}) & \alpha_{j_{-}i} \sin(\theta_{j_{-}i}) \end{bmatrix} \begin{bmatrix} o_i \\ Dx(o_i) \end{bmatrix}$$ O_i is i^{th} input signal, R_j is a matrix mapping i^{th} input signal O_i to j^{th} channel, and $C_{i,i}$ is j^{th} output signal. The $\theta_{j,i}$ value is de-correlation rate. The θ_{j_i} value can be estimated base on ICC included in multi-channel varameter. Furthermore, the mixing part 724c can generate output signals base on patialness information composing de-correlation rate θ_{j_i} received from usernterface via the information generating unit 710, which does not put limitation on present invention. The number of de-correlators (N) can be equal to the number of output hannels. On the other hand, the de-correlated signal can be added to output hannels selected by user. For example, it is able to position certain spatial sound ignal at left, right, and center and to output as a spatial sound signal via left hannel speaker. # 1.3.4 A case that downmix processing unit includes a further downmixing part FIG. 13 is an exemplary block diagram of a fourth embodiment of a downmix processing unit illustrated in FIG. 7. A fourth embodiment of a downmix processing unit 720d (hereinafter simply 'a downmix processing unit 720d') can be configured to bypass if the input signal corresponds to a mono signal (m). The downmix processing unit 720d includes a further downmixing
part 722d which can be configured to downmix the stereo signal to be mono signal if the input signal corresponds to a stereo signal. The further downmixed mono channel (m) is used is input to the multi-channel decoder 730. The multi-channel decoder 730 can ontrol object panning (especially cross-talk) by using the mono input signal. In us case, the information generating unit 710 may generate a multi-channel arameter base on 5-1-51 configuration of MPEG Surround standard. Furthermore, if gain for the mono downmix signal like the above-mentioned rtistic downmix gain ADG of FIG. 2 is applied, it is able to control object panning nd object gain more easily. The ADG may be generated by the information enerating unit 710 based on mix information. # 2. Upmixing channel signals and controlling object signals FIG. 14 is an exemplary block diagram of a bitstream structure of a ompressed audio signal according to a second embodiment of present invention. $^{\circ}$ IG. 15 is an exemplary block diagram of an apparatus for processing an audio signal according to a second embodiment of present invention. Referring to (a) of $^{\circ}$ IG. 14, downmix signal α , multi-channel parameter β , and object parameter γ are included in the bitstream structure. The multi-channel parameter β is a parameter for upmixing the downmix signal. On the other hand, the object parameter γ is a parameter for controlling object panning and object gain. Referring to (b) of FIG. 14, downmix signal α , a default parameter β' , and object parameter γ are included in the bitstream structure. The default parameter β' may include preset information for controlling object gain and object panning. The preset information may orrespond to an example suggested by a producer of an encoder side. For example, reset information may describes that guitar signal is located at a point between eft and center, and guitar's level is set to a certain volume, and the number of utput channel in this time is set to a certain channel. The default parameter for ither each frame or specified frame may be present in the bitstream. Flag information indicating whether default parameter for this frame is different from lefault parameter of previous frame or not may be present in the bitstream. By including default parameter in the bitstream, it is able to take less bitrates than side information with object parameter is included in the bitstream. Furthermore, leader information of the bitstream is omitted in the FIG. 14. Sequence of the bitstream can be rearranged. Referring to FIG. 15, an apparatus for processing an audio signal according o a second embodiment of present invention 1000 (hereinafter simply 'a decoder 000') may include a bitstream de-multiplexer 1005, an information generating unit 010, a downmix processing unit 1020, and a multil-channel decoder 1030. The denultiplexer 1005 can be configured to divide the multiplexed audio signal into a lownmix α , a first multi-channel parameter β , and an object parameter γ . The nformation generating unit 1010 can be configured to generate a second multi-channel parameter using an object parameter γ and a mix parameter. The mix parameter comprises a mode information indicating whether the first multi- nannel information β is applied to the processed downmix. The mode information any corresponds to an information for selecting by a user. According to the mode information, the