wo 2016/202623 A1 [N I N0F 0 000 R O R O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/202623 Al

22 December 2016 (22.12.2016) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO5B 13/04 (2006.01) HO2M 7/487 (2007.01) kind of national protection available). AE, AG, AL, AM,
HO2M 7/483 (2007.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
. . e) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: PCT/EP2016/062807 DO, DZ. EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT.
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
6 June 2016 (06.06.2016) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
-) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
15172241.0 16 June 2015 (16.06.2015) EP kind Of regional pl‘OleCliOl’l available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(71) Applicant: ABB SCHWEIZ AG [CH/CH]; Brown Boveri TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Strasse 6, CH-5400 Baden (CH). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(72) Inventors: GEYER, Tobias; Seestrasse 113, 8002 Ziirich E\If 1]\3/[Ec El\ikFIf\/[FTR’I\IGLB’I\I%R’PIiRiDI;Uf{(I)E’Ig’ IsTE LsTI Is“g
(CH). ROHR, Eduardo; Ziegelhaustrasse 12, 5400 Baden SM, TR, 0 A’PI B’F B’J Cl; C,G C’I Cl’v[é A &}N, >
(CH). VALLONE, Joel; Ch. de Cocagne 23, 1030 Bus- - TR), (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
signy (CI). GW, KM, ML, MR, NE, SN, TD, TG).
(74) Agent: ABB PATENT ATTORNEYS; ABB Schweiz T UPlished:

AG, Intellectual Property (CH-IP), Brown Boveri Strasse
6, 5400 Baden (CH).

with international search report (Art. 21(3))

(54) Title: FPGA-BASED MODEL PREDICTIVE CONTROL

Fig. 2
22
J
Vs
(k). {k) O), g o k) s(k)
skt
26
:I |/\,30
Jis,abs(k)
;s:ahc ‘k)}_—1 valid}' 32
jerr 0L l{s"e‘”’vés}(k}] l
s.abc k. -
e
Mo Vet 10| | SRy
etk
[Vpthp!ss(k)) [snﬁw.és](k)ﬂmin
y - 28
5"k [
s (k) o
- 36

[N, ds,V {RHN-1)L [g abe Vi svph.ahs Jik+1)

T
~—38

. BFF

O

(57) Abstract: An FPGA (22) for controlling an electrical converter (12)
comprises an enumeration block (32) adapted for generating possible next
switch positions (s*"(k)) for semiconductor switches of the electrical convert-
er (12) based on an actual applied switch position (s(k-1)); a plurality of ex-
plorer blocks (28), each explorer block (28) adapted for calculating a cost
value (J) for a possible next switch position of the semiconductor switches
by: receiving a possible next switch position (5" (k)); calculating system vari-
ables at future time instants from system variables at a current time instant of
the electrical converter (12) and the load (24) based on the possible next
switch position, wherein the system variables at future time instants are cal-
culated from the system variables at the current time instant with differential
equations modelling the electrical converter (12) and the load (24); determin-
ing a cost value (J) from the system variables at future time instants by evalu-
ating a cost function with the system variables at future time instants; an ar-
biter block (34) for selecting the next switch position (s(k)) to be applied to
the electrical converter (12) from the possible next switch positions by: re-
ceiving possible next switch positions (s"*(k)) from the enumeration block
(32); selecting a non-operating explorer block (28) and sending a received
possible next switch position to the non-operating explorer block; receiving a
cost value (J) for the respective possible next switch position from a tinished
explorer block; when all possible next switch positions received from the
enumeration block (32) have been processed, selecting the next switch posi-
tion (s(k)) as the possible next switch position (s"*(k)) with the lowest cost
value (J). Each explorer block (28) is further adapted for determining a pre-
diction horizon (N) for the possible next switch position (snew(k)) at which

at least one of the calculated system variables at future time instants has a deviation from a reference for the system variable, which
is bigger than a predefined deviation for the system variable. A prediction horizon (N) for a system variable at future time instants is
determined via a linear extrapolation, in which the system variable at the future time instants is calculated from the system variable at
the current time instant, and the prediction horizon (N) is determined based on an intersection point of the linearly extrapolated sys -
tem variable between the current time instant and the future time instant with a maximal possible deviation from a reference of the
system variable. Moreover, the intersection point is determined iteratively by a binary search.

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807

FPGA-based model predictive control

FIELD OF THE INVENTION
The invention relates to the field of model predictive control or electrical converters. In particular,
the invention relates to an FPGA for controlling an electrical converter and to an electrical converter

comprising a controller with such an FPGA.

BACKGROUND OF THE INVENTION

Electrical converters for converting an input voltage into an output voltage of different frequency
and/or different voltage magnitude comprise controllable semiconductors which are switched by a
control method to achieve the desired output voltage.

One such control method is model predictive control, in which the switch position of the switches
is determined by solving an optimization problem that is based on a physical model of the converter
and optionally a connected load. The model is usually stated in discrete-time differential equations.
However, such type of control method is usually computational demanding and the control
hardware has to be fast to solve the specific model predictive control problem within the short time
available before the next switch position is needed.

For example, instead of performing the control method in software, WO 2009/080 407 A1
proposes a method for operating an electrical machine, in which a model predictive control method
is performed by an FPGA (field programmable gate array) interconnected with a DSP (digital signal
processor) to reduce the computation time of the method.

WO 2013/110 532 A1 relates to a model predictive control method for an electrical converter,
which is parallelized and executed in a multi-core processor to avoid an FPGA-based solution.

WO 2014/006200 A1 discloses a FPGA for controlling an electrical converter.

In "Model Predictive Direct Torque Control of a variable speed drive with a five-level inverter",
Tobias Geyer et al, IECON 2009 - 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL
ELECTRONICS (IECON 2009) - 3-5 NOV. 2009 - PORTO, PORTUGAL, IEEE, PISCATAWAY, NJ,
USA, 3 November 2009 (2009-11-03), pages 1203-1208, X P031 629326, ISBN: 978-1-4244-4648-
3 the principles of the Model Predictive Direct Torque Control (MPDTC), which reduces the
converter's switching losses and improves the torque's Total Harmonic Distortion (THD) with
respect to standard Direct Torque Control (DTC) are disclosed, while maintaining DTC's favorable
dynamic and robustness properties. The MPDTC is adapted and applied to a five-level convert-er

driving a high frequency induction machine.

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807

DESCRIPTION OF THE INVENTION

It is an objective of the invention to provide a controller that is adapted to perform model
predictive control for an electric converter in a fast and efficient way.

This objective is achieved by the subject-matter of the independent claims. Further exemplary
embodiments are evident from the dependent claims and the following description.

An aspect of the invention relates to an FPGA for controlling an electrical converter. The FPGA
may be a component of a controller of the electrical converter, which receives measured or
estimated system variables such as input currents and/or output currents and/or voltages and/or
fluxes and/or speeds and/or frequencies, and which determines switch positions for semiconductor
switches of the electrical converter with the aid of a model predictive control method.

