

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

HO3F 3/45 (2006.01) HO4L 25/03 (2006.01)

(52) CPC특허분류

HO3F 3/45744 (2013.01) **HO3F 3/45183** (2013.01)

(21) 출원번호 10-2022-0039174

(22) 출원일자2022년03월29일

심사청구일자 없음

(11) 공개번호 10-2023-0140255

(43) 공개일자 2023년10월06일

(71) 출원인

삼성전자주식회사

경기도 수원시 영통구 삼성로 129 (매탄동)

서울시립대학교 산학협력단

서울특별시 동대문구 서울시립대로 163 (전농동, 서울시립대학교내)

(72) 발명자

유수환

서울특별시 동대문구 망우로12다길 6, 102호 (휘 경동)

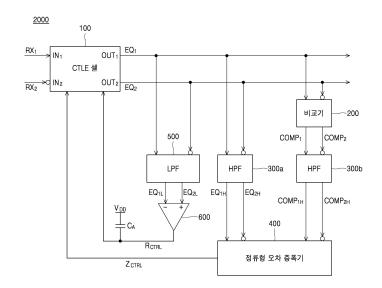
김요한

서울특별시 동대문구 망우로18다길 19, 304호 (휘 경동)

(뒷면에 계속)

(74) 대리인

리앤목특허법인


전체 청구항 수 : 총 12 항

(54) 발명의 명칭 차동 출력 신호의 오프셋 보상이 가능한 차동 증폭기 및 이를 포함하는 적응형 연속 시간 선형 등화기

(57) 요 약

본 발명은 차동 증폭기 및 이를 포함하는 적응형 연속 시간 선형 등화기에 관한 것이다. 본 발명에 따른 연속 시간 선형 등화기는 입력단 및 출력단을 구비한 CTLE 셀, 차동 출력 신호를 각각 로우 패스 필터링하여 얻어진 저대역 차동 신호를 각각 출력하는 로우 패스 필터, 및 저대역 차동 신호 차이를 증폭하여 제어 전압으로 출력하는 오차 증폭기를 포함하되, CTLE 셀은 입력단 및 출력단을 각각 구비한 제1 및 제2 트랜지스터들, 및 제어 전압에 따라 공급 전압원과 출력단 사이의 전위차를 조절하는 오프셋 보상부를 포함하는 것을 특징으로 한다.

대표도

(52) CPC특허분류

H04L 25/03878 (2013.01)

HO3F 2200/171 (2013.01)

(72) 발명자

안현우

서울특별시 동대문구 망우로18라길 40-1, 101호 (휘경동)

이재걸

서울특별시 광진구 구의강변로 94, 602동 1601호 (구의동,현대아파트)

문용삼

경기도 과천시 양지마을3로 1, 201호 (과천동)

현지환

경기도 수원시 영통구 삼성로 129 (매탄동, 삼성전 자)

최정환

경기도 수원시 영통구 삼성로 129 (매탄동, 삼성전 자)

명 세 서

청구범위

청구항 1

차동 입력 신호를 등화하여 차동 출력 신호를 각각 생성하는 연속 시간 선형 등화기를 구성하는 CTLE 셀에 있어서,

상기 차동 입력 신호가 인가되는 입력단 및 상기 차동 출력 신호를 출력하는 출력단을 구비한 제1 트랜지스터;

상기 차동 입력 신호가 인가되는 입력단 및 상기 차동 출력 신호를 출력하는 출력단을 구비한 제2 트랜지스터; 및

상기 차동 출력 신호를 로우 패스 필터링하여 얻어진 저대역 차동 신호의 차이에 대응하는 제어 전압에 따라 공급 전압원과 상기 출력단 사이의 전위차를 조절하는 오프셋 보상부

를 포함하는 것을 특징으로 하는 CTLE 셀.

청구항 2

제1항에 있어서.

상기 오프셋 보상부는

상기 제어 전압이 인가되는 게이트; 및 상기 공급 전압원에 전기적으로 연결된 소스를 구비한 제3 트랜지스터;

상기 제3 트랜지스터의 드레인과 상기 출력단을 전기적으로 연결하는 저항; 및

상기 제3 트랜지스터의 소스와 상기 출력단을 전기적으로 연결하는 저항

을 포함하는 것을 특징으로 하는 CTLE 셀.

청구항 3

제2항에 있어서,

상기 제3 트랜지스터는 P-MOSFET를 포함하는 것을 특징으로 하는 CTLE 셀.

청구항 4

제2항에 있어서,

상기 제1 트랜지스터는 상기 출력단에 대응하는 드레인; 상기 입력단에 대응되는 게이트를 포함하며,

상기 제2 트랜지스터는 상기 출력단에 대응되는 드레인; 및 상기 입력단에 대응되는 게이트를 포함하는 것을 특징으로 하는 CTLE 셀.

청구항 5

제4항에 있어서,

상기 공급 전압원과 상기 출력단을 전기적으로 연결하는 저항을 더 포함하는 것을 특징으로 하는 CTLE 셀.

청구항 6

제1항에 있어서,

상기 오프셋 보상부는 상기 제어 전압의 평균에 따라 공급 전압원과 상기 출력단 사이의 전위차를 조절하는 것을 특징으로 하는 CTLE 셀.

청구항 7

차동 입력 신호를 등화하여 차동 출력 신호를 각각 생성하는 연속 시간 선형 등화기에 있어서,

상기 차동 입력 신호가 각각 인가되는 입력단 및 상기 차동 출력 신호를 각각 출력하는 출력단을 구비한 CTLE 셀;

상기 차동 출력 신호를 각각 로우 패스 필터링하여 얻어진 저대역 차동 신호를 각각 출력하는 로우 패스 필터; 및

상기 저대역 차동 신호의 차이를 증폭하여 제어 전압으로 출력하는 오차 증폭기

를 포함하되,

상기 CTLE 셀은

상기 입력단 및 상기 출력단을 구비한 제1 트랜지스터;

상기 입력단 및 상기 출력단을 구비한 제2 트랜지스터; 및

상기 제어 전압에 따라 공급 전압원과 상기 출력단 사이의 전위차를 조절하는 오프셋 보상부

를 포함하는 것을 특징으로 하는 연속 시간 선형 등화기.

