(12) 公 開 特 許 公 報(A)

(11) 特許出願公開番号

特開2005-64523 (P2005-64523A)

(43) 公開日 平成17年3月10日 (2005.3.10)

(51) Int.C1. ⁷	FI			テーマコード	(参考)
HO1L 21/822	HO1L	27/04	С	5E082	
HO1G 4/33	HO1G	13/00 3	391C	5F038	
HO1G 13/00	HO1L	21/316	М	5F058	
HO1L 21/316	HOIL	27/10 €	521Z	5F083	
HO11 21/8242	9 H01L	27/10 6	351		
	審査請求 未	請求 請求項	の数 33 O	L (全 12 頁)	最終頁に続く
 (21)出願番号 (22)出願日 (31)優先権主張番号 (32)優先日 (33)優先権主張国 	特願2004-237223 (P2004-237223) 平成16年8月17日 (2004.8.17) 2003-056857 平成15年8月18日 (2003.8.18) 韓国 (KR)	(71) 出願人 (74) 代理人 (72) 発明者 (72) 発明者	390019839 三 二	:式会社 畿道水原市靈通区 野 道造 京畿道 龍仁市 530 アパート 106 ソウル特別市 324 207号	梅灘洞416 豊▲徳▼川2 - 1番地 泰 棟 老區 高尺1 番地 信元プ
				最	終頁に続く

(54) 【発明の名称】半導体装置のキャパシタとその製造方法、およびそのキャパシタを備えるメモリ装置

(57)【要約】

【課題】 誘電膜とその誘電膜が蒸着される下部電極の 間の望ましくない反応を防止でき、ALD法を利用した 誘電膜の形成過程で誘電膜に多量の水蒸気が吸収される ことを防止して、誘電膜の電気的な特性の低下を防止で きる。

【解決手段】 下部電極と、誘電膜と、上部電極とを含 む半導体装置のキャパシタにおいて、前記下部電極と前 記誘電膜の間に、前記下部電極と前記誘電膜の反応を防 止する第1反応防止膜を備える半導体装置のキャパシタ とその製造方法および前記キャパシタを備えるメモリ装 置。

【選択図】 図2

【特許請求の範囲】 【請求項1】 下部電極と、 前記下部電極の上に形成された誘電膜と、 前記誘電膜の上に形成された上部電極と、 前記下部電極と前記誘電膜の間に設けられた、前記下部電極と前記誘電膜の反応を防止 する第1反応防止膜と、を含むことを特徴とする半導体装置のキャパシタ。 【請求項2】 前記下部電極は、導電性不純物がドーピングされたシリコン電極であることを特徴とす る 請 求 項 1 に 記 載 の 半 導 体 装 置 の キ ャ パ シ タ 。 10 【請求項3】 前記第1反応防止膜は、前記誘電膜が含む陽イオンよりも半径が小さい陽イオンを含む 半導体装置のキャパシタ。 【請求項4】 前 記 誘 電 膜 は 、 ラ ン タ ニ ド 系 列 の 元 素 を 含 む 酸 化 膜 で あ る こ と を 特 徴 と す る 請 求 項 1 に 記載の半導体装置のキャパシタ。 【請求項5】 前 記 ラ ン タ ニ ド 系 列 の 元 素 を 含 む 酸 化 膜 が 、 L a ₂ O ₃ 膜 で あ る こ と を 特 徴 と す る 請 求 項 4に記載の半導体装置のキャパシタ。 20 【請求項6】 前記上部電極は、チタンナイトライド膜であることを特徴とする請求項1に記載の半導 体装置のキャパシタ。 【請求項7】 前記上部電極は、導電性不純物がドーピングされたシリコン電極であり、前記上部電極 と前記誘電膜の間に、さらに第2反応防止膜が設けられていることを特徴とする請求項1 に記載の半導体装置のキャパシタ。 【請求項8】 前 記 第 2 反 応 防 止 膜 は 、 前 記 誘 電 膜 が 含 む も の よ り も 半 径 の 小 さ い 陽 イ オ ン を 含 む 八 フ ニ ウ ム 酸 化 膜 ま た は ア ル ミ ニ ウ ム 酸 化 膜 で あ る こ と を 特 徴 と す る 請 求 項 7 に 記 載 の 半 導 体 30 装置のキャパシタ。 【請求項9】 前 記 誘 電 膜 は 、 ラ ン タ ニ ド 系 列 の 元 素 を 含 む 酸 化 膜 で あ る こ と を 特 徴 と す る 請 求 項 3 に 記載の半導体装置のキャパシタ。 【請求項10】 下部電極を形成する段階と、 前記下部電極の上に第1反応防止膜を形成する段階と、 前記第1反応防止膜の上に金属元素を含む前駆体層を形成する段階と、 前記前駆体層を酸化させて前記第1反応防止膜の上に前記金属元素を含む酸化膜を形成 する段階と、 40 前記酸化膜を乾燥させる段階と、 前記乾燥された酸化膜の上に上部電極を形成する段階と、を含むことを特徴とするキャ パシタの製造方法。 【請求項11】 前記上部電極を形成する前に、前記乾燥された酸化膜の上に第2反応防止膜をさらに形 成することを特徴とする請求項10に記載のキャパシタの製造方法。 【請求項12】