According to an embodiment of the invention, the FPGA comprises an enumeration block, a
plurality of explorer blocks and an arbiter block. Usually, such blocks and their configuration may
be described with a hardware description language, which then may be applied to the logic blocks
of the FPGA to form these blocks in hardware.

The enumeration block is adapted for generating possible next switch positions for
semiconductor switches of the electrical converter based on an actual applied switch position. A
switch position of the electrical converter may comprise all of the individual switch positions (such
as on/off) of the semiconductor switches. The actual applied switch position may be the actual
switching state of the semiconductor switches and, for example, may be provided by the FPGA
during the previous control cycle at the previous time step.

The explorer blocks are used for calculating a cost value for each of the possible next switch
positions based on model predictive control. This calculation may be performed in parallel in
different explorer blocks for different possible next switch positions.

Each explorer block is adapted for calculating a cost value for a possible next switch position of
the semiconductor switches by: receiving a possible next switch position from the arbiter block;
calculating system variables at future time instants from system variables at the current time instant
of the electrical converter based on the possible next switch position, wherein the system variables
at future time instants are calculated from the system variables at the current time instant with
differential equations modelling the electrical converter and the load; and determining a cost value
from the system variables at future time instants by evaluating a cost function with the system
variables at future time instants.

The system variables may be interpreted as the state of the electrical converter and the load,
and, for example, may comprise input currents and/or voltages, output currents and/or voltages,
physical properties of a load connected to the electrical converter, such as currents, voltages,
fluxes, torque, speed, frequency, etc. From the assumption that the possible next switch position

to be evaluated by the explorer block will be applied during the next sampling instant, the explorer

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807
-3-

block calculates the future behavior of the system variables (i.e. the system variables at future time
instants) by the use of discrete-time differential equations. These equations model the electrical
converter and optionally a load supplied by the electrical converter. The evolution of the system
variables at future time instants may be determined for a maximal prediction horizon of a predefined
length.

In the end, a cost value is determined from the system variables at future time instants with a
cost function, which, for example, encodes switching losses of the electrical converter and/or a
switching frequency and/or penalizes a deviation of a capacitor voltage from a desired voltage
and/or penalizes a deviation of a load current from a reference current, etc.

The arbiter block is used for distributing the possible next switch position determined by the
enumeration block to the explorer blocks and for finding the possible next switch position with the
best (usually lowest) cost value. This possible next switch position is then applied to the
semiconductor switches of the electrical converter.

The arbiter block is adapted for selecting the next switch position to be applied to the electrical
converter from the possible next switch position by: receiving possible next switch position from the
enumeration block; selecting a non-operating explorer block and sending a received possible next
switch position to the non-operating explorer block; receiving a cost value for the respective
possible next switch position from a finished explorer block (which then becomes a non-operating
explorer block); when all possible next switch positions received from the enumeration block have
been processed, selecting the next switch position as the possible next switch position with the
best (for example lowest) cost value.

During each cycle of the controller (which is usually performed within a shorter time interval
than the sampling interval), the enumeration block determines all possible next switch positions,
which are then sent to the arbiter block. Whenever the arbiter block receives a new possible next
switch position (that may need to be valid), it looks for a non-operating explorer block, sends this
possible next switch position to this explorer block, which then calculates the respective cost value.
Meanwhile, the arbiter block may receive further possible next switch positions and may distribute
them to further non-operating explorer blocks. Thus, the enumeration block, the arbiter block and
the explorer blocks may operate in parallel.

When an enumeration block is ready, it sends the cost value to the arbiter block, which then
may save it together with the corresponding possible next switch position as a potential next switch
position, when the cost value is better than a previously saved cost value.

According to the invention, each explorer block is further adapted for determining a time interval
(such as a number of time steps or sampling intervals) for the possible next switch position at which
at least one of the calculated system variables at future time instants has a deviation from a
reference for the system variable, which is bigger than a predefined deviation for the system

variable. This time interval may be interpreted as a prediction horizon of a possible next switch

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807
-4 -

position. To make sure that the system variables at future time instants stay within bounds around
reference system values, the explorer block may calculate the deviation of the system variable at
future time instants (which may be predicted up to a maximal prediction horizon) from the reference.
When the future system variable leaves one of its bounds, its prediction horizon is set to the future
time instant after which it leaves the bounds.

This may be imagined as a trajectory of the system variable at the future time instants leaving a
band enclosing the reference, with this band having a width that is based on the predefined
deviation.

The prediction horizon of the possible next switch position may be the minimal prediction horizon
of all system variables at future time instants.

According to an embodiment of the invention, the cost function depends on the inverse of the
prediction horizon of the possible next switch position. The cost function may be weighted with the
number of switching transitions. In such a way, the cost value for a possible next switch position
with a long horizon is usually better than the cost value of one with a short horizon. Thus, the FPGA
will select switch positions for which it is likely that there are no switching transitions for the next
time steps/sampling intervals.

According to the invention, a prediction horizon for a future system variable is determined via a
linear extrapolation, in which the future system variable at a future time instant (for example the
maximal prediction horizon) is calculated from the system variable at the current time instant. The
prediction horizon is determined based on an intersection point of the linearly extrapolated system
variable between the current time instant and the future time instant with a maximal possible
deviation from a reference of the system variable.

According to the invention, the intersection point is determined iteratively by a binary search
method. In this search, the intersection point may be found by dividing a search interval into two
new search intervals and by proceeding with the interval containing the intersection point. This
interval may be determined by comparing the value of the future system variable, which may be
determined by interpolation with a boundary value. With a binary search, the computational costs
of a division may be avoided.

According to an embodiment of the invention, the cost function is only evaluated, when the
prediction horizon is longer than one time step (or sampling interval). When the prediction horizon
is shorter than one sampling interval, the cost value is determined based on a predicted violation
of the bounds, which is the difference between the predicted system variable and the violated
bound. When the corresponding possible next switch position were applied to the converter, this
would result in the physical system variables deviating from the references by more than the
predefined bounds. However, sometimes it is possible that no possible next switch position is found
with a prediction horizon longer than one time step. In this case, to avoid a deadlock, the arbiter

block chooses the possible next switch position with the lowest violations of the bounds. This may

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807
-5-

be achieved by calculating a cost value based on the degree of the violation of a system variable
at the next time step of its bound for possible next switch positions. This cost value should be rather
high compared to cost values determined from the cost function.

According to an embodiment of the invention, the cost function is only evaluated, when the
prediction horizon is longer than a given number of time steps.

According to an embodiment of the invention, the cost function is based on a number of
switching transitions between the actual applied switch position and the possible next switch
position. In such a way, the FPGA selects switch positions with a low number of switching
transitions, which also results in lower switching losses.

