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(57) A reference object of a predetermined shape is

identified in an image of a scene S10, a luminance
distribution across the surface of the object is detected
S11 and this is used to estimate the direction of light
incident on the object S12. Also claimed is the
generation of a composite image using this estimate.
The object may be a sphere, and the illumination
direction may be detected by calculating the surface
normal, or a luminance vector, at a point on the sphere
where the luminance magnitude is greatest, i.e. at the
brightest point on the object. An average of a plurality
of luminance vectors may be calculated and luminance
distribution may only be calculated for luminance
above a threshold clipping level. The object may be in
a predetermined position in the scene. A calibration
surface comprising a calibration pattern may also be
included in the scene to determine orientation and
position of a camera. Also disclosed is a checkerboard
calibration surface and a technique for rendering
computer generated shadows so that they appear to be
cast on real objects.
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Capture an image of a calibration surface | S1
including thereon a calibration pattern -

Y

Detect comer locations by identifying potential corner
locations, defining an area centred around each potential
corner location, analysing a colour of points lying on a
periphery of each area and thereby estimating a likelihood
that a comer is located at each potential comer location

y

Identify the first and second group of lines | S3
from the corner locations

y

Extrapolate the lines from each group of |~ S4
lines

Y

Determine a presence and location of the |~ SS
first and second intersection points

Y
Estimate from the presence and location of
the first and second intersection points one | _ gg
or more of an estimated roll angle value, an f
estimated pitch angle value an estimated
yaw angle value
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dentify the reference object from a received image signal | S10

representative of a scene including the reference object
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Detect a luminance distribution across a surface of the
reference object
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Estimate a direction of light incident on the reference object | . g12
derived from the detected luminance distribution across the |-
surface of the reference object
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Detect occluded regions of the virtual model S105
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IMAGE PROCESSING SYSTEM

Field of the Invention

The present invention relates to image processing. More particularly
embodiments of the present invention relate to methods of and systems for estimating
camera parameters from a captured image.

Background of the Invention

In many applications it is desirable to add computer generated graphics to

enhance conventionally captured video images. For example, news broadcasts and
televised weather forecasts frequently include computer generated content such as text
banners, maps, backdrops and so on, which are added to conventionally captured video
images of a human presenter. Such computer generated content can improve the clarity
with which information is presented to a viewer and can be easily and conveniently
edited and updated. Similarly, many modern films include a great deal of computer
generated content which is intermixed with real-life actors and objects to achieve
effects which would be impossible or very expensive to achieve in real life.

In some situations, adding a computer graphic to real life video is quite
straightforward. For example, adding a simple and static two dimensional graphic
overlay on a video scene. However, adding a computer generated graphic into a video
scene such that it appears to be realistically placed in three dimensional space can be
much more difficult, particularly if the position of a camera capturing the real-life
scene is changing. Furthermore, it can be difficult to render computer generated
graphics so that they appear to be lit in the same manner as real-life objects in the
scene. It is possible to achieve realistic looking results if the captured video is
processed after being captured and frame by frame adjustments are made to ensure a
realistic position and lighting of the computer generated object is maintained.
However, this is time consuming and is not practical for applications which demand a
computer generated object be realistically placed and lit in a video scene in real time.

Additionally, the inclusion of computer generated shadows in a combined
display of computer generated content and conventionally captured video images can
greatly enhance an appearance of realism for a user. However, it can be difficult to

achieve realistic looking results if a virtual object is to cast a computer generated



shadow on a real object. In particular, it can be difficult to render the computer
generated shadow such that it appears to be cast on the real object if there are one or
more virtual light sources in the scene or where a computer generated object is to be
inserted into a scene such that it should cast shadows caused by the virtual object

occluding a real light source.
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Summary of the Invention

According to an aspect of the present invention there is provided an image
processor arranged to receive an image signal representative of a scene including a
reference object of a predetermined shape. The image processor is operable to identify
the reference object from image signal and to detect a luminance distribution across a
surface of the reference object. The image processor is further operable to estimate a
direction of light incident on the reference object derived from the detected luminance
distribution across the surface of the reference object.

Computer generated objects appearing alongside real-life objects in a
composite image can be made to appear more realistic if they are rendered to appear as
if they are lit from the same direction as the real life objects present in the composite
image. The present invention has particular application in the generation of such
images because it enables the automatic estimation of the direction of light that would
be incident on the computer generated object if it were a real life object. This can
reduce the need for post production editing of composite images which would
otherwise require the light direction used for rendering computer generated objects to
be determined manually. Alternatively, the present invention allows computer
generated objects to be rendered and realistically lit in real-time, for example if the
images including the reference object are part of a sequence of video frames.

According to an embodiment of the invention, the detection of the luminance
distribution comprises estimating a luminance magnitude at a plurality of surface
points on the surface of the reference object. Furthermore, the estimation of the
direction of light comprises calculating the average of a plurality of luminance vectors.
Each luminance vector corresponds to one of the surface points and comprises the
luminance magnitude of the corresponding surface point and a luminance direction
corresponding to a direction perpendicular to the surface at the corresponding surface
point.

It is possible to estimate the direction of light incident on the reference object
by simply determining a point on the reference point surface at which the magnitude of
the luminance is greatest and extrapolating the direction of light accordingly.
However, if the images of the reference object are being captured as part of a sequence

of video images, then the point on the surface where the luminance is greatest may
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vary from image to image as will the estimated direction of the light. If a computer
generated object is rendering a computer generated object in real time in accordance
with this changing direction of light, then this may manifest itself as an undesirable
flickering or “wobble”. Therefore, in accordance with this embodiment, a number of
surface points are sampled across the visible surface of the reference object. From
these points luminance vectors may be generated, the average of which forms the basis
of the estimated light direction. This can reduce the “wobble” and provide a more
stable, image by image light direction estimation.

In accordance with another embodiment of the invention, the luminance
distribution across the surface of the reference object is only detected for luminance
above a threshold clipping level.

This embodiment can reduce inaccuracies in the estimated light direction in the
situation in which the reference the luminance across the surface of the reference
object is saturated or partly saturated.

