
United States Patent

US007062519B2

(12) (10) Patent No.: US 7,062,519 B2
Garthwaite (45) Date of Patent: Jun. 13, 2006

(54) INCREMENTAL SCANNING OF ENORMOUS 5,845,298. A 12/1998 O’Connor et al.
OBJECTS TO IMPROVE SCHEDULING AND 5,857,210 A 1/1999 Tremblay et al.
PAUSE-TIME BEHAVOR OF GARBAGE 5,873,104 A 2/1999 Tremblay et al.
COLLECTION 5,873,105 A 2/1999 Tremblay et al.

5,900,001 A 5/1999 Wolczko et al.
5,903,900 A 5/1999 Knippel et al.

(75) Inventor: Alexander T. Garthwaite, Beverly, MA 5,930,807 A 7, 1999 E.al.
(US) 5,953,736 A 9/1999 O'Connor et al.

5,960,087 A 9, 1999 Tribble et al.
(73) Assignee: Sun Microsystems, Inc., Santa Clara, 5.999,974. A 12/1999 Ratcliff et al.

CA (US) 6,021.415 A 2/2000 Cannon et al.
6,047,125 A 4/2000 Agesen et al.

(*) Notice: Subject to any disclaimer, the term of this 6,049,390 A 4/2000 Notredame et al.
patent is extended or adjusted under 35 6,049,810 A 4/2000 Schwartz et al.
U.S.C. 154(b) by 430 days.

(Continued)
(21) Appl. No.: 10/375,285 FOREIGN PATENT DOCUMENTS

(22) Filed: Feb. 27, 2003 EP O 904 055 A1 9, 1999

(65) Prior Publication Data (Continued)

US 2004/O1995.56 A1 Oct. 7, 2004 OTHER PUBLICATIONS

(51) Int. Cl. David Bacon et al. A unified theory of garbage collection,
G06F 7/30 (2006.01) (2004) ACM Press, NY, NY. pp. 50-68.*

(52) U.S. Cl. .. 707/206
(58) Field of Classification Search 707/206, (Continued)

707/205, 1: 711/159, 170, 173; 718/102, Primary Examiner Diane Mizrahi
718/107 (74) Attorney, Agent, or Firm—Kudirka & Jobse, LLP

See application file for complete search history.
(57) ABSTRACT

(56) References Cited

U.S. PATENT DOCUMENTS

4,724,521 A 2f1988 Carron et al.
4,797,810 A 1, 1989 McEntee et al.
4,912,629 A 3/1990 Shuler, Jr.
4,989,134 A 1, 1991 Shaw
5,088,036 A 2f1992 Ellis et al.
5,333,318 A T. 1994 Wolf
5,392,432 A 2/1995 Engelstad et al.
5,485,613 A 1/1996 Engelstad et al.
5,560,003 A 9, 1996 Nilsen et al.
5,687,370 A 11/1997 Garst et al.
5,801,943 A 9/1998 Nasburg
5,845,276 A 12/1998 Emerson et al.

-
TrAN RS

o

A technique for incrementally collecting enormous objects
including scanning portions of the enormous objects on
different collection steps. The Scanning can be accomplished
with a number of collection sets where the enormous object
is re-linked and older cars remembered sets are updated on
Subsequent collection steps. Unscanned portions of the
enormous object are scanned on Subsequent collection
cycles until the enormous object has been fully scanned.
This incremental collection can be performed concurrently
with collections of other generations and applications.

24 Claims, 26 Drawing Sheets

RS -7 RS
7

CARSCTION
. L 12

CARSECTION
78 73
/ CARSECTION

1.3

- - - - - - - Sea
TRAIN 2 (1 RS

CAR SECTION
N 2.1

TRAN3 RS RS
CARSCTION 86

3. 3.2
CARSCTION

/ 74

US 7,062.519 B2
Page 2

U.S. PATENT DOCUMENTS

6,065,020 A 5, 2000 DuSSud
6,098,089 A 8, 2000 O'Connor et al.
6,148,309 A 11/2000 AZagury et al.
6,148,310 A 11/2000 AZagury et al.
6,173,294 B1 1/2001 AZagury et al.
6,185.581 B1 2/2001 Garthwaite
6,226,653 B1 5/2001 Alpern et al.
6,243,720 B1 6, 2001 Munter et al.
6,260,120 B1 7/2001 Blumenau et al.
6,289.358 B1 9, 2001 Mattis et al.
6,308,185 B1 10/2001 Grarup et al.
6,314,436 B1 1 1/2001 Houldsworth
6,321,240 B1 1 1/2001 Chilimbi et al.
6,353,838 B1 3/2002 Sauntry et al.
6,381,738 B1 4/2002 Choi et al.
6,393,439 B1 5, 2002 Houldsworth et al.
6,415,302 B1 7/2002 Garthwaite et al.
6.424,977 B1 7/2002 Garthwaite
6,434,576 B1 8, 2002 Garthwaite
6,434,577 B1 8, 2002 Garthwaite
6,442,661 Bl 8, 2002 DresZer
6,449,626 B1 9, 2002 Garthwaite et al.
6,496,871 B1 12/2002 Jagannathan et al.
6,529,919 B1 3/2003 Agesen et al.
6,567,905 B1 5, 2003 Otis
6,640,278 B1 10/2003 Nolan et al.
6,757,890 B1 6, 2004 Wallman
6,769,004 B1 7/2004 Barrett
6,820, 101 B1 1 1/2004 Wallman
6,826,583 B1 1 1/2004 Flood et al.
6,868.488 B1 3/2005 Garthwaite
6,892.212 B1 5, 2005 Shufetal.
6,928,450 B1 8/2005 Nagarajan et al.
6,931423 B1 8, 2005 Sexton et al.

2002fOO32719 A1
2002fOO95453 A1
2002/0133533 A1
2002/0138506 A1
2003, OO88658 A1
2003/0200392 A1
2003/0217027 A1
2004/0010586 A1
2004/OO39759 A1
2004/0098.553 A1*

3, 2002 Thomas et al.
7/2002 Steensgaard
9/2002 Czajkowski et al.
9, 2002 Shufetal.
5, 2003 Davies et al.
10/2003 Wright et al.
11/2003 Farber et al.
1/2004 Burton et al.
2/2004 Detlefs et al.
5/2004 Garthwaite 711/17O

2004/01.03126 A1* 5, 2004 Garthwaite 707/2O6
2004/011 1444 A1* 6, 2004 Garthwaite 707,205
2004/011 1445 A1 6, 2004 Garthwaite et al. 707/2O6
2004/011 1446 A1* 6, 2004 Garthwaite 707/2O6
2004/011 1447 A1*
2004/0215914 A1

FOREIGN PATENT DOCUMENTS

EP O 969 377 A1 1, 2000
WO WOO188713 A2 11/2001

OTHER PUBLICATIONS

6/2004 Garthwaite 707/2O6
10, 2004 DuSSud

Alain AZagury et al., Combining card marking with remem
bered sets: how to save scanning time, (1998), ACM Press,
NY, NY., pp. 10-19.*
Jones and Lins, “Garbage Collection: Algorithms for Auto
matic Dynamic Memory Management”, 1996, pp. 165-179,
Wiley, New York.
Paul Wilson, “Uniprocessor Garbage Collection Tech
niques”, 1994, pp. 1067, Technical Report, University of
Texas.
Hudson and Moss, “Incremental Collection of Mature
Objects'. Proceedings of International Workshop on
Memory Management, 1992, Springer-Verlag.

Seligmann and Grarup, “Incremental Mature Garbage Col
lection Using the Train Algorithm, Aarhus University,
Computer Science Department.
Grarup and Seligmann, “Incremental mature Garbage Col
lection, M.Sc. Thesis, Aarhus University, Computer Sci
ence Department, 1993.
U.S. Appl. No. 10/287,851, filed Nov. 5, 2002, Garthwaite,
et al.
Appel, “Simple Generational Garbage Collection and Fast
Allocation, Software Practice and Experience, 19(2), 1989,
171-183.

Appel, et al., “Real-Time Concurrent Collection on Stock
Multiprocessors, ACM SIGPLAN Notices, 1988.
Appleby, Karen, “Garbage Collection for Prolog Based on
WAM, Vol. 31, Issue 6', Communication of the ACM, Jun.
1, 1998, 719-741.
Arora, et al., “Thread Scheduling for Multiprogrammed
Multiprocessors'. Proceedings of the 10th Annual ACM
Symposium on Parallel Algorithms and Architecture, Jun.
1998.
Bacon et al., “Jave without the Coffee Breaks: A
nonintrusive Multiprocessor Garbage Collector. SIGPLAN
Conference on Programming Language Design and Imple
mentation, Jun. 2001, Snowbird, UT.
Baker, “List Processing in RealTime on a Serial Computer.
Communications of the ACM 21, Apr. 1978, 280–294.
Barrett, et al., “Using Lifetime Predictors to Improve
Memory Allocation Performance', SIGPLAN'93 Confer
ence on Programming Languages Design and Implementa
tion vol. 28(6) of Notices, Jun. 1993, 187-196, ACM Press,
Albuquerque, NM.
Blackburn & McKinley, “In or Out? Putting Write Barriers
in Their Place', Jun. 20, 2002, Berlin.
Brooks, “Trading Data Space for Reduced Time and Code
Space in Real-Time Garbage Collection on Stock Hard
ware'. Proceedings of the 1984 Acm Symposium on Lisp
and Funcional Programming, Aug. 1984, 108-113, Austin,
TX.
Chilimbi, et al., “Using Generational Garbage Collection to
Implement Cache-Conscious Data Placement'. International
Symposium on Memory Management, Oct. 1998.
Clark, “An Efficient List-Moving Algorithm Using Constant
Workspace, vol. 19 No. 6”. Communications of the ACM,
Jun. 1976, 352-354.
Clark et al., “Compacting Garbage Collection can be Fast
and Simple'. Software-Practice and Experience, vol. 26, No.
2, Feb. 1996, 177-194.
Courts, “Improving Locality of Reference in a Garbage
Collecting Memory Management System'. Communica
tions of the ACM, vol. 31, No. 9, Sep. 1988, 1128-1138.
Flood, et al., “Parallel Garbage Collection for Shared
Memory Multiprocessors”, USENIX JVM Conference, Apr.
2001.
Goldstein, et al., "Lazy Threads: Implementing a Fast Par
allel Call, vol. 37, No. 1’, Journal of Parallel and Distributed
Computing, Aug. 1996, 5-20.
Hanson, “Fast Allocation and Deallocation of Memory
Based on Object Lifetimes”. Software Practice and Experi
ence, Jan. 1990, 20(1):5-12.
Harris, “Dynamic Adaptive Pre-Tenuring. In Proceedings
of the Int’l Symposium on Memory Management, Oct.
2000, 127-136.
Herlihy, et al., “Lock-Free Garbage Collection for Multi
processors”, ACM SPAA, 1991, 229-236.

