再公表特許(A1)

(11) 国際公開番号

W02004/105175

発行日 平成18年7月20日 (2006.7.20)

(19) 日本国特許庁(JP)

(43) 国際公開日 平成16年12月2日 (2004.12.2)

(51) Int.Cl.			FΙ			テーマコード(参考)
H01P	1/203	(2006.01)	HO1P	1/203		5J006
HO1P	1/205	(2006.01)	HO1P	1/205	К	
HO1P	7/08	(2006.01)	HO1P	7/08		

審查請求 有 予備審查請求 未請求 (全 31 頁)

出願番号 (21) 国際出願番号 (22) 国際出願日	特願2005-506306 (P2005-506306) PCT/JP2004/001963 平成16年2月20日 (2004.2.20)	(71) 出願人	899000013 財団法人理工学振興会 東京都目黒区大岡山2-12-1
(11) 特許番号	特許第3762976号 (P3762976)	(74)代理人	100078776
(45)特許公報発行日	平成18年4月5日 (2006.4.5)		弁理士 安形 雄三
(31) 優先権主張番号	特願2003-144297 (P2003-144297)	(72)発明者	荒木 純道
(32) 優先日	平成15年5月22日 (2003.5.22)		東京都目黒区大岡山2-12-1 東京工
(33)優先権主張国	日本国(JP)		業大学内
		(72)発明者	石田等
			東京都国分寺市光町3-16-31
		(72)発明者	中川 貴夫
			東京都大田区北千束1-67-7-201
		F ターム (参	考) 5J006 HB03 HB11 HB16 HB17 JA01
			JA11 JA12 LA03 LA05 LA07
			LA11 NA07
			最終頁に続く

(54) 【発明の名称】リングフィルタ及びそれを用いた広帯域帯域通過フィルタ

(57)【要約】

広帯域で挿入損失が小さく、通過域が平坦で急峻な減衰 が得られる高周波用の帯域通過フィルタを提供するため に、線路の電気長が一波長であるマイクロストリップ線 路リング共振器に対し、該線路上の任意の一点に高周波 信号の入力端子を設け、該入力端子から電気長で半波長 の位置にある点に出力端子を設けるとともに、前記入力 端子から電気長で1/4波長の位置にある点に電気長で 1/4波長の開放スタブ(又は1/2波長の短絡スタブ)を接続したリングフィルタを、減衰極周波数を変えて 複数個縦続接続する。

【特許請求の範囲】

【請求項1】

線路の電気長が一波長であるマイクロストリップ線路リング共振器に対し、該線路上の任 意の一点に高周波信号の入力端子を設け、該入力端子から電気長で半波長の位置にある点 に出力端子を設けるとともに、前記入力端子から電気長で1/4波長の位置にある点に電 気長で1/4波長の開放スタブを接続したことを特徴とするリングフィルタ。 【請求項2】

(2)

線路の電気長が一波長であるマイクロストリップ線路リング共振器に対し、該線路上の任意の一点に高周波信号の入力端子を設け、該入力端子から電気長で半波長の位置にある点に電に出力端子を設けるとともに、前記入力端子から電気長で1/4波長の位置にある点に電気長で半波長のスタブの一端を接続し、かつ、該スタブの他端を接地したことを特徴とするリングフィルタ。

【請求項3】

前記リング共振器の特性インピーダンスと、前記スタブ部の特性インピーダンスとの比を 変えることにより減衰極周波数を調整し、通過帯域幅を可変できるようにしたことを特徴 とする請求の範囲第1項又は第2項に記載のリングフィルタ。

【請求項4】

前記リング共振器への入力及び出力のインピーダンスを Z₀、前記リング共振器における 入力端子から出力端子までの半波長の線路のうち、前記スタブが接続されていない方の線 路のインピーダンスを Z₁、前記入力端子から前記スタブの接続点までの 1 / 4 波長の線 20 路のインピーダンスを Z₂としたとき、前記 Z₀、 Z₁及び Z₂が以下の不等式を満足す ることを特徴とする請求の範囲第 3 項に記載のリングフィルタ。

$$Z_2/Z_0 \le 1$$
の場合

$$\left\{ \frac{1 + \sqrt{\left(1 + 4\left(Z_{2}/Z_{0}\right)^{2}\right)}}{(2Z_{2}/Z_{0}) < (Z_{1}/Z_{0})} \right\}} \right\} \\ \left(\frac{1 + \sqrt{\left(1 + 4\left(Z_{2}/Z_{0}\right)^{2}\right)}}{(2Z_{2}/Z_{0}) < (Z_{1}/Z_{0}) < (Z_{2}/Z_{0})/(Z_{2}/Z_{0}-1)} \right)}$$

【請求項5】

線路の電気長が一波長であるマイクロストリップ線路リング共振器に対し、該線路上の任意の一点に高周波信号の入力端子を設け、該入力端子から電気長で半波長の位置にある点に出力端子を設けるとともに、前記入力端子から電気長で1/4波長の位置にある点に電気長で1/4波長のスタブの一端を接続し、かつ、該スタブの他端を接地したことを特徴とするリングフィルタ。

【請求項6】

前記リング共振器の形状が、円、楕円若しくは 4 辺形のいずれかである請求の範囲第 1 項 又は第 2 項に記載のリングフィルタ。

【請求項7】

前記リング共振器の形状が、円、楕円若しくは 4 辺形のいずれかである請求の範囲第 3 項 に記載のリングフィルタ。

【請求項8】

前記リング共振器の形状が、円、楕円若しくは 4 辺形のいずれかである請求の範囲第 4 項 又は第 5 項に記載のリングフィルタ。

【請求項9】

請求の範囲第3項及び第4項に記載のリングフィルタの中から種類を問わずに重複を許し て複数個選択し、それらを縦続接続して構成した帯域通過フィルタであって、該帯域通過 フィルタは、前記接続された各リングフィルタの減衰極周波数が互いに異なるものである ことを特徴とする帯域通過フィルタ。 10

【請求項10】

前 記 帯 域 通 過 フィ ル タ に 、 請 求 の 範 囲 第 5 項 に 記 載 の リ ン グ フィ ル タ が 少 な く と も 一 個 縦 続 接 続 さ れ た 請 求 の 範 囲 第 9 項 に 記 載 の 帯 域 通 過 フィ ル タ 。

(3)

【請求項11】

前記リングフィルタのリング共振器の形状が、円、楕円若しくは 4 辺形のいずれかである 請求の範囲第 9 項又は第 1 0 項に記載の帯域通過フィルタ。

【発明の詳細な説明】

【技術分野】

本発明は、リングフィルタ及びそれを用いた広帯域の帯域通過フィルタに関し、詳しく はリング共振器に開放スタブ若しくは短絡スタブを一つ設けた、マイクロストリップ線路 10 で実現されたリングフィルタ及びそれを用いた広帯域の帯域通過フィルタに関する。 【背景技術】

アナログあるいはデジタル携帯電話や無線電話をはじめとする移動体通信機等の送信回路および受信回路のRF段等の高周波回路部には、例えば同一のアンテナを送信回路と受信回路で共用する場合に送信周波数帯域と受信周波数帯域を分離するため、あるいは増幅回路の非直線性に基づいて発生する高調波を減衰させるため等、希望の信号波以外の不要信号波を除去するためなどに、帯域通過フィルタがよく用いられている。このような通信機用フィルタとしての帯域通過フィルタは、フィルタ回路部が小型にできることや高周波回路としての電気的特性が良好であること等から、マイクロストリップ線路等により構成されることが多い。

かかるマイクロストリップ線路で実現される帯域通過フィルタは、 M I C や M M I C へ の適用が容易であるが、従来のマイクロストリップ線路で実現された帯域通過フィルタは 、1 / 4 波長(電気長を意味し、以下同じ。)の線路を複数組み合わせた側結合型のもの であった。

ー般的に、帯域通過フィルタの特性として、代表的な二つの特性が知られている。一方 は、第8図(A)に示すチェビシェフ特性であり、通過域に等リップルが現れるが、遮断 特性(急峻性)がよいという特徴がある。他方は、第8図(B)に示すバタワース特性で あり、通過域が平坦でリップルが少ないため、高精度の測定に適している。

第4図は従来の1/4波長の線路を8段組み合わせた側結合型の帯域通過フィルタの例 を示す図であり、チェビシェフ型のフィルタである。第5図はその高周波特性を示す図で あり、この例では、2GHzにおける挿入損失が0.8059dB、群遅延量が2.45 85ns、比帯域(3dB通過帯域幅/通過中心周波数)が約45%である。1/4波長 の線路で作られる1段の帯域通過フィルタの比帯域は通常15%程度であるので、帯域を 広くするために、この例では段数を8段にしてあるが、逆に、回路が大型化し、挿入損失 が増大している。また、チェビシェフ型では通過域を平坦にすると群遅延特性が一定とな らないので、波形歪を起こしやすい。

第6図は、従来の1/4波長の線路を6段組み合わせた側結合型の帯域通過フィルタの 例を示す図であり、バタワース型のフィルタである。第7図はその高周波特性を示す図で あり、この例では、2GHzにおける挿入損失が0.664dB、群遅延量が1.999 5 n s、比帯域が約32%である。比帯域を大きくし、できるだけ急峻な阻止特性を得る ため、段数を6段にしてあるが、このために回路が大型化し、挿入損失が増大している。 阻止域での急峻性はチェビシェフ型よりも劣るが、群遅延特性は良好で、通過域内でほぼ 一定であり、波形歪を起こしにくい。以上のように、従来のマイクロストリップ線路で実 現された帯域通過フィルタは共振周波数が1/4波長で決まるため、広帯域化も困難であ る(15%程度)。また、比帯域を広げるために段数を増やすと回路が大型化するととも に、挿入損失も増大するため、MICやMMICには適さなかった。

また、かかる従来の1/4波長の線路を複数組み合わせた側結合型の帯域通過フィルタの形状の大きいことや挿入損失が大きいことの欠点をカヴァーするものとして、リング共振器を用いたデュアルモードフィルタが知られている(特開平9-139612号公報参照)。しかし、かかるフィルタは小型ではあるが、帯域が狭いという本質的な問題点があ

40

20

る。すなわち、従来のリング共振器を用いたフィルタでは、共振周波数においてインピー ダンスが最小になるので、共振部分しか通過せず、他の帯域では阻止される。従って、そ の性質上、通過帯域は狭くならざるを得ない。

(4)

一方、特定の周波数の信号のみ通過させず、それ以外の周波数の信号は通過させるという帯域阻止フィルタが知られているが、この帯域阻止フィルタは、ある特定周波数(これを減衰極周波数という。)及びその前後の狭い範囲の周波数の信号のみ通過させず、それ以外の周波数の信号は通過させてしまうという性質を持っているため、これを帯域通過フィルタとして利用した場合は、広帯域な帯域通過フィルタとなり得る。しかしながら、帯域阻止フィルタは通過を阻止する周波数帯域が狭いため、通過させたくない周波数の信号まで通過させてしまうという問題がある。特に、直流成分を除去する必要がある場合には使用できないという問題がある。