前記下部電極は導電性不純物がドーピングされたシリコン電極で形成し、前記上部電極 はチタンナイトライド膜で形成することを特徴とする請求項10に記載のキャパシタの製 造方法。

(3)

 (3) 3F 2003-04323 × 2003.3.10
 (3) 前記下部電極および上部電極は、導電性不純物がドーピングされたシリコン電極または チタンナイトライド膜で形成することを特徴とする請求項11に記載のキャパシタの製造 方法。
 【請求項14】
 前記上部電極および下部電極は、チタンナイトライド膜で形成することを特徴とする請 求項10に記載のキャパシタの製造方法。
 【請求項15】
 前記前駆体層を形成した後、排気工程を実施することを特徴とする請求項10に記載の キャパシタの製造方法。
 【請求項16】
 前記酸化膜を形成した後、排気工程を実施することを特徴とする請求項10に記載のキャパシタの製造方法。

【請求項17】 前記酸化膜を乾燥した後、排気工程を実施することを特徴とする請求項10に記載のキ ャパシタの製造方法。

【請求項18】

前記酸化膜を形成する段階において、前記前駆体層の上に水蒸気を流して前記前駆体層 を1次酸化させることを特徴とする請求項10に記載のキャパシタの製造方法。 【請求項19】

20

10

前記1次酸化された前駆体層の上にオゾンを供給して、前記1次酸化された前駆体層を2次酸化させることを特徴とする請求項18に記載のキャパシタの製造方法。

【請求項20】

前記酸化膜を形成する段階において、前記1次酸化および2次酸化を繰返して行なうことを特徴とする請求項19に記載のキャパシタの製造方法。

【請求項21】

前記金属元素は、ランタニド系列の元素であることを特徴とする請求項10に記載のキャパシタの製造方法。

【請求項22】

前記酸化膜を乾燥させる段階において、前記酸化膜はその上にオゾンを流して乾燥させ 30 ることを特徴とする請求項10に記載のキャパシタの製造方法。

【請求項23】

前記第1反応防止膜は、前記誘電膜が含むものよりも半径の小さい陽イオンを含むハフ ニウム酸化膜またはアルミニウム酸化膜で形成することを特徴とする請求項10に記載の キャパシタの製造方法。

【請求項24】

前記第2反応防止膜は、前記誘電膜が含むものよりも半径の小さい陽イオンを含むハフ ニウム酸化膜またはアルミニウム酸化膜で形成することを特徴とする請求項11に記載の キャパシタの製造方法。