US 7,062.519 B2
Page 3

Holzle, Urs, “A Fast Write Barrier for Generational Garbage
Collectors’. Workshop on Garbage Collection in Object
Oriented Systems, Oct. 1993.
Hosking et al., “Remembered Sets Can Also Play Cards',
OOPSLA/ECOOP Workshop on Garbage Collection in
Object-Oriented Systems, Oct. 1993.
Hosking et al., “Protection Traps and Alternatives for
Memory Management of an Object-Oriented Language'.
Object Systems Laboratory, Dec. 1993, 1-14, Dept. of
Comp. Sci., Amerherst, MA.
Hudson et al., “Adaptive Garbage Collection for Modula-3
and Small Talk”, OOPSLA.ECOOP 90 Workshop on Gar
bage Collection in Obect-Oriented Systems, Oct. 27, 1990.
Hudson et al., “A Language-Independent Garbage Collector
Toolkit'. Coins Technical Report, Sep. 1991.
Hudson et al., “Training Distributed Garbage: The DMOS
Collector, University of St. Andrews Tech Report, 1997,
1-26.
Hudson et al., “Garbage Collecting the World: One Car at a
Time, ACM SIGPLAN Notices 32, 1997, 162-175.
Hudson et al., “Sapphire: Copying GC Without Stopping the
World, Practice and Experience Special Issue, Data
Unknown, JAVA/Grande/Iscope.
Lieberman et al., “A Real-Time Garbage Collector Based on
the Lifetimes of Objects”. Communications of the ACM,
1983, 26(6).
Liskov et al., “Partitioned Garbage Collection of a Large
Stable Heap', Proceedings of IWOOOS, 1996, 117-121.
Moon, “Garbage Collection in a Large Lisp Systems’.
Conference Record of the 1984 ACM Symposium on LISP
and Functional Programming, Aug. 1984, 235-246, Austin,
TX.
Moss et al., “A Complete and Coarse-Grained Incremental
Garbage Collection for Persisten Object Stores'. Proceed
ings 7th Int11 Workshop on Persisten Object System, 1996,
1-13, Cape May, NJ.
Munro et al., “Incremental Garbage Collection of a Persis
tent Object Store using PMOS', 3rd Int’l Workshop on
Persistence and Java, 1998, 78-91, Tiburon, California.
Nettles, Scott, “Real-Time Replication Garbage Collection',
Avionics Lab, Wright Research and Development Center,
1993, PDDI.
Padopoulos, “Hood: A User-Level Thread Library for Mul
tiprogramming Multiprocessors, Thesis: The Uni. of TX'.
University of Texas, Aug. 1998, 1-71, Austin.
Roy et al., “Garbage Collection in Object-Oriented Data
bases. Using Transactional Cyclic Reference Counting.
VLDB Journal-The International Journal on Very Large Da
Bases, vol. 7, Issue 3, 1998, 179-193.
Shufet al., “Exploiting Profilic Types for Memory Manage
ment and Optimizations. ACM ISBN Sep. 2, 2001, POPL,
Jan. 2002, Portland.
Sobalvarro, “A Lifetime-based Garbage Collector for LISP
Systems on General-Purpose Computers'. Department of
Electrical Engineering and Computer Science at MIT, Sep.
1988, AITR-1417.
Stamos, “Static Grouping of Small Objects to Enhance
Performance of a Paged Virtual Memory”, ACM Transac

tions on Computer Systems, vol. 2, No. 2, May 1984,
155-18O.
Ungar, “Generation Scavenging: A Non-Disruptive High
Performance Storage Reclaration Algorithm, ACM
SIGPLAN Notices, 1984, 19(5).
Ungar et al., “Tenuring Policies for Generation-Based Stor
age Reclamation, ACMSIGPLAN Notices, 1988, 23(11)1-
17.

Venners, “Garbage Collection, Inside the Java 2 Virtual
Machine: Chapter 9, www.artima.com, Date Unknown,
parts 1-18.
Wilson, “Uniprocessor Garbage Collection Techniques'.
Proceedings of Int’l Workshop on Memory Management,
1992, vol. 637.
Withington, P.T., “How Real is “Real-Time” GC?', Symbol
ics, Inc., Oct. 6, 1991, Burlington, MA.
Zee et al., “Write Barrier Removal by Static Analysis’,
OOPSLA '02, Nov. 2002.
Zorn, “Segregating Heap Objects by Reference Behavior
and Lifetime'. In 8th Int’l Conferenceon Architectural Sup
port for Programming Languages and Operating Systems,
Oct. 1998, 12-32, San Jose, CA.
Zorn, Benjamin, “Barrier Methods for Garbage Collection'.
Dept. of Computer Science, Uni. of Colorado, Nov. 1990,
1-37, Boulder.
AZagury et al., “Combining Card Marking With Remem
bered Sets: How to Save Scanning Time”, ACM SIGPLAN
Notices, Oct. 1998, vol. 34(3), ACM Press, Vancouver,
Canada.
Cheney, “A Nonrecursive List Compacting Algorithm, vol.
13, Number 11, Communications of the ACM, Nov. 1970,
677-678, Uni. Math. Lab., Cambridge, European Patent
Office.
Cheng et al., “Generational Stack Collection and Profile
Driven Pretenuring, SIGPLAN’98 Conference on Pro
gramming Languages Design and Implementation, Jun.
1998, 162-173, ACM PRESS, Montreal, Canada.
Lam et al., “Object Type Directed Garbage Collection to
Improve Locality”. Proceedings of the International Work
shop on Memory Management, Sep. 1992, 404-425, St.
Malo, France.
Lam et al., “Effective Static-Graph Reorganization to
Improve Locality in Garbage Collected Systems. Proceed
ings of ACM SIGPLAN Conference on Programming Lan
guage Design and Implementation, Jun. 1991, Toronto,
Canada.
Pirinen, Pekka, “Barrier Techniques for Incremental Trac
ing, Harlequin Limited, Date Unknown, 20-25, Cambridge,
Great Britain.
Wilson et al., “Effective Static-Graph Reorganization to
Improve Locality in Garbage Collected Systems. Proceed
ings of ACM SIGPLAN Conference on Programming Lan
guage Design and Implementation, Jun. 1991, Canada.

* cited by examiner

US 7,062,519 B2

SNO||LVOINTIWWÕO
8].

/ |

9 |

Sheet 1 of 26

XJETTO HLNO OHETTO HINOO

Jun. 13, 2006 U.S. Patent

EHOV/O

U.S. Patent Jun. 13, 2006 Sheet 2 of 26 US 7,062,519 B2

COMPLER
OBJECT CODE

2O

APPLICATION APPLICATION
SOURCE CODE COMPLER OBJECT CODE

21

INPUT APPLICATION OUTPUT

FIG 2

US 7,062,519 B2

ALZ

EC]OO CIETICHWOO
- - - - - - - - - - - -seº

Sheet 3 of 26 Jun. 13, 2006 U.S. Patent

LNBWNOHIANE EWI L-ETIGWOO EGIOO E LÅ8

US 7,062,519 B2

OBJECT 46

Sheet 4 of 26 Jun. 13, 2006

ROOT SET 52

U.S. Patent

OBJECT 48

OBJECT 50

HEAP

FIG. 4

SEMI-SPACE 54

ROOT SET 52

SPACE 56 SEM

46

FIG. 5 42

US 7,062,519 B2

ur)|ZG LES LOO}} 5+ ----| ?OyJIH 1 --~~~~~~T~~~~ ~~~~ONOOHS ~~~~ ~~~~T~~~~ ~~~~| SHI

U.S. Patent

U.S. Patent Jun. 13, 2006 Sheet 6 of 26 US 7,062,519 B2

TRAIN 1 76
CAR SECTION CAR SECTION CARSECTION -

11 1.2 13

TRAIN 2 (19?
CAR SECTION

2.1

TRAIN3
CAR SECTION | 86 CAR SECTION

3.1 3.2

ONE
GENERATION

FIG. 7

U.S. Patent Jun. 13, 2006 Sheet 7 of 26 US 7,062,519 B2

102

COLLECTOR
SCAN DIRTY REGIONS FOR

REFERENCES TO OBJECTS IN CARS;
PLACE REGION-DENTIFYING ENTRIES IN

THOSE CARS’ REMEMBERED SETS

105

COLLECT YOUNG
GENERATION

106

ARE THERE ANY REFER
ENCES INTO OLDEST TRAIN
FROM OUTSIDE OF IT?

NO

RecAM 107 YES
OLDEST 110 TRAIN

PROCESS REFERENCES FROM
OUTSIDE THE OLD GENERATION
TO COLLECTION-SET OBJECTS

PROCESS.
REMEMBERED
SET ENTRY

(FIG.9)
HAVE THE REMEMBERED
SET ENTRIES FROM THE
YOUNGER TRAINS BEEN

PROCESSED?
NO

YES

FIG. 8A

U.S. Patent Jun. 13, 2006 Sheet 8 of 26 US 7,062,519 B2

PROCESS.
REMEMBERED
SET ENTRY

(FIG.9)
HAVE THE REMEMBERED
SET ENTRIES FROM THE
OLDEST TRAIN BEEN

PROCESSED2

RECLAIM
COLLECTION SET

COLLECTOR

RESUME
EXECUTION

MUTATOR 108

FIG. 8B

U.S. Patent Jun. 13, 2006 Sheet 9 of 26 US 7,062,519 B2

PROCESS
REMEMBERED
SET ENTRY

114

116
SCAN IDENTIFIED REGION
FOR REFERENCESTO
COLLECTION SET

HAVE ANY DENTIFIED
REGION REFERENCESTO
COLLECTION SET NOT
YET BEEN PROCESSED?

NO

USE FORWARDING
POINTERTO
UPDATE

REFERENCE AND
REMEMBERED SET

HAS REFERRED-TO, OB
JECT ALREADY BEEN

EVACUATED2

EVACUATE REFERRED
TO OBJECT
(FIG. 10)

120

FIG. 9

U.S. Patent Jun. 13, 2006 Sheet 10 of 26

EVACUATE
REFERRED-TO

OBJECT

126

MOVE OBJECT TO
REFERENCES TRAIN

128

LEAVE FORWARDING
POINTER IN

EVACUATED LOCATION

UPDATE REFERENCE

PROCESS REFERENCES
CONTAINED IN

EVACUATED OBJECT
(FIG. 11)

130

132

FIG. 10

US 7,062,519 B2

124

U.S. Patent Jun. 13, 2006 Sheet 11 of 26 US 7,062,519 B2

132

PROCESS
REFERENCES
CONTAINED IN

EVACUATED OBJECT

134

HAS ANY
REFERENCE NO
NOT YET BEEN
PROCESSED?

RETURN

YES 148

136

IS LOCATION REFERRED
TO BY THAT REFERENCE

IN COLLECTION SET2

NO

YES

FIG 11A

U.S. Patent Jun. 13, 2006 Sheet 12 of 26 US 7,062,519 B2

HAS REFERRED
YES TO OBJECT

ALREADY BEEN
EVACUATED?

138

USE
FORWARDING
POINTERTO
UPDATE

REFERENCE

NO

144

140 EWACUATE
REFERRED-TO

OBJECT
(FIG. 10)

S REFERRED-TO
OBJECT FARTHER
FORWARD THAN.

EVACUATED OBJECT2

PLACE ENTRY
DENTIFYING

EVACUATED OBJECT'S NEW
REGION INTO REFERRED-TO

OBJECTS
REMEMBERED SET

F.G. 11B

US 7,062,519 B2 Sheet 13 of 26 Jun. 13, 2006 U.S. Patent

| ‘Z LOES XIV/O : ·

US 7,062,519 B2 Sheet 14 of 26 Jun. 13, 2006 U.S. Patent

?, º LOES RHW/O

US 7,062,519 B2 Sheet 15 of 26 Jun. 13, 2006 U.S. Patent

OZI (5) | H …..…......………

US 7.062,519 B2 Sheet 16 of 26 Jun. 13, 2006 U.S. Patent

01 || S. LES CIER–HEE|WEWENH

US 7,062,519 B2 Sheet 17 of 26 Jun. 13, 2006 U.S. Patent

0A || S. LES CIEX IEE|WEWENH

US 7.062,519 B2 Sheet 18 of 26 Jun. 13, 2006 U.S. Patent

U.S. Patent

| 19 LOES RHW/O

U.S. Patent Jun. 13, 2006 Sheet 21 of 26 US 7.062,519 B2

172

MARK MODIFIED
MUTATOR REGIONS AS "DIRTY"

SCANDIRTY REGIONS FOR
COLLECTOR REFERENCES TO OBJECTS IN CARS,
T | PLACE REGION-DENTIFYING NTRIES IN

THOSE CARS’ REMEMBERED SETS

178

COLLECT YOUNG
GENERATION

PUT COLLECTION-SET
REMEMBERED-SET ENRIES IN

REVERSE TRAIN ORDER

18O

PROCESS
REMEMBERED
SET ENTRY

(FIG 9)
182

HAVE THE REMEMBEREE)-SET
ENTRIES INALL SCRATCH
PAD: LISTS BUT THE OLDEST
TRAIN'S BEEN PROCESSED?