Various further aspects and features of the invention are defined in the

appended claims.
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Brief Description of the Drawings

Embodiments of the present invention will now be described by way of
example only with reference to the accompanying drawings where like parts are
provided with corresponding reference numerals and in which:

Figure 1 provides a schematic diagram of a camera and image processor
arranged in accordance with a technique of determining camera parameters from a
captured image;

Figure 2 provides a schematic diagram of the camera and image processor
arranged in accordance with an example of the technique of determining camera
parameters from the captured image including an illustration of the camera orientation
and position parameters;

Figure 3 provides a schematic diagram of the camera and image processor
arranged in accordance with an example of the technique of determining camera
parameters from a captured image including an illustration of the camera orientation
field of view;

Figure 4 provides a schematic diagram illustrating how vanishing points are
constructed from a calibration pattern;

Figure 5 provides a schematic diagram of the camera and image processor
arranged in accordance with an example of the technique of determining camera
parameters from the captured image including an illustration of a computer generated
object;

Figure 6 provides a schematic diagram of the camera and image processor
arranged in accordance with an example of the technique of determining camera
parameters from the captured image including an illustration of the image processor
rendering the computer generated object in accordance with estimated camera
parameters,

Figure 7 shows a schematic diagram of the axis defined for a checkerboard
calibration pattern;

Figures 8a and 8b illustrates part of a process for identifying a checkerboard

corner;
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Figures 9 shows a “genuine” checkerboard corner and a “false positive”
checkerboard comer ;

Figure 10 illustrates part of a technique for finding the corners of the
checkerboard;

Figure 11 shows a representation of a line identified on the checkerboard
calibration pattern;

Figure 12a shows two 45 degree diagonal line groups on the checker board;

Figure 12b shows a horizontal line group and a vertical line group on the
checker board;

Figure 13 illustrates part of a process for determining if a line is vertical or
horizontal line, or if a line is a 45 degree diagonal line;

Figure 14a and 14b illustrate positions of the checkerboard in two special case
camera orientations;

Figure 15 shows a schematic diagram of the checkerboard calibration pattern
including four coloured markers;

Figure 16 shows a flowchart illustrating the steps comprising a method of
estimating camera parameters from a captured image;

Figures 17a and 17b provide schematic diagrams illustrating a technique for
estimating a direction of a light source;

Figure 18a provides a schematic diagram showing the components of a vector
in a spherical reference object;

Figure 18b provides a schematic diagram illustrate sampling luminance
magnitudes across a surface of the reference object;

Figure 19a and 19b illustrate clipping a luminance distribution across the
surface of the reference object;

Figure 20 provides a flow chart of a method estimating a direction of a light
source;

Figure 21 is a schematic diagram of a virtual object together with a virtual
model of a real object arranged such that the virtual object can appear to cast a shadow
on the real object in accordance with a technique of rendering computer generated

shadows;
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Figure 22 is a schematic diagram of two virtual object together with a virtual
model of a real object arranged with respect to two light sources so that the virtual
objects can appear to cast shadows on the real object in accordance with the technique
of rendering computer generated shadows;

Figure 23 is a flowchart of a method of rendering computer generated shadows
in accordance with the technique of rendering computer generated shadows;

Figure 24 is a schematic diagram illustrating an example of rendered computer
generated shadows;

Figure 25 is a schematic diagram illustrating an example scene comprising
virtual objects;

Figures 26A and 26B are schematic diagram of rendering passes used to
generate shadow maps; and

Figures 27A to 27C are schematic diagrams of a third rendering pass used to
generate a shadow map illustrating how a shadow map for different light sources is

generated.
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Description of Example Embodiments

Figure 1 provides a schematic diagram of an example of a system for
determining camera parameters from a captured image. A camera apparatus 1 is
provided which is capable of capturing image data, for example a video signal,
representative of a scene as viewed by the camera 1. The camera 1 is connected to an
image processor 2. Together the camera 1 and image processor 2 comprise an image
processing apparatus. The camera is directed at a calibration surface 3. The camera 1
captures image data representative of the calibration surface 3 and communicates data
corresponding to these images back to the image processor 2. The calibration surface 3
includes a calibration pattern. The image processor 2 analyses the images captured by
the camera 1 of the calibration surface and uses information derived from the captured
images of the calibration surface 3 to determine a set of parameters corresponding to
the orientation of the camera 1 relative to the calibration surface 3.

Figure 2 illustrates parameters that define the orientation of the camera. A first
angle 21 corresponds to the pitch of the camera. This pitch angle 21 corresponds to an
amount by which a centre axis 24 of the camera 1 deviates from a horizontal axis 25.
The horizontal axis 25 is horizontal relative to the calibration surface 3. A roll angle 22
corresponds to the amount the camera 1 rotates around the centre axis 24 of the camera
1 relative to the calibration surface 3. A yaw angle 23 corresponds to an amount by
which the camera rotates around a vertical axis 26 of the camera 1 relative to the
calibration surface 3. In some examples, the image processor 2 also determines X, y
and z coordinate values which correspond to the position of the camera 1 in three
dimensional space, relative to the calibration surface 3.

Figure 3 shows the apparatus shown in Figures 1 and 2 with a representation of
an image 32 captured by the camera 1 of the calibration surface 3 and processed by the
image processor 2. As will be appreciated, the image 32 captured by the camera 1 is
defined by the field of view 31 of the camera.

As mentioned above, the image processor 2 uses the captured image 32
provided by the camera 1 to estimate the orientation and position of the camera 1
relative to the calibration surface 3. In order to do this, the image processor 2 analyses

the captured image data communicated to it by the camera 1. Figure 4 shows an
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example of the captured image 32 received by the image processor 2 from the camera
1.

As can be seen from Figure 4, the captured image 32 includes the calibration
surface 3 on which is the calibration pattern. The size and position of the calibration
surface relative to the captured image shown in Figure 4 are not to scale and merely
representative. As will be understood, the size of the calibration surface 3 with respect
to the captured image will depend on a number of factors including the field of view of
the camera 31, a value corresponding to the camera scale (S) (i.e. camera “zoom”) and
the distance of the camera from the calibration surface.

The calibration pattern is characterised such that it is detectable by the camera
1. Furthermore, the calibration pattern and the image processor 2 are arranged such
that the image processor is able to detect from the image of the calibration pattern
provided by the camera 1 at least a first and second group of lines. Both the first and
second group of lines are parallel to the calibration surface 3. Furthermore, the first
group of lines 61, 62, 63, 64, 65 and the second group of lines 66, 67, 68, 69, 610 are
orthogonal to each other. As shown in Figure 4, the image processor 2 is operable to
extrapolate the lines from the first and second group to estimate a location (if such a
location is present) of a first vanishing point Vp1 on the same two dimensional plane
as the captured image 32, at which the extrapolated lines from the first group intersect
and a second vanishing point Vp2 on the same two dimensional plane of the captured
image at which the extrapolated lines from the second group of lines intersect. Vpl
and Vp2 are situated on a “horizon” line 611 which runs horizontally across the plane
of the captured image 32. As is well known, two or more parallel lines viewed down
their length will, from the perspective of a viewer, converge at a vanishing point on the
horizon, the horizon being a line running across the viewer’s field of view. As will be
appreciated by considering the calibration surface 3 shown in Figure 4, the position of
the horizon line 611 and the position of the vanishing points Vpl and Vp2 along the
horizon line will vary depending on the orientation of the calibration surface 3. The
present technique uses this phenomenon to determine the orientation of the camera 1
relative to the calibration surface 3.

