(12) 特許公報(B2) (19) **日本国特許庁(JP)**

(11)特許番号

特許第5104665号

(P5104665)

(45) 発行日 平成24年12月19日(2012, 12, 19) (24) 登録日 平成24年10月12日 (2012.10.12) (51) Int. CL. FΙ G02B 6/122 (2006.01) GO2B 6/12Α GO2B 6/13 (2006.01) GO2B 6/12 Μ

> 請求項の数 9 (全 20 頁)

 (21)出願番号 (22)出願日 (65)公開番号 (43)公開日 審査請求日 	特願2008-221515 (P2008-221515) 平成20年8月29日 (2008.8.29) 特開2010-54943 (P2010-54943A) 平成22年3月11日 (2010.3.11) 平成23年5月19日 (2011.5.19)	(73)特許権者 (74)代理人 (74)代理人 (72)発明者	 ³ 000000295 沖電気工業株式会社 東京都港区虎ノ門一丁目7番12号 100085419 弁理士 大垣 孝 100141955 弁理士 岡田 宏之 岡山 秀彰 東京都港区西新橋三丁目16番11号 沖 電気工業株式会社内
		審査官	林 祥恵
			最終百に続く

(54) 【発明の名称】スポットサイズ変換器

- (57)【特許請求の範囲】
- 【請求項1】
 - 基板の第1主面に配置されるクラッドと、

(a)該クラッド内に直線状に延在して設けられていて、第1側面と、該第1側面に平 行に対向する第2側面と、該第1及び第2側面の双方に垂直であって互いに対向する第3 及び第4側面とを有する直方体形状の主要コア領域、及び

- (b)該主要コア領域の一端面から一体的に延在し、かつ前記クラッドから露出して設 けられた傾斜面を含む光入出力領域を有する第1コアと、
- 前記傾斜面を包含するように前記クラッド上に配置される第2コアとを備えていて、
- 前記第1コアの屈折率を、前記クラッドの屈折率よりも40%以上大きな値とし、
- 前記第2コアの屈折率を、前記クラッドの屈折率を超え、かつ前記第1コアの屈折率未 満の値とし、
- 前記傾斜面は、前記第3及び第4側面の双方に対して垂直な平面であって、前記第1側 面から前記第2側面に至るまでの間を斜めに延在し、
- 前記光入出力領域において、前記第1コアは、前記傾斜面以外の前記第1、第2、第3 及び第4側面の部分が前記クラッドに覆われている
- ことを特徴とするスポットサイズ変換器。
- 【請求項2】

前記第1及び第2側面が、前記基板の前記第1主面に平行に延在していることを特徴と する請求項1に記載のスポットサイズ変換器。

【請求項3】

前記第1及び第2側面が、前記基板の前記第1主面に垂直に延在していることを特徴と する請求項1に記載のスポットサイズ変換器。

【請求項4】

基板の第1主面から突出して配置されるクラッドと、

(a)該クラッド内に直線状に延在して設けられていて、第1側面と、該第1側面に平 行に対向する第2側面と、該第1及び第2側面の双方に垂直であって互いに対向する第3 及び第4側面とを有する直方体形状の主要コア領域、及び

(b)該主要コア領域の一端面から一体的に延在し、かつ前記クラッドから露出して設けられた傾斜面を含む光入出力領域を有する第1コアとを備えた突出部、並びに、

前記傾斜面を包含するように前記クラッド上に配置される第2コアを備え、

前記第1コアの屈折率を、前記クラッドの屈折率よりも40%以上大きな値とし、

<u>前記第2コアの屈折率を、前記クラッドの屈折率を超え、かつ前記第1コアの屈折率未</u>満の値とし、

前記突出部は、前記主要コア領域から前記光入出力領域に向かう方向に沿って、高さが 直線的に減少する前記クラッド由来の傾斜上面を有し、前記傾斜面は、前記傾斜上面と同 一平面に形成されおり、

前記傾斜面は、前記第3及び第4側面の双方に対して垂直な平面であって、前記第1側 面から前記第2側面に至るまでの間を斜めに延在し、前記光入出力領域において、前記第 1コアは、前記傾斜面以外の前記第1、第2、第3及び第4側面の部分が前記クラッドに

20

10

<u>覆われていることを特徴とするスポットサイズ変換器。</u>

【請求項5】

<u>前記突出部の前記傾斜上面を有する前記クラッドに接続する、均一な厚みの前記クラッ</u>ドと、

<u>該均一な厚みのクラッド中に延在する前記主要コア領域とを含む基部領域を更に含むこ</u>とを特徴とする請求項4に記載のスポットサイズ変換器。

【請求項6】

<u>前記第1コアが、前記第1主面に垂直な方向に関して、前記第2コアの中心領域に位置</u> していることを特徴とする請求項1~5の何れか一項に記載のスポットサイズ変換器。

【請求項7】

30

前記クラッドをSiO₂とし、及び前記第1コアをSiとすることを特徴とする請求項 1~6のいずれか一項に記載のスポットサイズ変換器。

【請求項8】

請求項2に記載のスポットサイズ変換器の製造方法であって、

前記基板の前記第1主面に配置された前記クラッド中に前記第1コアが埋め込まれた前 駆体を準備し、

当該前駆体の露出したクラッドの表面に、形成されるべき前記光入出力領域の前記傾斜 面の直上領域における厚みが、前記第1コアの延在方向に沿って、予め定められた厚みか ら線形的に厚みが0にまで変化するエッチングマスクを設ける第1工程と、

該エッチングマスクをマスクとして、前記前駆体の露出した前記表面から前記第1コア 40 の下側に延在するクラッドに至るまで異方性エッチングを行うことにより、前記第3及び 第4側面の双方に対して垂直な平面であって、前記第1側面から前記第2側面に至るまで の間を斜めに切断した傾斜面が延在する領域としての前記光入出力領域を形成する第2工 程と、

前記クラッドと前記第1コアとの接触領域を除いた光入出力領域を埋め込むように、該 クラッド上に前記第2コアを形成する第3工程とを含むことを特徴とするスポットサイズ 変換器の製造方法。

【請求項9】

請求項3に記載のスポットサイズ変換器の製造方法であって、 前記基板の前記第1主面に配置された前記クラッド中に前記第1コアが埋め込まれた前 50

(2)