直流成分を阻止するフィルタとして従来から知られているものに、第13図に示す1/ 4 波長の短絡スタブを用いたフィルタがある。このフィルタは、第14図に示すように直 流(及び通過中心周波数の2倍の周波数)の成分を除去することができるが、通過中心周 波数以外は反射が多く(S₁₁参照)、損失が大きいという欠点がある。そこで、直流成 分を阻止しつつ、通過帯域において反射(損失)が少ないフィルタが望まれる。なお、第 14図(A)はシミュレーション結果であり、第14図(B)は実測データである。

本発明は、かかる従来型の帯域通過フィルタ及び帯域阻止フィルタの問題点に鑑み為さ れたものであり、本発明の目的は、広帯域で挿入損失が小さく、通過域が平坦で急峻な減 衰が得られ、また、直流成分の除去も可能なフィルタ及びそれを利用した高周波用の帯域 通過フィルタを提供することにある。

【発明の開示】

本発明は、リングフィルタに関し、本発明の上記目的は、線路の電気長が一波長である マイクロストリップ線路リング共振器に対し、該線路上の任意の一点に高周波信号の入力 端子を設け、該入力端子から電気長で半波長の位置にある点に出力端子を設けるとともに 、前記入力端子から電気長で1/4波長の位置にある点に電気長で1/4波長の開放スタ ブを接続したことを特徴とするリングフィルタによって達成される。第1図(A)及び(B)に示すものはこの1例である。

このリングフィルタは、帯域阻止フィルタとして動作し、第9図に示すように通過域が 平坦で急峻な減衰が得られるという特徴がある。

また、本発明の上記目的は、線路の電気長が一波長であるマイクロストリップ線路リン グ共振器に対し、該線路上の任意の一点に高周波信号の入力端子を設け、該入力端子から 電気長で半波長の位置にある点に出力端子を設けるとともに、前記入力端子から電気長で 1/4波長の位置にある点に電気長で半波長のスタブの一端を接続し、かつ、該スタブの 他端を接地したことを特徴とするリングフィルタによっても達成される。

第2図に示すものはこの1例である。このリングフィルタは、帯域阻止フィルタとして 動作し、第10図に示すように通過域が平坦で急峻な減衰が得られるとともに、直流成分 も阻止するという特徴がある。

さらに、本発明の上記目的は、前記リング共振器の特性インピーダンスと、前記スタブ 部の特性インピーダンスとの比を変えることにより減衰極周波数を調整し、通過帯域幅を 可変できるようにしたことを特徴とする前記リングフィルタによって、効果的に達成され る。具体的には、減衰極周波数は後述の数2の式によって決定されるが、第3図では、 Z 1及びZ2を固定とし、スタブのインピーダンス(数2のZ3)のみを変化させることに より減衰極周波数を変えている。

またさらに、本発明の上記目的は、前記リング共振器への入力及び出力のインピーダンスを Z₀、前記リング共振器における入力端子から出力端子までの半波長の線路のうち、前記スタブが接続されていない方の線路のインピーダンスを Z₁、前記入力端子から前記スタブの接続点までの 1 / 4 波長の線路のインピーダンスを Z₂ としたとき、前記 Z₀、 Z₁及び Z₂が以下の数 1 の不等式を満足することを特徴とする前記リングフィルタによって、より効果的に達成される。

10

20

(5)

(数1)

$$\frac{Z_2/Z_0 \le 1 \mathcal{O} - \mathbb{B} - \mathbb{C}}{\left\{1 + \sqrt{\left(1 + 4\left(Z_2/Z_0\right)^2\right)}\right\}} / (2Z_2/Z_0) < (Z_1/Z_0)$$

$$\frac{Z_2/Z_0 > 1 \mathcal{O} - \mathbb{B} - \mathbb{C}}{\left\{1 + \sqrt{\left(1 + 4\left(Z_2/Z_0\right)^2\right)}\right\}} / (2Z_2/Z_0) < (Z_1/Z_0) < (Z_2/Z_0) / (Z_2/Z_0 - 1)$$

$$\frac{Z_2/Z_0 - 1}{2} = \frac{10}{2} = \frac{10$$

前記の不等式(数1)を満足するリングフィルタは、スタブの特性インピーダンスの値の如何にかかわらず、通過帯域内にリップルが発生しない。

さらにまた、本発明の上記目的は、線路の電気長が一波長であるマイクロストリップ線 路リング共振器に対し、該線路上の任意の一点に高周波信号の入力端子を設け、該入力端 子から電気長で半波長の位置にある点に出力端子を設けるとともに、前記入力端子から電 気長で1/4波長の位置にある点に電気長で1/4波長のスタブの一端を接続し、かつ、 該スタブの他端を接地したことを特徴とするリングフィルタによって達成される。 第15図に示すものはこの1例である。このリングフィルタは、帯域阻止フィルタとし

て動作し、第16図に示すように通過域にリップルがなく平坦で、直流成分(及び通過中 心周波数の2倍の周波数成分)を阻止するという特徴がある。また、通過帯域において反 射(損失)が少ないという特徴も持っている。なお、第16図(A)はシミュレーション 結果であり、第16図(B)は実測データである。

なお、前記リング共振器の形状は、円、楕円若しくは4辺形のいずれであってもよい。 次に、本発明は前記リングフィルタを用いた広帯域帯域通過フィルタに関し、本発明の 上記目的は、前記リングフィルタの中から種類を問わずに重複を許して複数個選択し、そ れらを縦続接続して構成した帯域通過フィルタであって、該帯域通過フィルタは、前記接 続された各リングフィルタの減衰極周波数が互いに異なるものであることを特徴とする帯 域通過フィルタによって達成される。

第3図に示すものはこの1例であり、1/4波長の開放スタブが接続されたリングフィ ルタを5段縦続接続し、それぞれのリングフィルタの減衰極周波数を変えたものである。 なお、第3図の例は5個すべてが開放スタブ付きのリングフィルタの場合であるが、開 放スタブ付きのリングフィルタと半波長の短絡スタブ付きのリングフィルタとを組み合わ

30

40

20

また、本発明の上記目的は、前記帯域通過フィルタに、1/4波長の短絡(接地)スタ ブが接続された前記リングフィルタを少なくとも一個縦続接続することによって、より効 果的に達成される。

第17図に示すものは1/4波長の開放スタブが接続されたリングフィルタを4段縦続 接続し、それぞれのリングフィルタの減衰極周波数を変えたものに、さらに1/4波長の 短絡(接地)スタブが接続された前記リングフィルタを一個縦続接続して構成した帯域通 過フィルタの例である。

【図面の簡単な説明】

せて構成してもよい。

第1図は、帯域阻止フィルタとしてのリングフィルタの第1発明の実施例を示す模式図である。

第2図は、帯域阻止フィルタとしてのリングフィルタの第2発明の実施例を示す模式図である。

第3図は、第1図の開放スタブ付きのリングフィルタを5個縦続接続して構成した広帯 域な通過帯域フィルタの実施例である。

第4図は、従来の1/4波長の線路を8段組み合わせた側結合型の帯域通過フィルタ(チェビシェフ型)の例を示す図である。

第5図は、第4図の帯域通過フィルタの高周波特性を示す図である。

第 6 図 は、 従 来 の 1 / 4 波 長 の 線 路 を 6 段 組 み 合 わ せ た 側 結 合 型 の 帯 域 通 過 フ ィ ル タ (バタワース型)の例を示す図である。 第7図は、第6図の帯域通過フィルタの高周波特性を示す図である。 第8図は、一般的な帯域通過フィルタの特性を示す図であり、(A)がチェビシェフ特 性であり、(B)がバタワース特性の図である。 第9図は、第1図において、Z₁ = 50 、Z₂ = 131.8 、Z₃ = 24.6 と した場合のリングフィルタの高周波特性を示す図である。 第10図は、第2図において、Z1=50、Z2=131.8、Z3=70.7 とした場合のリングフィルタの高周波特性を示す図である。 第11図は、第3図に示す帯域通過フィルタの実施例の高周波特性(通過特性、反射特 10 性)を示す図である。 第12図は、第3図に示す帯域通過フィルタの実施例の高周波特性(通過特性、群遅延 特性)を示す図である。 第13図は、直流成分の除去フィルタの従来例を示す模式図である。 第 1 4 図 は、 第 1 3 図 に 示 す 直 流 成 分 除 去 フィ ル タ の 従 来 例 の 高 周 波 特 性 (通過 特 性、 反射特性)を示す図である。(A)はシミュレーション図、(B)は実測データである。 第 1 5 図 は、 本 発 明 に 係 る 、 直 流 成 分 及 び 通 過 中 心 周 波 数 の 2 倍 の 周 波 数 成 分 を 除 去 す るリングフィルタの実施例を示す図である。 第16図は、第15図に示すリングフィルタの実施例の高周波特性(通過特性、反射特 性)を示す図である。 20 第 1 7 図 は、 第 1 図 の 開 放 ス タ ブ 付 き の リ ン グ フ ィ ル タ 4 個 と 、 第 1 5 図 の 短 絡 ス タ ブ 付きのリングフィルタ 1 個とを縦続接続して構成した広帯域な帯域通過フィルタの実施例 である。 第18図は、第1図のリングフィルタにおいて、Z。=50 ,Z1=16 , Z , = , Z ュ = 2 2 . 1 4 としたときの通過帯域近傍のリップル特性を示すものであり 90 、(A)はコンピュータによるシミュレーション結果、(B)はネットワークアナライザ による実測データである。 第19図(A)は、第1図のリングフィルタにおいて、 Z 。 = 5 0 , Z 1 = 5 0 Z₂ = 90 , Z₃ = 22.14 としたときの通過帯域近傍のリップル特性のシミュレ ーション図である。 30 第19図(B)は、第1図のリングフィルタにおいて、Z。=50 ,Z1=60 Z2=90 , Z3=22.14 としたときの通過帯域近傍のリップル特性のシミュレ ーション図である。 第 2 0 図 (A) は、第 1 図のリングフィルタにおいて、 Z ₀ = 5 0 , Z ₁ = 6 5 . 7 9 , Z , = 9 0 , Z , = 2 2 . 1 4 としたときの通過帯域近傍のリップル特性のシ ミュレーション図である。 第20図(B)は、第1図のリングフィルタにおいて、Z。=50 ,Z1=70 Z₂ = 90 , Z₃ = 22.14 としたときの通過帯域近傍のリップル特性のシミュレ ーション図である。 第21図(A)は、第17図に示す帯域通過フィルタの実施例の高周波特性(通過特性 40 、反射特性)を示す図である。 第21図(B)は、第17図に示す帯域通過フィルタの実施例の高周波特性(通過特性 、群遅延特性)を示す図である。 【発明を実施するための最良の形態】 本発明は、広帯域の帯域通過フィルタをマイクロストリップ線路で実現することを目的 としているが、従来の帯域通過フィルタは、共振周波数において最もインピーダンスが小 さくなるという性質を利用したものであるため、共振周波数を中心とする狭い範囲の周波 数の信号しか通過させることができなかった。従って、共振したときに信号を通過させる

