
United States Patent 

US007062519B2 

(12) (10) Patent No.: US 7,062,519 B2 
Garthwaite (45) Date of Patent: Jun. 13, 2006 

(54) INCREMENTAL SCANNING OF ENORMOUS 5,845,298. A 12/1998 O’Connor et al. 
OBJECTS TO IMPROVE SCHEDULING AND 5,857,210 A 1/1999 Tremblay et al. 
PAUSE-TIME BEHAVOR OF GARBAGE 5,873,104 A 2/1999 Tremblay et al. 
COLLECTION 5,873,105 A 2/1999 Tremblay et al. 

5,900,001 A 5/1999 Wolczko et al. 
5,903,900 A 5/1999 Knippel et al. 

(75) Inventor: Alexander T. Garthwaite, Beverly, MA 5,930,807 A 7, 1999 E.al. 
(US) 5,953,736 A 9/1999 O'Connor et al. 

5,960,087 A 9, 1999 Tribble et al. 
(73) Assignee: Sun Microsystems, Inc., Santa Clara, 5.999,974. A 12/1999 Ratcliff et al. 

CA (US) 6,021.415 A 2/2000 Cannon et al. 
6,047,125 A 4/2000 Agesen et al. 

(*) Notice: Subject to any disclaimer, the term of this 6,049,390 A 4/2000 Notredame et al. 
patent is extended or adjusted under 35 6,049,810 A 4/2000 Schwartz et al. 
U.S.C. 154(b) by 430 days. 

(Continued) 
(21) Appl. No.: 10/375,285 FOREIGN PATENT DOCUMENTS 

(22) Filed: Feb. 27, 2003 EP O 904 055 A1 9, 1999 

(65) Prior Publication Data (Continued) 

US 2004/O1995.56 A1 Oct. 7, 2004 OTHER PUBLICATIONS 

(51) Int. Cl. David Bacon et al. A unified theory of garbage collection, 
G06F 7/30 (2006.01) (2004) ACM Press, NY, NY. pp. 50-68.* 

(52) U.S. Cl. ...................................................... 707/206 
(58) Field of Classification Search ................ 707/206, (Continued) 

707/205, 1: 711/159, 170, 173; 718/102, Primary Examiner Diane Mizrahi 
718/107 (74) Attorney, Agent, or Firm—Kudirka & Jobse, LLP 

See application file for complete search history. 
(57) ABSTRACT 

(56) References Cited 

U.S. PATENT DOCUMENTS 

4,724,521 A 2f1988 Carron et al. 
4,797,810 A 1, 1989 McEntee et al. 
4,912,629 A 3/1990 Shuler, Jr. 
4,989,134 A 1, 1991 Shaw 
5,088,036 A 2f1992 Ellis et al. 
5,333,318 A T. 1994 Wolf 
5,392,432 A 2/1995 Engelstad et al. 
5,485,613 A 1/1996 Engelstad et al. 
5,560,003 A 9, 1996 Nilsen et al. 
5,687,370 A 11/1997 Garst et al. 
5,801,943 A 9/1998 Nasburg 
5,845,276 A 12/1998 Emerson et al. 

- 
TrAN RS 

o 

A technique for incrementally collecting enormous objects 
including scanning portions of the enormous objects on 
different collection steps. The Scanning can be accomplished 
with a number of collection sets where the enormous object 
is re-linked and older cars remembered sets are updated on 
Subsequent collection steps. Unscanned portions of the 
enormous object are scanned on Subsequent collection 
cycles until the enormous object has been fully scanned. 
This incremental collection can be performed concurrently 
with collections of other generations and applications. 

24 Claims, 26 Drawing Sheets 

RS -7 RS 
7 

CARSCTION 
. L 12 

CARSECTION 
78 73 
/ CARSECTION 

1.3 

- - - - - - - Sea 
TRAIN 2 (1 RS 

CAR SECTION 
N 2.1 

TRAN3 RS RS 
CARSCTION 86 

3. 3.2 
CARSCTION 

/ 74 

  

  



US 7,062.519 B2 
Page 2 

U.S. PATENT DOCUMENTS 

6,065,020 A 5, 2000 DuSSud 
6,098,089 A 8, 2000 O'Connor et al. 
6,148,309 A 11/2000 AZagury et al. 
6,148,310 A 11/2000 AZagury et al. 
6,173,294 B1 1/2001 AZagury et al. 
6,185.581 B1 2/2001 Garthwaite 
6,226,653 B1 5/2001 Alpern et al. 
6,243,720 B1 6, 2001 Munter et al. 
6,260,120 B1 7/2001 Blumenau et al. 
6,289.358 B1 9, 2001 Mattis et al. 
6,308,185 B1 10/2001 Grarup et al. 
6,314,436 B1 1 1/2001 Houldsworth 
6,321,240 B1 1 1/2001 Chilimbi et al. 
6,353,838 B1 3/2002 Sauntry et al. 
6,381,738 B1 4/2002 Choi et al. 
6,393,439 B1 5, 2002 Houldsworth et al. 
6,415,302 B1 7/2002 Garthwaite et al. 
6.424,977 B1 7/2002 Garthwaite 
6,434,576 B1 8, 2002 Garthwaite 
6,434,577 B1 8, 2002 Garthwaite 
6,442,661 Bl 8, 2002 DresZer 
6,449,626 B1 9, 2002 Garthwaite et al. 
6,496,871 B1 12/2002 Jagannathan et al. 
6,529,919 B1 3/2003 Agesen et al. 
6,567,905 B1 5, 2003 Otis 
6,640,278 B1 10/2003 Nolan et al. 
6,757,890 B1 6, 2004 Wallman 
6,769,004 B1 7/2004 Barrett 
6,820, 101 B1 1 1/2004 Wallman 
6,826,583 B1 1 1/2004 Flood et al. 
6,868.488 B1 3/2005 Garthwaite 
6,892.212 B1 5, 2005 Shufetal. 
6,928,450 B1 8/2005 Nagarajan et al. 
6,931423 B1 8, 2005 Sexton et al. 

2002fOO32719 A1 
2002fOO95453 A1 
2002/0133533 A1 
2002/0138506 A1 
2003, OO88658 A1 
2003/0200392 A1 
2003/0217027 A1 
2004/0010586 A1 
2004/OO39759 A1 
2004/0098.553 A1* 

3, 2002 Thomas et al. 
7/2002 Steensgaard 
9/2002 Czajkowski et al. 
9, 2002 Shufetal. 
5, 2003 Davies et al. 
10/2003 Wright et al. 
11/2003 Farber et al. 
1/2004 Burton et al. 
2/2004 Detlefs et al. 
5/2004 Garthwaite ................. 711/17O 

2004/01.03126 A1* 5, 2004 Garthwaite ................. 707/2O6 
2004/011 1444 A1* 6, 2004 Garthwaite ................. 707,205 
2004/011 1445 A1 6, 2004 Garthwaite et al. ......... 707/2O6 
2004/011 1446 A1* 6, 2004 Garthwaite ................. 707/2O6 
2004/011 1447 A1* 
2004/0215914 A1 

FOREIGN PATENT DOCUMENTS 

EP O 969 377 A1 1, 2000 
WO WOO188713 A2 11/2001 

OTHER PUBLICATIONS 

6/2004 Garthwaite ................. 707/2O6 
10, 2004 DuSSud 

Alain AZagury et al., Combining card marking with remem 
bered sets: how to save scanning time, (1998), ACM Press, 
NY, NY., pp. 10-19.* 
Jones and Lins, “Garbage Collection: Algorithms for Auto 
matic Dynamic Memory Management”, 1996, pp. 165-179, 
Wiley, New York. 
Paul Wilson, “Uniprocessor Garbage Collection Tech 
niques”, 1994, pp. 1067, Technical Report, University of 
Texas. 
Hudson and Moss, “Incremental Collection of Mature 
Objects'. Proceedings of International Workshop on 
Memory Management, 1992, Springer-Verlag. 

Seligmann and Grarup, “Incremental Mature Garbage Col 
lection Using the Train Algorithm, Aarhus University, 
Computer Science Department. 
Grarup and Seligmann, “Incremental mature Garbage Col 
lection, M.Sc. Thesis, Aarhus University, Computer Sci 
ence Department, 1993. 
U.S. Appl. No. 10/287,851, filed Nov. 5, 2002, Garthwaite, 
et al. 
Appel, “Simple Generational Garbage Collection and Fast 
Allocation, Software Practice and Experience, 19(2), 1989, 
171-183. 

Appel, et al., “Real-Time Concurrent Collection on Stock 
Multiprocessors, ACM SIGPLAN Notices, 1988. 
Appleby, Karen, “Garbage Collection for Prolog Based on 
WAM, Vol. 31, Issue 6', Communication of the ACM, Jun. 
1, 1998, 719-741. 
Arora, et al., “Thread Scheduling for Multiprogrammed 
Multiprocessors'. Proceedings of the 10th Annual ACM 
Symposium on Parallel Algorithms and Architecture, Jun. 
1998. 
Bacon et al., “Jave without the Coffee Breaks: A 
nonintrusive Multiprocessor Garbage Collector. SIGPLAN 
Conference on Programming Language Design and Imple 
mentation, Jun. 2001, Snowbird, UT. 
Baker, “List Processing in RealTime on a Serial Computer. 
Communications of the ACM 21, Apr. 1978, 280–294. 
Barrett, et al., “Using Lifetime Predictors to Improve 
Memory Allocation Performance', SIGPLAN'93 Confer 
ence on Programming Languages Design and Implementa 
tion vol. 28(6) of Notices, Jun. 1993, 187-196, ACM Press, 
Albuquerque, NM. 
Blackburn & McKinley, “In or Out? Putting Write Barriers 
in Their Place', Jun. 20, 2002, Berlin. 
Brooks, “Trading Data Space for Reduced Time and Code 
Space in Real-Time Garbage Collection on Stock Hard 
ware'. Proceedings of the 1984 Acm Symposium on Lisp 
and Funcional Programming, Aug. 1984, 108-113, Austin, 
TX. 
Chilimbi, et al., “Using Generational Garbage Collection to 
Implement Cache-Conscious Data Placement'. International 
Symposium on Memory Management, Oct. 1998. 
Clark, “An Efficient List-Moving Algorithm Using Constant 
Workspace, vol. 19 No. 6”. Communications of the ACM, 
Jun. 1976, 352-354. 
Clark et al., “Compacting Garbage Collection can be Fast 
and Simple'. Software-Practice and Experience, vol. 26, No. 
2, Feb. 1996, 177-194. 
Courts, “Improving Locality of Reference in a Garbage 
Collecting Memory Management System'. Communica 
tions of the ACM, vol. 31, No. 9, Sep. 1988, 1128-1138. 
Flood, et al., “Parallel Garbage Collection for Shared 
Memory Multiprocessors”, USENIX JVM Conference, Apr. 
2001. 
Goldstein, et al., "Lazy Threads: Implementing a Fast Par 
allel Call, vol. 37, No. 1’, Journal of Parallel and Distributed 
Computing, Aug. 1996, 5-20. 
Hanson, “Fast Allocation and Deallocation of Memory 
Based on Object Lifetimes”. Software Practice and Experi 
ence, Jan. 1990, 20(1):5-12. 
Harris, “Dynamic Adaptive Pre-Tenuring. In Proceedings 
of the Int’l Symposium on Memory Management, Oct. 
2000, 127-136. 
Herlihy, et al., “Lock-Free Garbage Collection for Multi 
processors”, ACM SPAA, 1991, 229-236. 

