

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

CO3C 4/02 (2006.01) **B60J 1/00** (2006.01)

(21) 출원번호 **10-2013-0001645**

(22) 출원일자 **2013년01월07일** 심사청구일자 **2015년06월22일**

(65) 공개번호10-2014-0089788(43) 공개일자2014년07월16일

(56) 선행기술조사문헌

JP3264841 B2*
KR101062878 B1*
KR1020100096541 A*

US05932502 A*

*는 심사관에 의하여 인용된 문헌

(45) 공고일자 2017년12월15일

(11) 등록번호 10-1809772

(24) 등록일자 2017년12월11일

(73) 특허권자

주식회사 케이씨씨

서울특별시 서초구 사평대로 344 (서초동)

(72) 발명자

조윤민

경기 여주시 가남읍 여주남로 541, 101동 112호 (금강아파트)

김용이

경기 여주시 가남읍 여주남로 541, 106동 307호 (금강아파트)

(뒷면에 계속)

(74) 대리인

특허법인태평양

전체 청구항 수 : 총 7 항

심사관: 양정화

(54) 발명의 명칭 짙은 녹회색 저투과 유리 조성물

(57) 요 약

본 발명은 짙은 녹회색 저투과 유리 조성물에 관한 것으로, 더욱 상세하게는 착색 성분으로서 Fe_2O_3 , CoO, Se 및 Cr_2O_3 을 특정 함량 범위로 사용하고 상기 착색 성분에 있어서 $(CoO+Cr_2O_3)$ 대 Se 및 CoO 대 Cr_2O_3 의 상대적 함량을 일정 범위로 제한함으로써, 가시광선 투과율 (LT_A) 을 효과적으로 제어하여 사생활 차단 성능을 만족시키고, 태양에너지 투과율 (T_e) 과 자외선 투과율 (T_{uv}) 을 낮추어 차량, 건축물 등에서 냉방부하를 감소시키고 인테리어 소재 및 사람을 자외선으로부터 보호하며, 투과 색상의 색좌표 최적 범위를 만족시킴으로써 눈의 피로를 덜어주며 심리적 안정감을 제공할 수 있는, 짙은 녹회색 저투과 유리 조성물에 관한 것이다.

(72) 발명자

김진용

경기 수원시 영통구 봉영로1744번길 16, 244동 80 4호 (영통동, 황골마을2단지아파트)

임재청

경기 여주시 가남읍 여주남로 541, 104동 206호 (금강아파트)

명세서

청구범위

청구항 1

모유리 100중량부에 대하여 착색 성분으로서 총 Fe₂O₃ 1.29~2중량부, CoO 0.0220~0.04중량부, Se 0.002~0.0035 중량부 및 Cr₂O₃ 0.01~0.04중량부를 포함하고,

여기서 (CoO+Cr₂O₃) 대 Se의 중량비[= (CoO+Cr₂O₃)/Se]가 13~25이고, CoO 대 Cr₂O₃의 중량비[= CoO/Cr₂O₃]가 1.0~1.6이고,

유리 두께 4mm 기준으로 15% 이하의 가시광선 투과율(LTA), 16% 이하의 태양에너지 투과율(Te) 및 3% 이하의 자외선 투과율(Tuv)을 가지며,

투과 색상의 색좌표에 있어서 L*가 35~50, a*가 -5~0, 그리고 b*가 0~6인 범위를 가지는,

짙은 녹회색 저투과 유리 조성물.

청구항 2

제1항에 있어서, 모유리 총 100중량%를 기준으로, 모유리가 SiO₂ 65~75중량%, Al₂O₃ 0.3~3.0중량%, Na₂O+K₂O 10~18중량%, CaO 5~15중량%, 및 MgO 1~7중량%를 포함하는 것을 특징으로 하는 짙은 녹회색 저투과 유리 조성물.

청구항 3

제1항에 있어서, 조성물 내 FeO 함량이 총 Fe_2O_3 함량의 $10\sim30$ 증량%인 것을 특징으로 하는 짙은 녹회색 저투과 유리 조성물.

청구항 4

제1항에 있어서, MnO₂를 더 포함하는 것을 특징으로 하는 짙은 녹회색 저투과 유리 조성물.

청구항 5

제1항에 있어서, Ce, Sc, Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu로 구성되는 란탄족 원소의 희토류 산화물을 더 포함하는 것을 특징으로 하는 짙은 녹회색 저투과 유리 조성물.

청구항 6

삭제

청구항 7

삭제

청구항 8

제1항 내지 제5항 중 어느 한 항에 있어서, 운송수단의 창, 건축물의 창, 장식품 또는 가구용인 것을 특징으로 하는 짙은 녹회색 저투과 유리 조성물.

청구항 9

제8항에 있어서, 운송수단의 창이 자동차의 선루프, 또는 측면 또는 후면의 시선 차단용 유리인 것을 특징으로 하는 짙은 녹회색 저투과 유리 조성물.

