
(12) United States Patent
Melamed et al.

US007093249B2

US 7,093,249 B2
Aug. 15, 2006

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR
SYNCHRONIZING EXECUTION OF A TEST
SEQUENCE

(75) Inventors: Douglas Melamed, Pflugerville, TX
(US); James Grey, Cedar Park, TX
(US)

(73) Assignee: National Instruments Corporation,
Austin, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 768 days.

(21) Appl. No.: 09/798,459

(22) Filed: Mar. 2, 2001

(65) Prior Publication Data

US 2002/O124042 A1 Sep. 5, 2002

(51) Int. Cl.
G06F 9/46 (2006.01)

(52) U.S. Cl. 718/100; 718/102
(58) Field of Classification Search 718/100–103,

718/104-108; 710/200
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,261,097 A 11/1993 Saxon
5,504.881 A 4/1996 Ssirurget
5,600,789 A * 2/1997 Parker et al. T14? 38
5,825,361 A 10, 1998 Rubin et al.
5,953,530 A 9, 1999 Rishi et al.
6,002,868 A * 12/1999 Jenkins et al. 717/105
6,023,773. A 2/2000 O'Donnell et al.
6,067,639 A * 5/2000 Rodrigues et al. T14? 38
6,077.304 A * 6/2000 Kasuya TO3/14
6,167.455 A 12/2000 Friedman et al.
6,223.228 B1* 4/2001 Ryan et al. 7 13/375
6,336,088 B1 1/2002 Bauman et al.
6,397,378 B1 5/2002 Grey et al.

6,611,276 B1 8, 2003 Muratori et al.
6,681,384 B1 1/2004 Bates et al.

6,684.385 B1 1/2004 Bailey et al.
2002/O122062 A1

2002/O124042 A1
2002/O124205 A1

2002/O124241 A1

9, 2002 Melamed et al.

9, 2002 Melamed et al.

9/2002 Grey et al.
9/2002 Grey et al.

OTHER PUBLICATIONS

National Instruments Corporation, LabVIEW, “Test Executive Ref
erence Manual.” Aug. 1997.
Johnson, Laura, “Test and Measurement Understanding Test
Executives.' Webpage www.testandmeasurement.com.content/
news?, Oct. 16, 2000, pp. 1-9.
Jaluna SA Dec. 1999: pp. 1 and 2.

(Continued)
Primary Examiner Meng-Al T. An
Assistant Examiner Syed J Ali
(74) Attorney, Agent, or Firm Meyertons Hood Kivlin
Kowert & Goestzel, P.C.; Jeffrey C. Hood

(57) ABSTRACT

A system and method for synchronizing execution of mul
tiple processes or threads executing to perform tests of one
or more units under test. One or more synchronization steps
may be included in a test executive sequence, in response to
user input requesting inclusion of the synchronization steps.
Each synchronization step may be configured to perform a
synchronization operation, in response to user input speci
fying the synchronization operation. The test executive
sequence may then be executed multiple times concurrently,
e.g., by multiple threads or processes, and the one or more
synchronization steps in the test executive sequence may
coordinate the execution of the multiple threads or processes
to test the unit(s) under test.

54 Claims, 53 Drawing Sheets

include a synchronization step in a testsequence, in response to user
input requesting inclusion of the synchronization step

4OO

Configure the synchronization step to perform a synchronization
operation, in response to user input specifying the synchronization

operation, wherein said configuring the synchronization step to perform
the synchronization operation comprises associating program instructions

with the synchronization step, such that the program instructions are
executable to perform the specified synchronization operation

402

Execute the test sequence,
wherein executing the test sequence comprises executing the

synchronization step,
wherein executing the synchronization step comprises executing

the program instructions associated with the synchronization step to
perform the specified synchronization operation

404

US 7,093,249 B2
Page 2

OTHER PUBLICATIONS Hwang et al., “Reachability Testing: An Approach to Testing
Concurrent Software,” citeseer.nj.nec.com, 1995, (10 pages).

Microsoft Computer Dictionary, Fifth Edition, Microsoft Press, Wang et al., “Sequence Specification for Concurrent Object-Ori
Copyright 2002, p.53, p. 507. ented Applications,” 1997 IEEE, (pp. 163-170).
Granson et al., “Digital Test Generation and Design for Testability.”
1980 ACM, ACM Portal Database, (pp. 175-189). * cited by examiner

U.S. Patent Aug. 15, 2006 Sheet 1 of 53 US 7,093,249 B2

3

3 av. y
Si

&

S

S

&

US 7,093,249 B2 U.S. Patent

U.S. Patent Aug. 15, 2006 Sheet 3 Of 53 US 7,093,249 B2

Receive user input indicating a desire to specify a
Synchronization object operation

300

Display a graphical user interface, wherein the graphical
user interface is useable to specify a plurality of

Synchronization object operations
302

Receive user input via the graphical user interface to
specify a first synchronization object operation

304

Programmatically Create program instructions which are
executable to perform the first synchronization object

operation
306

Execute the program instructions to perform the first
Synchronization object operation

308

FIG. 3

US 7,093,249 B2 U.S. Patent

U.S. Patent Aug. 15, 2006 Sheet S of 53 US 7,093,249 B2

Include a synchronization step in a test sequence, in response to user
input requesting inclusion of the synchronization step

400

Configure the synchronization step to perform a synchronization
operation, in response to user input specifying the synchronization

operation, wherein said configuring the synchronization step to perform
the synchronization operation comprises associating program instructions

with the synchronization step, such that the program instructions are
executable to perform the specified synchronization operation

402

Execute the test sequence,
wherein executing the test sequence comprises executing the

synchronization step,
wherein executing the synchronization step comprises executing

the program instructions associated with the synchronization step to
perform the specified synchronization operation

404

FIG. 5

US 7,093,249 B2 Sheet 6 of 53 Aug. 15, 2006 U.S. Patent

???????????

::.

US 7,093,249 B2 Sheet 7 Of 53 Aug. 15, 2006 U.S. Patent

30uenb3S se auJe5

US 7,093,249 B2 Sheet 8 Of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 Sheet 9 Of 53 Aug. 15, 2006 U.S. Patent

“asmoig i =============|

TaueNx3?nWsieson

US 7,093,249 B2 Sheet 10 of 53 Aug. 15, 2006 U.S. Patent

!!!!

9d41 |

|

US 7,093,249 B2 Sheet 11 of 53 Aug. 15, 2006 U.S. Patent

uog?e anfiguojdansa.?oudetua 58

US 7,093,249 B2 Sheet 12 Of 53 Aug. 15, 2006 U.S. Patent

|------------------ ... ----–[spuO33s]uoissºldx3\n0au, 1
uo?eantiguoj daa5 aloudeuu353

US 7,093,249 B2 Sheet 13 Of 53 Aug. 15, 2006 U.S. Patent

uop?eanfiguoju dan 5 Baoqdeuu35$

US 7,093,249 B2 Sheet 14 of 53 Aug. 15, 2006 U.S. Patent

uo?eanbguo D dans aloudeluas ?

US 7,093,249 B2 U.S. Patent

US 7,093,249 B2 Sheet 16 of 53 Aug. 15, 2006 U.S. Patent

juo?sseidx 3 augeNsnoazapua H

luonelado
uo?eantiguoj dans snoazºpu3, …,-

US 7,093,249 B2 Sheet 17 Of 53 Aug. 15, 2006

uop?eanfiguoj dans snoazapua: *,*

U.S. Patent

US 7,093,249 B2 Sheet 18 Of 53 Aug. 15, 2006 U.S. Patent

{indino

uop?eantiguoj da?5 snoazapua: *,*

US 7,093,249 B2 Sheet 20 Of 53 Aug. 15, 2006 U.S. Patent

sasanant?uenseqsisuomes F====================No. uo?eanfiguoj dans ananò ,

US 7,093,249 B2 Sheet 21 Of 53 Aug. 15, 2006 U.S. Patent

inºs, ananpaq. Il uolue.inõguo) dans ananò

US 7,093,249 B2 Sheet 22 Of 53 Aug. 15, 2006 U.S. Patent

iu:o)-. enambaq

U.S. Patent Aug. 15, 2006 Sheet 23 of 53 US 7,093,249 B2

Enqueue Type (By Value)- Source
Dequeue Type-Simple Type Structured Type ActiveX Reference
Destination

Simple Type lf types match, Type mismatch error. Type mismatch error.
dequeue copies the
data to the location
the user specify. If
types do not match,
dequeue reports a
type mismatch error.

Structured Type mismatch Replaces the property Type mismatch error.
Type eO. the user specify as the

dequeue location with
a copy of the
Structured value that
the queue stores.

Stores an ActiveX
reference to the
Structured value that
the queue stores.

ActiveX
Reference

Copies the ActiveX
reference the queue
stores to the location
the user specify.

Type mismatch
eO.

Dequeue Behaviors for Data Enqueued by Value

FIG. 23

U.S. Patent Aug. 15, 2006 Sheet 24 of 53 US 7,093,249 B2

Enqueue Type (By Reference)- Source
Dequeue Type-Simple Type Structured Type ActiveX Reference
Destination

Simple Type if types match, Type mismatch error. Type mismatch error.
dequeue copies the
data to the location
the user specify. If
types do not match,
dequeue reports a
type mismatch error.

Structured Type mismatch Makes a copy of the Type mismatch error.
Type error. Structured value that

the queue stores by
reference, and
replaces the property
the user specify as
the dequeue location
with that copy.

ActiveX
Reference

Stores an ActiveX
reference to the
ActiveX reference
that the queue stores.

Stores an ActiveX
reference to the
structured value that
the queue stores.

Stores an ActiveX
reference to the
simple type as it is
stored in the queue.

Dequeue Behaviors for Data Enqueued by Reference

FIG. 24

US 7,093,249 B2 Sheet 25 Of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 U.S. Patent

US 7,093,249 B2 Sheet 27 Of 53 Aug. 15, 2006 U.S. Patent

0 []

'''enò qualunp's ejol,

#*********************

*****************************?

US 7,093,249 B2 Sheet 28 Of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 Sheet 29 Of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 Sheet 30 of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 Sheet 31 Of 53 Aug. 15, 2006 U.S. Patent

uomes?ion:SEGGERE

US 7,093,249 B2 Sheet 32 Of 53 Aug. 15, 2006 U.S. Patent

10113 eunung sasnejanoau|1|2|

uo?eanfiguo) dans uo?en
gl?ow (i)

U.S. Patent Aug. 15, 2006 Sheet 33 Of 53 US 7,093,249 B2

Set or Pulse Data Type (By Value)- Source
Storage Type- Simple Type Structured Type ActiveXReference
Destination

Simple Type If the types match, Type mismatch error. Type mismatch error.
the step copies the
data to the location
you specify. If the
types do not match,
the step reports a
type mismatch error,

Structured
Type

Type mismatch
eO.

Replaces the property Type mismatch error.
you specify as the
storage location with
a copy of the
Structured Value that
the notification
Stores.

ActiveX
Reference

Stores an ActiveX
reference to the
structured value that
the notification
Stores.

Copies the ActiveX
reference the
notification stores to
the location you
Specify.

Type mismatch
eO.

Wait Behaviors for DataSet or Pulsed by Value

FIG. 33

U.S. Patent Aug. 15, 2006 Sheet 34 of 53 US 7,093,249 B2

Set or Pulse Data Type (By Reference)- Source
Storage Type- Simple Type Structured Type ActiveX Reference
Destination

Simple Type if types match, Type mismatch error. Type mismatch error.
the step copies the
data to the location
the user specify. If
types do not match,
the step reports a
type mismatch error.

Structured Type mismatch Makes a copy of the Type mismatch error.
Type erO. structured value that

the notification stores
by reference, and
replaces the property
the user specify as
the storage location
with that copy.

ActiveX Stores an ActiveX Stores an ActiveX Stores an ActiveX
Reference reference to the reference to the reference to the

simple type structured value that ActiveX reference
notification stores. the notification that the notification

stores. Stores.

Wait Behaviors for DataSet or Pulsed by Reference

FIG. 34

US 7,093,249 B2 Sheet 35 of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 Sheet 36 of 53 Aug. 15, 2006 U.S. Patent

Idx3nassi El adx5uone!!!!!0!!!!!!!!AA [E]]
E-T-I

US 7,093,249 B2 Sheet 37 of 53 Aug. 15, 2006 U.S. Patent

<fiumaswoulun» uoissældae eule N qoqeg

US 7,093,249 B2 Sheet 38 of 53 Aug. 15, 2006 U.S. Patent

| –

peal?Tae

US 7,093,249 B2 Sheet 39 of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 Sheet 40 of 53 Aug. 15, 2006 U.S. Patent

uopelado

US 7,093,249 B2 Sheet 41 of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 Sheet 42 of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 U.S. Patent

US 7,093,249 B2 U.S. Patent

US 7,093,249 B2 Sheet 45 of 53 Aug. 15, 2006 U.S. Patent

4, 83||-|| 35uanba? ER

US 7,093,249 B2 Sheet 46 of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 U.S. Patent

US 7,093,249 B2 Sheet 48 of 53 Aug. 15, 2006 U.S. Patent

|

------ ||

uopelnõu

US 7,093,249 B2 Sheet 50 of 53 Aug. 15, 2006 U.S. Patent

| 1

-- - - - - -----******************::::::::::::::::::::::::::::::~~*~~~~~~~ ~~~~ ~~~~

| |

US 7,093,249 B2 Sheet 51 of 53 Aug. 15, 2006 U.S. Patent

TÆT

I

%!!0!!3 peal?I MæN,

US 7,093,249 B2 Sheet 52 of 53 Aug. 15, 2006 U.S. Patent

US 7,093,249 B2 Sheet 53 of 53 Aug. 15, 2006 U.S. Patent

|

US 7,093,249 B2
1.

SYSTEMAND METHOD FOR
SYNCHRONIZING EXECUTION OF A TEST

SEQUENCE

FIELD OF THE INVENTION

The present invention relates to the field of synchronizing
Software execution, e.g., synchronizing threads or processes.
One embodiment of the invention also relates to the field of
computer-based testing of products or devices.

DESCRIPTION OF THE RELATED ART

In the software arts, when working with multiple threads
or processes, the problem of execution synchronization
often arises. As used herein, execution synchronization may
refer to any of various techniques enabling multiple threads
or processes to execute together effectively. For example,
one aspect of execution synchronization pertains to coordi
nating multiple threads or processes to share data or
resources. For example, when one thread is writing to a file,
other threads may need to be prevented from doing so at the
same time in order to prevent data errors in the file. Also,
threads may need to be prevented from reading from the file
while it is being written to, in order to ensure that partial or
incorrect data is not read.

Another aspect of execution synchronization pertains to
defining and enforcing a series of operations that must be
performed atomically. For example, consider a program
where one thread updates a static data structure containing
X and Y coordinates for items to be displayed by another
thread. If the update thread alters the X coordinate for an
item and is preempted before it can change the Y coordinate,
the display thread may be scheduled before the Y coordinate
is updated, resulting in the item being displayed at the wrong
location.

Other aspects of execution synchronization include: forc
ing a group of threads to wait for each other until proceeding
past a specified location; enabling threads to pass data to
each other, e.g., so that a consumer thread can use data
produced by a producer thread; notifying one or more
threads when a particular event or condition occurs; defining
and synchronizing a group of threads to execute as a batch;
etc.

Various types of “synchronization objects' may be used in
synchronizing execution among multiple threads and pro
cesses. For example, one type of synchronization object is a
mutex. A mutex (short for mutual exclusion) may be used to
guarantee exclusive access to a shared resource, typically by
controlling access to the resource through "lock' and
“unlock' operations. For example, referring to the above
example of the update and display threads, to solve this X,Y
coordinate update problem, the update thread may lock
(acquire) a mutex indicating that the coordinate data struc
ture is in use before performing the update. The update
thread may then unlock (release) the mutex after both
coordinates have been processed. The display thread must
wait for the mutex to be unlocked before updating the
display. This technique of waiting for a mutex is often called
“blocking on a mutex because the thread or process is
blocked and cannot continue until the mutex is released.
Other types of synchronization objects known in the prior art
include semaphores and queues.