  



US 7,062.519 B2 
Page 3 

Holzle, Urs, “A Fast Write Barrier for Generational Garbage 
Collectors’. Workshop on Garbage Collection in Object 
Oriented Systems, Oct. 1993. 
Hosking et al., “Remembered Sets Can Also Play Cards', 
OOPSLA/ECOOP Workshop on Garbage Collection in 
Object-Oriented Systems, Oct. 1993. 
Hosking et al., “Protection Traps and Alternatives for 
Memory Management of an Object-Oriented Language'. 
Object Systems Laboratory, Dec. 1993, 1-14, Dept. of 
Comp. Sci., Amerherst, MA. 
Hudson et al., “Adaptive Garbage Collection for Modula-3 
and Small Talk”, OOPSLA.ECOOP 90 Workshop on Gar 
bage Collection in Obect-Oriented Systems, Oct. 27, 1990. 
Hudson et al., “A Language-Independent Garbage Collector 
Toolkit'. Coins Technical Report, Sep. 1991. 
Hudson et al., “Training Distributed Garbage: The DMOS 
Collector, University of St. Andrews Tech Report, 1997, 
1-26. 
Hudson et al., “Garbage Collecting the World: One Car at a 
Time, ACM SIGPLAN Notices 32, 1997, 162-175. 
Hudson et al., “Sapphire: Copying GC Without Stopping the 
World, Practice and Experience Special Issue, Data 
Unknown, JAVA/Grande/Iscope. 
Lieberman et al., “A Real-Time Garbage Collector Based on 
the Lifetimes of Objects”. Communications of the ACM, 
1983, 26(6). 
Liskov et al., “Partitioned Garbage Collection of a Large 
Stable Heap', Proceedings of IWOOOS, 1996, 117-121. 
Moon, “Garbage Collection in a Large Lisp Systems’. 
Conference Record of the 1984 ACM Symposium on LISP 
and Functional Programming, Aug. 1984, 235-246, Austin, 
TX. 
Moss et al., “A Complete and Coarse-Grained Incremental 
Garbage Collection for Persisten Object Stores'. Proceed 
ings 7th Int11 Workshop on Persisten Object System, 1996, 
1-13, Cape May, NJ. 
Munro et al., “Incremental Garbage Collection of a Persis 
tent Object Store using PMOS', 3rd Int’l Workshop on 
Persistence and Java, 1998, 78-91, Tiburon, California. 
Nettles, Scott, “Real-Time Replication Garbage Collection', 
Avionics Lab, Wright Research and Development Center, 
1993, PDDI. 
Padopoulos, “Hood: A User-Level Thread Library for Mul 
tiprogramming Multiprocessors, Thesis: The Uni. of TX'. 
University of Texas, Aug. 1998, 1-71, Austin. 
Roy et al., “Garbage Collection in Object-Oriented Data 
bases. Using Transactional Cyclic Reference Counting. 
VLDB Journal-The International Journal on Very Large Da 
Bases, vol. 7, Issue 3, 1998, 179-193. 
Shufet al., “Exploiting Profilic Types for Memory Manage 
ment and Optimizations. ACM ISBN Sep. 2, 2001, POPL, 
Jan. 2002, Portland. 
Sobalvarro, “A Lifetime-based Garbage Collector for LISP 
Systems on General-Purpose Computers'. Department of 
Electrical Engineering and Computer Science at MIT, Sep. 
1988, AITR-1417. 
Stamos, “Static Grouping of Small Objects to Enhance 
Performance of a Paged Virtual Memory”, ACM Transac 

tions on Computer Systems, vol. 2, No. 2, May 1984, 
155-18O. 
Ungar, “Generation Scavenging: A Non-Disruptive High 
Performance Storage Reclaration Algorithm, ACM 
SIGPLAN Notices, 1984, 19(5). 
Ungar et al., “Tenuring Policies for Generation-Based Stor 
age Reclamation, ACMSIGPLAN Notices, 1988, 23(11)1- 
17. 

Venners, “Garbage Collection, Inside the Java 2 Virtual 
Machine: Chapter 9, www.artima.com, Date Unknown, 
parts 1-18. 
Wilson, “Uniprocessor Garbage Collection Techniques'. 
Proceedings of Int’l Workshop on Memory Management, 
1992, vol. 637. 
Withington, P.T., “How Real is “Real-Time” GC?', Symbol 
ics, Inc., Oct. 6, 1991, Burlington, MA. 
Zee et al., “Write Barrier Removal by Static Analysis’, 
OOPSLA '02, Nov. 2002. 
Zorn, “Segregating Heap Objects by Reference Behavior 
and Lifetime'. In 8th Int’l Conferenceon Architectural Sup 
port for Programming Languages and Operating Systems, 
Oct. 1998, 12-32, San Jose, CA. 
Zorn, Benjamin, “Barrier Methods for Garbage Collection'. 
Dept. of Computer Science, Uni. of Colorado, Nov. 1990, 
1-37, Boulder. 
AZagury et al., “Combining Card Marking With Remem 
bered Sets: How to Save Scanning Time”, ACM SIGPLAN 
Notices, Oct. 1998, vol. 34(3), ACM Press, Vancouver, 
Canada. 
Cheney, “A Nonrecursive List Compacting Algorithm, vol. 
13, Number 11, Communications of the ACM, Nov. 1970, 
677-678, Uni. Math. Lab., Cambridge, European Patent 
Office. 
Cheng et al., “Generational Stack Collection and Profile 
Driven Pretenuring, SIGPLAN’98 Conference on Pro 
gramming Languages Design and Implementation, Jun. 
1998, 162-173, ACM PRESS, Montreal, Canada. 
Lam et al., “Object Type Directed Garbage Collection to 
Improve Locality”. Proceedings of the International Work 
shop on Memory Management, Sep. 1992, 404-425, St. 
Malo, France. 
Lam et al., “Effective Static-Graph Reorganization to 
Improve Locality in Garbage Collected Systems. Proceed 
ings of ACM SIGPLAN Conference on Programming Lan 
guage Design and Implementation, Jun. 1991, Toronto, 
Canada. 
Pirinen, Pekka, “Barrier Techniques for Incremental Trac 
ing, Harlequin Limited, Date Unknown, 20-25, Cambridge, 
Great Britain. 
Wilson et al., “Effective Static-Graph Reorganization to 
Improve Locality in Garbage Collected Systems. Proceed 
ings of ACM SIGPLAN Conference on Programming Lan 
guage Design and Implementation, Jun. 1991, Canada. 

* cited by examiner 



US 7,062,519 B2 

SNO||LVOINTIWWÕO 
8]. 

/ | 

9 | 

Sheet 1 of 26 

XJETTO HLNO OHETTO HINOO 

Jun. 13, 2006 U.S. Patent 

EHOV/O 

  

  

  



U.S. Patent Jun. 13, 2006 Sheet 2 of 26 US 7,062,519 B2 

COMPLER 
OBJECT CODE 

2O 

APPLICATION APPLICATION 
SOURCE CODE COMPLER OBJECT CODE 

21 

INPUT APPLICATION OUTPUT 

FIG 2 

  



US 7,062,519 B2 

ALZ 

EC]OO CIETICHWOO 
- - - - - - - - - - - -seº 

Sheet 3 of 26 Jun. 13, 2006 U.S. Patent 

LNBWNOHIANE EWI L-ETIGWOO EGIOO E LÅ8 

  

  



US 7,062,519 B2 

OBJECT 46 

Sheet 4 of 26 Jun. 13, 2006 

ROOT SET 52 

U.S. Patent 

OBJECT 48 

OBJECT 50 

HEAP 

FIG. 4 

SEMI-SPACE 54 

ROOT SET 52 

SPACE 56 SEM 

46 

FIG. 5 42 

  

  



US 7,062,519 B2 

ur)|ZG LES LOO}} 5+ ----| ?OyJIH 1 --~~~~~~T~~~~ ~~~~ONOOHS ~~~~ ~~~~T~~~~ ~~~~| SHI 

U.S. Patent 

  



U.S. Patent Jun. 13, 2006 Sheet 6 of 26 US 7,062,519 B2 

TRAIN 1 76 
CAR SECTION CAR SECTION CARSECTION - 

11 1.2 13 

TRAIN 2 (19? 
CAR SECTION 

2.1 

TRAIN3 
CAR SECTION | 86 CAR SECTION 

3.1 3.2 

ONE 
GENERATION 

FIG. 7 

  

  

  



U.S. Patent Jun. 13, 2006 Sheet 7 of 26 US 7,062,519 B2 

102 

COLLECTOR 
SCAN DIRTY REGIONS FOR 

REFERENCES TO OBJECTS IN CARS; 
PLACE REGION-DENTIFYING ENTRIES IN 

THOSE CARS’ REMEMBERED SETS 

105 

COLLECT YOUNG 
GENERATION 

106 

ARE THERE ANY REFER 
ENCES INTO OLDEST TRAIN 
FROM OUTSIDE OF IT? 

NO 

RecAM 107 YES 
OLDEST 110 TRAIN 

PROCESS REFERENCES FROM 
OUTSIDE THE OLD GENERATION 
TO COLLECTION-SET OBJECTS 

PROCESS. 
REMEMBERED 
SET ENTRY 

(FIG.9) 
HAVE THE REMEMBERED 
SET ENTRIES FROM THE 
YOUNGER TRAINS BEEN 

PROCESSED? 
NO 

YES 

FIG. 8A 

  

  

  

  

  

    

    

  

    

    

  



U.S. Patent Jun. 13, 2006 Sheet 8 of 26 US 7,062,519 B2 

PROCESS. 
REMEMBERED 
SET ENTRY 

(FIG.9) 
HAVE THE REMEMBERED 
SET ENTRIES FROM THE 
OLDEST TRAIN BEEN 

PROCESSED2 

RECLAIM 
COLLECTION SET 

COLLECTOR 

RESUME 
EXECUTION 

MUTATOR 108 

FIG. 8B 

  

  

  

  

    

  

  



U.S. Patent Jun. 13, 2006 Sheet 9 of 26 US 7,062,519 B2 

PROCESS 
REMEMBERED 
SET ENTRY 

114 

116 
SCAN IDENTIFIED REGION 
FOR REFERENCESTO 
COLLECTION SET 

HAVE ANY DENTIFIED 
REGION REFERENCESTO 
COLLECTION SET NOT 
YET BEEN PROCESSED? 

NO 

USE FORWARDING 
POINTERTO 
UPDATE 

REFERENCE AND 
REMEMBERED SET 

HAS REFERRED-TO, OB 
JECT ALREADY BEEN 

EVACUATED2 

EVACUATE REFERRED 
TO OBJECT 
(FIG. 10) 

120 

FIG. 9 

  

  

  

    

  

    

  

  

    

  

    

  

  

  



U.S. Patent Jun. 13, 2006 Sheet 10 of 26 

EVACUATE 
REFERRED-TO 

OBJECT 

126 

MOVE OBJECT TO 
REFERENCES TRAIN 

128 

LEAVE FORWARDING 
POINTER IN 

EVACUATED LOCATION 

UPDATE REFERENCE 

PROCESS REFERENCES 
CONTAINED IN 

EVACUATED OBJECT 
(FIG. 11) 

130 

132 

FIG. 10 

US 7,062,519 B2 

124     

  

  



U.S. Patent Jun. 13, 2006 Sheet 11 of 26 US 7,062,519 B2 

132 

PROCESS 
REFERENCES 
CONTAINED IN 

EVACUATED OBJECT 

134 

HAS ANY 
REFERENCE NO 
NOT YET BEEN 
PROCESSED? 

RETURN 

YES 148 

136 

IS LOCATION REFERRED 
TO BY THAT REFERENCE 

IN COLLECTION SET2 

NO 

YES 

FIG 11A 

    

  

  

  

    

    

  

  

    

  

  



U.S. Patent Jun. 13, 2006 Sheet 12 of 26 US 7,062,519 B2 

HAS REFERRED 
YES TO OBJECT 

ALREADY BEEN 
EVACUATED? 

138 

USE 
FORWARDING 
POINTERTO 
UPDATE 

REFERENCE 

NO 

144 

140 EWACUATE 
REFERRED-TO 

OBJECT 
(FIG. 10) 

S REFERRED-TO 
OBJECT FARTHER 
FORWARD THAN. 

EVACUATED OBJECT2 

PLACE ENTRY 
DENTIFYING 

EVACUATED OBJECT'S NEW 
REGION INTO REFERRED-TO 

OBJECTS 
REMEMBERED SET 

F.G. 11B 

  

  

  

    

    

    

  

  

  

    

    

    

  

  



US 7,062,519 B2 Sheet 13 of 26 Jun. 13, 2006 U.S. Patent 

| ‘Z LOES XIV/O : · 

  



US 7,062,519 B2 Sheet 14 of 26 Jun. 13, 2006 U.S. Patent 

?, º LOES RHW/O 

  

  



US 7,062,519 B2 Sheet 15 of 26 Jun. 13, 2006 U.S. Patent 

OZI (5) | H …..…......……… 

  

  

  



US 7.062,519 B2 Sheet 16 of 26 Jun. 13, 2006 U.S. Patent 

01 || S. LES CIER–HEE|WEWENH 

  



US 7,062,519 B2 Sheet 17 of 26 Jun. 13, 2006 U.S. Patent 

0A || S. LES CIEX IEE|WEWENH 

  

  



US 7.062,519 B2 Sheet 18 of 26 Jun. 13, 2006 U.S. Patent 

  

  

  



U.S. Patent 

| 19 LOES RHW/O 

  

  

  

  

  





U.S. Patent Jun. 13, 2006 Sheet 21 of 26 US 7.062,519 B2 

172 

MARK MODIFIED 
MUTATOR REGIONS AS "DIRTY" 

SCANDIRTY REGIONS FOR 
COLLECTOR REFERENCES TO OBJECTS IN CARS, 
T | PLACE REGION-DENTIFYING NTRIES IN 

THOSE CARS’ REMEMBERED SETS 

178 

COLLECT YOUNG 
GENERATION 

PUT COLLECTION-SET 
REMEMBERED-SET ENRIES IN 

REVERSE TRAIN ORDER 

18O 

PROCESS 
REMEMBERED 
SET ENTRY 

(FIG 9) 
182 

HAVE THE REMEMBEREE)-SET 
ENTRIES INALL SCRATCH 
PAD: LISTS BUT THE OLDEST 
TRAIN'S BEEN PROCESSED? 