information generating information 1020 decides whether to ansmit the first multi-channel parameter β or the second multi-channel parameter. The downmix processing unit 1020 can be configured to determining a rocessing scheme according to the mode information included in the mix nformation. Furthermore, the downmix processing unit 1020 can be configured to rocess the downmix α according to the determined processing scheme. Then the lownmix processing unit 1020 transmits the processed downmix to multi-channel lecoder 1030. The multi-channel decoder 1030 can be configured to receive either the first nulti-channel parameter β or the second multi-channel parameter. In case that lefault parameter β' is included in the bitstream, the multi-channel decoder 1030 can use the default parameter β' instead of multi-channel parameter β . Then, the multi-channel decoder 1030 can be configured to generate multi-channel output using the processed downmix signal and the received multi-channel parameter. The multi-channel decoder 1030 may have the same configuration of the former multi-channel decoder 730, which does not put limitation on the present invention. #### 3. Binaural Processing A multi-channel decoder can be operated in a binaural mode. This enables a nulti-channel impression over headphones by means of Head Related Transfer function (HRTF) filtering. For binaural decoding side, the downmix signal and nulti-channel parameters are used in combination with HRTF filters supplied to he decoder. FIG. 16 is an exemplary block diagram of an apparatus for processing an audio signal according to a third embodiment of present invention. Referring to FIG. 16, an apparatus for processing an audio signal according to a third embodiment (hereinafter simply 'a decoder 1100') may comprise an information generating unit 1110, a downmix processing unit 1120, and a multi-channel decoder 1130 with a sync matching part 1130a. The information generating unit 1110 may have the same configuration of the information generating unit 710 of FIG. 7, with generating dynamic HRTF. The downmix processing unit 1120 may have the same configuration of the downmix processing unit 720 of FIG. 7. Like the preceding elements, multi-channel decoder 1130 except for the sync matching part 1130a is the same case of the former elements. Hence, details of the information generating unit 1110, the downmix processing unit 1120, and the multi-channel decoder 1130 shall be omitted. The dynamic HRTF describes the relation between object signals and virtual peaker signals corresponding to the HRTF azimuth and elevation angles, which is ime-dependent information according to real-time user control. The dynamic HRTF may correspond to one of HTRF filter coefficients itself, arameterized coefficient information, and index information in case that the nulti-channel decoder comprise all HRTF filter set. There's need to match a dynamic HRTF information with frame of downmix ignal regardless of kind of the dynamic HRTF. In order to match HRTF nformation with downmix signal, it able to provide three type of scheme as ollows: - 1) Inserting a tag information into each HRTF information and bitstream lownmix signal, then matching the HRTF with bitstream downmix signal based on he inserted tag information. In this scheme, it is proper that tag information may be included in ancillary field in MPEG Surround standard. The tag information nay be represented as a time information, a counter information, a index nformation, etc. - 2) Inserting HRTF information into frame of bitstream. In this scheme, it is possible to set to mode information indicating whether current frame corresponds of a default mode or not. If the default mode which describes HRTF information of arrent frame is equal to the HRTF information of previous frame is applied, it is also be to reduce bitrates of HRTF information. - 2-1) Furthermore, it is possible to define transmission information indicating 'hether HRTF information of current frame has already transmitted. If the 'ansmission information which describes HRTF information of current frame is qual to the transmitted HRTF information of frame is applied, it is also possible to educe bitrates of HRTF information. - 3) Transmitting several HRTF informations in advance, then transmitting lentifying information indicating which HRTF among the transmitted HRTF aformations per each frame. Furthermore, in case that HTRF coefficient varies suddenly, distortion may be generated. In order to reduce this distortion, it is proper to perform smoothing of coefficient or the rendered signal. #### 4. Rendering FIG. 17 is an exemplary block diagram of an apparatus for processing an audio signal according to a fourth embodiment of present invention. The apparatus for processing an audio signal