Programmers often find it difficult to properly implement
execution synchronization using synchronization objects.
One reason for this is that in the prior art, program instruc
tions for performing execution synchronization are defined

10

15

25

30

35

40

45

50

55

60

65

2
by the programmer at the code-level, using either user
defined or operating system-provided synchronization
objects. Thus, in the prior art, the programmer is entirely
responsible for coding and managing execution synchroni
Zation. This responsibility includes: properly releasing Syn
chronization objects; defining and implementing timeout
behavior when waiting to acquire a synchronization object;
etc. In a complex application, this can require a significant
amount of detailed work on the part of the programmer and
can be difficult to accomplish.
One common synchronization problem which often

occurs when multiple processes or threads execute concur
rently is the problem of “deadlock', which can result in an
application stalling or freezing. For example, a common
scenario is for a thread A to block and wait until a thread B
does some work. If thread A owns some resource which
thread B requires, then the system comes to a halt because
thread B cannot run until thread A releases the resource, but
thread A is waiting for thread B to do something. Another
deadlock scenario is for a thread to end up waiting for itself.
e.g., by attempting to acquire a resource that the thread
already owns.

Thus, execution synchronization can be difficult to imple
ment correctly and serious problems can arise when not
implemented correctly. Therefore, an improved system and
method for synchronizing execution of software activities
(i.e., processes or threads) is desired. It would be desirable
for the improved system and method to simplify the task of
implementing execution synchronization for an application.
In particular, it would be desirable to abstract this task above
the code-level, so that the programmer can work at a more
intuitive level, e.g., using a graphical user interface (GUI).
It would also be desirable to automate certain commonly
performed aspects of managing execution synchronization.
For example, it may be desirable to enable the programmer
to specify via a GUI that a thread should automatically
release a synchronization object when the thread ends
execution. As another example, it may be desirable to enable
the programmer to easily specify the timeout behavior for a
synchronization operation via a GUI.

Execution synchronization is a common problem in many
types of systems and software environments. One class of
systems which has heretofore suffered from a lack of ability
to manage execution synchronization is the class of com
puter-based “test executive' systems. In modem testing
environments, software referred to as test executive software
may be used to control or perform tests. The test executive
typically allows the user to organize and execute a sequence
of test modules, e.g., via a graphical user interface. For
example, a test sequence may comprise a series of steps,
wherein each step references a test module, and wherein
each test module is executable to perform and/or control a
test of one or more units under test (UUTs). Each step may
have a parameter or property configuration that affects
execution of the step. Test step parameters or properties may
affect or control a wide variety of test aspects, such as
whether data-logging is enabled for the test step, whether the
step is executed in a loop, etc., as well as product-specific
test aspects.

Thus, when executed, test modules corresponding to the
steps in the test sequence may be operable to perform a
desired sequence of tests on the unit under test. For example,
various test modules may interact with instruments that
measure and/or control the unit under test. For example, in
a manufacturing environment, test executive software may
be used to test manufactured products or devices, e.g., by

US 7,093,249 B2
3

executing various test modules that interact with instruments
that measure and/or control the products.

Thus, test executive software operates as the control
center for an automated test system. More specifically, the
test executive allows the user to create, configure, and/or
control test sequence execution for various test applications,
Such as production and manufacturing test applications. Test
executive software typically includes various features. Such
as test sequencing based on pass/fail results, logging of test
results, and report generation, among others.
The following comprises a glossary of test executive

nomenclature used herein:
Code Module—A program module, such as a Windows

Dynamic Link Library (.dll), Java class file, LabVIEW VI
(vi), etc., that contains one or more functions that perform
a specific test or other action.

Test Module—A code module that performs a test.
Step—Any action, Such as calling a test module or step

module to perform a specific test, that the user can include
within a sequence of other actions.

Step Module. The code module that a step calls.
Sequence—A series of steps that the user specifies for

execution in a particular order. Whether and when a step is
executed can depend on the results of previous steps.
Subsequence—A sequence that another sequence calls.

The user specifies a Subsequence call as a step in the calling
Sequence.

Sequence File—A file that contains the definition of one
or more sequences.

Sequence Editor—A program that provides a graphical
user interface for creating, editing, and debugging
sequences.

Run-time Operator Interface—A program that provides a
graphical user interface for executing sequences on a pro
duction station. A sequence editor and run-time operator
interface can be separate application programs or different
aspects of the same program.

Test Executive Engine—A module or set of modules that
provide an API for creating, editing, executing, and debug
ging sequences. A sequence editor or run-time execution
operator interface uses the services of a test executive
engine.

Application Development Environment (ADE)—A pro
gramming environment such as LabVIEW, Lab Windows/
CVI, or Microsoft Visual C++, in which the user can create
test modules and run-time operator interfaces.

Unit Under Test (UUT)—A device or component that is
being tested; may include Software and/or hardware ele
mentS.

In the prior art, test executive software has not provided
users with the ability to manage execution synchronization.
For example, it would be desirable to enable test executive
users to use various synchronization objects. In particular, it
may be desirable to enable test executive users to insert
various types of "synchronization steps” into a test sequence
and configure the steps, so that execution synchronization
for a test sequence can be defined and managed at a high
level.

SUMMARY OF THE INVENTION

One embodiment of the present invention comprises a
system and method for synchronizing software execution in
a computer system. Synchronizing software execution may
comprise synchronizing the execution of threads and/or
processes executing in the computer system. The threads or
processes may be synchronized through the use of various

10

15

25

30

35

40

45

50

55

60

65

4
types of synchronization objects. In various embodiments,
various types of synchronization objects may be supported,
Such as: mutex synchronization objects, semaphore synchro
nization objects, rendezvous synchronization objects, queue
synchronization objects, notification synchronization
objects, and batch synchronization objects. These types of
synchronization objects are described in detail below.

In one embodiment of the method, user input indicating a
desire to specify a synchronization object operation may be
received. This user input may specify a particular type of
synchronization object on which to perform the operation.
For example, the user may select a “Configure Mutex’ menu
item. A graphical user interface, e.g., a dialog box or
window, may be displayed in response to the user input
indicating the desire to specify a synchronization object
operation. The graphical user interface may be useable to
specify a plurality of synchronization object operations, e.g.,
a plurality of operations that are specific to a specified type
of synchronization object. For example, for a mutex Syn
chronization object, the plurality of operations may com
prise a “create operation for creating a new mutex Syn
chronization object; a "lock' operation for locking an
existing mutex synchronization object; an “unlock' opera
tion for unlocking an existing mutex synchronization object;
a 'get status' operation for obtaining information regarding
a mutex synchronization object, etc. As another example, for
a queue Synchronization object, the plurality of operations
may comprise a “create operation for creating a new queue
synchronization object; an “enqueue' operation for adding
an element to the queue; a “dequeue' operation for remov
ing an element from the queue; a “flush” operation to flush
the queue; a 'get status' operation for obtaining information
regarding the queue Synchronization object; etc.
The graphical user interface may enable the user to select

a desired operation to perform on a synchronization object.
User input specifying a first synchronization object opera
tion may be received. Depending on which operation is
chosen, the user may also specify additional configuration
information for the operation. For example, for a mutex lock
operation, the user may specify a name of a mutex synchro
nization object to lock, a desired lifetime for the lock, a
timeout value, etc. Exemplary dialog boxes for various types
of synchronization object operations are described below.

In response to the specified synchronization object opera
tion, program instructions that are executable to perform the
synchronization object operation may be programmatically
created. These program instructions may subsequently be
executed to perform the specified synchronization object
operation. In various embodiments, the steps of creating and
executing the program instructions may be performed in any
of various ways. These steps may depend on the type of
software implementing the method or the context in which
the Software is used. For example, in one embodiment, an
application development environment may implement the
method. In this embodiment, the application development
environment may provide tools, e.g., dialog boxes such as
described above, for simplifying the task of writing program
code to perform execution synchronization for a multi
threaded application under development. Thus, in this
example, creating the program instructions may comprise
automatically including one or more lines of code, e.g.,
function or method calls, in the user's program, wherein the
included code is operable to perform the specified synchro
nization object. Executing the program instructions may
comprise executing the instructions that are created when
the included source code is compiled or interpreted.

US 7,093,249 B2
5

Any of various other types of software may also imple
ment embodiments of the method. For example, in another
embodiment, the method may be implemented in a test
executive software application. The method may be
employed to enable the user to specify execution synchro
nization behavior for multiple processes or threads execut
ing to perform tests of one or more units under test.
As described above, test executive software may enable

the user to create a test sequence to test a unit under test,
wherein the test sequence comprises a plurality of steps. In
one embodiment, one or more synchronization steps may be
included in the test sequence, in response to user input
requesting inclusion of the synchronization steps. Each
synchronization step may be configured to perform a syn
chronization operation, in response to user input specifying
the synchronization operation. For example, the user input
may be received via a graphical user interface for config
uring the synchronization step, similarly as described above.
In one embodiment, there may be multiple synchronization
step types available for inclusion in a test sequence, wherein
each synchronization step type corresponds to a particular
type of synchronization object, Such as a mutex synchroni
Zation object, a semaphore synchronization object, a ren
dezvous synchronization object, a queue Synchronization
object, a notification synchronization object, a batch Syn
chronization object, etc. Thus, the synchronization operation
specified for a synchronization step may be an operation
specific to a particular type of synchronization object. One
embodiment of a set of synchronization step types that may
be included in a test sequence and their associated synchro
nization operations is described.

Configuring a synchronization step to perform a synchro
nization operation may comprise associating program
instructions with the synchronization step. Such that the
program instructions are executable to perform the specified
synchronization operation. User input specifying configura
tion information for each synchronization operation may be
received. Such as a name of a synchronization object on
which to perform the operation or a timeout value for the
operation. The configuration information may be used in
associating the appropriate program instructions with the
synchronization steps.
The test sequence may then be executed, wherein execut

ing the test sequence comprises executing the one or more
synchronization steps, i.e., executing the program instruc
tions associated with the one or more synchronization steps
in order to perform the specified synchronization operations.
The test sequence may be executed multiple times concur
rently, e.g., by multiple threads or processes, and the one or
more synchronization steps in the test sequence may coor
dinate the execution of the multiple threads or processes to
test a unit under test, according to the synchronization
operations specified by the user.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1 illustrates an instrumentation control system
according to one embodiment of the present invention;

FIG. 2 is a block diagram of the computer system of FIG.
1;

FIG. 3 is a flowchart diagram illustrating one embodiment
of a method for synchronizing software execution in a
computer system;

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 4 illustrates a test executive application software

architecture according to one embodiment of the present
invention;

FIG. 5 is a flowchart diagram illustrating one embodiment
of a method for synchronizing multiple concurrent execu
tions of a test sequence; and

FIGS. 6–53 illustrate exemplary graphical user interfaces
for configuring synchronization steps for a test sequence.

While the invention is susceptible to various modifica
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that
the drawings and detailed description thereto are not
intended to limit the invention to the particular form dis
closed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Incorporation by Reference
The following references are hereby incorporated by

reference in their entirety as though fully and completely set
forth herein.

U.S. Pat. No. 6,401.220 titled “Test Executive System and
Method Including Step Types for Improved Configurabil
ity,” issued Jun. 4, 2002.
FIG. 1—Instrumentation System

FIG. 1 illustrates an examplary instrumentation control
system 100. The system 100 comprises a host computer 102
which connects to one or more instruments. The host com
puter 102 comprises a CPU, a display screen, memory, and
one or more input devices such as a mouse or keyboard as
shown. The computer 102 may connect through the one or
more instruments to analyze, measure or control a unit under
test (UUT) or process 150. For example, the computer 102
may include a test executive application for performing
automated tests of the unit under test. As described below,
the unit under test may be a product or device from a group
of related products or devices. It is noted that FIG. 1 is
exemplary only, and the present invention may be used in
any of various systems, as desired.
The one or more instruments may include a GPIB instru

ment 112 and associated GPIB interface card 122, a data
acquisition board 114 and associated signal conditioning
circuitry 124, a VXI instrument 116, a PXI instrument 118,
a video device 132 and associated image acquisition card
134, a motion control device 136 and associated motion
control interface card 138, and/or one or more computer
based instrument cards 142, among other types of devices.
The GPIB instrument 112 is coupled to the computer 102

via a GPIB interface card 122 provided by the computer 102.
In a similar manner, the video device 132 is coupled to the
computer 102 via the image acquisition card 134, and the
motion control device 136 is coupled to the computer 102
through the motion control interface card 138. The data
acquisition board 114 is coupled to the computer 102, and
optionally interfaces through signal conditioning circuitry
124 to the UUT. The signal conditioning circuitry 124
preferably comprises an SCXI (Signal Conditioning eXten
sions for Instrumentation) chassis comprising one or more
SCXI modules 126.
The GPIB card 122, the image acquisition card 134, the

motion control interface card 138, and the DAQ card 114 are

US 7,093,249 B2
7

typically plugged in to an I/O slot in the computer 102. Such
as a PCI bus slot, a PC Card slot, or an ISA, EISA or
MicroChannel bus slot provided by the computer 102.
However, these cards 122, 134, 138 and 114 are shown
external to computer 102 for illustrative purposes. The cards
122, 134, 138 and 114 may also be implemented as external
devices coupled to the computer 102. Such as through a
serial bus.
The VXI chassis or instrument 116 is coupled to the

computer 102 via a serial bus, MXI bus, or other serial or
parallel bus provided by the computer 102. The computer
102 preferably includes VXI interface logic, such as a VXI,
MXI or GPIB interface card (not shown), which interfaces
to the VXI chassis 116. The PXI chassis or instrument is
preferably coupled to the computer 102 through the com
puter's PCI bus.
A serial instrument (not shown) may also be coupled to

the computer 102 through a serial port, such as an RS-232
port, USB (Universal Serial bus) or IEEE 1394 or 1394.2
bus, provided by the computer 102. In typical instrumenta
tion control systems an instrument will not be present of
each interface type, and in fact many systems may only have
one or more instruments of a single interface type. Such as
only GPIB instruments.
The instruments are coupled to the unit under test (UUT)

or process 150, or are coupled to receive field signals,
typically generated by transducers. Other types of instru
ments or devices may be connected to the system, as desired.
The computer system 102 preferably includes a memory

medium on which one or more computer programs accord
ing to the present invention are stored. The memory medium
may store software operable to receive user input specifying
synchronization object operations via a graphical user inter
face and operable to programmatically create program
instructions in response to the user input, wherein the
program instructions are executable to perform the specified
synchronization object operations. In one embodiment, the
memory medium may store test executive software for
creating and/or controlling an automated test system. The
test executive software may allow the user to create, con
figure, and/or control test sequence execution for various
test applications, such as production and manufacturing test
applications. As described below, the test executive software
may provide Support for including various synchronization
steps in a test sequence, wherein the synchronization steps
perform synchronization object operations specified by the
user when the test sequence is executed.

The term “memory medium' is intended to include an
installation media, e.g., a CD-ROM, or floppy disks 104, a
computer system memory such as DRAM, SRAM. EDO
RAM, etc., or a non-volatile memory Such as a magnetic
medium, e.g., a hard drive, or optical storage. The host
computer CPU executing code and data from the memory
medium may comprise a means for receiving user input
specifying synchronization object operations and creating
program instructions executable to perform the specified
synchronization object operations according to the methods
described below.