駆体を準備し、

当該前駆体の露出したクラッドの表面において、前記第1コアの前記第3及び第4側面 に対応する領域を斜めに横切るようにエッチングマスクを設ける第1工程と、

当該エッチングマスクをマスクとして、前記前駆体の露出した前記表面から前記第1コ アの下側に延在するクラッドに至るまで異方性エッチングを行うことにより、前記第3及 び第4側面の双方に対して垂直な平面であって、前記第1側面から前記第2側面に至るま での間を斜めに切断した切断面が延在する領域としての前記光入出力領域を形成する第2 工程と、

前記クラッドと第1コアとの接触領域を除いた前記光入出力領域を埋め込むように、該 クラッド上に前記第2コアを形成する第3工程とを含むことを特徴とするスポットサイズ ¹⁰ 変換器の製造方法。

【発明の詳細な説明】

【技術分野】

[0001]

この発明は、Si細線導波路と光ファイバやレーザーダイオードとの間の光接続に用いられるスポットサイズ変換器に関する。

【背景技術】

[0002]

近年、Siを導波路材料として用いる技術が注目を集めている。これらの技術の中で、 Siをコアとして用い、及び、Siよりも非常に屈折率の小さいSiO₂をクラッドとし 20 て用いた導波路を、特に、Si細線導波路と称する。

【0003】

Si細線導波路は、コアとクラッドとの屈折率差が極めて大きいために、光をコアに強 く閉じ込めることが可能である。その結果、Si細線導波路を用いることにより、例えば、曲げ半径を1µm程度まで小型化できる等、非常に微細なサブミクロンオーダーの寸法の光学装置を作成することができる。

【0004】

このことから、Si細線導波路は、Si電子デバイスと光デバイスとを同一のチップ上 で融合することができる可能性を秘めた技術として注目されている。

【0005】

30

ところで、Si細線導波路と光ファイバ等の外部光素子との光接続を行うためには、ス ポットサイズ変換器が必要となる。これは、Si細線導波路のコア径が、一般的な光ファ イバのコア径よりも非常に小さいためである。

[0006]

このようなスポットサイズ変換器としては、従来からいくつもの提案がなされている。 例えば、光導波路の幅をテーパ状に小さくしていくスポットサイズ変換器が提案されてい る(例えば、特許文献1~4参照)。また、光導波路の厚みをテーパ状に小さくしていく スポットサイズ変換器が提案されている(例えば、特許文献5~6参照)。また、拡大し たスポットを外部の光学装置に結合するために、コアを2重にしたものが提案されている (例えば、特許文献7参照)。 【特許文献1】特開2002-162528号公報 【特許文献2】特開2000-235128号公報

40

【特許文献1】特開2002-162528号公報 【特許文献2】特開2000-235128号公報 【特許文献3】米国特許第668401158日 【特許文献4】特開2003-207684号公報 【特許文献5】特開平9-15435号公報 【特許文献6】特開2005-326876号公報 【特許文献7】特開平7-639355号公報 【発明の開示】 【発明が解決しようとする課題】 【0007】

しかし、これらの従来のスポットサイズ変換器は、偏波依存性が大きいという問題点が あった。また、これらのスポットサイズ変換器は作成が非常に難しいという問題点があっ た。

(4)

【 0 0 0 8 】

この発明は、これらの問題点に鑑みなされたものである。従って、この発明の目的は、 偏波依存性がなく、しかも容易に製造することができる構造を有するスポットサイズ変換 器及びその製造方法を提供することにある。

【課題を解決するための手段】

[0009]

上述した目的の達成を図るために、この発明の発明者は、断面矩形状の第1コアを用い ¹⁰ た。そして、この第1コアの互いに対向する一対の側面間を斜めに切断することにより、 先端における第1コアの幅又は厚みが0となるような傾斜面としての光入出力領域を形成 した。このようにすることにより、スポットサイズ変換器に入出力される光を偏波無依存 にできることに想到した。

[0010]

また、光入出力領域を、第1コアとクラッドとが一部の側面で接触するような構造とし、さらに、第2コアを、第1コアとクラッドとの間の非接触の側面を含んで光入出力領域 を包含するよう形成することにより、スポットサイズ変換器が従来よりも製造容易となる ことに想到した。

[0011**]**

従って、この発明のスポットサイズ変換器は、基板の第1主面に配置されるクラッドと 、光入出領域を備えた第1コアと、第2コアとを備えている。

【0012】

ここで、第1コアは、(a)クラッド内に直線状に延在して設けられていて、第1側面 と、第1側面に平行に対向する第2側面と、第1及び第2側面の双方に垂直であって互い に対向する第3及び第4側面とを有する直方体形状の主要コア領域、及び(b)主要コア 領域の一端面から一体的に延在し、かつクラッドから露出して設けられた<u>傾斜面を含む</u>光 入出力領域を有する。

【0013】

また、第2コアは<u>、傾</u>斜面を包含するようにクラッド上に配置されている。 【0014】

ここで、第1コアの屈折率を、クラッドの屈折率よりも40%以上大きな値とし、第2 コアの屈折率を、クラッドの屈折率を超え、かつ第1コアの屈折率未満の値とする。

【 0 0 1 5 】

さらに、<u>傾斜面</u>は、第3及び第4側面の双方に対して垂直な平面であって、第1側面か ら第2側面に至るまでの間を斜めに延在し、光入出力領域において、第1コアは、傾斜面 以外の第1、第2、第3及び第4側面の部分がクラッドに覆われている。

[0016]

このスポットサイズ変換器において、第1及び第2側面が、基板の第1主面に平行に延 在していることが好ましい。

【0017】

このスポットサイズ変換器において、第1及び第2側面が、基板の第1主面に垂直に延 在していることが好ましい。

<u>さらに、この発明の別のスポットサイズ変換器は、基板の第1主面から突出して配置さ</u>れるクラッドと第1コアとを備えた突出部、及び第2コアを備える。

ここで、第1コアは、(a)クラッド内に直線状に延在して設けられていて、第1側面 と、第1側面に平行に対向する第2側面と、第1及び第2側面の双方に垂直であって互い に対向する第3及び第4側面とを有する直方体形状の主要コア領域、及び(b)主要コア 領域の一端面から一体的に延在し、かつクラッドから露出して設けられた傾斜面を含む光 入出力領域を有する。また、第2コアは、傾斜面を包含するようにクラッド上に配置され 20