청구항 8

제7항에 있어서,

상기 오프셋 보상부는

상기 제어 전압이 인가되는 게이트; 및 상기 공급 전압원에 전기적으로 연결된 소스를 구비한 제3 트랜지스터;

상기 제3 트랜지스터의 드레인과 상기 출력단을 전기적으로 연결하는 저항; 및

상기 제3 트랜지스터의 소스와 상기 출력단을 전기적으로 연결하는 저항

을 포함하는 것을 특징으로 하는 연속 시간 선형 등화기.

청구항 9

제8항에 있어서,

상기 제3 트랜지스터는 P-MOSFET를 포함하는 것을 특징으로 하는 연속 시간 선형 등화기.

청구항 10

제8항에 있어서,

상기 제1 트랜지스터는 상기 출력단에 대응하는 드레인; 상기 입력단에 대응되는 게이트를 포함하며,

상기 제2 트랜지스터는 상기 출력단에 대응되는 드레인; 및 상기 입력단에 대응되는 게이트

를 포함하는 것을 특징으로 하는 연속 시간 선형 등화기.

청구항 11

제10항에 있어서,

상기 CTLE 셀은

상기 공급 전압원과 상기 출력단을 전기적으로 연결하는 저항을 더 포함하는 것을 특징으로 하는 연속 시간 선형 등화기.

청구항 12

제11항에 있어서,

상기 공급 전압원과 상기 오차 증폭기의 출력단 사이에 연결되어 상기 제어 전압의 평균을 생성하는 커패시터를 더 포함하며, 상기 오프셋 보상부는 상기 제어 전압의 평균에 따라 공급 전압원과 상기 출력단 사이의 전위차를 조절하는 것을 특징으로 하는 연속 시간 선형 등화기.

발명의 설명

기술분야

[0001] 본 발명은 차동 증폭기 및 이를 포함하는 적응형 연속 시간 선형 등화기에 관한 것으로, 특히 적응적으로 차동 출력 신호의 오프셋 보상이 가능한 차동 증폭기 및 이를 포함하는 적응형 연속 시간 선형 등화기에 관한 것이다.

배경기술

- [0002] 디지털 신호의 전송 속도가 고속화되면, 수신된 디지털 신호의 파형에 왜곡이 발생한다.
- [0003] 도 1은 파형의 왜곡을 도시한 개략도이다. 도 1을 참조하면, 길이가 T_b인 펄스를 로시 채널(LOSSY CHANNEL. 예를 들면, 신호 전송 케이블 등)을 통해 전송하면, 수신단에서는 왜곡된 신호(x_n)가 수신된다. 예를 들어, 수신 된 신호(x_n)는, 로시 채널의 로우-패스 필터 특성으로 인하여, t=-T_b에서부터 서서히 상승하여 t=0에서 C₀(메인 커서: Main Cursor)에 도달한다. 신호(x_n)는 t=0부터 서서히 하강하여 t=T_b에서 C₁(포스트 커서: Post Cursor)에 도달하고, t=2T_b에서 C₂(포스트 커서)에 도달한다. 즉, 신호(x_n)는 t=2T_b가 되어도 0에 도달하지 못한다.
- [0004] 이러한 파형의 왜곡을 보상하기 위해, 연속 시간 선형 등화기(Continuous-Time Linear Equalizer: CTLE)가 이용된다.
- [0005] 도 2는 종래 기술에 따른 연속 시간 선형 등화기를 도시한 블록도이다.
- [0006] 도 2를 참조하면, 종래 기술에 따른 연속 시간 선형 등화기(1000)는 CTLE 셀(10), 비교기(20), 하이 패스 필터 (HPF)(30a, 30b) 및 정류형 오차 증폭기(40)를 포함한다.
- [0007] CTLE 셀(10)은 차동 입력 신호(RX₁, RX₂)를 등화하여 차동 출력 신호(EQ₁, EQ₂)를 각각 출력한다.
- [0008] 구체적으로는, CTLE 셀(10)은 차동 입력 신호(RX₁, RX₂)가 각각 인가되는 입력단(IN₁, IN₂); 및 차동 출력 신호 (EQ₁, EQ₂)를 각각 출력하는 출력단(OUT₁, OUT₂)을 구비한다.
- [0009] 이하에서는, 도 3을 참조하여 종래 기술에 따른 CTLE 셀(10)에 대해 상세히 설명한다.
- [0010] 도 3은 종래 기술에 따른 CTLE 셀(10)을 도시한 도면이다. CTLE 셀(10)은 도 3에 도시된 차동 증폭기를 포함한다.
- [0011] 도 3을 참조하면, CTLE 셀(10)을 구성하는 차동 증폭기는 제1 트랜지스터(TR₁), 제2 트랜지스터(TR₂), 저항 (R_{D1}), 저항(R_{D2}), 저항(R_S) 및 커패시터(C_S)를 포함한다.
- [0012] 도 3에 도시된 CTLE 셀(10)은 저항(R_s)의 저항값과 커패시터(C_s)의 커패시턴스를 조절하여 등화를 수행한다.
- [0013] 구체적으로는, 저항(R_S)은 CTLE 셀(10)의 저주파 증폭 게인을 조절하며, 커패시터(C_S)는 CTLE 셀(10)의 고주파 증폭 게인을 조절한다.
- [0014] 저항 (R_s) 은 그 저항값을 조절할 수 있는 가변저항이다.
- [0015] 또한, 커패시터(C_s)의 커패시턴스는 제어 전압(Z_{CTRL})에 의해 조절된다.
- [0016] 이하에서는, 커패시터(C_s)의 커패시턴스를 조절하는 방법에 대해 상세히 설명한다.
- [0017] CTLE 셀(10)은 차동 입력 신호(RX₁, RX₂)를 등화하여 차동 출력 신호(EQ₁, EQ₂)를 각각 출력한다.
- [0018] 차동 출력 신호(EO₁, EO₂)는 HPF(30a)에 의해 각각 필터링되어 고대역 차동 출력 신호(EO₁, EO₂)로 출력된다.