FIG. 2 Computer System Block Diagram
FIG. 2 is a block diagram of the computer system illus

trated in FIG.1. It is noted that any type of computer system
configuration or architecture can be used as desired, and
FIG. 2 illustrates a representative PC embodiment. It is also
noted that the computer system may be a general purpose
computer system as shown in FIG. 1, a computer imple
mented on a VXI card installed in a VXI chassis, a computer

5

10

15

25

30

35

40

45

50

55

60

65

8
implemented on a PXI card installed in a PXI chassis, or
other types of embodiments. The elements of a computer not
necessary to understand the present invention have been
omitted for simplicity.
The computer 102 includes at least one central processing

unit or CPU 160 which is coupled to a processor or hostbus
162. The CPU 160 may be any of various types, including
an x86 processor, e.g., a Pentium class, a PowerPC proces
sor, a CPU from the SPARC family of RISC processors, as
well as others. Main memory 166 is coupled to the hostbus
162 by means of memory controller 164.
The main memory 166 may store computer programs

according to one embodiment of the present invention. The
main memory 166 may also store operating system software
as well as other software for operation of the computer
system, as well known to those skilled in the art. The
operation of computer programs stored in the main memory
166 is discussed in more detail below.
The host bus 162 is coupled to an expansion or input/

output bus 170 by means of a bus controller 168 or bus
bridge logic. The expansion bus 170 is preferably the PCI
(Peripheral Component Interconnect) expansion bus,
although other bus types can be used. The expansion bus 170
includes slots for various devices such as the data acquisi
tion board 114 (of FIG. 1) and a GPIB interface card 122
which provides a GPIB bus interface to the GPIB instrument
112 (of FIG. 1). The computer 102 further comprises a video
display subsystem 180 and hard drive 182 coupled to the
expansion bus 170.
As shown, a reconfigurable instrument 190 may also be

connected to the computer 102. The reconfigurable instru
ment 190 may include configurable logic, such as a pro
grammable logic device (PLD), e.g., an FPGA, or a proces
sor and memory, which may execute a real time operating
system. Program instructions may be downloaded and
executed on the reconfigurable instrument 190. In various
embodiments, the configurable logic may be comprised on
an instrument or device connected to the computer through
means other than an expansion slot, e.g., the instrument or
device may be connected via an IEEE 1394 bus, USB, or
other type of port. Also, the configurable logic may be
comprised on a device Such as the data acquisition board 114
or another device shown in FIG. 1.

FIG. 3—Method for Synchronizing Software Execution
FIG.3 is a flowchart diagram illustrating one embodiment

of a method for synchronizing software execution in a
computer system, Such as the computer system described
above with reference to FIGS. 1 and 2. Synchronizing
Software execution may comprise synchronizing the execu
tion of threads and/or processes executing in the computer
system. The threads or processes may be synchronized
through the use of various types of synchronization objects.
In various embodiments, various types of synchronization
objects may be supported. Such as: mutex synchronization
objects, semaphore synchronization objects, rendezvous
synchronization objects, queue Synchronization objects,
notification synchronization objects, and batch synchroni
Zation objects. These types of synchronization objects are
described in detail below.

In step 300, user input indicating a desire to specify a
synchronization object operation may be received. This user
input may specify a particular type of synchronization object
on which to perform the operation. For example, the user
may select a “Configure Mutex’ menu item.

In step 302, a graphical user interface, e.g., a dialog box
or window, may be displayed in response to the user input

US 7,093,249 B2

indicating the desire to specify a synchronization object
operation. The graphical user interface may be useable to
specify a plurality of synchronization object operations, e.g.,
a plurality of operations that are specific to a type of
synchronization object specified in step 300. For example,
for a mutex synchronization object, the plurality of opera
tions may comprise a "create operation for creating a new
mutex synchronization object; a "lock’ operation for locking
an existing mutex synchronization object; an “unlock”
operation for unlocking an existing mutex synchronization
object; a 'get status' operation for obtaining information
regarding a mutex synchronization object; etc. As another
example, for a queue Synchronization object, the plurality of
operations may comprise a “create operation for creating a
new queue Synchronization object; an “enqueue operation
for adding an element to the queue; a “dequeue operation
for removing an element from the queue; a “flush” operation
to flush the queue; a “get status' operation for obtaining
information regarding the queue Synchronization object; etc.
The graphical user interface may enable the user to select

a desired operation to perform on a synchronization object.
In step 304, user input specifying a first synchronization
object operation may be received. Depending on which
operation is chosen, the user may also specify additional
configuration information for the operation. For example,
for a mutex lock operation, the user may specify a name of
a mutex synchronization object to lock, a desired lifetime for
the lock, a timeout value, etc. Exemplary dialog boxes for
various types of synchronization objects and synchroniza
tion object operations are described below.

In step 306, program instructions that are executable to
perform the synchronization object operation specified in
step 304 may be programmatically created. In step 308,
these program instructions may be executed to perform the
specified synchronization object operation. In various
embodiments, steps 306 and 308 may be performed in any
of various ways. These steps may depend on the type of
software implementing the method or the context in which
the Software is used. For example, in one embodiment, an
application development environment may implement the
method of FIG. 3. In this embodiment, the application
development environment may provide tools, e.g., dialog
boxes such as described above, for simplifying the task of
writing program code to perform execution synchronization
for a multi-threaded application under development. Thus,
in this example, step 306 may comprise automatically
including one or more lines of Source code, e.g., function or
method calls, in the user's program, wherein the included
Source code is operable to perform the specified synchroni
Zation object operation. Step 308 may comprise executing
the instructions that are created when the included source
code is compiled or interpreted.
Any of various other types of software may also imple

ment embodiments of the method of FIG. 3. For example, in
another embodiment, the method may be implemented in a
test executive software application. As described below, the
method may be employed to enable the user to specify
execution synchronization behavior for multiple processes
or threads executing to perform tests of one or more units
under test.

Test Executive Software Components
FIG. 4 is a block diagram illustrating high-level architec

tural relationships between elements of one embodiment of
a test executive software application. It is noted that FIG. 4
is exemplary, and the present invention may be utilized in
conjunction with any of various test executive software

5

10

15

25

30

35

40

45

50

55

60

65

10
applications. In one embodiment, the elements of FIG. 4 are
comprised in the TestStand test executive product from
National Instruments. As shown, the test executive software
of FIG. 4 includes operator interface programs 202 for
interfacing to various Software programs. The operator inter
face programs 202 shown in FIG. 4 are for interfacing to the
LabVIEW, Lab Windows CVI, and Visual Basic programs.
However, additional operator interface programs 202 may
be included for interfacing to other programs.
The test executive software of FIG. 4 also includes a

sequence editor 212 for editing test sequences. The sequence
editor 212 and the operator interface programs 202 interface
to the test executive engine 220. One or more process
models 222 couple to the test executive engine 220. The test
executive engine 220 interfaces through an adapter interface
232 to one or more adapters 240. The adapters shown in
FIG. 4 include the LabVIEW standard prototype adapter, the
C/CVI prototype adapter, the DLL flexible prototype
adapter, and the sequence adapter. The LabVIEW standard
prototype adapter interfaces to programs having a VI exten
sion, i.e., LabVIEW graphical programs. The C/CVI proto
type adapter interfaces to programs having a .dll, lib, ..obj,
or .c extension. The DLL flexible prototype adapter inter
faces to programs having a .dll extension. The sequence
adapter interfaces to sequence file programs.
As shown in FIG. 4, the test executive engine 220 plays

a pivotal role in the test executive architecture. The test
executive engine 220 runs test sequences. Sequences com
prise steps that can call external code modules. By using
module adapters 240 that have the standard adapter interface
232, the test executive engine 220 can load and execute
different types of code modules. Test executive sequences
can call Subsequences through the common adapter interface
232. The test executive may use a special type of sequence
called a process model to direct the high-level sequence
flow. The test executive engine 220 exports an ActiveX
Automation API used by the sequence editor 212 and
run-time operator interfaces 202.
Test Executive Sequence Editor
The sequence editor 212 is an application program in

which the user creates, modifies, and debugs sequences. The
sequence editor 212 provides the user easy access to the test
executive features, such as step types and process models.
The sequence editor 212 may include debugging tools found
in application development environments such as Lab
VIEW, LabWindows/CVI, and Microsoft Visual C/C++.
These may include features Such as breakpoints, single
stepping, stepping into or over function calls, tracing, a
variable display, and a watch window.

In one embodiment, in the sequence editor 212, the user
may start multiple concurrent executions. Multiple instances
of the same sequence can be executed, and different
sequences can be executed at the same time. Each execution
instance has its own execution window. In trace mode, the
execution window displays the steps in the currently execut
ing sequence. When execution is suspended, the execution
window may displays the next step to execute and provide
single-stepping options. As described below, the user may
utilize the sequence editor 212 to interactively create a test
sequence which includes various synchronization steps to
coordinate multiple concurrent executions of the sequence.
Test Executive Engine
The test executive engine 220 may be used for creating,

editing, executing, and debugging sequences. The test
executive engine 220 may also provide an application pro
gramming interface (API) that enables another program to

US 7,093,249 B2
11

interface with the test executive engine 220 in order to
perform these actions. In one embodiment, the test executive
engine 220 comprises a set of DLLs that export an object
based or component-based API, preferably an ActiveX
Automation API. The sequence editor 212 and run-time 5
operator interfaces 202 may use the Test Executive Engine
API (Engine API). In one embodiment, the Engine API may
be called from any programming environment that Supports
access to ActiveX Automation servers. Thus, the Engine API
may be called from test modules, including test modules that
are written in LabVIEW and Lab Windows/CVI, Visual C++,
etc.

10

FIG. 5 Method for Synchronizing Multiple Concurrent
Test Sequence Executions

FIG. 5 is a flowchart diagram illustrating one embodiment
of a method for synchronizing multiple concurrent execu
tions of a test sequence. In step 400, a synchronization step
may be included in a test sequence, in response to user input
requesting inclusion of the synchronization step.

In step 402, the synchronization step may be configured
to perform a synchronization operation, in response to user
input specifying the synchronization operation, wherein said
configuring the synchronization step to perform the synchro
nization operation comprises associating program instruc
tions with the synchronization step. Such that the program
instructions are executable to perform the specified synchro
nization operation.

In step 404, the test sequence may be executed, wherein
said executing the test sequence comprises executing the
synchronization step, wherein said executing the synchro
nization step comprises executing the program instructions
associated with the synchronization step to perform the
specified synchronization operation.
The sections below describe one embodiment of a set of

synchronization step types that may be included in a test
sequence and their associated synchronization operations.

15

25

30

35

Synchronization Step Types
This section describes step types used to synchronize,

pass data between, and perform other operations in multiple
threads of an execution or multiple running executions in the
same process. The user may configure these synchronization
steps using dialog boxes. In the preferred embodiment, the
user is not required to write code modules for synchroniza
tion steps.

40

45

Synchronization Objects
Synchronization step types may create and/or control a

particular type of synchronization object. In one embodi
ment, the types of synchronization objects include:
MuteX—A mutex may be used to guarantee exclusive access

to a resource. For example, if several execution threads
write to a device that does not have a thread-safe driver,
the user can use a mutex to make Sure that only one thread
accesses the device at a time.

Semaphore—A semaphore may be used to limit access to a
resource to a specific number of threads. A semaphore is
similar to a mutex, except that it restricts access to the
number of threads that the user specifies rather than just
one thread. For example, the user can use a semaphore to
restrict access to a communications channel to a limited
number of threads so that each thread has sufficient
bandwidth.

Rendezvous—A rendezvous may be used to make a specific
number of threads wait for each other before they proceed
past a location the user specifies. For example, if different
threads configure different aspects of a testing environ

50

55

60

65

12
ment, the user can use a rendezvous to ensure that none
of the threads proceeds beyond the configuration process
until all threads have completed their configuration tasks.

Queue—A queue may be used to pass data from a thread that
produces it to a thread that processes it. For example, a
thread that performs tests asynchronously with respect to
the main sequence might use a queue to receive com
mands from the main sequence.

Notification—A notification may be used to notify one or
more threads when a particular event or condition occurs.
For example, if a dialog box is displayed by a separate
thread, a notification can be used to signal another thread
when the user dismisses the dialog.

Batch—A batch may be used to define and synchronize a
group of threads. This is useful when the user wants to test
a group of units-under-test (UUTs) simultaneously. Each
UUT may be tested in a separate thread, and the user may
use a Batch Specification step to include the UUT threads
in one batch. The user may use a Batch Synchronization
step to control the interaction of the UUT threads as they
execute the test steps. More specifically, the user may
place Batch Synchronization steps around one or more
test steps to create a “synchronized section'. The user can
configure a synchronized section so that only one UUT
enters the section at a time, no UUTs enter the section
until all are ready, and/or no UUTs proceed beyond the
section until all are done. This is useful for example when,
for a particular test, the user has only one test resource
which must be applied to each UUT in turn. The user can
also configure a synchronized section to guarantee that
only one thread executes the steps in the section. This is
useful for an action that applies to the entire batch, such
as raising the temperature in an environmental chamber.
Having a separate thread for each UUT allows the user to
exploit parallelism where the user can, while enforcing
serialization when necessary. It also allows the user to use
preconditions and other branching options so that each
UUT has its own flow of execution.
In one embodiment, the user does not have to create a

batch. For example, within the TestStand test executive
environment, the TestStand Batch process model does this
for the user. The model uses Batch Specification steps to
group TestSocket execution threads together so that the user
can use Batch Synchronization steps to synchronize them in
the user sequence file. If the user wants to create a synchro
nized section around a single step, the user can do so using
the Synchronization tab of the Step Properties dialog box
rather than by using explicit Batch Synchronization steps.
For more information on the TestStand Batch process model,
please refer to the Batch Process Model section of the
Process Models chapter of the TestStand product documen
tation, available from National Instruments Corporation.
Common Attributes of Synchronization Objects

Synchronization objects may share various common
attributes. In one embodiment, the user may specify the
following attributes in the step type configuration dialog box
for each synchronization object:
Name When the user creates a synchronization object, the

user can specify a unique name with a string literal or an
expression that evaluates to a string. If an object with the
same name and type already exists, the user can create a
reference to the existing object. Otherwise the user may
create a reference to a new synchronization object. By
creating a reference to an existing object, the user can
access the same synchronization object from multiple
threads or executions.

US 7,093,249 B2
13

In one embodiment, if the user specifies an empty string
as the name for a synchronization object, then an unnamed
synchronization object may be created that the user can
access through an ActiveX reference variable. To associate
an unnamed synchronization object with an ActiveX refer
ence variable, the user may select an object lifetime of
“Using ActiveX Reference'. To access a synchronization
object across threads without creating a reference in each
thread, the user may store a reference to the synchronization
object in an ActiveX reference variable and access the object
from multiple threads using the variable.

In one embodiment, by default, a synchronization object
is accessible only from the process in which the user creates
it. However, in one embodiment the user can make a
synchronization object accessible from other processes. Such
as multiple instances of an operator interface, by using an
asterisk (*) as the first character in the name. In addition, the
user can create a synchronization object on a specific
machine by beginning the name with the machine name,
Such as “Wmachinename\Syncobjectname. The user can
then use this name to access the synchronization object from
any machine on the network. For example, the user may set
up the TestStand test executive engine as a server for remote
execution, e.g., through DCOM.
Lifetime The user may specify a lifetime for each refer

ence to a synchronization object, such that the object
exists for at least as long as the reference exists. The
object can, however, exist longer if another reference to
the object has a different lifetime.
In one embodiment, the reference lifetime choices are

“Same as Thread”, “Same as Sequence', or “Using ActiveX
Reference'. If the user refers to the synchronization object
only by name, then the user may set its reference lifetime to
“Same as Thread” or “Same as Sequence'. This guarantees
that the object lives as long as the thread or sequence in
which the user creates the reference. If the user wants to
control the lifetime of the object reference explicitly, or if the
user wishes to refer to the object using an ActiveX reference
variable, the user may choose the “Using ActiveX Refer
ence” option. The user can use the ActiveX reference to the
object in place of its name when performing operations on
the object. The user can also use the reference from other
threads without performing a Create operation in each
thread. An ActiveX reference releases its object when the
user sets the variable equal to Nothing, reuses the variable
to store a different reference, or the variable goes out of
scope. When the last ActiveX reference to a synchronization
object releases, the object may be automatically disposed of
Some synchronization objects have an operation, Such as

Lock or Acquire, for which the user can specify a lifetime
that determines the duration of the operation.
Timeout—Most of the synchronization objects can perform

one or more operations that timeout if they do not
complete within the time interval the user specifies. The
user can specify to treat a timeout as an error condition or
the user can explicitly check for the occurrence of a
timeout by checking the value of the Step. Result. Tim
eoutOccurred property.