【請求項25】

40

前記金属元素は、ランタニド系列の元素であることを特徴とする請求項18に記載のキャパシタの製造方法。

【請求項26】

前記金属元素は、ランタニド系列の元素であることを特徴とする請求項19に記載のキャパシタの製造方法。

【請求項27】

トランジスタとそれに連結されたキャパシタとを備える半導体メモリ装置において、

前記キャパシタは、

下部電極と、

前記下部電極の上に形成された誘電膜と、

前記誘電膜の上に形成された上部電極と、 前記下部電極と前記誘電膜の間に設けられた、前記下部電極と前記誘電膜の反応を防止 する第1反応防止膜と、を含むことを特徴とする半導体メモリ装置。 【請求項28】 前 記 下 部 電 極 は 導 電 性 不 純 物 が ド ー ピン グ さ れ た シ リ コ ン 電 極 で あ り 、 前 記 上 部 電 極 は チタンナイトライド電極であることを特徴とする請求項27に記載の半導体メモリ装置。 【請求項29】 前 記 第 1 反 応 防 止 膜 は 、 前 記 誘 電 膜 が 含 む も の よ り も 半 径 の 小 さ い 陽 イ オ ン を 含 む 八 フ ニウム酸化膜またはアルミニウム酸化膜であることを特徴とする請求項27に記載の半導 体メモリ装置。 【請求項30】 前記上部電極と前記誘電膜の間に、さらに第2反応防止膜が設けられていることを特徴 とする請求項27に記載の半導体メモリ装置。 【請求項31】 前 記 誘 電 膜 は 、 ラ ン タ ニ ド 系 列 の 元 素 を 含 む 酸 化 膜 で あ る こ と を 特 徴 と す る 請 求 項 2 7 に記載の半導体メモリ装置。 【請求項32】 前記第2反応防止膜は、前記誘電膜が含むものよりも半径の小さい陽イオンを含むハフ ニ ウ ム 酸 化 膜 ま た は ア ル ミ ニ ウ ム 酸 化 膜 で あ る こ と を 特 徴 と す る 請 求 項 3 0 に 記 載 の 半 導 体メモリ装置。 【請求項33】 前 記 誘 電 膜 は 、 ラ ン タ ニ ド 系 列 の 元 素 を 含 む 酸 化 膜 で あ る こ と を 特 徴 と す る 請 求 項 3 0 に記載の半導体メモリ装置。 【発明の詳細な説明】 【技術分野】 $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$ 本発明は、半導体装置およびその製造方法に係り、さらに詳細には半導体装置のキャパ シタとその製造方法、および前記キャパシタを備えるメモリ装置に関する。 【背景技術】 [0002]半 導 体 装 置 の キ ャ パ シ タ に 使 わ れ る 誘 電 膜 と し て 、 ラ ン タ ン 酸 化 膜 (L a ₂ 0 ₃)が 使 わ れている。 シリコン 層 上 に ラン タン 酸 化 膜 が 蒸 着 さ れ る 場 合 、 ラン タン 酸 化 膜 が シリ コン と 反 応 し 、その結果、キャパシタにシリケートが形成される。このシリケートの形成によって、キ ャパシタの特性が低下する。 [0003]半導体装置の集積度が高くなるにつれて、狭い領域に高静電容量を有するキャパシタを 形成することが求められている。キャパシタの静電容量は電極の表面積に比例する。した がって、キャパシタの電極を立体的に形成することによって、キャパシタの静電容量を増 加させることができる。 $\begin{bmatrix} 0 & 0 & 0 & 4 \end{bmatrix}$ 一方、キャパシタの電極が複雑な構造を有していても誘電膜の厚さおよび成分は均一で あることが望ましい。 [0005]しかし、化学気相蒸着(Chemical Vapor Deposition:CVD)方法のような既存の薄膜蒸着方法は、工程の特性上、複雑な構造を有する電極上に均一 な厚さおよび成分を有する誘電膜を形成し難い。

[0006]

50

10

20

30

そこで、最近では、原子層堆積(Atomic Layer Deposition:A LD)を利用して複雑な構造を有する下部構造物に薄膜を形成する方法が紹介されている。

【 0 0 0 7 】

ALD法を利用する場合、形成しようとする薄膜の成分を複雑な構造を有する下部構造物の深い所まで到達させることができる。したがって、薄膜の厚さの均一性および成分の均一性をある程度確保できる。

 $\begin{bmatrix} 0 & 0 & 0 & 8 \end{bmatrix}$

したがって、 A L D 法を利用する場合、複雑な構造を有するキャパシタ電極の上に均一な厚さおよび成分を有する誘電膜を形成できる。

【 0 0 0 9 】

前記ランタン酸化膜もALD法を利用して形成できる。しかし、問題は、ランタニド系列の物質が吸湿性を有しているため、ランタニド系列の物質が空気中に露出される場合、 水蒸気(H₂O)を吸収してその特性が変わることである。

すなわち、ランタン酸化膜をALD法を利用して形成する場合、ランタン前駆体層を蒸着した後、水蒸気を使用して前記ランタン前駆体層を酸化させる過程で水蒸気がランタン酸化膜内に多量に吸収される。この場合、ランタン酸化膜の電気的な特性、例えば、漏れ 電流特性が低下する。