according to a fourth embodiment of present invention 1200 (hereinafter simply 'a processor 1200') may comprise an encoder 1210 at encoder side 1200A, and a rendering unit 1220 and a synthesis unit 1230 at ecoder side 1200B. The encoder 1210 can be configured to receive multi-channel bject signal and generate a downmix of audio signal and a side information. The endering unit 1220 can be configured to receive side information from the encoder 210, playback configuration and user control from a device setting or a user-nterface, and generate rendering information using the side information, playback onfiguration, and user control. The synthesis unit 1230 can be configured to ynthesis multi-channel output signal using the rendering information and the eceived downmix signal from an encoder 1210. #### 4.1 Applying effect-mode The effect-mode is a mode for remixed or reconstructed signal. For example, ive mode, club band mode, karaoke mode, etc may be present. The effect-mode nformation may correspond to a mix parameter set generated by a producer, other iser, etc. If the effect-mode information is applied, an end user don't have to control object panning and object gain in full because user can select one of predetermined effect-mode informations. Two methods of generating an effect-mode information can be distinguished. First of all, it is possible that an effect-mode information is generated by encoder 1200A and transmitted to the decoder 1200B. Secondly, the effect-mode information may be generated automatically at the decoder side. Details of two methods shall be described as follow. ### 4.1.1
Transmitting effect-mode information to decoder side The effect-mode information may be generated at an encoder 1200A by a roducer. According to this method, the decoder 1200B can be configured to eceive side information including the effect-mode information and output usernterface by which a user can select one of effect-mode informations. The decoder 200B can be configured to generate output channel base on the selected effect-node information. Furthermore, it is inappropriate to hear downmix signal as it is for a listener n case that encoder 1200A downmix the signal in order to raise quality of object signals. However, if effect-mode information is applied in the decoder 1200B, it is possible to playback the downmix signal as the maximum quality. #### 4.1.2 Generating effect-mode information in decoder side The effect-mode information may be generated at a decoder 1200B. The decoder 1200B can be configured to search appropriate effect-mode informations for the downmix signal. Then the decoder 1200B can be configured to select one of the searched effect-mode by itself (automatic adjustment mode) or enable a user to select one of them (user selection mode). Then the decoder 1200B can be configured to obtain object information (number of objects, instrument names, etc) included in side information, and control object based on the selected effect-mode information and the object information. Furthermore, it is able to control similar objects in a lump. For example, nstruments associated with a rhythm may be similar objects in case of 'rhythm mpression mode'. Controlling in a lump means controlling each object imultaneously rather than controlling objects using the same parameter. Furthermore, it is able to control object based on the decoder setting and levice environment (including whether headphones or speakers). For example, object corresponding to main melody may be emphasized in case that volume setting of device is low, object corresponding to main melody may be repressed in case that volume setting of device is high. 4.2 Object type of input signal at encoder side The input signal inputted to an encoder 1200A may be classified into three types as follow. 1) Mono object (mono channel object) Mono object is most general type of object. It is possible to synthesis internal downmix signal by simply summing objects. It is also possible to synthesis internal downmix signal using object gain and object panning which may be one of user control and provided information. In generating internal downmix signal, it is also possible to generate rendering information using at least one of object characteristic, user input, and information provided with object. In case that external downmix signal is present, it is possible to extract and ansmit information indicating relation between external downmix and object. ## 2) Stereo object (stereo channel object) It is possible to synthesis internal downmix signal by simply summing pjects like the case of the former mono object. It is also possible to synthesis ternal downmix signal using object gain and object panning which may be one of ser control and provided information. In case that downmix signal corresponds