- [0019] 차동 출력 신호(EQ₁, EQ₂)는 비교기(20)에 입력되어 각각 차동 출력 신호(COMP₁, COMP₂)로 출력된다.
- [0020] 차동 출력 신호(COMP₁, COMP₂)는 HPF(30b)에 의해 각각 필터링되어 고대역 차동 출력 신호(COMP_{1H}, COMP_{2H})로 출력되다.
- [0021] 정류형 오차 증폭기(40)는 고대역 차동 출력 신호(EQ_{1H}, EQ_{2H}) 중 그 크기가 큰 신호;와 고대역 차동 출력 신호 (COMP_{1H}, COMP_{2H}) 중 그 크기가 큰 신호;의 차이를 증폭하여 제어 전압(Z_{CTRL})으로 출력한다.
- [0022] 제어 전압(Z_{CTRL})을 수식으로 나타내면 아래의 수학식 1과 같다.

수학식 1

- $Z_{CTRL} = A_1 \times \left[\max(EQ_{1H}, EQ_{2H}) \max(COMP_{1H}, COMP_{2H}) \right] + Z_{CTRL,DC}$
- [0024] 여기서, A₁은 게인(gain)이고 Z_{CTRL.DC}는 Z_{CTRL}의 DC 바이어스(bias) 값이다. 일반적으로 DC 바이어스 값이란 회로 가 갖는 값의 범위 중에서 중간 값에 해당한다.
- [0025] 예를 들어, EQ_{1H}>EQ_{2H}이고, COMP_{1H}<COMP_{2H}이면, 정류형 오차 증폭기(40)는 아래의 수학식 2의 제어 전압(Z_{CTRL})을 출력하다.

수학식 2

- $Z_{CTRL} = A_1 \times (EQ_{1H} COMP_{2H}) + Z_{CTRL.DC}$
- [0027] 제어 전압(Z_{CTRL})는 CTLE 셀(10)에 피드백되어 커패시터(C_S)의 커패시턴스를 조절하는데 이용된다. 즉, 제어 전압 (Z_{CTRL})에 따라 커패시터(C_S)의 커패시턴스를 조절함으로써 CTLE 셀(10)의 고주파 증폭 게인을 조절한다. 이 과정은 max(EQ_{1H}, EQ_{2H}) ≒ max(COMP_{1H}, COMP_{2H})가 될 때까지 반복된다. 이때 A₁이 크기 때문에 Z_{CTRL} ≠ Z_{CTRL.DC} 인 것이일반적이다.
- [0028] 종래 기술에 따른 CTLE 셀(10)은 고주파 증폭 게인 및 저주파 증폭 게인을 적응적으로 조절하여 등화를 수행한다. 그러나, 종래 기술에 따른 CTLE 셀(10)은 등화 과정에서 발생할 수 있는 오프셋(offset)을 적응적으로 제거하지 못한다는 문제점이 있다.
- [0029] 이하에서는, 도 4a 내지 도 5b를 참조하여 이에 대해 상세히 설명한다.
- [0030] 도 4a 및 도 4b는 이상적인 CTLE 셀의 차동 출력 신호와 그 차이를 도시한 파형도이다.
- [0031] 도 4a에 도시된 바와 같이, 이상적(ideal)인 CTLE 셀(10)은 공통 모드(common mode) 전압(EQ_{CM})에 대해 대칭인 차동 출력 신호(EQ₁, EQ₂)를 출력한다. 차동 출력 신호(EQ₁, EQ₂)가 공통 모드(common mode) 전압(EQ_{CM})에 대해 대칭이면, 차동 출력 신호(EQ₁, EQ₂)의 차이(EQ₁-EQ₂)는 도 4b에 도시된 바와 같이 0을 기준으로 스윙한다.
- [0032] CTLE 셀(10)은 도 3에 예시된 바와 같이, 다수의 소자로 구성된다. 그런데, CTLE 셀(10)을 구성하는 소자들은 모두 이상적인 소자가 아니므로, CTLE 셀(10)의 차동 출력 신호(EQ₁, EQ₂)에는 도 5a에 도시된 바와 같이 오프셋 (offset)이 존재한다. 또한, 이상적이지 못한 송신 채널 등으로 인하여 오프셋(offset)이 발생할 수도 있다.
- [0033] 도 5a는 오프셋이 발생한 CTLE 셀(10)의 차동 출력 신호(EQ₁, EQ₂)를 도시한 파형도로서, 차동 출력 신호(EQ₁)에 오프셋이 존재하는 경우를 예시한다.
- [0034] 도 5a에 도시된 바와 같이, 차동 출력 신호(EQ₁)에는 화살표로 표시된 오프셋이 존재한다. 따라서, 차동 출력 신호(EQ₁, EQ₂)의 전압은 공통 모드(common mode) 전압(EQ_{CM})에 대해 대칭이 아니다.

- [0035] 차동 출력 신호(EQ₁)에 오프셋이 존재하는 경우, 차동 출력 신호(EQ₁, EQ₂)의 차이(EQ₁-EQ₂)가 도 5b에 도시되어 있다.
- [0036] 도 5b를 참조하면, 차동 출력 신호(EQ₁)에 존재하는 오프셋으로 인하여, 차동 출력 신호(EQ₁, EQ₂)의 차이(EQ₁-EQ₂)에도 화살표로 표시된 오프셋이 존재한다. 따라서, 차동 출력 신호(EQ₁, EQ₂)의 차이(EQ₁-EQ₂)는 0을 기준으로 스윙하지 않는다.
- [0037] 오프셋은 차동 출력 신호(EQ₁, EQ₂) 중 어느 하나에만 존재하거나 양자 모두에 존재할 수 있다. 오프셋의 크기는 송신 채널의 특성이나, CTLE 셀(10)을 구성하는 소자들의 미스매치(mismatch) 등에 의해 달라진다.
- [0038] 오프셋이 존재하는 경우, 수신 신호의 레벨을 판정하는데 문제가 발생할 수 있다. 예를 들어, EQ₁-EQ₂>0일 때 수신 신호의 레벨을 1이라 판정하고, EQ₁-EQ₂<0일 때 수신 신호의 레벨을 0이라고 판정한다고 가정하자. 도 5b의 차이(EQ₁-EQ₂)는 0보다 위쪽으로 치우쳐 있으므로 수신 신호의 레벨을 1이라고 판정할 확률이 더 높아진다. 즉, 경우에 따라, 수신 신호의 레벨을 정확히 판단하지 못할 수 있다는 문제가 있다.
- [0039] 수신 신호의 레벨을 정확히 판정하기 위해서는 차이(EQ₁-EQ₂)가 0을 기준으로 스윙하도록 해야 한다. 따라서, 상술한 오프셋을 보상 또는 제거하는 수단이 필요하다.