30

る。

<u>そして、第1コアの屈折率を、クラッドの屈折率よりも40%以上大きな値とし、第2</u> コアの屈折率を、クラッドの屈折率を超え、かつ第1コアの屈折率未満の値とする。

<u>また、突出部は、主要コア領域から光入出力領域に向かう方向に沿って、高さが直線的</u> に減少するクラッド由来の傾斜上面を有し、傾斜面は、傾斜上面と同一平面に形成されて いる。

さらに、傾斜面は、第3及び第4側面の双方に対して垂直な平面であって、第1側面か ら第2側面に至るまでの間を斜めに延在し、光入出力領域において、第1コアは、傾斜面 以外の第1、第2、第3及び第4側面の部分がクラッドに覆われている。

<u>また、このスポットサイズ変換器において、突出部の傾斜上面を有するクラッドに接続</u> <u>する、均一な厚みのクラッドと、均一な厚みのクラッド中に延在する主要コア領域とを含</u> む基部領域を更に含むことが好ましい。

<u>また、第1コアが、第1主面に垂直な方向に関して、第2コアの中心領域に位置してい</u>ることが好ましい。

【0018】

さらに、このスポットサイズ変換器において、クラッドをSiO₂とし、及び第1コア をSiとすることが好ましい。

【0019】

この発明のスポットサイズ変換器の第1の製造方法は、基板の第1主面に配置されたクラッド中に第1コアが埋め込まれた前駆体を準備する。

【0020】

そして、前駆体の露出したクラッドの表面に、形成されるべき光入出力領域の傾斜面の 直上領域における厚みが、第1コアの延在方向に沿って、予め定められた厚みから線形的 に厚みが0にまで変化するエッチングマスクを設ける第1工程と、エッチングマスクをマ スクとして、前駆体の露出した表面から第1コアの下側に延在するクラッドに至るまで異 方性エッチングを行うことにより、第3及び第4側面の双方に対して垂直な平面であって 、第1側面から第2側面に至るまでの間を斜めに切断した傾斜面が延在する領域としての 光入出力領域を形成する第2工程と、クラッドと第1コアとの接触領域を除いた光入出力 領域を埋め込むように、クラッド上に前記第2コアを形成する第3工程とを含む。

【0021】

また、この発明のスポットサイズ変換器の第2の製造方法は、基板の第1主面に配置されたクラッド中に第1コアが埋め込まれた前駆体を準備する。

[0022]

そして、前駆体の露出したクラッドの表面において、第1コアの第3及び第4側面に対応する領域を斜めに横切るようにエッチングマスクを設ける第1工程と、エッチングマスクをマスクとして、前駆体の露出した表面から第1コアの下側に延在するクラッドに至るまで異方性エッチングを行うことにより、第3及び第4側面の双方に対して垂直な平面であって、第1側面から前記第2側面に至るまでの間を斜めに切断した傾斜面が延在する領域としての光入出力領域を形成する第2工程と、クラッドと第1コアとの接触領域を除いた光入出力領域を埋め込むように、クラッド上に第2コアを形成する第3工程とを含む。 【発明の効果】

【0023】

上述したこの発明の構成によれば、入出力される光に関して、偏波無依存なスポットサ イズ変換器が得られるとともに、その製法も従来よりも容易となる。

【発明を実施するための最良の形態】

【0024】

以下、図面を参照して、この発明の実施の形態について説明する。なお、各図は、各構 成要素の形状、大きさ及び配置関係について、この発明が理解できる程度に概略的に示し たものにすぎない。また、以下、この発明の好適な構成例について説明するが、各構成要 素の材質及び数値的条件などは、単なる好適例にすぎない。従って、この発明は、以下の 30

20

実施の形態に何ら限定されない。また、各図において、共通する構成要素には同符号を付し、その説明を省略することもある。

【0025】

(実施の形態1)

図1~図5を参照して、実施の形態1のスポットサイズ変換器及びその製造方法について説明する。図1-Aは、スポットサイズ変換器の要部の部分的な構造を概略的に示す斜視図である。図1-Bは、図1-AのI-I線に沿って取った断面図である。図1-Cは、スポットサイズ変換器の要部の全体像を概略的に示す斜視図である。図2(A)は、図1-CのC-C線に沿って取った切断端面図である。図2(B)は図1-CのD-D線に沿って取った切断端面図である。

10

【0026】

(構造)

図1を参照すると、スポットサイズ変換器10は、クラッド14と、光入出領域16及 び主要コア領域17を備えた第1コア18と、第2コア20とを備えている。

【 0 0 2 7 】

基板12は、好ましくは、例えば矩形状の平行平板とする。また、基板12を構成する 材料は、好ましくは、例えば単結晶Siとする。

【0028】

クラッド14は、基板12の第1主面12a上の全面に渡って配置されている。クラッド14を構成する材料は、好ましくは、例えば、SiO₂とする。このクラッド14内に ²⁰ 第1コア18が直線的に延在して設けられている。

【0029】

なお、ここで、後述する第1コア18の延在する方向は、光伝播方向に平行な方向であって、「長さ方向」と称し、基板12の第1主面12a内で、この長さ方向に直交する方向を「幅方向」と称し、及び基板12の第1主面12aに垂直な方向を「厚み方向」と称する。

[0030]

以下、このクラッド14と第1コア18とにつき詳細に説明する。

【0031】

この説明に先立ち、実施の形態1の構成例では、構造的に見た場合、スポットサイズ変 30 換器10は、先端領域Aと基部領域Bとに区画されるものとする(図1-A参照)。 【0032】

先端領域Aは、スポットサイズ変換器10の先端部分に対応する領域であり、外部の光 学装置(例えば、光ファイバやLD等)との間でスポットサイズを変換し、光をスポット サイズ変換器10に入出力する機能を有する。先端領域Aには、後述するように、第1コ ア18の光入出力領域16と、この領域と連続する側の主要コア領域17の部分が設けら れているとともに、後述する第2コア20が設けられている。

【 0 0 3 3 】

基部領域 B は、スポットサイズ変換器10の基部に対応する領域であり、先端領域 A で スポットサイズを変換された光を伝播する機能を有する。詳しくは後述するが、基部領域 ⁴⁰ B は、従来公知の S i 細線光導波路の構造として形成されており、第1コア18の主要コ ア領域17の出力側の部分がクラッド14に埋め込まれた構造とされている。 【0034】