발명의 설명

기술분야

[0001] 본 발명은 짙은 녹회색 저투과 유리 조성물에 관한 것으로, 더욱 상세하게는 착색 성분으로서 Fe₂O₃, CoO, Se 및 Cr₂O₃을 특정 함량 범위로 사용하고 상기 착색 성분에 있어서 (CoO+Cr₂O₃) 대 Se 및 CoO 대 Cr₂O₃의 상대적 함량을 일정 범위로 제한함으로써, 가시광선 투과율(LT_A)을 효과적으로 제어하여 사생활 차단 성능을 만족시키고, 태양에너지 투과율(T_e)과 자외선 투과율(T_{uv})을 낮추어 차량, 건축물 등에서 냉방부하를 감소시키고 인테리어 소재 및 사람을 자외선으로부터 보호하며, 투과 색상의 색좌표 최적 범위를 만족시킴으로써 눈의 피로를 덜어주며 심리적 안정감을 제공할 수 있는, 짙은 녹회색 저투과 유리 조성물에 관한 것이다.

배경기술

- [0002] 착색유리의 용도는 특별히 한정되어 있는 것은 아니지만 자동차 안전유리의 시선차단용 유리(Privacy Glass) 또는 선루프(Sun Roof) 및 건축용 유리 등에 적용될 수 있다. 착색유리는 일반적인 소다라임 유리에 비해 가시광선 투과율(LTA)이 낮기 때문에 차량 내부의 가시성을 저감시킬 수 있으며, 태양에너지 투과율(Te)이 낮은 특성때문에 차량 내부로의 열 흡수를 감소시키는 기능을 갖는다. 또한 낮은 자외선 투과율(Tuv)로 인해 자외선에 의한 직물손상, 내부 기물들의 변색 또는 분해를 방지할 수 있다.
- [0003] 이러한 착색유리에 있어서, 색상의 개선 및 자외선 차단, 그리고 태양에너지 흡수 기능의 향상은 여러 원소들의 혼입을 통해 구현할 수 있으며, 대표적인 원소로는 철(Fe), 코발트(Co), 셀레늄(Se) 등이 사용될 수 있고, 그 외에 크롬(Cr), 망간(Mn), 티타늄(Ti), 세륨(Ce), 니켈(Ni), 구리(Cu) 등이 추가로 사용될 수 있다. 상기 원소들은 각각 고유한 착색 효과 및 자외선, 태양에너지를 흡수하는 특성을 가지고 있으며, 이러한 특성은 각 원소들이 특정 파장을 흡수하는 현상에 기인한다. 따라서 상기 원소들이 첨가되는 비율 조합에 의해 원하는 색상과 투과율을 갖는 유리를 설계할 수 있다.
- [0004] 상기한 바와 같이, 다양한 원소의 적절한 조정을 통하여 짙은 녹회색 색상의 착색 유리 조성물을 형성할 수 있으며, 특히 가시광선, 자외선 및 태양에너지의 높은 흡수 특성(즉, 낮은 투과 특성)을 갖는 유리를 제조할 수 있다. 이러한 저투과 유리 조성물은 크게 Fe, Co 및 Se을 기초 착색 원소로 제조된 경우와 기타 원소를 추가하는 경우로 나눌 수 있다.
- [0005] 미국특허 제4,873,206호에는 총 Fe₂O₃ 0.6~1.0중량%, Se 0.005~0.02중량% 및 CoO 0.01~0.02중량%를 포함하고, Ni 및 Cr을 포함하지 않는 유리 조성물이 개시되어 있다. 그러나 상기 조성은 유리 두께 4mm 기준으로 가시광선 투과율(LT_A)이 25~30% 수준으로 선루프 또는 후방부 시선 차단용 유리(Privacy Glass)등에 적용되는 저투과 유리 조성물의 중요한 기능인 사생활 차단 기능을 부여하기에는 적합하지 않으며, 또한 짙은 녹회색 색상의 착색 유리 조성물을 형성하기에도 한계가 있다.

발명의 내용

해결하려는 과제

[0006] 본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하고자 한 것으로서, 유리의 가시광선 투과율(LTA)을 효과적으로 제어하여 사생활 차단 성능을 만족시키고, 태양에너지 투과율(Te)과 자외선 투과율(Tuv)을 낮추어 차량, 건축물 등에서 냉방부하를 감소시키고 인테리어 소재 및 사람을 자외선으로부터 보호하며, 투과 색상의 색좌표 최적 범위를 만족시킴으로써 눈의 피로를 덜어주며 심리적 안정감을 제공할 수 있는, 짙은 녹회색 저투과 유리조성물 및 이로부터 형성된 유리를 제공하는 것을 기술적 과제로 한다.