PROCESS ENORMOUS 
OBJECTS FOR YOUNGER 
TRAINS (FIG. 18) 

FIG. 13A 

  

    

  

  

  

  

    

  

    

  

  

  



U.S. Patent Jun. 13, 2006 Sheet 22 of 26 US 7.062,519 B2 

PROCESS REFERENCES FROM 
OUTSDE THE OLD GENERATION 

186 

TO COLLECTION-SET OBJECTS 

ARE THERE ANY 
REFERENCES INTO 
OLDEST TRAN 

FROM OUTSDE OF 
T? 

NO 

190 196 
RECLAIM 
OLDEST PROCESS 

REMEMBERED 
SET ENTRY 

(FIG. 9) 

TRAIN 

HAVE THE REMEMBERED 
SET ENTRIES IN THE LAST 
SCRATCHPAD LIST BEEN 

PROCESSED? 

YES 

PROCESS ENORMOUS OBJECTS 
FOR OLDEST TRAIN (FIG. 18) 

COLLECTOR 
-ms--- RECLAM 198 

COLLECTION SET 

MUTATOR RESUME 192 
EXECUTION 

FIG. 13B 

  

    

    

  

  

    

  

  

    

    

    

  



U.S. Patent Jun. 13, 2006 Sheet 23 of 26 US 7.062,519 B2 

245 

A PREVIOUS TRAIN 
NEXT TRAIN 

TRAIN NUMBER 
NEXT CAR NUMBER 247 

SCAN LINK 302 

ENGINE 248 

CABOOSE 249 

246 

2 4 4. 

2 5 O 
258 

279 

51 

TYPE 

CAR NUMBER 
TRAIN 

IS SPECIAL 
SCAN LINK 

SCAN POINTER 

PREVIOUS CAR 
NEXT CAR - 

290 SECTIONS 

ALLOCATION 

DATA 254 

LIMIT 255 

FREE POINTER 

282 
304 

306 

252 

253 

257 

N 
256 

2 OBJECTs 
CAR SECTION 

Y-400 
F.G. 14 





U.S. Patent Jun. 13, 2006 Sheet 25 of 26 US 7.062,519 B2 

CAR1.1 CAR12 

TRAIN --> 

322 

COLLECTION SET 320 FIG 16 

324 

326 

IS 
COLLECTION SET 

EMPTY? 

332 

330 334 

SCAN INITIAL PORTION OF ENORMOUS 
OBJECT FOR REFERENCES INTO 

COLLECTION SETAS WELL 
AS INTO OLDER CARS 

SCAN INITIAL PORTION OF 
ENORMOUS OBJECT FOR 

REFERENCES INTO 
OLDER CARS 

SCAN REMAINDER OF ENORMOUS 
OBJECT FOR REFERENCES INTO 

COLLECTION SET 

RECORD POINTERTO START OF 
UNSCANNED. PORTION AFTER 

NITIAL PORTION 

PLACE CAR CONTAININGENORMOUS 
OBJECT ON LIST PER-TRAIN OF 
PARTIALLY SCANNED OBJECT 

340 FIG. 17 

RETURN 

  

  

    

  

  

  

  

  

  

  

    

    

  

  

  

  

  



U.S. Patent Jun. 13, 2006 Sheet 26 of 26 US 7,062,519 B2 

PARTIALLY SCANNED 342 
OBJECTS IN TRAIN 

SELECT NEXT OBJECT 344 
NLIST 

SCAN NEXT UNSCANNED 346 
PORTION FOR REFERENCES 
NTO COLLECTION SET AND 

INTO OLDER CARS 

356 348 

RECORD NEW ADDRESS OF 
START OF UNSCANNED 

PORTION 
REMOVE OBJECTS CAR 

FROM LIST 

SCAN REMANDER OF 
OBJECT FOR REFERENCES 

NTOCOLLECTION SET 

352 Y MORE 
OBJECTSN 

LIST? 
N 

354-2-(RETURN 

F.G. 18 

  

  

  



US 7,062,519 B2 
1. 

INCREMENTAL SCANNING OF ENORMOUS 
OBJECTS TO IMPROVE SCHEDULING AND 

PAUSE-TIME BEHAVOR OF GARBAGE 
COLLECTION 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention is directed to memory management. 

It particularly concerns what has come to be known as 
'garbage collection. 

2. Background Information 
In the field of computer systems, considerable effort has 

been expended on the task of allocating memory to data 
objects. For the purposes of this discussion, the term object 
refers to a data structure represented in a computer systems 
memory. Other terms sometimes used for the same concept 
are record and structure. An object may be identified by a 
reference, a relatively small amount of information that can 
be used to access the object. A reference can be represented 
as a "pointer” or a “machine address,” which may require, 
for instance, only sixteen, thirty-two, or sixty-four bits of 
information, although there are other ways to represent a 
reference. 

In some systems, which are usually known as “object 
oriented,” objects may have associated methods, which are 
routines that can be invoked by reference to the object. They 
also may belong to a class, which is an organizational entity 
that may contain method code or other information shared 
by all objects belonging to that class. In the discussion that 
follows, though, the term object will not be limited to such 
structures; it will additionally include structures with which 
methods and classes are not associated. 
The invention to be described below is applicable to 

systems that allocate memory to objects dynamically. Not all 
systems employ dynamic allocation. In some computer 
languages, source programs must be so written that all 
objects to which the program's variables refer are bound to 
storage locations at compile time. This storage-allocation 
approach, sometimes referred to as “static allocation,” is the 
policy traditionally used by the Fortran programming lan 
guage, for example. 

Even for compilers that are thought of as allocating 
objects only statically, of course, there is often a certain level 
of abstraction to this binding of objects to storage locations. 
Consider the typical computer system 10 depicted in FIG. 1, 
for example. Data, and instructions for operating on them, 
that a microprocessor 11 uses may reside in on-board cache 
memory or be received from further cache memory 12, 
possibly through the mediation of a cache controller 13. That 
controller 13 can in turn receive such data from system 
read/write memory (“RAM) 14 through a RAM controller 
15 or from various peripheral devices through a system bus 
16. The memory space made available to an application 
program may be “virtual in the sense that it may actually be 
considerably larger than RAM 14 provides. So the RAM 
contents will be swapped to and from a system disk 17. 

Additionally, the actual physical operations performed to 
access some of the most-recently visited parts of the pro 
cess's address space often will actually be performed in the 
cache 12 or in a cache on board microprocessor 11 rather 
than on the RAM 14, with which those caches swap data and 
instructions just as RAM 14 and system disk 17 do with each 
other. 
A further level of abstraction results from the fact that an 

application will often be run as one of many processes 
operating concurrently with the Support of an underlying 
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2 
operating system. As part of that Systems memory manage 
ment, the application's memory space may be moved among 
different actual physical locations many times in order to 
allow different processes to employ shared physical memory 
devices. That is, the location specified in the applications 
machine code may actually result in different physical 
locations at different times because the operating system 
adds different offsets to the machine-language-specified 
location. 

Despite these expedients, the use of static memory allo 
cation in writing certain long-lived applications makes it 
difficult to restrict storage requirements to the available 
memory space. Abiding by space limitations is easier when 
the platform provides for dynamic memory allocation, i.e., 
when memory space to be allocated to a given object is 
determined only at run time. 
Dynamic allocation has a number of advantages, among 

which is that the run-time system is able to adapt allocation 
to run-time conditions. For example, the programmer can 
specify that space should be allocated for a given object only 
in response to a particular run-time condition. The C-lan 
guage library function malloc( ) is often used for this 
purpose. Conversely, the programmer can specify conditions 
under which memory previously allocated to a given object 
can be reclaimed for reuse. The C-language library function 
free() results in Such memory reclamation. 

Because dynamic allocation provides for memory reuse, 
it facilitates generation of large or long-lived applications, 
which over the course of their lifetimes may employ objects 
whose total memory requirements would greatly exceed the 
available memory resources if they were bound to memory 
locations statically. 

Particularly for long-lived applications, though, allocation 
and reclamation of dynamic memory must be performed 
carefully. If the application fails to reclaim unused 
memory—or, worse, loses track of the address of a dynami 
cally allocated segment of memory—its memory require 
ments will grow over time to exceed the systems available 
memory. This kind of error is known as a “memory leak.” 

Another kind of error occurs when an application reclaims 
memory for reuse even though it still maintains a reference 
to that memory. If the reclaimed memory is reallocated for 
a different purpose, the application may inadvertently 
manipulate the same memory in multiple inconsistent ways. 
This kind of error is known as a “dangling reference.” 
because an application should not retain a reference to a 
memory location once that location is reclaimed. Explicit 
dynamic-memory management by using interfaces like mal 
loc()/free() often leads to these problems. 
Away of reducing the likelihood of such leaks and related 

errors is to provide memory-space reclamation in a more 
automatic manner. Techniques used by Systems that reclaim 
memory space automatically are commonly referred to as 
'garbage collection.” Garbage collectors operate by reclaim 
ing space that they no longer consider “reachable.” Statically 
allocated objects represented by a program's global Vari 
ables are normally considered reachable throughout a pro 
gram’s life. Such objects are not ordinarily stored in the 
garbage collector's managed memory space, but they may 
contain references to dynamically allocated objects that are, 
and Such objects are considered reachable. Clearly, an object 
referred to in the processor's call stack is reachable, as is an 
object referred to by register contents. And an object referred 
to by any reachable object is also reachable. 
The use of garbage collectors is advantageous because, 

whereas a programmer working on a particular sequence of 
code can perform his task creditably in most respects with 
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only local knowledge of the application at any given time, 
memory allocation and reclamation require a global knowl 
edge of the program. Specifically, a programmer dealing 
with a given sequence of code does tend to know whether 
Some portion of memory is still in use for that sequence of 
code, but it is considerably more difficult for him to know 
what the rest of the application is doing with that memory. 
By tracing references from Some conservative notion of a 
“root set, e.g., global variables, registers, and the call stack, 
automatic garbage collectors obtain global knowledge in a 
methodical way. By using a garbage collector, the program 
mer is relieved of the need to worry about the applications 
global state and can concentrate on local-state issues, which 
are more manageable. The result is applications that are 
more robust, having no dangling references and fewer 
memory leaks. 

Garbage-collection mechanisms can be implemented by 
various parts and levels of a computing system. One 
approach is simply to provide them as part of a batch 
compilers output. Consider FIG. 2's simple batch-compiler 
operation, for example. A computer system executes in 
accordance with compiler object code and therefore acts as 
a compiler 20. The compiler object code is typically stored 
on a medium such as FIG. 1's system disk 17 or some other 
machine-readable medium, and it is loaded into RAM 14 to 
configure the computer system to act as a compiler. In some 
cases, though, the compiler object code's persistent storage 
may instead be provided in a server system remote from the 
machine that performs the compiling. The electrical signals 
that carry the digital data by which the computer systems 
exchange that code are examples of the kinds of electro 
magnetic signals by which the computer instructions can be 
communicated. Others are radio waves, microwaves, and 
both visible and invisible light. 

The input to the compiler is the application source code, 
and the end product of the compiler process is application 
object code. This object code defines an application 21, 
which typically operates on input such as mouse clicks, etc., 
to generate a display or some other type of output. This 
object code implements the relationship that the programmer 
intends to specify by his application source code. In one 
approach to garbage collection, the compiler 20, without the 
programmer's explicit direction, additionally generates code 
that automatically reclaims unreachable memory space. 

Even in this simple case, though, there is a sense in which 
the application does not itself provide the entire garbage 
collector. Specifically, the application will typically call 
upon the underlying operating system's memory-allocation 
functions. And the operating system may in turn take advan 
tage of various hardware that lends itself particularly to use 
in garbage collection. So even a very simple system may 
disperse the garbage-collection mechanism over a number of 
computer-system layers. 