[0011]

図1は、ALD法を利用してランタン酸化膜等の幾つかの酸化膜を形成する過程で酸化 ガスとして水蒸気を使用した時の問題点、すなわち漏れ電流密度が増加することを表す。 B1は40の厚さに形成されたアルミニウム酸化膜における漏れ電流密度を表し、B2 は45の厚さに形成されたハフニウム酸化膜における漏れ電流密度を表す。そして、B 3は前駆体、La(tmhd)₃における漏れ電流密度を表し、B4はLa(N(Si(Me)₃)₂)₃における漏れ電流密度を表す。また、B5は、La(iPrCp)₃におけ る漏れ電流密度を表す。

【発明の開示】

【発明が解決しようとする課題】

本発明が解決しようとする技術的課題は、前記従来の技術の問題点を改善するためのも のであって、誘電膜とその誘電膜が蒸着される下部電極の間の望ましくない反応を防止で き、ALD法を利用した誘電膜の形成過程で誘電膜に多量の水蒸気が吸収されることを防 止して、誘電膜の電気的な特性の低下を防止できる半導体装置のキャパシタを提供するこ とである。

[0013]

本発明が解決しようとする他の技術的課題は、前記キャパシタの製造方法を提供することである。

[0014]

本発明が解決しようとするさらに他の技術的課題は、前記キャパシタを備える半導体メ 40 モリ装置を提供することである。

【課題を解決するための手段】

【0015】

前記課題を達成するために、本発明は、下部電極と、誘電膜と、上部電極とを含む半導体装置のキャパシタにおいて、前記下部電極と前記誘電膜の間に、前記下部電極と前記誘 電膜の反応を防止する第1反応防止膜を備えることを特徴とする半導体装置のキャパシタ を提供する。

[0016]

前 記 誘 電 膜 は、 ラン タニ ド 系 列 の 元 素 を 含 む 酸 化 膜 で あ る 。 前 記 上 部 電 極 と 前 記 誘 電 膜 の 間 に 、 さ ら に 第 2 反 応 防 止 膜 が 設 け ら れ て い て も よ い 。 50

20

前 記 第 1 反 応 防 止 膜 お よ び 第 2 反 応 防 止 膜 は 、 L a ₂ O ₃ よ り イ オ ン 半 径 の 小 さ い 八 フ ニ

ウム酸化膜またはアルミニウム酸化膜である。 [0017]前記他の課題を達成するために、本発明は、下部電極を形成する段階と、前記下部電極 の上に第1反応防止膜を形成する段階と、前記第1反応防止膜の上に金属元素を含む前駆 体層を形成する段階と、前記金属元素を酸化させて前記第1反応防止膜の上に前記金属元 素を含む酸化膜を形成する段階と、前記金属元素を含む酸化膜を乾燥させる段階と、前記 乾燥された酸化膜の上に上部電極を形成する段階とを含むことを特徴とするキャパシタの 製造方法を提供する。 前記下部電極は、導電性不純物がドーピングされたシリコン電極で形成し、前記上部電 極はチタンナイトライド膜で形成できる。 [0019]前記乾燥された酸化膜と前記上部電極の間に第2反応防止膜をさらに形成できるが、こ の時、前記下部電極および前記上部電極は全て導電性不純物がドーピングされたシリコン 電極またはチタンナイトライド膜で形成する。 前記上部電極および前記下部電極は全てチタンナイトライド膜で形成できる。 $\begin{bmatrix} 0 & 0 & 2 & 1 \end{bmatrix}$ 前記前駆体層を形成した後、前記金属元素を含む酸化膜を形成した後、および前記酸化 膜を乾燥した後に、それぞれ排気工程を実施できる。 $\begin{bmatrix} 0 & 0 & 2 & 2 \end{bmatrix}$ 前記酸化膜を形成する段階で、前記前駆体層は、前記前駆体層の上に水蒸気を流して1 次酸化させる。 $\begin{bmatrix} 0 & 0 & 2 & 3 \end{bmatrix}$ 前記前駆体層を1次酸化させた後、前記前駆体層上にオゾンを流して前記1次酸化され た前駆体層を2次酸化させる。この時、前記1次および2次酸化工程は数回繰返して行な うことができる。 [0024]前記酸化膜は、その酸化膜の上にオゾンを流して乾燥させる。 $\begin{bmatrix} 0 & 0 & 2 & 5 \end{bmatrix}$ 前記第1反応防止膜および第2反応防止膜は、前記誘電膜が含むものよりも半径の小さ い陽イオンを含むハフニウム酸化膜またはアルミニウム酸化膜で形成できる。 [0026]さらに他の課題を解決するため、本発明は、トランジスタとそれに連結されたキャパシ タとを備える半導体メモリ装置において、前記キャパシタが、下部電極と、誘電膜と、上 部電極とを含み、前記下部電極と前記誘電膜の間に、前記下部電極と前記誘電膜の反応を 防止する第1反応防止膜を備えることを特徴とする半導体メモリ装置を提供する。 【発明の効果】 [0027]本発明によるキャパシタは、誘電膜として使われるランタニド系列の元素を含む酸化膜 と、シリコンを含む下部電極または/および上部電極の間に両者の反応を防止するための 反応防止膜を備える。これにより、ランタニド系列の元素を含む酸化膜とシリコンの反応 に起因するシリケートが形成されないため、キャパシタの電気的特性の劣化を防止するこ とができる。また、ALDを利用したランタニド系列の元素を含む酸化膜形成過程で、酸 化工程後にオゾンを利用して酸化された結果物から水蒸気を完全に除去する。すなわち、 酸 化 さ れ た 結 果 物 を 乾 燥 す る 。 こ れ に よ り 、 ラ ン タ ニ ド 系 列 の 元 素 を 含 む 酸 化 膜 に 水 蒸 気