과제의 해결 수단

- [0007] 상기와 같은 기술적 과제를 달성하고자 본 발명은, 모유리 100중량부에 대하여 착색 성분으로서 총 Fe₂O₃ 1.2~2 중량부, CoO 0.02~0.04중량부, Se 0.002~0.0035중량부 및 Cr₂O₃ 0.01~0.04중량부를 포함하고, 여기서 (CoO+Cr₂O₃) 대 Se의 중량비[= (CoO+Cr₂O₃)/Se]가 13~25이고, CoO 대 Cr₂O₃의 중량비[= CoO/Cr₂O₃]가 0.9~1.8인, 짙은 녹회색 저투과 유리 조성물을 제공한다.
- [0008] 본 발명의 바람직한 일 구체예에 따른 짙은 녹회색 저투과 유리 조성물은, 유리 두께 4mm 기준으로 15% 이하의

가시광선 투과율(LT_A), 16% 이하의 태양에너지 투과율(T_e) 및 5% 이하의 자외선 투과율(T_w)을 나타낸다.

[0009] 또한 본 발명의 바람직한 일 구체예에 따른 짙은 녹회색 저투과 유리 조성물은, 투과 색상의 색좌표(광원 D65, 10도 시야)에 있어서 L*가 35~50, a*가 -5~0, 그리고 b*가 0~6인 범위를 가진다.

발명의 효과

[0010] 본 발명의 짙은 녹회색 저투과 유리 조성물은 가시광선, 태양에너지 및 자외선 흡수가 뛰어나 차량, 건축물 등에서의 사생활 보호, 냉방부하 감소 및 자외선 차단 기능을 효과적으로 수행할 수 있으며, 투과 색상의 색좌표 최적 범위를 만족시킴으로써 눈의 피로를 덜어주며 심리적 안정감을 제공할 수 있다.

발명을 실시하기 위한 구체적인 내용

이하, 본 발명을 보다 상세하게 설명한다.

[0012] 모유리

[0011]

[0013] 본 발명의 유리 조성물에 있어서, 모유리로는 당 분야에서 통상적으로 사용되는 성분 및 함량으로 구성된 모유리를 특별한 제한없이 채택하여 사용할 수 있다. 바람직한 일 구체예에서, 모유리로 하기 표 1의 성분 및 함량 (모유리 총 100중량% 기준)을 포함하는 것을 사용할 수 있다.

[丑 1]

성분	함량(중량%)
SiO ₂	65~75
Al ₂ O ₃	0.3~3
Na ₂ O+K ₂ O	10~18
CaO	5~15
MgO	1~7

[0014]

- [0015] 상기 성분 중 SiO₂는 유리의 기본 구조인 망목 구조를 형성하는 역할을 하는 것으로, 그 함량이 65 중량% 미만 이면 유리의 내구성에 문제가 발생할 수 있으며, 그 함량이 75 중량%를 초과하면 고온점도가 과도하게 증가하고 용용성이 저하될 수 있다.
- [0016] Al₂0₃는 유리의 고온점도를 증가시키고 소량 첨가시 유리의 내구성을 향상시키는 성분으로, 그 함량이 0.3 중량% 미만이면 내화학성 및 내수성이 저하될 수 있으며, 그 함량이 3 중량%를 초과하면 고온점도 증가와 함께 용융부하가 증가할 수 있다.
- [0017] Na₂O 및 K₂O는 유리 원료의 용용을 촉진하는 용제(Flux) 성분으로, 두 성분의 합산 함량이 10 중량% 미만이면 미용용물 발생 증가로 용융 품질이 저하될 수 있으며, 두 성분의 합산 함량이 18 중량%를 초과하면 내화학성이 저하될 수 있다.
- [0018] CaO 및 MgO는 원료의 용용을 도우면서 유리 구조의 내후성을 보강해주는 성분이다. CaO의 함량이 5 중량% 미만이면 내구성이 저하될 수 있으며, 15 중량%를 초과하면 결정화 경향의 증가로 인해 제품 품질에 악영향을 미칠수 있다. 또한 MgO의 함량이 1 중량% 미만이면 상술한 용융 보조 및 내후성 보강 효과가 미미해질 수 있으며, 7 중량%를 초과하면 결정화 경향 증가로 결정 결함이 발생할 수 있다.
- [0019] 또한, 모유리의 실제 생산시 기포 제거 등 용융 품질 향상을 위해 망초(Na₂SO₄)가 추가적으로 사용될 수 있다. 다만 이 경우 용융과정에서 유리 내부에 SO₃ 형태로 잔존하는 함량을 0.01 ~ 1 중량% 수준으로 관리하는 것이 바람직하다.