According to an embodiment of the invention, the cost function is based on the switching losses
that are predicted to occur when switching from the actual applied switch position to the possible
next switch position. The switching losses often depend on the switching transition, the
commutated phase current and the DC link voltage. Assuming that the DC link voltage is effectively
constant, the switching losses can be predicted based on the commutated phase current and the
switching transition. This information can be stored in a look-up table. In such a way, the FPGA
selects switch positions that result in lower switching losses.According to an embodiment of the
invention, the enumeration block comprises a look-up table providing a possible next switch
position based on the actual applied switch position. It may be possible that the set of possible next
switch positions is dependent on the actual applied switch position. The look-up table may provide
these sets indexed by an actual applied switch position.

Furthermore, in case the electrical converter has more than one phase, there may be one look-
up table that may be used for each phase of the electrical converter.

According to an embodiment of the invention, the enumeration block is adapted for determining,
whether a possible next switch position is valid with respect to actual applied switch position and/or
constraints on the system variables at the current time instant. For example, there may be
constraints on the possible next switch positions based on a sign of an actual current. The
enumeration block may determine, whether a possible next switch position is valid and may provide
this information to the arbiter block. The arbiter block then only sends valid possible next switch
positions to an explorer block.

According to an embodiment of the invention, the arbiter block is adapted for: sending the actual
applied switch position to an explorer block for determining, whether the actual applied switch
position has a prediction horizon longer than one time step; and selecting the actual applied switch
position as the next switch position, when the prediction horizon is longer than the next time instant.
The arbiter then sends the possible next switch position to the explorer block, only when the
prediction horizon of the actual applied switch position is shorter than the next time step.

Before the possible next switch positions from the enumeration block are evaluated, the arbiter

may check, whether it is possible to keep the actual applied switch position. This may be the case,

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807
-6 -

when the prediction horizon of the actual applied switch position is longer than one time
step/sampling interval. In this situation it is not necessary to switch at all, resulting in no switching
losses, which is desirable.

According to an embodiment of the invention, the FPGA further comprises a pre-computation
block adapted for calculating commonly used values and predictions from the system variables at
the current time instant, wherein the commonly used values and predictions are used by the
explorer blocks during the calculation of the system variables at future time instants. For example,
these variables may comprise currents and/or voltages in the abc coordinate system, predicted
reference currents and/or voltages, predicted rotor flux variables, and/or error currents with respect
to a reference current.

According to an embodiment of the invention, the number of explorer blocks is smaller than a
maximal number of possible next switch positions. In this case, the arbiter block may have to wait
for explorer blocks to finish before a further switch position can be evaluated by the enumeration
block. The number of explorer blocks may be selected based on the time an explorer block requires
to evaluate a possible next switch position, and the maximal number of possible next switch
positions to be evaluated during one cycle of the controller. In such a way, the capacity of the
available logic blocks of the FPGA may be used in an optimal way.

According to an embodiment of the invention, by predicting the number of time steps a next
switch position can be applied before one of the system variables violates a bound, by predicting
the cost value associated with this next switch position and choosing the next switch position with
the best (i.e. usually lowest) cost value, a sequence of future switch positions is established from
the current time step until the time step at which the first system variable violates a bound. Out of
this sequence of future switch positions, only the first element, i.e. the switch position at the current
time step, is applied to the converter, in order to apply closed-loop feedback. At the next time-step,
new measurements and/or estimates are obtained and the optimization problem described above
is solved again, albeit it over a shifted horizon. This policy is referred to as receding horizon control
and is a distinguishing feature of model predictive control. In summary, model predictive control
combines (open-loop) constrained optimal control with the receding horizon policy that provides
feedback and closes the control loop.

A further aspect of the invention relates to an electrical converter system, which comprises an
electrical converter comprising a plurality of semiconductor switches for converting a DC or AC
input voltage into a DC or AC output voltage of a different frequency, and a controller with an FPGA
applying the next switch position determined by the FPGA to the semiconductor switches based
on measurements and/or estimates of voltages and/or currents in the electrical converter provided
to the FPGA. This FPGA may be designed as described above and in the following.

For example, the semiconductor switches may be IGBTs or thyristors, which are switched on

and off by gate signals from the controller based on the next switch position.

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807
-7-

It has to be understood that the converter may be a DC-DC, AC-DC, DC-AC or AC-AC converter.
It may comprise one or more phases and/or may have two or more output levels. It may be a direct
converter or an indirect converter with a DC link.

For example, the electrical converter may be an active neutral point clamped voltage source
inverter with five output levels.

The load may be an electrical machine, such as a three-phase induction machine or a three-
phase synchronous machine. Alternatively, the load may be a grid or a point of common coupling
or a transformer connected to such a point of common coupling.

These and other aspects of the invention will be apparent from and elucidated with reference to

the embodiments described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject-matter of the invention will be explained in more detail in the following text with
reference to exemplary embodiments which are illustrated in the attached drawings.

Fig. 1 schematically shows a converter system according to an embodiment of the invention.

Fig. 2 schematically shows an FPGA according to an embodiment of the invention.

Fig. 3 schematically shows a component of the FPGA of Fig. 2.

Fig. 4 schematically shows a further component of the FPGA of Fig. 2.

Fig. 5 schematically shows a further component of the FPGA of Fig. 2.

Fig. 6 schematically shows a further component of the FPGA of Fig. 2.

Fig. 7 shows a diagram illustrating a binary search performed in the FPGA of Fig. 2.

The reference symbols used in the drawings, and their meanings, are listed in summary form in
the list of reference symbols. In principle, identical parts are provided with the same reference

symbols in the figures.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Fig. 1 shows an electrical converter system 10 comprising an electrical converter 12 with three
phase legs 14. Each of the phase legs 14 comprises a five-level active neutral point clamped
inverter 16, which is adapted to convert the DC voltage of a DC link 18 into a phase voltage of a
three-phase system with the current isasc. The inverter comprises eight semiconductor switches
(here transistors with anti-parallel diodes) S1 to S8, which may be either opened “0” or closed “1”.
The semiconductor switches S1 to S8 may encompass multiple series-connected semiconductor
switches.

The converter system 10 furthermore comprises a controller 20 with an FPGA 22, which will be

described below, and a load 24, such as an electrical machine.

Physical model of the converter

5

10

15

20

25

WO 2016/202623 PCT/EP2016/062807

The model of the converter 12 may be formulated in the orthogonal o frame or in the three-

phase abc frame with the per unit system. A vector in the three-phase abc system may be

transformed to orthogonal stationary coordinates o by applying &« = Kéase. Here, K is set in

such a way that the a-axis and the a-axis are aligned.