。さらに、このようなキャパシタを半導体メモリ装置に備える場合、メモリ装置に保存されたデータを長期間正常な状態で維持できるので、メモリ装置の信頼性も高くなる。

が多量に含まれることに起因するキャパシタの電気的特性の劣化も防止することができる

10

30

40

50

【発明を実施するための最良の形態】

[0028]

以下、本発明の実施形態による半導体装置のキャパシタとその製造方法、およびキャパ シタを備えるメモリ装置について、添付図面を参照して詳細に説明する。なお、図面に示 された層や領域の厚さは、明細書の明確性のために誇張して示した。

(7)

[0029]

まず、本発明の実施形態によるキャパシタ(以下、本発明のキャパシタという)につい て説明する。

図2は、本発明の実施形態によるキャパシタの断面図である。

図2に示すとおり、本発明のキャパシタは、下部電極40と、誘電膜DLと、上部電極 10 46とを備える。下部電極40は、導電性不純物がドーピングされたシリコン電極である 下部電極40は、チタンナイトライド(TiN)で形成されていてもよい。誘電膜DL は、第1誘電膜42と第2誘電膜44とを含む。第1誘電膜42は、下部電極40と第2 誘電膜44との望ましくない反応、例えば、シリケート形成反応を防止するためのもので ある。 第 1 誘 電 膜 4 2 は、 第 2 誘 電 膜 4 4 におけるよりも半径が小さい陽イオンを含む誘 電 膜 、 例 え ば 、 八 フ ニ ウ ム 酸 化 膜 (H f O 。)ま た は ア ル ミ ニ ウ ム 酸 化 膜 (A 1 。 O ₃)で あることが望ましい。第1誘電膜42の厚さは2nm程度が望ましいが、多少厚いか、ま たは薄くても良い。しかし、第1誘電膜42の厚さは、第2誘電膜44より薄いことが望 ましい。 第 2 誘電 膜 4 4 は、 ランタニド系 列の 元素を含む 酸化 膜、 例 えば、 ランタン 酸化 膜(La₂O₃)であることが望ましい。第2誘電膜44の厚さは、2nm~10nm程度 20 が望ましいが、多少厚いか、または薄くても良い。上部電極46は、チタンナイトライド (T i N)電極が望ましいが、導電性不純物がドーピングされたシリコン電極であっても よい。但し、後者の場合、上部電極46と第2誘電膜44の間のシリケート反応を防止す るために、上部電極46と第2誘電膜44の間に、第1誘電膜42と同等な役割を有する 反応防止膜をさらに形成してもよい。上部電極46と下部電極40とは、同じ素材で形成 されていてもよい。