[0020] <u>철(총 Fe₂O₃)</u>

[0021] 철(Fe)은 유리의 주/부 원료에 불순물로 포함되어 있을 수 있으며, 통상적인 상업생산시 추가적인 투입 없이도 0.1~0.2중량% 수준으로 유리 내에 존재할 수 있는 성분이다. 대부분의 착색유리는 철을 추가로 투입하여 원하는 투과율과 색상을 조절하는데 투입되는 원료로는 산화철(Fe,O₃)을 사용한다. 유리의 용융과정에서 투입된 산화철

 (Fe_2O_3) 은 Fe^{3+} 와 Fe^{2+} 로 존재할 수 있다. Fe^{3+} 이온은 $410{\sim}440$ nm의 가시광선 영역에서 약한 흡수를 갖고 380nm를 중심으로 하는 자외선 부근에서 강한 흡수단을 가지며, 이러한 특성으로 인해 Fe^{3+} 이 많이 존재할수록 유리는 옅은 황색을 나타내게 된다. 또한 Fe^{2+} 이온은 1050nm를 중심으로 강한 흡수 밴드가 존재하기 때문에 적외선을 흡수하는 것으로 알려져 있고, Fe^{2+} 함량이 많을수록 유리의 색상은 청색으로 변화하게 된다. 총 Fe_2O_3 중 Fe^{2+} 와 Fe^{3+} 의 존재 비율은 유리의 제조 공정에 따라 유동적이다.

- [0022] 본 발명의 유리 조성물은 모유리 100중량부에 대하여 총 Fe₂O₃ 1.2~2중량부를 포함한다. 구체적으로, 상기 총 Fe₂O₃ 함량은 예컨대 1.2, 1.3, 1.4, 1.5 또는 1.6중량부 이상일 수 있고, 예컨대 2, 1.9, 1.8 또는 1.7중량부 이하일 수 있다.
- [0023] 모유리 100중량부에 대한 총 Fe₂O₃의 함량이 1.2중량부 미만이면 가시광선 투과율(LT_A)의 증가로 인해 저투과 유리 조성물의 가장 중요한 성능 중 하나인 개인 사생활 보호 기능과 태양에너지 차단기능이 떨어지고, 2중량부를 초과하면 색순도가 증가하며 가시광선 투과율(LT_A)이 극도로 감소함으로써 가시성이 낮아져 차량 및 건축물의 창으로 사용하기에 부적합하고, 복사 적외선을 흡수하는 Fe²⁺ 함량 증가가 필연적으로 발생하여 용융시 용해로 내하부온도가 하락하는 등 용융 부하의 증가 문제가 유발될 수 있다. 용융 부하를 줄이고 가시광선 투과율(LT_A)이 사생활 보호용으로 사용하기에 적당한 조성을 위해서는 모유리 100중량부에 대하여 총 Fe₂O₃ 함량이 1.2~1.8중량부인 것이 보다 바람직하며, 1.3~1.5중량부인 것이 보다 더 바람직하다.
- [0024] 본 발명의 유리 조성물에 있어서 FeO 함량은 총 Fe₂O₃ 함량의 10~30중량%[즉, 산화환원율(Redox = FeO/총 Fe₂O₃)이 0.1~0.3]가 바람직하다. FeO 함량이 총 Fe₂O₃함량의 10중량% 미만이면 태양에너지 투과율(T_e)이 증가하고, 셀레늄이 Fe-Se 형태 보다는 SeO₂ 형태로 존재할 가능성이 커져 Se 착색이 반감될 우려가 있다. FeO 함량이 총 Fe₂O₃함량의 30중량%를 초과하면 Se의 휘발성이 증가하여 유리 내 적정량의 Se을 잔류시킬 수 없는 문제점이 발생할 수 있으며, 또한 Fe²⁺ 증가에 따른 용융 과정에서의 열전도도 감소문제가 발생할 수 있고, 용융시 바닥부의 온도 감소, 품질 저하 문제가 유발될 수도 있다. Se 착색에 적합하고 열전도도 문제를 줄이기 위해서는 FeO 함량이 총 Fe₂O₃함량의 15~30중량%인 것이 보다 바람직하며, 20~30중량%인 것이 보다 더 바람직하다.

[0025] <u>코발트(CoO)</u>

- [0026] 코발트(Co)는 산화코발트 형태로 배치에 공급되며, Co²⁺ 존재 형태에서 530, 590 및 645nm 부근의 흡수단을 갖게 된다. 이러한 흡수단의 영향으로 코발트는 청색이 강한 착색 유리 조성물을 형성한다.
- [0027] 본 발명의 유리 조성물은 모유리 100중량부에 대하여 CoO 0.02~0.04중량부(즉, 200~400ppm)를 포함한다. 구체적으로, 상기 CoO 함량은 예컨대 0.021, 0.022, 0.023, 0.024 또는 0.025중량부 이상일 수 있고, 예컨대 0.03, 0.029, 0.028 또는 0.027중량부 이하일 수 있다.
- [0028] 모유리 100중량부에 대한 CoO의 함량이 0.02중량부 미만이면 가시광선 투과율(LTA)이 높아지는 문제가 발생하고, 이로 인해 저투과 유리 조성물의 중요특성인 개인 사생활 보호기능이 저감될 수 있으며, 또한 Se의 핑크색 및 Fe-Se(Poly-Iron Selenide)의 적갈색의 탈색(Decolorizing)이 불충분할 수 있다. CoO의 함량이 0.04 중량부를 초과하면 청색이 강한 착색 유리 조성물을 형성하게 되는데, 이를 짙은 녹회색 색상의 유리 조성물로 바꾸기 위해서는 Se 및 Cr203의 증량이 필요하나 이들 성분의 증량으로 인해 가시광선 투과율(LTA)이 극도로 감소하게 되고 그 사용량 증가에 따른 제조 단가의 상승이 동반된다. 가시광선 투과율(LTA)을 효과적으로 억제시키고 청색 색상을 균형 있게 조절하기 위해서는 모유리 100중량부에 대하여 CoO 함량이 0.02~0.03중량부인 것이보다 바람직하며, 0.023~0.028중량부인 것이 보다 더 바람직하다.