K:g 2 2 ,Kflz_l ﬁ
V33 22

2 2 143

L 2 2

. (1)

The state of the converter 12 corresponds to its actual applied switch position

S 58558, 6{0,1,...,7}, its neutral point potential U, and its three phase capacitors voltages

(Upha,l)phb,l)phc), which may be interpreted as inverter state variables. We define the inverter state

va

vector as X, =[U, U ke

n pha Uphb v

The continuous-time model is discretized with forward Euler discretization and the sampling
interval 7_. The discrete-time representation is denoted with the variable £ € N. The discrete-time
equation of the phase capacitor voltage dynamic is given by
oK)+ T8, (0, . (K),s5.(K)),x €{a,b,c} (2)

Similarly, the discrete-time equation of the neutral point voltage dynamic is

v, (k+D)=0,()+T0, (i, 15e(K),8(K))

L (k+1D)=0

3)

In the discrete-time equations, 5% and 5% denote scalar functions with the phase currents and
switch positions as arguments at time step k. The three-phase phase current is defined as isapc =
liw i iSC]T and the switch position, i.e. the switch positions in each of the three abc phase legs,

is defined as s, =[s, s, s.]' €{0L...7}. An implementation of the controller 20 may use a

sampling interval of 25us or 50us, for example.
Physical model of the electrical machine
The electrical machine 24 may be a squirrel-cage induction machine. The state-space model of

a squirrel-cage induction machine in the off reference frame is described in the following. For a

model predictive direct current control method, it is convenient to choose the machine state variable

WO 2016/202623 PCT/EP2016/062807
-9-
x, =i, isﬁ Ve Wip]T with the stator current is .5 and the rotor flux linkage V¥, 5. The model

inputs are the rotor's angular velocity », and the inverter switch position sanc.

The differential equation for the electrical machine 24 is stated in matrix notation. It is discretized

using the forward Euler method:

5 Xk +1) = Ax, (k) +Bv(§,(k)))
where
L 0 X, +T.po’ X o,
1 Dt, D
0 1 _ Xy o, "+ T pw;
l D ,
A=1,+T,
X, 1
— 0 —-— -,
3 t
0 X, o, 1
(- tr tr —
X}”
B = T D
02x3

The term v(sanc(k)) maps the inverter switch position into the three-phase abc voltage applied to

10 the stator windings of the machine.The constants in matrix A are summarized in the following table:

Parameter Symbol

Stator resistance Rs

Rotor resistance R

Stator leakage reactance Xis

Rotor leakage reactance Xir

Magnetizing reactance X

Stator self reactance Xs = Xis + Xm
Rotor self reactance Xe = Xir + Xm
Determinant D=XX, _Xi
Transient stator time constant XD

Rotor time constant X
t=—"
R

Model correction factor _0.016569

P = 8.5398 %10

10

15

20

25

30

WO 2016/202623 PCT/EP2016/062807
-10 -

The Tspoor2 term is a quadratic correction term to compensate for the error introduced by the

forward Euler discretization method. It has been numerically derived by comparing forward Euler
with exact Euler discretization. It is a machine-dependent parameter. Forward Euler has been
chosen as a discretization method because it provides sufficient accuracy and avoids the

computationally expensive exponentiation of the exact Euler approach.
Model predictive current control method

In the model predictive direct current control method, the selection of the switch position may be
stated as a discrete optimization problem. The objective is to minimize the switching frequency
(and/or the switching power losses) of the converter 12 while constraining its phase capacitor
voltages, the neutral point potential and the stator current error with respect to a reference. We will
now define in more detail the optimization problem to be solved.

The state vector of the converter system 10 is defined as the concatenation of the induction

. T T .
machine states and the converter states x=[x,, X, | ,where x, =[i_ g Vi Wi I and

x,. =V, Upha Upit UphC]T. The components of the state vector may be interpreted as system

variables.

In general, system variables may be either measured or determined for the current time instant
(system variables at the current time instant) and/or they may be predicted or calculated for future
time instants (system variables at future time instants).

The system variables to be kept within bounds are captured by the output vector

y=lin iy L. U, Uy, U,y UphC]T.The input vector is defined as the switch position sagc. It

is assumed that the rotor and stator speed », and @, respectively vary slowly, allowing one to

consider them to beconstant within the prediction horizon.

In the remainder, to simplify the notation, the switch position sane, which is a vector composed
of “0” and “1”, will often be reduced to s.

In this control method, the current is directly controlled by explicitly bounding it in the optimization
problem statement. By setting the width of the bound on the stator current error, we can directly
control the Total Harmonic Distortion (THD) of isare. The following equations detail the discrete
optimization problem to be solved.

J =min—— S (sU-1),5(0),1, (1) + 2,0, (V)

I
X0 N, (52)

subjtox,,(I+1)=Ax, (1) +Bv(§,.), (5b)

10

15

20

25

30

WO 2016/202623 PCT/EP2016/062807

-11 -
Xz’nv(l + 1) = Xinv(l) +T;5u (is,abc(l)9sabc(l))9 (5C)
y(7) = Cx(1) (5d)
Y (D-yDEy,,, (5e)
sOSOOL...7) -
VZZ/C,...,/C-I-N—I (59)
Where,
C= {Kl 03x6 e R7*8
04,4 I,

To evaluate the short-term switching frequency or switching power losses, the cost function
sums up the number of switching transitions or switching energy losses ds() between two
successive time steps over all the switching sequence S(k) = [s'(k) s’(k + 1)...s"(k + N—1)]". This
sum is then divided by the prediction horizon length N of S(k).

The last term in the cost function is used to reduce the likelihood of deadlocks. Indeed, when

the neutral point potential deviates too much from zero, the risk of deadlocks may increase quickly.
A deadlock occurs when no switching sequence S(k) exists that meets (5e). The weight /In is used

to fine tune the deadlock avoidance.

The two first constraints (5b), (5¢) define the state evolution of the system 10 (the converter and
the electrical machine) as explained before. The sampled system state x(k) and the actual switch
position s(k — 1) of the converter 12 are used as a starting point for the predictions.

The third constraint (5d) builds the output vector from a subset of the system vector and the
appropriate transformation.

The fourth constraint (5e) bounds the output vector y(/) around its reference y'(/). The reference
y (/) is time varying for the phase capacitor voltages and the stator current. Hence, they are also
an input to the optimization problem. y.. determines the width of the error bounds around the
references.

In the fifth constraint (5f), S(/) is the set of allowed switch positions at time instant /.
Concepts implemented in the FPGA

In (5a), the optimization problem may become computationally intractable as N increases. This
is because at each time step a large number of new switch positions is available that needs to be
evaluated by the algorithm. Several heuristics may allow one to limit the computational burden

without significantly impacting the performance.

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807
-12 -

The following concepts have been implemented in the FPGA 22 to increase its performance and
to reduce the computational burden:

1) Lazy evaluation:

A switching transition should be triggered only when at least one of the output variables exceeds

its bound or is predicted to exceed its bound within the sampling interval. That is, at time-step k, if
the output vector is predicted to remain within its bounds ‘y*(k+1)—y(k+1)‘£ymwhen applying

the previously applied switch position again, then maintain the previous switch position and set
s(k) =s(k-1). Thus it is possible to minimize the switching frequency (and thus the switching losses)
by delaying switching as much as possible.