In a further example, once the orientation of the camera 1 is known (i.e. the

pitch angle, roll angle and yaw angle), the “real-world” position of the camera 1 (i.e. x,
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y and z coordinates with respect to the scene as captured by the camera) can be
estimated by comparing the distance between two features on the calibration pattern
within the captured image. This can be achieved providing the distance between the
two features on the actual calibration surface is predetermined and known by the
image processor 2.

As will be understood, the calibration pattern can be any suitable pattern from
which the image processor can determine at least two groups of orthogonal parallel
lines as described above.

In a further example, the image processor 2 is operable to use the estimated
values for the position and orientation of the camera along with values representative
of zoom or field of view to generate a composite image which includes a computer
generated object combined with the captured image. Because an estimated position
and orientation of the camera 1 is known with respect to the calibration surface 3, the
image processor has estimates of all the three dimensional information required to
render a composite image which can accurately portray the position and orientation of
the computer generated object with respect to the calibration surface. In the case of a
computer generated object which is a representation of a three dimensional object, this
means that the rendering of the computer generated object in the composite image can
be positioned and orientated as if it were a real-life object. This is shown in Figure S.

Figure 5 shows the apparatus shown in Figures 1 to 3 and also shows an
example composite image 42, which is generated and output by the image processor.
The output of the image processor may be to any suitable device such as a display
monitor, a recording apparatus, a broadcast apparatus and so on. The composite image
4 includes a computer generated object 41. As explained above, the computer
generated object 41 is based on a virtual object 41° which is to be “inserted” into the
image captured by the camera 1. In the example shown in Figure 5, the virtual object
41’ is a simple three dimensional cylinder. However, it will be appreciated that the
virtual object 41° can represent any suitable three dimensional object.

Figure 5 illustrates the size, shape and position of the virtual object 41° relative
to the calibration surface 3. As explained above, because the image processor 2 can
estimate camera parameters corresponding to the position and orientation of the

camera 1, the image processor 2 can generate the composite image 42 such that it can
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accurately display the computer generated object with respect to the calibration
surface, taking into account the position and orientation of the camera 1. Therefore,
should the orientation and/or position of the camera 1 change relative to the calibration
surface 3, the computer generated object 41 can be displayed in the composite image
42 as if it were a real, three dimensional object. This is shown in Figure 6.

Figure 6 illustrates how the display of the computer generated object 41 in the
composite image can change depending on the orientation and position of the camera
as determined by the image processor 2. Figure 6 shows the orientation and position of
the camera 1 in two configurations, A and B. In configuration A, the x and y position
and the pitch angle of the camera 1 have been changed such that the camera 1 is
directly above the calibration surface 3 pointing down. As can be seen, a second
composite image 51 is generated by the image processor which shows a corresponding
change in the display of the computer generated object 41. Similarly in configuration
B, the x and y position and the pitch angle of the camera 1 have been changed such
that the camera 1 is almost on the same vertical plane as the calibration surface 3,
almost pointing along the surface. A third composite image 52 is generated by the
image processor which shows a corresponding change in the display of the computer
generated object 41.

In one example the calibration pattern is a “checkerboard” pattern. The
checkerboard is typically comprised of alternately coloured square tiles. However, any
suitable pattern comprising alternately coloured elements which provide a
corresponding plurality of corners at locations on the calibration pattern at which more
than two of the coloured elements adjoin and which define a first and second group of
lines, the lines in each of the group of lines being parallel with respect to each other
and with respect to the calibration surface and the first group of lines being orthogonal
to the second group of lines can be used.

It will be understood that “coloured” refers to any light reflecting property of
the elements which makes them distinguishable from each other by the image
processor. This includes black and white.

The following describes the theory and application of a number of processes
that can be undertaken in the image processor 2 to determine the position and

orientation of the camera 1 when the calibration pattern is a checkerboard pattern. As
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described above, the camera 1 captures an image of the calibration surface on which is
the checkerboard pattern. The captured image of the checkerboard is then
communicated to the image processor. In one example the image processor includes a

Cell processor.

Checkerboard Calibration Pattern

A checkerboard calibration pattern allows detection of a pattern of comers or
lines with known relationships to each other. Each corner or line can be equally well
defined, and other detail elsewhere in the captured image taken by the camera can be
eliminated from false detections as they would not conform to an expected shape and
pattern associated with the checkerboard pattern.

Whilst the checkerboard calibration pattern is only, in effect, a two dimensional
object, this is sufficient for determining all the camera parameters, if some basic and
reasonable assumptions about the camera are made (i.e. that camera pixels are square,
an optical centre of the captured image is at the centre of the captured image, and there
is no skew in the captured image, or lens distortion in the camera 1). Based on these
assumptions, detection of four corners of “real-world” locations on the calibration
surface should be sufficient (in an ideal situation where the measurements are 100%
accurate) to determine the position and orientation of the camera. However, the more
corners that are detected, the greater the level of redundant information, and therefore
the greater the accuracy that the position and orientation parameters can be estimated
with (not least because false or misleading data can be eliminated or reduced).

As set out above, the parameters that are to be found are as follows:

1. the camera pitch angle 21
the camera yaw angle 23
the camera roll angle 22
the camera alpha 31 (perspective / field-of-view)

“real-world” camera x location

“real-world” camera y location

N v AW

“real-world’” camera z location
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This is a total of seven unknowns: hence the assertion above that four detected
points is the theoretical minimum (each point contributing two equations from the two
dimensional x and y coordinates of the captured image).

A camera matrix equation can be expressed as follows:

[ScreenLocatfon] = [ProjectionMatrixIViewMatrix][WorldLocation]

Eq2-1
Where:
[ViewMatrix] = [RzIRxIRyIT c]
Eq2-2
[ScreenLocation] = [Xs Ws YsWs ZsWs Ws ]T
Eq2-3
a 0 0 0
0 ya 0 0
[ProjectionMatrix] = o o zNear + zFar 2* zFar * zNear
zNear — zFar zNear + zFar
0 0 -1 0
Eq2-4

a = cot(fovx/2)

Jovx = Field of view (x) angle

y = aspectRatio = screenWidth / screenHeight [if the screen
coordinates are normalised and expressed as square pixels, i.e.

screen coordinates go from (-1, -1/ y) to (1, 1/y) then this can be

removed from the matrix]

[ cos@ sing 0 0
[Rz]= s:)n & co; & (1) g (& = Roll angle)
.0 0 0 1
Eq2-5
10 0 0]
0 cos& sin& 0
[Rx] = . (& = Pitch angle)
0 -sin& cosé& O
| 0 0 0 ]

Eq 2-6
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cosé 0 -sing O
[Ry] = 0 : 0 0 (6 = Yaw angle)
sing 0 cos4 O
0 o0 0 1
Eq 2-7
1 0 0 -Cx
01 0 -C
rel=ly o 1 - cﬁ
00 0 1
Eq2-8
5 (Cx, Cy, Cz) is the camera location in world space

[World Location] =[x, y, z, 1"

N.B. The terms “screen” and “captured image” are used interchangeably, i.e.
reference to a location/coordinate on a screen refers to a location/coordinate of the
captured image.