クラッド14は、先端領域Aと基部領域Bとで構造が異なっている。先端領域Aには、 第1コア18の光入出力領域16と主要コア領域17の前端側部分が含まれており、基部 領域Bには、主要コア領域17の後端側部分が含まれている。

【0035】

基部領域 B においては、クラッド14は、均一な厚みで形成されており、内部に第1コ ア18の主要コア領域17の後端側部分が埋め込まれている。

[0036]

それに対し、先端領域Aにおいては、クラッド14は、傾斜した上面を有し、かつ横断 面形状が矩形状の突出部19として形成されていて、第1コア18、すなわち光入出側の 周辺領域の当該コア18に沿った領域以外の領域において、厚みが基部領域Bよりも一様 に薄くなっている。

【0037】

この突出部19は、先端領域Aの第1コア18に沿った上述の周辺領域において第1コ ア18の光入出力領域16と前端側部分を包含したまま、光伝播方向に沿って基部領域B 側に向かって厚みが直線的に徐々に増大していくように形成されている。つまり、第1コ ア18に沿った周辺領域においては、第1コア18を包含した突出部19は、周囲の先端 領域Aの平坦面よりも高さ方向に突出するように形成されている。

【0038】

一方、幅方向に関しては、第1コア18に沿った周辺領域において、この突出部19は 、第1コア18の幅(幅方向に測った長さ)よりも広い、一定の幅を有している。その結 果、幅方向について見れば、クラッド14の中央部に第1コア18が埋め込まれるように 形成されている。

【0039】

また、第1コア18に沿った周辺領域において、高さ方向及び長さ方向に関しては、この突出部19は、第1コア18を包含したまま、基部領域Bのクラッド14の頂面の縁から光入出力側へと高さが低減しているが、その幅は一定である。その結果、先端領域Aにおいては、クラッド14の突出部19の傾斜上面19aから第1コア18の光入出力領域16の傾斜面18aは、突出部19の傾斜上面19a内に含まれている。

20

30

40

10

[0040]

なお、第1コア18と基板12の第1主面12aとの間の部分のクラッド14の厚み(図2のUnc)は、第1コア18を伝播する光が基板12に逃げることを防ぐために、好 ましくは、例えば約1μm以上の値とすることが好ましい。

[0041]

既に説明した通り、第1コア18は、クラッド14内に設けられていて、光入出力領域 16と主要コア領域17とを備えていて、クラッド14内を光の伝播方向に直線的に延在 している。光入出力領域16は、縦断面形状が三角形状の直角三角形柱の形をしている。 主要コア領域17は、基板12の第1主面12aに平行に延在する第1側面18₁と、こ の第1側面18₁に平行に対向する第2側面18₂と、これら第1及び第2側面18₁及 び18₂の双方に垂直であって互いに対向する第3及び第4側面18₃及び18₄とを有 していて、光伝播方向に垂直な横断面形状が矩形状の直方体形状に形成されている。なお 、この第1側面18₁は、光入出力領域16の底面を形成しており、第3及び第4側面1 8₃及び18₄は、光入出力領域16の両側面を形成している。

【0042】

上述した説明からも明らかなように、先端領域Aにおいては、第1コア18の先端部は 、言わば、先端まで尖ったクサビ状、すなわち直角三角柱状に形成されている。すなわち 、先端領域Aにおいては、第1コア18は、一定の幅を保ったまま、厚みが線形的に0(ゼロ)となるまで減少するように形成されている。

【0043】

ここで、図2を参照して、第1コア18の第1~第4側面18₁~18₄の位置関係に ついてより詳細に説明しておく。

[0044]

第1側面18₁は、基板12の第1主面12aに平行に延在する2側面18₁及び18 2のうち、第1主面12aから垂直に測った距離が短い方の側面とする。同様に第2側面 18₂は、第1主面12aに平行に延在する2側面18₁及び18₂のうち、第1主面1 2aから垂直に測った距離が長い方の側面とする。

[0045]

第3側面18₃は、基板12の第1主面12aに垂直な2側面18₃及び18₄のうち、図1の奥側に位置する側面とする。同様に、第4側面18₄は、第1主面12aに垂直な2側面18₃及び18₄のうち、図1の手前側に位置する側面とする。 【0046】

第2コア20は、光入出力領域16の傾斜面18aを包含するようにクラッド14上に 配置されている。第2コア20は、第1コア18の屈折率よりも小さく、クラッド14の 屈折率よりも大きな屈折率を持つ材料、好ましくは、例えばポリイミド樹脂で形成されて いる(図1-C、図2参照)。

【0047】

第2コア20は、ほとんどの部分が先端領域Aに位置しており、光入出力領域16及び ¹⁰ 光入出力領域16の周囲のクラッド14を包含するように略直方体状に形成されている。 そして、幅方向に見た場合、この直方体の中央部に光入出力領域16が位置するように形 成されている。

【0048】

第2コア20は、外部の光学装置との間で光の入出射を行う平面である光入出射端面2 0aを備えている。この光入出射端面20aは、光伝播方向に垂直に延在しており、上述 した傾斜面18aの尖った先端部に対向して配置されている。

【0049】

また、第2コア20の光入出射端面20aの反対側の端部は、本質的には先端領域Aと 基部領域Bとの境界にあればよい。しかし、製造工程上の理由により、端部が基部領域B 20 にはみ出してしまうが、本質的なことではない。

【0050】

次に、第1コア18,クラッド14及び第2コア20の屈折率の関係について説明する。第1コア18の屈折率をn1、クラッド14の屈折率をn2、及び第2コア20の屈折率をn3とするとき、n1,n2及びn3は、以下の関係を同時に満足するものとする。 【0051】

(1)n1 1.4n2

(2) n 1 > n 3 > n 2

つまり、第1コア18の屈折率n1を、クラッド14の屈折率n2よりも40%以上大きな値とし、及び、第2コア20の屈折率n3を、クラッド14の屈折率n2を超え、か つ第1コア18の屈折率n1未満の値とする。

30

【0052】 (動作)

次に、図1及び図2を参照して、スポットサイズ変換器10の動作について説明する。 なお、以下の説明は、スポットサイズ変換器10から外部の光学装置(例えば、光ファイ バやLD)へと光を結合する場合の例であるが、逆に、外部の光学装置からスポットサイ ズ変換器10へと光を結合する場合にも同様に適用可能である。

[0053]