そこで、上述のように、本発明においては、特定の周波数の信号のみ通過させず、それ 50

という考え方による帯域通過フィルタでは、広帯域化に限界がある。

以外の周波数の信号は通過させるという帯域阻止フィルタを用いて、帯域通過フィルタの 広帯域化を図ることとした。すなわち、帯域阻止フィルタは、ある特定周波数(これを減 衰極周波数という。)及びその前後の狭い範囲の周波数の信号のみ通過させず、それ以外 の周波数の信号は通過させてしまうので、これを帯域通過フィルタとして使用した場合は 、広帯域な帯域通過フィルタとなる。

(7)

しかしながら、帯域阻止フィルタは通過を阻止する周波数帯域が狭いため、通過させた くない周波数の信号まで通過させてしまうという問題がある。そこで、本発明においては 、減衰極周波数の異なる数種類の帯域阻止フィルタを縦続接続して多段フィルタとするこ とにより、全体として阻止周波数の帯域を拡大し、この問題を解決した。なお、個々の帯 域阻止フィルタの減衰極周波数を所望の値に自由に設定できるかどうかが設計上の重要な 問題となるが、後述のように、本発明による帯域阻止フィルタ(リングフィルタ)はリン グ部の特性インピーダンスとスタブ部の特性インピーダンスとから、計算により減衰極周 波数が求められるので、減衰極周波数の設計値とリング部の特性インピーダンスを与えれ ば、逆算によってスタブ部の特性インピーダンスを求めることができる。このことは、(リング部の特性インピーダンスを一定にしておいて)スタブ部の特性インピーダンスを変 えるだけで減衰極の制御ができることを意味しており、設計上の大きなメリットになって

本発明に係る帯域通過フィルタについて、図面を参照して詳細に説明する。

第1図は帯域阻止フィルタとしてのリングフィルタの第1の発明の実施例を示す模式図 である。図において、1は通過周波数での電気長が1波長()のマイクロストリップ線 路で実現されたリング共振器であり、このリング共振器の周上に入力端子2と出力端子3 が、電気長で /2離れた位置に設けられ、さらに、前記リング周上で前記入力端子2か ら電気長で /4離れた位置4に電気長で /4の長さの開放スタブ5が接続されている 。以下、線路の長さは特に断らない限り、すべて電気長を意味するものとする。このこと により通過帯域で2等分点の片側回路を切り離すことができ、伝送線路の間に通過周波数 で /2長の伝送線路を形成できる。

このリングフィルタの上側リング部の特性インピーダンスを Z₁、下側リング部の特性 インピーダンスを Z₂、開放スタブ 5 の特性インピーダンスを Z₃とすると、減衰極周波 数 f は次の数 2 によって求められる。

(数2)

$$\tan^2 \theta_p = 2(1 + Z_1/Z_2)(Z_3/Z_2)$$

 $f = \theta_p^{\circ} / 90^{\circ} \times f_0 (GHz)$

 f_0 :中心周波数

(実施例)第1図のリングフィルタを、比誘電率3.5、基板厚1.67mm、導体厚3 5 µ m、誘電損失0.025の高周波回路基板で実現した。リングの実効半径は15 m m で、開放スタブの長さは約20mmである。このときの各特性インピーダンスは、Z1 = 50 、Z₂=131.8、Z₃=24.6 である。 このリングフィルタの高周波特性は第9図に示す通りである(上側が通過特性で、下側が 群遅延特性)。2GHz帯における通過損失は、約0.28dB、減衰極周波数は、約8 00MHzと約3200MHzであり、上記数2により求めた理論値(792MHz、 208MHz)とよく一致していることが分かる。また、比帯域は100%を超えており 、 群 遅 延 特 性 も 、 2 G H z ± 0 . 4 G H z で 1 n s 程 度 (一 定) 、 ほ ぼ 伝 送 線 路 の 値 で あ る。第1図は(A)が円形のリングの場合であり、(B)が矩形のリングの場合であるが 、本発明はこれらに限定されるものではなく、電気長、およびインピーダンスが同じもの であればリングの形状は問わない。なお、入力端子及び出力端子に接続されているマイク ロストリップ線路6及び7は信号の反射を抑えるために設けられているものであり、その 特性インピーダンスZ。は、数2からも分かるように、減衰極周波数には影響しない。 第 2 図 は帯 域 阻 止 フィ ル タ と し て の リ ン グ フ ィ ル タ の 第 2 の 発 明 の 実 施 例 を 示 す 模 式 図

である。第1図の第1の発明と異なる点は、入力端子2から /4離れた位置4に接続さ

30

40

50

10

れるスタブ5の長さが / 2 であり、かつ、先端が接地されていることである。第1の発 明の開放スタブ付リングフィルタは、減衰極の周波数間隔を広くできるが,周波数がゼロ のときに減衰が起きないのに対し、第2の発明の短絡スタブ付リングフィルタは、減衰極 の周波数間隔を開放スタブの場合ほど広くできないが、周波数がゼロ(と通過中心周波数 の2 倍の周波数)のとき,信号を通過させないという特徴がある。従って、直流成分もカ ットする必要があるような回路に利用される。第10図は、第2図のリングフィルタにお いて、 Z₁ = 50、 Z₂ = 131.8、 Z₃ = 70.7 にしたときの特性図(上側 が通過特性で、下側が反射特性)である。通過中心周波数が2GHzのとき、減衰極周波 数が約1.4GHzと2.6GHzであり、開放スタブの場合(800MHzと3.2G Hz)よりも間隔が狭いが、周波数ゼロの場合と4GHz(通過中心周波数の2倍の周波 数)においても減衰していることが分かる。

第3図は、第1図の開放スタブ付きのリングフィルタを5個縦続接続して構成した広帯 域な帯域通過フィルタの実施例である。減衰極がそれぞれ異なるので、縦続接続すること により全体として阻止周波数の領域を広げることができる。第3図において、Z₁ = 50 、Z₂ = 131.8 、Z₃ = 20 、Z₄ = 24.6 、Z₅ = 30 、Z₆ = 40 、Z₇ = 50 とした場合の帯域通過フィルタの特性は、第11図に示す通りである(上側が通過特性で、下側が反射特性)。ほぼ平坦な通過帯域を持ち、比帯域は約85%で ある。また、阻止帯域も拡大されていることが分かる。なお、群遅延特性は第12図に示 すように、2GHz ± 0.5GHzにおいてほぼ一定である。

次に、通過帯域内におけるリップルの発生条件について調べ、リップルを発生させない 20 設計パラメータを求め、実測データによる検証を行った。

第1 図又は第2 図に記載のリングフィルタにおいて、通過帯域内にリップルが発生しない条件は、整合極が存在しないことである。整合極はSパラメータのS₁ を0 にすることにより求められる。整合極を mとすると、tan² mは、次の数3で表される(途中式は省略)。

(数3)

$$\tan^2 \theta_m = \frac{2(Z_3/Z_2) \left\{ (Z_1/Z_0)^2 - (1 + Z_1/Z_2)^2 \right\} - (Z_1/Z_2) (1 + Z_1/Z_2)}{(Z_1/Z_0)^2 - (1 + Z_1/Z_2)}$$

30

10

ここで、数3に着目すると、左辺 0であるから、整合極 mの解が存在しない条件は 、右辺<0となることである。従って、右辺の分数式の分母と分子は異符号でなければな らない。これは二通りの場合に分けられる。すなわち、 (1)分母<0、かつ、分子>0 あるいは、 (2)分母>0、かつ、分子<0 である。 まず、(1)の場合について検討すると、 分母<0の場合は、(Z₁ / Z₀)² <(1 + Z₁ / Z₂) …(i)が成り立つ。 40 また、 Z 1 及び Z 2 は正だから、常に、(1 + Z 1 / Z 2) < (1 + Z 1 / Z 2)² … (ii)が成り立つ。 よって、(i)及び(ii)より、(Z₁ / Z₀)² <(1 + Z₁ / Z₂)<(1 + Z₁ / Z₂)²となり、(Z₁/Z₀)² - (1 + Z₁/Z₂)² < 0 …(iii)が常に 成り立つ。 しかるに、(iii)の左辺は前記数3式の右辺の分子の(Z3/Z2)の係数であるか ら、(iii)より、数3式の右辺の分子はZ3の値の如何にかかわらず負となる。従っ て、(1)の場合はあり得ない。 次に、(2)の場合について検討すると、 分母>0の場合は、(1+Z₁/Z₂)<(Z₁/Z₀)² …(iv)が成り立つ。 50

(8)

(9)

成り立つことが必要かつ十分な条件である。 (iii)より、 Z₁ / Z₀ < 1 + Z₁ / Z₂ …(v)が導かれる。 (iv)、(v)において、 Z₁ / Z₂ = (Z₁ / Z₀) / (Z₂ / Z₀)と置き換えて 、それぞれの不等式を解くと以下のようになる。

(iv)を解くと、次の数4になる。

(数 4)

$$(Z_{1}/Z_{0}) > \left\{1 + \sqrt{\left(1 + 4\left(Z_{2}/Z_{0}\right)^{2}\right)}\right\} / (2Z_{2}/Z_{0})$$
¹⁰

(v)を解くと、以下の二通りの解が求められる。すなわち、(v)において、
Z₁ / Z₀ < 1 + Z₁ / Z₂ = 1 + (Z₁ / Z₀) / (Z₂ / Z₀) となり、
(Z₁ / Z₀) { (Z₂ / Z₀) - 1 } < (Z₂ / Z₀) ... (vi)となるから、
· (Z₂ / Z₀) > 1の場合 (Z₁ / Z₀) < (Z₂ / Z₀) / { (Z₂ / Z₀) - 1 } ... (vii)
· (Z₂ / Z₀) 10場合 常に成り立つ。

以上をまとめると、 Z₃の値の如何にかかわらず、通過帯域内でリップルが発生しない 条件は、前記の数 1 のようになる。

【実施例】

上記のリップルを発生させないための条件式である数 1 の妥当性を検証するため、リン グフィルタの特性インピーダンスを種々変化させて、シミュレーションを行った。

第18図は、第1図のリングフィルタにおいて、Z₀=50 , Z₁=16 , Z₂= 90 , Z₃=22.14 としたときの通過帯域近傍の高周波特性を示すものであり、 (A)はコンピュータによるシミュレーション結果、(B)はネットワークアナライザに よる実測データである。両者は極めて近似しており、シミュレーションの信頼性の高さを 如実に示している。