To get Some sense of the variety of system components 
that can be used to implement garbage collection, consider 
FIG. 3's example of a more complex way in which various 
levels of Source code can result in the machine instructions 
that a processor executes. In the FIG. 3 arrangement, the 
human applications programmer produces source code 22 
written in a high-level language. A compiler 23 typically 
converts that code into "class files.” These files include 
routines written in instructions, called “byte codes' 24, for 
a “virtual machine' that various processors can be software 
configured to emulate. This conversion into byte codes is 
almost always separated in time from those codes execu 
tion, so FIG. 3 divides the sequence into a “compile-time 
environment 25 separate from a “run-time environment' 
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26, in which execution occurs. One example of a high-level 
language for which compilers are available to produce Such 
virtual-machine instructions is the JavaTM programming 
language. (Java is a trademark or registered trademark of 
Sun Microsystems, Inc., in the United States and other 
countries.) 
Most typically, the class files byte-code routines are 

executed by a processor under control of a virtual-machine 
process 27. That process emulates a virtual machine from 
whose instruction set the byte codes are drawn. As is true of 
the compiler 23, the virtual-machine process 27 may be 
specified by code stored on a local disk or some other 
machine-readable medium from which it is read into FIG. 
1's RAM 14 to configure the computer system to implement 
the garbage collector and otherwise act as a virtual machine. 
Again, though, that code's persistent storage may instead be 
provided by a server system remote from the processor that 
implements the virtual machine, in which case the code 
would be transmitted electrically or optically to the virtual 
machine-implementing processor. 

In some implementations, much of the virtual machine's 
action in executing these byte codes is most like what those 
skilled in the art refer to as “interpreting, so FIG. 3 depicts 
the virtual machine as including an “interpreter 28 for that 
purpose. In addition to of instead of running an interpreter, 
many virtual-machine implementations actually compile the 
byte codes concurrently with the resultant object code's 
execution, so FIG. 3 depicts the virtual machine as addi 
tionally including a “just-in-time” compiler 29. We will refer 
to the just-in-time compiler and the interpreter together as 
“execution engines' since they are the methods by which 
byte code can be executed. 
Now, some of the functionality that Source-language 

constructs specify can be quite complicated, requiring many 
machine-language instructions for their implementation. 
One quite-common example is a Source-language instruc 
tion that calls for 64-bit arithmetic on a 32-bit machine. 
More germane to the present invention is the operation of 
dynamically allocating space to a new object; the allocation 
of Such objects must be mediated by the garbage collector. 

In Such situations, the compiler may produce "inline' 
code to accomplish these operations. That is, all object-code 
instructions for carrying out a given source-code-prescribed 
operation will be repeated each time the source code calls for 
the operation. But inlining runs the risk that “code bloat” 
will result if the operation is invoked at many source-code 
locations. 

The natural way of avoiding this result is instead to 
provide the operation’s implementation as a procedure, i.e., 
a single code sequence that can be called from any location 
in the program. In the case of compilers, a collection of 
procedures for implementing many types of Source-code 
specified operations is called a runtime system for the 
language. The execution engines and the runtime system of 
a virtual machine are designed together so that the engines 
“know what runtime-system procedures are available in the 
virtual machine (and on the target system if that system 
provides facilities that are directly usable by an executing 
virtual-machine program.) So, for example, the just-in-time 
compiler 29 may generate native code that includes calls to 
memory-allocation procedures provided by the virtual 
machine’s runtime system. These allocation routines may in 
turn invoke garbage-collection routines of the runtime sys 
tem when there is not enough memory available to satisfy an 
allocation. To represent this fact, FIG. 3 includes block 30 to 
show that the compilers output makes calls to the runtime 
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system as well as to the operating system 31, which consists 
of procedures that are similarly system-resident but are not 
compiler-dependent. 

Although the FIG.3 arrangement is a popular one, it is by 
no means universal, and many further implementation types 
can be expected. Proposals have even been made to imple 
ment the virtual machine 27's behavior in a hardware 
processor, in which case the hardware itself would provide 
Some or all of the garbage-collection function. 
The arrangement of FIG. 3 differs from FIG. 2 in that the 

compiler 23 for converting the human programmers code 
does not contribute to providing the garbage-collection 
function; that results largely from the virtual machine 27's 
operation. Those skilled in that art will recognize that both 
of these organizations are merely exemplary, and many 
modern systems employ hybrid mechanisms, which partake 
of the characteristics of traditional compilers and traditional 
interpreters both. 
The invention to be described below is applicable inde 

pendently of whether a batch compiler, a just-in-time com 
piler, an interpreter, or some hybrid is employed to process 
Source code. In the remainder of this application, therefore, 
we will use the term compiler to refer to any such mecha 
nism, even if it is what would more typically be called an 
interpreter. 

In short, garbage collectors can be implemented in a wide 
range of combinations of hardware and/or software. As is 
true of most of the garbage-collection techniques described 
in the literature, the invention to be described below is 
applicable to most such systems. 
By implementing garbage collection, a computer system 

can greatly reduce the occurrence of memory leaks and other 
Software deficiencies in which human programming fre 
quently results. But it can also have significant adverse 
performance effects if it is not implemented carefully. To 
distinguish the part of the program that does “useful work 
from that which does the garbage collection, the term 
mutator is sometimes used in discussions of these effects; 
from the collector's point of view, what the mutator does is 
mutate active data structures connectivity. 
Some garbage-collection approaches rely heavily on 

interleaving garbage-collection steps among mutator steps. 
In one type of garbage-collection approach, for instance, the 
mutator operation of writing a reference is followed imme 
diately by garbage-collector steps used to maintain a refer 
ence count in that objects header, and code for Subsequent 
new-object storage includes steps for finding space occupied 
by objects whose reference count has fallen to zero. Obvi 
ously, such an approach can slow mutator operation signifi 
cantly. 

Other approaches therefore interleave very few garbage 
collector-related instructions into the main mutator process 
but instead interrupt it from time to time to perform garbage 
collection cycles, in which the garbage collector finds 
unreachable objects and reclaims their memory space for 
reuse. Such an approach will be assumed in discussing FIG. 
4’s depiction of a simple garbage-collection operation. 
Within the memory space allocated to a given application is 
a part 40 managed by automatic garbage collection. In the 
following discussion, this will be referred to as the “heap.” 
although in other contexts that term refers to all dynamically 
allocated memory. During the course of the application’s 
execution, space is allocated for various objects 42, 44, 46. 
48, and 50. Typically, the mutator allocates space within the 
heap by invoking the garbage collector, which at Some level 
manages access to the heap. Basically, the mutator asks the 
garbage collector for a pointer to a heap region where it can 
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6 
safely place the object's data. The garbage collector keeps 
track of the fact that the thus-allocated region is occupied. It 
will refrain from allocating that region in response to any 
other request until it determines that the mutator no longer 
needs the region allocated to that object. 

Garbage collectors vary as to which objects they consider 
reachable and unreachable. For the present discussion, 
though, an object will be considered “reachable' if it is 
referred to, as object 42 is, by a reference in the root set 52. 
The root set consists of reference values stored in the 
mutators threads call stacks, the CPU registers, and global 
variables outside the garbage-collected heap. An object is 
also reachable if it is referred to, as object 46 is, by another 
reachable object (in this case, object 42). Objects that are not 
reachable can no longer affect the program, so it is safe to 
re-allocate the memory spaces that they occupy. 
A typical approach to garbage collection is therefore to 

identify all reachable objects and reclaim any previously 
allocated memory that the reachable objects do not occupy. 
A typical garbage collector may identify reachable objects 
by tracing references from the root set 52. For the sake of 
simplicity, FIG. 4 depicts only one reference from the root 
set 52 into the heap 40. (Those skilled in the art will 
recognize that there are many ways to identify references, or 
at least data contents that may be references.) The collector 
notes that the root set points to object 42, which is therefore 
reachable, and that reachable object 42 points to object 46. 
which therefore is also reachable. But those reachable 
objects point to no other objects, so objects 44, 48, and 50 
are all unreachable, and their memory space may be 
reclaimed. This may involve, say, placing that memory 
space in a list of free memory blocks. 
To avoid excessive heap fragmentation, Some garbage 

collectors additionally relocate reachable objects. FIG. 5 
shows a typical approach. The heap is partitioned into two 
halves, hereafter called 'semi-spaces.” For one garbage 
collection cycle, all objects are allocated in one semi-space 
54, leaving the other semi-space 56 free. When the garbage 
collection cycle occurs, objects identified as reachable are 
“evacuated to the other semi-space 56, so all of semi-space 
54 is then considered free. Once the garbage-collection cycle 
has occurred, all new objects are allocated in the lower 
semi-space 56 until yet another garbage-collection cycle 
occurs, at which time the reachable objects are evacuated 
back to the upper semi-space 54. 

Although this relocation requires the extra steps of copy 
ing the reachable objects and updating references to them, it 
tends to be quite efficient, since most new objects quickly 
become unreachable, so most of the current semi-space is 
actually garbage. That is, only a relatively few, reachable 
objects need to be relocated, after which the entire semi 
space contains only garbage and can be pronounced free for 
reallocation. 
Now, a collection cycle can involve following all refer 

ence chains from the basic root set—i.e., from inherently 
reachable locations such as the call stacks, class statics and 
other global variables, and registers—and reclaiming all 
space occupied by objects not encountered in the process. 
And the simplest way of performing Such a cycle is to 
interrupt the mutator to provide a collector interval in which 
the entire cycle is performed before the mutator resumes. 
For certain types of applications, this approach to collection 
cycle scheduling is acceptable and, in fact, highly efficient. 

For many interactive and real-time applications, though, 
this approach is not acceptable. The delay in mutator opera 
tion that the collection cycle's execution causes can be 
annoying to a user and can prevent a real-time application 
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from responding to its environment with the required speed. 
In some applications, choosing collection times opportunis 
tically can reduce this effect. Collection intervals can be 
inserted when an interactive mutator reaches a point at 
which it awaits user input, for instance. 

So it may often be true that the garbage-collection opera 
tion’s effect on performance can depend less on the total 
collection time than on when collections actually occur. But 
another factor that often is even more determinative is the 
duration of any single collection interval, i.e., how long the 
mutator must remain quiescent at any one time. In an 
interactive system, for instance, a user may never notice 
hundred-millisecond interruptions for garbage collection, 
whereas most users would find interruptions lasting for two 
seconds to be annoying. 
The cycle may therefore be divided up among a plurality 

of collector intervals. When a collection cycle is divided up 
among a plurality of collection intervals, it is only after a 
number of intervals that the collector will have followed all 
reference chains and be able to identify as garbage any 
objects not thereby reached. This approach is more complex 
than completing the cycle in a single collection interval; the 
mutator will usually modify references between collection 
intervals, so the collector must repeatedly update its view of 
the reference graph in the midst of the collection cycle. To 
make Such updates practical, the mutator must communicate 
with the collector to let it know what reference changes are 
made between intervals. 
An even more complex approach, which some systems 

use to eliminate discrete pauses or maximize resource-use 
efficiency, is to execute the mutator and collector in con 
current execution threads. Most systems that use this 
approach use it for most but not all of the collection cycle: 
the mutator is usually interrupted for a short collector 
interval, in which a part of the collector cycle takes place 
without mutation. 

Independent of whether the collection cycle is performed 
concurrently with mutator operation, is completed in a 
single interval, or extends over multiple intervals is the 
question of whether the cycle is complete, as has tacitly been 
assumed so far, or is instead "incremental. In incremental 
collection, a collection cycle constitutes only an increment 
of collection: the collector does not follow all reference 
chains from the basic root set completely. Instead, it con 
centrates on only a portion, or collection set, of the heap. 
Specifically, it identifies every collection-set object referred 
to by a reference chain that extends into the collection set 
from outside of it, and it reclaims the collection-set space not 
occupied by Such objects, possibly after evacuating them 
from the collection set. 

By thus culling objects referenced by reference chains 
that do not necessarily originate in the basic root set, the 
collector can be thought of as expanding the root set to 
include as roots some locations that may not be reachable. 
Although incremental collection thereby leaves “floating 
garbage, it can result in relatively low pause times even if 
entire collection increments are completed during respective 
single collection intervals. 
Most collectors that employ incremental collection oper 

ate in 'generations, although this is not necessary in 
principle. Different portions, or generations, of the heap are 
subject to different collection policies. New objects are 
allocated in a "young generation, and older objects are 
promoted from younger generations to older or more 
"mature' generations. Collecting the younger generations 
more frequently than the others yields greater efficiency 
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8 
because the younger generations tend to accumulate garbage 
faster; newly allocated objects tend to “die,” while older 
objects tend to “survive.” 

But generational collection greatly increases what is 
effectively the root set for a given generation. Consider FIG. 
6, which depicts a heap as organized into three generations 
58, 60, and 62. Assume that generation 60 is to be collected. 
The process for this individual generation may be more or 
less the same as that described in connection with FIGS. 4 
and 5 for the entire heap, with one major exception. In the 
case of a single generation, the root set must be considered 
to include not only the call stack, registers, and global 
variables represented by set 52 but also objects in the other 
generations 58 and 62, which themselves may contain 
references to objects in generation 60. So pointers must be 
traced not only from the basic root set 52 but also from 
objects within the other generations. 
One could perform this tracing by simply inspecting all 

references in all other generations at the beginning of every 
collection interval, and it turns out that this approach is 
actually feasible in some situations. But it takes too long in 
other situations, so workers in this field have employed a 
number of approaches to expediting reference tracing. One 
approach is to include so-called write barriers in the mutator 
process. A write barrier is code added to a write operation to 
record information from which the collector can determine 
where references were written or may have been since the 
last collection interval. A reference list can then be main 
tained by taking Such a list as it existed at the end of the 
previous collection interval and updating it by inspecting 
only locations identified by the write barrier as possibly 
modified since the last collection interval. 