外部の光学装置へと結合されるべき光は、基部領域Bの第1コア18から、先端領域A の第1コア18へと伝播してくる。ところで、先端領域Aの光入出力領域16においては ⁴⁰ 、上述したように、光伝播方向前方に向かうにつれて、第1コア18の厚みが徐々に減少 している。つまり、光入出力領域16においては、厚みの減少とともに、第1コア18の 等価屈折率が0(ゼロ)となるまで減少する。

【0054】

その結果、光入出力領域16においては、光伝播方向前方に向かうにつれて、第1コア 18の光の閉じ込め能力が低下していく。よって、光入出力領域16を前方に伝播する光 のスポットサイズは、第1コア18の光閉じ込め能力の低下に反比例するように、徐々に 大きくなっていく。

【0055】

ところで、光入出力領域16の先端部では、第1コア18の厚みが0(ゼロ)となる。 50

したがって、この厚み0(ゼロ)の先端部において、光のスポットサイズは無限大に大き くなることとなり、原理的には、外部の光学装置との間でスポットサイズを整合させるこ とが困難となる。

【 0 0 5 6 】

この困難を解決するのが、第2コア20である。上述のように第2コア20の屈折率は 、第1コア18とクラッド14との間の値に設定されているので、スポットサイズが無限 大に広がろうとする光を、第2コア20内に閉じ込めることができる。

【0057】

つまり、光のスポットサイズを第2コア20の光入出射端面20aの大きさに制限する ことができる。よって、第2コア20の光入出射端面20aの寸法を、光が結合されるべ ¹⁰ き外部の光学装置の光入出力部の寸法と同等にしておくことにより、光のスポットサイズ を変換した上で、外部の光学装置へと光を結合することができる。

【0058】

(シミュレーション)

続いて、主に図2及び図3を参照して、スポットサイズ変換器10のシミュレーション 結果について説明する。図3は、シミュレーションの説明に供するグラフである。 【0059】

図3において、縦軸は光の結合効率(無次元)を表わしている。また、横軸は光入出力 領域16の、長さLをL=2^N(µm)と表わしたときの、Nの値を示している。例を挙 げて、より詳細に説明すると、N=1の場合には、L=2¹=2(µm)、及びN=3の 場合には、L=2³=8(µm)となる。なお、光入出力領域16の長さLの値は、横軸 の目盛りの下に括弧付きの数字で示してある。

[0060]

また、このシミュレーションは、外部の光学装置からスポットサイズ変換器10へ結合 する光の結合効率をセミベクトルBPM(beam propagating meth od)法に基づいて計算したものである。より詳細には、外部の光学装置から一定強度の 光を、後述するように寸法を変化させたスポットサイズ変換器10に対して結合させ、そ のとき基部領域Bの第1コア18において求められた光の強度から、結合効率を計算した ものである。

[0061]

シミュレーション結果の説明に先立ち、まずシミュレーションの諸元について以下に列 記する。

【0062】

(1)計算に用いた光の波長は1.55µmとする。

[0063]

(2)基部領域Bにおける第1コア18の横断面の寸法は、高さが0.3µm及び幅が 0.3µmとする。つまり、第1コア18の光伝播方向に垂直な横断面形状は正方形状と する。

[0064]

(3)第1コア18の第2側面18₂上に延在するクラッド14の厚みOvcは0.5⁴⁰ µmとする。

【0065】

(4)単結晶Siを材料とする第1コア18の屈折率n1は、3.5とする。SiO₂ を材料とするクラッド14の屈折率n2は、1.46とする。また、ポリイミドを材料と する第2コア20の屈折率n3は、1.6とする。

【0066】

(5) 光入出力領域16において、第1コア18を含むクラッド14の幅は、1.5µ mとする。第1コア18の幅が0.3µmであることから、第1コア18は、幅方向に関 して0.6µmの厚みのクラッド14により両側から挟まれていることとなる。 【0067】

(6)第2コア20の寸法は、幅が2µm及び高さが2µmとする。

【0068】

続いて、図3を参照して、シミュレーションの結果を説明する。図中には、第1コア1 8の第1側面18,0下側に存在するクラッド14の厚みUnc(第1側面18,と基板の第1主面12aとの間の距離)を変えた3本の曲線が描かれている。曲線Iは、Uncが0μmの場合を示している。曲線IIは、Uncが0.5µmの場合を示している。曲線IIIは、Uncが1µmの場合を示している。

【0069】

図3より、Uncが1µm(曲線III)に近づくほど、つまり、高さ方向に関して、 第1コア18が第2コア20の中心部に近づくほど、光入出力領域16の長さLが短くて も結合効率が高くなる傾向が読み取れる。特に、Unc=1µm(曲線III)の場合に は、実用上充分な約90%の最大結合効率が得られることが分かる。このときの光入出力 領域16の長さLは、16µm(N=4)であり、この長さも、実用上充分に短い長さで ある。

[0070]

このシミュレーションには現されてはいないが、この実施の形態のスポットサイズ変換器10は、偏波依存性が従来よりも各段に抑えられる。これは、以下の理由により。 【0071】

すなわち、第1コア18を伝播するTE波は、第1コア18の厚みが薄くなるとTM波 に対して等価屈折率が大きくなる。したがって、外側の第2コア20を伝播する光が感じ る低い等価屈折率に、第1コア18の厚みが非常に薄くなるまで一致しない。その結果、 TE波が第2コア20に移行するのはテーパ16の先端部ということになる。従来の技術 のように、テーパ16の先端が欠けていると、TE波は充分コア18から20に移行しな い。しかし、この実施の形態のスポットサイズ変換器10では、光入出力領域16の先端 が充分薄く出来るので、TE/TM両波とも効率よく外側コアへ光を移行することができ る。

[0072]

(製造方法)

次に、図4~図5を参照して、スポットサイズ変換器10の製造方法について説明する 。なお、図4(A)は、スポットサイズ変換器10の製造工程の一部工程段階を抜き出し て示す平面図である。図4(B)は、図4(A)のC-C線に沿った切断端面図である。 図4(C)は、スポットサイズ変換器10の製造工程の一部工程段階を抜き出して示す平 面図である。図4(D)は、図4(C)の側面図である。図5(A)は、スポットサイズ 変換器10の製造工程の一部工程段階を抜き出して示す平面図である。図5(B)は、図 5(A)の側面図である。図5(C)は、スポットサイズ変換器10の製造工程の一部工 程段階を抜き出して示す平面図である。図5(C)の側面図である。 【0073】