PROCESS ENORMOUS
OBJECTS FOR YOUNGER
TRAINS (FIG. 18)

FIG. 13A

U.S. Patent Jun. 13, 2006 Sheet 22 of 26 US 7.062,519 B2

PROCESS REFERENCES FROM
OUTSDE THE OLD GENERATION

186

TO COLLECTION-SET OBJECTS

ARE THERE ANY
REFERENCES INTO
OLDEST TRAN

FROM OUTSDE OF
T?

NO

190 196
RECLAIM
OLDEST PROCESS

REMEMBERED
SET ENTRY

(FIG. 9)

TRAIN

HAVE THE REMEMBERED
SET ENTRIES IN THE LAST
SCRATCHPAD LIST BEEN

PROCESSED?

YES

PROCESS ENORMOUS OBJECTS
FOR OLDEST TRAIN (FIG. 18)

COLLECTOR
-ms--- RECLAM 198

COLLECTION SET

MUTATOR RESUME 192
EXECUTION

FIG. 13B

U.S. Patent Jun. 13, 2006 Sheet 23 of 26 US 7.062,519 B2

245

A PREVIOUS TRAIN
NEXT TRAIN

TRAIN NUMBER
NEXT CAR NUMBER 247

SCAN LINK 302

ENGINE 248

CABOOSE 249

246

2 4 4.

2 5 O
258

279

51

TYPE

CAR NUMBER
TRAIN

IS SPECIAL
SCAN LINK

SCAN POINTER

PREVIOUS CAR
NEXT CAR -

290 SECTIONS

ALLOCATION

DATA 254

LIMIT 255

FREE POINTER

282
304

306

252

253

257

N
256

2 OBJECTs
CAR SECTION

Y-400
F.G. 14

U.S. Patent Jun. 13, 2006 Sheet 25 of 26 US 7.062,519 B2

CAR1.1 CAR12

TRAIN -->

322

COLLECTION SET 320 FIG 16

324

326

IS
COLLECTION SET

EMPTY?

332

330 334

SCAN INITIAL PORTION OF ENORMOUS
OBJECT FOR REFERENCES INTO

COLLECTION SETAS WELL
AS INTO OLDER CARS

SCAN INITIAL PORTION OF
ENORMOUS OBJECT FOR

REFERENCES INTO
OLDER CARS

SCAN REMAINDER OF ENORMOUS
OBJECT FOR REFERENCES INTO

COLLECTION SET

RECORD POINTERTO START OF
UNSCANNED. PORTION AFTER

NITIAL PORTION

PLACE CAR CONTAININGENORMOUS
OBJECT ON LIST PER-TRAIN OF
PARTIALLY SCANNED OBJECT

340 FIG. 17

RETURN

U.S. Patent Jun. 13, 2006 Sheet 26 of 26 US 7,062,519 B2

PARTIALLY SCANNED 342
OBJECTS IN TRAIN

SELECT NEXT OBJECT 344
NLIST

SCAN NEXT UNSCANNED 346
PORTION FOR REFERENCES
NTO COLLECTION SET AND

INTO OLDER CARS

356 348

RECORD NEW ADDRESS OF
START OF UNSCANNED

PORTION
REMOVE OBJECTS CAR

FROM LIST

SCAN REMANDER OF
OBJECT FOR REFERENCES

NTOCOLLECTION SET

352 Y MORE
OBJECTSN

LIST?
N

354-2-(RETURN

F.G. 18

US 7,062,519 B2
1.

INCREMENTAL SCANNING OF ENORMOUS
OBJECTS TO IMPROVE SCHEDULING AND

PAUSE-TIME BEHAVOR OF GARBAGE
COLLECTION

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention is directed to memory management.

It particularly concerns what has come to be known as
'garbage collection.

2. Background Information
In the field of computer systems, considerable effort has

been expended on the task of allocating memory to data
objects. For the purposes of this discussion, the term object
refers to a data structure represented in a computer systems
memory. Other terms sometimes used for the same concept
are record and structure. An object may be identified by a
reference, a relatively small amount of information that can
be used to access the object. A reference can be represented
as a "pointer” or a “machine address,” which may require,
for instance, only sixteen, thirty-two, or sixty-four bits of
information, although there are other ways to represent a
reference.

In some systems, which are usually known as “object
oriented,” objects may have associated methods, which are
routines that can be invoked by reference to the object. They
also may belong to a class, which is an organizational entity
that may contain method code or other information shared
by all objects belonging to that class. In the discussion that
follows, though, the term object will not be limited to such
structures; it will additionally include structures with which
methods and classes are not associated.
The invention to be described below is applicable to

systems that allocate memory to objects dynamically. Not all
systems employ dynamic allocation. In some computer
languages, source programs must be so written that all
objects to which the program's variables refer are bound to
storage locations at compile time. This storage-allocation
approach, sometimes referred to as “static allocation,” is the
policy traditionally used by the Fortran programming lan
guage, for example.

Even for compilers that are thought of as allocating
objects only statically, of course, there is often a certain level
of abstraction to this binding of objects to storage locations.
Consider the typical computer system 10 depicted in FIG. 1,
for example. Data, and instructions for operating on them,
that a microprocessor 11 uses may reside in on-board cache
memory or be received from further cache memory 12,
possibly through the mediation of a cache controller 13. That
controller 13 can in turn receive such data from system
read/write memory (“RAM) 14 through a RAM controller
15 or from various peripheral devices through a system bus
16. The memory space made available to an application
program may be “virtual in the sense that it may actually be
considerably larger than RAM 14 provides. So the RAM
contents will be swapped to and from a system disk 17.

Additionally, the actual physical operations performed to
access some of the most-recently visited parts of the pro
cess's address space often will actually be performed in the
cache 12 or in a cache on board microprocessor 11 rather
than on the RAM 14, with which those caches swap data and
instructions just as RAM 14 and system disk 17 do with each
other.
A further level of abstraction results from the fact that an

application will often be run as one of many processes
operating concurrently with the Support of an underlying

10

15

25

30

35

40

45

50

55

60

65

2
operating system. As part of that Systems memory manage
ment, the application's memory space may be moved among
different actual physical locations many times in order to
allow different processes to employ shared physical memory
devices. That is, the location specified in the applications
machine code may actually result in different physical
locations at different times because the operating system
adds different offsets to the machine-language-specified
location.

Despite these expedients, the use of static memory allo
cation in writing certain long-lived applications makes it
difficult to restrict storage requirements to the available
memory space. Abiding by space limitations is easier when
the platform provides for dynamic memory allocation, i.e.,
when memory space to be allocated to a given object is
determined only at run time.
Dynamic allocation has a number of advantages, among

which is that the run-time system is able to adapt allocation
to run-time conditions. For example, the programmer can
specify that space should be allocated for a given object only
in response to a particular run-time condition. The C-lan
guage library function malloc() is often used for this
purpose. Conversely, the programmer can specify conditions
under which memory previously allocated to a given object
can be reclaimed for reuse. The C-language library function
free() results in Such memory reclamation.

Because dynamic allocation provides for memory reuse,
it facilitates generation of large or long-lived applications,
which over the course of their lifetimes may employ objects
whose total memory requirements would greatly exceed the
available memory resources if they were bound to memory
locations statically.

Particularly for long-lived applications, though, allocation
and reclamation of dynamic memory must be performed
carefully. If the application fails to reclaim unused
memory—or, worse, loses track of the address of a dynami
cally allocated segment of memory—its memory require
ments will grow over time to exceed the systems available
memory. This kind of error is known as a “memory leak.”

Another kind of error occurs when an application reclaims
memory for reuse even though it still maintains a reference
to that memory. If the reclaimed memory is reallocated for
a different purpose, the application may inadvertently
manipulate the same memory in multiple inconsistent ways.
This kind of error is known as a “dangling reference.”
because an application should not retain a reference to a
memory location once that location is reclaimed. Explicit
dynamic-memory management by using interfaces like mal
loc()/free() often leads to these problems.
Away of reducing the likelihood of such leaks and related

errors is to provide memory-space reclamation in a more
automatic manner. Techniques used by Systems that reclaim
memory space automatically are commonly referred to as
'garbage collection.” Garbage collectors operate by reclaim
ing space that they no longer consider “reachable.” Statically
allocated objects represented by a program's global Vari
ables are normally considered reachable throughout a pro
gram’s life. Such objects are not ordinarily stored in the
garbage collector's managed memory space, but they may
contain references to dynamically allocated objects that are,
and Such objects are considered reachable. Clearly, an object
referred to in the processor's call stack is reachable, as is an
object referred to by register contents. And an object referred
to by any reachable object is also reachable.
The use of garbage collectors is advantageous because,

whereas a programmer working on a particular sequence of
code can perform his task creditably in most respects with

US 7,062,519 B2
3

only local knowledge of the application at any given time,
memory allocation and reclamation require a global knowl
edge of the program. Specifically, a programmer dealing
with a given sequence of code does tend to know whether
Some portion of memory is still in use for that sequence of
code, but it is considerably more difficult for him to know
what the rest of the application is doing with that memory.
By tracing references from Some conservative notion of a
“root set, e.g., global variables, registers, and the call stack,
automatic garbage collectors obtain global knowledge in a
methodical way. By using a garbage collector, the program
mer is relieved of the need to worry about the applications
global state and can concentrate on local-state issues, which
are more manageable. The result is applications that are
more robust, having no dangling references and fewer
memory leaks.

Garbage-collection mechanisms can be implemented by
various parts and levels of a computing system. One
approach is simply to provide them as part of a batch
compilers output. Consider FIG. 2's simple batch-compiler
operation, for example. A computer system executes in
accordance with compiler object code and therefore acts as
a compiler 20. The compiler object code is typically stored
on a medium such as FIG. 1's system disk 17 or some other
machine-readable medium, and it is loaded into RAM 14 to
configure the computer system to act as a compiler. In some
cases, though, the compiler object code's persistent storage
may instead be provided in a server system remote from the
machine that performs the compiling. The electrical signals
that carry the digital data by which the computer systems
exchange that code are examples of the kinds of electro
magnetic signals by which the computer instructions can be
communicated. Others are radio waves, microwaves, and
both visible and invisible light.

The input to the compiler is the application source code,
and the end product of the compiler process is application
object code. This object code defines an application 21,
which typically operates on input such as mouse clicks, etc.,
to generate a display or some other type of output. This
object code implements the relationship that the programmer
intends to specify by his application source code. In one
approach to garbage collection, the compiler 20, without the
programmer's explicit direction, additionally generates code
that automatically reclaims unreachable memory space.

Even in this simple case, though, there is a sense in which
the application does not itself provide the entire garbage
collector. Specifically, the application will typically call
upon the underlying operating system's memory-allocation
functions. And the operating system may in turn take advan
tage of various hardware that lends itself particularly to use
in garbage collection. So even a very simple system may
disperse the garbage-collection mechanism over a number of
computer-system layers.

To get Some sense of the variety of system components
that can be used to implement garbage collection, consider
FIG. 3's example of a more complex way in which various
levels of Source code can result in the machine instructions
that a processor executes. In the FIG. 3 arrangement, the
human applications programmer produces source code 22
written in a high-level language. A compiler 23 typically
converts that code into "class files.” These files include
routines written in instructions, called “byte codes' 24, for
a “virtual machine' that various processors can be software
configured to emulate. This conversion into byte codes is
almost always separated in time from those codes execu
tion, so FIG. 3 divides the sequence into a “compile-time
environment 25 separate from a “run-time environment'

5

10

15

25

30

35

40

45

50

55

60

65

4
26, in which execution occurs. One example of a high-level
language for which compilers are available to produce Such
virtual-machine instructions is the JavaTM programming
language. (Java is a trademark or registered trademark of
Sun Microsystems, Inc., in the United States and other
countries.)
Most typically, the class files byte-code routines are

executed by a processor under control of a virtual-machine
process 27. That process emulates a virtual machine from
whose instruction set the byte codes are drawn. As is true of
the compiler 23, the virtual-machine process 27 may be
specified by code stored on a local disk or some other
machine-readable medium from which it is read into FIG.
1's RAM 14 to configure the computer system to implement
the garbage collector and otherwise act as a virtual machine.
Again, though, that code's persistent storage may instead be
provided by a server system remote from the processor that
implements the virtual machine, in which case the code
would be transmitted electrically or optically to the virtual
machine-implementing processor.