to mono signal, it is possible that encoder 1200A use object converted into mono gnal for generating downmix signal. In this case, it is able to extract and transfer nformation associated with object (ex: panning information in each time-frequency omain) in converting into mono signal. Like the preceding mono object, in enerating internal downmix signal, it is also possible to generate rendering nformation using at least one of object characteristic, user input, and information provided with object. Like the preceding mono object, in case that external lownmix signal is present, it is possible to extract and transmit information ndicating relation between external downmix and object. # 3) Multi-channel object In case of multi-channel object, it is able to perform the above mentioned nethod described with mono object and stereo object. Furthermore, it is able to nput multi-channel object as a form of MPEG Surround. In this case, it is able to enerate object-based downmix (ex: SAOC downmix) using object downmix nannel, and use multi-channel information (ex: spatial information in MPEG urround) for generating multi-channel information and rendering information. Ience, it is possible to reduce computing amount because multi-channel object resent in form of MPEG Surround don't have to decode and encode using object-riented encoder (ex: SAOC encoder). If object downmix corresponds to stereo and bject-based downmix (ex: SAOC downmix) corresponds to mono in this case, it is ossible to apply the above-mentioned method described with stereo object. ### 4) Transmitting scheme for variable type of object As stated previously, variable type of object (mono object, stereo object, and multi-channel object) may be transmitted from the encoder 1200A to the decoder. 1200B. Transmitting scheme for variable type of object can be provided as follow: Referring to FIG. 18, when the downmix includes a plural object, a side nformation includes information for each object. For example, when a plural object consists of Nth mono object (A), left channel of N+1th object (B), and right channel of N+1th object (C), a side information includes information for 3 objects (A, B, C). The side information may comprise correlation flag information indicating whether an object is part of a stereo or multi-channel object, for example, mono object, one channel (L or R) of stereo object, and so on. For example, correlation flag information is '0' if mono object is present, correlation flag information is '1' if one annel of stereo object is present. When one part of stereo object and the other part stereo object is transmitted in succession, correlation flag information for other art of stereo object may be any value (ex: '0', '1', or whatever). Furthermore, or other part of stereo object may be not transmitted. Furthermore, in case of multi-channel object, correlation flag information for ne part of multi-channel object may be value describing number of multi-channel bject. For example, in case of 5.1 channel object, correlation flag information for the channel of 5.1 channel may be '5', correlation flag information for the other hannel (R, Lr, Rr, C, LFE) of 5.1 channel may be either '0' or not transmitted. ### 4.3 Object attribute Object may have the three kinds of attribute as follows: ## a) Single object Single object can be configured as a source. It is able to apply one parameter o single object for controlling object panning and object gain in generating lownmix signal and reproducing. The 'one parameter' may mean not only one parameter for all time/frequency domain but also one parameter for each ime/frequency slot. ### b) Grouped object Single object can be configured as more than two sources. It is able to apply one parameter to grouped object for controlling object panning and object gain object shall be explained with reference to FIG. 19 as follows: Referring to FIG. 19, in encoder 1300 includes a grouping unit 1310 and a downmix unit 1320. The grouping unit 1310 can be configured to group at least two objects among inputted multi-object input, base on a grouping information. The grouping information may be generated by producer at encoder side. The downmix unit 1320 can be configured to generate downmix signal using the grouped object generated by the grouping unit 1310. The downmix unit 1320 can be configured to generate a side information for the grouped object. #### c) Combination object Combination object is an object combined with at least one source. It is possible to control object panning and gain in a lump, but keep relation between combined objects unchanged. For example, in case of drum, it is possible to control drum, but keep relation between base drum, tam-tam, and symbol unchanged. For example, when base drum is located at center point and