(1)準備工程(図4(A)及び(B)参照)

まず、基板12の第1主面12aに配置されたクラッド14中に第1コア18が埋め込まれた前駆体22を準備する。

40

10

20

30

【0074】

より詳細には、従来周知のSOI(Silicon on insulator)基板 を利用して前駆体 2 2 を形成する。SOI基板は、単結晶シリコンを材料とする下層と、 SiO₂を材料とする中間層と、単結晶 Siを材料とする上層とがこの順序で積層されて いる。

【0075】

この上層の表面において、後に第1コア18となるべき部分にエッチングマスクを施した上で、SOI基板を公知の方法でドライエッチする。これにより、後に第1コア18となるべき部分以外が除去された構造体が形成される。または、この上層の表面において、後に第1コア18となるべき部分に耐酸化マスクを施した上で、SOI基板を公知の方法

で酸化する。これにより、後に第1コア18となるべき部分以外がSiO2に酸化された 構造体が形成される。

【0076】

さらに、この構造体の表面の全面に公知のCVD(Chemical Vapor D eposition)法により、SiO₂膜を堆積し、堆積終了後に得られた構造体の表 面を平坦化することにより、図4(A)及び(B)に示したような前駆体22が得られる

[0077]

(2)第1工程(図4(C)及び(D)参照)

続いて、前駆体22の露出したクラッド14の表面14aにおいて、第1コア18の第 ¹⁰ 1及び第2側面18₁及び18₂に対応する領域に、第1コア18の延在方向に沿って、 予め定められた厚みから徐々に厚みが0にまで変化するエッチングマスクを設ける第1工 程を行う。

【0078】

より詳細には、エッチングマスクとして用いる感光性樹脂Rを前駆体22のクラッド表面14aの全面に一様な厚さで設ける。

【0079】

次に、この感光性樹脂Rの露光及び現像を行う。この露光の際には、感光性樹脂R上の 位置により露光光の照射量を自在に変更することができる、いわゆるグレーマスクを用い 、現像後に、感光性樹脂Rの厚みを場所により異ならせる。

20

30

より具体的には、次に列記するように、以下の3領域において、感光性樹脂Rの厚みを 異ならせる。

[0081]

(i)基部領域 B に対応する領域 B ':感光性樹脂 R を一様な最大の厚みで残留させる

[0082]

(ii) 光入出力領域16を除く先端領域Aに対応する領域A':感光性樹脂Rの厚み
 を0(ゼロ)とする。

【 0 0 8 3 】

(i i i) 先端領域 A のうち光入出力領域 1 6 に対応する領域 1 6 ' : 基部領域 B から 先端領域 A にかけて、第 1 コア 1 8 の延在方向に沿って、感光性樹脂 R の厚みを、最大値 から 0 (ゼロ)まで、直線的に変化させる、いわゆるグレーマスクを用いる。

[0084]

その結果、図4(C)及び(D)に示すように、後に光入出力領域16となるべき領域 16'において、徐々に厚みが変化し、かつ、基部領域Bにおいて厚みが一定の感光性樹 脂Rが前駆体22のクラッド表面14aに設けられた構造体が形成される。

【0085】

なお、上述した感光性樹脂Rとしては、紫外線硬化型のアクリル樹脂、エポキシ樹脂、 及びポリイミド樹脂等を使用することができる。

【0086】

また、光入出力領域16となるべき領域16′に適用するグレーマスクとしては、基部 領域B側から先端領域Aにかけて、露光光(例えば、紫外線)に対する透明度が100% ~0%の間で直線的に変化するグラデーション構造を有するガラス板等を使用することが できる。なお、グレーマスクの詳細については、例えば、特開2004-303325号 公報等を参照いただきたい。

【0087】

(2)第2工程(図5(A)及び(B)参照)

続いて、エッチングマスク(感光性樹脂R)をマスクとして、前駆体22の露出した表面から第1コア18の下側に延在するクラッド14に至るまで異方性エッチングを行うこ

50

とにより、第3及び第4側面18₃及び18₄の双方に対して垂直な平面であって、第1 側面18₁から第2側面18₂に至るまでの間を斜めに切断した傾斜面18aが延在する 領域としての光入出力領域16を形成する。

(12)

[0088]

より詳細には、上述した感光性樹脂Rをエッチングマスクとして、従来公知のRIE(Reactive Ion Etching)法により、図4(C)及び(D)に示した 構造体の、感光性樹脂Rが設けられた表面側から異方性エッチングを行う。これにより、 先端領域Aでは、クラッド14及び第1コア18がエッチングされていく。

【0089】

ところで、光入出力領域16となるべき領域16 'においては、感光性樹脂Rの厚みが ¹⁰ 変化しているので、RIE法によるエッチング深さは、感光性樹脂Rの厚みとともに変化 する。つまり、感光性樹脂Rの厚みが0の点(光入出力領域16の先端)では、エッチン グ深さが最も深く、及び感光性樹脂Rの厚みが基部領域Bと等しい点では、エッチング深 さが最も浅くなる。

[0090]

その結果、感光性樹脂Rの厚みが変化している領域においては、第1コア18は、第1 側面18₁から第2側面18₂に至るまでの間が斜めに切断され、平面状の傾斜面18a が形成される。そして、常法に従い残留したエッチングマスクを除去する。 【0091】

これにより、先端領域Aに、第3及び第4側面18₃及び18₄の双方に対して垂直な 平面であって、第1側面18₁から第2側面18₂に至るまでの間を斜めに切断した傾斜 面18 aが延在する領域としての光入出力領域16が形成される。

[0092]

(3)第3工程(図5(C)及び(D)参照)

続いて、クラッド14と第1コア18との接触領域を除いた光入出力領域16を埋め込むように、クラッド14上に前記第2コア20を形成する。

【0093】

より詳細には、公知のフォトリソグラフィー法を利用して、第2コア20を形成する。 より具体的には、第2工程終了後に得られる構造体の全面に、所定の屈折率n3を有する 紫外線硬化樹脂を第2コア20の厚みまで塗布する。

【0094】

その後、フォトリソグラフィーにより、第2コア20となるべき領域のみの露光を行う 。最後に、未露光の紫外線硬化樹脂を除去することにより、紫外線硬化樹脂が硬化した領 域としての第2コア20を形成する。