[0029] 셀레늄(Se)

[0030] 셀레늄(Se)은 유리 내에서 산화/환원 상태에 따라 착색 거동의 차이를 보이며, Se 원소로 존재하는 경우와 Fe-Se로 결합되는 경우 480~500 nm에서 흡수단이 존재한다. 이러한 경우 적갈색으로 유리를 착색시키는 것으로 알려져 있다.

- [0031] 본 발명의 유리 조성물은 모유리 100중량부에 대하여 Se 0.002~0.0035중량부를 포함한다. 구체적으로, 상기 Se 함량은 예컨대 0.0022, 0.0023, 0.0024, 0.0025 또는 0.0026중량부 이상일 수 있고, 예컨대 0.0033, 0.0032, 0.0031 또는 0.003중량부 이하일 수 있다.
- [0032] 모유리 100중량부에 대한 Se의 함량이 0.002중량부 미만이면 청색 또는 녹색이 강한 착색 유리 조성물이 형성되며, 0.0035중량부를 초과하면 동색이 강한 착색 유리 조성물을 형성하는데, 두 경우 모두 개인 사생활 보호 기능과 가시성을 동시에 갖는 가시광선 투과율(LTA)을 유지할 수 없는 문제가 발생한다. 색상 및 사생활 보호 기능을 유지하기 위해서는 모유리 100중량부에 대하여 Se의 함량이 0.0022~0.0033중량부인 것이 보다 바람직하며, 0.0025~0.003중량부인 것이 보다 더 바람직하다.

[0033] 크롬(Cr₂O₃)

- [0034] 크롬(Cr)은 유리 내에서 산화크롬 형태로 배치에 공급되며, Cr³⁺ 존재 형태에서 450, 650nm 부근의 흡수단을 갖게 된다. 이러한 흡수단의 영향으로 크롬은 녹색의 착색 유리 조성물을 형성하며, 가시광선 투과율(LT_A)을 낮추어 사생활 차단 성능을 만족시킨다. 녹색은 보는 이로 하여금 눈의 피로감을 덜어주고 심리적인 안정감을 주며, 주변의 색상과 쉽게 어울릴 수 있는 장점이 있다.
- [0035] 본 발명의 유리 조성물은 모유리 100중량부에 대하여 Cr_2O_3 0.01~0.04중량부를 포함한다. 구체적으로, 상기 Cr_2O_3 함량은 예컨대 0.015, 0.016, 0.017, 0.018, 0.019 또는 0.02중량부 이상일 수 있고, 예컨대 0.03, 0.028, 0.027, 0.026, 0.025, 0.024 또는 0.023중량부 이하일 수 있다.
- [0036] 모유리 100중량부에 대한 Cr_2O_3 의 함량이 0.01중량부 미만이면 짙은 녹회색 색상의 착색 유리 조성물 형성에 한계가 따르며, 가시광선 투과율(LTA)의 증가를 불러온다. 또한 Cr_2O_3 의 함량이 0.04중량부를 초과하면 가시광선 투과율은 저하되지만, Cr_2O_3 자신의 흡수단에 의하여 색순도가 커지게 되어 이에 상응하는 Se 및 CoO의 증량을 필요로 하나, 이들 성분의 증량으로 인해 가시광선 투과율(LTA)이 극도로 감소하게 되며, 그 사용량 증가에 따른 제조 단가의 상승이 동반된다. 짙은 녹회색 색상과 낮은 가시광선 투과율을 갖는 저투과 유리 조성물을 동시에 얻기 위해서는 모유리 100중량부에 대하여 Cr_2O_3 의 함량이 0.015~0.03중량부인 것이 보다 바람직하며, 0.018~0.023중량부인 것이 보다 바람직하다.