In some implementations, much of the virtual machine's
action in executing these byte codes is most like what those
skilled in the art refer to as “interpreting, so FIG. 3 depicts
the virtual machine as including an “interpreter 28 for that
purpose. In addition to of instead of running an interpreter,
many virtual-machine implementations actually compile the
byte codes concurrently with the resultant object code's
execution, so FIG. 3 depicts the virtual machine as addi
tionally including a “just-in-time” compiler 29. We will refer
to the just-in-time compiler and the interpreter together as
“execution engines' since they are the methods by which
byte code can be executed.
Now, some of the functionality that Source-language

constructs specify can be quite complicated, requiring many
machine-language instructions for their implementation.
One quite-common example is a Source-language instruc
tion that calls for 64-bit arithmetic on a 32-bit machine.
More germane to the present invention is the operation of
dynamically allocating space to a new object; the allocation
of Such objects must be mediated by the garbage collector.

In Such situations, the compiler may produce "inline'
code to accomplish these operations. That is, all object-code
instructions for carrying out a given source-code-prescribed
operation will be repeated each time the source code calls for
the operation. But inlining runs the risk that “code bloat”
will result if the operation is invoked at many source-code
locations.

The natural way of avoiding this result is instead to
provide the operation’s implementation as a procedure, i.e.,
a single code sequence that can be called from any location
in the program. In the case of compilers, a collection of
procedures for implementing many types of Source-code
specified operations is called a runtime system for the
language. The execution engines and the runtime system of
a virtual machine are designed together so that the engines
“know what runtime-system procedures are available in the
virtual machine (and on the target system if that system
provides facilities that are directly usable by an executing
virtual-machine program.) So, for example, the just-in-time
compiler 29 may generate native code that includes calls to
memory-allocation procedures provided by the virtual
machine’s runtime system. These allocation routines may in
turn invoke garbage-collection routines of the runtime sys
tem when there is not enough memory available to satisfy an
allocation. To represent this fact, FIG. 3 includes block 30 to
show that the compilers output makes calls to the runtime

US 7,062,519 B2
5

system as well as to the operating system 31, which consists
of procedures that are similarly system-resident but are not
compiler-dependent.

Although the FIG.3 arrangement is a popular one, it is by
no means universal, and many further implementation types
can be expected. Proposals have even been made to imple
ment the virtual machine 27's behavior in a hardware
processor, in which case the hardware itself would provide
Some or all of the garbage-collection function.
The arrangement of FIG. 3 differs from FIG. 2 in that the

compiler 23 for converting the human programmers code
does not contribute to providing the garbage-collection
function; that results largely from the virtual machine 27's
operation. Those skilled in that art will recognize that both
of these organizations are merely exemplary, and many
modern systems employ hybrid mechanisms, which partake
of the characteristics of traditional compilers and traditional
interpreters both.
The invention to be described below is applicable inde

pendently of whether a batch compiler, a just-in-time com
piler, an interpreter, or some hybrid is employed to process
Source code. In the remainder of this application, therefore,
we will use the term compiler to refer to any such mecha
nism, even if it is what would more typically be called an
interpreter.

In short, garbage collectors can be implemented in a wide
range of combinations of hardware and/or software. As is
true of most of the garbage-collection techniques described
in the literature, the invention to be described below is
applicable to most such systems.
By implementing garbage collection, a computer system

can greatly reduce the occurrence of memory leaks and other
Software deficiencies in which human programming fre
quently results. But it can also have significant adverse
performance effects if it is not implemented carefully. To
distinguish the part of the program that does “useful work
from that which does the garbage collection, the term
mutator is sometimes used in discussions of these effects;
from the collector's point of view, what the mutator does is
mutate active data structures connectivity.
Some garbage-collection approaches rely heavily on

interleaving garbage-collection steps among mutator steps.
In one type of garbage-collection approach, for instance, the
mutator operation of writing a reference is followed imme
diately by garbage-collector steps used to maintain a refer
ence count in that objects header, and code for Subsequent
new-object storage includes steps for finding space occupied
by objects whose reference count has fallen to zero. Obvi
ously, such an approach can slow mutator operation signifi
cantly.

Other approaches therefore interleave very few garbage
collector-related instructions into the main mutator process
but instead interrupt it from time to time to perform garbage
collection cycles, in which the garbage collector finds
unreachable objects and reclaims their memory space for
reuse. Such an approach will be assumed in discussing FIG.
4’s depiction of a simple garbage-collection operation.
Within the memory space allocated to a given application is
a part 40 managed by automatic garbage collection. In the
following discussion, this will be referred to as the “heap.”
although in other contexts that term refers to all dynamically
allocated memory. During the course of the application’s
execution, space is allocated for various objects 42, 44, 46.
48, and 50. Typically, the mutator allocates space within the
heap by invoking the garbage collector, which at Some level
manages access to the heap. Basically, the mutator asks the
garbage collector for a pointer to a heap region where it can

10

15

25

30

35

40

45

50

55

60

65

6
safely place the object's data. The garbage collector keeps
track of the fact that the thus-allocated region is occupied. It
will refrain from allocating that region in response to any
other request until it determines that the mutator no longer
needs the region allocated to that object.

Garbage collectors vary as to which objects they consider
reachable and unreachable. For the present discussion,
though, an object will be considered “reachable' if it is
referred to, as object 42 is, by a reference in the root set 52.
The root set consists of reference values stored in the
mutators threads call stacks, the CPU registers, and global
variables outside the garbage-collected heap. An object is
also reachable if it is referred to, as object 46 is, by another
reachable object (in this case, object 42). Objects that are not
reachable can no longer affect the program, so it is safe to
re-allocate the memory spaces that they occupy.
A typical approach to garbage collection is therefore to

identify all reachable objects and reclaim any previously
allocated memory that the reachable objects do not occupy.
A typical garbage collector may identify reachable objects
by tracing references from the root set 52. For the sake of
simplicity, FIG. 4 depicts only one reference from the root
set 52 into the heap 40. (Those skilled in the art will
recognize that there are many ways to identify references, or
at least data contents that may be references.) The collector
notes that the root set points to object 42, which is therefore
reachable, and that reachable object 42 points to object 46.
which therefore is also reachable. But those reachable
objects point to no other objects, so objects 44, 48, and 50
are all unreachable, and their memory space may be
reclaimed. This may involve, say, placing that memory
space in a list of free memory blocks.
To avoid excessive heap fragmentation, Some garbage

collectors additionally relocate reachable objects. FIG. 5
shows a typical approach. The heap is partitioned into two
halves, hereafter called 'semi-spaces.” For one garbage
collection cycle, all objects are allocated in one semi-space
54, leaving the other semi-space 56 free. When the garbage
collection cycle occurs, objects identified as reachable are
“evacuated to the other semi-space 56, so all of semi-space
54 is then considered free. Once the garbage-collection cycle
has occurred, all new objects are allocated in the lower
semi-space 56 until yet another garbage-collection cycle
occurs, at which time the reachable objects are evacuated
back to the upper semi-space 54.

Although this relocation requires the extra steps of copy
ing the reachable objects and updating references to them, it
tends to be quite efficient, since most new objects quickly
become unreachable, so most of the current semi-space is
actually garbage. That is, only a relatively few, reachable
objects need to be relocated, after which the entire semi
space contains only garbage and can be pronounced free for
reallocation.
Now, a collection cycle can involve following all refer

ence chains from the basic root set—i.e., from inherently
reachable locations such as the call stacks, class statics and
other global variables, and registers—and reclaiming all
space occupied by objects not encountered in the process.
And the simplest way of performing Such a cycle is to
interrupt the mutator to provide a collector interval in which
the entire cycle is performed before the mutator resumes.
For certain types of applications, this approach to collection
cycle scheduling is acceptable and, in fact, highly efficient.

For many interactive and real-time applications, though,
this approach is not acceptable. The delay in mutator opera
tion that the collection cycle's execution causes can be
annoying to a user and can prevent a real-time application

US 7,062,519 B2
7

from responding to its environment with the required speed.
In some applications, choosing collection times opportunis
tically can reduce this effect. Collection intervals can be
inserted when an interactive mutator reaches a point at
which it awaits user input, for instance.

So it may often be true that the garbage-collection opera
tion’s effect on performance can depend less on the total
collection time than on when collections actually occur. But
another factor that often is even more determinative is the
duration of any single collection interval, i.e., how long the
mutator must remain quiescent at any one time. In an
interactive system, for instance, a user may never notice
hundred-millisecond interruptions for garbage collection,
whereas most users would find interruptions lasting for two
seconds to be annoying.
The cycle may therefore be divided up among a plurality

of collector intervals. When a collection cycle is divided up
among a plurality of collection intervals, it is only after a
number of intervals that the collector will have followed all
reference chains and be able to identify as garbage any
objects not thereby reached. This approach is more complex
than completing the cycle in a single collection interval; the
mutator will usually modify references between collection
intervals, so the collector must repeatedly update its view of
the reference graph in the midst of the collection cycle. To
make Such updates practical, the mutator must communicate
with the collector to let it know what reference changes are
made between intervals.
An even more complex approach, which some systems

use to eliminate discrete pauses or maximize resource-use
efficiency, is to execute the mutator and collector in con
current execution threads. Most systems that use this
approach use it for most but not all of the collection cycle:
the mutator is usually interrupted for a short collector
interval, in which a part of the collector cycle takes place
without mutation.

Independent of whether the collection cycle is performed
concurrently with mutator operation, is completed in a
single interval, or extends over multiple intervals is the
question of whether the cycle is complete, as has tacitly been
assumed so far, or is instead "incremental. In incremental
collection, a collection cycle constitutes only an increment
of collection: the collector does not follow all reference
chains from the basic root set completely. Instead, it con
centrates on only a portion, or collection set, of the heap.
Specifically, it identifies every collection-set object referred
to by a reference chain that extends into the collection set
from outside of it, and it reclaims the collection-set space not
occupied by Such objects, possibly after evacuating them
from the collection set.

By thus culling objects referenced by reference chains
that do not necessarily originate in the basic root set, the
collector can be thought of as expanding the root set to
include as roots some locations that may not be reachable.
Although incremental collection thereby leaves “floating
garbage, it can result in relatively low pause times even if
entire collection increments are completed during respective
single collection intervals.
Most collectors that employ incremental collection oper

ate in 'generations, although this is not necessary in
principle. Different portions, or generations, of the heap are
subject to different collection policies. New objects are
allocated in a "young generation, and older objects are
promoted from younger generations to older or more
"mature' generations. Collecting the younger generations
more frequently than the others yields greater efficiency

10

15

25

30

35

40

45

50

55

60

65

8
because the younger generations tend to accumulate garbage
faster; newly allocated objects tend to “die,” while older
objects tend to “survive.”

But generational collection greatly increases what is
effectively the root set for a given generation. Consider FIG.
6, which depicts a heap as organized into three generations
58, 60, and 62. Assume that generation 60 is to be collected.
The process for this individual generation may be more or
less the same as that described in connection with FIGS. 4
and 5 for the entire heap, with one major exception. In the
case of a single generation, the root set must be considered
to include not only the call stack, registers, and global
variables represented by set 52 but also objects in the other
generations 58 and 62, which themselves may contain
references to objects in generation 60. So pointers must be
traced not only from the basic root set 52 but also from
objects within the other generations.
One could perform this tracing by simply inspecting all

references in all other generations at the beginning of every
collection interval, and it turns out that this approach is
actually feasible in some situations. But it takes too long in
other situations, so workers in this field have employed a
number of approaches to expediting reference tracing. One
approach is to include so-called write barriers in the mutator
process. A write barrier is code added to a write operation to
record information from which the collector can determine
where references were written or may have been since the
last collection interval. A reference list can then be main
tained by taking Such a list as it existed at the end of the
previous collection interval and updating it by inspecting
only locations identified by the write barrier as possibly
modified since the last collection interval.