선행기술문헌

특허문헌

[0040] (특허문헌 0001) 미국 특허 공개 제2020-0313638호

비특허문헌

[0041] (비특허문헌 0001) 논문 "A 0.18-/spl mu/m CMOS 3.5-gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method," by Jong-Sang Choi; Moon-Sang Hwang; Deog-Kyoon Jeong, IEEE Journal of Solid-State Circuits, Vol. 39, pp. 419-425, March 3, 2004

발명의 내용

해결하려는 과제

[0042] 본 발명은 차동 출력 신호의 오프셋 보상이 가능한 차동 증폭기 및 이를 포함하는 적응형 연속 시간 선형 등화 기를 제공하는 것을 그 목적으로 한다.

과제의 해결 수단

- [0043] 본 발명에 따른 CTLE 셀은, 차동 입력 신호(RX₁, RX₂)를 등화하여 차동 출력 신호(EQ₁, EQ₂)를 각각 생성하는 연속 시간 선형 등화기를 구성하는 CTLE 셀에 있어서, 상기 차동 입력 신호(RX₁)가 인가되는 입력단(IN₁) 및 상기 차동 출력 신호(EQ₁)를 출력하는 출력단(OUT₁)을 구비한 제1 트랜지스터; 상기 차동 입력 신호(RX₂)가 인가되는 입력단(IN₂) 및 상기 차동 출력 신호(EQ₂)를 출력하는 출력단(OUT₂)을 구비한 제2 트랜지스터; 및 상기 차동 출력 신호(EQ₁)를 로우 패스 필터링하여 얻어진 저대역 차동 신호(EQ₁L, EQ₂L)의 차이에 대응하는 제어 전압 (R_{CTRL})에 따라 공급 전압원과 상기 출력단(OUT₂) 사이의 전위차를 조절하는 오프셋 보상부를 포함하는 것을 특징으로 한다.
- [0044] 상기 오프셋 보상부는 상기 제어 전압(R_{CTRL})이 인가되는 게이트; 및 상기 공급 전압원에 전기적으로 연결된 소스를 구비한 제3 트랜지스터; 상기 제3 트랜지스터의 드레인과 상기 출력단(OUT₂)을 전기적으로 연결하는 저항

- (R_{RS}); 및 상기 제3 트랜지스터의 소스와 상기 출력단(OUT₂)을 전기적으로 연결하는 저항(R_{R2})을 포함할 수 있다.
- [0045] 상기 제3 트랜지스터는 P-MOSFET를 포함하는 것이 바람직하다.
- [0046] 상기 제1 트랜지스터는 상기 출력단(OUT₁)에 대응하는 드레인; 상기 입력단(IN₁)에 대응되는 게이트를 포함하며, 상기 제2 트랜지스터는 상기 출력단(OUT₂)에 대응되는 드레인; 및 상기 입력단(IN₂)에 대응되는 게이트를 포함할 수 있다.
- [0047] 본 발명에 따른 CTLE 셀은 상기 공급 전압원과 상기 출력단(OUT₁)을 전기적으로 연결하는 저항 (R_{D1}) 을 더 포함할 수 있다.
- [0048] 상기 오프셋 보상부는 상기 제어 전압(R_{CTRL})의 평균에 따라 공급 전압원과 상기 출력단(OUT_2) 사이의 전위차를 조절하는 것이 바람직하다.
- [0049] 본 발명에 따른 연속 시간 선형 등화기는 차동 입력 신호(RX₁, RX₂)를 등화하여 차동 출력 신호(EQ₁, EQ₂)를 각 각 생성하는 연속 시간 선형 등화기에 있어서, 상기 차동 입력 신호(RX₁, RX₂)가 각각 인가되는 입력단(IN₁, IN₂) 및 상기 차동 출력 신호(EQ₁, EQ₂)를 각각 출력하는 출력단(OUT₁, OUT₂)을 구비한 CTLE 셀; 상기 차동 출력 신호(EQ₁, EQ₂)를 각각 로우 페스 필터링하여 얻어진 저대역 차동 신호(EQ₁, EQ₂)를 각각 출력하는 로우 패스 필터; 및 상기 저대역 차동 신호(EQ₁, EQ₂)의 차이를 증폭하여 제어 전압(R_{CTRL})으로 출력하는 오차 증폭기를 포함하되, 상기 CTLE 셀은 상기 입력단(IN₁) 및 상기 출력단(OUT₁)을 구비한 제1 트랜지스터; 상기 입력단(IN₂) 및 상기 출력단(OUT₂)을 구비한 제2 트랜지스터; 및 상기 제어 전압(R_{CTRL})에 따라 공급 전압원과 상기 출력단(OUT₂) 사이의 전위차를 조절하는 오프셋 보상부를 포함하는 것을 특징으로 한다.
- [0050] 상기 오프셋 보상부는 상기 제어 전압(R_{CTRL})이 인가되는 게이트; 및 상기 공급 전압원에 전기적으로 연결된 소스를 구비한 제3 트랜지스터; 상기 제3 트랜지스터의 드레인과 상기 출력단(OUT₂)을 전기적으로 연결하는 저항 (R_{DS}); 및 상기 제3 트랜지스터의 소스와 상기 출력단(OUT₂)을 전기적으로 연결하는 저항(R_{D2})을 포함할 수 있다.
- [0051] 상기 제3 트랜지스터는 P-MOSFET를 포함하는 것이 바람직하다.
- [0052] 상기 제1 트랜지스터는 상기 출력단(OUT₁)에 대응하는 드레인; 상기 입력단(IN₁)에 대응되는 게이트를 포함하며, 상기 제2 트랜지스터는 상기 출력단(OUT₂)에 대응되는 드레인; 및 상기 입력단(IN₂)에 대응되는 게이트를 포함할 수 있다.
- [0053] 본 발명에 따른 연속 시간 선형 등화기는 상기 공급 전압원과 상기 출력단(OUT₁)을 전기적으로 연결하는 저항 (R_{D1}) 을 더 포함할 수 있다.
- [0054] 본 발명에 따른 연속 시간 선형 등화기는 상기 공급 전압원과 상기 오차 증폭기의 출력단 사이에 연결되어 상기 제어 전압(R_{CTRL})의 평균을 생성하는 커패시터(C_A)를 더 포함하며, 상기 오프셋 보상부는 상기 제어 전압(R_{CTRL})의 평균에 따라 공급 전압원과 상기 출력단(OUT₂) 사이의 전위차를 조절하는 것이 바람직하다.