One of the many write-barrier implementations com 
monly used by workers in this art employs what has been 
referred to as the “card table.” FIG. 6 depicts the various 
generations as being divided into Smaller sections, known 
for this purpose as “cards.” Card tables 64, 66, and 68 
associated with respective generations contain an entry for 
each of their cards. When the mutator writes a reference in 
a card, it makes an appropriate entry in the card-table 
location associated with that card (or, say, with the card in 
which the object containing the reference begins). Most 
write-barrier implementations simply make a Boolean entry 
indicating that the write operation has been performed, 
although some may be more elaborate. The mutator having 
thus left a record of where new or modified references may 
be, the collector can thereafter prepare appropriate Summa 
ries of that information, as, will be explained in due course. 
For the sake of concreteness, we will assume that the 
Summaries are maintained by Steps that occur principally at 
the beginning of each collection interval. 
Of course, there are other write-barrier approaches, such 

as simply having the write barrier add to a list of addresses 
where references where written. Also, although there is no 
reason in principle to favor any particular number of gen 
erations, and although FIG. 6 shows three, most generational 
garbage collectors have only two generations, of which one 
is the young generation and the other is the mature genera 
tion. Moreover, although FIG. 6 shows the generations as 
being of the same size, a more-typical configuration is for 
the young generation to be considerably smaller. Finally, 
although we assumed for the sake of simplicity that collec 
tion during a given interval was limited to only one genera 
tion, a more-typical approach is actually to collect the whole 
young generation at every interval but to collect the mature 
one less frequently. 
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Some collectors collect the entire young generation in 
every interval and may thereafter perform mature-genera 
tion collection in the same interval. It may therefore take 
relatively little time to Scan all young-generation objects 
remaining after young-generation collection to find refer 
ences into the mature generation. Even when Such collectors 
do use card tables, therefore, they often do not use them for 
finding young-generation references that refer to mature 
generation objects. On the other hand, laboriously scanning 
the entire mature generation for references to young-gen 
eration (or mature-generation) objects would ordinarily take 
too long, so the collector uses the card table to limit the 
amount of memory it searches for mature-generation refer 
CCCS. 

Now, although it typically takes very little time to collect 
the young generation, it may take more time than is accept 
able within a single garbage-collection cycle to collect the 
entire mature generation. So Some garbage collectors may 
collect the mature generation incrementally; that is, they 
may perform only a part of the mature generation's collec 
tion during any particular collection cycle. Incremental 
collection presents the problem that, since the generation’s 
unreachable objects outside the “collection set of objects 
processed during that cycle cannot be recognized as 
unreachable, collection-set objects to which they refer tend 
not to be, either. 
To reduce the adverse effect this would otherwise have on 

collection efficiency, workers in this field have employed the 
“train algorithm, which FIG. 7 depicts. A generation to be 
collected incrementally is divided into sections, which for 
reasons about to be described are referred to as “car sec 
tions.” Conventionally, a generations incremental collec 
tion occurs in fixed-size sections, and a car section's size is 
that of the generation portion to be collected during one 
cycle. 
The discussion that follows will occasionally employ the 

nomenclature in the literature by using the term car instead 
of car section. But the literature seems to use that is term to 
refer variously not only to memory sections themselves but 
also to data structures that the train algorithm employs to 
manage them when they contain objects, as well as to the 
more-abstract concept that the car section and managing 
data structure represent in discussions of the algorithm. So 
the following discussion will more frequently use the 
expression car section to emphasize the actual sections of 
memory space for whose management the car concept is 
employed. 

According to the train algorithm, the car sections are 
grouped into “trains,” which are ordered, conventionally 
according to age. For example, FIG. 7 shows an oldest train 
73 consisting of a generation 74's three car sections 
described by associated data structures 75, 76, and 78, while 
a second train 80 consists only of a single car section, 
represented by structure 82, and the youngest train 84 
(referred to as the “allocation train’) consists of car sections 
that data structures 86 and 88 represent. As will be seen 
below, car sections train memberships can change, and any 
car section added to a train is typically added to the end of 
a train. 

Conventionally, the car collected in an increment is the 
one added earliest to the oldest train, which in this case is car 
75. All of the generations cars can thus be thought of as 
waiting for collection in a single long line, in which cars are 
ordered in accordance with the order of the trains to which 
they belong and, within trains, in accordance with the order 
in which they were added to those trains. 
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10 
As is usual, the way in which reachable objects are 

identified is to determine whether there are references to 
them in the root set or in any other object already determined 
to be reachable. In accordance with the train algorithm, the 
collector additionally performs a test to determine whether 
there are any references at all from outside the oldest train 
to objects within it. If there are not, then all cars within the 
train can be reclaimed, even though not all of those cars are 
in the collection set. And the train algorithm so operates that 
inter-car references tend to be grouped into trains, as will 
now be explained. 
To identify references into the car from outside of it, 

train-algorithm implementations typically employ “remem 
bered sets.” As card tables are, remembered sets are used to 
keep track of references. Whereas a card-table entry contains 
information about references that the associated card con 
tains, though, a remembered set associated with a given 
region contains information about references into that region 
from locations outside of it. In the case of the train algo 
rithm, remembered sets are associated with car sections. 
Each remembered set, such as car 75's remembered set 90, 
lists locations in the generation that contain references into 
the associated car section. 
The remembered sets for all of a generations cars are 

typically updated at the start of each collection cycle. To 
illustrate how Such updating and other collection operations 
may be carried out, FIGS. 8A and 8B (together, “FIG. 8) 
depict an operational sequence in a system of the typical 
type mention above. That is, it shows a sequence of opera 
tions that may occur in a system in which the entire 
garbage-collected heap is divided into two generations, 
namely, a young generation and an old generation, and in 
which the young generation is much Smaller than the old 
generation. FIG. 8 is also based on the assumption and that 
the train algorithm is used only for collecting the old 
generation. 

Block 102 represents a period of the mutator's operation. 
AS was explained above, the mutator makes a card-table 
entry to identify any card that it has “dirtied by adding or 
modifying a reference that the card contains. At some point, 
the mutator will be interrupted for collector operation. 
Different implementations employ different events to trigger 
such an interruption, but we will assume for the sake of 
concreteness that the systems dynamic-allocation routine 
causes such interruptions when no room is left in the young 
generation for any further allocation. A dashed line 103 
represents the transition from mutator operation and collec 
tor operation. 

In the system assumed for the FIG. 8 example, the 
collector collects the (entire) young generation each time 
Such an interruption occurs. When the young generations 
collection ends, the mutator operation usually resumes, 
without the collector's having collected any part of the old 
generation. Once in a while, though, the collector also 
collects part of the old generation, and FIG. 8 is intended to 
illustrate such an occasion. 
When the collector's interval first starts, it first processes 

the card table, in an operation that block 104 represents. As 
was mentioned above, the collector scans the "dirtied cards 
for references into the young generation. If a reference is 
found, that fact is memorialized appropriately. If the refer 
ence refers to a young-generation object, for example, an 
expanded card table may be used for this purpose. For each 
card, such an expanded card table might include a multi-byte 
array used to Summarize the cards reference contents. The 
Summary may, for instance, be a list of offsets that indicate 
the exact locations within the card of references to young 
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generation objects, or it may be a list of fine-granularity 
'sub-cards' within which references to young-generation 
objects may be found. If the reference refers to an old 
generation object, the collector often adds an entry to the 
remembered set associated with the car containing that 
old-generation object. The entry identifies the references 
location, or at least a small region in which the reference can 
be found. For reasons that will become apparent, though, the 
collector will typically not bother to place in the remem 
bered set the locations of references from objects in car 
sections farther forward in the collection queue than the 
referred-to object, i.e., from objects in older trains or in cars 
added earlier to the same train. 
The collector then collects the young generation, as block 

105 indicates. (Actually, young-generation collection may 
be interleaved with the dirty-region scanning, but the draw 
ing illustrates it for purpose of explanation as being sepa 
rate.) If a young-generation object is referred to by a 
reference that card-table scanning has revealed, that object 
is considered to be potentially reachable, as is any young 
generation object referred to by a reference in the root set or 
in another reachable young-generation object. The space 
occupied by any young-generation object thus considered 
reachable is withheld from reclamation. For example, it may 
be evacuated to a young-generation semi-space that will be 
used for allocation during the next mutator interval. It may 
instead be promoted into the older generation, where it is 
placed into a car containing a reference to it or into a car in 
the last train. Or Some other technique may be used to keep 
the memory space it occupies off the systems free list. The 
collector then reclaims any young-generation space occu 
pied by any other objects, i.e., by any young-generation 
objects not identified as transitively reachable through ref 
erences located outside the young generation. 
The collector then performs the train algorithms central 

test, referred to above, of determining whether there are any 
references into the oldest train from outside of it. As was 
mentioned above, the actual process of determining, for each 
object, whether it can be identified as unreachable is per 
formed for only a single car section in any cycle. In the 
absence of features such as those provided by the train 
algorithm, this would present a problem, because garbage 
structures may be larger than a car section. Objects in Such 
structures would therefore (erroneously) appear reachable, 
since they are referred to from outside the car section under 
consideration. But the train algorithm additionally keeps 
track of whether there are any references into a given car 
from outside the train to which it belongs, and trains sizes 
are not limited. As will be apparent presently, objects not 
found to be unreachable are relocated in such a way that 
garbage structures tend to be gathered into respective trains 
into which, eventually, no references from outside the train 
point. If no references from outside the train point to any 
objects inside the train, the train can be recognized as 
containing only garbage. This is the test that block 106 
represents. All cars in a train thus identified as containing 
only garbage can be reclaimed. 
The question of whether old-generation references point 

into the train from outside of it is (conservatively) answered 
in the course of updating remembered sets; in the course of 
updating a car's remembered set, it is a simple matter to flag 
the car as being referred to from outside the train. The 
step-106 test additionally involves determining whether any 
references from outside the old generation point into the 
oldest train. Various approaches to making this determina 
tion have been Suggested, including the conceptually simple 
approach of merely following all reference chains from the 
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12 
root set until those chains (1) terminate, (2) reach an 
old-generation object outside the oldest train, or (3) reach an 
object in the oldest train. In the two-generation example, 
most of this work can be done readily by identifying 
references into, the collection set from live young-genera 
tion objects during the young-generation collection. If one 
or more Such chains reach the oldest train, that train includes 
reachable objects. It may also include reachable objects if 
the remembered-set-update operation has found one or more 
references into the oldest train from outside of it. Otherwise, 
that train contains only garbage, and the collector reclaims 
all of its car sections for reuse, as block 107 indicates. The 
collector may then return control to the mutator, which 
resumes execution, as FIG. 8B's block 108 indicates. 

If the train contains reachable objects, on the other hand, 
the collector turns to evacuating potentially reachable 
objects from the collection set. The first operation, which 
block 110 represents, is to remove from the collection set 
any object that is reachable from the root set by way of a 
reference chain that does not pass through the part of the old 
generation that is outside of the collection set. In the 
illustrated arrangement, in which there are only two gen 
erations, and the young generation has previously been 
completely collected during the same interval, this means 
evacuating from a collection set any object that (1) is 
directly referred to by a reference in the root set, (2) is 
directly referred to by a reference in the young generation (in 
which no remaining objects have been found unreachable), 
or (3) is referred to by any reference in an object thereby 
evacuated. All of the objects thus evacuated are placed in 
cars in the youngest train, which was newly created during 
the collection cycle. Certain of the mechanics involved in 
the evacuation process are described in more detail in 
connection with similar evacuation performed, as blocks 112 
and 114 indicate, in response to remembered-set entries. 

FIG. 9 illustrates how the processing represented by block 
114 proceeds. The entries identify heap regions, and, as 
block 116 indicates, the collector scans the thus-identified 
heap regions to find references to locations in the collection 
set. As blocks 118 and 120 indicate, that entry’s processing 
continues until the collector finds no more such references. 
Every time the collector does find such a reference, it checks 
to determine whether, as a result of a previous entry's 
processing, the referred-to object has already been evacu 
ated. If it has not, the collector evacuates the referred-to 
object to a (possibly new) car in the train containing the 
reference, as blocks 122 and 124 indicate. 
As FIG. 10 indicates, the evacuation operation includes 

more than just object relocation, which block 126 represents. 
Once the object has been moved, the collector places a 
forwarding pointer in the collection-set location from which 
it was evacuated, for a purpose that will become apparent 
presently. Block 128 represents that step. (Actually, there are 
Some cases in which the evacuation is only a "logical 
evacuation: the car containing the object is simply re-linked 
to a different logical place in the collection sequence, but its 
address does not change. In Such cases, forwarding pointers 
are unnecessary.) Additionally, the reference in response to 
which the object was evacuated is updated to point to the 
evacuated object’s new location, as block 130 indicates. 
And, as block 132 indicates, any reference contained in the 
evacuated object is processed, in an operation that FIGS. 
11A and 11B (together, “FIG. 11') depict. 