One of the many write-barrier implementations com
monly used by workers in this art employs what has been
referred to as the “card table.” FIG. 6 depicts the various
generations as being divided into Smaller sections, known
for this purpose as “cards.” Card tables 64, 66, and 68
associated with respective generations contain an entry for
each of their cards. When the mutator writes a reference in
a card, it makes an appropriate entry in the card-table
location associated with that card (or, say, with the card in
which the object containing the reference begins). Most
write-barrier implementations simply make a Boolean entry
indicating that the write operation has been performed,
although some may be more elaborate. The mutator having
thus left a record of where new or modified references may
be, the collector can thereafter prepare appropriate Summa
ries of that information, as, will be explained in due course.
For the sake of concreteness, we will assume that the
Summaries are maintained by Steps that occur principally at
the beginning of each collection interval.
Of course, there are other write-barrier approaches, such

as simply having the write barrier add to a list of addresses
where references where written. Also, although there is no
reason in principle to favor any particular number of gen
erations, and although FIG. 6 shows three, most generational
garbage collectors have only two generations, of which one
is the young generation and the other is the mature genera
tion. Moreover, although FIG. 6 shows the generations as
being of the same size, a more-typical configuration is for
the young generation to be considerably smaller. Finally,
although we assumed for the sake of simplicity that collec
tion during a given interval was limited to only one genera
tion, a more-typical approach is actually to collect the whole
young generation at every interval but to collect the mature
one less frequently.

US 7,062,519 B2
9

Some collectors collect the entire young generation in
every interval and may thereafter perform mature-genera
tion collection in the same interval. It may therefore take
relatively little time to Scan all young-generation objects
remaining after young-generation collection to find refer
ences into the mature generation. Even when Such collectors
do use card tables, therefore, they often do not use them for
finding young-generation references that refer to mature
generation objects. On the other hand, laboriously scanning
the entire mature generation for references to young-gen
eration (or mature-generation) objects would ordinarily take
too long, so the collector uses the card table to limit the
amount of memory it searches for mature-generation refer
CCCS.

Now, although it typically takes very little time to collect
the young generation, it may take more time than is accept
able within a single garbage-collection cycle to collect the
entire mature generation. So Some garbage collectors may
collect the mature generation incrementally; that is, they
may perform only a part of the mature generation's collec
tion during any particular collection cycle. Incremental
collection presents the problem that, since the generation’s
unreachable objects outside the “collection set of objects
processed during that cycle cannot be recognized as
unreachable, collection-set objects to which they refer tend
not to be, either.
To reduce the adverse effect this would otherwise have on

collection efficiency, workers in this field have employed the
“train algorithm, which FIG. 7 depicts. A generation to be
collected incrementally is divided into sections, which for
reasons about to be described are referred to as “car sec
tions.” Conventionally, a generations incremental collec
tion occurs in fixed-size sections, and a car section's size is
that of the generation portion to be collected during one
cycle.
The discussion that follows will occasionally employ the

nomenclature in the literature by using the term car instead
of car section. But the literature seems to use that is term to
refer variously not only to memory sections themselves but
also to data structures that the train algorithm employs to
manage them when they contain objects, as well as to the
more-abstract concept that the car section and managing
data structure represent in discussions of the algorithm. So
the following discussion will more frequently use the
expression car section to emphasize the actual sections of
memory space for whose management the car concept is
employed.

According to the train algorithm, the car sections are
grouped into “trains,” which are ordered, conventionally
according to age. For example, FIG. 7 shows an oldest train
73 consisting of a generation 74's three car sections
described by associated data structures 75, 76, and 78, while
a second train 80 consists only of a single car section,
represented by structure 82, and the youngest train 84
(referred to as the “allocation train’) consists of car sections
that data structures 86 and 88 represent. As will be seen
below, car sections train memberships can change, and any
car section added to a train is typically added to the end of
a train.

Conventionally, the car collected in an increment is the
one added earliest to the oldest train, which in this case is car
75. All of the generations cars can thus be thought of as
waiting for collection in a single long line, in which cars are
ordered in accordance with the order of the trains to which
they belong and, within trains, in accordance with the order
in which they were added to those trains.

10

15

25

30

35

40

45

50

55

60

65

10
As is usual, the way in which reachable objects are

identified is to determine whether there are references to
them in the root set or in any other object already determined
to be reachable. In accordance with the train algorithm, the
collector additionally performs a test to determine whether
there are any references at all from outside the oldest train
to objects within it. If there are not, then all cars within the
train can be reclaimed, even though not all of those cars are
in the collection set. And the train algorithm so operates that
inter-car references tend to be grouped into trains, as will
now be explained.
To identify references into the car from outside of it,

train-algorithm implementations typically employ “remem
bered sets.” As card tables are, remembered sets are used to
keep track of references. Whereas a card-table entry contains
information about references that the associated card con
tains, though, a remembered set associated with a given
region contains information about references into that region
from locations outside of it. In the case of the train algo
rithm, remembered sets are associated with car sections.
Each remembered set, such as car 75's remembered set 90,
lists locations in the generation that contain references into
the associated car section.
The remembered sets for all of a generations cars are

typically updated at the start of each collection cycle. To
illustrate how Such updating and other collection operations
may be carried out, FIGS. 8A and 8B (together, “FIG. 8)
depict an operational sequence in a system of the typical
type mention above. That is, it shows a sequence of opera
tions that may occur in a system in which the entire
garbage-collected heap is divided into two generations,
namely, a young generation and an old generation, and in
which the young generation is much Smaller than the old
generation. FIG. 8 is also based on the assumption and that
the train algorithm is used only for collecting the old
generation.

Block 102 represents a period of the mutator's operation.
AS was explained above, the mutator makes a card-table
entry to identify any card that it has “dirtied by adding or
modifying a reference that the card contains. At some point,
the mutator will be interrupted for collector operation.
Different implementations employ different events to trigger
such an interruption, but we will assume for the sake of
concreteness that the systems dynamic-allocation routine
causes such interruptions when no room is left in the young
generation for any further allocation. A dashed line 103
represents the transition from mutator operation and collec
tor operation.

In the system assumed for the FIG. 8 example, the
collector collects the (entire) young generation each time
Such an interruption occurs. When the young generations
collection ends, the mutator operation usually resumes,
without the collector's having collected any part of the old
generation. Once in a while, though, the collector also
collects part of the old generation, and FIG. 8 is intended to
illustrate such an occasion.
When the collector's interval first starts, it first processes

the card table, in an operation that block 104 represents. As
was mentioned above, the collector scans the "dirtied cards
for references into the young generation. If a reference is
found, that fact is memorialized appropriately. If the refer
ence refers to a young-generation object, for example, an
expanded card table may be used for this purpose. For each
card, such an expanded card table might include a multi-byte
array used to Summarize the cards reference contents. The
Summary may, for instance, be a list of offsets that indicate
the exact locations within the card of references to young

US 7,062,519 B2
11

generation objects, or it may be a list of fine-granularity
'sub-cards' within which references to young-generation
objects may be found. If the reference refers to an old
generation object, the collector often adds an entry to the
remembered set associated with the car containing that
old-generation object. The entry identifies the references
location, or at least a small region in which the reference can
be found. For reasons that will become apparent, though, the
collector will typically not bother to place in the remem
bered set the locations of references from objects in car
sections farther forward in the collection queue than the
referred-to object, i.e., from objects in older trains or in cars
added earlier to the same train.
The collector then collects the young generation, as block

105 indicates. (Actually, young-generation collection may
be interleaved with the dirty-region scanning, but the draw
ing illustrates it for purpose of explanation as being sepa
rate.) If a young-generation object is referred to by a
reference that card-table scanning has revealed, that object
is considered to be potentially reachable, as is any young
generation object referred to by a reference in the root set or
in another reachable young-generation object. The space
occupied by any young-generation object thus considered
reachable is withheld from reclamation. For example, it may
be evacuated to a young-generation semi-space that will be
used for allocation during the next mutator interval. It may
instead be promoted into the older generation, where it is
placed into a car containing a reference to it or into a car in
the last train. Or Some other technique may be used to keep
the memory space it occupies off the systems free list. The
collector then reclaims any young-generation space occu
pied by any other objects, i.e., by any young-generation
objects not identified as transitively reachable through ref
erences located outside the young generation.
The collector then performs the train algorithms central

test, referred to above, of determining whether there are any
references into the oldest train from outside of it. As was
mentioned above, the actual process of determining, for each
object, whether it can be identified as unreachable is per
formed for only a single car section in any cycle. In the
absence of features such as those provided by the train
algorithm, this would present a problem, because garbage
structures may be larger than a car section. Objects in Such
structures would therefore (erroneously) appear reachable,
since they are referred to from outside the car section under
consideration. But the train algorithm additionally keeps
track of whether there are any references into a given car
from outside the train to which it belongs, and trains sizes
are not limited. As will be apparent presently, objects not
found to be unreachable are relocated in such a way that
garbage structures tend to be gathered into respective trains
into which, eventually, no references from outside the train
point. If no references from outside the train point to any
objects inside the train, the train can be recognized as
containing only garbage. This is the test that block 106
represents. All cars in a train thus identified as containing
only garbage can be reclaimed.
The question of whether old-generation references point

into the train from outside of it is (conservatively) answered
in the course of updating remembered sets; in the course of
updating a car's remembered set, it is a simple matter to flag
the car as being referred to from outside the train. The
step-106 test additionally involves determining whether any
references from outside the old generation point into the
oldest train. Various approaches to making this determina
tion have been Suggested, including the conceptually simple
approach of merely following all reference chains from the

10

15

25

30

35

40

45

50

55

60

65

12
root set until those chains (1) terminate, (2) reach an
old-generation object outside the oldest train, or (3) reach an
object in the oldest train. In the two-generation example,
most of this work can be done readily by identifying
references into, the collection set from live young-genera
tion objects during the young-generation collection. If one
or more Such chains reach the oldest train, that train includes
reachable objects. It may also include reachable objects if
the remembered-set-update operation has found one or more
references into the oldest train from outside of it. Otherwise,
that train contains only garbage, and the collector reclaims
all of its car sections for reuse, as block 107 indicates. The
collector may then return control to the mutator, which
resumes execution, as FIG. 8B's block 108 indicates.

If the train contains reachable objects, on the other hand,
the collector turns to evacuating potentially reachable
objects from the collection set. The first operation, which
block 110 represents, is to remove from the collection set
any object that is reachable from the root set by way of a
reference chain that does not pass through the part of the old
generation that is outside of the collection set. In the
illustrated arrangement, in which there are only two gen
erations, and the young generation has previously been
completely collected during the same interval, this means
evacuating from a collection set any object that (1) is
directly referred to by a reference in the root set, (2) is
directly referred to by a reference in the young generation (in
which no remaining objects have been found unreachable),
or (3) is referred to by any reference in an object thereby
evacuated. All of the objects thus evacuated are placed in
cars in the youngest train, which was newly created during
the collection cycle. Certain of the mechanics involved in
the evacuation process are described in more detail in
connection with similar evacuation performed, as blocks 112
and 114 indicate, in response to remembered-set entries.

FIG. 9 illustrates how the processing represented by block
114 proceeds. The entries identify heap regions, and, as
block 116 indicates, the collector scans the thus-identified
heap regions to find references to locations in the collection
set. As blocks 118 and 120 indicate, that entry’s processing
continues until the collector finds no more such references.
Every time the collector does find such a reference, it checks
to determine whether, as a result of a previous entry's
processing, the referred-to object has already been evacu
ated. If it has not, the collector evacuates the referred-to
object to a (possibly new) car in the train containing the
reference, as blocks 122 and 124 indicate.
As FIG. 10 indicates, the evacuation operation includes

more than just object relocation, which block 126 represents.
Once the object has been moved, the collector places a
forwarding pointer in the collection-set location from which
it was evacuated, for a purpose that will become apparent
presently. Block 128 represents that step. (Actually, there are
Some cases in which the evacuation is only a "logical
evacuation: the car containing the object is simply re-linked
to a different logical place in the collection sequence, but its
address does not change. In Such cases, forwarding pointers
are unnecessary.) Additionally, the reference in response to
which the object was evacuated is updated to point to the
evacuated object’s new location, as block 130 indicates.
And, as block 132 indicates, any reference contained in the
evacuated object is processed, in an operation that FIGS.
11A and 11B (together, “FIG. 11') depict.