[0037] (CoO+Cr₂O₃) 대 Se의 중량비[= (CoO+Cr₂O₃)/Se]

- [0038] 상기 설명한 착색성분들 CoO, Se 및 Cr₂O₃ 함량 관련하여, 본 발명의 유리 조성물에 있어서 (CoO+Cr₂O₃) 대 Se의 중량비[= (CoO+Cr₂O₃)/Se]는 13~25의 범위 내에 있으며, 보다 바람직하게는 13~20의 범위 내에, 보다 더 바람직하게는 13~17의 범위 내에 있다.
- [0039] (CoO+Cr₂O₃)/Se의 중량비율이 13 미만이면 적갈색 색상이 강한 착색유리 조성물을 형성하고, 25를 초과하면 청록 색 색상이 강한 착색유리 조성물을 형성한다.
- [0040] Se은 적갈색이 강한 착색 유리 조성물을 형성하며, 착색 효과가 매우 뛰어나 이를 억제하는 것이 필요하다. 본 발명에서는 적갈색의 보색에 상응하는 청록색 착색성분 조합(CoO+Cr₂O₃)을 Se 대비 상기 비율로 사용함으로써 짙은 녹회색을 착색시킬 수 있다. 즉, (CoO+Cr₂O₃)/Se의 중량비가 상기 수준에 미달되거나 초과하면 원하는 투과 색상의 색좌표인 L* = 35~50, a* = -5~0, b* = 0~6 범위를 갖는 짙은 녹회색 색상의 착색 유리 제조에 한계가 있다.

[0041] CoO 대 Cr₂O₃의 중량비[= CoO/Cr₂O₃]

- [0042] 또한, 상기 설명한 착색성분들 CoO 및 Cr₂O₃ 함량 관련하여, 본 발명의 유리 조성물에 있어서 CoO 대 Cr₂O₃의 중량비[= CoO/Cr₂O₃]는 0.9~1.8의 범위 내에 있으며, 보다 바람직하게는 1~1.8의 범위 내에, 보다 더 바람직하게는 1~1.6의 범위 내에 있다.
- [0043] CoO/Cr₂O₃의 중량비율이 0.9 미만이면 녹색 색상이 강한 착색 유리 조성물을 형성하고, 1.8을 초과하면 청색 색 상이 강한 착색 유리 조성물을 형성한다.

[0044] 본 발명에서는 각각 청색과 녹색 착색성분인 CoO 및 Cr₂O₃을 상기 비율로 사용함으로써 적갈색의 보색에 상응하는 적절한 청록색을 착색시킬 수 있다. 즉, CoO/Cr₂O₃의 중량비가 상기 수준에 미달되거나 초과하면, 원하는 투과 색상의 색좌표인 L* = 35~50, a* = -5~0, b* = 0~6 범위를 갖는 짙은 녹회색 색상의 착색 유리 제조에 역시한계가 있다.

[0045] 임의의 기타 성분

- [0046] 본 발명의 유리 조성물은, 상기 설명한 착색성분들 이외에, 본 발명의 목적을 달성할 수 있는 범위 내에서 임의의 기타 성분(들)을 추가로 포함할 수 있다.
- [0047] 예컨대, 본 발명의 유리 조성물은 Fe₂O₃ 및 Cr₂O₃의 녹색 착색의 소색을 위해 선택적으로 MnO₂를 더 포함할 수 있다. 이 때, MnO₂의 함량은 모유리 100중량부당 0.1중량부 이하일 수 있다.
- [0048] 또한, 본 발명의 유리 조성물은 추가의 착색성분으로서 Ce, Sc, Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu로 구성되는 란탄족 원소의 희토류 산화물, 예컨대 산화세륨(CeO₂)과 같은 란탄족 원소의 희토류 산화물을 선택적으로 더 포함할 수 있다. 이 때, CeO₂의 함량은 모유리 100중량부당 0.1중량부 이하일 수 있다.
- [0049] 상기한 바와 같은 각 성분으로부터 본 발명의 짙은 녹회색 저투과 유리 조성물을 제조하는 방법은 특별히 제한되지 않으며, 당 분야의 일반적인 방법을 사용하여 제조할 수 있다. 예컨대, 본 발명에 따른 성분 및 함량의 원료 배치를 고온에서 용융시킨 후 급랭시켜 유리 파우더를 회수함으로써 제조할 수 있다.
- [0050] 바람직한 일 구체예에 따르면, 본 발명의 짙은 녹회색 저투과 유리 조성물은 유리 두께 4mm 기준으로 15% 이하 (예컨대, 0.1~15%, 보다 바람직하게는 14% 이하, 보다 더 바람직하게는 13% 이하, 보다 더 바람직하게는 10% 이하, 보다 더 바람직하게는 8% 이하)의 가시광선 투과율(LT_A), 16% 이하(예컨대, 0.1~16%, 보다 바람직하게는 15% 이하, 보다 더 바람직하게는 14% 이하, 보다 더 바람직하게는 10% 이하, 보다 더 바람직하게는 7% 이하)의 태양에너지 투과율(T_e) 및 5% 이하(예컨대, 0.1~5%, 보다 바람직하게는 3% 이하, 보다 더 바람직하게는 2% 이하, 보다 더 바람직하게는 1% 이하)의 자외선 투과율(T_{uv})을 나타낸다.
- [0051] 가시광선 투과율(LTA)이 15%를 초과하면 개인 사생활 보호용으로 적용하기에 제한이 있을 수 있으며, 자동차용 안전유리 중 선루프와 시선 차단용 유리(Privacy Glass) 등과 같이 개인 사생활 보호가 필요한 부분에서 특히 문제가 될 수 있다. 태양에너지 투과율이 16%를 초과하면 차량, 건축물 등의 내부로의 열 흡수가 증가되어 냉방부하가 커지는 문제점이 있을 수 있다. 자외선의 경우, 내장재들의 노후와 인체의 피부 노화 등을 유발하기 때문에 그 투과율을 4mm 유리 두께 기준 5% 이하로 관리하는 것이 바람직하다.
- [0052] 본 발명의 짙은 녹회색 저투과 유리 조성물은 또한 바람직하게는, 투과 색상의 색좌표에 있어서 L*가 35~50, a* 가 -5~0, 그리고 b*가 0~6인 범위를 가진다.
- [0053] 차량 및 건축물의 창으로 적합하게 사용되기 위해서는 유리의 투과 색상의 색좌표가 상기 범위 내에 있는 것이 바람직하다. 이 범위 내로 색조의 조절이 실패할 경우 적갈색, 청색 또는 녹색의 색상이 강하게 착색되어 눈의 피로감을 유발할 수 있고 심리적 안정감을 해칠 수 있다.
- [0054] 본 발명의 짙은 녹회색 저투과 유리 조성물의 용도는 특별히 제한되지 않으며, 예컨대, 자동차와 같은 운송수단의 창(측면, 후면, 썬루프), 건축물의 창, 장식품 또는 가구용으로 활용될 수 있다. 특히 바람직하게는 자동차안전유리로 적용될 수 있으며, 건축용 창유리에도 적용이 가능하다. 자동차 안전유리에서는 선루프(Sun Roof), 또는 측면 또는 후면의 시선 차단용 유리(Privacy Glass)에 적용 될 수 있으나, 이에 제한되는 것은 아니다.
- [0055] 이하, 본 발명을 실시예에 의해 보다 상세히 설명하지만, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.