symbol is located at left point, it is possible to positioning base drum at right point and positioning symbol at point between center and right in case that drum is moved to right direction. Relation information between combined objects may be transmitted to a decoder. On the other hand, decoder can extract the relation information using combination object. #### 4.4 Controlling objects hierarchically It is able to control objects hierarchically. For example, after controlling a rum, it is able to control each sub-elements of drum. In order to control objects ierarchically, three schemes is provided as follows: #### a) UI (user interface) Only representative element may be displayed without displaying all objects. It the representative element is selected by a user, all objects display. #### b) Object grouping After grouping objects in order to represent representative element, it is possible to control representative element to control all objects grouped as epresentative element. Information extracted in grouping process may be ransmitted to a decoder. Also, the grouping information may be generated in a lecoder. Applying control information in a lump can be performed based on preletermined control information for each element. # c) Object configuration It is possible to use the above-mentioned combination object. Information concerning element of combination object can be generated in either an encoder or a decoder. Information concerning elements from an encoder can be transmitted as a different form from information concerning combination object. It will be apparent to those skilled in the art that various modifications and ariations can be made in the present invention without departing from the spirit scope of the inventions. Thus, it is intended that the present invention covers the iodifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. # [Industrial
Applicability] Accordingly, the present invention is applicable to encode and decode an udio signal. #### [CLAIMS] 1. A method for processing an audio signal, comprising: receiving a downmix signal in time domain; if the downmix signal corresponds to a mono signal, bypassing the downmix signal; if the number of channel of the downmix signal corresponds to at least two, decomposing the downmix signal into a subband signal, and processing the subband signal using a downmix processing information, wherein the downmix processing information is estimated based on an object information and a mix information. - 2. The method of claim 1, wherein the number of channel of the downmix signal is equal to the number of channel of the processed downmix signal. - The method of claim 1, wherein the object information is included in a side information, and the side information includes a correlation flag information indicating whether an object is part of at least two channel object. - 4. The method of claim 1, wherein the object information includes at least one of an object level information and an object correlation information. - 5. The method of claim 1, wherein the downmix processing information corresponds to an information for controlling object panning if the number of channel the downmix signal corresponds to at least two. - 6. The method of claim 1, wherein the downmix processing information corresponds to an information for controlling object gain. 7. The method of claim 1, further comprising: generating a multi-channel signal using the processed subband signal. 8. The method of claim 7, further comprising generating a multi-channel information using the object information and the mix information, wherein the multi-channel signal is generated based on the multichannel information. 9. The method of claim 1, further comprising: downmixing the downmix signal to be a mono signal if the downmix signal corresponds to a stereo signal. - 10. The method of claim 1, wherein the mix information is generated using at least one of an object position information and a playback configuration information. - 11. The method of claim 1, wherein the downmix signal is received as a broadcast signal. - 12. The method of claim 1, wherein the downmix signal is received on a digital medium. 13. A computer-readable medium having instructions stored thereon, which, when executed by a processor, causes the processor to perform operations, comprising: receiving a downmix signal in time domain; if the downmix signal corresponds to a mono signal, bypassing the downmix signal; if the number of channel of the downmix signal corresponds to at least two, decomposing the downmix signal into a subband signal, and processing the subband signal using a downmix processing information, wherein the downmix processing information is estimated based on an object information and a mix information. - 14. An apparatus for processing an audio signal, comprising: - a receiving unit receiving a downmix signal in time domain; and, - a downmix processing unit bypassing the downmix signal if the downmix signal corresponds to a mono signal, and decomposing the downmix signal into a subband signal and processing the subband signal using a downmix processing information if the number of channel of the downmix signal corresponds to at least two, wherein the downmix processing information is estimated based on an object information and a mix information. 