For each one of the evacuated objects references, the 
collector checks to see whether the location that it refers to 
is in the collection set. As blocks 134 and 136 indicate, the 
reference processing continues until all references in the 
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evacuated object have been processed. In the meantime, if a 
reference refers to a collection-set location that contains an 
object not yet evacuated, the collector evacuates the 
referred-to object to the train to which the evacuated object 
containing the reference was evacuated, as blocks 138 and 
140 indicate. 

If the reference refers to a location in the collection set 
from which the object has already been evacuated, then the 
collector uses the forwarding pointer left in that location to 
update the reference, as block 142 indicates. Before the 
processing of FIG. 11, the remembered set of the referred-to 
objects car will have an entry that identifies the evacuated 
object's old location as one containing a reference to the 
referred-to object. But the evacuation has placed the refer 
ence in a new location, for which the remembered set of the 
referred-to object’s car may not have an entry. So, if that 
new location is not as far forward as the referred-to object, 
the collector adds to that remembered set an entry identify 
ing the reference's new region, as blocks 144 and 146 
indicate. As the drawings show, the same type of remem 
bered-set update is performed if the object referred to by the 
evacuated reference is not in the collection set. 
Now, Some train-algorithm implementations postpone 

processing of the references contained in evacuated collec 
tion-set objects until after all directly reachable collection 
set objects have been evacuated. In the implementation that 
FIG. 10 illustrates, though, the processing of a given evacu 
ated object's references occurs before the next object is 
evacuated. So FIG. 11's blocks 134 and 148 indicate that the 
FIG. 11 operation is completed, when all of the references 
contained in the evacuated object have been processed. This 
completes FIG. 10's object-evacuation operation, which 
FIG. 9’s block 124 represents. 
As FIG. 9 indicates, each collection-set object referred to 

by a reference in a remembered-set-entry-identified location 
is thus evacuated if it has not been already. If the object has 
already been evacuated from the referred-to location, the 
reference to that location is updated to point to the location 
to which the object has been evacuated. If the remembered 
set associated with the car containing the evacuated objects 
new location does not include an entry for the references 
location, it is updated to do so if the car containing the 
reference is younger than the car containing the evacuated 
object. Block 150 represents updating the reference and, if 
necessary, the remembered set. 
As FIG. 8's blocks 112 and 114 indicate, this processing 

of collection-set remembered sets is performed initially only 
for entries that do not refer to locations in the oldest train. 
Those that do are processed only after all others have been, 
as blocks 152 and 154 indicate. 

When this process has been completed, the collection 
sets memory space can be reclaimed, as block 164 indi 
cates, since no remaining object is referred to from outside 
the collection set: any remaining collection-set object is 
unreachable. The collector then relinquishes control to the 
mutatOr. 

FIGS. 12A-12J illustrate results of using the train algo 
rithm. FIG. 12A represents a generation in which objects 
have been allocated in nine car sections. The oldest train has 
four cars, numbered 1.1 through 1.4. Car 1.1 has two objects, 
A and B. There is a reference to object B in the root set 
(which, as was explained above, includes live objects in the 
other generations). Object A is referred to by object L., which 
is in the third train's sole car section. In the generation’s 
remembered sets 170, a reference in object L has therefore 
been recorded against car 1.1. 
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Processing always starts with the oldest train's earliest 

added car, so the garbage collector refers to car 1.1's 
remembered set and finds that there is a reference from 
object L into the car being processed. It accordingly evacu 
ates object A to the train that object L. occupies. The object 
being evacuated is often placed; in one of the selected train's 
existing cars; but we will assume for present purposes that 
there is not enough room. So the garbage collector evacuates 
object A into a new car section and updates appropriate data 
structures to identify it as the next car in the third train. FIG. 
12B depicts the result: a new car has been added to the third 
train, and object A is placed in it. 

FIG. 12B also shows that object B has been evacuated to 
a new car outside the first train. This is because object B has 
an external reference, which, like the reference to object A, 
is a reference from outside the first train, and one goal of the 
processing is to form trains into which there are no further 
references. Note that, to maintain a reference to the same 
object, object L’s reference to object A has had to be 
rewritten, and so have object B's reference to object A and 
the inter-generational pointer to object B. In the illustrated 
example, the garbage collector begins a new train for the car 
into which object B is evacuated, but this is not a necessary 
requirement of the train algorithm. That algorithm requires 
only that externally referenced objects be evacuated to a 
newer train. 

Since car 1.1 no longer contains live objects, it can be 
reclaimed, as FIG. 12B also indicates. Also note that the 
remembered set for car 2.1 now includes the address of a 
reference in object A, whereas it did not before. As was 
stated before, remembered sets in the illustrated embodi 
ment include only references from cars further back in the 
order than the one with which the remembered set is 
associated. The reason for this is that any other cars will 
already be reclaimed by the time the car associated with that 
remembered set is processed, so there is no reason to keep 
track of references from them. 
The next step is to process the next car, the one whose 

index is 1.2. Conventionally, this would not occur until some 
collection cycle after the one during which car 1.1 is 
collected. For the sake of simplicity we will assume that the 
mutator has not changed any references into the generation 
in the interim. 

FIG. 12B depicts car 1.2 as containing only a single 
object, object C, and that car's remembered set contains the 
address of an inter-car reference from object F. The garbage 
collector follows that reference to object C. Since this 
identifies object C as possibly reachable, the garbage col 
lector evacuates it from car set 1.2, which is to be reclaimed. 
Specifically, the garbage collector removes object C to a new 
car section, section 1.5, which is linked to the train to which 
the referring object Fs car belongs. Of course, object Fs 
reference needs to be updated to object C’s new location. 
FIG. 12C depicts the evacuation’s result. 

FIG. 12C also indicates that car set 1.2 has been 
reclaimed, and car 1.3 is next to be processed. The only 
address in car 1.3's remembered set is that of a reference in 
object G. Inspection of that reference reveals that it refers to 
object F. Object F may therefore be reachable, so it must be 
evacuated before car section 1.3 is reclaimed. On the other 
hand, there are no references to objects D and E, so they are 
clearly garbage. FIG. 12D depicts the result of reclaiming 
car 1.3's space after evacuating possibly reachable object F. 

In the state that FIG. 12D depicts, car 1.4 is next to be 
processed, and its remembered set contains the addresses of 
references in objects K and C. Inspection of object K's 
reference reveals that it refers to object H, so object H must 
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be evacuated. Inspection of the other remembered-set entry, 
the reference in object C, reveals that it refers to object G, 
so that object is evacuated, too. As FIG. 12E illustrates, 
object H must be added to the second train, to which its 
referring object K belongs. In this case there is room enough 
in car 2.2, which its referring object K occupies. So evacu 
ation of object H does not require that object K's reference 
to object H be added to car 2.2's remembered set. Object G 
is evacuated to a new car in the same train, since that train 
is where referring object C resides. And the address of the 
reference in object G to object C is added to car 1.5’s 
remembered set. 

FIG. 12E shows that this processing has eliminated all 
references into the first train, and it is an important part of 
the train algorithm to test for this condition. That is, even 
though there are references into both of the train's cars, 
those cars contents can be recognized as all garbage 
because there are no references into the train from outside of 
it. So all of the first train's cars are reclaimed. 
The collector accordingly processes car 2.1 during the 

next collection cycle, and that car's remembered set indi 
cates that there are two references outside the car that refer 
to objects within it. Those references are in object K, which 
is in the same train, and object A, which is not. Inspection 
of those references reveals that they refer to objects I and J. 
which are evacuated. 

The result, depicted in FIG. 12F, is that the remembered 
sets for the cars in the second train reveal no inter-car 
references, and there are no inter-generational references 
into it, either. That trains car sections therefore contain only 
garbage, and their memory space can be reclaimed. 

So car 3.1 is processed next. Its sole object, object L. is 
referred to inter-generationally as well as by a reference in 
the fourth trains object M. As FIG. 12G shows, object L is 
therefore evacuated to the fourth train. And the address of 
the reference in object L to object A is placed in the 
remembered set associated with car 3.2, in which object A 
resides. 
The next car to be processed is car 3.2, whose remem 

bered set includes the addresses of references into it from 
objects B and L. Inspection of the reference from object B 
reveals that it refers to object A, which must therefore be 
evacuated to the fifth train before car 3.2 can be reclaimed. 
Also, we assume that object A cannot fit in car section 5. 1, 
so a new car 5.2 is added to that train, as FIG. 12H shows, 
and object A is placed in its car section. All referred-to 
objects in the third train having been evacuated, that (single 
car) train can be reclaimed in its entirety. 
A further observation needs to be made before we leave 

FIG. 12G. Car 3.2s remembered set additionally lists a 
reference in object L. So the garbage collector inspects that 
reference and finds that it points to the location previously 
occupied by object A. This brings up a feature of copying 
collection techniques such as the typical train-algorithm 
implementation. When the garbage collector evacuates an 
object from a car section, it marks the location as having 
been evacuated and leaves the address of the object’s new 
location. So, when the garbage collector traces the reference 
from object L, it finds that object A has been removed, and 
it accordingly copies the new location into object L as the 
new value of its reference to object A. 

In the state that FIG. 12H illustrates, car 4.1 is the next to 
be processed. Inspection of the fourth trains remembered 
sets reveals no inter-train references into it, but the inter 
generational scan (possibly performed with the aid of FIG. 
6's card tables) reveals inter-generational references into car 
4.2. So the fourth train cannot be reclaimed yet. The garbage 
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collector accordingly evacuates car 4.1's referred-to objects 
in the normal manner, with the result that FIG. 121 depicts. 

In that state, the next car to be processed has only 
inter-generational references into it. So, although its 
referred-to objects must therefore be evacuated from the 
train, they cannot be placed into trains that contain refer 
ences to them. Conventionally, Such objects are evacuated to 
a train at the end of the train sequence. In the illustrated 
implementation, a new train is formed for this purpose, so 
the result of car 4.2’s processing is the state that FIG. 12J 
depicts. 

Processing continues in this same fashion. Of course, 
Subsequent collection cycles will not in general proceed, as 
in the illustrated cycles, without any reference changes by 
the mutator and without any addition of further objects. But 
reflection reveals that the general approach just described 
still applies when Such mutations occur. 
A continuing problem for incremental copying garbage 

collectors is that, if an object is enormous, much larger than 
a normal car or even many normal sized cars, and that 
enormous object is collected at one time, any time bounds or 
constraints on the interruption of an application may be 
exceeded. 

Such enormous objects are re-linked rather than copied, 
since re-linking takes less time than copying and then 
updating all the references. Re-linked only requires updating 
the remembered sets of older cars in the generation refer 
enced by the re-linked object. However, enormous objects 
may reference many objects and updating the remembered 
sets of many older cars still could interrupt an application for 
an unacceptably long time. 
Known prior art regarding the Train algorithm have not 

addressed this issue. For reference, papers by Hudson and 
Moss and by Grarup and Seligmann, Such papers well 
known in this field, provide useful general information on 
the train algorithm. 

There is a need to efficiently collect enormous objects 
while maintaining interruption time constraints on concur 
rent applications. 

SUMMARY OF THE INVENTION 

The present invention provides apparatus and process 
Solutions to collecting these enormous objects by breaking 
up and collecting only portions of the enormous objects, and 
thus breaking up the work into Smaller more time-acceptable 
increments. The portions are scanned and references 
inserted into corresponding remembered sets over a series of 
collection intervals. 

In order to maintain control while collecting such enor 
mous objects the present invention provides for re-linking 
the enormous object rather than relocating. The re-linked 
enormous object is partially scanned for references into 
older cars and corresponding insertions are made into these 
older cars remembered sets. The location of the unscanned 
portion of the enormous object is saved for Subsequent 
collection intervals until the entire enormous object has been 
scanned and proper insertions into the remembered sets of 
older cars made. 