[0056] [실시예 1~6 및 비교예 1~6]

[0057] 원료로 규사, 석회석, 백운석, 소다회, 망초, 산화철, 산화코발트, 셀레늄, 크롬, 코크스 등을 사용하여 각 실시예 및 비교예의 유리 조성물들을 제조하였다. 제조된 모유리는 하기 표 2에 기재된 성분 및 함량의 조성을 가졌고, 각 실시예 및 비교예에서 사용된 착색제 성분 및 함량(모유리 100중량부당 중량부)들은 각각 하기 표 3

(실시예 1~6) 및 표 4(비교예 1~6)에 기재된 바와 같았다.

[0058] 유리 조성의 화학적 분석 및 광학물성 평가를 위한 샘플 유리는 Pt-10%Rh 도가니를 사용하여 전기로를 통하여 제조하였다. 200g 기준으로 계량된 원료 배치를 1450℃에서 1시간 30분 용융 후 급랭시켜 유리 파우더로 회수한 후, 1450℃에서 각 1 시간씩 재용융을 2회 반복하여 균질성을 높인 샘플을 제작하였다. 제조된 샘플유리는 SUS 재질의 판을 이용하여 캐스팅 성형 후 유리두께 4mm로 가공하여 물성을 평가하였다.

[0059] 유리 조성의 화학적 분석은 Rigaku사의 3370 X-ray 형광분석기(XRF)를 이용하여 진행하였고, 광학적 특성은 다음과 같이 측정하였다:

- 가시광선 투과율(LT_A): 370~770nm 파장범위에서 광원 CIE A광 2도 시야에 의해 측정

- 태양에너지 투과율(Te): 300~2500nm 파장범위에서 ISO 9050:2003에 따라 측정

- 자외선 투과율(Tuv): 300~380nm 파장범위에서 ISO 9050:2003에 따라 측정

- 색좌표 L*, a*, b*: 광원 D 65, 10도 시야에서 측정

상기 투과율 측정에는 Perkin-Elmer社 Lambda 950 spectrophotometer를 사용하였고, 상기 색좌표 측정에는 HUNTER LAB 측색계를 사용하였다. 측정 결과를 하기 표 3 및 표 4에 나타내었다.