【0095】

これにより、クラッド14と第1コア18との接触領域を除いた光入出力領域16(光 入出力領域16の傾斜面18a)を埋め込むように、クラッド14上に第2コア20が形 成される。

[0096]

以上説明したように、図4~図5に示した工程を行うことにより、スポットサイズ変換 ⁴⁰ 器10が形成される。

【0097】

(効果)

以下、この実施の形態のスポットサイズ変換器10及びその製造方法の奏する効果について説明する。

【0098】

(1)この実施の形態のスポットサイズ変換器10は、光入出力領域16の先端部の厚 みを0(ゼロ)となるまで尖らせている。その結果、上述した理由により、スポットサイ ズ変換器10は、偏波依存性を解消することができる。

[0099]

20

(2) また、この実施の形態のスポットサイズ変換器10は、上述したシミュレーショ ンの結果より明らかなように、外部の光学装置との間で、実用上充分に短い長さで、実用 上充分な結合効率を得ることができる。

(13)

[0100]

(3) また、この実施の形態のスポットサイズ変換器10は、全ての製造工程で従来周 知の半導体製造技術を応用できるので、作成が非常に容易である。

(実施の形態2)

続いて、図6~図10を参照して実施の形態2のスポットサイズ変換器30及びその製 10 造方法について説明する。図6は、スポットサイズ変換器30の概略的な構造を示す斜視 図である。図7は、図6のC-C線に沿って取った切断端面図である。

[0102]

(構造)

図6を参照すると明らかなように、この実施の形態のスポットサイズ変換器30は、実 施の形態1のスポットサイズ変換器10と、光入出力領域16の構造が異なっている以外 は、同様に構成されている。従って、以下の説明においては、図1と同様の構成要素には 同符号を付し、その説明を省略するとともに、実施の形態1のスポットサイズ変換器10 との相違点を中心に説明する。

[0103]

20 図6と図1とを比較すると、スポットサイズ変換器30においては、第1コア34の第 1~第4側面341~34⊿の配置がスポットサイズ変換器10とは異なっていることが 分かる。

[0104]

すなわち、スポットサイズ変換器10及び30は、光入出力領域16において、傾斜面 18a及び34aの向きが異なっている。より詳細には、スポットサイズ変換器10では 、第1コア18の傾斜面18aの法線は、基板12の第1主面12aに垂直な面内に存在 していたのに対し、スポットサイズ変換器30では、第1コア34の傾斜面34aの法線 は、基板12の第1主面12aに平行な面内に存在している。

[0105]

これは、スポットサイズ変換器10では、第1及び第2側面18,及び18,が基板1 2の第1主面12aに対して平行に延在していたのに対し、スポットサイズ変換器30で は、第1及び第2側面34,及び34,が基板12の第1主面12aに対して垂直に延在 しているためである。

[0106]

この点を除いて、スポットサイズ変換器10及び30は、ほぼ同一の構造を有している

[0107]

(シミュレーション)

続いて、主に、図7及び図8を参照して、スポットサイズ変換器30のシミュレーショ 40 ン結果について説明する。図8は、シミュレーションの説明に供するグラフである。 [0108]

図8において、縦軸が光の結合効率(無次元)を表わしている。また、横軸が、光入出 力領域16の、長さLをL=2[№](μm)と表わしたときの、Nの値を示している。例を 挙げて、より詳細に説明すると、N=1の場合には、L=2¹=2(µm)、及びN=3 の場合には、L=2³=8(µm)となる。なお、光入出力領域16の長さLの値は、横 軸の目盛りの下に括弧付きの数字で示してある。

[0109]

このシミュレーションは、実施の形態1の場合と同様に、セミベクトルBPM法を用い て行われている。さらに、実施の形態1の場合と同様に、外部の光学装置から一定強度の 光を、後述するように寸法を変化させたスポットサイズ変換器30に対して結合させ、そ

(14) JP 5104665 B2 2012.12.19 のとき基部領域Bの第1コア34の位置において求められた光の強度から、結合効率を計 算したものである。 [0110]シミュレーション結果の説明に先立ち、まずシミュレーションの諸元について以下に列 記する。 [0111](1)計算に用いた光の波長は1.55µmとする。 [0112](2) 基部領域 B における第1コア34の横断面の寸法は、高さが0.3 μ m 及び幅が 0.3µmとする。つまり、第1コア34の横断面形状は正方形とする。 [0113](3) 第1コア34の第4側面34』上に延在するクラッド14の厚みOvcは0.5 µmとする。 [0114](4)単結晶Siを材料とする第1コア34の屈折率n1は、3.5とする。SiO。 を材料とするクラッド14の屈折率n2は、1.46とする。また、ポリイミドを材料と する第2コア20の屈折率n3は、1.6とする。 [0115](5) 第2コア20の寸法は、幅が2µm及び高さが2µmとする。 [0116]続いて、図8を参照して、シミュレーションの結果を説明する。図中には、第1コア3 4 の第 3 側面 3 4 。の下側に存在するクラッド 1 4 の厚み Unc(第 4 側面 3 4 』と基板 の第1主面12aとの間の距離)を変えた3本の曲線が描かれている。曲線Iは、Unc が0µmの場合を示している。曲線IIは、Uncが0.5µmの場合を示している。曲 線IIIは、Uncが1µmの場合を示している。 [0117] 図8より、Uncが1µm(曲線III)に近づくほど、つまり、高さ方向に関して、 第1コア34が第2コア20の中心部に近づくほど、光入出力領域16の長さLが短くて も結合効率が高くなる傾向が読み取れる。特に、Unc=1µm(曲線III)の場合に は、約100%の最大結合効率が得られることが分かる。このときの光入出力領域16の 長さLは、64µm(N=6)であり、この長さも、実用上充分に短い長さである。 **(**0 1 1 8 **)** (製造方法) 次に、図4及び図9~図10を参照して、スポットサイズ変換器30の製造方法につい て説明する。図9(A)は、スポットサイズ変換器30の製造工程の一部工程段階を抜き 出して示す平面図である。図9(B)は、図9(A)の側面図である。図10(A)は、 スポットサイズ変換器30の製造工程の一部工程段階を抜き出して示す平面図である。図 10(B)は、図10(A)の側面図である。図10(C)は、スポットサイズ変換器3 0の製造工程の一部工程段階を抜き出して示す平面図である。図10(D)は、図10(C)の側面図である。 **[**0 1 1 9 **]** (1)準備工程 この準備工程は、実施の形態1の準備工程と同様にすることにより、図4(A)及び(B)に示すような前駆体22を得る。 [0120](2)第1工程 続いて、図9(A)及び(B)に示すように、前駆体22の露出したクラッド14の表 面において、第1コア34の第3及び第4側面34₃及び34₄に対応する領域を斜めに