10 With normalised screen coordinates, (i.e. screen coordinates, corresponding to
coordinates of the captured image, go from (-1, -1/ y) to (1, 1/y)), and the Z screen
coordinate removed (as there is no way of measuring it) this can be reduced to:

[ScreenLocation)= [MVPMatrix|WorldLocation]
Eq2-9

a(cos By cos Bz +sin txsin Bysin &) a cosxsinéz  a(—sin by cos € +sin bx cos Gy sinbz) SOx
15 [MVPMatrix] =| a(—cosfysin B +sin &xsin ycosbz) acosbrcos@z  a(sin Gy sin bz +sin Gxcos Gy cos &) SOy

— cos & sin By sin & —cos@xcos & S
Eq2-10
SO [a 0 0 0 &
Where: | SOy |=]0 « 0 0 [RJRx[RY] ?Z'
S 0 0 -10
1
Eq2-11
[Ox Oy] = location of world coordinate origin on screen
20 S = Camera Scale = distance of camera from world coordinate
origin

The screen location derived here is of the form:

[XW,, Y5, Wi
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Therefore, X; and Y; are known and W is unknown.

For the purposes of simplification, it can be assumed that the origin of the real-
world coordinates (i.e. the three dimensional space occupied by the camera) is at the
centre of the checkerboard, and that each square has a width of 1.0 (the units are
arbitrary). The x and z axes are defined as flat on the board, paralle! to the edges of
the squares, and therefore the y axis points perpendicularly up out of the centre of the
board. This is shown in Figure 7.

As a consequence of the coordinate system shown in Figure 7, all comers on
the checkerboard have world coordinates with y=0, and integer x and z coordinates.

In general then, for a checkerboard corner at world coordinates (x, 0, z), the
screen coordinates can be expressed as follows:

_ ax(cos By cos bz +sin Gx sin 6y sin 6z) + az(—sin Gy cos &z +sin Gk cos &y sin &) + SOx

Xs
—xcoséksinfy ~ zcosbxcosby +S
Eq2-12
Vo= aox(—cos Gy sin 6z +sin &k sin Gy cos 6z) + az(sin Gy sin & +sin €k cos Gy cos 6z) + SOy

—~ xcoséxsin by — zcosbkcos @ +S
Eq2-13
A first step towards calculating the camera orientation and position parameters
is to find the checkerboard corners on the captured image. As will be understood, the
comers are the locations on the checker board where four alternately coloured tiles
meet. The requirements for a checkerboard corer detection algorithm include:
1. Finding a junction of four squares: two “dark” squares diagonally opposite to
each other; and two “light” squares in remaining two positions
2. Detecting a corner only at a pixel of the captured image nearest to the corner,
then refining to sub-pixel accuracy
3. Eliminating false positive detections (especially those not on the calibration
surface at all)
4. Working with most reasonable orientations of the camera/calibration surface
5. In some examples of the present technique the captured image should be
manipulated such that the checkerboard pattern covers more than about one

third of the height of the captured image. Therefore in some examples the
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corners should be more than about 40 pixels apart from each other, if the

captured image is in the format of 1920x1080 video output.

6. The corner detector should be able to accommodate changes in lighting
conditions across the board (i.e. look at differences in luminance/chrominance
levels, rather than absolutes)

7. For operation on a Cell processor, the corner detector should be able to
complete its detection and confirmation of all corners in a single synergistic
processing unit (SPU) within one processing frame (i.e. less than 33ms).

In order to implement the above requirements in the image processor, two pre-
processing steps can be undertaken.

In the first pre-processing step, in the case where the captured image output
from the camera 1 is in the form of a progressive segmented frame (PsF) video output,
the PsF incoming video is converted into a single progressive frame (simply by re-
interleaving the lines). If the image processor 2 is a Cell processor, this is undertaken
by an SPU program which can also filter the video to produce lower resolution
MipMaps of ¥, % and 1/8 the width and height. The full size and MipMap versions
can also be used for rendering the video elsewhere in the apparatus.

As mentioned above, the “dark™ and “light” squares of the checkerboard may
not necessarily be black and white. Therefore, to cater for the case in which a
checkerboard has a change of chrominance, and a lower change of luminance, between
the two squares, a second pre-processing step can be undertaken. Again, if the image
processor is a Cell processor, this step can be conducted as a SPU program. The
process takes in two approximate colours of the “dark™ (minCol) and “light” (maxCol)
squares (these should ideally be set by the user at initialisation).
minMaxVector = maxCol — minCol;
gain = 1.8/length(minMaxVector),
minMaxVector *= gain;

Output = dotProduct(inputVideoVec, minMaxVector)

The Output is then limited to the range 0->1 (an SPU function can convert the
input 8-bit fixed point data to floating point).

If the minCol and maxCol are set to black and white respectively, then the

output is simply the luminance data.
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In the first stage of the checkerboard corner detection process, a low resolution
version of the captured image is processed. In the case where the captured image is
part of a video output this may be 1/8th width and height, for example, 240x135
pixels. During this first stage, the entire captured image is processed to detect possible
checkerboard comers. A threshold is set so as to flag all possible corners, many of
which will be false positives which can be removed later. Processing the captured
image at low resolution has two benefits:

1. The entire captured image can be searched much more quickly than at
full resolution (containing, for example, only 1/64th of the number of pixels)

2. Many false positives that might be found in non-board calibration
surface locations (or other parts of the checkerboard) are inherently filtered out in
creating the low-resolution video. Checkerboard squares will appear roughly identical
at low and full resolution; most false positives will not.

Initially during corner detection, each pixel in the low resolution version of the
captured image is analysed. A 7x7 pixel square around the pixel being currently
analysed is examined. The differences between adjacent pixels is calculated following
a path around the outside of the 7x7 square. This is shown in Figure 8a.

Two sets of edge differences are identified: the top right half, and the bottom
left half (with a repeated pixel at the end to allow some overlap between the two
halves). This is shown in Figure 8b. The two sets of edge differences are then assessed
in view of the following criteria to make an initial determination as to whether or not

the pixel being analysed corresponds to a corner on the checkerboard.