Synchronization Step Types
In the preferred embodiment, for each type of synchro

nization object, a corresponding step type is provided to
create and/or control objects of that synchronization object
type. For the batch synchronization object, there are two step
types, Batch Specification and Batch Synchronization. For
other synchronization objects, the name of the step type is
the same as the name of the synchronization object type the

5

10

15

25

30

35

40

45

50

55

60

65

14
step type controls. Also, in various embodiments there may
be additional Synchronization step types. For example, the
following two synchronization step types may be provided:
Wait—A Wait step may be used to wait for an execution or

thread to complete or for a time interval to elapse.
Thread Priority—A Thread Priority step may be used to

adjust the operating system priority of a thread.
To use any synchronization step type, the user may insert

a step of that type and may configure the step, e.g., using a
dialog box or wizard. For example, the user may select a
“Configure' item from a context menu for the step to display
a configuration dialog box. In the configuration dialog box,
the user may select an operation for the step to perform. The
user can then specify settings for the selected operation.
Some operations may store output values to variables the
user specifies. If the control for an output value is labeled as
an optional output, the user can leave the control empty.
Configuring Synchronization Steps
The following sections describe the functionality, the

configuration dialog box, and the custom properties of
various synchronization step types.
Mutex Step Type
Mutex steps may be used to ensure that only one thread

can access a particular resource or data item at a time. For
example, if the value of a global variable is examined and
updated from multiple threads or executions, the user can
use a mutex to ensure that only one thread examines and
updates the global variable at a time. If multiple threads are
waiting to lock a mutex, they preferably do so in first in first
out (FIFO) order as the mutex becomes available.

In one embodiment, a thread can lock the same mutex an
unlimited number of times without unlocking it. To release
the mutex, the thread may balance each lock operation with
an unlock operation.
Create Operation
To use a mutex, the user may first create a reference to a

new or existing mutex object. For example, to create a mutex
reference, the user may insert a Mutex step. The user may
then configure the Mutex step, e.g., by selecting a "Config
ure Mutex' item from a context menu for the step. FIG. 6
illustrates an exemplary dialog box for configuring a Mutex
step, in which a “Create” option has been selected for the
operation. The following GUI controls enable the user to
configure the Create operation:
Mutex Name Expression. This control may be used to

specify a name for the synchronization object using a
string literal or an expression that evaluates to a string.
Synchronization object names are described in more
detail above.

Already Exists. This control may be used to specify a
location to store a Boolean value that indicates whether
the synchronization object already exists.

Mutex Reference Lifetime This control may be used to
specify a lifetime for the reference to the synchronization
object.

Lock Operation
To use a mutex to guarantee that only one thread executes

certain steps at a time, the user may insert a Mutex step
before the steps the user want to protect and configure the
Mutex step to perform a Lock operation. FIG. 7 illustrates an
exemplary dialog box for configuring a Mutex step, in which
a “Lock' option has been selected for the operation. The
following GUI controls enable the user to configure the
Lock operation:

US 7,093,249 B2
15

Mutex Name or Reference Expression. This control may be
used to specify the mutex on which to perform the
operation. The user can specify the mutex by name or by
an ActiveX reference received when the mutex is created
with the Using ActiveX Reference lifetime option.

Lock Lifetime This control may be used to specify how
long the user wants the thread to hold the lock. Synchro
nization object lifetime settings are described in more
detail above. Once the lifetime of the last lock for the
owning thread ends, the mutex again becomes available
for a thread to lock.

Timeout Enabled, Timeout Expression, Timeout Causes
Run-Time Error These controls may be used to specify
the timeout behavior when waiting to acquire the Lock. If
a timeout occurs, the property Step.Result. TimeoutOc
curred is set to True.

Early Unlock Operation
To release the lock before the lock lifetime expires, the

user may insert a Mutex step and configure the Mutex step
to perform an Early Unlock operation. FIG. 8 illustrates an
exemplary dialog box for configuring a Mutex step, in which
an “Early Unlock' option has been selected for the opera
tion. The following GUI control enables the user to config
ure the Early Unlock operation:
Mutex Name or Reference Expression. This control may be

used to specify the mutex on which to perform the Early
Unlock operation. The user can specify the mutex by
name or by an ActiveX reference received when the
mutex is created with the Using ActiveX Reference
lifetime option.

Get Status Operation
To obtain information about an existing mutex or to

determine if a particular mutex exists, the user may insert a
Mutex step and configure the Mutex step to perform a Get
Status operation. FIG. 9 illustrates an exemplary dialog box
for configuring a Mutex step, in which a "Get Status' option
has been selected for the operation. The following GUI
controls enable the user to configure the Get Status opera
tion:
Mutex Name or Reference Expression. This control may be

used to specify the mutex on which to perform the
operation. The user can specify the mutex by name or by
an ActiveX reference received when the mutex is created
with the Using ActiveX Reference lifetime option.

Mutex Exists? This control may be used to specify a
location to store a Boolean value that indicates whether
the mutex exists.

Number of Threads Waiting to Lock the Mutex. This
control may be used to specify a location to store the
number of threads waiting to lock the mutex.

Mutex Step Properties
The Mutex step type may define various Mutex step

properties in addition to the common custom properties. For
example, FIG. 10 illustrates the following Mutex step prop
erties:
Step.Result.TimeoutOccurred is set to True if the Lock

operation times out. This property exists only if the step
is configured for the Lock operation.

Step.NameCrRefExpr contains the Mutex Name Expression
for the Create operation and the Mutex Name or Refer
ence Expression for all other mutex operations.

Step.LifetimeRef Expr contains the ActiveX Reference
Expression for the mutex lifetime or lock lifetime when
the user sets either lifetime to Use ActiveX Reference.

10

15

25

30

35

40

45

50

55

60

65

16
Step. Timeoutenabled contains the Timeout Enabled setting

for the Lock operation.
Step.TimeoutExpr contains the Timeout Expression, in sec

onds, for the Lock operation.
Step. ErrorOnTimeout contains the Timeout Causes Run
Time Error setting for the Lock operation.

Step. AlreadyExistsExpr contains the Already Exists expres
sion for the Create operation or the Mutex Exists expres
sion for the Get Status operation.

Step. NumThreads WaitingExpr contains the Number of
Threads Waiting to Lock the Mutex expression for the Get
Status operation.

Step.Operation contains a value that specifies the operation
the step is configured to perform. In one embodiment, the
valid values are 0=Create, 1=Lock, 2=Early Unlock,
3=Get Status.

Step. Lifetime contains a value that specifies the lifetime
setting to use for the Create operation. In one embodi
ment, the valid values are 0=Same as Sequence, 1 =Same
as Thread, 2=Use ActiveX Reference.

Step. LockLifetime contains a value that specifies the life
time setting to use for the Lock operation. In one embodi
ment, the valid values are 0=Same as Sequence, 1 =Same
as Thread, 2=Use ActiveX Reference.

Semaphore Step Type
Semaphore steps may be used to limit concurrent access

to a resource to a specific number of threads. A semaphore
stores a numeric count and allows threads to increment
(release) or decrement (acquire) the count as long as the
count stays equal to or greater than Zero. If a decrement
would cause the count to go below zero, the thread attempt
ing to decrement the count blocks until the count increases.
When multiple threads are waiting to decrement a sema
phore, the semaphore preferably unblocks the threads in first
in first out (FIFO) order whenever another thread increments
the semaphore count.
A semaphore with an initial count of one may behave like

a mutex, with one exception. Like a mutex, a one-count
semaphore may restrict access to a single thread at a time.
However, in one embodiment, unlike a mutex, a thread
cannot acquire a one-count Semaphone multiple times with
out releasing it each time. In the preferred embodiment,
when a thread attempts to acquire the semaphore a second
time without releasing it, the count is Zero and the thread
blocks.

Create Operation
To use a semaphore, the user may first create a reference

to a new or existing semaphore object. For example, to
create a semaphore reference, the user may insert a Sema
phore step. The user may then configure the Semaphore step,
e.g., by selecting a "Configure Semaphore' item from a
context menu for the step. FIG. 11 illustrates an exemplary
dialog box for configuring a Semaphore step, in which a
“Create option has been selected for the operation. The
following GUI controls enable the user to configure the
Create operation:
Semaphore Name Expression. This control may be used to

specify a unique name for the synchronization object
using a string literal or an expression that evaluates to a
string. Synchronization object names are described in
more detail above.

Already Exists. This control may be used to specify a
location to store a Boolean value that indicates whether
the synchronization object already exists.

US 7,093,249 B2
17

Semaphore Reference Lifetime This control may be used
to specify a lifetime for the reference to the synchroni
Zation object.

Initial Semaphore Count This control may be used to
specify the initial value for the count. This value must be
greater than or equal to 0. If the user knows that the
Semaphore already exists, the user can leave this setting
blank. If the semaphore already exists and the user
specifies an initial count that differs from the existing
initial count, the step may report an error at run time.

Acquire Operation
To access a resource that a semaphore protects, the user

may perform an Acquire (decrement) operation on the
semaphore. FIG. 12 illustrates an exemplary dialog box for
configuring a Semaphore step, in which an “Acquire (dec
rement) option has been selected for the operation. The
following GUI controls enable the user to configure the
Acquire (decrement) operation:
Semaphore Name or Reference Expression. This control
may be used to specify the semaphore on which to
perform the operation. The user can specify the Sema
phore by name or by an ActiveX reference received when
the semaphore is created with the Using ActiveX Refer
ence lifetime option.

Auto Release This control may be used to specify whether
to release (increment) the semaphore automatically when
the lifetime the user specifies expires.

Acquire Lifetime This control may be used to specify how
long the thread holds the semaphore after the thread
acquires the semaphore. The thread may release the
semaphore automatically when the lifetime of the acquire
ends. Synchronization object lifetime settings are
described in more detail above.

Timeout Enabled, Timeout Expression, Timeout Causes
Run-Time Error These controls may be used to specify
the timeout behavior when waiting to acquire the Sema
phore. If a timeout occurs, the property Step.Result.Tim
eoutOccurred is set to True.

Release Operation
The Release (increment) operation may be used when the

user wants direct control over the count or if the user uses
semaphores in a way that requires unmatched increments
and decrements. If the user enables Auto Release in the
Acquire operation, the Semaphore should not be explicitly
released using the Release (increment) operation. FIG. 13
illustrates an exemplary dialog box for configuring a Sema
phore step, in which a “Release (increment) option has
been selected for the operation. The following GUI control
enables the user to configure the Release (increment) opera
tion:
Semaphore Name or Reference Expression. This control
may be used to specify the semaphore on which to
perform the operation. The user can specify the Sema
phore by name or by an ActiveX reference received when
the semaphore is created with the Using ActiveX Refer
ence lifetime option.
The Release (increment) operation immediately incre

ments the count for the semaphore. If the user performs the
Acquire operation with the Auto Release option enabled, the
Release (increment) operation should not be used. Typically,
the user uses the Release (increment) operation only on
semaphores that require unmatched increments and decre
ments. For example, if the user creates a semaphore with an
initial count of Zero, all threads block when they perform an
Acquire. The user can then perform Release (increment)
operations to release the threads when desired.

10

15

25

30

35

40

45

50

55

60

65

18
Get Status Operation
To obtain information about the current state of the

semaphore, the user may insert a Semaphore step and
configure the Semaphore step to perform a Get Status
operation. FIG. 14 illustrates an exemplary dialog box for
configuring a Semaphore step, in which a "Get Status'
option has been selected for the operation. The following
GUI controls enable the user to configure the Get Status
operation:
Semaphore Name or Reference Expression. This control
may be used to specify the Semaphore on which to
perform the operation. The user can specify the Sema
phore by name or by an ActiveX reference received when
the semaphore is created with the Using ActiveX Refer
ence lifetime option.

Semaphore Exists? This control may be used to specify a
location to store a Boolean value that indicates whether
the semaphore exists.

Number of Threads Waiting to Acquire the Semaphore—
This control may be used to specify a location to store the
number of threads waiting to acquire the semaphore.

Initial Semaphore Count This control may be used to
specify a location to store the initial Semaphore count.

Current Count This control may be used to specify a
location to store the current value of the internal count.

Semaphore Step Properties
The Semaphore step type may define various Semaphore

step properties in addition to the common custom properties.
For example, FIG. 15 illustrates the following Semaphore
step properties:
Step.Result. TimeoutOccurred is set to True if the Acquire

operation times out. This property exists only if the step
is configured for the Acquire operation.

Step. NameCrRefExpr contains the Semaphore Name
Expression for the Create operation and the Semaphore
Name or Reference Expression for all of the other opera
tions.

Step. AutoRelease contains a Boolean value that specifies
whether the Acquire operation automatically performs a
Release when the Acquire lifetime expires.

Step. LifetimeRef Expr contains the ActiveX Reference
Expression for the semaphore lifetime or acquire lifetime
when the user sets either lifetime to Use ActiveX Refer
CCC.

Step. Timeoutenabled contains the Timeout Enabled setting
for the Acquire operation.

Step.TimeoutExpr contains the Timeout Expression, in sec
onds, for the Acquire operation.

Step. ErrorOnTimeout contains the Timeout Causes Run
Time Error setting for the Acquire operation.

Step. AlreadyExistsExpr contains the Already Exists expres
sion for the Create operation or the Semaphore Exists
expression for the Get Status operation.

Step. InitialCountExpr contains the numeric expression that
the Create operation uses for the initial count of the
semaphore.

Step. NumThreads WaitingExpr contains the Number of
Threads Waiting to Acquire the Semaphore expression for
the Get Status operation.

Step.Operation contains a value that specifies the operation
the step performs. In one embodiment, the valid values
are 0–Create, 1=Acquire, 2=Release, 3–Get Status.

Step. Lifetime contains a value that specifies the lifetime
setting for the Create operation. In one embodiment, the
valid values are 0=Same as Sequence, 1 =Same as Thread,
2=Use ActiveX Reference.

US 7,093,249 B2
19

Step. InitialcountOutExpr contains the Initial Semaphore
Count expression for the Get Status operation.

Step. AcquireLifetime contains a value that specifies the
lifetime setting for the Acquire operation. In one embodi
ment, the valid values are OSame as Sequence, 1=Same
as Thread, 2=Use ActiveX Reference. The Acquire opera
tion uses this setting only when Step. AutoRelease is set to
True.

Step.CurrentCountExpr contains the Current Count expres
sion for the Get Status operation.

Rendezvous Step Type
A rendezvous synchronization object may be used to

make threads wait for each other before they proceed past a
location the user specifies. As each thread performs the
rendezvous operation, the thread blocks. When the number
of blocked threads reaches the total specified by the user
when the user creates the rendezvous, the rendezvous
unblocks all its waiting threads and the threads resume
execution.

Create Operation
FIG. 16 illustrates an exemplary dialog box for config

uring a Rendezvous step, in which a “Create” option has
been selected for the operation. The following GUI controls
enable the user to configure the Create operation:
Rendezvous Name Expression. This control may be used to

specify a unique name for the synchronization object
using a string literal or an expression that evaluates to a
string. Synchronization object names are described in
more detail above.

Already Exists. This control may be used to specify a
location to store a Boolean value that indicates whether
the synchronization object already exists.

Rendezvous Reference Lifetime This control may be used
to specify a lifetime for the reference to the synchroni
Zation object.

Number of Threads Per Rendezvous This control may be
used to specify the number of threads that must rendez
vous before the step permits the threads to continue
execution past the rendezvous point. This value must be
greater than Zero. If the user knows that the rendezvous
already exists, the user can leave this setting blank. If the
user specifies a value different than the setting in the
existing rendezvous, the step may report an error at run
time.