次に、前記第1図のリングフィルタにおいて、 Z₀ = 50 , Z₂ = 90 , Z₃ = 2 2.14 に固定し、 Z₁のみを変化させて、リップルの発生状況をシミュレーションに より検証した。第19図(A)、(B)及び第20図(A)、(B)はZ₁がそれぞれ5 0 , 60 , 65.79 , 70 の場合のシミュレーション結果を示す図である。な お、 Z₂ / Z₀ = 1.8であるから、リップルを発生させない条件式は、前記数1の第2 式が適用される。

(1)Z₁=50の場合

前記数4式の左辺は1であり、右辺は1.3156(Z₁には無関係)であるから、数4を満足せず(従って数1も満足しない)、整合極が存在することになり、理論的にもリップルが生ずることが分かる。

第19図(A)に示すように、整合極が、4.24GHz及び8.61GHzのところ にあり、通過帯域内でリップルが生じていることが分かる。

(2)Z₁=60の場合

前記数4式の左辺は1.2であり、右辺は1.3156(Z₁には無関係)であるから、数4を満足せず(従って数1も満足しない)、整合極が存在することになり、理論的に もリップルが生ずることが分かる。

第19図(B)に示すように、整合極が、5GHz及び7.82GHzのところにあり 、通過帯域内でリップルが生じていることが分かる。

(3) Z₁ = 65.79 の場合

前記数4式の左辺は1.3158であり、右辺は1.3156(Z₁には無関係)であるから、数4を満足しており、前記(vii)も満足しているから、結果として前記数1の第2式も満足することになり、整合極が存在せず理論的にもリップルが生じないことが

20

分かる。第20図(A)に示すように、整合極が存在せず、通過帯域内でリップルが生じ ていないことが分かる。

(10)

(4)Z₁ = 70 の場合

おいてほぼ一定である。

前記数4式の左辺は1.4であり、右辺は1.3156(Z₁には無関係)であるから、数4を満足しており、前記(vii)も満足しているから、結果として前記数1の第2 式も満足することになり、整合極が存在せず理論的にもリップルが生じないことが分かる

第20図(B)に示すように、整合極が存在せず、通過帯域内でリップルが生じていないことが分かる。

以上のシミュレーション結果から、通過帯域内にリップルを発生させない条件式(数1 10)の妥当性が証明された。

第15図は本発明に係る、直流成分及び通過中心周波数の2倍の周波数成分を除去する リングフィルタの実施例であり、下側のリング部の中点4に1/4波長の短絡(接地)ス タブ5が接続されたものである。

一方、第13図は直流成分及び通過中心周波数の2倍の周波数成分を除去する従来のフィルタの例であり、50 (Z。)の伝送線路6に1/4波長の短絡スタブ5を設けたものである。

第14図及び第16図は、それぞれ、1/4波長の短絡(接地)スタブを設けたフィル タの従来例及び本発明のリングフィルタの通過特性を表したものである。両図において(A)はシミュレーション結果を、(B)は実測データをそれぞれ表しており、両者は近似 している。

第14図は、第13図においてZ₀=50、Z₃=26.17 とした場合の通過特性(S₂₁)及び反射特性(S₁₁)を表したものであり、直流成分及び通過中心周波数の2倍の周波数成分を除去することができるが、平坦性が悪い。また、反射(損失)は通過中心周波数においてのみ小さく、その他の周波数では大きいという問題がある。

一方、第16図は第15図においてZ₀ = 50 、Z₁ = 54.3 、Z₂ = 90 、 Z₃ = 26.17 とした場合の通過特性(S₂₁)及び反射特性(S₁₁)を表したも のであり、直流成分及び通過中心周波数の2倍の周波数成分を除去することができるとと もに、通過帯域全体において平坦である。また、反射(損失)は通過帯域全体において小 さいという特徴がある。

第17図は、第1図の開放スタブ付きのリングフィルタ4個と、第15図の短絡スタブ 付きのリングフィルタ1個とを縦続接続して構成した広帯域な帯域通過フィルタの実施例 である。減衰極がそれぞれ異なるので、縦続接続することにより全体として阻止周波数の 領域を広げることができるとともに、右端の短絡スタブ付きリングフィルタの働きにより 、直流及び通過中心周波数の2倍の周波数成分を除去することができる。第17図におい て、Z1 = 5 4 . 3 、Z2 = 9 0 、Z3 = 2 1 . 6 、Z4 = 1 5 . 6 、Z5 = 1 1 . 7 、Z6 = 9 . 1 、Z7 = 2 4 . 4 9 とした場合の帯域通過フィルタの特性は 、第2 1 図(A)に示す通りである(S2 1 が通過特性で、S1 1 が反射特性)。 約4 G H z から約9 G H z までの間でほとんど平坦な出力特性が得られ、また、その帯 域内において損失が小さいことが分かる。さらには、直流側(周波数0 H z)においても 大きな減衰が見られ、直流成分がカットされるのが分かる。なお、群遅延特性は第2 1 図 (B)に示すように、通過中心周波数を挟む広い範囲(6.5 G H z ± 2 . 5 G H z)に

本実施例においては、4個の開放スタブ付きリングフィルタと1個の短絡スタブ付きリ ングフィルタを組み合わせて広帯域帯域通過フィルタを構成したが、短絡スタブ付きリン グフィルタは最低1個あれば直流成分を除去することができる。また、開放スタブ付きリ ングフィルタは阻止周波数の帯域を広くしたい場合は、接続する段数を多くすればよい。 【産業上の利用可能性】

以上のように、本発明に係るリングフィルタ及びそれを用いて構成された帯域通過フィ ルタによれば、通過帯域が平坦で広帯域な通過特性が得られるとともに、阻止帯域におい

30

20

ては急峻な減衰が得られる。また、リングフィルタの組み合わせによっては直流成分をカ ットすることも可能であり、設計の自由度が極めて高いという特徴がある。

従って、本発明に係る帯域通過フィルタを今後開発される高周波通信機器に組み込むこ とにより、今までは不可能であった超広帯域通信が可能となる。

第1図 (B)

【 図 4 】 第4図

(12)

群遅延特性

通過特性

【図6】 第6図

t

START 1 808.808 808 MHz

第8図(A)

第8図(B)

STOP 3 500.000 800 MHz

-40

-90

0 Frequency[Hz]

6.5G

13G

第16図(A)

第16図 (B)

第18図 (A)

第18図_(B)

第21図 (B)

【手続補正書】 【提出日】平成17年11月11日(2005.11.11) 【手続補正1】 【補正対象書類名】特許請求の範囲 【補正対象項目名】全文 【補正方法】変更 【補正の内容】 【特許請求の範囲】 【請求項1】 線 路 の 電 気 長 が 一 波 長 で あ る マ イ ク ロ ス ト リ ッ プ 線 路 リ ン グ 共 振 器 に 対 し 、 該 線 路 上 の 任 意の一点に直接接続した高周波信号の入力端子を設け、該入力端子から電気長で半波長の 位置にある点に直接接続した出力端子を設けるとともに、前記入力端子から電気長で1/ 4 波長の位置にある点に電気長で1 / 4 波長の開放スタブを接続したことを特徴とするリ ングフィルタ。 【請求項2】 線 路 の 電 気 長 が 一 波 長 で あ る マ イ ク ロ ス ト リ ッ プ 線 路 リ ン グ 共 振 器 に 対 し 、 該 線 路 上 の 任 意の一点に直接接続した高周波信号の入力端子を設け、該入力端子から電気長で半波長の 位置にある点に直接接続した出力端子を設けるとともに、前記入力端子から電気長で1/ 4 波長の位置にある点に電気長で半波長のスタブの一端を接続し、かつ、該スタブの他端 を接地したことを特徴とするリングフィルタ。 【請求項3】 前記リング共振器の特性インピーダンスと、前記スタブ部の特性インピーダンスとの比を 変えることにより減衰極周波数を調整し、通過帯域幅を可変できるようにしたことを特徴 とする請求項1又は2に記載のリングフィルタ。

【請求項4】 前記リング共振器への入力及び出力のインピーダンスをZ₀、前記リング共振器における 入力端子から出力端子までの半波長の線路のうち、前記スタブが接続されていない方の線 路のインピーダンスをZ₁、前記入力端子から前記スタブの接続点までの1/4波長の線 路のインピーダンスをZ₂、前記スタブの接続点から前記出力端子までの1/4波長の線 <u>路のインピーダンスをZ₂としたとき</u>、前記Z₀、Z₁及びZ₂が以下の数1を満足する ことを特徴とする請求項3に記載のリングフィルタ。

【数1】

・
$$Z_2/Z_0 \le 1$$
の場合
 $\left\{ 1 + \sqrt{\left(1 + 4 \left(Z_2/Z_0 \right)^2 \right)} \right\} / \left(2Z_2/Z_0 \right) < \left(Z_1/Z_0 \right)$

・ $Z_2/Z_0 > 1$ の場合 $\left\{1 + \sqrt{\left(1 + 4\left(Z_2/Z_0\right)^2\right)}\right\} / (2Z_2/Z_0) < (Z_1/Z_0) < (Z_2/Z_0) / (Z_2/Z_0 - 1)$

【請求項5】

線路の電気長が一波長であるマイクロストリップ線路リング共振器に対し、該線路上の任意の一点に<u>直接接続した</u>高周波信号の入力端子を設け、該入力端子から電気長で半波長の位置にある点に<u>直接接続した</u>出力端子を設けるとともに、前記入力端子から電気長で1/ 4波長の位置にある点に電気長で1/4波長のスタブの一端を接続し、かつ、該スタブの 他端を接地したことを特徴とするリングフィルタ。

【請求項6】

請求項3及び4に記載のリングフィルタの中から種類を問わずに重複を許して複数個選択し、それらを縦続接続して構成した帯域通過フィルタであって、該帯域通過フィルタは、

(16)

前記接続された各リングフィルタの減衰極周波数が互いに異なるものであることを特徴と する帯域通過フィルタ。

(17)

【 請 求 項 7 】

前記帯域通過フィルタに、請求項 5 に記載のリングフィルタが少なくとも一個縦続接続さ れた請求項 6 に記載の帯域通過フィルタ。

【請求項8】

<u>前記リングフィルタのリング共振器の形状が、円、楕円若しくは4辺形のいずれかである</u> 請求項1乃至7のいずれかに記載の帯域通過フィルタ。

【手続補正2】

【補正対象書類名】明細書

- 【補正対象項目名】全文
- 【補正方法】変更
- 【補正の内容】
- 【発明の詳細な説明】
- 【技術分野】
- [0001]