1. The maximum (most positive) edges arc in approximately the same
locations.

2. The minimum (most negative) edges are in approximately the same
locations.

3. The maximum and minimum edges are separated from each other.

4. Both the maximum and minimum edges have a reasonable magnitude.

If all these conditions are met, then a potential corner is identified and flagged

with a probability score.
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The detection procedure can result in adjacent pixels being flagged as possible
corners. In this case the following two stages can be undertaken to remove the
duplication.

The first stage involves processing a 5x5 group of pixels of the output of the
above comer detection process and finding the centre of gravity of the group. All
relevant pixels are processed. The output is a list of possible corners and their (full
resolution) coordinates in screen (i.e. captured image) space.

The second stage simply processes the possible corner coordinates on the
captured image and removes all those whose coordinates are less than a threshold
distance (e.g. 16 pixels) away from a previous corner.

The above low resolution procedure is repeated with a full resolution version of
the captured image. However, instead of processing the entire captured image, a
section reduced in size, for example a 32x32 pixel square cut-out section surrounding
each possible corner (as detected at low resolution) is processed.

It is still possible that even after both the low and high resolution processes
have been undertaken some of the detected corners are actually false positives. In
particular, narrow lines on the checkerboard (or elsewhere) can be detected as corners
as the pattern of edges around a 7x7 square may be similar to that of a real corner. This
is illustrated in Figure 9.

To remove such false corners, a procedure similar to the low and high
resolution procedure is applied, only over a greater distance from the centre pixel.

For example a 64x64 pixel square cut-out around each corner is processed, and
two circles around the centre pixel analysed. A smaller circle may for example have a
radius of 8 pixels and a larger circle may have a radius of, for example, 26 pixels.
The most positive and most negative edges around these circles are compared in
location, as well as between the smaller and larger radii. Also, the number of pixels
above and below a midlevel grey-level are counted: the fractions above and below
should be similar for the two radii. The various criteria are combined into an overall
confidence level for the corner. Only those corners with a high level of confidence are
retained. As will be understood, this processing stage reduces the number of false

positive corners whilst minimising the number of genuine comers that are removed.



10

15

20

25

30

19

Once the corners have been processed as described above to reduce the number
of false positives, all confirmed corners are processed to find their coordinates to
greater than pixel accuracy. This is achieved for example, using the same 64x64
square cut-outs as used during the confirmation process. Also, similarly to above, this
stage uses a circle around the approximate corner location with a radius of, in one
example, 26 pixels.

Firstly, the approximate coarse locations of the two positive and negative edges
around the circumference of the circle must be found. Finer samples are then taken,
low pass filtered, and their peak edges found, to find more accurate positions of the
edges on the circumference. The accurate corner location is then calculated from the
intersection of the two lines joining the positive and negative edges. This process is
illustrated in Figure 10.

During the corner detection process, lines joining the detected corners are
constructed. The lines which run through the largest numbers of corners are then
identified. The image processor identifies every possible line joining each confirmed
comer to every other confirmed comer. Therefore for example, if 49 comers (the
theoretical maximum number of internal corners on an 8x8 checkerboard) are detected,
then there are 49x48 (2352) possible lines. However, as each line is constructed, it is
compared against all lines so far constructed. If the line closely matches an already-
constructed line, then that already-constructed line has a count value incremented.

In some examples of the present technique, the lines used are defined in polar
coordinates (with a radius and angle), rather than Cartesian coordinates (with a
gradient and intercept). This is shown in Figure 11 which shows the calibration pattern
111 as seen on the captured image 112. As can be seen a line 113 is constructed
between two identified cormers 114, 115. The line 113 can be defined with respect to
the captured image 112 with a radius 116 and an angle 117. This makes comparisons
more consistent. In polar coordinates the line 113 can be said to match another if the
angles 117 are within for example 2 degrees and their radii 116 are within for example,
6 pixels of each other. With Cartesian coordinates, comparing the gradients cannot be
done by a simple absolute difference as the gradient difference will be very large for

near-vertical lines, but very small for near-horizontal ones.
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The lines with the highest count values (effectively those with the most
detected corners that lie on them) are found. For an 8x8 checkerboard, there should be
at most seven detected corners on a line, whether the line runs parallel to the edges of
the squares, or at a 45 degree diagonal.

For each line, once the average radius and angle (i.e. polar coordinate on the
captured image) are established, a line of best fit is constructed through all the
identified corners on that line. The line of best fit searches between the minimum and
maximum radii and angles to find the line that has the smallest sum of the distances
between each point and the line. In other words:

Line of best fit finds (7,6) that minimise:

iabs(y,. cos@ —x,sinf—r) Eq 4-1

i=0
for n points on the line.

The lines with the greatest count values will include a mixture of those parallel
to the edges of the squares of the checkerboard (from now called horizontal/vertical, or
H/V, for simplification), those at a 45 degree diagonal, and other diagonals. These
need to be sorted into groups that are organised depending on whether they are parallel
in real-world space (i.e. relative to the calibration surface). In other words, there
should be a horizontal group, a vertical group and a group for each of the two 45
degree diagonals. This is shown in Figure 12a and Figure 12b. Figure 12b shows a
group of horizontal lines 123 and a group of vertical lines 124. Figure 12a shows a first
and second group of lines 121, 122 which are at 45 degrees to the horizontal group of
lines 123 and the vertical group of lines 124.

There may also be other groups of lines for other diagonals. These groups will
generally contain lines of a similar angle, but differing radius.

A first step towards sorting the lines into groups is to sort the lines into
ascending order of angle. Typically, the difference in angle between any two lines in
the same group will increase as the difference in radii increases.

The first line is assigned to group 0: this group is then initialised with a “group
angle” and “group radius” equal to those of the first line. Then each subsequent line is
compared to all the groups defined so far. If the line’s angle is similar to a group angle

(the exact amount of difference permitted can be dependent on the difference in radius)
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then the line is assigned to that group. The group angles and radius are updated as an
average of all the lines in the group. It is possible for a group to be spread around an
angle of zero. In this case, line angles of almost 360 degrees must be considered as
(angle-360) degrees.

As described above, the vanishing points (points of intersection) of the line
groups can be used to determine the orientation of the camera relative to world
coordinates (i.e. the calibration surface), independently of the camera location. They
can also be used to determine the alpha/perspective 31 of the camera 1.

As discussed above, vanishing points are the coordinates on the same plane as
the captured image where lines which are parallel in real-world space intersect. They
therefore represent a location on the captured image of a point at infinity in world
space (as parallel lines can only meet at infinity).