Rendezvous Operation
FIG. 17 illustrates an exemplary dialog box for config

uring a Rendezvous step, in which a “Rendezvous' option
has been selected for the operation. The following GUI
controls enable the user to configure the Rendezvous opera
tion:
Rendezvous Name or Reference Expression. This control
may be used to specify the rendezvous on which to
perform the operation. The user can specify the rendez
vous by name or by an ActiveX reference received when
the rendezvous is created with the Using ActiveX Refer
ence lifetime option.

Timeout Enabled, Timeout Expression, Timeout Causes
Run-Time Error These controls may be used to specify
a timeout and timeout behavior when waiting to rendez
vous with other threads. If a timeout occurs, the property
Step.Result.TimeoutOccurred is set to True.

Get Status Operation
To obtain information about the current state of the

rendezvous, the user may use the Get Status operation. FIG.
18 illustrates an exemplary dialog box for configuring a

10

15

25

30

35

40

45

50

55

60

65

20
Rendezvous step, in which a "Get Status' option has been
selected for the operation. The following GUI controls
enable the user to configure the Get Status operation:
Rendezvous Name or Reference Expression. This control
may be used to specify the rendezvous on which to
perform the operation. The user can specify the rendez
vous by name or by an ActiveX reference received when
the rendezvous is created with the Using ActiveX Refer
ence lifetime option.

Rendezvous Exists? This control may be used to specify a
location to store a Boolean value that indicates whether
the rendezvous exists.

Number of Threads Waiting for Rendezvous This control
may be used to specify a location to store the number of
threads waiting on the rendezvous operation.

Number of Threads Per Rendezvous This control may be
used to specify a location to store the number of threads
that must rendezvous before the step permits the threads
to continue execution past the rendezvous point.

Rendezvous Step Properties
The Rendezvous step type may define various Rendez

Vous step properties in addition to the common custom
properties. For example, FIG. 19 illustrates the following
Rendezvous step properties:
Step.Result. TimeoutOccurred is set to true if the rendezvous

operation times out. This property exists only if the step
is configured for the rendezvous operation.

Step. NameCrRefExpr contains the Rendezvous Name
Expression for the Create operation and the Rendezvous
Name or Reference Expression for other rendezvous
operations.

Step. LifetimeRef Expr contains the ActiveX Reference
Expression for the rendezvous lifetime when the user sets
the lifetime to Use ActiveX Reference.

Step. Timeoutenabled contains the Timeout Enabled setting
for the rendezvous operation.

Step.TimeoutExpr contains the Timeout Expression, in sec
onds, for the rendezvous operation.

Step. ErrorOnTimeout contains the Timeout Causes Run
Time Error setting for the rendezvous operation.

Step. AlreadyExistsExpr contains the Already Exists expres
sion for the Create operation or the Rendezvous Exists
expression for the Get Status operation.

Step. RendezvousCountExpr contains the Number of
Threads Per Rendezvous expression for the Create opera
tion.

Step. NumThreads WaitingExpr contains the Number of
Threads Waiting for Rendezvous expression for the Get
Status operation.

Step.Operation contains a value that specifies the operation
the step performs. In one embodiment, the valid values
are 0=Create, 1=Rendezvous, 2=Get Status.

Step. Lifetime contains a value that specifies the lifetime for
the Create operation. In one embodiment, the valid values
are 0=Same as Sequence, 1=Same as Thread, 2=Use
ActiveX Reference.

Step. RendezvousCountOutExpr contains the Number of
Threads Per Rendezvous expression for the Get Status
operation.

Queve Step Type
Queue steps may be used to synchronize the production

and consumption of data among threads. A queue has two
primary operations, Enqueue and Dequeue. The Enqueue
operation places a data item on the queue and the Dequeue
operation removes an item from the queue. Normally, the
Enqueue operation blocks when the queue is full and the

US 7,093,249 B2
21

Dequeue operation blocks when the queue is empty. If
multiple threads block on the same queue operation, the
threads preferably unblock in first in first out (FIFO) order.
Create Operation

To use a queue, the user may first create a reference to a
new or existing queue object. For example, the user may
insert a Queue step and then configure the Queue step, e.g.,
by selecting a "Configure Queue' item from a context menu
for the step. FIG. 20 illustrates an exemplary dialog box for
configuring a Queue step, in which a "Create option has
been selected for the operation. The following GUI controls
enable the user to configure the Create operation:
Queue Name Expression. This control may be used to

specify a unique name for the synchronization object
using a string literal or an expression that evaluates to a
string. Synchronization object names are described in
more detail above.

Already Exists. This control may be used to specify a
location to store a Boolean value that indicates whether
the synchronization object already exists.

Queue Reference Lifetime This control may be used to
specify a lifetime for the reference to the synchronization
object.

Maximum Number of Elements. This control may be used
to specify the maximum number of items that the queue
can store. A value less than or equal to Zero specifies that
the queue does not have a maximum number of elements.
If the user knows that the queue already exists, the user
can leave this setting blank. If the user specifies a value
different than the maximum number of elements for the
existing queue, the step may report an error at run time.

Enqueue Operation
The Enqueue operation may be used to add new elements to
the queue. FIG. 21 illustrates an exemplary dialog box for
configuring a Queue Step, in which an "Enqueue option has
been selected for the operation. The following GUI controls
enable the user to configure the Enqueue operation:
Queue Name or Reference Expression. This control may be

used to specify the queue on which to perform the
operation. The user can specify the queue by name or by
an ActiveX reference received when the queue is created
with the Using ActiveX Reference lifetime option.

New Element to Enqueue This control may be used to
specify the data to insert into the queue. The data can be
any type, including a number, string, Boolean, ActiveX
reference, structured type (container), or arrays of these
types. The user may later dequeue the element into a
location with the appropriate type. By default, the queue
may store a copy of the data the user enqueues. However,
if the user enables the Store by Reference Instead of by
Value option, the Enqueue operation may store a reference
to the data value instead, e.g., an ActiveX reference. The
user may then dequeue this reference into an ActiveX
reference variable and access the data. For example, the
TestStand test executive environment provides a
TestStand ActiveX API PropertyObject interface and
ActiveX Automation Adapter that may be used to access
the data.

Insert At This control may be used to specify where to
store the new queue element. In one embodiment, the
choices are Back of Queue and Front of Queue.

Store by Reference Instead of by Value This control may
be used to specify how to store the data the user specifies
in the New Element to Enqueue control. The user may

10

15

25

30

35

40

45

50

55

60

65

22
enable the option to store an ActiveX reference to the
data. The user may disable the option to store a copy of
the data.

If the Queue is Full This control may be used to specify
what to do if the queue is full. In one embodiment, the
choices are Wait, Discard Front Element, Discard Back
Element, and Do Not Enqueue. If the user chooses the
Wait option, the thread blocks until the queue is no longer
full. All other options return immediately.

Timeout Enabled, Timeout Expression, Timeout Causes
Run-Time Error These controls may be used to specify
a timeout and timeout behavior for when the queue is full.
The timeout only applies if the user specifies the Wait
option for the If the Queue is Full setting. If a timeout
occurs, the property Step.Result.Timeout Occurred is set
to True.

Dequeue Operation
The Dequeue operation may be used to remove an ele

ment and/or store the data from an element. FIG. 22 illus
trates an exemplary dialog box for configuring a Queue Step,
in which a "Dequeue' option has been selected for the
operation. The following GUI controls enable the user to
configure the Dequeue operation:
Queue Name or Reference Expression. This control may be

used to specify the queue on which to perform the
operation. The user can specify the queue by name or by
an ActiveX reference received when the queue is created
with the Using ActiveX Reference lifetime option. The
user can specify multiple queues using either a string
array containing the names of the queues, or an ActiveX
reference array containing ActiveX references to the
queues. When the user specifies multiple queues, the
Dequeue operation dequeues an element from the first
queue the user specifies that has an element available. The
user can ascertain which queue the operation dequeues
from by using the Which Queue control to specify a
location to store the array offset of the queue.

Location to Store Element. This control may be used to
specify the location in which to store the queue element,
e.g., wherein the type of the location is compatible with
the data that the element stores. The user may leave this
control blank if the user does not want to store the data.
FIG. 23 is a table illustrating the outcomes, according to
one embodiment, when data is enqueued by value. FIG.
24 is a table illustrating the outcomes, according to one
embodiment, when data is enqueued by reference. In
FIGS. 23 and 24, the outcomes shown depend on the type
of data in the queue and the data type of the storage
location. In these tables, “Simple Type” refers to a num
ber, string, Boolean, array of any type, or other simple
type, and “Structured Type” refers to an instance of a
user-defined type where the root property is a container.

Dequeue From This control may be used to specify where
in the queue to dequeue from. In one embodiment, the
options are Front of Queue and Back of Queue.

Remove Element. This control may be used to specify
whether the operation removes the element from the
queue. If the user does not enable this option, the opera
tion retrieves the value of the element without removing
it from the queue.

Which Queue This control may be used to specify a
location to store the array offset of the queue on which the
Dequeue operation occurs. Typically, the Which Queue
control is not used unless the user is dequeuing from
multiple queues. Dequeuing from multiple queues is
described above.

US 7,093,249 B2
23

Timeout Enabled, Timeout Expression, Timeout Causes
Run-Time Error These controls may be used to specify
a timeout and timeout behavior when waiting to dequeue
an element. If a timeout occurs, the property Step.Result
TimeoutOccurred is set to True.

Flush Operation
The Flush operation may be used to empty the queue and

optionally retrieve all its elements. FIG. 25 illustrates an
exemplary dialog box for configuring a Queue step, in which
a “Flush” option has been selected for the operation. The
following GUI controls enable the user to configure the
Flush operation:
Queue Name or Reference Expression. This control may be

used to specify the queue on which to perform the
operation. The user can specify the queue by name or by
an ActiveX reference received when the queue is created
with the Using ActiveX Reference lifetime option.

Location to Store Array of Queue Elements. This control
may be used to specify an array property in which to store
the elements of the queue, in which the queue elements
are of the same data type as the specified array. This
output is optional.

Get Status Operation
The Get Status operation may be used to obtain informa

tion about the current state of a queue. FIG. 26 illustrates an
exemplary dialog box for configuring a Queue step, in which
a "Get Status' option has been selected for the operation.
The following GUI controls enable the user to configure the
Get Status operation:
Queue Name or Reference Expression. This control may be

used to specify the queue on which to perform the
operation. The user can specify the queue by name or by
an ActiveX reference received when the queue is created
with the Using ActiveX Reference lifetime option.

Queue Exists—This control may be used to specify a
location to store a Boolean value that indicates whether
the synchronization object exists.

Number of Threads Waiting to Enqueue This control may
be used to specify a location to store the number of
threads waiting to enqueue data.

Number of Threads Waiting to Dequeue This control may
be used to specify a location to store the number of
threads waiting to dequeue data.

Maximum Number of Elements. This control may be used
to specify a location to store the maximum number of
elements of the queue.

Number of Elements. This control may be used to specify
a location to store the number of elements in the queue.

Location to Store Array of Queue Elements. This control
may be used to specify an array property in which to store
the elements of the queue, in which the queue elements
are of the same data type as the specified array. This
feature is optional.

Queue Step Properties
The Queue Step type may define various Queue Step

properties in addition to the common custom properties. For
example, FIG. 27 illustrates the following Queue step prop
erties:
Step.Result.TimeoutOccurred is set to True if an Enqueue or

Dequeue operation times out. This property exists only if
the step is configured for the Enqueue or Dequeue opera
tion.

Step.NameCrRefExpr contains the Queue Name Expression
for the Create operation and the Queue Name or Refer

10

15

25

30

35

40

45

50

55

60

65

24
ence Expression for all other operations. In the case of the
Dequeue operation, this expression can specify an array of
names or references.

Step. LifetimeRef Expr contains the ActiveX Reference
Expression for the queue lifetime when the user set the
lifetime to Use ActiveX Reference.

Step. Timeoutenabled contains the Timeout Enabled setting
for the Enqueue or Dequeue operation.

Step.TimeoutExpr contains the Timeout Expression, in sec
onds, for the Enqueue or Dequeue operation.

Step. ErrorOnTimeout contains the Timeout Causes Run
Time Error setting for the Enqueue or Dequeue operation.

Step. AlreadyExistsExpr contains the Already Exists expres
sion for the Create operation or the Queue Exists expres
sion for the Get Status operation.

Step. MaxNumElementsExpr contains the expression that
specifies the maximum number of elements of the queue
for the Create operation.

Step. MaxNumElementsOutExpr contains the expression
that specifies where to store the maximum number of
elements of the queue for the Get Status operation.

Step. NumThreads WaitingEnqueueExpr contains the expres
sion that specifies where to store the number of threads
that are waiting to enqueue for the Get Status operation.

Step. NumThreads Waiting DequeueExpr contains the expres
sion that specifies where to store the number of threads
that are waiting to dequeue for the Get Status operation.

Step.Operation contains a value that specifies the operation
the step performs. In one embodiment, the valid values
are 0=Create, 1 =Enqueue, 2=Dequeue, 3-Flush, 4=Get
Status.

Step. Lifetime contains a value that specifies the lifetime
setting for the Create operation. In one embodiment, the
valid values are 0="Same as Sequence', 1="Same as
Thread', 2="Use ActiveX Reference'.

Step. NumElementsExpr contains the expression that speci
fies where to store the current number of elements in the
queue for the Get Status operation.

Step. DataFxpr contains the “New Element to Enqueue'
expression when the user configures the step for the
Enqueue operation, the “Location to Store Element”
expression when the user configures the step for the
Dequeue operation, and the “Location to Store Array of
Queue Elements’ expression when the user configures the
step for the Flush or Get Status operation.

Step. ByRef contains the Boolean value that specifies
whether the step stores a queue element by ActiveX
reference instead of by value for the Enqueue operation.

Step. Enqueue location contains a value that specifies the
location to store the queue element for the Enqueue
operation. In one embodiment, the valid values are
0-Front of Queue, 1=Back of Queue

Step. Dequeue location contains a value that specifies the
location to remove the queue element from for the
Dequeue operation. In one embodiment, the valid values
are 0-Front of Queue, 1 =Back of Queue

Step. FullOueueCption contains a value that specifies the
options for the If the Queue is Full setting of the Enqueue
operation. In one embodiment, the valid values are
O=Wait, 1 =Discard Front Element, 2=Discard Back Ele
ment, 3-Do Not Enqueue.

Step. RemoveElement contains a Boolean value that speci
fies whether the step removes the element from the queue
when it performs the Dequeue operation.

Step. WhichQueueExpr contains the expression that speci
fies where to store the array offset of the queue on which
the Dequeue operation occurs.

US 7,093,249 B2
25

Notification Step Type
Notification steps may be used to notify one or more

threads when a particular event or condition has been met.
The user also can pass data to the notified threads.
Create Operation

To use a notification, the user may first create a reference
to a new or existing notification object. For example, the
user may insert a Notification step and then configure the
Notification step, e.g., by selecting a "Configure Notifica
tion' item from a context menu for the step. FIG. 28
illustrates an exemplary dialog box for configuring a Noti
fication step, in which a “Create” option has been selected
for the operation. The following GUI controls enable the
user to configure the Create operation:
Notification Name Expression. This control may be used to

specify a unique name for the synchronization object
using a string literal or an expression that evaluates to a
string. Synchronization object names are described in
more detail above.

Already Exists. This control may be used to specify a
location to store a Boolean value that indicates whether
the synchronization object already exists.

Notification Reference Lifetime This control may be used
to specify the lifetime of the reference to the synchroni
Zation object.

Set Operation
The Set operation may be used to notify one or more

threads that an event has occurred or a condition has been
met. When the notification is in a Set state, Wait operations
on the notification succeed immediately. FIG. 29 illustrates
an exemplary dialog box for configuring a Notification step,
in which a “Set” option has been selected for the operation.
The following GUI controls enable the user to configure the
Set operation:
Notification Name or Reference Expression. This control
may be used to specify the notification on which to
perform the operation. The user can specify the notifica
tion by name or by an ActiveX reference received when
the notification is created with the Using ActiveX Refer
ence lifetime option.