 $\begin{bmatrix} 0 & 0 & 3 & 0 \end{bmatrix}$

図3は、前記本発明のキャパシタの電気的特性、すなわち、印加電圧に対する漏れ電流 特性を表すグラフである。図3において、T、BおよびCは、それぞれ、図2に示したキ ャパシタの形成されたウェーハを垂直に立てた時、前記ウェーハの上側、下側および中央 30 に形成されたキャパシタを対象として印加電圧による漏れ電流密度を測定した結果を表す 第1グラフないし第3グラフである。

 $\begin{bmatrix} 0 & 0 & 3 & 1 \end{bmatrix}$

第1グラフT、第2グラフBおよび第3グラフCから、前記ウェーハの上側、下側およ び中央に形成されたキャパシタの漏れ電流密度は大きい差がなく、動作電圧の範囲では全 て漏れ電流密度は1×10⁻⁷A/cm²以下と低いことが分かる。

 $\begin{bmatrix} 0 & 0 & 3 & 2 \end{bmatrix}$

また、第1グラフT、第2グラフBおよび第3グラフCから、前記ウェーハの全領域に 形成されたキャパシタに対する漏れ電流特性も、前記ウェーハの上側、下側および中央に 形成されたキャパシタの漏れ電流特性と同様に優秀であることが分かる。

[0033]

次いで、図2に示した本発明のキャパシタの製造方法(以下、「本発明の製造方法」と いう)を説明する。

[0034]

図 4 に示すとおり、本発明の製造方法は、第 1 段階 6 0 、第 2 段階 6 2 および第 3 段階 64を含む。

[0035]

第1段階60では、下部電極の上に第1酸化膜を形成する。前記下部電極は、導電性不 純物がドーピングされたシリコン電極で形成することが望ましいが、他の導電性電極、例 えば、チタンナイトライド電極で形成できる。前記第1酸化膜は、前述した本発明のキャ

40

10

20

30

パシタの第1誘電膜42と同等なものである。すなわち、前記第1酸化膜は、キャパシタ の誘電膜の一部として利用されるが、主に、後述する第2酸化膜と前記下部電極の間の望 ましくない反応を防止するための反応防止膜の役割を有する。したがって、前記第1酸化 膜は、前記下部電極を構成する物質、例えば、シリコン(Si)と反応しない成分で形成 することが望ましい。前記第1酸化膜は、後述する第2酸化膜より薄く、例えば、2nm 程度の厚さに形成することが望ましいが、これより厚いか、または薄く形成できる。この ように、前記第1酸化膜は、数nmの厚さに形成されるため、CVD方法のように既存の 広く使われている薄膜蒸着方法を使用するよりは厚さの均一性および成分の均一性に優れ 、厚さを微細に調節できるALDで形成することが望ましい。前記第1酸化膜は、単一膜 に形成することが望ましいが、二重膜に形成しても良い。したがって、前記第1酸化膜は 、リフニウム酸化膜および/またはアルミニウム酸化膜で形成できる。

第2段階62において、前記第1酸化膜の上に第2酸化膜を形成する。前記第2酸化膜 は、前記本発明のキャパシタの第2誘電膜44と同等のものである。したがって、前記第 2酸化膜は、前記第1酸化膜が含むものよりも半径の大きい陽イオンを含む酸化膜で形成 することが望ましい。例えば、前記第2酸化膜は、ランタン酸化膜(La₂O₃)等のラン タニド系列の元素を含む酸化膜で形成することが望ましい。前記第2酸化膜は、前記第1 酸化膜と同様に数 n m の厚さに形成することが望ましい。しかし、前記第2酸化膜は、前 記第1酸化膜と同じ厚さであるか、または前記第1酸化膜よりも厚く形成される。このよ うに、前記第2酸化膜も数 n m の厚さに形成するため、既存の薄膜蒸着方法よりもALD 法で形成することが望ましい。ALD法を利用した前記第2酸化膜形成過程については後 述する。

【0037】

第3段階64では、前記第2酸化膜の上に上部電極を形成する。前記上部電極は、チタンナイトライド電極で形成される。前記上部電極は、導電性不純物がドーピングされたシリコン電極でもよい。