This can be represented by using a real-world coordinate with a homogeneous
element of zero: i.e. actual real-world position of (x/w, y/w, z/w) is at infinity. For
instance, the vanishing point of the real-world x-axis can be expressed as (1, 0, 0, 0) in
real-world coordinates.

As it is already known that the following applies (Eq 2-1):

[Screen location) = [MVP Matrix][World location]

It can be seen that for the x- and z-direction vanishing points, the following is
also true:

XvpxWopx  XvpzWopz Eq5-1
VvxWpx Yz Wopz | = [MVP Matrix ]

o o -
—_ O O

Wpx Wpz

10 B8]

It can therefore be seen that the 1% and 3™ columns of the MVP matrix

represent the screen locations of the vanishing points for the x- and z-directions
respectively.

Therefore:
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o = a(cos By cos bz +sin Gx sin Gy sin &)
" —cos&xsin &y
a(—coséy sin & +sin Gx sin Gy cos &)
Yvpx = .
—coséksin Gy
. . . Egs 5-2
o = a(—sin 6y cos @z +sin Gxcos Gy sin &)
" —coséxcos by
_ a(sin @y sin @z +sin &k cos Gy cos bz)
» —cos&xcos By

From the above equations it can be derived that the line joining the two
vanishing points (and indeed, any vanishing points on the x z-plane) has a gradient

dependent only on the roll angle (6,):

5 PV tange Eq5-3
Xvpz — Xvpx
Once the roll angle (8,) has been found, the following equations can be derived

from the vanishing points for the yaw angle &y, and the pitch angle 6x:

tan’ @y =
l—y””‘ tan & tan9z+y””
Xopx Xope
Eq 5-4
-
tangy| —— +tan &
- xvpz
sin&x =
[&Etanez—l)
X

a, the camera perspective 31 can then be found from any of the vanishing point
10  coordinates.

The 45 degree diagonal line groups 121, 122 can also be used as sources of
vanishing points, in place of the horizontal/vertical line groups 123, 124. As long as
two orthogonal line groups are used either pair of vanishing points are equally
effective.

15 The results obtained by the 45 degree diagonal line groups 121, 122 will be
identical to those found using the horizontal/vertical line groups 123, 124, with the
exception that the yaw angle (6,) will differ by 45 degrees. As will be explained later,
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the 90-degree quadrant in which the yaw angle falls is determined by a later step. For
now it is sufficient to say that:

If using 45-degree diagonal vanishing points:

0, += 45 degrees (n/4 in radians)

If all the checkerboard corners are detected, or an even distribution of the
corners across the checkerboard are detected, then a “world origin” can be estimated as
a nearest corner to the middle of the distribution of corners.

If part of the board is undetected, or at certain extreme orientations, this may
give the wrong corner (especially if the central comer is itself undetected), so this
estimate may need to be checked, and if necessary corrected, at a later stage.

A value for a camera scale (S) can be found from the distance between two
adjacent corners. If the origin location has been found, then the location of a corner
one unit away, e.g. (1, 0, 0), is the simplest way of estimating the camera scale. For an
initial approximate estimate, assuming the distance from the camera to the origin much
greater than the distance between two corners, if the estimated origin corner is not the
correct origin corner, the resulting camera scale should be close enough, but will be
refined later.

For a corner at world coordinate (x, 0, 0):

S _acosfycoste +asinbksinfysin bz + X cosbrsin by

x X, -0,
5_—acos@sin&z+asin0xsin@zcos0z+KcoszsinHy £ass
x Y, -0,

Where:

(Xs, Y5) = screen coordinate of new corner

(Ox, Oy) = screen coordinate of origin corner

Similarly, for a corner at world coordinate (0, 0, z):
S —asinfycosb +asinGrcosbysinéz + X, cosGxcosby
z X,-0,
S asinfysin& +asinBrcosbycoséz +Y, cosércosty Eas6
z Y,-0,

From Equation 2-11:
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-Cx
so] [a 0 0 0 .
S0 |=[0 a 0 ofRJRe]Ry Cy (Eq2-11)
s| oo -10 z

1

From which it can be derived that the camera location in world space is:

Cx - 80, [«
Cy|= [Ry ];.13 [Rx ];:1:3 [RZ ];3 - 80, / a Eq5-7
Cz S

Where Cx, Cy and Cz are equivalent to x, y and z, i.e. the position of the
camera 1 with respect to the calibration surface

All the camera parameters necessary to construct the View Matrix and
Projection Matrix to enable rendering of computer generated objects in the same three
dimensional space as the calibration surface are now known.

The remaining parameters used for the projection matrix (zNear and zFar) are
arbitrary: they determine the scaling of the depth buffer used for rendering. For
example the values used can be:
zNear = 1.0f;
zFar = 100.0f;

As will be understood, there may be some error in the measurements of the
corner locations. Furthermore, it is possible that more than four corners are detected on
the checkerboard and there may be redundant information. It may therefore be
desirable to provide a way to best combine the results to generate the most accurate
and reliable results.

At several stages in the process, therefore, there are steps to accommodate for
any possibly conflicting results. For example, as described above, the lines drawn
between the corner points of the checkerboard are constructed using a line of best fit
method. This reduces some of the inaccuracy due to corner coordinate measurement.
However, it is still possible that the lines within each group will not all intersect at
exactly the same point. In fact, small errors in the line angle 117 or radius 116 can
lead to very large difference in the intersection location (vanishing point), as the lines
can be close to parallel on the screen. It is also possible that the line group may

contain lines that do not belong in that group: for instance, non-45 degree diagonal
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lines that are close in orientation to the rest of the group, but do not actually belong in
that group. In such cases, intersections with other lines in the group are likely to be
within the area of the checkerboard, so can be immediately eliminated.

In order to further attend to any conflicting results, the x and y coordinates on
the captured image of all the possible intersections within a group are calculated.
Intersections within the checkerboard are first eliminated. Then a weighted average of
all the x and y values for the intersections is made. Each intersection is weighted
according to the difference between the angles of the two lines that form the
intersection. This is because the calculated intersection of two almost parallel lines
will be extremely sensitive to errors in each line. If the lines are less similar in angle,
then the intersection is more reliable.

In general, the direction (i.e. angle in polar coordinates) of the vanishing points
can be found reasonably accurately.

It is possible that the line groups may have been formed incorrectly, and that
two calculated vanishing points both represent the same actual vanishing point.
Therefore a step is included that combines similar vanishing points.