1/21 FIG. 1 100 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 FIG. 9 FIG. 10A 11/21 FIG. 10B 720a' FIG. 10C 13/21 FIG. 11 720b 14/21 FIG. 12 720c FIG. 13 FIG. 14 | (α) Downmix | (β) Multichannel
Parameter | (½) Object
Parameter | |-------------|-------------------------------|-------------------------| | | (a) | | | (α) Downmix | (β') Default
Parameter | (火) Object
Parameter | | | (q) | | FIG. 15 18/21 FIG. 16 1100 FIG. 17 FIG. 18 FIG. 19 ### INTERNATIONAL SEARCH REPORT International application No. PCT/KR2007/006316 #### CLASSIFICATION OF SUBJECT MATTER G10L 19/00(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC ### FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 8 H04S 3/02 H04S 5/00 H04R 5/00 H04B 1/00 H04B 1/20 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched KOREAN UTILITY MODELS AND APPLICATIONS FOR UTILITY MODELS SINCE 1975 JAPANESE UTILITY MODELS AND APPLICATIONS FOR UTILITY MODELS SINCE 1975 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) eKIPASS(KIPO internal) "AUDIO""DOWNMIX*""CHANNEL" ## DOCUMENTS CONSIDERED TO BE RELEVANT | Category* | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | |-----------|---|-----------------------| | A | WO 2005/086139 A1 (DOLBY LABORATORIES LICENSING CO) 15 SEPTEMBER 2005
See Fig 1, Fig 2, Page 9 Line 1 ~ Page 16 Line 4 | 1, 13, 14 | | A | US 2006/0133618 A1 (VILEMOES et al.) 22 JUNE 2006
See Fig 3, Fig 4, Paragraph [0088] ~ [0124] | 1, 13, 14 | | A | US 2006/0115100 A1 (FALLER) 01 JUNE 2006
See Fig 2, Abstract | 14 | | A | JP 18-323408 A (JAPAN VICTOR CO) 30 NOVEMBER 2006
See Paragraph [0005] – [0007] | 14 | | | | | | | | | | | | | | | | | | Further documents are listed in the continuation of Bo | хC. | |--|-----| |--|-----| See patent family annex. - Special categories of cited documents: - document defining the general state of the art which is not considered to be of particular relevance - earlier application or patent but published on or after the international filing date - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified) - document referring to an oral disclosure, use, exhibition or other - document published prior to the international filing date but later than the priority date claimed - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention - document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone - document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art - "&" document member of the same patent family Date of the actual completion of the international search 17 MARCH 2008 (17.03.2008) Date of mailing of the international search report 17 MARCH 2008 (17.03.2008) Name and mailing address of the ISA/KR Korean Intellectual Property Office Government Complex-Daejeon, 139 Seonsa-ro, Seogu, Daejeon 302-701, Republic of Korea Facsimile No. 82-42-472-7140 Authorized officer SUH, Hawthorne Telephone No. 82-42-481-5670 # INTERNATIONAL SEARCH REPORT Information on patent family members International application No. # PCT/KR2007/006316 | Patent document cited in search report | Publication
date | Patent family member(s) | Publication date | |--|---------------------|-------------------------|------------------| | W02005086139A1 | 15.09.2005 | AU2005219956A1 | 15.09.2005 | | | | AU2005219956AA | 15.09.2005 | | | | BR200508343A | 24.07.2007 | | | | CA2556575AA | 15.09.2005 | | | | CA2556575A1 | 15.09.2005 | | | | CN1926607A | 07.03.2007 | | | | EP01721312A1 | 15.11.2006 | | | | EP1721312A1 | 15.11.2006 | | | | JP19526522 | 13.09.2007 | | | | JP2007526522T2 | 13.09.2007 | | | | KR1020060132682 | 21.12.2006 | | | | KR2006132682A | 21.12.2006 | | | | US20060212686A1 | 21.09.2006 | | | | US20070140499A1 | 21.06.2007 | | | | US20070148309A1 | 28.06.2007 | | | | US2007140499A1 | 21.06.200 | | | | US2007140499AA | 21.06.200 | | | | US2007148309A1 | 28.06.200 | | | | US2007148309AA
 | 28.06.200 | | US2006133618A1 | 22.06.2006 | US2006133618AA | 22.06.200 | | US2006115100A1 | 01.06.2006 | EP01817768A2 | 15.08.2007 | | | | EP1817768A2 | 15.08.200 | | | | KR1020070094752 | 21.09.200 | | | | KR2007094752A | 21.09.200 | | | | US2006115100AA | 01.06.2006 | | | | W02006060280A2 | 08.06.200 | | | | W02006060280C1 | 15.03.200 | | | | W02006060280A3 | 14.09.200 | | JP18323408A | 30.11.2006 | JP2006323408A2 | 30.11.200 |