발명의 효과

- [0055] 본 발명에 따른 차동 출력 신호의 오프셋 보상이 가능한 차동 증폭기 및 이를 포함하는 적응형 연속 시간 선형 등화기에는 다음과 같은 장점이 있다.
- [0056] (1) 차동 출력 신호(EQ₁, EQ₂)에 존재하는 오프셋을 적응적으로 보상하여 정확한 데이터 레벨의 판정이 가능하다.
- [0057] (2) 오프셋을 적응적으로 보상함과 동시에, 적응형 연속 시간 선형 등화기의 저주파 증폭 게인과 고주파 증폭 게인도 적응적으로 조절할 수 있다.

도면의 간단한 설명

[0058] 도 1은 파형의 왜곡을 도시한 개략도.

도 2는 종래 기술에 따른 연속 시간 선형 등화기를 도시한 블록도.

도 3은 도 2의 종래 기술에 따른 연속 시간 선형 등화기를 구성하는 CTLE 셀의 차동 증폭기를 도시한 회로도.

도 4a 및 도 4b는 이상적인 CTLE 셀의 차동 출력 신호와 그 차이를 도시한 파형도.

도 5a 및 도 5b는 오프셋이 발생한 CTLE 셀의 차동 출력 신호와 그 차이를 도시한 파형도.

도 6은 본 발명에 따른 연속 시간 선형 등화기를 도시한 블록도.

도 7은 도 6의 본 발명에 따른 연속 시간 선형 등화기를 구성하는 CTLE 셀의 차동 증폭기를 도시한 회로도.

도 8은 제어 전압(RCTRL)에 따른 오프셋 보상부의 저항값을 도시한 그래프.

발명을 실시하기 위한 구체적인 내용

- [0059] 이하에서는, 첨부된 도면을 참조하여, 본 발명에 따른 차동 출력 신호의 오프셋 보상이 가능한 차동 증폭기 및 이를 포함하는 적응형 연속 시간 선형 등화기에 대해 상세히 설명한다.
- [0060] 도 6은 본 발명에 따른 연속 시간 선형 등화기를 도시한 블록도이다.
- [0061] 도 6을 참조하면, 본 발명에 따른 연속 시간 선형 등화기(2000)는 CTLE 셀(100), 로우 패스 필터(LPF)(500) 및 오차 증폭기(600)를 포함한다. 또한, 본 발명에 따른 연속 시간 선형 등화기(2000)는 비교기(200), 하이 패스 필터(300a, 300b), 정류형 오차 증폭기(400) 및 커패시터(CA)를 더 포함할 수 있다.
- [0062] CTLE 셀(100)은 차동 입력 신호(RX₁, RX₂)를 등화하여 차동 출력 신호(EQ₁, EQ₂)를 각각 출력한다.
- [0063] 구체적으로는, CTLE 셀(100)은 차동 입력 신호(RX₁, RX₂)가 각각 인가되는 입력단(IN₁, IN₂); 및 차동 출력 신호 (EQ₁, EQ₂)를 각각 출력하는 출력단(OUT₁, OUT₂)을 구비한다.
- [0064] 이하에서는, 도 7을 참조하여 본 발명에 따른 CTLE 셀(100)에 대해 상세히 설명한다.
- [0065] 도 7은 본 발명에 따른 CTLE 셀(100)을 도시한 도면이다. CTLE 셀(100)은 도 7에 도시된 차동 증폭기를 포함한다.
- [0066] 도 7을 참조하면, CTLE 셀(100)을 구성하는 차동 증폭기는 제1 트랜지스터(TR₁), 제2 트랜지스터(TR₂) 및 오프 셋 보상부(OFFSET_COMP)를 포함한다. 또한, CTLE 셀(100)을 구성하는 차동 증폭기는 저항(R₂), 저항(R₂) 및 커패시터(C₃)를 포함한다.
- [0067] 도 7에 도시된 바와 같이, 저항(R_{D1})과 제1 트랜지스터(TR₁)는 공급 전압원(V_{DD})과 전류원 사이에 직렬로 연결된다. 즉, 저항(R_{D1})은 공급 전압원(V_{DD})과 제1 트랜지스터(TR₁)의 드레인(D₁)을 전기적으로 연결한다.
- [0068] 또한, 오프셋 보상부(OFFSET_COMP)와 제2 트랜지스터(TR₂)는 공급 전압원(V_{DD})과 전류원 사이에 직렬로 연결된다. 즉, 오프셋 보상부(OFFSET_COMP)는 공급 전압원(V_{DD})과 제2 트랜지스터(TR₂)의 드레인(D₂)을 전기적으 로 연결한다.
- [0069] 또한, 저항(R_S) 및 커패시터(C_S)는 제1 트랜지스터(TR₁)의 소스(S₁)와 제2 트랜지스터(TR₂)의 소스(S₂) 사이에 병렬로 연결된다.
- [0070] 이하에서는, 도 7에 도시된 차동 증폭기의 각 소자에 대하여 보다 상세히 설명한다.
- [0071] 제1 트랜지스터(TR₁)는 차동 입력 신호(RX₁)가 인가되는 입력단(IN₁)에 대응하는 게이트(G₁)와, 차동 출력 신호 (EQ₁)를 출력하는 출력단(OUT₁)에 대응하는 드레인(D₁)과, 병렬로 연결된 저항(R_S) 및 커패시터(C_S)에 전기적으로 연결된 소스(S₁)를 포함한다. 드레인(D₁)은 저항(R_{D1})을 통해 공급 전압원(V_{DD})에 전기적으로 연결된다.
- [0072] 제2 트랜지스터(TR2)는 차동 입력 신호(RX2)가 인가되는 입력단(IN2)에 대응하는 게이트(G2)와, 차동 출력 신호