For each one of the evacuated objects references, the
collector checks to see whether the location that it refers to
is in the collection set. As blocks 134 and 136 indicate, the
reference processing continues until all references in the

US 7,062,519 B2
13

evacuated object have been processed. In the meantime, if a
reference refers to a collection-set location that contains an
object not yet evacuated, the collector evacuates the
referred-to object to the train to which the evacuated object
containing the reference was evacuated, as blocks 138 and
140 indicate.

If the reference refers to a location in the collection set
from which the object has already been evacuated, then the
collector uses the forwarding pointer left in that location to
update the reference, as block 142 indicates. Before the
processing of FIG. 11, the remembered set of the referred-to
objects car will have an entry that identifies the evacuated
object's old location as one containing a reference to the
referred-to object. But the evacuation has placed the refer
ence in a new location, for which the remembered set of the
referred-to object’s car may not have an entry. So, if that
new location is not as far forward as the referred-to object,
the collector adds to that remembered set an entry identify
ing the reference's new region, as blocks 144 and 146
indicate. As the drawings show, the same type of remem
bered-set update is performed if the object referred to by the
evacuated reference is not in the collection set.
Now, Some train-algorithm implementations postpone

processing of the references contained in evacuated collec
tion-set objects until after all directly reachable collection
set objects have been evacuated. In the implementation that
FIG. 10 illustrates, though, the processing of a given evacu
ated object's references occurs before the next object is
evacuated. So FIG. 11's blocks 134 and 148 indicate that the
FIG. 11 operation is completed, when all of the references
contained in the evacuated object have been processed. This
completes FIG. 10's object-evacuation operation, which
FIG. 9’s block 124 represents.
As FIG. 9 indicates, each collection-set object referred to

by a reference in a remembered-set-entry-identified location
is thus evacuated if it has not been already. If the object has
already been evacuated from the referred-to location, the
reference to that location is updated to point to the location
to which the object has been evacuated. If the remembered
set associated with the car containing the evacuated objects
new location does not include an entry for the references
location, it is updated to do so if the car containing the
reference is younger than the car containing the evacuated
object. Block 150 represents updating the reference and, if
necessary, the remembered set.
As FIG. 8's blocks 112 and 114 indicate, this processing

of collection-set remembered sets is performed initially only
for entries that do not refer to locations in the oldest train.
Those that do are processed only after all others have been,
as blocks 152 and 154 indicate.

When this process has been completed, the collection
sets memory space can be reclaimed, as block 164 indi
cates, since no remaining object is referred to from outside
the collection set: any remaining collection-set object is
unreachable. The collector then relinquishes control to the
mutatOr.

FIGS. 12A-12J illustrate results of using the train algo
rithm. FIG. 12A represents a generation in which objects
have been allocated in nine car sections. The oldest train has
four cars, numbered 1.1 through 1.4. Car 1.1 has two objects,
A and B. There is a reference to object B in the root set
(which, as was explained above, includes live objects in the
other generations). Object A is referred to by object L., which
is in the third train's sole car section. In the generation’s
remembered sets 170, a reference in object L has therefore
been recorded against car 1.1.

10

15

25

30

35

40

45

50

55

60

65

14
Processing always starts with the oldest train's earliest

added car, so the garbage collector refers to car 1.1's
remembered set and finds that there is a reference from
object L into the car being processed. It accordingly evacu
ates object A to the train that object L. occupies. The object
being evacuated is often placed; in one of the selected train's
existing cars; but we will assume for present purposes that
there is not enough room. So the garbage collector evacuates
object A into a new car section and updates appropriate data
structures to identify it as the next car in the third train. FIG.
12B depicts the result: a new car has been added to the third
train, and object A is placed in it.

FIG. 12B also shows that object B has been evacuated to
a new car outside the first train. This is because object B has
an external reference, which, like the reference to object A,
is a reference from outside the first train, and one goal of the
processing is to form trains into which there are no further
references. Note that, to maintain a reference to the same
object, object L’s reference to object A has had to be
rewritten, and so have object B's reference to object A and
the inter-generational pointer to object B. In the illustrated
example, the garbage collector begins a new train for the car
into which object B is evacuated, but this is not a necessary
requirement of the train algorithm. That algorithm requires
only that externally referenced objects be evacuated to a
newer train.

Since car 1.1 no longer contains live objects, it can be
reclaimed, as FIG. 12B also indicates. Also note that the
remembered set for car 2.1 now includes the address of a
reference in object A, whereas it did not before. As was
stated before, remembered sets in the illustrated embodi
ment include only references from cars further back in the
order than the one with which the remembered set is
associated. The reason for this is that any other cars will
already be reclaimed by the time the car associated with that
remembered set is processed, so there is no reason to keep
track of references from them.
The next step is to process the next car, the one whose

index is 1.2. Conventionally, this would not occur until some
collection cycle after the one during which car 1.1 is
collected. For the sake of simplicity we will assume that the
mutator has not changed any references into the generation
in the interim.

FIG. 12B depicts car 1.2 as containing only a single
object, object C, and that car's remembered set contains the
address of an inter-car reference from object F. The garbage
collector follows that reference to object C. Since this
identifies object C as possibly reachable, the garbage col
lector evacuates it from car set 1.2, which is to be reclaimed.
Specifically, the garbage collector removes object C to a new
car section, section 1.5, which is linked to the train to which
the referring object Fs car belongs. Of course, object Fs
reference needs to be updated to object C’s new location.
FIG. 12C depicts the evacuation’s result.

FIG. 12C also indicates that car set 1.2 has been
reclaimed, and car 1.3 is next to be processed. The only
address in car 1.3's remembered set is that of a reference in
object G. Inspection of that reference reveals that it refers to
object F. Object F may therefore be reachable, so it must be
evacuated before car section 1.3 is reclaimed. On the other
hand, there are no references to objects D and E, so they are
clearly garbage. FIG. 12D depicts the result of reclaiming
car 1.3's space after evacuating possibly reachable object F.

In the state that FIG. 12D depicts, car 1.4 is next to be
processed, and its remembered set contains the addresses of
references in objects K and C. Inspection of object K's
reference reveals that it refers to object H, so object H must

US 7,062,519 B2
15

be evacuated. Inspection of the other remembered-set entry,
the reference in object C, reveals that it refers to object G,
so that object is evacuated, too. As FIG. 12E illustrates,
object H must be added to the second train, to which its
referring object K belongs. In this case there is room enough
in car 2.2, which its referring object K occupies. So evacu
ation of object H does not require that object K's reference
to object H be added to car 2.2's remembered set. Object G
is evacuated to a new car in the same train, since that train
is where referring object C resides. And the address of the
reference in object G to object C is added to car 1.5’s
remembered set.

FIG. 12E shows that this processing has eliminated all
references into the first train, and it is an important part of
the train algorithm to test for this condition. That is, even
though there are references into both of the train's cars,
those cars contents can be recognized as all garbage
because there are no references into the train from outside of
it. So all of the first train's cars are reclaimed.
The collector accordingly processes car 2.1 during the

next collection cycle, and that car's remembered set indi
cates that there are two references outside the car that refer
to objects within it. Those references are in object K, which
is in the same train, and object A, which is not. Inspection
of those references reveals that they refer to objects I and J.
which are evacuated.

The result, depicted in FIG. 12F, is that the remembered
sets for the cars in the second train reveal no inter-car
references, and there are no inter-generational references
into it, either. That trains car sections therefore contain only
garbage, and their memory space can be reclaimed.

So car 3.1 is processed next. Its sole object, object L. is
referred to inter-generationally as well as by a reference in
the fourth trains object M. As FIG. 12G shows, object L is
therefore evacuated to the fourth train. And the address of
the reference in object L to object A is placed in the
remembered set associated with car 3.2, in which object A
resides.
The next car to be processed is car 3.2, whose remem

bered set includes the addresses of references into it from
objects B and L. Inspection of the reference from object B
reveals that it refers to object A, which must therefore be
evacuated to the fifth train before car 3.2 can be reclaimed.
Also, we assume that object A cannot fit in car section 5. 1,
so a new car 5.2 is added to that train, as FIG. 12H shows,
and object A is placed in its car section. All referred-to
objects in the third train having been evacuated, that (single
car) train can be reclaimed in its entirety.
A further observation needs to be made before we leave

FIG. 12G. Car 3.2s remembered set additionally lists a
reference in object L. So the garbage collector inspects that
reference and finds that it points to the location previously
occupied by object A. This brings up a feature of copying
collection techniques such as the typical train-algorithm
implementation. When the garbage collector evacuates an
object from a car section, it marks the location as having
been evacuated and leaves the address of the object’s new
location. So, when the garbage collector traces the reference
from object L, it finds that object A has been removed, and
it accordingly copies the new location into object L as the
new value of its reference to object A.

In the state that FIG. 12H illustrates, car 4.1 is the next to
be processed. Inspection of the fourth trains remembered
sets reveals no inter-train references into it, but the inter
generational scan (possibly performed with the aid of FIG.
6's card tables) reveals inter-generational references into car
4.2. So the fourth train cannot be reclaimed yet. The garbage

10

15

25

30

35

40

45

50

55

60

65

16
collector accordingly evacuates car 4.1's referred-to objects
in the normal manner, with the result that FIG. 121 depicts.

In that state, the next car to be processed has only
inter-generational references into it. So, although its
referred-to objects must therefore be evacuated from the
train, they cannot be placed into trains that contain refer
ences to them. Conventionally, Such objects are evacuated to
a train at the end of the train sequence. In the illustrated
implementation, a new train is formed for this purpose, so
the result of car 4.2’s processing is the state that FIG. 12J
depicts.

Processing continues in this same fashion. Of course,
Subsequent collection cycles will not in general proceed, as
in the illustrated cycles, without any reference changes by
the mutator and without any addition of further objects. But
reflection reveals that the general approach just described
still applies when Such mutations occur.
A continuing problem for incremental copying garbage

collectors is that, if an object is enormous, much larger than
a normal car or even many normal sized cars, and that
enormous object is collected at one time, any time bounds or
constraints on the interruption of an application may be
exceeded.

Such enormous objects are re-linked rather than copied,
since re-linking takes less time than copying and then
updating all the references. Re-linked only requires updating
the remembered sets of older cars in the generation refer
enced by the re-linked object. However, enormous objects
may reference many objects and updating the remembered
sets of many older cars still could interrupt an application for
an unacceptably long time.
Known prior art regarding the Train algorithm have not

addressed this issue. For reference, papers by Hudson and
Moss and by Grarup and Seligmann, Such papers well
known in this field, provide useful general information on
the train algorithm.

There is a need to efficiently collect enormous objects
while maintaining interruption time constraints on concur
rent applications.

SUMMARY OF THE INVENTION

The present invention provides apparatus and process
Solutions to collecting these enormous objects by breaking
up and collecting only portions of the enormous objects, and
thus breaking up the work into Smaller more time-acceptable
increments. The portions are scanned and references
inserted into corresponding remembered sets over a series of
collection intervals.

In order to maintain control while collecting such enor
mous objects the present invention provides for re-linking
the enormous object rather than relocating. The re-linked
enormous object is partially scanned for references into
older cars and corresponding insertions are made into these
older cars remembered sets. The location of the unscanned
portion of the enormous object is saved for Subsequent
collection intervals until the entire enormous object has been
scanned and proper insertions into the remembered sets of
older cars made.

If there are other normal cars with normal objects in the
collection set those objects are evacuated as described
above, and remembered sets of older cars properly up-dated.
The re-linked enormous object is scanned for references into
the collection set and the references in the enormous object
are updated with the new locations of any evacuated objects.