本発明は、リングフィルタ及びそれを用いた広帯域の帯域通過フィルタに関し、詳しく はリング共振器に開放スタブ若しくは短絡スタブを一つ設けた、マイクロストリップ線路 で実現されたリングフィルタ及びそれを用いた広帯域の帯域通過フィルタに関する。

【背景技術】

[0002]

アナログあるいはデジタル携帯電話や無線電話をはじめとする移動体通信機等の送信回路および受信回路のRF段等の高周波回路部には、例えば同一のアンテナを送信回路と受信回路で共用する場合に送信周波数帯域と受信周波数帯域を分離するため、あるいは増幅回路の非直線性に基づいて発生する高調波を減衰させるため等、希望の信号波以外の不要信号波を除去するためなどに、帯域通過フィルタがよく用いられている。このような通信機用フィルタとしての帯域通過フィルタは、フィルタ回路部が小型にできることや高周波回路としての電気的特性が良好であること等から、マイクロストリップ線路等により構成されることが多い。

かかるマイクロストリップ線路で実現される帯域通過フィルタは、 MICやMMICへ の適用が容易であるが、従来のマイクロストリップ線路で実現された帯域通過フィルタは 、1 / 4 波長(電気長を意味し、以下同じ。)の線路を複数組み合わせた側結合型のもの であった。

[0003]

ー般的に、帯域通過フィルタの特性として、代表的な二つの特性が知られている。一方 は、第8図(A)に示すチェビシェフ特性であり、通過域に等リップルが現れるが、遮断 特性(急峻性)がよいという特徴がある。他方は、第8図(B)に示すバタワース特性で あり、通過域が平坦でリップルが少ないため、高精度の測定に適している。

第4図は従来の1/4波長の線路を8段組み合わせた側結合型の帯域通過フィルタの例 を示す図であり、チェビシェフ型のフィルタである。第5図はその高周波特性を示す図で あり、この例では、2GHzにおける挿入損失が0.8059dB、群遅延量が2.45 85ns、比帯域(3dB通過帯域幅/通過中心周波数)が約45%である。1/4波長 の線路で作られる1段の帯域通過フィルタの比帯域は通常15%程度であるので、帯域を 広くするために、この例では段数を8段にしてあるが、逆に、回路が大型化し、挿入損失 が増大している。また、チェビシェフ型では通過域を平坦にすると群遅延特性が一定とな らないので、波形歪を起こしやすい。

【0004】

第 6 図は、従来の1 / 4 波長の線路を 6 段組み合わせた側結合型の帯域通過フィルタの 例を示す図であり、バタワース型のフィルタである。第 7 図はその高周波特性を示す図で

あり、この例では、 2 G H z における挿入損失が 0 . 6 6 4 d B 、群遅延量が 1 . 9 9 9 5 n s、比帯域が約32%である。比帯域を大きくし、できるだけ急峻な阻止特性を得る ため、段数を6段にしてあるが、このために回路が大型化し、挿入損失が増大している。 阻止域での急峻性はチェビシェフ型よりも劣るが、群遅延特性は良好で、通過域内でほぼ 一定であり、波形歪を起こしにくい。以上のように、従来のマイクロストリップ線路で実 現 さ れ た 帯 域 通 過 フ ィ ル タ は 共 振 周 波 数 が 1 / 4 波 長 で 決 ま る た め 、 広 帯 域 化 も 困 難 で あ る(15%程度)。また、比帯域を広げるために段数を増やすと回路が大型化するととも に、挿入損失も増大するため、MICやMMICには適さなかった。

ま た 、 か か る 従 来 の 1 / 4 波 長 の 線 路 を 複 数 組 み 合 わ せ た 側 結 合 型 の 帯 域 通 過 フ ィ ル タ の形状の大きいことや挿入損失が大きいことの欠点をカヴァーするものとして、リング共 振器を用いたデュアルモードフィルタが知られている(特許文献1参照)。しかし、かか るフィルタは小型ではあるが、帯域が狭いという本質的な問題点がある。すなわち、従来 のリング共振器を用いたフィルタでは、共振周波数においてインピーダンスが最小になる ので、共振部分しか通過せず、他の帯域では阻止される。従って、その性質上、通過帯域 は狭くならざるを得ない。

[0005]

一方、特定の周波数の信号のみ通過させず、それ以外の周波数の信号は通過させるとい う帯域阻止フィルタが知られているが、この帯域阻止フィルタは、ある特定周波数(これ を減衰極周波数という。)及びその前後の狭い範囲の周波数の信号のみ通過させず、それ 以外の周波数の信号は通過させてしまうという性質を持っているため、これを帯域通過フ ィルタとして利用した場合は、広帯域な帯域通過フィルタとなり得る。しかしながら、帯 域阻止フィルタは通過を阻止する周波数帯域が狭いため、通過させたくない周波数の信号 まで通過させてしまうという問題がある。特に、直流成分を除去する必要がある場合には 使用できないという問題がある。

直流成分を阻止するフィルタとして従来から知られているものに、第13図に示す1/ 4 波長の短絡スタブを用いたフィルタがある。このフィルタは、第14図に示すように直 流(及び通過中心周波数の2倍の周波数)の成分を除去することができるが、通過中心周 <u>波数以外は反射が多く(S₁₁参照)、損失が大きいという欠点がある。そこで、直流成</u> 分を阻止しつつ、通過帯域において反射(損失)が少ないフィルタが望まれる。なお、第 1 4 図 (A) はシミュレーション結果であり、第 1 4 図 (B) は実測データである。 【特許文献1】特開平9-139612号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本 発 明 は 、 か か る 従 来 型 の 帯 域 通 過 フ ィ ル タ 及 び 帯 域 阻 止 フ ィ ル タ の 問 題 点 に 鑑 み 為 さ れたものであり、本発明の目的は、広帯域で挿入損失が小さく、通過域が平坦で急峻な減 衰が得られ、また、直流成分の除去も可能なフィルタ及びそれを利用した高周波用の帯域 通過フィルタを提供することにある。

【課題を解決するための手段】

本 発 明 は 、 リ ン グ フ ィ ル タ に 関 し 、 本 発 明 の 上 記 目 的 は 、 線 路 の 電 気 長 が ー 波 長 で あ る マイクロストリップ線路リング共振器に対し、該線路上の任意の一点に直接接続した高周 波信号の入力端子を設け、該入力端子から電気長で半波長の位置にある点に直接接続した 出力端子を設けるとともに、前記入力端子から電気長で1/4波長の位置にある点に電気 長で1/4波長の開放スタブを接続したことを特徴とするリングフィルタによって達成さ れる。第1図(A)及び(B)に示すものはこの1例である。

このリングフィルタは、帯域阻止フィルタとして動作し、第9図に示すように通過域が平 坦で急峻な減衰が得られるという特徴がある。

また、本発明の上記目的は、線路の電気長が一波長であるマイクロストリップ線路リン

グ共振器に対し、該線路上の任意の一点に<u>直接接続した</u>高周波信号の入力端子を設け、該 入力端子から電気長で半波長の位置にある点に<u>直接接続した</u>出力端子を設けるとともに、 前記入力端子から電気長で1/4波長の位置にある点に電気長で半波長のスタブの一端を 接続し、かつ、該スタブの他端を接地したことを特徴とするリングフィルタによっても達 成される。第2図に示すものはこの1例である。このリングフィルタは、帯域阻止フィル タとして動作し、第10図に示すように通過域が平坦で急峻な減衰が得られるとともに、 直流成分も阻止するという特徴がある。

【 0 0 0 9 】

さらに、本発明の上記目的は、前記リング共振器の特性インピーダンスと、前記スタブ 部の特性インピーダンスとの比を変えることにより減衰極周波数を調整し、通過帯域幅を 可変できるようにしたことを特徴とする前記リングフィルタによって、効果的に達成され る。具体的には、減衰極周波数は後述の数2の式によって決定されるが、第3図では、2 1 及び Z 2 を固定とし、スタブのインピーダンス(数2の Z 3)のみを変化させることに より減衰極周波数を変えている。

[0010]

またさらに、本発明の上記目的は、前記リング共振器への入力及び出力のインピーダン スを Z₀、前記リング共振器における入力端子から出力端子までの半波長の線路のうち、 前記スタブが接続されていない方の線路のインピーダンスを Z₁、前記入力端子から前記 スタブの接続点までの 1 / 4 波長の線路のインピーダンスを Z₂、前記スタブの接続点か <u>ら前記出力端子までの 1 / 4 波長の線路のインピーダンスを Z₂、前記スタブの接続点か</u> <u>こ</u>1 及び Z₂ が以下の数 1 の不等式を満足することを特徴とする前記リングフィルタによ って、より効果的に達成される。

【数 1】 ・Z₂/Z₀≤1の場合

$$\left\{1+\sqrt{\left(1+4\left(Z_{2}/Z_{0}\right)^{2}\right)}\right\}/\left(2Z_{2}/Z_{0}\right)<\left(Z_{1}/Z_{0}\right)$$

• $Z_2/Z_0 > 1 \mathcal{O}$ 場合 $\left\{1 + \sqrt{\left(1 + 4\left(Z_2/Z_0\right)^2\right)}\right\} / (2Z_2/Z_0) < (Z_1/Z_0) < (Z_2/Z_0) / (Z_2/Z_0 - 1)$

前記の不等式(数1)を満足するリングフィルタは、スタブの特性インピーダンスの値の如何にかかわらず、通過帯域内にリップルが発生しない。 【0011】

さらにまた、本発明の上記目的は、線路の電気長が一波長であるマイクロストリップ線 路リング共振器に対し、該線路上の任意の一点に<u>直接接続した</u>高周波信号の入力端子を設 け、該入力端子から電気長で半波長の位置にある点に<u>直接接続した</u>出力端子を設けるとと もに、前記入力端子から電気長で1/4波長の位置にある点に電気長で1/4波長のスタ ブの一端を接続し、かつ、該スタブの他端を接地したことを特徴とするリングフィルタに よって達成される。第15図に示すものはこの1例である。このリングフィルタは、帯域 阻止フィルタとして動作し、第16図に示すように通過域にリップルがなく平坦で、直流 成分(及び通過中心周波数の2倍の周波数成分)を阻止するという特徴がある。また、通 過帯域において反射(損失)が少ないという特徴も持っている。なお、第16図(A)は シミュレーション結果であり、第16図(B)は実測データである。

なお、前記リング共振器の形状は、円、楕円若しくは4辺形のいずれであってもよい。 【0012】

次に、本発明は前記リングフィルタを用いた広帯域帯域通過フィルタに関し、本発明の 上記目的は、前記リングフィルタの中から種類を問わずに重複を許して複数個選択し、そ れらを縦続接続して構成した帯域通過フィルタであって、該帯域通過フィルタは、前記接 続された各リングフィルタの減衰極周波数が互いに異なるものであることを特徴とする帯 域通過フィルタによって達成される。