 (EQ_2) 를 출력하는 출력단 (OUT_2) 에 대응하는 드레인 (D_2) 과, 병렬로 연결된 저항 (R_S) 및 커패시터 (C_S) 에 전기적으로 연결된 소스 (S_2) 를 포함한다. 드레인 (D_2) 은 병렬로 연결된 오프셋 보상부 $(OFFSET_COMP)$ 및 저항 (R_{D2}) 을 통해 공급 전압원 (V_{DD}) 에 전기적으로 연결된다.

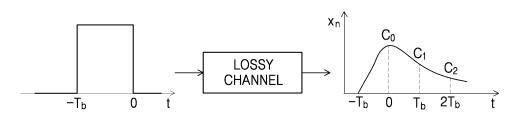
- [0073] 오프셋 보상부(OFFSET_COMP)는 저대역 차동 신호(EQ_{1L}, EQ_{2L})의 차이에 대응하는 제어 전압(R_{CTRL})에 따라 공급 전 압원(V_{DD})과 출력단(OUT₂) 사이의 전위차를 조절한다. 여기서, 제어 전압(R_{CTRL})은 차동 출력 신호(EQ₁, EQ₂)를 로 우 패스 필터링하여 얻어진 저대역 차동 신호(EQ₁₁, EQ₂₁)의 차이를 증폭한 것이다.
- [0074] 제어 전압(R_{CTRI})은 아래의 수학식 3과 같다.

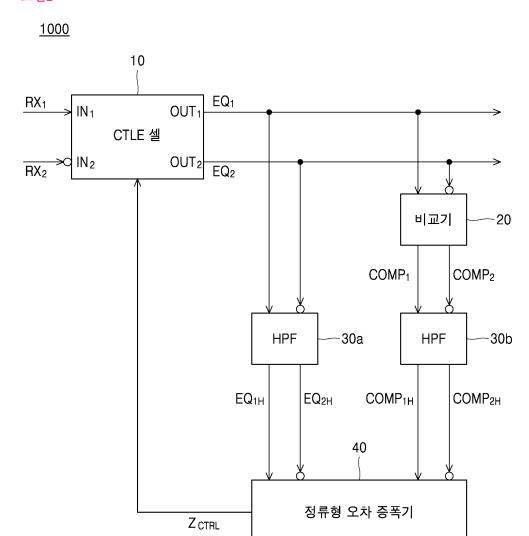
수학식 3

- [0075] $R_{CTRL} = A_2 \times (EQ_{2L} EQ_{1L}) + R_{CTRL.DC}$
- [0076] 여기서, A₂는 게인(gain)이고 R_{CTRL.DC}는 R_{CTRL}의 DC 바이어스(bias) 값이다.
- [0077] 구체적으로는, 오프셋 보상부(OFFSET_COMP)는 제3 트랜지스터(TR₃),저항(R_{DS}) 및 저항(R_{D2})을 포함한다.
- [0078] 제3 트랜지스터(TR₃)는 제어 전압(R_{CTRL})이 인가되는 게이트(G₃) 및 공급 전압원(V_{DD})에 전기적으로 연결된 소스 (S₃) 및 저항(R_{DS})과 전기적으로 연결된 드레인(D₃)를 구비한다. 여기서, 제3 트랜지스터(TR₃)는 P-MOSFET를 포함하는 것이 바람직하다.
- [0079] 저항(R_{DS})은 제3 트랜지스터(TR₃)의 드레인(D₃)과 출력단(OUT₂)을 전기적으로 연결한다.
- [0080] 저항(R_{D2})은 제3 트랜지스터(TR₃)의 소스(S₃)와 출력단(OUT₂)을 전기적으로 연결한다.
- [0081] 저항(R_S)은 제1 트랜지스터(TR₁)의 소스(S₁)와 제2 트랜지스터(TR₂)의 소스(S₂)에 전기적으로 연결되며, CTLE 셀 (100)의 저주파 증폭 게인을 조절한다.
- [0082] 커피시터(C_s)는 저항(R_s)에 병렬로 연결되어 CTLE 셀(100)의 고주파 증폭 게인을 조절한다.
- [0083] 다시 도 6을 참조하면, 본 발명에 따른 연속 시간 선형 등화기(2000)의 로우 패스 필터(LPF)(500)는 CTLE 셀 (100)이 출력하는 차동 출력 신호(EQ₁, EQ₂)를 각각 로우 패스 필터링하여 저대역 차동 신호(EQ_{1L}, EQ_{2L})를 각각 출력한다.
- [0084] 오차 증폭기(600)는 로우 패스 필터(LPF)(500)가 출력한 저대역 차동 신호(EQ_{IL}, EQ_{2L})의 차이를 증폭하여 제어 전압(R_{CTRL})으로 출력한다. 오차 증폭기(600)가 출력한 제어 전압(R_{CTRL})은 CTLE 셀(100)에 포함된 제3 트랜지스터 (TR₃)의 게이트(G₃)에 인가된다.
- [0085] 커페시터(C_A)는 CTLE 셀(100)에 피드백되는 제어 전압(R_{CTRL})의 평균값을 생성한다. 커페시터(C_A)는 공급 전압원 (V_{DD})과 오차 증폭기(600)의 출력단 사이에 연결된다. 오프셋 보상부(OFFSET_COMP)의 저항값은 저대역 차동 신호 (EQ_{IL}, EQ_{2L})의 각 펄스마다 얻어진 제어 전압(R_{CTRL})을 이용하여 조절될 수도 있지만, 제어 전압(R_{CTRL})의 평균에 따라 조절될 수도 있다. 이 경우, 오프셋 보상부(OFFSET_COMP)의 저항값이 상대적으로 더욱 스무스(smooth)하게 조절된다.
- [0086] 비교기(200), 하이 패스 필터(300a, 300b) 및 정류형 오차 증폭기(400)는 도 2를 참조하여 설명한 종래 기술에 따른 연속 시간 선형 등화기의 그것과 동일하므로 상세한 설명은 생략한다.
- [0087] 이하에서는, 도 6 내지 도 8을 참조하여 본 발명에 따른 연속 시간 선형 등화기의 동작에 대해 상세히 설명한다. 다만, 커패시터(Cs) 및 저항(Rs)의 조절은 도 3을 참조하여 설명한 CTLE 셀의 그것과 동일하므로 상세한 설명은 생략한다.