Each vanishing point is assigned a “confidence” value that is calculated as the
sum of the angle differences for each intersection. Therefore vanishing points from
line groups that are almost parallel (or in fact, absolutely parallel) will have a low
confidence value because they lead to a distant and possibly inaccurate vanishing
point. Vanishing points from line groups with diverse angles will have a high
confidence value. If all the lines in a group are very close to parallel (currently less
than 0.2 degrees apart) then the group is labelled as a “parallel group”. This is a
special case of orientation, and is dealt with in a special way. This is described below.

It is possible that up to four vanishing points could have been calculated
(possibly more, as non-45 degree diagonals could have also produced a vanishing
point). As mentioned above, these vanishing points, as they come from coplanar lines,
should all lie along a line: the vanishing line. However, it is possible that “rogue”
corners, or other inaccuracies, have led to a vanishing point that is incorrect. If this is
the case, this incorrect point should lie off the vanishing line. The problem is therefore

deducing which are the incorrect vanishing points, and which are correct.
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To identify correct and incorrect vanishing points, all possible vanishing lines
are analysed by constructing lines from each vanishing point to every other vanishing
point. The distances of every other vanishing point from this potential vanishing line
are calculated. The vanishing line with the fewest rogue points (those greater than a
threshold distance away from the line) is found. If this line has any rogue vanishing
points, then they are eliminated, as they are likely to be inaccurate. This process is
repeated until either all the remaining vanishing points are within a threshold distance
from the line, or, after the elimination only two vanishing points remain.

A line of best fit is then constructed through the remaining vanishing points.
This is then defined as the vanishing line 611 as illustrated for example in Figure 4.

To determine whether a line is a horizontal/vertical (i.e. running along the
edges of the squares of the checkerboard), a 45-degree diagonal line, or a diagonal of
another angle, the original captured image needs to be analysed, particularly the
difference in levels across the line, as illustrated in Figure 13. As shown in Figure 13,
for groups of lines where the lines have a very large sum of absolute differences across
the lines with the group, these lines are declared as horizontal/vertical lines. Those
with a very small sum of absolute difference are declared as 45-degree diagonals.
Those with intermediate values are declared as other diagonals, and are not used any

further, as their exact orientation is not known.

B N
Z Z abs(lefiLuminance, — rightLuminance,)

j=0 i=0

OrientationScore = Eq6-1

BN

Where:

B = number of lines in group

N = number of samples to take along line (currently 50)

Then:

If ( OrientationScore < 0.5 * (maxAveLum - mindveLum) )
Group is 45-degree diagonal;

Else if ( OrientationScore < 0.8 * (maxAveLum - minAveLum) )
Group is non-45-degree diagonal;

Else

Group is horizontal/vertical;
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Where mindAveLum and maxAveLum are the minimum and maximum
luminance values once averaged along a line respectively.

As explained above, at least two orthogonal vanishing points are typically used
to calculate the orientation of the camera. If vanishing points derived from
horizontal/vertical lines are not available, then the two 45-degree diagonal vanishing
points are used. If neither are available, then the camera orientation cannot be
calculated and the process can be aborted.

If both pairs of orthogonal vanishing points are found, then the two orthogonal
vanishing points whose groups contain the most lines can be used. For example pairs
of orthogonal vanishing points maybe the horizontal /vertical or 45-degree vanishing
points.

The camera angles are then calculated according to the equations set out above.

The order in which the two vanishing points are selected does not matter, in
other words which is considered the x-axis, and which the z axis relative to the
calibration surface. This “quadrant ambiguity” can be fixed at a later stage which is
described below.

To determine an accurate alpha (perspective), as mentioned above, requires the
vanishing points to be accurate in distance as well as direction. In theory, the alpha
value can be calculated from any of the vanishing points’ x or y coordinates on the
captured image once the camera orientation angles have been found.

To increase the chances of getting an accurate alpha value, the x coordinate of
the vanishing point with the highest confidence value as calculated above is used.

Therefore, if the x-axis vanishing point has the higher confidence score:
o - X,,, Cosék tan &y

(cos & + sin &x tan &y sin &)

Or if the z-axis vanishing point has the higher confidence score:

Eq 6-2

- X,, costx
a=
(—tan &y cos & + sin &x sin &)

As described above, the origin is initially estimated from the corer point

Eq 6-3

nearest to the centre of the corner distribution. The centre is defined as the average of

the minimum and maximum x and y coordinates on the checkerboard pattern of all the
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corners. The origin can be refined later: first by the distribution of the calculated world
coordinates of the detected comers, and then by the coloured marker detection.

As described above, the camera scale can be estimated from the distance
between corners on a line through the origin comer, and the origin comer itself. To
find the corners on a line through the origin comner, first the lines which pass through
the origin corner need to be found. Then for each line that passes through the origin
corner, all the other corners on that line are found.

At this stage, it is not necessarily known whether these lines follow the x-axis,
the z-axis, are 45-degree diagonals (and if so, in which direction), or diagonals of other
angles. To determine this, two estimates of S are calculated (one each from the x and y
captured image coordinates) for each of the H/V/45-degree diagonals: if the two S
estimates are approximately the same, then the current tested orientation is the most
likely. In other words:

For each line through the origin corner:

estimateCameraScaleFromXLine (Equation 5-5)

If two estimates from each corner closely match then use these, else:
estimateCameraScaleFromZLine (Equation 5-6)

If two estimates from each corner closely match then use these, else:
estimateCameraScaleFromDiaglLine

If two estimates from each corner closely match then use these, else:
estimateCameraScaleFromDiag2Line

If two estimates from each corner closely match then use these estimated lines.

For all line orientations, all corners along that line are analysed. The world
coordinate distances between the corners must be an integer number. Therefore, all
corners on a line should produce estimates of S/X (where X is the unknown three
dimensional world coordinate relative to the calibration surface) which are integer
divisions of S. These integer divisions can be factorised out, and an estimate for just §
found. After all the lines through the origin corner have been analysed, an average
estimate of S can be calculated.

It is possible that analysing the lines through the estimated origin corner do not
produce enough estimates of camera scale: either because too few lines pass through

the origin corner, or too few corners are present on those lines. In these cases, other
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lines passing through other corners need to be analysed. As mentioned above, the
camera scale estimate is essentially the distance from the camera to the world
coordinate origin on the calibration surface. This distance is likely to be significantly
greater than the width of the checkerboard squares. Hence, using a different detected
comer as the “origin comer” should not produce a camera scale estimate that is
significantly different.

Therefore, the same process can be used on other corners to generate further
estimates of S until there are 12 or more estimates. This should produce an estimate
that is more robust to occasional erroneous estimates. The estimate of S will be refined
at later stages.