US 7,062,519 B2
17

BRIEF DESCRIPTION OF THE DRAWINGS

The invention description below refers to the accompa
nying drawings, of which:

FIG. 1, discussed above, is a block diagram of a computer
system in which the present invention's teachings can be
practiced;

FIG. 2 as, discussed above, is a block diagram that
illustrates a compiler's basic functions;

FIG. 3, discussed above, is a block diagram that illustrates
a more-complicated compiler/interpreter organization;

FIG. 4, discussed above, is a diagram that illustrates a
basic garbage-collection mechanism;

FIG. 5, discussed above, is a similar diagram illustrating
that garbage-collection approach's relocation operation;

FIG. 6, discussed above, is a diagram that illustrates a
garbage-collected heap's organization into generations;

FIG. 7, discussed above, is a diagram that illustrates a
generation organization employed for the train algorithm;

FIGS. 8A and 8B, discussed above, together constitute a
flow chart that illustrates a garbage-collection interval that
includes old-generation collection;

FIG. 9, discussed above, is a flow chart that illustrates in
more detail the remembered-set processing included in FIG.
8A:

FIG. 10, discussed above, is a block diagram that illus
trates in more detail the referred-to-object evacuation that
FIG. 9 includes:

FIGS. 11A and 11B, discussed above, together form a
flow chart that illustrates in more detail the FIG. 10 flow
chart's step of processing evacuated objects references;

FIGS. 12A-12J, discussed above, are diagrams that illus
trate a collection scenario that can result from using the train
algorithm;

FIGS. 13A and 13B together constitute a flow chart that
illustrates a collection interval, as FIGS. 8A and 8B do, but
illustrates optimizations that FIGS. 8A and 8B do not
include:

FIG. 14 is a diagram that illustrates example data struc
tures that can be employed to manage cars and trains in
accordance with the train algorithm;

FIG. 15 is a diagram that illustrates data structures
employed in managing different-sized car sections;

FIG. 16 is a block diagram of a two car collection set
including one enormous object in one car, and

FIGS. 17 and 18 are flow charts illustrating an embodi
ment of the present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

The illustrated embodiment employs a way of implement
ing the train algorithm that is in general terms similar to the
way described above. But, whereas it was tacitly assumed
above that, as is conventional, only a single car section
would be collected in any given collection interval, the
embodiment now to be discussed may collect more than a
single car during a collection interval. FIGS. 13A and 13B
(together, "FIG. 13) therefore depict a collection operation
that is similar to the one that FIG. 8 depicts, but FIG. 13
reflects cars containing enormous objects and multiple-car
collection sets and depicts certain optimizations that some of
the invention’s embodiments may employ.

Blocks 172, 176, and 178 represent operations that cor
respond to those that FIG. 8's blocks 102, 106, and 108 do,
and dashed line 174 represents the passage of control from
the mutator to the collector, as FIG. 8’s dashed line 104

10

15

25

30

35

40

45

50

55

60

65

18
does. For the sake of efficiency, though, the collection
operation of FIG. 13 includes a step represented by block
180. In this step, the collector reads the remembered set of
each car in the collection set to determine the location of
each reference into the collection set from a car outside of
it, it places the address of each reference thereby found into
a scratch-pad list associated with the train that contains that
reference, and it places the scratch-pad lists in reverse-train
order. As blocks 182 and 184 indicate, it then processes the
entries in all scratch-pad lists but the one associated with the
oldest train.

Before the collector processes references in that trains
scratch-pad list, the collector evacuates any objects referred
to from outside the old generation, as block 186 indicates. To
identify such objects, the collector scans the root set. In
Some generational collectors, it may also have to Scan other
generations for references into the collection set. For the
sake of example, though, we have assumed the particularly
common scheme in which a generations collection in a
given interval is always preceded by complete collection of
every (in this case, only one) younger generation in the same
interval. If, in addition, the collector's promotion policy is to
promote all Surviving younger-generation objects into older
generations, it is necessary only to scan older generations, of
which there are none in the example; i.e., Some embodi
ments may not require that the young generation be scanned
in the block-186 operation.

For those that do, though, the scanning may actually
involve inspecting each Surviving object in the young gen
eration, or the collector may expedite the process by using
card-table entries. Regardless of which approach it uses, the
collector immediately evacuates into another train any col
lection-set object to which it thereby finds an external
reference. The typical policy is to place the evacuated object
into the youngest Such train. As before, the collector does not
attempt to evacuate an object that has already been evacu
ated and, when it does evacuate an object to a train, it
evacuates to the same train each collection-set object to
which a reference the thus-evacuated object refers. In any
case, the collector updates the reference to the evacuated
object.
When the inter-generational references into the generation

have thus been processed, the garbage collector determines
whether there are any references into the oldest train from
outside that train. If not, the entire train can be reclaimed, as
blocks 188 and 190 indicate.
As block 192 indicates, the collector interval typically

ends when a train has thus been collected. If the oldest train
cannot be collected in this manner, though, the collector
proceeds to evacuate any collection-set objects referred to
by references whose locations the oldest train's scratch-pad
list includes, as blocks 194 and 196 indicate. It removes
them to younger cars in the oldest train, again updating
references, avoiding duplicate evacuations, and evacuating
any collection-set objects to which the evacuated objects
refer. When this process has been completed, the collection
set can be reclaimed, as block 198 indicates, since no
remaining object is referred to from outside the collection
set: any remaining collection-set object is unreachable. The
collector then relinquishes control to the mutator.
We now turn to a problem presented by popular objects.

FIG. 12F shows that there are two references to object L.
after the second train is collected. So references in both of
the referring objects need to be updated when object L is
evacuated. If entry duplication is to be avoided, adding
remembered-set entries is burdensome. Still, the burden in
not too great in that example, since only two referring

US 7,062,519 B2
19

objects are involved. But some types of applications rou
tinely generate objects to which there are large numbers of
references. Evacuating a single one of these objects requires
considerable reference up-dating, so it can be quite costly.
One way of dealing with this problem is to place popular

objects in their own cars. To understand how this can be
done, consider FIG. 14's exemplary data structures, which
represent the type of information a collector may maintain in
Support of the train algorithm. To emphasize trains ordered
nature, FIG. 14 depicts such a structure 244 as including
pointers 245 and 246 to the previous and next trains,
although train order could obviously be maintained without
Such a mechanism. Cars are ordered within trains, too, and
it may be a convenient to assign numbers for this purpose
explicitly and keep the next number to be assigned in the
train-associated structure, as field 247 Suggests. In any
event, Some way of associating cars with trains is necessary,
and the drawing represents this by fields 248 and 249 that
point to structures containing data for the train's first and last
CaS.

FIG. 14 depicts one such structure 250 as including
pointers 251, 252, and 253 to structures that contain infor
mation concerning the train to which the car belongs, the
previous car in the train, and the next car in the train. Further
pointers 254 and 255 point to the locations in the heap at
which the associated car section begins and ends, whereas
pointer 256 points to the place at which the next object can
be added to the car section.
As will be explained in more detail presently, there is a

standard car-section size that is used for all cars that contain
more than one object, and that size is great enough to contain
a relatively large number of average-sized objects. But some
objects can be too big for the standard size, so a car section
may consist of more than one of the standard-size memory
Sections. Structure 250 therefore includes a field 257 that
indicates how many standard-size memory sections there are
in the car section that the structure manages.
On the other hand, that structure may in the illustrated

embodiment be associated not with a single car section but
rather with a standard-car-section-sized memory section that
contains more than one (special-size) car section. When an
organization of this type is used, structures like structure 250
may include a field 258 that indicates whether the cheap
space associated with the structure is used, (1) normally, as
a car section that can contain multiple objects; or (2)
specially, as a region in which objects are stored one to a car
in a manner that will now be explained by reference to the
additional structures that FIG. 15 illustrates.
To deal specially with popular objects, the garbage col

lector may keep track of the number of references there are
to each object in the generation being collected. Now, the
memory space 260 allocated to an object typically begins
with a header 262 that contains various housekeeping infor
mation, such as an identifier of the class to which the object
belongs. One way to keep track of an object's popularity is
for the header to include a reference-count field 264 right in
the objects header. That field's default value is zero, which
is its value at the beginning of the remembered-set process
ing in a collection cycle in which the object belongs to the
collection set. As the garbage collector processes the col
lection-set cars remembered sets, it increments the objects
reference-count field each time it finds a reference to that
object, and it tests the resultant value to determine whether
the count exceeds a predetermined popular-object threshold.
If the count does exceed the threshold, the collector removes
the object to a “popular side yard” if it has not done so
already.

5

10

15

25

30

35

40

45

50

55

60

65

20
Specifically, the collector consults a table 266, which

points to linked lists of normal-car-section-sized regions
intended to contain popular objects. Preferably, the normal
car-section size is considerably larger than the 30 to 60 bytes
that has been shown by studies to be an average object size
in typical programs. Under Such circumstances, it would be
a significant waste of space to allocate a whole normal-sized
car section to an individual object. For reasons that will
become apparent below, collectors that follow the teachings
of the present invention tend to place popular objects into
their own, single-object car sections. So the normal-car
section-sized regions to which table 266 points are to be
treated as specially divided into car sections whose sizes are
more appropriate to individual-object storage.
To this end, table 266 includes a list of pointers to linked

lists of structures associated with respective regions of that
type. Each list is associated with a different object-size
range. For example, consider the linked list pointed to by
table 266's section, pointer 268. Pointer 268 is associated
with a linked list of normal-car-sized regions organized into
n-card car sections. Structure 267 is associated with one
such region and includes fields 270 and 272 that point to the
previous and next structure in a linked list of such structures
associated with respective regions of n-card car sections.
Car-section region 269, with which structure. 267 is asso
ciated, is divided into n-card car sections such as section
274, which contains object 260.
More specifically, the garbage collector determines the

size of the newly popular object by, for instance, consulting
the class structure to which, one of its header entries points.
It then determines the Smallest popular-car-section size that
can contain the object. Having thus identified the appropri
ate size, it follows table 266's pointer associated with that
size to the list of structures associated with regions so
divided. It follows the list to the first structure associated
with a region that has constituent car sections left.

Let us suppose that the first such structure is structure 267.
In-that case, the collector finds the next free car section by
following pointer 276 to a car data structure 278. This data
structure is similar to FIG. 14's structure 250, but in the
illustrated embodiment it is located in the garbage-collected
heap, at the end of the car section with which it is associated.
In a structure-278 field similar to structure 250's field 279,
the collector places the next car number of the train to which
the object is to be assigned, and it places the train's number
in a field corresponding to structure 250's field 251. The
collector also stores the object at the start of the popular
object car section in which structure 278 is located. In short,
the collector is adding a new car to the objects train, but the
associated car section is a smaller-than-usual car section,
sized to contain the newly popular object efficiently.
The aspect of the illustrated embodiment’s data-structure

organization that FIGS. 14 and 15 depict provides for
special-size car sections without detracting from rapid iden
tification of the normal-sized car to which a given object
belongs. Conventionally, all car sections have been the same
size, because doing so facilitates rapid car identification.
Typically, for example, the most-significant bits of the
difference between the generations base address and an
objects address are used as an offset into a car-metadata
table, which contains pointers to car structures associated
with the (necessarily uniform-size) memory sections asso
ciated with those most-significant bits. FIGS. 14 and 15's
organization permits this general approach to be used while
providing at the same time for special-sized car sections.
The car-metadata table can be used as before to contain
pointers to structures associated with memory sections

US 7,062,519 B2
21

whose uniform size is dictated by the number of address bits
used as an index into that table.

In the illustrated embodiment, though, the structures
pointed to by the metadata-table pointers contain fields
exemplified by fields. 258 of FIG. 14's structure 250 and
FIG. 15's Structure 267. These fields indicate whether the
structure manages only a single car section, as structure 250
does. If so, the structure thereby found is the car structure for
that object. Otherwise, the collector infers from the objects
address and the structure's section size field 284 the
location of the car structure, such as structure 278, that
manages the objects special-size car section, and it reads the
objects car number from that structure. This inference is
readily drawn if every such car structure is positioned at the
same offset from one of its respective car section’s bound
aries. In the illustrated example, for instance, every Such car
section’s car structure is placed at the end of the car section,
So its train and car-number fields are known to be located at
predetermined offsets from the end of the car section.
As discussed herein the present invention applies to

virtually any incremental re-location or compaction collec
tor that utilizes remembered sets within a generation.
As discussed above, isolating enormous objects in one car

and re-linking, rather than copying, requires that remem
bered sets of cars older than the re-linked car's new position
in the Train algorithm may need to be updated to record
references from the re-linked enormous object. That is, after
re-linking, cars that are now older may be referenced from
the newly re-linked enormous object, and so the enormous
object must be scanned for these references and the remem
bered sets in these older cars must then be updated. As
discussed above, in some cases this scanning will interrupt
or pause the application beyond the time bounds specified.
This problem is addressed in the present invention.