第3図に示すものはこの1例であり、1/4波長の開放スタブが接続されたリングフィ ルタを5段縦続接続し、それぞれのリングフィルタの減衰極周波数を変えたものである。 なお、第3図の例は5個すべてが開放スタブ付きのリングフィルタの場合であるが、開 放スタブ付きのリングフィルタと半波長の短絡スタブ付きのリングフィルタとを組み合わ せて構成してもよい。

[0013]

また、本発明の上記目的は、前記帯域通過フィルタに、1/4波長の短絡(接地)スタ ブが接続された前記リングフィルタを少なくとも一個縦続接続することによって、より効 果的に達成される。

第17図に示すものは1/4波長の開放スタブが接続されたリングフィルタを4段縦続 接続し、それぞれのリングフィルタの減衰極周波数を変えたものに、さらに1/4波長の 短絡(接地)スタブが接続された前記リングフィルタを一個縦続接続して構成した帯域通 過フィルタの例である。

【発明を実施するための最良の形態】

[0014]

本発明は、広帯域の帯域通過フィルタをマイクロストリップ線路で実現することを目的 としているが、従来の帯域通過フィルタは、共振周波数において最もインピーダンスが小 さくなるという性質を利用したものであるため、共振周波数を中心とする狭い範囲の周波 数の信号しか通過させることができなかった。従って、共振したときに信号を通過させる という考え方による帯域通過フィルタでは、広帯域化に限界がある。

そこで、上述のように、本発明においては、特定の周波数の信号のみ通過させず、それ 以外の周波数の信号は通過させるという帯域阻止フィルタを用いて、帯域通過フィルタの 広帯域化を図ることとした。すなわち、帯域阻止フィルタは、ある特定周波数(これを減 衰極周波数という。)及びその前後の狭い範囲の周波数の信号のみ通過させず、それ以外 の周波数の信号は通過させてしまうので、これを帯域通過フィルタとして使用した場合は 、広帯域な帯域通過フィルタとなる。

しかしながら、帯域阻止フィルタは通過を阻止する周波数帯域が狭いため、通過させた くない周波数の信号まで通過させてしまうという問題がある。そこで、本発明においては 、減衰極周波数の異なる数種類の帯域阻止フィルタを縦続接続して多段フィルタとするこ とにより、全体として阻止周波数の帯域を拡大し、この問題を解決した。なお、個々の帯 域阻止フィルタの減衰極周波数を所望の値に自由に設定できるかどうかが設計上の重要な 問題となるが、後述のように、本発明による帯域阻止フィルタ(リングフィルタ)はリン グ部の特性インピーダンスとスタブ部の特性インピーダンスとから、計算により減衰極周 波数が求められるので、減衰極周波数の設計値とリング部の特性インピーダンスを与えれ ば、逆算によってスタブ部の特性インピーダンスを求めることができる。このことは、(リング部の特性インピーダンスを一定にしておいて)スタブ部の特性インピーダンスを変 えるだけで減衰極の制御ができることを意味しており、設計上の大きなメリットになって いる。

【0015】

本発明に係る帯域通過フィルタについて、図面を参照して詳細に説明する。 第1図は帯域阻止フィルタとしてのリングフィルタの第1の発明の実施例を示す模式図 である。図において、1は通過周波数での電気長が1波長()のマイクロストリップ線 路で実現されたリング共振器であり、このリング共振器の周上に入力端子2と出力端子3 が、電気長で /2離れた位置に設けられ、さらに、前記リング周上で前記入力端子2か ら電気長で /4離れた位置4に電気長で /4の長さの開放スタブ5が接続されている 。以下、線路の長さは特に断らない限り、すべて電気長を意味するものとする。このこと により通過帯域で2等分点の片側回路を切り離すことができ、伝送線路の間に通過周波数 で /2長の伝送線路を形成できる。 このリングフィルタの上側リング部の特性インピーダンスを Z₁、 下側リング部の特性 インピーダンスを Z₂、開放スタブ 5 の特性インピーダンスを Z₃とすると、減衰極周波 数 f は次の数 2 によって求められる。

【数 2 】 $\tan^2 \theta_p = 2(1 + Z_1/Z_2)(Z_3/Z_2)$ $f = \theta_p^{\circ}/90^{\circ} \cdot f_0(GHz) \qquad f_0: 中心周波数$

【0016】

(実施例)第1図のリングフィルタを、比誘電率3.5、基板厚1.67mm、導体厚3 5µm、誘電損失0.025の高周波回路基板で実現した。リングの実効半径は15mm で、開放スタブの長さは約20mmである。このときの各特性インピーダンスは、Z₁ = 50、Z₂ = 131.8、Z₃ = 24.6 である。このリングフィルタの高周波特 性は第9図に示す通りである(上側が通過特性で、下側が群遅延特性)。2GHz帯にお ける通過損失は、約0.28dB、減衰極周波数は、約800MHzと約3200MHz であり、上記数2により求めた理論値(792MHz、3208MHz)とよく一致して いることが分かる。また、比帯域は100%を超えており、群遅延特性も、2GHz±0 .4GHzで1ns程度(一定)、ほぼ伝送線路の値である。第1図は(A)が円形のリ ングの場合であり、(B)が矩形のリングの場合であるが、本発明はこれらに限定される ものではなく、電気長、およびインピーダンスが同じものであればリングの形状は問わな い。なお、入力端子及び出力端子に接続されているマイクロストリップ線路6及び7は信 号の反射を抑えるために設けられているものであり、その特性インピーダンスZ₀は、数 2からも分かるように、減衰極周波数には影響しない。

【0017】

第2図は帯域阻止フィルタとしてのリングフィルタの第2の発明の実施例を示す模式図 である。第1図の第1の発明と異なる点は、入力端子2から /4離れた位置4に接続さ れるスタブ5の長さが /2であり、かつ、先端が接地されていることである。第1の発 明の開放スタブ付リングフィルタは、減衰極の周波数間隔を広くできるが,周波数がゼロ のときに減衰が起きないのに対し、第2の発明の短絡スタブ付リングフィルタは、減衰極 の周波数間隔を開放スタブの場合ほど広くできないが、周波数がゼロ(と通過中心周波数 の2倍の周波数)のとき,信号を通過させないという特徴がある。従って、直流成分もカ ットする必要があるような回路に利用される。第10図は、第2図のリングフィルタにお いて、Z₁ = 50、Z₂ = 131.8、Z₃ = 70.7 にしたときの特性図(上側 が通過特性で、下側が反射特性)である。通過中心周波数が2GHzのとき、減衰極周波 数が約1.4GHzと2.6GHzであり、開放スタブの場合(800MHzと3.2G Hz)よりも間隔が狭いが、周波数ゼロの場合と4GHz(通過中心周波数の2倍の周波 数)においても減衰していることが分かる。

【0018】

第3図は、第1図の開放スタブ付きのリングフィルタを5個縦続接続して構成した広帯 域な帯域通過フィルタの実施例である。減衰極がそれぞれ異なるので、縦続接続すること により全体として阻止周波数の領域を広げることができる。第3図において、Z₁ = 50 、Z₂ = 131.8 、Z₃ = 20 、Z₄ = 24.6 、Z₅ = 30 、Z₆ = 40 、Z₇ = 50 とした場合の帯域通過フィルタの特性は、第11図に示す通りである(上側が通過特性で、下側が反射特性)。ほぼ平坦な通過帯域を持ち、比帯域は約85%で ある。また、阻止帯域も拡大されていることが分かる。なお、群遅延特性は第12図に示 すように、2GHz±0.5GHzにおいてほぼ一定である。

【0019】

次に、通過帯域内におけるリップルの発生条件について調べ、リップルを発生させない 設計パラメータを求め、実測データによる検証を行った。

第1図又は第2図に記載のリングフィルタにおいて、通過帯域内にリップルが発生しな

い条件は、整合極が存在しないことである。整合極はSパラメータのS11を0にするこ とにより求められる。整合極を mとすると、tan² mは、次の数3で表される(途中式は 省略)。

【数3】

$$\tan^2 \theta_m = \frac{2(Z_3/Z_2) \{ (Z_1/Z_0)^2 - (1 + Z_1/Z_2)^2 \} - (Z_1/Z_2) (1 + Z_1/Z_2)}{(Z_1/Z_0)^2 - (1 + Z_1/Z_2)}$$

ここで、数3に着目すると、左辺 0であるから、整合極 mの解が存在しない条件は 、右辺<0となることである。従って、右辺の分数式の分母と分子は異符号でなければな らない。これは二通りの場合に分けられる。すなわち、 (1)分母<0、かつ、分子>0 あるいは、 (2)分母>、かつ、分子<0 である。 まず、(1)の場合について検討すると、 分母<0の場合は、(Z₁/Z₀)² < (1+Z₁/Z₂) … (i)が成り立つ。 また、Z₁及びZ₂は正だから、常に、(1+Z₁/Z₂)<(1+Z₁/Z₂)² …(ii)が成り立つ。 よって、(i)及び(ii)より、 $(Z_1/Z_0)^2 < (1+Z_1/Z_2) < (1+Z_1/Z_2)^2$ となり、 (Z₁/Z₀)² - (1+Z₁/Z₂)² < 0 … (iii)が常に成り立つ。 しかるに、(iii)の左辺は前記数3式の右辺の分子の(Z₃/Z₂)の係数であるから、(ii i)より、数3式の右辺の分子はZ₃の値の如何にかかわらず負となる。従って、(1) の場合はあり得ない。 次に、(2)の場合について検討すると、 分母 > 0の場合は、(1+Z₁ /Z₂) < (Z₁ /Z₀)² … (iv)が成り立つ。 また、 Z ₃ の値の如何にかかわらず、数 3 式の右辺の分子が負となるためには、(Z₃/Z₀)の係数が負であることが必要かつ十分な条件である。すなわち、前記(iii)が成り立 つことが必要かつ十分な条件である。

(iii)より、Z₁/Z₀ < 1+Z₁/Z₂ … (v)が導かれる。

(iv)、(v)において、Z₁/Z₂=(Z₁/Z₀)/(Z₂/Z₀)と置き換えて、それぞれの不等式を解く と以下のようになる。

(iv)を解くと、次の数4になる。

【数4】

$$(Z_1/Z_0) > \left\{ 1 + \sqrt{\left(1 + 4(Z_2/Z_0)^2\right)} \right\} / (2Z_2/Z_0)$$

(v)を解くと、以下の二通りの解が求められる。すなわち、(v)において、

 $Z_1/Z_0 < 1+Z_1/Z_2 = 1+(Z_1/Z_0)/(Z_2/Z_0) となり、$

 $(Z_1/Z_0) \{ (Z_2/Z_0) - 1 \} < (Z_2/Z_0) ... (vi) となるから、$

・ $(Z_2/Z_0) > 1$ の場合 $(Z_1/Z_0) < (Z_2/Z_0)/{(Z_2/Z_0) - 1}... (vii)$

・ (Z₂ / Z₀) 1の場合 常に成り立つ。

以上をまとめると、Zaの値の如何にかかわらず、通過帯域内でリップルが発生しない条 件は、前記の数1のようになる。

[0020]