2) Switching horizon:
A switching sequence may be interpreted as a succession of switching decisions at discrete time-
steps. The switching horizon is a string composed of “E” (extension) steps and “S” (switching)
steps. The extension step maintains the previous switch position until a bound is violated. The
trajectory of the system output vector y is predicted by (2), (3) and (4). When a bound is hit, the
controller 20 may proceed to a switching step. That is, the controller 20 needs to enumerate all the
admissible switching transitions from the no longer feasible switch position to a new candidate
switch position. An example, which will be explained in more detail below, is the “SE” string. Here,
the controller 20 first enumerates all valid switch positions s(k) as new switching sequences and
then extends each of them until they hit their respective boundaries. Commonly used switching
horizons include SE, SSE, SESE, SSESE and so on. SSESE for example, implies that switching
is considered at time steps k and k+1, followed by an extension step, another switching transition
and a second extension step.

3) Extrapolation

One approach is to predict the system evolution by incrementally evaluating the system model
at each time step. The advantage of doing so is the high accuracy of the procedure. However, it is
computationally expensive to evaluate it when the prediction horizons are long. An alternative is,
for a given switch position, to evaluate the system model at several points in time, such as k, k + |,
k + 2], where | is a positive integer, and to then approximate the underlying function by quadratic
or linear interpolation. This method requires far less computations and is sufficiently accurate for

the prediction horizons typically observed.
FPGA implementation
Fig. 2 shows an overview of the blocks of the FPGA 22. As stated above, the “SE” prediction

horizon is implemented in the FPGA 22. Thus, the FPGA 22 must first enumerate all possible next

switch positions at time step k and then extend each of them.

10

15

20

25

WO 2016/202623 PCT/EP2016/062807
-13 -

To address the goal of scalability and simplicity, the architecture of the FPGA 22 is based on
dynamic scheduling. The FPGA 22 comprises a central scheduler block 26 that samples the system
state x(k) into registers and also enumerates and distributes possible next switch positions s™" to
a number of n explorer blocks 28.

The scheduler block comprises a pre-computation block 30, which pre-computes values that,
for example, are needed in the explorer blocks 28, an enumeration block 32, which generates the
possible next switch positions s"™¥ and an arbiter block 34, which distributes the possible next
switch positions ™" to the explorer blocks 28.

The system state x(k) together with a switching sequence may be defined as a node in the
solution space to be explored. The explorer blocks 28 evaluate these nodes, by assessing their
prediction horizon N through an extension step performed by an extension block 36 and then
evaluate their cost value J in a cost evaluation block 38.

Once the exploration has completed its computations for a node, it is returned to the scheduler
26, in particular to the arbiter block 34. Only the switch position of the node with the lowest cost
value J'is maintained by the arbiter block 34. At the end of the enumeration and evaluation process,
the scheduler returns the best switch position s(k) to the external system.

The following table summarizes the hardware characteristics of each block.

Block Name Mult-16 Add-16 Max. cycles FPGA Slices
Scheduler 26 6 7 47+64-34/n 1500
Pre-computation 30 4 6 13

Enumeration 32 0 0 64

Arbiter 34 2 1 64-34/n

Explorer 28 4 14 34 3300
Extension 36 4 shared 7 28

Cost evaluation 38 4 shared 7 6

The total hardware cost of the FPGA 22 depends on the number n of explorer blocks 28
instantiated. The worst case execution time in FPGA cycles is linearly dependent on the number
of explorer blocks 28: 13+34+64 - 34/n cycles.

Indeed, the FPGA 22 will first pre-compute the model, operate the lazy evaluation and then
evaluate all the possible nodes through the n explorer blocks 28. The explorer blocks 28 are
expensive in terms of area usage. This is mainly due to the complexity involved in the extension

step as explained below.

Scheduler block: model pre-computation

Fig. 3 shows the pre-computation block 30. The FPGA 22 can spare execution time by pre-

computing some elements in common to all explorer blocks 28 with the pre-computation block 30.

10

15

20

25

WO 2016/202623 PCT/EP2016/062807
-14 -

The discrete state-space model of formulas (5b) and (5¢) is divided into two parts. The part in
common for all explorer blocks 28 is computed in the pre-computation block 30. The part of the
model specific to each node is evaluated by the explorer blocks 28 themselves.

The input to the pre-computation block 30 is the system state x(k), the stator and rotor rotational
speeds ws(k), w{k) and the current reference Z':,aﬁ (k) at time instant k. The following equations
describe how the output variables of the pre-computation block 30 are computed.

s errOL

First, the open loop part i . (k+1) of the current error is computed. This equation is detailed

in several steps: As a first step, the stator current and its reference at instant k + / are computed in

the af} reference frame:

yww+n=Anwmm+Aﬂmwu»+gvanam>

(6)
g (k1) = Agi (k))
Where,
A=Y Your.a a-Lir)1
= w ’ i G
0 21 O stts 1 ts 2
1
t @r X
A, =" I T 4+ p(IT.w,)* T
2 W l D s p(s r) 2

t

»

The stator current reference Z':,aﬁ is rotated forward with the stator frequency ws. l2is the identity

matrix of size two.

The stator current error is then stated in abc coordinates:

ik + D) =K (1 o (k+1) =1, o (k+1))

s abce

=170 (k+1) + Byv(s(k)))
%r—’ —_—
Commonpart Individuapart

X,
B, =K I(EZTS)K

With the chosen system model, the 17, (k+/) part of the current error is common to the

explorer blocks 28. The second part of the equation relates to the possible next switch position s(k)
specific to the node. Hence this part is computed in the explorer blocks 28. The first part of the
equation is computed in block 30. It may be called open-loop current error at time step k+/. It is

computed in aff and then transformed into abc coordinates:

?ZIZL (k + Z) K~ (AO 1s of Al 1s of (k) A2 l//r of (k)) (9)

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807
-15-

The second equation to be pre-computed is the stator current error at time step k:
ij:’;bc(k) = K_l (i:,aﬂ (k) _is,aﬁ (k)) (1 0)

The third and last variable to be pre-computed is the stator current at time step k in abc

coordinates:
is,abc(k) = K_l is,aﬁ (k) (1 1)

From the implementation point of view, a minimal number of adders and multipliers was used,

while the number of cycles to compute the aforementioned equations was minimized.
Scheduler block: enumeration

The second way to leverage centralization is achieved by the scheduler 26, which manages
enumeration and distribution of possible next switch positions §™". This is done with the help of the
two blocks 32, 34 operating in parallel.

The enumeration block 32 enumerates and filters the allowed switch positions s™".

The enumeration block 32 takes as input the actual applied switch position s(k—1) of the

converter 12. With this information, it is possible to enumerate all the admissible next switch

positions Sx (k) for each phase leg 14 separately. Thus, each phase leg 14 has a set of possible

next switch positions Sx(k) - {0,1,7} X € {Cl,b,C}. These sets are stored in look-up tables 40 and

selected depending on sx(k—1). By construction of the converter 12, none of the sets has more than
four elements. The elements in the sets of each phases are then combined in combination block
42 to form any possible switch positions ™" (k).