20

10

30

40

50

面において、第1コア34の第3及び第4側面34₃及び 横切るようにエッチングマスクを設ける第1工程を行う。 【0121】 より詳細には、図9(A)及び(B)に示すように、エッチングマスクとして用いるフ ォトレジストPを前駆体22のクラッド表面14aの全面に一様な厚さで設ける。 【0122】

次に、このフォトレジストPの露光及び現像を行う。すなわち、クラッド14の表面の 第3及び第4側面34₃及び34₄に対応する領域において、この領域を斜めに横切るよ うにフォトレジストPを残留させる。

【0123】

(3)第 2 工程

続いて、図10(A)及び(B)に示すように、エッチングマスク(フォトレジストP)をマスクとして、前駆体22の露出した表面から第1コア34の下側に延在するクラッ ド14に至るまで異方性エッチングを行うことにより、第3及び第4側面34₃及び34 ₄の双方に対して垂直な平面であって、第1側面34₁から第2側面34₂に至るまでの 間を斜めに切断した傾斜面34aが延在する領域としての光入出力領域16を形成する第 2工程を行う。

【0124】

より詳細には、上述したフォトレジストPをエッチングマスクとして、従来公知のRI E法により、図9(A)及び(B)に示した構造体の、フォトレジストPが設けられた表 面側から異方性エッチングを行う。これにより、先端領域Aでは、クラッド14及び第1 コア34がエッチングされていく。

[0125**]**

ところで、光入出力領域16となるべき領域においては、フォトレジストPが、第3側 面34₃及び34₄を斜めに横切るように設けられている。

[0126]

その結果、このエッチングにより、先端領域Aに、第3及び第4側面34₃及び34₄の双方に対して垂直な平面であって、第1側面34₁から第2側面34₂に至るまでの間を斜めに切断した傾斜面34aが延在する領域としての光入出力領域16が形成される。

(4)第 3 工程

この第3工程は、実施の形態1の第3工程と同様にすることにより、図10(C)及び (D)に示すようなスポットサイズ変換器30を得る。

【 0 1 2 8 】

(効果)

以下、この実施の形態のスポットサイズ変換器30及びその製造方法の奏する効果について説明する。

【0129】

(1)この実施の形態のスポットサイズ変換器30は、光入出力領域16の先端部の厚 みを0(ゼロ)となるまで尖らせているので、偏波依存性を解消することができる。 【0130】

(2)また、この実施の形態のスポットサイズ変換器30は、上述したシミュレーションの結果より明らかなように、実用上充分に短い長さで、実用上充分な結合効率を得るこ 40 とができる。

【0131】

(3)また、この実施の形態のスポットサイズ変換器30は、全ての製造工程で半導体 製造技術を応用できるので、作成が非常に容易である。

【0132】

なお、第1コア18の形成過程で第1コア18の上部にクラッド14が存在しないでも 良く、テーパ状の光入出力領域16の形成後のいずれかの過程でこのクラッド14を形成 してもよい。

【図面の簡単な説明】

【0133】

10

20

【図1-A】スポットサイズ変換器の要部の部分的な構造を概略的に示す斜視図である。 【図1 - B】図1 - AのI - I線に沿って取った断面図である。 【図1-C】スポットサイズ変換器の要部の全体像を概略的に示す斜視図である。 【図2】(A)は、図1-CのC-C線に沿って取った切断端面図である。(B)は、図 1 - CのD - D線に沿って取った切断端面図である。 【図3】実施の形態1のスポットサイズ変換器のシミュレーションの説明に供するグラフ である。 【図4】(A)は、実施の形態1のスポットサイズ変換器の製造工程の一部工程段階を抜 き出して示す平面図である。(B)は、(A)のC-C線に沿った切断端面図である。(10 C)は、実施の形態1のスポットサイズ変換器の製造工程の一部工程段階を抜き出して示 す平面図である。(D)は、(C)の側面図である。 【図5】(A)は、実施の形態1のスポットサイズ変換器の製造工程の一部工程段階を抜 き出して示す平面図である。(B)は、(A)の側面図である。(C)は、実施の形態1 のスポットサイズ変換器の製造工程の一部工程段階を抜き出して示す平面図である。(D は、(C)の側面図である。 【図6】実施の形態2のスポットサイズ変換器の概略的な構造を示す斜視図である。 【図7】図6のC - C線に沿って取った切断端面図である。 【図8】実施の形態2のスポットサイズ変換器のシミュレーションの説明に供するグラフ である。 20 【図9】(A)は、実施の形態2のスポットサイズ変換器の製造工程の一部工程段階を抜 き出して示す平面図である。(B)は、(A)のC-C線に沿った切断端面図である。 【図10】(A)は、実施の形態2のスポットサイズ変換器の製造工程の一部工程段階を 抜き出して示す平面図である。(B)は、(A)の側面図である。(C)は、実施の形態 2のスポットサイズ変換器の製造工程の一部工程段階を抜き出して示す平面図である。(D)は、(C)の側面図である。 【符号の説明】 [0134] 10,30 スポットサイズ変換器 12 基板 30 12a 第1主面 14 クラッド 14 a 表面 16 光入出力領域 17 主要コア領域 18,34 第1コア 181,341 第1側面 18,34,第2側面 183,343 第3側面 184,344 第4側面 40 18a,34a 傾斜面 19 突出部 20 第2コア

- 20a 光入出射端面
- 22 前駆体

図1のI-I線断面図

D-D線断面図

(18)

R 14 - 18 - 14 - 12 18₂ 18₁ 14a 18₄ (18₃) ß

【図6】

(C)

(D)

フロントページの続き

(56)参考文献 国際公開第2004/090594(WO,A1) 特開2005-115117(JP,A) 特開2004-133446(JP,A) 特開2004-354608(JP,A)

(58)調査した分野(Int.CI., D B 名)

G 0 2 B 6 / 1 2 - 6 / 1 4 G 0 2 F 1 / 0 0 - 1 / 1 2 5 G 0 2 F 1 / 2 9 - 1 / 3 9 G 0 2 B 6 / 2 6 G 0 2 B 6 / 3 0