(実施例)

上記のリップルを発生させないための条件式である数1の妥当性を検証するため、リン グフィルタの特性インピーダンスを種々変化させて、シミュレーションを行った。 第18図は、第1図のリングフィルタにおいて、 Z₀ = 50 , Z₁ = 16 , Z₂ =

90 ,Z₃=22.14 としたときの通過帯域近傍の高周波特性を示すものであり、 (A)はコンピュータによるシミュレーション結果、 (B)はネットワークアナライザに よる実測データである。両者は極めて近似しており、シミュレーションの信頼性の高さを 如実に示している。

【0021】

次に、前記第1図のリングフィルタにおいて、Z₀ = 50 , Z₂ = 90 , Z₃ = 2 2.14 に固定し、Z₁のみを変化させて、リップルの発生状況をシミュレーションに より検証した。第19図(A)、(B)及び第20図(A)、(B)はZ₁がそれぞれ5 0 , 60 , 65.79 , 70 の場合のシミュレーション結果を示す図である。な お、Z₂/Z₀ = 1.8であるから、リップルを発生させない条件式は、前記数1の第2式が適用 される。

(1)Z₁=50の場合

前記数4式の左辺は1であり、右辺は1.3156(Z₁には無関係)であるから、数4を満足せず(従って数1も満足しない)、整合極が存在することになり、理論的にもリップルが生ずることが分かる。

第19図(A)に示すように、整合極が、4.24GHz及び8.61GHzのところに あり、通過帯域内でリップルが生じていることが分かる。

(2)Z₁=60の場合

前記数4式の左辺は1.2であり、右辺は1.3156(Z₁には無関係)であるから、数4を満足せず(従って数1も満足しない)、整合極が存在することになり、理論的に もリップルが生ずることが分かる。

第19図(B)に示すように、整合極が、5GHz及び7.82GHzのところにあり、 通過帯域内でリップルが生じていることが分かる。

(3) Z₁ = 65.79 の場合

前記数4式の左辺は1.3158であり、右辺は1.3156(Z1には無関係)であるから、数4を満足しており、前記(vii)も満足しているから、結果として前記数1の 第2式も満足することになり、整合極が存在せず理論的にもリップルが生じないことが分かる。第20図(A)に示すように、整合極が存在せず、通過帯域内でリップルが生じていないことが分かる。

(4)Z₁=70の場合

前記数4式の左辺は1.4であり、右辺は1.3156(Z₁には無関係)であるから、数4を満足しており、前記(vii)も満足しているから、結果として前記数1の第2式 も満足することになり、整合極が存在せず理論的にもリップルが生じないことが分かる。 第20図(B)に示すように、整合極が存在せず、通過帯域内でリップルが生じていない ことが分かる。以上のシミュレーション結果から、通過帯域内にリップルを発生させない 条件式(数1)の妥当性が証明された。

[0022]

第15図は本発明に係る、直流成分及び通過中心周波数の2倍の周波数成分を除去する リングフィルタの実施例であり、下側のリング部の中点4に1/4波長の短絡(接地)ス タブ5が接続されたものである。

一方、第13図は直流成分及び通過中心周波数の2倍の周波数成分を除去する従来のフィルタの例であり、50 (Z₀)の伝送線路6に1/4波長の短絡スタブ5を設けたものである。

第14図及び第16図は、それぞれ、1/4波長の短絡(接地)スタブを設けたフィルタの従来例及び本発明のリングフィルタの通過特性を表したものである。両図において(A)はシミュレーション結果を、(B)は実測データをそれぞれ表しており、両者は近似している。

第14図は、第13図においてZ₀=50、Z₃=26.17 とした場合の通過特性(S₂₁)及び反射特性(S₁₁)を表したものであり、直流成分及び通過中心周波数の2倍の周波数成分を除去することができるが、平坦性が悪い。また、反射(損失)は通過中心周波数においてのみ小さく、その他の周波数では大きいという問題がある。

一方、第16図は第15図において Z_0 =50 、 Z_1 =54.3 、 Z_2 =90 、

(23)

Z₃ = 2 6 . 1 7 とした場合の通過特性(S_{2 1})及び反射特性(S_{1 1})を表したも のであり、直流成分及び通過中心周波数の2倍の周波数成分を除去することができるとと もに、通過帯域全体において平坦である。また、反射(損失)は通過帯域全体において小 さいという特徴がある。

第 1 7 図 は、 第 1 図 の 開 放 ス タ ブ 付 き の リ ン グ フ ィ ル タ 4 個 と 、 第 1 5 図 の 短 絡 ス タ ブ 付きのリングフィルタ 1 個とを縦続接続して構成した広帯域な帯域通過フィルタの実施例 である。減衰極がそれぞれ異なるので、縦続接続することにより全体として阻止周波数の 領域を広げることができるとともに、右端の短絡スタブ付きリングフィルタの働きにより 、直流及び通過中心周波数の2倍の周波数成分を除去することができる。第17図におい T = 54.3, $Z_2 = 90$, $Z_3 = 21.6$, $Z_4 = 15.6$, $Z_5 = 1$ 1.7 、Z。=9.1 、Z7=24.49 とした場合の帯域通過フィルタの特性は 、 第 2 1 図 (A)に示す通りである(S _{2 1} が通過特性で、 S _{1 1} が反射特性)。 約4GHzから約9GHzまでの間でほとんど平坦な出力特性が得られ、また、その帯 域内において損失が小さいことが分かる。さらには、直流側(周波数0Hz)においても 大きな減衰が見られ、直流成分がカットされるのが分かる。なお、群遅延特性は第21図 (B)に示すように、通過中心周波数を挟む広い範囲(6.5GHz±2.5GHz)に おいてほぼ一定である。

[0023]

本実施例においては、4個の開放スタブ付きリングフィルタと1個の短絡スタブ付きリ ングフィルタを組み合わせて広帯域帯域通過フィルタを構成したが、短絡スタブ付きリン グフィルタは最低1個あれば直流成分を除去することができる。また、開放スタブ付きリ ングフィルタは阻止周波数の帯域を広くしたい場合は、接続する段数を多くすればよい。 【産業上の利用可能性】

[0024]

以上のように、本発明に係るリングフィルタ及びそれを用いて構成された帯域通過フィ ルタによれば、通過帯域が平坦で広帯域な通過特性が得られるとともに、阻止帯域におい ては急峻な減衰が得られる。また、リングフィルタの組み合わせによっては直流成分をカ ットすることも可能であり、設計の自由度が極めて高いという特徴がある。

従って、本発明に係る帯域通過フィルタを今後開発される高周波通信機器に組み込むこ とにより、今までは不可能であった超広帯域通信が可能となる。

【図面の簡単な説明】

[0025]

第1図は、帯域阻止フィルタとしてのリングフィルタの第1発明の実施例を示す模式図で ある。

第2図は、帯域阻止フィルタとしてのリングフィルタの第2発明の実施例を示す模式図で ある。

第 3 図 は、 第 1 図 の 開 放 ス タ ブ 付 き の リ ン グ フ ィ ル タ を 5 個 縦 続 接 続 し て 構 成 し た 広 帯 域 な通過帯域フィルタの実施例である。

第 4 図 は、 従 来 の 1 / 4 波 長 の 線 路 を 8 段 組 み 合 わ せ た 側 結 合 型 の 帯 域 通 過 フ ィ ル タ (チ ェビシェフ型)の例を示す図である。

第5図は、第4図の帯域通過フィルタの高周波特性を示す図である。

第 6 図 は、 従 来 の 1 / 4 波 長 の 線 路 を 6 段 組 み 合 わ せ た 側 結 合 型 の 帯 域 通 過 フ ィ ル タ (バ タワース型)の例を示す図である。

第7図は、第6図の帯域通過フィルタの高周波特性を示す図である。

第 8 図 は、 一 般 的 な 帯 域 通 過 フィ ル タ の 特 性 を 示 す 図 で あ り 、 (A) が チ ェ ビ シ ェ フ 特 性 であり、(B)がバタワース特性の図である。

第9図は、第1図において、Z1=50 、Z2=131.8 、Z3=24.6 とし た場合のリングフィルタの高周波特性を示す図である。

第10図は、第2図において、Z₁ =50 、Z₂ =131.8 、Z₃ =70.7 と した場合のリングフィルタの高周波特性を示す図である。

第11図は、第3図に示す帯域通過フィルタの実施例の高周波特性(通過特性、反射特性)を示す図である。 第12図は、第3図に示す帯域通過フィルタの実施例の高周波特性(通過特性、群遅延特 性)を示す図である。 第13図は、直流成分の除去フィルタの従来例を示す模式図である。 第14図は、第13図に示す直流成分除去フィルタの従来例の高周波特性(通過特性、反 射特性)を示す図である。(A)はシミュレーション図、(B)は実測データである。 第15図は、本発明に係る、直流成分及び通過中心周波数の2倍の周波数成分を除去する リングフィルタの実施例を示す図である。 第16図は、第15図に示すリングフィルタの実施例の高周波特性(通過特性、反射特性)を示す図である。 第 1 7 図 は、 第 1 図 の 開 放 ス タ ブ 付 き の リ ン グ フ ィ ル タ 4 個 と、 第 1 5 図 の 短 絡 ス タ ブ 付 きのリングフィルタ1個とを縦続接続して構成した広帯域な帯域通過フィルタの実施例で ある。 第18図は、第1図のリングフィルタにおいて、Z。=50 ,Zぇ=16 ,Z。=9 , Z ₃ = 2 2 . 1 4 としたときの通過帯域近傍のリップル特性を示すものであり、 0 (A)はコンピュータによるシミュレーション結果、(B)はネットワークアナライザに よる実測データである。 第19図(A)は、第1図のリングフィルタにおいて、Z。=50 ,Z₁=50 . Z 2 = 9 0 , Z 3 = 2 2 . 1 4 としたときの通過帯域近傍のリップル特性のシミュレー ション図である。 第19図(B)は、第1図のリングフィルタにおいて、 Z ₀ =50 , Z ₁ =60 , Z 2 = 9 0 , Z 3 = 2 2 . 1 4 としたときの通過帯域近傍のリップル特性のシミュレー ション図である。 第20図(A)は、第1図のリングフィルタにおいて、Z₀=50 , Z₁=65.79 ,Z₂=90 ,Z₃=22.14 としたときの通過帯域近傍のリップル特性のシミ ュレーション図である。 第 2 0 図 (B)は、第 1 図 のリングフィルタにおいて、 Z ₀ = 5 0 , Z ₁ = 7 0 , Z 2 = 9 0 , Z 3 = 2 2 . 1 4 としたときの通過帯域近傍のリップル特性のシミュレー ション図である。 第21図(A)は、第17図に示す帯域通過フィルタの実施例の高周波特性(通過特性、 反射特性)を示す図である。 第21図(B)は、第17図に示す帯域通過フィルタの実施例の高周波特性(通過特性、 群遅延特性)を示す図である。