Data Value This control may be used to specify an optional
data element to store with the set state of the notification.
Threads that wait on the notification can then optionally
retrieve this data. The data can be any type, including a
number, string, Boolean, ActiveX reference, structured
type (container), or arrays of these types. When a thread
later waits on the notification, the element may be stored
into a location of the appropriate type. By default, the
notification may store a copy of the value. However, if the
user enables the Store Data by Reference Instead of by
Value option, the operation may store a reference, e.g., an
ActiveX reference, to the value instead. If this reference
is later stored into an ActiveX reference variable in the
Wait operation, the data may be accessed. For example,
the TestStand test executive environment provides a
TestStand ActiveX API PropertyObject interface and
ActiveX Automation Adapter that may be used to access
the data.

Store Data by Reference Instead of by Value This control
may be used to specify how to store the data specified in
the Data Value control. The user may enable the option to
store a reference to the property. The user may disable the
option to store a copy of the data.

Auto Clear After Notifying One Thread. This control may
be used to specify whether to clear the state of the
notification after one thread receives the notification.

10

15

25

30

35

40

45

50

55

60

65

26
Once the state of a notification is cleared, subsequent Wait
operations block until another Set operation is performed.

Clear Operation
The Clear operation may be used to clear the state of a

notification so that subsequent Wait operations block until
the next Set operation. FIG. 30 illustrates an exemplary
dialog box for configuring a Notification step, in which a
“Clear option has been selected for the operation. The
following GUI controls enable the user to configure the
Clear operation:
Notification Name or Reference Expression. This control
may be used to specify the notification on which to
perform the operation. The user can specify the notifica
tion by name or by an ActiveX reference received when
the notification is created with the Using ActiveX Refer
ence lifetime option.

Pulse Operation
The Pulse operation may be used to notify one or all

currently waiting threads. This operation differs from the Set
operation in that it notifies only threads that are already
waiting when the Pulse operation occurs. Threads that wait
on the notification after a Pulse operation occurs block until
a Set or Pulse operation is performed on the notification
again. A Pulse operation places the notification in a Cleared
state, even if the notification was in a Set state before the
Pulse operation. FIG. 31 illustrates an exemplary dialog box
for configuring a Notification step, in which a “Pulse' option
has been selected for the operation. The following GUI
controls enable the user to configure the Pulse operation:
Notification Name or Reference Expression. This control
may be used to specify the notification on which to
perform the operation. The user can specify the notifica
tion by name or by an ActiveX reference received when
the notification is created with the Using ActiveX Refer
ence lifetime option.

Data Value This control may be used to specify an optional
data element to send with the pulse notification. The data
can be of any type (e.g., number, string, Boolean, ActiveX
reference, structured type (container), or arrays of these
types). When a thread later waits on the notification, the
element may be stored into a location of the appropriate
type. By default, the notification may store a copy of the
specified data value. However, if the user enables the
Store Data by Reference Instead of by Value option, the
operation may store a reference, e.g., an ActiveX refer
ence, to the value instead. If this reference is later stored
into an ActiveX reference variable in the Wait operation,
the data may be accessed. For example, the TestStand test
executive environment provides a TestStand ActiveX API
PropertyObject interface and ActiveX Automation
Adapter that may be used to access the data.

Store Data by Reference Instead of by Value This control
may be used to specify how to store the data the user
specify in the “Data Value” control. The user may enable
the option to store an ActiveX reference to the property.
The user may leave the option disabled to store a copy of
the data.

Notify All/First Waiting Thread/s (If Any). This control
may be used to specify whether to notify all currently
waiting threads or just the first waiting thread.

Wait Operation
The Wait operation may be used to wait until a Set or

Pulse operation is performed on the notification. If the
notification is already in a Set state, the Wait operation
completes immediately. FIG. 32 illustrates an exemplary

US 7,093,249 B2
27

dialog box for configuring a Notification step, in which a
“Wait option has been selected for the operation. The
following GUI controls enable the user to configure the Wait
operation:
Notification Name or Reference Expression (can pass

array) This control may be used to specify the notifica
tion on which to perform the operation. The user can
specify the notification by name or by an ActiveX refer
ence received when the notification is created with the
Using ActiveX Reference lifetime option. The Wait
operation may allow the user to specify multiple notifi
cations using either a string array containing the names of
the notifications or an ActiveX reference array containing
ActiveX references to the notifications. When the user
specifies multiple notifications, the Wait operation may
wait until a Set or Pulse operation is performed on any of
the notifications in the array. If more than one of the
notifications is set or pulsed, the Wait operation may
respond to the notification that appears first in the array.
To ascertain which notification the Wait operation
responds to, the Which Notification control may be used
to specify a location to store the array offset of the
notification.

Location to Store Data This control may be used to specify
a location to store the notification data, e.g., wherein the
type of the location is compatible with the data that the
notification sends. The user may leave this control blank
if the user does not want to store the data. FIG. 33 is a
table illustrating the outcomes, according to one embodi
ment, when notification data is stored by value. FIG. 34
is a table illustrating the outcomes, according to one
embodiment, when notification data is stored by refer
ence. In these tables, “Simple Type” refers to a number,
string, Boolean, array of any type, or other simple type,
and “Structured Type' refers to an instance of a user
defined type where the root property is a container.

Which Notification. This control may be used to specify a
location to store the array offset of the notification to
which the operation responds. Typically, this control is
only used when waiting for multiple notifications. Waiting
for multiple notifications is described above.

Timeout Enabled, Timeout Expression, Timeout Causes
Run-Time Error These controls may be used to specify
a timeout and timeout behavior when waiting for a
notification. If a timeout occurs, the property Step. Result.
TimeoutOccurred is set to True.

Get Status Operation
The Get Status operation may be used to get information

about the state of the notification object. FIG. 35 illustrates
an exemplary dialog box for configuring a Notification step,
in which a "Get Status' option has been selected for the
operation. The following GUI controls enable the user to
configure the Get Status operation:
Notification Name or Reference Expression. This control
may be used to specify the synchronization object on
which to perform the operation. The user can specify the
notification by name or by an ActiveX reference received
when the notification is created with the Using ActiveX
Reference lifetime option.

Notification Exists. This control may be used to specify a
location to store a Boolean value that indicates whether
the synchronization object exists.

Number of Threads Waiting for Notification. This control
may be used to specify a location to store a numeric value
that indicates the number of threads waiting on the
notification.

10

15

25

30

35

40

45

50

55

60

65

28
Is Set This control may be used to specify a location to

store a Boolean value that indicates whether the notifica
tion is in a Set state.

Is Auto Clear This control may be used to specify a
location to store a Boolean value that indicates whether
the notification clears itself after one thread receives the
notification.

Location to Store Data This control may be used to specify
a location to store the notification data, if any, wherein the
type of the location is compatible with the data that the
notification sends. The user may leave this control blank
if the user does not want to store the data.

Notification Step Properties
The Notification step type may define various Notification

step properties in addition to the common custom properties.
For example, FIG. 36 illustrates the following Notification
step properties:
Step.Result. TimeoutOccurred is set to True if a Wait opera

tion times out. This property exists only if the step is
configured for the Wait operation.

Step. NameCrRefExpr contains the Notification Name
Expression for the Create operation and the Notification
Name or Reference Expression for all other operations. In
the case of the Wait operation, this expression can option
ally specify an array of names or references.

Step. LifetimeRef Expr contains the ActiveX reference
expression for the notification lifetime when the user sets
the lifetime to Use ActiveX Reference.

Step. Timeoutenabled contains the Timeout Enabled setting
for the Wait operation.

Step. Timeoutxpr contains the Timeout Expression, in sec
onds, for the Wait operation.

Step. ErrorOnTimeout contains the Timeout Causes Run
Time Error setting for the Wait operation.

Step. AlreadyExistsExpr contains the Already Exists expres
sion for the Create operation or the Notification Exists
expression for the Get Status operation.

Step. NumThreadswaitingExpr contains the expression that
specifies where to store the number of threads that are
waiting on the notification for the Get Status operation.

Step.Operation contains a value that specifies the operation
the step is set to perform. In one embodiment, the valid
values are 0=Create, 0=Set, 2=Clear, 3=Pulse, 4=Wait,
5=Get Status.

Step. Lifetime contains a value that specifies the lifetime
setting for the Create operation. In one embodiment, the
valid values are 0=Same as Sequence, 1 =Same as Thread,
2=Use ActiveX Reference.

Step. DataFxpr contains the Data Value expression for the
Set or Pulse operation, or the Location to Store Data
expression for the Wait or Get Status operation.

Step. ByRef contains the Boolean value that specifies
whether to store the data by ActiveX reference instead of
by value for a Set or Pulse operation.

Step. WhichNotificationExpr contains the expression that
specifies where to store the array offset of the notification
to which the Wait operation responds.

Step. IsSetFxpr contains the expression that specifies where
to store the Boolean value that indicates whether the
notification is in a Set state. The Get Status operation uses
this expression.

Step. ISAutoClearExpr contains the expression that specifies
where to store the Boolean value that indicates whether
the notification is configured to auto clear. The Get Status
operation uses this expression.

US 7,093,249 B2
29

Step. AutoClear contains the Auto Clear setting for the Set
operation.

Step. PulseNotifyopt contains the setting for the Pulse opera
tion that indicates the threads to which a pulse notification
is sent. In one embodiment, the valid values are 0-Notify
First Waiting Thread, 1=Notify All Waiting Threads.

Batch Specification Step Type
When the user writes a process model, the user can use

Batch Specification steps to define a group of threads where
each thread in the group runs an instance of the client
sequence. The user can define a group so that batch Syn
chronization operations can be performed on the threads in
the group. For example, the TestStand Batch process model
uses Batch Specification steps to create a batch that contains
a thread for each TestSocket. For more information on the
TestStand Batch process model, please refer to the section
on the Batch process model in the Process Models chapter
of the TestStand User manual, available from National
Instrument Corp. For more information on batch synchro
nization, please see the section below on the Batch Syn
chronization step type.
Create Operation

To create a reference to a new or existing batch object, the
user may insert a Batch Specification step and configure the
step, e.g., by selecting a "Configure Batch Specification'
item from a context menu for the step. FIG. 37 illustrates an
exemplary dialog box for configuring a Batch Specification
step, in which a “Create” option has been selected for the
operation. The following GUI controls enable the user to
configure the Create operation:
Batch Name Expression. This control may be used to

specify a unique name for the synchronization object
using a string literal or an expression that evaluates to a
string. Synchronization object names are described in
more detail above.

Already Exists. This control may be used to specify a
location to store a Boolean value that indicates whether
the synchronization object already exists.

Batch Reference Lifetime This control may be used to
specify the lifetime of the reference to the synchronization
object.

Default Batch Synchronization. This control may be used
to specify the default method of batch synchronization to
use with the batch object.

Add Thread Operation
The Add Thread operation may be used to add a thread to

a group of batch threads. FIG. 38 illustrates an exemplary
dialog box for configuring a Batch Specification step, in
which an “Add Thread option has been selected for the
operation. The following GUI controls enable the user to
configure the Add Thread operation:
Batch Name or Reference Expression. This control may be

used to specify the batch on which to perform the opera
tion. The user can specify the batch by name or by an
ActiveX reference received when the batch is created with
the Using ActiveX Reference lifetime option.

ActiveX Reference to Thread This control may be used to
specify a thread to add to the batch. A thread can belong
to only one batch at a time. Adding a thread to a batch
removes the thread from its previous batch, if any. Addi
tionally, when a thread terminates, it removes itself from
the batch.

Order Number This control may be used to specify the
order in which threads enter synchronized sections.

5

10

15

25

30

35

40

45

50

55

60

65

30
Threads with a lower order number enter a synchronized
section before threads with a higher order number.

Remove Thread Operation
The Remove Thread operation may be used to remove a

thread from a group of batch threads. FIG. 39 illustrates an
exemplary dialog box for configuring a Batch Specification
step, in which a “Remove Thread option has been selected
for the operation. The following GUI controls enable the
user to configure the Remove Thread operation:
ActiveX Reference to Thread This control may be used to

specify the thread to remove from its batch.
Get Status Operation
The Get Status operation may be used to obtain informa

tion about the current state of the batch. FIG. 40 illustrates
an exemplary dialog box for configuring a Batch Specifica
tion step, in which a "Get Status' option has been selected
for the operation. The following GUI controls enable the
user to configure the Get Status operation:
Batch Name or Reference Expression. This control may be

used to specify the batch on which to perform the opera
tion. The user can specify the batch by name or by an
ActiveX reference received when the batch is created with
the Using ActiveX Reference lifetime option.

Batch Exists? This control may be used to specify a
location to store a Boolean value that indicates whether
the batch already exists.

Number of Threads Waiting at Synchronized Sections—
This control may be used to specify a location to store a
numeric value that indicates the number of threads wait
ing to enter or exit synchronized sections.

Number of Threads in Batch. This control may be used to
specify a location to store the numeric value indicating the
number of threads that are currently part of the batch.

Default Batch Synchronization. This control may be used
to specify a location to store a numeric value indicating
the default method of batch synchronization that the batch
USS.

Batch Specification Step Properties
The Batch Specification step type may define various

Batch Specification step properties in addition to the com
mon custom properties. For example, FIG. 41 illustrates the
following Batch Specification step properties:
Step.Operation contains a value that specifies the operation

the step performs. In one embodiment, the valid values
are 0–Create, 1=Add Thread, 2=Remove Thread, 3=Get
Status.

Step. NameCrRefExpr contains the Name expression for the
Create operation and the Name or Reference expression
for other batch operations.

Step. Lifetime contains a value that specifies the lifetime for
the Create operation. In one embodiment, the valid values
are 0="Same as Sequence', 1="Same as Thread', 2="Use
ActiveX Reference’.

Step. LifetimeRef Expr contains the ActiveX reference
expression for the batch lifetime when the user sets the
lifetime to “Use ActiveX Reference’.

Step. AlreadyExistsExpr contains the “Already Exists’
expression for the Create operation or the “Batch Exists’
expression for the Get Status operation.

Step. ThreadRefExpr contains the “ActiveX Reference to
Thread' expression for the Add Thread and Remove
Thread operations.

Step.OrderNumExpr contains the “Order Number expres
sion for the Add Thread operation.

US 7,093,249 B2
31

Step.NumThreads WaitingExpr contains the "Number of
Threads Waiting at Synchronized Sections' expression
for the Get Status operation.

Step.NumThreads.InBatch Expr contains the "Number of
Threads in Batch' expression for the Get Status operation.

Step. DefaultBatchSynchxpr contains the “Default Batch
Synchronization' expression for the Create operation.

Step. DefaultBatchSyncCutExpr contains the “Default Batch
Synchronization' expression for the Get Status operation.

Batch Synchronization Step Type
Batch Synchronization steps may be used to define sec

tions of a sequence in which to synchronize multiple threads
that belong to one batch. Typically, the user uses these steps
in a sequence executed using the Batch process model.
Synchronized Sections

Batch Synchronization steps may be used to define syn
chronized sections by placing a step at the beginning and end
of a section of steps in a sequence and specifying an Enter
operation for the beginning step and an Exit operation for the
ending step. The Enter and Exit steps may be placed in the
same sequence, but do not have to be placed in the same step
group. There may be various types of synchronized sections.
For example, in one embodiment, there are three types of
synchronized sections: “serial section”, “parallel section',
and "one-thread-only section'. In one embodiment, all Syn
chronized sections have the following properties in com
O

Each thread in a batch that enters a synchronized section
blocks at the Enter step until all other threads in the batch
arrive at their respective instances of the Enter step.

Each thread in a batch that reaches the end of the synchro
nized section blocks at the Exit step until all other threads
in the batch arrive at their respective instances of the Exit
step.