Due to the clamping constraints of the converter 12, several switching transitions are disallowed.
The clamping constraints depend on the direction of the current isaxc(k) on each phase leg 24 as
well as the switching transition s(k—1) > s™"(k). A constraint detector block 44, which may be
implemented as a combinatorial circuit, detects any invalid transition given the previous
information. The constraint detector block 44 outputs a corresponding binary value “valid”.

The enumeration block 32 is managed by a finite state machine, which increments the counter
controlling an enumeration multiplexer until a valid possible next switch position s™" is detected by
the constraint detector block 44. The finite state machine starts searching when the “next” signal is
asserted.

Fig. 5 shows the relationship between the enumeration block 32 and the arbiter block 34. The
arbiter block 34 arbitrates the exploration of the enumerated switch positions s"". The arbiter block
34 sequentially distributes the enumerated switch positions s"" to the explorer blocks 28, gathers

their results and maintains the best switch position s(k) according to its cost J'.

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807
-16 -

Scheduler block: arbiter

The arbiter block comprises two finite state machines 46, 48 running in parallel.

The first finite state machine 46 operates in two stages. In a first stage, the finite state machine
46 makes a “lazy evaluation” by sending s(k—1) to an explorer block 28 as a possible next switch
position s""(k) to be extended. If the prediction horizon N of this possible next switch position is
greater or equal to one sampling interval, the arbiter block 34 stops and returns s(k—1) as the next
switch position s(k) for the new time instant. Otherwise, the second stage of the finite state machine
46 starts. In this stage, the finite state machine 46 samples possible next switch positions s™"(k)
from the enumeration block 32 and sends the n; = [s™"(k), Js(k), Nmin] information to any available
(i.e. non-operating) explorer block 28 (indexed by i in Fig. 5). The finite state machine 46 continues
until all the s™"(k) have been evaluated.

The second finite state machine 48 polls each explorer block 28 for available results r; = [s""(k),
N, J]. If the cost J of r;is smaller than the current best J', r;is saved as the best next switch position
s(k). Otherwise, the result is dropped. Once all the results have been gathered, the best switch

position s(k) can be returned as the switching decision for the new time instant.
Explorer block

Fig. 6 shows one explorer block 28. An explorer block 28 can be considered as a computation
unit. For the input data, the scheduler block 26 provides the node specific information n; = [s(k),

Os(k), Nmin] and also the pre-computed model shared by all nodes

I e (RN, (R), I (ke +1),0, (K), v

s,abc s,abc

snave(K) . The explorer block 28 is composed of the two blocks

36, 38 each one having a computation step to accomplish. The extension block 36 first computes
the prediction horizon N. Then, the cost evaluation block 38 applies the cost function J on the
explored node. To optimize hardware usage, the two blocks 36, 38 may share 4 common

multipliers.
Explorer block: extension with linear extrapolation

To apply the extension step, the extension block 36 goes through several steps. It first evaluates
the system state evolution at time step k + / by computing the stator current error (8) and the inverter
voltages (2) and (3). After this step, the explorer knows the system output y at time steps k and k

+ /. Thus, it can now build a linear approximation of the system evolution:

y(k+) =22+ y(K), 8, = y(k +1) - y(k) (12)

Fig. 7 shows the linear approximation of one variable as dashed line.

10

15

20

25

30

WO 2016/202623 PCT/EP2016/062807
-17 -

Now that the model is fully available, the extension step can evaluate the time step N when one

of the 7 components first hits its boundary:

N =min(V,) (13)
iefl,2,..7)
N, = lJ/i,bnc;_J/i(k) (14)

yi

;i if‘5yi 2 O
Yipnd =
Vi else

In here, we use the index i to denote the ith component of the output vector y. The output vector

err
s,abc

err
s,abc

y is composed of the current error 1, and the inverter voltages U,» Vs The variables 177, and

vn are bounded by constant values, while the capacitor voltages vpnase might have time-varying

boundaries that depend on v,.. Thus, Vpr and Vv, are parameters that are provided as input. The

upper or lower bounds are enforced depending on the signs of the individual component slopes dy:.

The output vector y is composed of 7 components with each one having their own linear model to
be evaluated. The objective is to find the time instant at which), (Nl-)=yl-,bnd. One possibility is to

use (14) for evaluating the prediction horizon N; of each component. However, an integer divider
may be rather expensive in terms of area and computation delay. Another possibility is to use a
binary search method, which exploits the shared multipliers and requires only two more adders.

The binary search, which is described with respect to Fig. 7, first evaluates the linear function at
Nmax, Wwhich may be a predefined prediction horizon. If the result is within the bound Vipng, Nimax is
returned as the prediction horizon N;. Otherwise the search starts within the interval between the
actual time instant k and k+Nnax. At each step, the binary search divides the time interval into two
subintervals and continues with the subinterval that comprises the point at which the bound equals
the linearly approximated output variable. When the time interval is less than Nqi, the computation
is aborted and the prediction horizon Ni; for the variable indexed with i is set to 0, wherein Ny, is a
minimal horizon length as explained below.

For example, in Fig. 7, the linear approximation (dashed line) is evaluated four times, before the
boundary crossing is located.

The binary search has the advantage that it relies only on one multiplier and two adders to
compute (14) because it evaluates the linear model (12) at different points in time instead of using
a division. The binary search reduces the size of its search interval by two at each iteration. In
theory, the worst case of the number of iterations required is O(log2(Nmax)).

The binary search may furthermore use upper and lower bounds to reduce the computation

time.

10

15

20

25

30

WO 2016/202623 PCT/EP2016/062807
-18 -

For example, an upper bound Npmax On the interval to be explored can be imposed. Npmax may be
set to the current shortest prediction horizon among the components y; that have already been
evaluated. If the evaluated component y; has a horizon of N; > Npax, then the binary search on y;
stops since the ith component is not critical (i.e. the violation of its bound is predicted to occur after
another component violates its bound). Before any evaluation, Nmax may be initialized to 32, for
example, thus providing real time guarantees even in the worst case.

Furthermore, a lower bound Nmi» may be imposed, which may be provided by the scheduler
block 26. It is the minimum horizon length N, to be accomplished by the evaluated possible next
switch position on the explorer block 28 in order to become the best candidate. During the extension
process, the explorer block 28 can find out that the minimum length cannot be met while performing
the binary search. If this is the case, the computation is aborted and the evaluated possible next
switch position is signalled as abandoned to the scheduler block 26, for example by setting its cost
to a negative value J = —1 or setting the prediction horizon to 0. Nni» may be determined for each
possible next switch position based on J of the current best possible next switch position observed
by the scheduler block 26 and the specific switching transition s(k—1) = s(k) to explore:

_ 0, (s(k — 1),f(k),is(l)) (15)
J

The previous equation ignores the neutral point voltage v, of (5a) for ease of computation. Note

N=N,,

that the Nm» heuristic can speed-up the average computation time but does not give any

guarantees about the worst case execution time.