[표 2] 모유리 조성(중량%)

SiO ₂	71.2
Al ₂ O ₃	0.95
CaO	9.8
MgO	3.8
Na₂O	13.9
K ₂ O	0.15
SO₃	0.2
-	

[0065]

[0060]

[0061]

[0062]

[0063]

[0064]

[표 3] (착색제 성분 함량: 모유리 100 중량부 기준)

구 분	성 분	실시예 1	실시예 2	실시예 3	실시예4	실시예 5	실시예 6
착색제 I	총 Fe ₂ O ₃	1.29	1.41	1.68	1.74	1.55	1.38
착색제 II	CoO	0.0244	0.0248	0.0262	0.0282	0.0222	0.0256
	Se	0.0028	0.0028	0.0031	0.0033	0.0025	0.0023
	Cr ₂ O ₃	0.0202	0.0211	0.016	0.0273	0.0192	0.0255
(CoO+Cr ₂ O ₃)/Se		15.9	16.5	13.8	16.9	16.9	16.9
CoO/Cr ₂ O ₃		1.2	1.2	1.6	1.0	1.2	1.2
FeO/경	§ Fe₂O₃	0.24	0.23	0.26	0.24	0.25	0.24
광학물성	LT _A	13.7	12.9	9.7	7.2	14.7	13.5
	T _e	14.9	13.6	5.9	6.5	9.2	13.3
	Tuv	2.9	1.7	1.0	0.2	1.4	3.0
색상	L*	43.5	42.6	38.7	35.5	45.0	43.8
	a*	-2.0	-2.8	-3.9	-4.2	-4.9	-4.7
	b*	2.5	3.3	2.7	4.5	4.0	0.3

[0066]

[표 4] (착색제 성분 함량: 모유리 100 중량부 기준)

구 분	성 분	비교예1	비교예 2	비교예3	비교예4	비교예 5	비교예 6
착색제 I	총 Fe ₂ O ₃	1.28	1.43	1.65	1.72	1.05	2.26
착색제 II	CoO	0.0244	0.0297	0.0221	0.0298	0.0243	0.028
	Se	0.0025	0.0029	0.0031	0.0022	0.0029	0.0033
	Cr ₂ O ₃	0	0.0152	0.0282	0.0289	0.0205	0.027
(CoO+Cr ₂ O ₃)/Se		9.6	15.5	16.1	26.4	15.4	16.9
CoO/Cr ₂ O ₃		_	2.0	0.8	1.0	1.2	1.0
FeO/총	§ Fe₂O₃	0.24	0.23	0.26	0.24	0.21	0.24
광학물성	LTA	16.4	9.6	11.8	9.1	17.1	4.7
	T _e	16.3	13.2	6.4	6.9	22.1	3.2
	T _{uv}	4.5	1.3	1.7	0.1	5.4	0.2
색상	L*	45.9	38.8	40.8	38.9	44.9	32.5
	a*	-1.5	-2.6	-3.9	-8.1	0.4	-7.8
	b*	-1.5	-1.8	8.7	-2.1	3.1	7.7

[0067]

- [0068] 상기 표 3에서 알 수 있듯이, 실시예 1~6의 유리는 투과 색상의 색좌표 L*, a*, b*에 있어서 짙은 녹회색을 만족하며, 가시광선 투과율(LTA), 태양에너지 투과율(Te) 및 자외선 투과율(Tuv)에 있어서 우수한 저투과 특성을 또한 나타냄으로써, 차량의 선루프, 및 측면 및 후방부 시선차단용 창으로 사용하기에 적합하였다.
- [0069] 반면 비교예 1은 가시광선 투과율(LTA) 및 태양에너지 투과율(Te)이 너무 높아 본 발명이 목적하는 저투과 유리 조성물을 형성할 수 없었고, 강한 청색 착색의 영향으로 투과 색상의 색좌표 b*가 짙은 녹회색 색상을 위한 수 준에 미달되어 짙은 녹회색 색상의 착색 유리 조성물을 형성할 수 없었다.
- [0070] 비교예 2는 강한 청색 착색의 영향으로 투과 색상의 색좌표 b*가 짙은 녹회색 색상을 위한 수준에 미달되어 짙은 녹회색 색상의 착색 유리 조성물을 형성할 수 없었다.
- [0071] 비교예 3은 강한 녹색 착색의 영향으로 투과 색상의 색좌표 b*가 짙은 녹회색 색상을 위한 수준을 초과하여 짙은 녹회색 색상의 착색 유리 조성물을 형성할 수 없었다.
- [0072] 비교예 4는 강한 청록색 착색의 영향으로 투과 색상의 색좌표 a*, b* 모두 짙은 녹회색 색상을 위한 수준에 미달되어 짙은 녹회색 색상의 착색 유리 조성물을 형성할 수 없었다.
- [0073] 비교예 5는 가시광선 투과율(LTA), 태양에너지 투과율(Te) 및 자외선 투과율(Tuv)이 모두 너무 높아 본 발명이 목적하는 저투과 유리 조성물을 형성할 수 없었고, 투과 색상의 색좌표 a*가 짙은 녹회색 색상을 위한 수준을 초과하여 짙은 녹회색 색상의 착색 유리 조성물을 형성할 수 없었다.
- [0074] 비교예 6은 투과 색상의 색좌표 L*, a*, b* 모두 짙은 녹회색 색상을 위한 수준을 만족시키지 못하여 짙은 녹회 색 색상의 착색 유리 조성물을 형성할 수 없었다.