Serial Sections
A serial section may be used to ensure that each thread in

the batch executes the steps in the section sequentially and
in the order specified when the batch is created. When all
threads in a batch arrive at their respective instances of an
Enter step for a serial section, the threads may be released
one at a time in ascending order according to Order Numbers
assigned to the threads when the threads are added to the
batch using the Batch Specification step. As each thread
reaches the Exit step for the section, the next thread in the
batch may proceed from the Enter step. After all the threads
in the batch arrive at the Exit step, they exit the section
together.
Parallel Sections
When all threads in a batch arrive at their respective

instances of an Enter step for a parallel section, the threads
may be released all at once. Each thread that arrives at the
Exit step for the section may block until all threads in the
batch reach that step.
One-Thread-Only Sections
A one-thread-only section may be used to specify that

only one thread in the batch executes the steps in the section.
Typically, this section type is used to perform an operation
that applies to the batch as a whole. Such as raising the
temperature in a test chamber. When all threads in a batch
arrive at their respective instances of an Enter step for a
one-thread-only section, only the thread with the lowest
Order Number may be released. When that thread arrives at
the Exit step for the section, all remaining threads in the
batch step may jump from the Enter step to the Exit step,

5

10

15

25

30

35

40

45

50

55

60

65

32
skipping the steps within the section. The threads in the
batch may then exit the section together.
Mismatched Sections

Sections become "mismatched when all threads in a
batch are blocked at an Enter or an Exit operation, but they
are not all blocked at the same Enter or Exit operation. This
can occur when a sequence has a conditional flow of
execution due to preconditions, post actions, or other flow
control operations. In one embodiment, when mismatched
sections are detected, the situation may be handled as
follows:
The thread that is at the Enter or Exit step that appears

earliest in the hierarchy of sequences and Subsequences
proceeds as if all threads in the batch are at the same step.

If multiple Enter and Exit operations are equally early in the
hierarchy of sequences and Subsequences, Enter opera
tions proceed first.

Nested Sections
Nesting of sections can occur either within the same

sequence or as a result of calling a Subsequence inside of a
synchronized section when the Subsequence also contains a
synchronized section. When one section is nested inside
another, the inner section may be honored if the type of the
outer section is Serial or Parallel. For example, if one serial
section is nested in another serial section, each thread that
enters the outersection may proceed only until the Enter step
of the inner section and may then wait for the other threads
to reach the same step. The inner section may be ignored if
the type of the outer section is “One-Thread-Only'.
Enter Synchronized Section Operation
The Enter Synchronized Section operation may be used to

mark the beginning of a synchronized section and to define
the type of synchronization for that section. FIG. 42 illus
trates an exemplary dialog box for configuring a Batch
Synchronization step, in which an “Enter Synchronized
Section option has been selected for the operation. The
following GUI controls enable the user to configure the
Enter Synchronized Section operation:
Section Name This control may be used to specify a name

for the synchronized section, or the control may be left
blank if the user wants a unique name to be automatically
generated based on the step name.

Section Type This control may be used to specify the type
of synchronized section.

Timeout Enabled, Timeout Expression, Timeout Causes
Run-Time Error These controls may be used to specify
a timeout and timeout behavior for when a thread must
wait at the Enter step. If a timeout occurs, the property
Step.Result.Timeout Occurred is set to True.

Exit Synchronized Section Operation
The Exit Synchronized Section operation may be used to

mark the end of a synchronized section. FIG. 43 illustrates
an exemplary dialog box for configuring a Batch Synchro
nization step, in which an “Exit Synchronized Section'
option has been selected for the operation. The following
GUI controls enable the user to configure the Exit Synchro
nized Section operation:
Section Name This control may be used to specify the
name of the synchronized section to exit, or the control
may be left blank to refer the most nested section.

Timeout Enabled, Timeout Expression, Timeout Causes
Run-Time Error These controls may be used to specify
a timeout and timeout behavior for when a thread must
wait at the Exit step. If a timeout occurs, the property
Step.Result.Timeout Occurred is set to True.

US 7,093,249 B2
33

Exit All Sections in Current Sequence Operation
The Exit All Sections in Current Sequence operation may

be used to exit all the sections that a thread has entered in the
current sequence. This is useful when the flow of execution
for a thread jumps out of a synchronized section into a
Cleanup step group because of a run-time error. Putting an
Exit All Sections in Current Sequence step in the Cleanup
step group ensures that the thread does not cause other
threads to block at the end of that synchronized section or
any nested synchronized sections. FIG. 44 illustrates an
exemplary dialog box for configuring a Batch Synchroniza
tion step, in which an “Exit All Sections in Current
Sequence' option has been selected for the operation. The
following GUI controls enable the user to configure the Exit
All Sections in Current Sequence operation:
Timeout Enabled, Timeout Expression, Timeout Causes

Run-Time Error These controls may be used to specify
a timeout and timeout behavior for when a thread must
wait at the Exit step. If a timeout occurs, the property
Step.Result.TimeoutOccurred is set to True.

Batch Synchronization Step Properties
The Batch Synchronization step type may define various

Batch Synchronization step properties in addition to the
common custom properties. For example, FIG. 45 illustrates
the following Batch Synchronization step properties:
Step.Result.TimeoutOccurred is set to True if an Enter or

Exit operation times out.
Step.Timeoutenabled contains the timeout enabled setting

for the Enter or Exit operation.
Step.TimeoutExpr contains the timeout expression, in sec

onds, for the Enter or Exit operation.
Step. ErrorOnTimeout contains the Timeout Causes Run
Time Error setting for the Enter or Exit operation.

Step.Operation contains a value that specifies the operation
the step performs. In one embodiment, the valid values
are 0=Enter Synchronized Section, 1=Exit Synchronized
Section, 2=Exit All Sections in Current Sequence.

Step...SectionNameExpr contains the expression that speci
fies the name of the section for the Enter or Exit operation.

Step...SectionType contains a value that specifies the type of
section the Enter operation defines. In one embodiment,
the valid values are 1=Serial, 2=Parallel, 3=One Thread
Only.

Wait Step Type
Wait steps may be used to wait for an execution or thread

to complete or for a time interval to elapse.
Wait for Time Interval Operation
The Wait for Time Interval operation may be used to cause

a thread to wait for a specified duration. The thread may
sleep while waiting, thus relinquishing its processing time to
other threads. FIG. 46 illustrates an exemplary dialog box
for configuring a Wait step, in which a “Time Interval
option has been selected for the wait type. The following
GUI controls enable the user to configure the Wait for Time
Interval operation:
Specify the Amount of Time to Wait. This control may be

used to specify a numeric expression that indicates the
amount of time for the thread to wait in seconds.

Wait for Time Multiple Operation
The Wait for Time Multiple operation may be used to

cause a thread to wait until the value of the internal timer
becomes a multiple of the specified time. A common use of
the Wait for Time Multiple operation is to force a loop to
cycle at a specific rate. FIG. 47 illustrates an exemplary
dialog box for configuring a Wait step, in which a “Time

5

10

15

25

30

35

40

45

50

55

60

65

34
Multiple” option has been selected for the wait type. The
following GUI controls enable the user to configure the Wait
for Time Multiple operation:
Specify the Time Multiple This control may be used to

specify a numeric expression that indicates the time
multiple used in deciding how long to wait.

Wait for Thread Operation
The Wait for Thread operation may be used to wait until

an asynchronous sequence call thread completes and to
retrieve its results. FIG. 48 illustrates an exemplary dialog
box for configuring a Wait step, in which a “Thread option
has been selected for the wait type. The following GUI
controls enable the user to configure the Wait for Thread
operation:
Specify by Sequence Call This control may be used to

specify the thread to wait for by selecting an asynchro
nous sequence call within the same sequence as the wait
step.

Specify by ActiveX Reference to Thread This control may
be used to specify the thread to wait for using an ActiveX
reference to the thread. By specifying the thread with a
reference variable, threads that other sequences and
executions create can be referred to.

Timeout Enabled, Timeout Expression, Timeout, Causes
Run-Time Error These controls may be used to specify
a timeout and timeout behavior when waiting for the
thread to finish executing. If a timeout occurs, the prop
erty Step.Result.TimeoutOccurred is set to True.

Wait for Execution Operation
The Wait for Execution operation may be used to wait for

the completion of an execution. FIG. 49 illustrates an
exemplary dialog box for configuring a Wait step, in which
an “Execution' option has been selected for the wait type.
The following GUI controls enable the user to configure the
Wait for Execution operation:
Specify an ActiveX Reference to the Execution. This con

trol may be used to specify an ActiveX reference to the
execution on which to wait.

Timeout Enabled, Timeout Expression, Timeout Causes
Run-Time Error These controls may be used to specify
a timeout and timeout behavior when waiting for an
execution. If a timeout occurs, the property Step.Result
..TimeoutOccurred is set to True.

Wait Step Properties
The Wait step type may define various Wait step proper

ties in addition to the common custom properties. For
example, FIG. 50 illustrates the following Wait step prop
erties:
Step.Result. TimeoutOccurred is set to True if the Wait for

Thread or Wait for Execution operation times out. This
property exists only if the step is configured for one of
these operations.

Step. Timeoutenabled contains the timeout enabled setting
for the Wait for Thread or the Wait for Execution opera
tion.

Step. ErrorOnTimeout contains the Timeout Causes Run
Time Error setting for the Wait for Thread or the Wait for
Execution operation.

Step. SpecifyBy contains the setting that the Wait for Thread
operation uses to determine whether the step waits for a
thread of a sequence call or waits for a thread object the
user specifies using an ActiveX reference. In one embodi
ment, the valid values for this setting are SEQ CALL,
which indicates that the step specifies the thread by a

US 7,093,249 B2
35

sequence call, and THREAD REF, which indicates that
the step specifies the thread with an ActiveX reference.

Step.ThreadRefExpr contains the thread reference expres
sion for the Wait for Thread operation when the
Step...SpecifyBy property is set to THREAD REF.

Step...SeqCallName contains the name of the sequence call
step that creates the thread the step waits for when the
Step...SpecifyBy property is set to “SEQ CALL’.

Step. SeqCallStepGroup Idx contains the step group of the
sequence call step that creates the thread that the step
waits for when the Step...SpecifyBy property is set to
SEQ CALL. In one embodiment, the valid values are
0 Setup, 1 =Main, 2=Cleanup.

Step.TimeoutExpr contains the timeout expression, in sec
onds, for the Wait for Thread or the Wait for Execution
operation.

Step. WaitForTarget contains a value that specifies the type
of wait operation the step performs. In one embodiment,
the valid values are 0-Time Interval, 1 =Time Multiple,
2=Thread, 3=Execution.

Step.TimeExpr contains the time expression for the Time
Interval or Time Multiple operation of the step.

Step. ExecutionRefExpr contains the expression that evalu
ates to a reference to the execution on which the Wait for
Execution operation waits.

Thread Priority Step Type
The Thread Priority step may be used to boost or lower

the priority of a thread so that it receives more or less CPU
time than other threads. The previous priority value of the
thread may be saved and restored once the thread no longer
requires the altered priority value.
Set Thread Priority Operation
The Set Thread Priority operation may be used to raise or

lower the priority of the current thread. FIG. 51 illustrates an
exemplary dialog box for configuring a Thread Priority step,
in which a “Set Thread Priority” option has been selected for
the operation. The following GUI controls enable the user to
configure the Set Thread Priority operation:
New Thread Priority. This control may be used to specify

a numeric value expression that indicates the new priority
for the thread. If the user specifies the priority as a
numeric constant, the name that corresponds to that
priority is shown in the indicator control below this
control. The drop-down list for this control may be used
to choose a priority constant for a predefined priority
setting. In one embodiment, the predefined priority set
tings are: -15=Idle, -2=Low, -1 =Below Normal, 0-Nor
mal, 1=Above Normal, 2=High, and 15-Time Critical.

Get Thread Priority Operation
The Get Thread Priority operation, may be used to get the

current priority setting for the current thread. FIG. 52
illustrates an exemplary dialog box for configuring a Thread
Priority step, in which a "Get Thread Priority' option has
been selected for the operation. The following GUI controls
enable the user to configure the Get Thread Priority opera
tion:
Location to Store Thread Priority. This control may be

used to specify a location to store a numeric value
specifying the priority setting for the current thread. When
the user sets the thread priority for a sequence, the user
may save the previous priority in the Setup step group and
restore the priority in the Cleanup step group.

Thread Priority Step Properties
The Thread Priority step type may define various Thread

Priority step properties in addition to the common custom

10

15

25

30

35

40

45

50

55

60

65

36
properties. For example, FIG. 53 illustrates the following
Thread Priority step properties:
Step.Operation contains a value that specifies the operation

the step is set to perform. In one embodiment, the valid
values are 0=Set Thread Priority, 1=Get Thread Priority.

Step. SetPriorityExpr specifies the thread priority expression
for the Set Thread Priority operation.

Step.GetPriorityExpr specifies the location to store the
thread priority for the Get Thread Priority operation.
Although the embodiments above have been described in

considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the
above disclosure is fully appreciated. It is intended that the
following claims be interpreted to embrace all such varia
tions and modifications.

We claim:
1. A computer-implemented method for synchronizing

multiple concurrent executions of a test executive sequence,
the method comprising:

creating the test executive sequence, wherein said creat
ing the test executive sequence comprises including a
plurality of test executive steps in the test executive
sequence in response to user input and configuring at
least a subset of the test executive steps to call external
code modules to test a unit under test (UUT):

wherein said creating the test executive sequence further
comprises including a synchronization step in the test
executive sequence, wherein said synchronization step
in the test executive sequence comprises:
displaying a graphical user interface that provides

access to the synchronization step;
including the synchronization step in the test executive

sequence in response to user input received to the
graphical user interface to request inclusion of the
synchronization step in the test executive sequence;

wherein the method further comprises configuring the
synchronization step to perform a synchronization
operation, in response to user input specifying the
synchronization operation, wherein the synchroniza
tion operation is operable to synchronize execution of
multiple concurrently executing instances of the test
executive sequence;

wherein said configuring the synchronization step to
perform the synchronization operation comprises asso
ciating program instructions with the synchronization
step. Such that the program instructions are executable
to perform the specified synchronization operation.

2. The method of claim 1, further comprising:
concurrently executing multiple instances of the test

executive sequence;
wherein, for each instance of the test executive sequence,

executing the instance of the test executive sequence
comprises executing the plurality of test executive steps
in the test executive sequence, wherein said executing
the plurality of test executive steps comprises executing
the Synchronization step to perform the synchroniza
tion operation;

wherein said multiple instances of the test executive
sequence each executing the synchronization step to
perform the synchronization operation comprises each
instance of the test executive sequence executing the
synchronization step to synchronize its execution with
execution of the other instances of the test executive
Sequence.

US 7,093,249 B2
37

3. The method of claim 1,
wherein the graphical user interface presents a plurality of

possible synchronization operations which the synchro
nization step can be configured to perform;

wherein said configuring the synchronization step to
perform the synchronization operation comprises con
figuring the synchronization step to perform the Syn
chronization operation in response to user input select
ing the synchronization operation from the plurality of
possible synchronization operations.

4. The method of claim 3,
wherein the graphical user interface comprises a first one

or more GUI elements which provides access to the
synchronization step;

wherein the graphical user interface comprises a second
one or more GUI elements which presents the plurality
of possible synchronization operations.

5. The method of claim 3,
wherein the graphical user interface comprises a first

graphical user interface which provides access to the
synchronization step;

wherein the graphical user interface comprises a second
graphical user interface which presents the plurality of
possible synchronization operations.

6. The method of claim 3, further comprising:
receiving user input to specify configuration information

for the specified synchronization operation;
wherein said configuring the synchronization step to

perform the synchronization operation comprises con
figuring the synchronization step to perform the Syn
chronization operation in accordance with the configu
ration information.

7. The method of claim 6, wherein said receiving user
input to specify the configuration information comprises
receiving user input to specify one or more of

a name of a synchronization object on which to perform
the specified synchronization operation;

a timeout value for the specified synchronization opera
tion.

8. The method of claim 1,
wherein the specified synchronization operation com

prises one of the following operations to be performed
on a synchronization object: a "lock operation; an
“unlock operation; or a 'get status' operation;

wherein the user input specifying the synchronization
operation comprises user input identifying a synchro
nization object on which to perform the synchroniza
tion operation.