If there are other normal cars with normal objects in the 
collection set those objects are evacuated as described 
above, and remembered sets of older cars properly up-dated. 
The re-linked enormous object is scanned for references into 
the collection set and the references in the enormous object 
are updated with the new locations of any evacuated objects. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

The invention description below refers to the accompa 
nying drawings, of which: 

FIG. 1, discussed above, is a block diagram of a computer 
system in which the present invention's teachings can be 
practiced; 

FIG. 2 as, discussed above, is a block diagram that 
illustrates a compiler's basic functions; 

FIG. 3, discussed above, is a block diagram that illustrates 
a more-complicated compiler/interpreter organization; 

FIG. 4, discussed above, is a diagram that illustrates a 
basic garbage-collection mechanism; 

FIG. 5, discussed above, is a similar diagram illustrating 
that garbage-collection approach's relocation operation; 

FIG. 6, discussed above, is a diagram that illustrates a 
garbage-collected heap's organization into generations; 

FIG. 7, discussed above, is a diagram that illustrates a 
generation organization employed for the train algorithm; 

FIGS. 8A and 8B, discussed above, together constitute a 
flow chart that illustrates a garbage-collection interval that 
includes old-generation collection; 

FIG. 9, discussed above, is a flow chart that illustrates in 
more detail the remembered-set processing included in FIG. 
8A: 

FIG. 10, discussed above, is a block diagram that illus 
trates in more detail the referred-to-object evacuation that 
FIG. 9 includes: 

FIGS. 11A and 11B, discussed above, together form a 
flow chart that illustrates in more detail the FIG. 10 flow 
chart's step of processing evacuated objects references; 

FIGS. 12A-12J, discussed above, are diagrams that illus 
trate a collection scenario that can result from using the train 
algorithm; 

FIGS. 13A and 13B together constitute a flow chart that 
illustrates a collection interval, as FIGS. 8A and 8B do, but 
illustrates optimizations that FIGS. 8A and 8B do not 
include: 

FIG. 14 is a diagram that illustrates example data struc 
tures that can be employed to manage cars and trains in 
accordance with the train algorithm; 

FIG. 15 is a diagram that illustrates data structures 
employed in managing different-sized car sections; 

FIG. 16 is a block diagram of a two car collection set 
including one enormous object in one car, and 

FIGS. 17 and 18 are flow charts illustrating an embodi 
ment of the present invention. 

DETAILED DESCRIPTION OF AN 
ILLUSTRATIVE EMBODIMENT 

The illustrated embodiment employs a way of implement 
ing the train algorithm that is in general terms similar to the 
way described above. But, whereas it was tacitly assumed 
above that, as is conventional, only a single car section 
would be collected in any given collection interval, the 
embodiment now to be discussed may collect more than a 
single car during a collection interval. FIGS. 13A and 13B 
(together, "FIG. 13) therefore depict a collection operation 
that is similar to the one that FIG. 8 depicts, but FIG. 13 
reflects cars containing enormous objects and multiple-car 
collection sets and depicts certain optimizations that some of 
the invention’s embodiments may employ. 

Blocks 172, 176, and 178 represent operations that cor 
respond to those that FIG. 8's blocks 102, 106, and 108 do, 
and dashed line 174 represents the passage of control from 
the mutator to the collector, as FIG. 8’s dashed line 104 
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does. For the sake of efficiency, though, the collection 
operation of FIG. 13 includes a step represented by block 
180. In this step, the collector reads the remembered set of 
each car in the collection set to determine the location of 
each reference into the collection set from a car outside of 
it, it places the address of each reference thereby found into 
a scratch-pad list associated with the train that contains that 
reference, and it places the scratch-pad lists in reverse-train 
order. As blocks 182 and 184 indicate, it then processes the 
entries in all scratch-pad lists but the one associated with the 
oldest train. 

Before the collector processes references in that trains 
scratch-pad list, the collector evacuates any objects referred 
to from outside the old generation, as block 186 indicates. To 
identify such objects, the collector scans the root set. In 
Some generational collectors, it may also have to Scan other 
generations for references into the collection set. For the 
sake of example, though, we have assumed the particularly 
common scheme in which a generations collection in a 
given interval is always preceded by complete collection of 
every (in this case, only one) younger generation in the same 
interval. If, in addition, the collector's promotion policy is to 
promote all Surviving younger-generation objects into older 
generations, it is necessary only to scan older generations, of 
which there are none in the example; i.e., Some embodi 
ments may not require that the young generation be scanned 
in the block-186 operation. 

For those that do, though, the scanning may actually 
involve inspecting each Surviving object in the young gen 
eration, or the collector may expedite the process by using 
card-table entries. Regardless of which approach it uses, the 
collector immediately evacuates into another train any col 
lection-set object to which it thereby finds an external 
reference. The typical policy is to place the evacuated object 
into the youngest Such train. As before, the collector does not 
attempt to evacuate an object that has already been evacu 
ated and, when it does evacuate an object to a train, it 
evacuates to the same train each collection-set object to 
which a reference the thus-evacuated object refers. In any 
case, the collector updates the reference to the evacuated 
object. 
When the inter-generational references into the generation 

have thus been processed, the garbage collector determines 
whether there are any references into the oldest train from 
outside that train. If not, the entire train can be reclaimed, as 
blocks 188 and 190 indicate. 
As block 192 indicates, the collector interval typically 

ends when a train has thus been collected. If the oldest train 
cannot be collected in this manner, though, the collector 
proceeds to evacuate any collection-set objects referred to 
by references whose locations the oldest train's scratch-pad 
list includes, as blocks 194 and 196 indicate. It removes 
them to younger cars in the oldest train, again updating 
references, avoiding duplicate evacuations, and evacuating 
any collection-set objects to which the evacuated objects 
refer. When this process has been completed, the collection 
set can be reclaimed, as block 198 indicates, since no 
remaining object is referred to from outside the collection 
set: any remaining collection-set object is unreachable. The 
collector then relinquishes control to the mutator. 
We now turn to a problem presented by popular objects. 

FIG. 12F shows that there are two references to object L. 
after the second train is collected. So references in both of 
the referring objects need to be updated when object L is 
evacuated. If entry duplication is to be avoided, adding 
remembered-set entries is burdensome. Still, the burden in 
not too great in that example, since only two referring 
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objects are involved. But some types of applications rou 
tinely generate objects to which there are large numbers of 
references. Evacuating a single one of these objects requires 
considerable reference up-dating, so it can be quite costly. 
One way of dealing with this problem is to place popular 

objects in their own cars. To understand how this can be 
done, consider FIG. 14's exemplary data structures, which 
represent the type of information a collector may maintain in 
Support of the train algorithm. To emphasize trains ordered 
nature, FIG. 14 depicts such a structure 244 as including 
pointers 245 and 246 to the previous and next trains, 
although train order could obviously be maintained without 
Such a mechanism. Cars are ordered within trains, too, and 
it may be a convenient to assign numbers for this purpose 
explicitly and keep the next number to be assigned in the 
train-associated structure, as field 247 Suggests. In any 
event, Some way of associating cars with trains is necessary, 
and the drawing represents this by fields 248 and 249 that 
point to structures containing data for the train's first and last 
CaS. 

FIG. 14 depicts one such structure 250 as including 
pointers 251, 252, and 253 to structures that contain infor 
mation concerning the train to which the car belongs, the 
previous car in the train, and the next car in the train. Further 
pointers 254 and 255 point to the locations in the heap at 
which the associated car section begins and ends, whereas 
pointer 256 points to the place at which the next object can 
be added to the car section. 
As will be explained in more detail presently, there is a 

standard car-section size that is used for all cars that contain 
more than one object, and that size is great enough to contain 
a relatively large number of average-sized objects. But some 
objects can be too big for the standard size, so a car section 
may consist of more than one of the standard-size memory 
Sections. Structure 250 therefore includes a field 257 that 
indicates how many standard-size memory sections there are 
in the car section that the structure manages. 
On the other hand, that structure may in the illustrated 

embodiment be associated not with a single car section but 
rather with a standard-car-section-sized memory section that 
contains more than one (special-size) car section. When an 
organization of this type is used, structures like structure 250 
may include a field 258 that indicates whether the cheap 
space associated with the structure is used, (1) normally, as 
a car section that can contain multiple objects; or (2) 
specially, as a region in which objects are stored one to a car 
in a manner that will now be explained by reference to the 
additional structures that FIG. 15 illustrates. 
To deal specially with popular objects, the garbage col 

lector may keep track of the number of references there are 
to each object in the generation being collected. Now, the 
memory space 260 allocated to an object typically begins 
with a header 262 that contains various housekeeping infor 
mation, such as an identifier of the class to which the object 
belongs. One way to keep track of an object's popularity is 
for the header to include a reference-count field 264 right in 
the objects header. That field's default value is zero, which 
is its value at the beginning of the remembered-set process 
ing in a collection cycle in which the object belongs to the 
collection set. As the garbage collector processes the col 
lection-set cars remembered sets, it increments the objects 
reference-count field each time it finds a reference to that 
object, and it tests the resultant value to determine whether 
the count exceeds a predetermined popular-object threshold. 
If the count does exceed the threshold, the collector removes 
the object to a “popular side yard” if it has not done so 
already. 
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Specifically, the collector consults a table 266, which 

points to linked lists of normal-car-section-sized regions 
intended to contain popular objects. Preferably, the normal 
car-section size is considerably larger than the 30 to 60 bytes 
that has been shown by studies to be an average object size 
in typical programs. Under Such circumstances, it would be 
a significant waste of space to allocate a whole normal-sized 
car section to an individual object. For reasons that will 
become apparent below, collectors that follow the teachings 
of the present invention tend to place popular objects into 
their own, single-object car sections. So the normal-car 
section-sized regions to which table 266 points are to be 
treated as specially divided into car sections whose sizes are 
more appropriate to individual-object storage. 
To this end, table 266 includes a list of pointers to linked 

lists of structures associated with respective regions of that 
type. Each list is associated with a different object-size 
range. For example, consider the linked list pointed to by 
table 266's section, pointer 268. Pointer 268 is associated 
with a linked list of normal-car-sized regions organized into 
n-card car sections. Structure 267 is associated with one 
such region and includes fields 270 and 272 that point to the 
previous and next structure in a linked list of such structures 
associated with respective regions of n-card car sections. 
Car-section region 269, with which structure. 267 is asso 
ciated, is divided into n-card car sections such as section 
274, which contains object 260. 
More specifically, the garbage collector determines the 

size of the newly popular object by, for instance, consulting 
the class structure to which, one of its header entries points. 
It then determines the Smallest popular-car-section size that 
can contain the object. Having thus identified the appropri 
ate size, it follows table 266's pointer associated with that 
size to the list of structures associated with regions so 
divided. It follows the list to the first structure associated 
with a region that has constituent car sections left. 

Let us suppose that the first such structure is structure 267. 
In-that case, the collector finds the next free car section by 
following pointer 276 to a car data structure 278. This data 
structure is similar to FIG. 14's structure 250, but in the 
illustrated embodiment it is located in the garbage-collected 
heap, at the end of the car section with which it is associated. 
In a structure-278 field similar to structure 250's field 279, 
the collector places the next car number of the train to which 
the object is to be assigned, and it places the train's number 
in a field corresponding to structure 250's field 251. The 
collector also stores the object at the start of the popular 
object car section in which structure 278 is located. In short, 
the collector is adding a new car to the objects train, but the 
associated car section is a smaller-than-usual car section, 
sized to contain the newly popular object efficiently. 
The aspect of the illustrated embodiment’s data-structure 

organization that FIGS. 14 and 15 depict provides for 
special-size car sections without detracting from rapid iden 
tification of the normal-sized car to which a given object 
belongs. Conventionally, all car sections have been the same 
size, because doing so facilitates rapid car identification. 
Typically, for example, the most-significant bits of the 
difference between the generations base address and an 
objects address are used as an offset into a car-metadata 
table, which contains pointers to car structures associated 
with the (necessarily uniform-size) memory sections asso 
ciated with those most-significant bits. FIGS. 14 and 15's 
organization permits this general approach to be used while 
providing at the same time for special-sized car sections. 
The car-metadata table can be used as before to contain 
pointers to structures associated with memory sections 
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whose uniform size is dictated by the number of address bits 
used as an index into that table. 

In the illustrated embodiment, though, the structures 
pointed to by the metadata-table pointers contain fields 
exemplified by fields. 258 of FIG. 14's structure 250 and 
FIG. 15's Structure 267. These fields indicate whether the 
structure manages only a single car section, as structure 250 
does. If so, the structure thereby found is the car structure for 
that object. Otherwise, the collector infers from the objects 
address and the structure's section size field 284 the 
location of the car structure, such as structure 278, that 
manages the objects special-size car section, and it reads the 
objects car number from that structure. This inference is 
readily drawn if every such car structure is positioned at the 
same offset from one of its respective car section’s bound 
aries. In the illustrated example, for instance, every Such car 
section’s car structure is placed at the end of the car section, 
So its train and car-number fields are known to be located at 
predetermined offsets from the end of the car section. 
As discussed herein the present invention applies to 

virtually any incremental re-location or compaction collec 
tor that utilizes remembered sets within a generation. 
As discussed above, isolating enormous objects in one car 

and re-linking, rather than copying, requires that remem 
bered sets of cars older than the re-linked car's new position 
in the Train algorithm may need to be updated to record 
references from the re-linked enormous object. That is, after 
re-linking, cars that are now older may be referenced from 
the newly re-linked enormous object, and so the enormous 
object must be scanned for these references and the remem 
bered sets in these older cars must then be updated. As 
discussed above, in some cases this scanning will interrupt 
or pause the application beyond the time bounds specified. 
This problem is addressed in the present invention. 