図 5 に示すとおり、前記第 2 段階 6 2 は、さらに 3 つの下位段階 6 2 a , 6 2 b , 6 2 c に細分できる。 3 つの下位段階 6 2 a , 6 2 b , 6 2 c において、 A L D を利用した前 記第 2 酸化膜の形成方法をさらに詳細に説明する。ここで、前記第 2 酸化膜は、ランタン 酸化膜(L a 2 O 3)とする。

【 0 0 3 9 】

具体的には、第1の下位段階62aにおいて、前記第1酸化膜の上に、前記第2酸化膜の金属性分(La)を含む前駆体、例えばLa(tmhd)₃, La(N(Si(Me)₃)₂)₃, またはLa(iPrCp)₃を蒸着する。次いで、第1排気工程を実施して前記前駆体層を形成し、残りの前駆体を反応チャンバーから除去する。

[0040]

第2の下位段階62bでは、前記前駆体層が酸化される。

具体的には、前記第1排気工程が実施された以後、前記反応チャンバーに、酸化ガス、 例えば、水蒸気(H₂O)を供給する。前記酸化ガスと前記前駆体層との間の置換反応を 40 通じて前記前駆体層が酸化されて、前記下部電極の上に前記第2酸化膜、すなわち、ラン タン酸化膜が形成される。次いで、第2排気工程を実施して、前記反応チャンバー内に存 在する残りの酸化ガスを除去する。

【0041】

第3の下位段階62cでは、前記第2酸化膜から不純物が除去される。

具体的には、前記第2排気工程後に前記反応チャンバーにオゾン(O₃)を供給して前 記第2酸化膜に過度に含まれている水蒸気を除去する。次に、前記反応チャンバーに残留 するオゾンを除去するための第3排気工程を実施する。

[0042]

前記第2酸化膜に含まれた水蒸気が除去されるという点で、第3の下位段階62cは、 50

前記第2酸化膜を乾燥する段階と見なすことができる。

【0043】

また、前記第3の下位段階62cでは、前記不純物が除去されると同時に、流入された 前記オゾンによって前記前駆体層が2次酸化される。したがって、前記第3の下位段階6 2cは、前記前駆体に対する2次酸化段階とも見なすことができる。

[0044]

下記の表1は、前記ALDを利用して前記下部電極の上に前記第2酸化膜を形成する過程において、酸化過程によって成膜されるか否か、水蒸気が残存するか否か、および第2酸化膜の漏れ電流密度を示す。

【表1】

酸化過程 $H_2 O \rightarrow O_3$ $O_3 \rightarrow H_2O$ O_3 H_2O 項目区分 成膜 \bigcirc \bigcirc \times \times 水蒸気含有 Ο \times _ $1 \times 1 \ 0^{-1}$ $1 \times 1 \ 0^{-7}$ 漏れ電流密度(A/cm²) -----

[0045]

表 1 に示すとおり、オゾンを酸化ガスとして使用した時、およびオゾンをまず供給した 後に水蒸気を供給した時には、下部電極の上に第 2 酸化膜が形成されない。

【0046】

そして、水蒸気を酸化ガスとして使用した時は、下部電極の上に第2酸化膜が形成されるが、形成された第2酸化膜に水蒸気が含まれており、漏れ電流密度は1×10⁻¹A/cm²と高い。

【0047】

これに対して、本発明の製造方法によって、水蒸気をまず供給した後にオゾンを供給した場合には、下部電極の上に第2酸化膜が形成されるだけでなく、形成された第2酸化膜に水蒸気が残存せず、漏れ電流密度は1×10⁻⁷A/cm²と非常に低い。