9. The method of claim 1,
wherein the synchronization step is associated with a first

synchronization object type;
wherein said configuring the synchronization step to

perform the synchronization operation comprises con
figuring the synchronization step to perform a synchro
nization operation on a synchronization object of the
first synchronization object type.

10. The method of claim 9, wherein the first synchroni
Zation object type is one of the following:

a mutex synchronization object;
a semaphore synchronization object;
a rendezvous synchronization object;
a queue Synchronization object;
a notification synchronization object; or
a batch synchronization object.
11. The method of claim 1,
wherein said configuring the synchronization step to

perform the Synchronization operation in response to

10

15

25

30

35

40

45

50

55

60

65

38
user input does not include receiving user input speci
fying program code to implement the synchronization
operation.

12. The method of claim 1,
wherein for each test executive step in the at least a subset,

the test executive step is configured to call an external
code module to test the unit under test in response to
user input specifying the external code module for the
test executive step to call.

13. The method of claim 1,
wherein the unit under test (UUT) comprises a physical

device, wherein the test executive sequence is operable
to acquire measurement data from the physical device
to test the physical device.

14. The method of claim 1,
wherein the user input requesting inclusion of the Syn

chronization step in the test executive sequence does
not include user input specifying program source code.

15. The method of claim 1,
wherein the user input specifying the synchronization

operation does not include user input specifying pro
gram source code.

16. The method of claim 1, further comprising:
displaying one or more GUI elements that enable a user

to configure the synchronization step to perform the
synchronization operation without writing program
Source code for performing the synchronization opera
tion;

wherein said configuring the synchronization step to
perform the Synchronization operation in response to
user input specifying the synchronization operation
comprises configuring the synchronization step to per
form the synchronization operation in response to user
input to the one or more GUI elements.

17. The method of claim 1, wherein said configuring the
synchronization step to perform the synchronization opera
tion comprises configuring the synchronization step to per
form one of:

locking a mutex; or
unlocking a mutex.
18. The method of claim 1, wherein said configuring the

synchronization step to perform the synchronization opera
tion comprises configuring the synchronization step to per
form one of:

acquiring a semaphore; or
releasing a semaphore.
19. The method of claim 1,
wherein the plurality of test executive steps includes a

first subset of test executive steps:
wherein said configuring the synchronization step to

perform the synchronization operation comprises con
figuring the synchronization step to perform an opera
tion to ensure that only one of the multiple concurrently
executing instances of the test executive sequence at a
time can execute steps from the first Subset of steps.

20. The method of claim 1,
wherein said configuring the synchronization step to

perform the synchronization operation comprises con
figuring the synchronization step to perform an opera
tion to ensure that only one of the multiple concurrently
executing instances of the test executive sequence at a
time can access a resource.

21. The method of claim 1, wherein said configuring the
synchronization step to perform the synchronization opera
tion comprises configuring the synchronization step to per
form an operation causing each of the multiple concurrently
executing instances of the test executive sequence to wait for

US 7,093,249 B2
39

each other to arrive at the synchronization step before
proceeding with execution past the synchronization step.

22. The method of claim 1, wherein said configuring the
synchronization step to perform the synchronization opera
tion comprises configuring the synchronization step to per
form an operation causing each of the multiple concurrently
executing instances of the test executive sequence to wait at
the synchronization step until receiving notification that an
event has occurred before proceeding with execution past
the synchronization step.

23. The method of claim 1, wherein said configuring the
synchronization step to perform the synchronization opera
tion comprises configuring the synchronization step to per
form an operation causing each of the multiple concurrently
executing instances of the test executive sequence to wait at
the Synchronization step until receiving notification that a
condition has been met before proceeding with execution
past the synchronization step.

24. A computer readable memory medium useable to
synchronize multiple concurrent executions of a test execu
tive sequence, the memory medium comprising program
instructions executable by a computer to:

create the test executive sequence, wherein said creating
the test executive sequence comprises including a plu
rality of test executive steps in the test executive
sequence in response to user input and configuring at
least a subset of the test executive steps to call external
code modules to test a unit under test (UUT):

wherein said creating the test executive sequence further
comprises including a synchronization step in the test
executive sequence, wherein said synchronization step
in the test executive sequence comprises:
displaying a graphical user interface that provides

access to the synchronization step;
including the synchronization step in the test executive

sequence in response to user input received to the
graphical user interface;

wherein the program instructions are further executable to
configure the synchronization step to perform a syn
chronization operation, in response to user input speci
fying the synchronization operation, wherein the Syn
chronization operation is operable to synchronize
execution of multiple concurrently executing instances
of the test executive sequence;

wherein said configuring the synchronization step to
perform the synchronization operation comprises asso
ciating program instructions with the synchronization
step. Such that the program instructions are executable
to perform the specified synchronization operation.

25. The memory medium of claim 24, wherein the pro
gram instructions are further executable to:

concurrently execute multiple instances of the test execu
tive sequence;

wherein, for each instance of the test executive sequence,
executing the instance of the test executive sequence
comprises executing the plurality of test executive steps
in the test executive sequence, wherein said executing
the plurality of test executive steps comprises executing
the synchronization step to perform the synchroniza
tion operation;

wherein said multiple instances of the test executive
sequence each executing the synchronization step to
perform the synchronization operation comprises each
instance of the test executive sequence executing the
synchronization step to synchronize its execution with
execution of the other instances of the test executive
Sequence.

10

15

25

30

35

40

45

50

55

60

65

40
26. The memory medium of claim 24,
wherein the graphical user interface presents a plurality of

possible synchronization operations which the synchro
nization step can be configured to perform;

wherein said configuring the synchronization step to
perform the synchronization operation comprises con
figuring the synchronization step to perform the Syn
chronization operation in response to user input select
ing the synchronization operation from the plurality of
possible synchronization operations.

27. The memory medium of claim 26,
wherein the graphical user interface comprises a first one

or more GUI elements which provides access to the
synchronization step;

wherein the graphical user interface comprises a second
one or more GUI elements which presents the plurality
of possible synchronization operations.

28. The memory medium of claim 26,
wherein the graphical user interface comprises a first

graphical user interface which provides access to the
synchronization step;

wherein the graphical user interface comprises a second
graphical user interface which presents the plurality of
possible synchronization operations.

29. The memory medium of claim 26, wherein the pro
gram instructions are further executable to:

receive user input to specify configuration information for
the specified synchronization operation;

wherein said configuring the synchronization step to
perform the synchronization operation comprises con
figuring the synchronization step to perform the Syn
chronization operation in accordance with the configu
ration information.

30. The memory medium of claim 24,
wherein the specified synchronization operation com

prises one of the following operations to be performed
on a synchronization object: a "lock' operation; an
“unlock operation; or a 'get status' operation;

wherein the user input specifying the synchronization
operation comprises user input identifying a synchro
nization object on which to perform the synchroniza
tion operation.

31. The memory medium of claim 24,
wherein the synchronization step is associated with a first

synchronization object type;
wherein said configuring the synchronization step to

perform the synchronization operation comprises con
figuring the synchronization step to perform a synchro
nization operation on a synchronization object of the
first synchronization object type.

32. The memory medium of claim 31, wherein the first
synchronization object type is one of the following:

a mutex synchronization object;
a semaphore synchronization object;
a rendezvous synchronization object;
a queue Synchronization object;
a notification synchronization object; or
a batch synchronization object.
33. A computer readable memory medium useable to

synchronize multiple concurrent executions of a test execu
tive sequence, the memory medium comprising program
instructions executable by a computer by a computer by a
computer to:

create the test executive sequence, wherein said creating
the test executive sequence comprises including a plu
rality of test executive steps in the test executive
sequence in response to user input and configuring at

US 7,093,249 B2
41

least a subset of the test executive steps to call external
code modules to test a unit under test (UUT):

wherein said creating the test executive sequence further
comprises including a synchronization step in the test
executive sequence, wherein said synchronization step
in the test executive sequence comprises:
displaying a graphical user interface that provides

access to the synchronization step;
including the synchronization step in the test executive

sequence in response to user input received to the
graphical user interface;

wherein the program instructions are further executable to
configure the synchronization step to perform a syn
chronization operation, in response to user input speci
fying the synchronization operation, wherein the Syn
chronization operation is operable to synchronize
execution of multiple concurrently executing instances
of the test executive sequence.

34. The memory medium of claim 33,
wherein the graphical user interface presents a plurality of

possible synchronization operations which the synchro
nization step can be configured to perform;

wherein said configuring the synchronization step to
perform the synchronization operation comprises con
figuring the synchronization step to perform the Syn
chronization operation in response to user input select
ing the synchronization operation from the plurality of
possible synchronization operations.

35. The memory medium of claim 33,
wherein the graphical user interface comprises a first one

or more GUI elements which provides access to the
synchronization step;

wherein the graphical user interface comprises a second
one or more GUI elements which presents the plurality
of possible synchronization operations.

36. The memory medium of claim 33,
wherein the graphical user interface comprises a first

graphical user interface which provides access to the
synchronization step;

wherein the graphical user interface comprises a second
graphical user interface which presents the plurality of
possible synchronization operations.

37. The memory medium of claim 33, wherein the pro
gram instructions are further executable to:

receive user input to specify configuration information for
the specified synchronization operation;

wherein said configuring the synchronization step to
perform the synchronization operation comprises con
figuring the synchronization step to perform the Syn
chronization operation in accordance with the configu
ration information.

38. The memory medium of claim 33, wherein the pro
gram instructions are further executable to:

concurrently execute multiple instances of the test execu
tive sequence;

wherein, for each instance of the test executive sequence,
executing the instance of the test executive sequence
comprises executing the plurality of test executive steps
in the test executive sequence, wherein said executing
the plurality of test executive steps comprises executing
the synchronization step to perform the synchroniza
tion operation;

wherein said multiple instances of the test executive
sequence each executing the synchronization step to
perform the synchronization operation comprises each
instance of the test executive sequence executing the

5

10

15

25

30

35

40

45

50

55

60

65

42
synchronization step to synchronize its execution with
execution of the other instances of the test executive
Sequence.

39. A system operable to perform multiple concurrent
executions of a test executive sequence, the system com
prising:

a computer system including a processor and a memory;
a unit under test (UUT) coupled to the computer system;
wherein the memory of the computer system stores pro

gram instructions executable to create the test executive
sequence, wherein said creating the test executive
sequence comprises including a plurality of test execu
tive steps in the test executive sequence in response to
user input and configuring at least a Subset of the test
executive steps to call external code modules to test the
UUT;

wherein said creating the test executive sequence further
comprises including a synchronization step in the test
executive sequence, wherein said synchronization step
in the test executive sequence comprises:
displaying a graphical user interface that provides

access to the synchronization step;
including the synchronization step in the test executive

sequence in response to user input received to the
graphical user interface;

wherein the program instructions are further executable to
configure the synchronization step to perform a syn
chronization operation, in response to user input speci
fying the synchronization operation, wherein the Syn
chronization operation is operable to synchronize
execution of multiple concurrently executing instances
of the test executive sequence.

40. The system of claim 39,
wherein the graphical user interface presents a plurality of

possible synchronization operations which the synchro
nization step can be configured to perform;

wherein said configuring the synchronization step to
perform the synchronization operation comprises con
figuring the synchronization step to perform the Syn
chronization operation in response to user input select
ing the synchronization operation from the plurality of
possible synchronization operations.

41. The system of claim 40,
wherein the graphical user interface comprises a first one

or more GUI elements which provides access to the
synchronization step;

wherein the graphical user interface comprises a second
one or more GUI elements which presents the plurality
of possible synchronization operations.

42. The system of claim 40,
wherein the graphical user interface comprises a first

graphical user interface which provides access to the
synchronization step;

wherein the graphical user interface comprises a second
graphical user interface which presents the plurality of
possible synchronization operations.

43. The system of claim 40, wherein the program instruc
tions are further executable to:

receive user input to specify configuration information for
the specified synchronization operation;

wherein said configuring the synchronization step to
perform the synchronization operation comprises con
figuring the synchronization step to perform the Syn
chronization operation in accordance with the configu
ration information.

US 7,093,249 B2
43

44. The system of claim 39,
wherein said configuring the synchronization step to

perform the synchronization operation comprises asso
ciating program instructions with the synchronization
step. Such that the program instructions are executable
to perform the specified synchronization operation.

45. The system of claim 39,
wherein the synchronization operation comprises one of

the following operations to be performed on a synchro
nization object: a “lock' operation; an “unlock' opera
tion; or a 'get status' operation;

wherein the synchronization step is operable to perform
one of acquiring a lock for the synchronization object;
releasing a lock for the synchronization object; or
getting status information for the synchronization
object.

46. The system of claim 39,
wherein the synchronization step is associated with a

respective synchronization object type;
wherein said configuring the synchronization step to

perform the synchronization operation comprises con
figuring the synchronization step to perform a synchro
nization operation on a synchronization object of the
associated synchronization object type.

47. The system of claim 46, wherein the synchronization
object type comprises one of the following synchronization
object types:

a mutex synchronization object;
a semaphore synchronization object;
a rendezvous synchronization object;
a queue Synchronization object;
a notification synchronization object; or
a batch synchronization object.
48. The system of claim 39,
wherein the processor of the computer system is operable

to execute multiple instances of the test executive
sequence concurrently:

wherein, for each instance of the test executive sequence,
executing the instance of the test executive sequence
comprises executing the plurality of test executive steps
in the test executive sequence, wherein said executing
the plurality of test executive steps comprises executing
the synchronization step to perform the synchroniza
tion operation;

wherein said executing the synchronization step to per
form the synchronization operation for each instance of
the test executive sequence causes the execution of
each instance of the test executive sequence to be
synchronized with the execution of the other instances
of the test executive sequence.

49. A computer-implemented method for synchronizing
multiple concurrent executions of a test executive sequence,
the method comprising:

creating the test executive sequence, wherein creating the
test executive sequence comprises:

10

15

25

30

35

40

45

50

44
including a plurality of test executive steps in the test

executive sequence in response to user input;
configuring at least a Subset of the test executive steps

to call external code modules to test a unit under test
(UUT):

displaying a graphical user interface for configuring a
first test executive step in the test executive sequence
to perform one of a plurality of possible operations
on a first synchronization object, wherein the graphi
cal user interface presents the plurality of possible
operations for selection by a user, and

configuring the first test executive step to perform a
first operation on the first synchronization object, in
response to user input to the graphical user interface
selecting the first operation from the plurality of
possible operations;

wherein the method further comprises executing multiple
instances of the test executive sequence concurrently,
wherein for each instance of the test executive
sequence, executing the test executive sequence com
prises executing the plurality of test executive steps in
the test executive sequence, wherein executing the
plurality of test executive steps comprises executing the
first test executive step to perform the first operation on
the first synchronization object;

wherein said multiple instances of the test executive
sequence each executing the first test executive step to
perform the first operation on the first synchronization
object comprises each instance of the test executive
sequence executing the first test executive step to
synchronize its execution with execution of the other
instances of the test executive sequence.

50. The method of claim 49,
wherein the graphical user interface for configuring the

first test executive step enables a user to configure the
first test executive step to perform the first operation on
the first synchronization object without writing pro
gram source code for performing the first operation.

51. The method of claim 49,
wherein the first synchronization object comprises one of

a mutex object or a semaphore object.
52. The method of claim 49,
wherein the first synchronization object comprises a ren

dezvous object.
53. The method of claim 49,
wherein the first synchronization object comprises a

queue object.
54. The method of claim 49,
wherein the first synchronization object comprises a noti

fication object.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,093,249 B2 Page 1 of 1
APPLICATIONNO. : 09/798459
DATED : August 15, 2006
INVENTOR(S) : Melamed et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page:

(74) Attorney, Agent or Firm -
please delete “& Goestzel, P.C.; and substitute -- & Goetzel, P.C.; --.

In the Claims:

Column 40
Lines 62-63, please delete “instructions executable by a computer by a
computer by a computer to: and substitute -- instructions executable by a
computer to:--.

Signed and Sealed this

Fourteenth Day of November, 2006

WDJ
JON. W. DUDAS

Director of the United States Patent and Trademark Office