The objective is to find the greatest integer N; for each of the linear models to be evaluated (by i =

1,2, ...,7) such that the three conditions below hold:

Npin € N; <1 (158)
yilk) + Ni6y; < y; (15b)
yi(k) + N6y = y; (15¢)

The binary search method is used to find N;. Denote the m-th bit of N; as N;[m], with N;[1] being
the least significant bit. Let a, b, c, and s be temporary variables to be used in the binary search
procedure. The m-th bit of s is denoted by s[m], with s[1] being the least significant bit. In the
algorithm a is used as a candidate solution, b is used as a lower bound of the solution, c is used to
store the results of a division by 2 (implemented as a right shift), and s is an upper bound of the

solution. The algorithm to obtain N; uses M = log, [iterations, described below.

Initialization:

5

10

15

20

25

30

35

40

WO 2016/202623 PCT/EP2016/062807
-19 -

N; =0, b=0, c=4,, s=1-1
Loop:
form=M,..1
C
ci=-
2
a=bh+c
if (vi(k)+a<y;) and (y;(k) + a = y;), then
b=a
Ni[m] =1
else
sfml= 0
if s < Npin, then
stop for loop
end if
end if
end for

Notice that if the loop is stopped because s < N,,;;;, then no integer greater than N,,,;,, satisfies
(15b) and (15¢).

The standard solution for the problem (13) would involve a numeric long division to solve (14). The
division requires X iterative steps, where X is the number of bits of the numerator, and therefore is

performed over at least X FPGA clock cycles.

The proposed method presents the advantage that fewer clock cycles are necessary to obtain the
result. The proposed algorithm takes at most log, [iterations to execute. Since log, [< X, fewer
iterations are required in the proposed method. Furthermore, the algorithm features an early
detection of when a solution for the problem does not exist in the cases that the upper bound of
the solution s is lesser than N,,;,. Fewer clock cycles means that the solution for the problem (13)

is found faster.

The maximum efficiency is achieved when the maximum horizon length [is a power of 2. In
several places we say that we evaluate 7 components or the problem. The number 7 applies to

this specific topology. Perhaps we can generalise this number 7.

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807
-20 -

Explorer block: cost function evaluation

After the extension step, the cost value J may be computed by the cost evaluation block 38 in
two different ways.

If the evaluated next best switch position has a prediction horizon N > 1, all its output
components y; are either within their boundaries or their trajectories are approaching the reference.
Thus, (5a) is used for calculating the cost value J.

Otherwise, if N = 0, a deadlock has occurred and a possible next switch position needs to be
found that resolves this deadlock. Its cost value J may then be defined as the normalized

component with the maximum boundary violation at the time step k+1:

Yiona Vi (k+ 1)‘
Ja = max V.
i €fl,2,.7} Y=V

(16)

In this second situation we say that Jg is a deadlock cost. By minimizing Ju the worst case
violation is minimized.

For the FPGA 22, a deadlock situation would occur when all the evaluated next switch positions
have a prediction horizon N = 0. That is, they all have failed to fulfil condition (5¢) at time step k +
1. Nevertheless, the FPGA 22 still needs to take a switching decision. In this case, the policy is to
choose as the next switch position the one that is predicted to yield the lowest boundary violation
at time step k + 1. By construction, the FPGA 22 is always able to choose a switch position.
Furthermore, even in the deadlock case, the best deadlock switching is monitored by the scheduler
block 26.

As output, the explorer block 28 provides the switch position s(k) that was investigated together

with its prediction horizon N and the related cost value J.

While the invention has been illustrated and described in detail in the drawings and foregoing
description, such illustration and description are to be considered illustrative or exemplary and not
restrictive; the invention is not limited to the disclosed embodiments. Other variations to the
disclosed embodiments can be understood and effected by those skilled in the art and practising
the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In
the claims, the word “comprising” does not exclude other elements or steps, and the indefinite
article “a” or “an” does not exclude a plurality. A single processor or controller or other unit may
fulfil the functions of several items recited in the claims. The mere fact that certain measures are
recited in mutually different dependent claims does not indicate that a combination of these
measures cannot be used to advantage. Any reference signs in the claims should not be construed

as limiting the scope.

10

15

20

WO 2016/202623

LIST OF REFERENCE SYMBOLS

10 converter system

12 converter

14 converter phase

16 ANPC inverter

18 DC link

20 controller

22 FPGA

24 load

26 scheduler block

28 explorer block

30 pre-computation block
32 enumeration block

34 arbiter block

36 extension block

38 cost evaluation block
40 look-up table

42 combination block

44 constraint detector block
46 first finite state machine

48 second finite state machine

-21-

PCT/EP2016/062807

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807

-22_

CLAIMS

An FPGA (22) for controlling an electrical converter (12), the FPGA (22) comprising:

an enumeration block (32) adapted for generating possible next switch positions (s™"(k)) for
semiconductor switches of the electrical converter (12) based on an actual applied switch
position (s(k-1));

a plurality of explorer blocks (28), each explorer block (28) adapted for calculating a cost
value (J) for a possible next switch position of the semiconductor switches by:

receiving a possible next switch position (s™"(k));

calculating system variables at future time instants from system variables at a current time
instant of the electrical converter (12) based on the possible next switch position, wherein the
system variables at future time instants are calculated from the system variables at the
current time instant with differential equations modelling the electrical converter (12) and the
load (24);

determining a cost value (J) from the system variables at future time instants by evaluating a
cost function with the system variables at future time instants;

an arbiter block (34) for selecting the next switch position (s(k)) to be applied to the electrical
converter (12) from the possible next switch positions by:

receiving possible next switch positions (s™"(k)) from the enumeration block (32);

selecting a non-operating explorer block (28) and sending a received possible next switch
position to the non-operating explorer block;

receiving a cost value (J) for the respective possible next switch position from a finished
explorer block;

when all possible next switch positions received from the enumeration block (32) have been
processed, selecting the next switch position (s(k)) as the possible next switch position
(s™"(k)) with the lowest cost value (J);

characterized in

that each explorer block (28) is further adapted for:

determining a prediction horizon (N) for the possible next switch position (s™"(k)) at which at
least one of the calculated system variables at future time instants has a deviation from a
reference for the system variable, which is bigger than a predefined deviation for the system
variable;

that a prediction horizon (N) for a system variable at future time instants is determined via a
linear extrapolation, in which the system variable at the future time instants is calculated from
the system variable at the current time instant, and the prediction horizon (N) is determined

based on an intersection point of the linearly extrapolated system variable between the

10

15

20

25

30

35

WO 2016/202623 PCT/EP2016/062807

-23-

current time instant and the future time instant with a maximal possible deviation from a
reference of the system variable; and

that the intersection point is determined iteratively by a binary search.

The FPGA (22) of claim 1,

wherein the cost function depends on the inverse of the prediction horizon (N,).

The FPGA (22) of one of claims 1 or 2,

wherein the cost function is only evaluated, when the prediction horizon (N) is longer than
one time step;

wherein, when the prediction horizon (N) is not longer than one time step, the cost value (J)
is determined based on a violation of a maximal allowed deviation from a reference of the

system variable at future time instants.