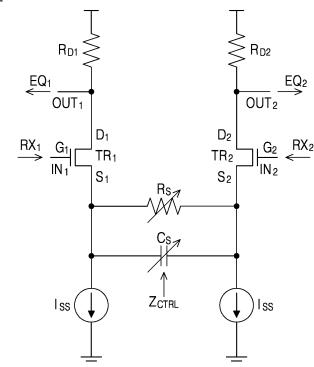
- [0088] 먼저, 입력단(IN₁, IN₂)을 통해 차동 입력 신호(RX₁, RX₂)가 각각 인가되며, CTLE 셀(100)은 초기값에 따라 차동 입력 신호(RX₁, RX₂)를 등화하여 출력단(OUT₁, OUT₂)을 통해 차동 출력 신호(EQ₁, EQ₂)를 각각 출력한다.
- [0089] CTLE 셀(100)이 출력한 차동 출력 신호(EQ₁, EQ₂)는 로우 패스 필터(500)에 의해 필터링된다. 로우 패스 필터 (500)가 출력하는 저대역 차동 신호(EQ_{1L}, EQ_{2L})는 오차 증폭기(600)에 인가된다.
- [0090] 오차 증폭기(600)는 저대역 차동 신호(EQ_{IL}, EQ_{2L})의 차이를 증폭하여 제어 전압(R_{CTRL})으로 출력하고, 이를 CTLE 셀(100)에 인가한다.
- [0091] 제3 트랜지스터(TR₃)는 바람직하게는 P-MOSFET이다.
- [0092] 제어 전압(R_{CTRL})이 게이트(G₃)에 인가되면, 제3 트랜지스터(TR₃)의 소스(S₃)와 드레인(D₃) 사이의 저항값이 변화한다. 예를 들어, 먼저 공급 전압원이 공급하는 전압이 1V라고 가정한다. 제어 전압(R_{CTRL})이 0.8V 이상이면, 제3 트랜지스터(TR₃)는 완전히 턴 오프(turn off)되므로 소스(S₃)와 드레인(D₃) 사이는 실질적으로 오픈 서킷(open circuit)이 된다. 제어 전압(R_{CTRL})이 0.3V 이하이면, 제3 트랜지스터(TR₃)는 완전히 턴 온(turn on)되므로 소스(S₃)와 드레인(D₃) 사이는 실질적으로 쇼트 서킷(short circuit)이 된다. 제어 전압(R_{CTRL})이 0.3V와 0.8V 사이이면, 제어 전압(R_{CTRL})이 증가함에 따라 소스(S₃)와 드레인(D₃) 사이의 저항값이 증가한다.
- [0093] 도 8은 제어 전압(R_{CTRI})에 따른 오프셋 보상부(OFFSET_COMP)의 저항값을 예시한 그래프이다.
- [0094] 도 8을 참조하면, 오프셋 보상부(OFFSET_COMP)의 저항값(Rea)은 제어 전압(Rctral)에 따라 변화한다.
- [0095] 구체적으로는, 저항값(R₅₀)은 제어 전압(R_{CTML})이 커질수록 커지고, 제어 전압(R_{CTML})이 작아질수록 작아진다.
- [0096] 즉, 오프셋 보상부(OFFSET_COMP)의 저항값(R_{EQ})은 제어 전압(R_{CTRL})이 커질수록 저항(R_{D2})의 저항값에 가까워지며, 제어 전압(R_{CTRL})이 작아질수록 R_{D2} Ⅱ R_{DS}에 가까워진다.
- [0097] 환언하면, 오프셋 보상부(OFFSET_COMP)의 저항값(R_{EQ})의 최대값은 R_{D2} 이고, 최소값은 $R_{D2} \parallel R_{DS}$ ($= \frac{R_{D2}R_{DS}}{R_{D2}+R_{D9}}$ 이다 이를 수식으로 나타내면 다음의 수학식 4와 같다.