It is helpful to recognize that the scanning of the enor 
mous object and insertions into the remembered sets of older 
cars is entirely local within a generation and to the particular 
collection techniques. As such, the work of Scanning and 
remembered set insertions may be broken into parcels that 
are scheduled as is any other collection activity in a collec 
tion interval. 
As shown in FIG. 16, an identified enormous object E is 

part of a collection set 320 that includes another car 1.1 with 
an object A322 that is referenced from the enormous object 
E. Referring to FIG. 17, an enormous object E in the 
collection set 324 is evacuated by re-linking and marking for 
scanning 326. If the collection set is empty 328, the initial 
portion of the enormous objects is scanned for references 
into older cars 330. If the collection set is not empty 332, the 
initial portion of the enormous object is scanned for refer 
ences into the collection set and for references into older cars 
334. In this instance the remainder of the enormous object 
is scanned for references into the collection set 336. 

Still referring to FIG. 17, a pointer (SCAN POINTER306 
in FIG. 14) is recorded indicating the start of the unscanned 
portion of the enormous object remaining after the initial 
portion was scanned. Next, the car containing the enormous 
object is placed on a per-train list of partially scanned 
objects 340 and control is returned. 

Referring back to FIG. 14, the SCAN:LINK 302, in the 
train's data structure 244 tracks the car at the head of the per 
train list, and the SCAN LINK304 in the car's data structure 
250 tracks the next partially-scanned car in the per train list, 
the per train list ending with a NULL that is easy to detect. 

During a Subsequent collection interval, if a partially 
scanned object remains in the train 342 being collected, the 
next object is selected from the per-train list 344. The next 
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unscanned portion is scanned for references into the collec 
tion set and into older cars 346. If the entire enormous object 
had been scanned 348, the car containing that object is 
removed from the list 350. If more objects remain on the 
per-train list, the next object in the list is processed 344, if 
not control is returned 354. 

If the Scanning of the next portion does not complete the 
scanning of the object 356, a new address of the start of the 
unscanned portion is recorded 358, and the remainder of the 
object is scanned for references into the collection set. In a 
preferred embodiment, the preset amount of an enormous 
object to be scanned in an interval is the same number of 
words, for example, as a normal sized car section. But, other 
arbitrary preset amounts may be used, e.g. a (small) multiple 
of the size of a given number of objects in older cars 
updated, or a given time delay. 
As described above, Scanning work may be interspersed 

with collection of other cars. However, in general, this 
requires explicit scanning of the remaining unscanned por 
tions of any not-fully-scanned enormous objects for refer 
ences into these other cars. One exception is for cars 
containing objects that have been directly allocated since the 
last collection interval. Allocated objects will have no initial 
references from the generation. In these cases, much more 
selective scanning is possible using these Summary data 
structures together with direct information from write bar 
1S. 

It has been found that newly promoted objects can be 
partially scanned, as discussed above, for enormous objects 
evacuated during the collection of an increment. 
The present invention in the preferred embodiments 

described above may be used to advantage in concurrent, 
incremental stop the world, or similar collector algorithms to 
better schedule Such scanning activities, allow shorter col 
lection intervals, and in general tradeoff collecting enormous 
objects and typical reclaiming of memory. 

Collecting enormous objects by incremental scanning can 
occur concurrently with collecting other generations and or 
with an application. For example, in the current preferred 
embodiment collecting a generation involves broadcasting 
that start and end of the collection activity. A generation 
might exploit this technique and use these notifications to 
initiate scanning and check for the need to Suspend the 
scanning once the other generation is finished collecting. 
This is permissible since the Scanning for references in 
remembered sets are internal to the generation. In the case 
of collection of other generations, references to objects in 
the generation from other generations are only modified with 
the cooperation of that generation. In the case of concurrent 
applications, write barriers suffice to indicate where changes 
have been made. 

What is claimed is: 
1. In a computer-implemented garbage collector operating 

in a computer having a heap memory and based on the Train 
algorithm in which a car represents a fixed-size region of the 
heap memory, a process for collecting enormous objects, 
each of which is substantially larger than the fixed-size 
memory region represented by a car, and for reference 
insertions into remembered sets of other cars, the process 
comprising the steps of including at least one enormous 
object as part of a collection set, evacuating the enormous 
object by re-linking, finding an unscanned portion of the 
enormous object, Scanning a preset amount of the unscanned 
portion for references to objects in other cars, wherein if a 
reference to an object in another car is found, updating the 
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remembered set of that other car, and scanning the enormous 
object for references into the collection set, if the collection 
set is not empty. 

2. The process of claim 1 further comprising the step of 
saving the location of the unscanned portion of the enor 
mous object. 

3. The process of claim 1 further comprising the step of 
returning to the collection process if no unscanned portion of 
the enormous object is found. 

4. The process of claim 1 further comprising the steps of 
if the collection set includes at least one other object, 
scanning the enormous object for references to the at least 
one other object, and, if any Such references are found, 
re-locating the at least one other object if it has not already 
been relocated, and updating the references in the re-linked 
enormous object to reflect the new location of the at least 
one other object. 

5. The process of claim 2 further comprising the steps of: 
finding references in the relocated at least one other object 
to other objects in older cars and updating the remembered 
sets of the older cars with respect to the relocated at least one 
other object. 

6. The process of claim 2 further comprising the steps of 
finding the at least one other object in another car in the 
collection set, Scanning the enormous object for references 
to the at least one other object, and, if any Such references 
are found, re-locating the at least one object if it has not 
already been relocated, and updating the references in the 
re-linked enormous object to reflect the new location of the 
at least one other object. 

7. The process of claim 1, wherein at least one other car 
with at least one other object is in the collection set, the 
process further comprising the steps of re-locating the at 
least one other object, Scanning the enormous object for 
references to the at least one other object, if such a reference 
is found, updating the reference to the relocated object, and 
scanning the relocated at least one other object for refer 
ences to other objects in other cars and updating the remem 
bered sets of the other cars with respect to the relocated at 
least one other object. 

8. The process of claim 1 further comprising the steps of: 
maintaining for each train a list of partially scanned enor 
mous objects wherein in each collection increment some 
unscanned portion of some of these partially scanned objects 
is scanned for references to objects in other cars, wherein if 
a reference to an object in another car is found, updating the 
remembered set of that other car, and Scanning the remaining 
unscanned portion of the enormous objects in each pertrain 
list for references into the collection set, if the collection set 
is not empty. 

9. An electronic computer controlled train/car collector 
operating in a computer having a heap memory, wherein a 
car represents a fixed-size region of the heap memory for 
collecting enormous objects, each of which is Substantially 
larger than the fixed-size memory region represented by a 
car, and inserting references into remembered sets of other 
cars, the collector comprising: a collection set including at 
least one enormous object, means for evacuating the enor 
mous object by re-linking, means for finding an unscanned 
portion of the enormous object, means for Scanning a preset 
amount of the unscanned portion for references to objects in 
other cars, wherein if a referenced to an object in an other 
car is found, means for updating the remembered set of that 
other car, and means for Scanning the enormous object for 
references into the collection set, if the collection set is not 
empty. 
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10. The collector of claim 9 further comprising means for 

saving the location of the unscanned portion of the enor 
mous object. 

11. The collector of claim 9 further comprising means for 
returning to the collection process, if no unscanned portion 
of the enormous object is found. 

12. The collector of claim 10, wherein if the collection set 
includes at least one other object, further comprising: means 
for Scanning the enormous object for references to the at 
least one other object, and, if any Such references are found, 
means for re-locating the at least one other object if it has not 
already been relocated, and; means for updating the refer 
ences in the re-linked enormous object to reflect the new 
location of the at least one other object. 

13. The collector of claim 10 further comprising: means 
for finding references in the relocated at least one other 
object to other objects in other cars, and means for updating 
the remembered sets of the other cars with respect to the 
relocated at least one other object. 

14. The collector of claim 10 further comprising: at least 
one other object in another car in the collection set, means 
for re-locating the at least one object, means for Scanning the 
enormous object for references to the at least one other 
object, and, if any such references are found, means for 
updating the references in the re-linked enormous object. 

15. The collector of claim 9, wherein at least one other car 
with at least one other object is in the collection set, the 
collector further comprising: means for re-location the at 
least one other object, means for Scanning the enormous 
objects for references to the at least one other object, and if 
such a reference is found, means for updating the reference 
to the relocated at least one other object means for scanning 
the relocated at least one other object for references to other 
objects in other cars and updating the remembered sets of the 
other cars with respect to the re-located at least one other 
object. 

16. The collector of claim 9 further comprising: means for 
maintaining for each train a list of partially scanned enor 
mous objects wherein in each collection increment some 
unscanned portion of Some of these partially scanned objects 
is scanned for references to objects in other cars, wherein if 
a reference to an object in another car is found, updating the 
remembered set of that other car, and means for scanning the 
remaining unscanned portion of the enormous objects in 
each per-train list for references into the collection set, if the 
collection set is not empty. 

17. A computer readable media comprising: the computer 
readable media containing instructions for executing in a 
processor of a computer having a heap memory for the 
practice of a garbage collection process which operates on 
heap memory regions that have a fixed, equal size, the 
garbage collection process including at least one enormous 
object, which is substantially larger than a memory region 
size, as part of a collection set, evacuating the enormous 
object by re-linking, finding an unscanned portion of the 
enormous object, Scanning a preset amount of the unscanned 
portion for references to objects in other cars, wherein if a 
reference to an object in another car is found, updating the 
remembered set of that other car, and Scanning the enormous 
object for references into the collection set, if the collection 
set is not empty. 

18. The computer readable media of claim 17 comprising 
further readable media containing instructions for execution 
in a processor for the practice of the process of claim 15 
further including the step of Saving the location of the 
unscanned portion of the enormous object. 
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19. The computer readable media of claim 17 comprising 
further readable media containing instructions for execution 
in a processor for the practice of the process of claim 16 
further including the step of returning to the collection 
process if no- unscanned portion of the enormous object is 
found. 

20. The computer readable media of claim 17 comprising 
further readable media containing instructions for execution 
in a processor for the practice of the process of claim 16 
further including the step of steps of: if the collection set 
includes at least one other object, Scanning the enormous 
object for references to the at least one other object, and, if 
any Such references are found, re-locating the at least one 
other object if it has not already been relocated, and, 
updating the references in the re-linked enormous object to 
reflect the new location of the at least one other object. 

21. The computer readable media of claim 18 comprising 
further readable media containing instructions for execution 
in a processor for the practice of the process of claim 15 
further including the step of finding references in the 
relocated at least one other object to other objects in other 
cars and updating the remembered sets of the other cars with 
respect to the relocated at least one other object. 

22. The computer readable media of claim 18 comprising 
further readable-media containing instructions for execution 
in a processor for the practice of the process of claim 16 
further including the step of finding the at least one other 
object in another car in-the collection set, Scanning the 
enormous object for references to the at least one other 
object, and, if any such references are found, re-locating the 
at least one object if it has not already been relocated, and, 
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updating the references in the re-linked enormous object to 
reflect the new location of the at least one other object. 

23. The computer readable media of claim 17 comprising 
further readable media containing instructions for execution 
in a processor for the practice of the process of claim 15, 
wherein at least one other car with at least one other object 
is in the collection set, the process further including the steps 
of re-locating the at least one other object, Scanning the 
enormous object for references to the at least one other 
object, if such a reference is found, updating the reference to 
the relocated object, and Scanning the relocated at least one 
other object for references to other objects in other cars and 
updating the remembered sets of the other cars with respect 
to the relocated at least one other object. 

24. The computer readable media of claim 17 comprising 
further readable media containing instructions for execution 
in a processor for the practice of the process of claim 15, 
wherein at least one other car with at least one other object 
is in the collection set, the process further including the steps 
of maintaining for each train a list of partially scanned 
enormous objects wherein in each collection increment 
Some unscanned portion of some of these partially scanned 
objects is scanned for references to objects in other cars, 
wherein if a reference to an object in another car is found, 
updating the remembered set of that other car, and scanning 
the remaining unscanned portion of the enormous objects in 
each pertrain list for references into the collection set, if the 
collection set is not empty. 