		PCT/JP2004/001963		
A. CLASSIF Int.Cl	CATION OF SUBJECT MATTER ⁷ H01P7/08			
According to In	ternational Patent Classification (IPC) or to both nation	al classification and IPC		
B. FIELDS S	EARCHED		· · · · · · · · · · · · · · · · · · ·	
Minimum docu Int.Cl	mentation searched (classification system followed by c ⁷ H01P7/08	lassification symbols)		
Documentation Jitsuyo Kokai J	searched other than minimum documentation to the ext Shinan Koho 1922–1996 Te itsuyo Shinan Koho 1971–2004 J	ent that such documents are included in oroku Jitsuyo Shinan Koho itsuyo Shinan Toroku Koho	the fields searched 1994–2004 1996–2004	
Electronic data	base consulted during the international search (name of	data base and, where practicable, search	terms used)	
C. DOCUME	NTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.	
¥	JP 2000-209002 A (Matsushita Co., Ltd.), 28 July, 2000 (28.07.00), Full text; Figs. 1 to 7 (Family: none)	Electric Industrial	1-3,5-11	
Y	JF 2001-102806 A (Ikuo AWAI, TDK Corp.), 1-3,5-11 13 April, 2001 (13.04.01), Full text; Figs. 1 to 10 & US 6326865 B1			
Y	JP 9-139612 A (Matsushita El Co., Ltd.); 27 May, 1997 (27.05.97), Full text; Figs. 1 to 14 (Family: none)	ectric Industrial	1-3,5-11	
× Further de	cuments are listed in the continuation of Box C.	See patent family annex.	,	
 Special cate 'A" document of to be of par 'E" eadler appli filling date 'L" document v cited to est special reas 'O" document n the priority Date of the actuar 15 Jun 	gories of cited documents: leftining the general state of the art which is not considered licular relevance cation or patent but published on or after the international which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other on (as specified) ferring to an oral disclosure, use, exhibition or other means ublished prior to the international filing date but later than date claimed I completion of the international search \Rightarrow , 2004 (15.06.04)	 "T" later document published after the indate and not in conflict with the applithe principle or theory underlying the document of particular relevance; the considered novel or cannot be considered novel or cannot be considered to involve an inventive considered to involve an inventive observed with one or more other sue being obvious to a person skilled in t "&" document member of the same paten Date of mailing of the international set 29 June, 2004 (29. 	temational filing date or priority (cation but cited to understand invention e claimed invention cannot be sidered to involve an inventive te claimed invention cannot be e step when the document is th documents, such combination he art t family arch report 06.04)	
Name and mailir Japane	g address of the ISA/ se Patent Office	Authorized officer		
T				

	cation No.			
			004/001963	
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relev	Relevant to claim No.		
Y	JP 2002-158503 A (Advanced Space Communi Research Laboratory), 31 May, 2002 (31.05.02), Par. No. [0007]; Fig. 8 (Family: none)	1-3,5-11		
Y	JP 5-315805 A (Matsushita Electric Indus Co., Ltd.), 26 November, 1993 (26.11.93), Full text; Figs. 1 to 4 & EP 571777 A1 & US 5369383 A & US 5497131 A & US 5623238 A & US 5703546 A	6-8,11		
Y	JP 2002-26606 A (Murata Mfg. Co., Ltd.), 25 January, 2002 (25.01.02), Full text; Figs. 1 to 14 & EP 1172879 A2 & US 6545568 B2 & US 6630875 B2	6-8,11		
A .	JP 62-224948 A (Mitsubishi Electric Corp 02 October, 1987 (02.10.87), Full text; Figs. 1 to 3 (Family: none)	1-11		
A	JP 58-99002 A (Nippon Telegraph & Teleph Public Corp.), 13 June, 1983 (13.06.83), Full text; Figs. 1 to 3 (Family: none)	one	1–11	
A	JP 2800323 B2 (Sumitomo Metal Industries 10 July, 1998 (10.07.98), Column 3; Fig. 5 (Family: none)	1-11		
A	JP 2000-252706 A (Matsushita Electric In Co., Ltd.), 14 September, 2000 (14.09.00), Full text; Figs. 1 to 4 (Family: none)	dustrial	1-11	
A	JP 62-160801 A (Hitachi, Ltd.), 16 July, 1987 (16.07.87), Full text; Figs. 1, 2 (Family: none)		1-11	
		•		

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

		国际印刷番号 ドビエノリア2	004/001963
A. 発明の) I	属する分野の分類(国際特許分類(IPC)) n t.CⅠ ⁷ H01P7/08		
		·····	······································
B. 調査を行	テった分野		
前面で11ッパコ In	t. Cl ⁷ H01P7/08		
最小限資料以約 日本[日本] 日本[日本] 日本[本の資料で調査を行った分野に含まれるもの 国実用新案公報 1922-1996年 国公開実用新案公報 1971-2004年 国登録実用新案公報 1994-2004年 国実用新案登録公報 1996-2004年 		
国際調査で使用	用した電子データベース(データベースの名称、	調査に使用した用語)	
,	· .		
· ,	· · ·		
 C. 関連す:	ろと認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	:きは、その関連する箇所の表示	関連する 請求の範囲の番号
. Ү	JP 2000-209002 A 00.07.28、全文、第1-7回	(松下電器産業株式会社) 2 0 3(ファミリーなし)	1-3, 5-11
Y	JP 2001−102806 A 株式会社)2001.04.13、4 6326865 B1	(粟井郁雄、ティーディーケイ ≧文、第1−10図 & US	1-3, 5-11
Ý	JP 9-139612 A(松下電 05.27、全文、第1-14図(ス	電器産業株式会社)1997. 7ァミリーなし)	1-3, 5-11
X C欄の続い	きにも文献が列挙されている。	□ パテントファミリーに関する	
* 引用文献(「A」特に関う もの 「E」国際出』 以後にた 「L」優先権: 日君献(「O」口頭に、 「P」国際出』	のカテゴリー 塵のある文献ではなく、一般的技術水準を示す 質日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 顔日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公式 出顧と矛盾するものではなく、 の理解のために引用するもの 「X」特に関連のある文献であって、 の新規性又は進歩性がないと 「Y」特に関連のある文献であって、 上の文献との、当業者にとっ よって進歩性がないと考えら 「&」同一パテントファミリー文献	表された文献であって 発明の原理又は理論 、当該文献のみで発明 考えられるもの 、当該文献と他の1以 て自明である組合せに れるもの
国際調査を完て	了した日 15.06.2004	国際調査報告の発送日 29.6	o. 2004
国際調査機関(日本)	D名称及びあて先 国特許庁(ISA/JP) 邸便番号100-8915	特許庁審査官(権限のある職員) 麻生 哲朗	5T 3245

様式PCT/ISA/210(第2ページ)(2004年1月)

	国際調査報告	国際出願番号 PCT/JP200	04/001963
C (続き) . ,	関連すると認められる文献		PDVL -
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するとき	は、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2002-158503 A(株 送システム研究所) 2002.05.3 8図(ファミリーなし)	式会社次世代衛星通信・放 1、段落【0007】、第	1-3, 5-11
Ү 	JP 5-315805 A (松下電器 11.26、全文、第1-4図 & E & US 5369383 A & U US 5623238 A & US	産業株式会社)1993. P 571777 A1 S 5497131 A 5703546 A	68, 11
Y	JP 2002-26606 A(株式 2.01.25、全文、第1-14図 A2 & US 6545568 B 75 B2	会社村田製作所)200 & EP 1172879 2 & US 66308	6-8, 11
`A	JP 62-224948 A (三菱電 0.02、全文、第1-3図(ファミリ	機株式会社)1987.1 ーなし)	1-11
A	JP 58-99002 A (日本電信 6.13、全文、第1-3図(ファミリ	電話公社)1983.0 ーなし)	1-11
. A	JP 2800323 B2(住友金属 07.10、第3欄、第5図(ファミリ	工業株式会社)1998. ーなし)	1-11
A	JP 2000-252706 A(松 00.09.14、全文、第1-4図(下電器産業株式会社)20 ファミリーなし)	1-11
A	JP 62-160801 A (株式会 07.16、全文、第1,2図(ファミ	社日立製作所) [`] 1987. リーなし) [`]	1-11
			• •

様式PCT/ISA/210(第2ページの続き)(2004年1月)

.

r

PCT/JP2004/001963

特許協力	カ条約に基づく国際出願願書	原本(出願用)
VIII-5-1	不利にならない陽示又は新規性喪失の例 外に関する申立て 不利にならない既示又は新規性喪失の例 外に関する申立て(規則4.17(v)及び51の 2.1(a)(v))	本国際出願 に関し、
	成名(贬名)	財団法人 理工学振興会 は、本国際出願の請求項に 記載された対象が以下のように開示されたことを申し 立てる。
VIII-5-1(i)	開示の種類:	刊行物
VIII-5-1(ii)	開示の日付:	2003年 03月 22日 (22,03,2003)
VIII-5−1(iji)	開示の名称:	2003年総合大会講演論文集
VIII-5-1(iv)	開示の場所:	
VIII-5-1(開示の種類:	刊行物
VIII5-1(ii)	開示の日付:	2003年 08月 28日 (28.08.2003)
VⅢ-5-1(iii)	開示の名称:	電気情報通信学会 信学技報
VIII-5-1(iv)	開示の場所:	
. VIII-5−1(v)	本申立ては、次の指定国のためになされた ものである。:	すべての指定国

フロントページの続き

(81)指定国 AP(BW,GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HU,IE,IT,LU,MC,NL,PT,RO,SE,SI,SK,TR),OA(BF,BJ,CF,CG,CI,CM, GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BW,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK, DM,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,M G,MK,MN,MW,MX,MZ,NA,NI,NO,NZ,OM,PG,PH,PL,PT,RO,RU,SC,SD,SE,SG,SK,SL,SY,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ ,VC,VN,YU,ZA,ZM,ZW

特許法第30条第1項適用申請有り 2003年電子情報通信学会技術研究報告MW2003-159「リング フィルタによるUWB BPFの開発」

(注)この公表は、国際事務局(WIPO)により国際公開された公報を基に作成したものである。なおこの公表に 係る日本語特許出願(日本語実用新案登録出願)の国際公開の効果は、特許法第184条の10第1項(実用新案法 第48条の13第2項)により生ずるものであり、本掲載とは関係ありません。