The FPGA (22) of one of the preceding claims,

wherein the cost function is based on a number of switching transitions between the actual
applied switch position and the possible next switch position (s™"(k)); and/or

wherein the cost function is based on the switching losses incurred when switching between

the actual applied switch position and the possible next switch position (s™"(k)).

The FPGA (22) of one of the preceding claims,
wherein the enumeration block (32) comprises a look-up table (40) providing a possible next

switch position (s™"(k)) based on the actual applied switch position.

The FPGA (22) of one of the preceding claims,

wherein the enumeration block (32) is adapted for determining, whether a possible next
switch position (s™"(k)) is valid with respect to the actual applied switch position and/or
constraints on the system variables at the current time instant; and/or

wherein the arbiter block (34) only sends valid possible next switch positions to an explorer
block (28).

The FPGA (22) of one of the preceding claims,

wherein the arbiter block (34) is adapted for:

sending the actual applied switch position (s(k-7)) to an explorer block (28) for determining,
whether the actual applied switch position (s(k-7)) has a prediction horizon (N) of at least one

time step;

10

15

20

10.

11.

WO 2016/202623 PCT/EP2016/062807

-24-

selecting the actual applied switch position (s(k-7)) as the next switch position (s(k)), when

the prediction horizon (N) is longer than one time step.

The FPGA (22) of one of the preceding claims, further comprising:

a pre-computation block (30) adapted for calculating commonly used values and predictions
based on the system variables at the current time instant, wherein the commonly used values
and predictions are used by the explorer blocks (28) during the calculation of the system

variables at future time instants.

The FPGA (22) of one of the preceding claims,
wherein the number of explorer blocks (28) is smaller than a maximal possible number of

next switch positions (s™"(k)).

An electrical converter system (10), comprising:

an electrical converter (12) comprising a plurality of semiconductor switches for converting a
DC or AC input voltage into a DC or AC output voltage of a different frequency;

a controller (20) with an FPGA (22) according to one of the preceding claims for applying the

next switch position determined by the FPGA (22) to the semiconductor switches.

The electrical converter system (10) of claim 10,
wherein the electrical converter (12) comprises an active neutral point clamped voltage

source inverter.

PCT/EP2016/062807

WO 2016/202623

-1/5 -

-0

O

Py

WO 2016/202623 PCT/EP2016/062807

-2/5 -
Fig. 2
22
x(k), @ (k),g(k), I's ap (k) s(k)

s(k-1) }
o] | ~_.26
i — w«% 30
| |
| j i s abe(k) |
| |
! = 32
i Es,;ab«c; (k), - valid }
| ot | ™ s]

: s,abc (k)" ’ % :

% , nex

Vi Vph,abe I(K) — 34

! jerr OL, } !
S | |

[Vph,Vpnl(k) [s"Y & 1(K),Nmin
o T T; ;Bé&(;(;_' - ----28
- — L-.28

— —~—36

WO 2016/202623
-3/5-

Fig. 3

PCT/EP2016/062807

30

s

(k) I's.an (k)
Y 1

P
erroL, | |
isabc (kt) [V .Vphabellk)

40 —_-

(Lago| BUT |40

i s,abc (k) —

WO 2016/202623 PCT/EP2016/062807
- 4/5 -
Fig. 5
s(k-1) i'sabc (k)
i i
32
! '
s ""(k), 3(k) valid next
6, | o
- h_/ = s (k)
xy o

Fig. 6

err OL , . &rr OL

28

{is,abuz (k), ia,abs: (k), | s,abc (k+), V, {k) Vph atu:(m 0]

Von Vor (k)

36
e

A E i J’ LN

by =—

m.) I SHEW(k}

'] l

er ,
[N,Gg .V (k+N-1)], [sa&htavn :évph,gabc: 1(k+1)

f

A0 -

bjc =

WO 2016/202623 PCT/EP2016/062807
- 5/5 -

Fig. 7

min max =T
pr g =
e
-
o
L
. -
-
e
L
-
y . e “
2 =¥
ierr —
d =
=
- =~
- -
- -
-
-
L
T)
o
-

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/062807

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO5B13/04 HO2M7 /483
ADD.

HO2M7 /487

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

HO2M GOSB

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

9 January 2014 (2014-01-09)

page
page
page
page
page
page

R~ OB W

X WO 20147006200 Al (ABB TECHNOLOGY AG [CH])

page 2, line 28 - page 2, line 32

, 1ine 15 - page 3, line 27

, 1ine 1 - page 4, line 12

, 1ine 24 - page 5, line 28

, 1ine 1 - page 6, line 16

, 1ine 24 - page 7, line 25
1, 1ine 16 - page 15, line 13

1-11

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 August 2016

Date of mailing of the international search report

02/09/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Madouroglou, E

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/062807

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

TOBIAS GEYER ET AL: "Model Predictive
Direct Torque Control of a variable speed
drive with a five-level inverter",

TIECON 2009 - 35TH ANNUAL CONFERENCE OF
IEEE INDUSTRIAL ELECTRONICS (IECON 2009) -
3-5 NOV. 2009 - PORTO, PORTUGAL, IEEE,
PISCATAWAY, NJ, USA,

3 November 2009 (2009-11-03), pages
1203-1208, XP031629326,

ISBN: 978-1-4244-4648-3

paragraphs [000I], [00IV]

WO 2009/080407 Al (ABB RESEARCH LTD [CH];
PAPAFOTIOU GEORGIOS [CH]; ZURFLUH FRANZ
[CH]) 2 July 2009 (2009-07-02)

cited in the application

page 4, line 3 - page 4, line 20

page 6, line 5 - page 6, line 28

page 7, line 10 - page 7, line 16

page 8, line 30 - page 9, line 15

WO 2009/016113 Al (ABB RESEARCH LTD [CH];
PAPAFOTIOU GEORGIOS [CH]; HARNEFORS
LENNART [SE) 5 February 2009 (2009-02-05)
page 2, line 17 - page 2, line 25

page 3, line 13 - page 3, Tline 19; claim
1; figure 2

1-11

1-11

1-11

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2016/062807
Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2014006200 Al 09-01-2014 CA 2877440 Al 09-01-2014
CN 104396136 A 04-03-2015
EP 2870689 Al 13-05-2015
KR 20150028282 A 13-03-2015
US 2015171726 Al 18-06-2015
WO 2014006200 Al 09-01-2014

WO 2009080407 Al 02-07-2009 AT 522978 T 15-09-2011
CA 2705721 Al 02-07-2009
CN 101904086 A 01-12-2010
EP 2223426 Al 01-09-2010
ES 2371803 T3 10-01-2012
JP 5474818 B2 16-04-2014
JP 2011519253 A 30-06-2011
KR 20100092957 A 23-08-2010
PL 2223426 T3 31-01-2012
RU 2010130263 A 27-01-2012
US 2010253269 Al 07-10-2010
WO 2009080407 Al 02-07-2009

WO 2009016113 Al 05-02-2009 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report
	Page 33 - wo-search-report