【0048】

次いで、図2に示したキャパシタを備える本発明の実施形態による半導体メモリ装置(30 以下、「本発明のメモリ装置」という)について説明する。

【 0 0 4 9 】

図 6 に示すとおり、本発明のメモリ装置は、基板 7 0 に導電性不純物がドープされて形 成された第1領域74および第2領域76を有する。第1領域74および第2領域76は 、 所 定 の 間 隔 だ け 離 れ て い る 。 第 1 領 域 7 4 は ソ ー ス 領 域 で あ り 、 第 2 領 域 7 6 は ド レ ー ン領域である。基板70における第1領域74と第2領域76の間にチャンネル領域が形 成され、前記チャンネル領域の上にゲート積層物72が配置される。ゲート積層物72は 、 印 加 さ れ る 電 圧 に よ っ て 第 1 領 域 7 4 と 第 2 領 域 7 6 の 間 に 形 成 さ れ た チ ャ ン ネ ル 領 域 をスイッチングする役割を有する。ゲート積層物72は、ゲート絶縁膜(図示せず)とゲ ート導電層(図示せず)とを含む。基板70と、第1領域74および第2領域76と、ゲ ー ト 積 層 物 7 2 と は 、 M O S F E T を 構 成 す る 。 基 板 7 0 上 に 、 ゲ ー ト 積 層 物 7 2 を 覆 う 第 1 層間絶縁膜 7 8 が形成されており、第 1 層間絶縁膜 7 8 に第 2 領域 7 6 を露出する第 1 コンタクトホール 8 0 が形成されている。 第 1 コンタクトホール 8 0 には、 第 1 導電性 プラグ82、例えば、導電性不純物がドーピングされたポリシリコンが充填されている。 第 1 層間絶縁膜 7 8 の上に、第 1 導電性プラグ 8 2 の全面を覆うキャパシタ C が形成され ている。キャパシタCは、図2に示したキャパシタと同じであることが望ましい。したが って、キャパシタCの構成および作用に関する具体的な説明は省略する。下部電極40と 第1導電性プラグ82とは同じ導電性物質で形成されていることが望ましいが、相異なる 導電性物質で形成されていてもよい。第1層間絶縁膜78の上に、キャパシタCを覆う第 2 層間絶縁膜 8 4 が形成されている。第 1 層間絶縁膜 7 8 および第 2 層間絶縁膜 8 4 に、

10

20

40

第1領域74を露出する第2コンタクトホール86が形成されている。第2コンタクトホール86には、第2導電性プラグ88が充填されている。第2導電性プラグ88は、例えば、導電性不純物がドーピングされたポリシリコンで形成されていることが望ましいが、他の導電性物質で形成されていていもよい。第2層間絶縁膜84の上に、第2導電性プラグ88の全面を覆う導電層90が形成されている。導電層90はビットラインであり、ゲート積層物72に垂直に交差する。導電層90と第2導電性プラグ88とは、同じ導電性物質で形成されていることが望ましいが、相異なる導電性物質で形成されていてもよい。

前述したメモリ装置の場合、図2に示したキャパシタを備えるため、キャパシタに保存 されたデータは正常な状態で長期間保存できる。これは、保存されたデータを長時間経過 10 後も正常に読み出せることを意味し、前述したメモリ装置の信頼性は高くなる。 【0051】

前記説明で多くの事項が具体的に記載されているが、それらは本発明の範囲を限定する ものではなく、望ましい実施形態の例示として解釈されなければならない。例えば、当業 者ならば、反応防止膜として使われた第1誘電膜42として非酸化膜を使用できる。また 、上部電極および下部電極を全てシリコンを含まない電極に代え、誘電膜DLをランタン 酸化膜に代えることができる。したがって、本発明の範囲は、前述した実施形態に限定さ れず、特許請求の範囲に記載された技術的思想によって決定されなければならない。 【産業上の利用可能性】

【0052】

本発明のキャパシタおよびそれを用いたメモリ装置は、メモリチップが使われる全ての 機器に使用され、特に、各種のコンピュータ、カムコーダ、デジタルカメラ、携帯電話、 計算機、メモリスチックやカード、信用カードをはじめとする各種のカードなどに使用す ることができる。

【図面の簡単な説明】

[0053]

【図1】従来のキャパシタにおいて、誘電膜の種類および厚さによる漏れ電流密度の変化 を示すグラフである。

【図2】本発明の実施形態によるキャパシタの断面図である。

【図3】図2に示したキャパシタの漏れ電流特性を表すグラフである。

【図4】図2に示したキャパシタの製造方法を段階別に表すブロック図である。

【図 5 】図 4 に示したキャパシタの製造方法の第 2 段階を構成する下位段階を表すブロック図である。

【図6】図2に示したキャパシタを備える半導体メモリ装置の断面図である。

- 【符号の説明】
- 【0054】

4 0 下部電極

4 2 第 1 誘 電 膜

- 4 4 第 2 誘 電 膜
- 46 上部電極
- DL 誘電膜

40

30

20

(10)

【図3】

【図2】

【図4】

【図5】

フロントページの続き