It is helpful to recognize that the scanning of the enor
mous object and insertions into the remembered sets of older
cars is entirely local within a generation and to the particular
collection techniques. As such, the work of Scanning and
remembered set insertions may be broken into parcels that
are scheduled as is any other collection activity in a collec
tion interval.
As shown in FIG. 16, an identified enormous object E is

part of a collection set 320 that includes another car 1.1 with
an object A322 that is referenced from the enormous object
E. Referring to FIG. 17, an enormous object E in the
collection set 324 is evacuated by re-linking and marking for
scanning 326. If the collection set is empty 328, the initial
portion of the enormous objects is scanned for references
into older cars 330. If the collection set is not empty 332, the
initial portion of the enormous object is scanned for refer
ences into the collection set and for references into older cars
334. In this instance the remainder of the enormous object
is scanned for references into the collection set 336.

Still referring to FIG. 17, a pointer (SCAN POINTER306
in FIG. 14) is recorded indicating the start of the unscanned
portion of the enormous object remaining after the initial
portion was scanned. Next, the car containing the enormous
object is placed on a per-train list of partially scanned
objects 340 and control is returned.

Referring back to FIG. 14, the SCAN:LINK 302, in the
train's data structure 244 tracks the car at the head of the per
train list, and the SCAN LINK304 in the car's data structure
250 tracks the next partially-scanned car in the per train list,
the per train list ending with a NULL that is easy to detect.

During a Subsequent collection interval, if a partially
scanned object remains in the train 342 being collected, the
next object is selected from the per-train list 344. The next

10

15

25

30

35

40

45

50

55

60

65

22
unscanned portion is scanned for references into the collec
tion set and into older cars 346. If the entire enormous object
had been scanned 348, the car containing that object is
removed from the list 350. If more objects remain on the
per-train list, the next object in the list is processed 344, if
not control is returned 354.

If the Scanning of the next portion does not complete the
scanning of the object 356, a new address of the start of the
unscanned portion is recorded 358, and the remainder of the
object is scanned for references into the collection set. In a
preferred embodiment, the preset amount of an enormous
object to be scanned in an interval is the same number of
words, for example, as a normal sized car section. But, other
arbitrary preset amounts may be used, e.g. a (small) multiple
of the size of a given number of objects in older cars
updated, or a given time delay.
As described above, Scanning work may be interspersed

with collection of other cars. However, in general, this
requires explicit scanning of the remaining unscanned por
tions of any not-fully-scanned enormous objects for refer
ences into these other cars. One exception is for cars
containing objects that have been directly allocated since the
last collection interval. Allocated objects will have no initial
references from the generation. In these cases, much more
selective scanning is possible using these Summary data
structures together with direct information from write bar
1S.

It has been found that newly promoted objects can be
partially scanned, as discussed above, for enormous objects
evacuated during the collection of an increment.
The present invention in the preferred embodiments

described above may be used to advantage in concurrent,
incremental stop the world, or similar collector algorithms to
better schedule Such scanning activities, allow shorter col
lection intervals, and in general tradeoff collecting enormous
objects and typical reclaiming of memory.

Collecting enormous objects by incremental scanning can
occur concurrently with collecting other generations and or
with an application. For example, in the current preferred
embodiment collecting a generation involves broadcasting
that start and end of the collection activity. A generation
might exploit this technique and use these notifications to
initiate scanning and check for the need to Suspend the
scanning once the other generation is finished collecting.
This is permissible since the Scanning for references in
remembered sets are internal to the generation. In the case
of collection of other generations, references to objects in
the generation from other generations are only modified with
the cooperation of that generation. In the case of concurrent
applications, write barriers suffice to indicate where changes
have been made.

What is claimed is:
1. In a computer-implemented garbage collector operating

in a computer having a heap memory and based on the Train
algorithm in which a car represents a fixed-size region of the
heap memory, a process for collecting enormous objects,
each of which is substantially larger than the fixed-size
memory region represented by a car, and for reference
insertions into remembered sets of other cars, the process
comprising the steps of including at least one enormous
object as part of a collection set, evacuating the enormous
object by re-linking, finding an unscanned portion of the
enormous object, Scanning a preset amount of the unscanned
portion for references to objects in other cars, wherein if a
reference to an object in another car is found, updating the

US 7,062,519 B2
23

remembered set of that other car, and scanning the enormous
object for references into the collection set, if the collection
set is not empty.

2. The process of claim 1 further comprising the step of
saving the location of the unscanned portion of the enor
mous object.

3. The process of claim 1 further comprising the step of
returning to the collection process if no unscanned portion of
the enormous object is found.

4. The process of claim 1 further comprising the steps of
if the collection set includes at least one other object,
scanning the enormous object for references to the at least
one other object, and, if any Such references are found,
re-locating the at least one other object if it has not already
been relocated, and updating the references in the re-linked
enormous object to reflect the new location of the at least
one other object.

5. The process of claim 2 further comprising the steps of:
finding references in the relocated at least one other object
to other objects in older cars and updating the remembered
sets of the older cars with respect to the relocated at least one
other object.

6. The process of claim 2 further comprising the steps of
finding the at least one other object in another car in the
collection set, Scanning the enormous object for references
to the at least one other object, and, if any Such references
are found, re-locating the at least one object if it has not
already been relocated, and updating the references in the
re-linked enormous object to reflect the new location of the
at least one other object.

7. The process of claim 1, wherein at least one other car
with at least one other object is in the collection set, the
process further comprising the steps of re-locating the at
least one other object, Scanning the enormous object for
references to the at least one other object, if such a reference
is found, updating the reference to the relocated object, and
scanning the relocated at least one other object for refer
ences to other objects in other cars and updating the remem
bered sets of the other cars with respect to the relocated at
least one other object.

8. The process of claim 1 further comprising the steps of:
maintaining for each train a list of partially scanned enor
mous objects wherein in each collection increment some
unscanned portion of some of these partially scanned objects
is scanned for references to objects in other cars, wherein if
a reference to an object in another car is found, updating the
remembered set of that other car, and Scanning the remaining
unscanned portion of the enormous objects in each pertrain
list for references into the collection set, if the collection set
is not empty.

9. An electronic computer controlled train/car collector
operating in a computer having a heap memory, wherein a
car represents a fixed-size region of the heap memory for
collecting enormous objects, each of which is Substantially
larger than the fixed-size memory region represented by a
car, and inserting references into remembered sets of other
cars, the collector comprising: a collection set including at
least one enormous object, means for evacuating the enor
mous object by re-linking, means for finding an unscanned
portion of the enormous object, means for Scanning a preset
amount of the unscanned portion for references to objects in
other cars, wherein if a referenced to an object in an other
car is found, means for updating the remembered set of that
other car, and means for Scanning the enormous object for
references into the collection set, if the collection set is not
empty.

5

10

15

25

30

35

40

45

50

55

60

65

24
10. The collector of claim 9 further comprising means for

saving the location of the unscanned portion of the enor
mous object.

11. The collector of claim 9 further comprising means for
returning to the collection process, if no unscanned portion
of the enormous object is found.

12. The collector of claim 10, wherein if the collection set
includes at least one other object, further comprising: means
for Scanning the enormous object for references to the at
least one other object, and, if any Such references are found,
means for re-locating the at least one other object if it has not
already been relocated, and; means for updating the refer
ences in the re-linked enormous object to reflect the new
location of the at least one other object.

13. The collector of claim 10 further comprising: means
for finding references in the relocated at least one other
object to other objects in other cars, and means for updating
the remembered sets of the other cars with respect to the
relocated at least one other object.

14. The collector of claim 10 further comprising: at least
one other object in another car in the collection set, means
for re-locating the at least one object, means for Scanning the
enormous object for references to the at least one other
object, and, if any such references are found, means for
updating the references in the re-linked enormous object.

15. The collector of claim 9, wherein at least one other car
with at least one other object is in the collection set, the
collector further comprising: means for re-location the at
least one other object, means for Scanning the enormous
objects for references to the at least one other object, and if
such a reference is found, means for updating the reference
to the relocated at least one other object means for scanning
the relocated at least one other object for references to other
objects in other cars and updating the remembered sets of the
other cars with respect to the re-located at least one other
object.

16. The collector of claim 9 further comprising: means for
maintaining for each train a list of partially scanned enor
mous objects wherein in each collection increment some
unscanned portion of Some of these partially scanned objects
is scanned for references to objects in other cars, wherein if
a reference to an object in another car is found, updating the
remembered set of that other car, and means for scanning the
remaining unscanned portion of the enormous objects in
each per-train list for references into the collection set, if the
collection set is not empty.

17. A computer readable media comprising: the computer
readable media containing instructions for executing in a
processor of a computer having a heap memory for the
practice of a garbage collection process which operates on
heap memory regions that have a fixed, equal size, the
garbage collection process including at least one enormous
object, which is substantially larger than a memory region
size, as part of a collection set, evacuating the enormous
object by re-linking, finding an unscanned portion of the
enormous object, Scanning a preset amount of the unscanned
portion for references to objects in other cars, wherein if a
reference to an object in another car is found, updating the
remembered set of that other car, and Scanning the enormous
object for references into the collection set, if the collection
set is not empty.

18. The computer readable media of claim 17 comprising
further readable media containing instructions for execution
in a processor for the practice of the process of claim 15
further including the step of Saving the location of the
unscanned portion of the enormous object.

US 7,062,519 B2
25

19. The computer readable media of claim 17 comprising
further readable media containing instructions for execution
in a processor for the practice of the process of claim 16
further including the step of returning to the collection
process if no- unscanned portion of the enormous object is
found.

20. The computer readable media of claim 17 comprising
further readable media containing instructions for execution
in a processor for the practice of the process of claim 16
further including the step of steps of: if the collection set
includes at least one other object, Scanning the enormous
object for references to the at least one other object, and, if
any Such references are found, re-locating the at least one
other object if it has not already been relocated, and,
updating the references in the re-linked enormous object to
reflect the new location of the at least one other object.

21. The computer readable media of claim 18 comprising
further readable media containing instructions for execution
in a processor for the practice of the process of claim 15
further including the step of finding references in the
relocated at least one other object to other objects in other
cars and updating the remembered sets of the other cars with
respect to the relocated at least one other object.

22. The computer readable media of claim 18 comprising
further readable-media containing instructions for execution
in a processor for the practice of the process of claim 16
further including the step of finding the at least one other
object in another car in-the collection set, Scanning the
enormous object for references to the at least one other
object, and, if any such references are found, re-locating the
at least one object if it has not already been relocated, and,

10

15

25

30

26
updating the references in the re-linked enormous object to
reflect the new location of the at least one other object.

23. The computer readable media of claim 17 comprising
further readable media containing instructions for execution
in a processor for the practice of the process of claim 15,
wherein at least one other car with at least one other object
is in the collection set, the process further including the steps
of re-locating the at least one other object, Scanning the
enormous object for references to the at least one other
object, if such a reference is found, updating the reference to
the relocated object, and Scanning the relocated at least one
other object for references to other objects in other cars and
updating the remembered sets of the other cars with respect
to the relocated at least one other object.

24. The computer readable media of claim 17 comprising
further readable media containing instructions for execution
in a processor for the practice of the process of claim 15,
wherein at least one other car with at least one other object
is in the collection set, the process further including the steps
of maintaining for each train a list of partially scanned
enormous objects wherein in each collection increment
Some unscanned portion of some of these partially scanned
objects is scanned for references to objects in other cars,
wherein if a reference to an object in another car is found,
updating the remembered set of that other car, and scanning
the remaining unscanned portion of the enormous objects in
each pertrain list for references into the collection set, if the
collection set is not empty.