수학식 4

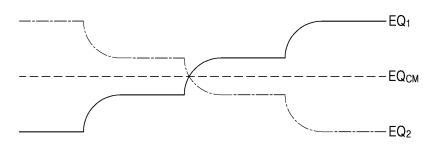

$$\frac{R_{D2}R_{DS}}{R_{D2}+R_{DS}} \leq R_{EQ} \leq R_{D2}$$

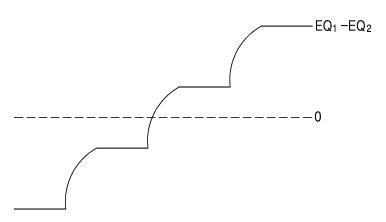

- [0099] 수학식 4에 따르면, 오프셋 보상부(OFFSET_COMP)의 저항값(R_{EQ})은 제어 전압(R_{CTRL})의 변화에 따라 증가 또는 감소한다. 저항값(R_{EQ})이 변하면, 오프셋 보상부(OFFSET_COMP)에 걸리는 전압이 변하고, 결과적으로 공급 전압원 (V_{DD})과 출력단(OUT₂) 사이의 전위차, 즉 출력단(OUT₂)의 전위(또는 전압)가 변하게 된다.
- [0100] 이에 대해 보다 구체적으로 살펴보면 다음과 같다.
- [0101] 먼저, 설명의 편의를 위해, 제어 전압(R_{CTRL})의 최적값을 최적 제어 전압(R_{CTRL.0PT})=0.6V라 하고, 이때의 오프셋 보상부(OFFSET_COMP)의 저항값(R_{EQ})을 최적 저항값(R_{EQ.0PT})=95Ω이라고 가정하자.
- [0102] 먼저, 제어 전압(R_{CTRL})=0.7V이면, R_{EQ} > R_{EQ.OPT}이다(도 8 참조).
- [0103] 따라서, 오프셋 보상부(OFFSET_COMP)에 의한 전압 강하는 최적 제어 전압(R_{CTRL.OPT})=0.6V일 때의 전압 강하보다 크고, 출력단(OUT₂)의 전위는 최적 제어 전압(R_{CTRL.OPT})일 때의 그것보다 낮다.
- [0104] 따라서, 로우 패스 필터(500)가 출력하는 저대역 차동 신호(EQ_{1L}, EQ_{2L}) 사이에는 EQ_{1L} > EQ_{2L}이 성립하고, 오차

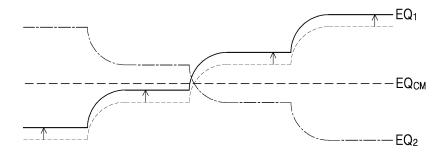
증폭기(600)가 출력하는 제어 전압(R_{CTRL})은 감소한다.

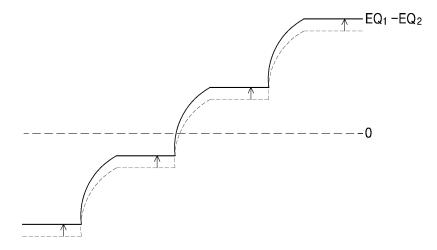

- [0105] 두 번째로, 제어 전압(R_{CTRL})=0.5V이면, R_{EQ} < R_{EQ.OPT}이다(도 8 참조).
- [0106] 따라서, 오프셋 보상부(OFFSET_COMP)에 의한 전압 강하는 최적 제어 전압(R_{CTRL.OPT})=0.6V일 때의 전압 강하보다 작고, 출력단(OUT₂)의 전위는 최적 제어 전압(R_{CTRL.OPT})일 때의 그것보다 높다.
- [0107] 따라서, 로우 패스 필터(500)가 출력하는 저대역 차동 신호(EQ_{1L}, EQ_{2L}) 사이에는 EQ_{1L} < EQ_{2L}이 성립하고, 오차 증폭기(600)가 출력하는 제어 전압(R_{CTRL})은 증가한다.
- [0108] 상술한 과정은 제어 전압(R_{CTRL})이 최적 제어 전압(R_{CTRL.OPT})에 수렴할 때까지 반복된다. 즉, 제어 전압(R_{CTRL})이 최적 제어 전압(R_{CTRL.OPT})보다 작으면 제어 전압(R_{CTRL})이 증가하는 과정과, 제어 전압(R_{CTRL})이 최적 제어 전압(R_{CTRL.OPT})보다 크면 제어 전압(R_{CTRL})이 감소하는 과정이 반복되어 제어 전압(R_{CTRL})은 최적 제어 전압(R_{CTRL.OPT})에 수렴한다.

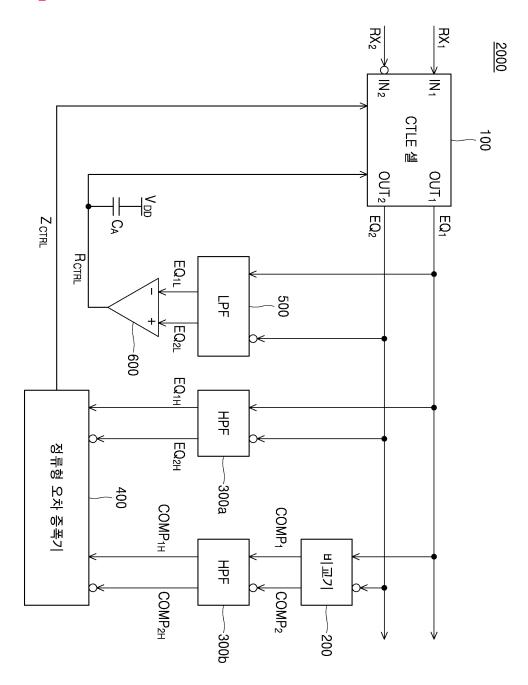
도면

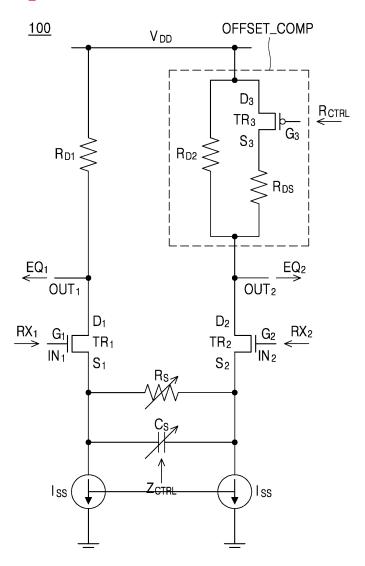


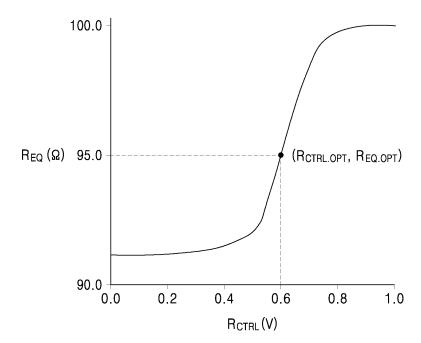



도면4a


도면4b




도면5a



도면5b