There are some potential special cases of orientations of the camera that may
result in unstable, inaccurate, or no results at all when calculated using the normal
processes described above. This is primarily because there exist orientations where
lines which are parallel in world space are also parallel on the captured image and do
not produce vanishing points. Inaccuracies in the measurement of corner locations
mean a vanishing point may be calculated, but this maybe unlikely to be accurate.
Therefore, before calculating the vanishing point locations, a processing stage can be
added that checks each group of world-parallel lines. If the angles between adjacent
lines are less than, for example, 0.2 degrees on average, then the groups are labelled as
“Parallel”.

In some examples of the present technique where the image processor is a cell
processor, a second SPU program is used to calculate the camera parameters for these
special cases. The set of parameters with the lower average corner pixel error is then
selected as the final output as discussed below. This allows for error minimisation for
both sets of parameters.

In a first special case, all lines are parallel on the captured image. This occurs
when the camera is pointing directly at the board. The result is that all the lines on the
board that are parallel in real-world space will be parallel on the captured image as
well. This is shown in Figure 14a. As suggested, this case occurs when the camera is
pointing directly parallel to the y-axis relative to the calibration surface. This, in itself,
gives us some of the parameters:

Pitch angle = 90 degrees
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Roll angle = 0
Yaw angle = angles of line groups

For this orientation, the alpha and Camera Scale(S) parameters are linked and
cannot be determined separately. Hence, an arbitrary value of alpha of 1 can be set,
and the size of the checkerboard squares on the screen be used to determine S.

In a second special case one set of board lines are parallel on the captured
image. An example of this special case is where the camera is aligned so that it points
down a line parallel to the x or z axis. This is shown in Figure 14b. In this case, most
of the procedures used in calculating the camera parameters for normal cases can be
used. The direction of the parallel line group can be used in the same way as the
direction of a vanishing point. However, for calculating alpha the distance (radius) of
the other, orthogonal, vanishing point is the only one that can be used. Also, the ratio
of distances between adjacent lines in the two orthogonal directions needs to be
measured: this can be achieved by ordering the lines in each group according to their
radius and finding the differences in radii (drk, dr.).

If using H/V vanishing points:

Roll =0, = —atan(l'ﬁ] Eq 6-4
x
vpx
Pitch=6, ~ --asin(drx j Eq 6-5
dr,

sin(Pitch)[:—y—"m—y"‘i - 1]

xvpz xvpx

Yaw =6, ~ atan Eq 6-6

yvpz yvpx
xvpz xvpx
—X,,, costx

Alpha = Eq 6-7

sinéxsin 6z — tan 6y cos &

Camera Scale (S) can be found in the usual way.

The processes described above can provide an estimate for each of the

necessary camera parameters. However, in some circumstances these estimates may
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not be very reliable, and if used without further refinement might result in a rather
wobbly and poorly-matched computer generated object insertion. Therefore, various
extra processing stages can be undertaken to improve the accuracy of the camera
parameter estimates, thus reducing wobble and other ambiguities (such as in origin
location and the yaw angle of the checkerboard). To be able to check camera
orientation and positions parameter estimates against all the corners of the
checkerboard that have been detected, it needs to be determined from which world
coordinate each corner originated. Then the real-world coordinates can be transformed
back into captured image coordinates and compared with the detected corner locations.

Some facts are known about the world coordinates already of the corners already:

1. All corners are on the calibration surface, so y=0

2. The x and y real-world coordinates of all corners are integers.

3. For a 8x8 checkerboard, it is known that the x and z coordinates lie between -3

and +3.

Equations 2-12 and 2-13 can be rearranged to find x and z (world coordinates)

from the captured image coordinates and the camera parameters:

_ _S((Ost _Ost)cxcy +asy((01 _Xs)sz +(0y _)/;)cz)+mxcy((01 —Xs)cz _(Oy —Ys)sz)

alc (X, +Y¢.)+as,)
Eq7-1
z= x(Xscxsy —ac,c, + a‘gxsysz) + S(O’ — X’) Eq7-2
-X,cc, tasc, —as.c.s,

Where:
Sy = sinb,, ¢, = cosb,,
s, = sinf,, ¢, = cosb),,

s, = sinf,, ¢, = cosb,

The results of Equations 7-1 and 7-2 are rounded to the nearest integer. As an
additional confirmation step, a count is made of how many results are rounded down to
the nearest integer, and how many rounded up, and by what factor. In particular, the

rounding of corners with world coordinates where x or z are 1 are analysed.
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If the roundings are a mixture of round ups and round downs, then the camera
parameter estimates are probably reasonable, and no change is required at this stage.
If, however, all of the coordinates with x or z of 1 are rounded in the same direction,
then the scales may be inaccurate enough that the outer corners actually round to the
wrong integer. In these cases, the world coordinate calculations are undertaken again,
but multiply the calculated results by a scale factor to increase the chance that all
corners will round to the correct integers.

The distribution of the source (i.e. real-world) coordinates of the corners is now
analysed. If the initial estimate of the origin corner location was correct, then the
corner world coordinates should be distributed between -3 and +3 in both x and z
directions. If, for instance, several coordinates appear to have an x coordinate of -4,
whilst none appear at +3, then it is likely that our origin estimate is offset from where
it should be. Therefore 1 can be added to each x coordinate, resetting the origin
estimate to the corner that now has a world coordinate of (0, 0, 0).

After the origin estimate is realigned, there may still be some corners whose
world coordinates appear to be outside the range -3 to +3 in x or z. It is likely that
these are therefore rogue corners that have not been eliminated at the corner
confirmation stages. These should be eliminated now, to prevent their distorting the
results of the error minimisations stages which follow.

The world coordinates of currently detected corners can also be recalculated
using the camera parameters determined from a previously captured image. This
allows confirmation checks to be made, and backup world coordinates if the original
camera parameter estimates for the current captured image are wildly inaccurate.

To confirm and refine the camera parameters calculated so far, it may be
necessary to compare them with the mappings for each corner. By searching over a
range for each parameter, a combination of parameters can be found that produce the
minimum total error in captured image pixel locations (as summed over all the
corners). From Equation 2-1:

[ScreenLocation] = [ProjectionMatrixIViewMatrix][WarldLocation]

Therefore:

[CornerErrorVector] =[CalcScreenLoc] - [MeasuredSa-eenLoc] Eq7-3
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N
TotalError = z (length(CornerErrorVector,))’ Eq7-4

c=0
Where:
N = number of corners

The average pixel error per corner can then be expressed as:

Eq 7-5

AverageCornerPixelError = screenWidth x J TotalError

2 NumberOfCorners

The parameters that are varied to find the minimum total error are as follows:

Pitch angle, yaw angle, roll angle, alpha, camera scale.

The origin position should not need to be varied as it is derived directly from a

corner location.

These five parameters need to be searched over a wide area as the initial

estimates may not be that accurate; they also need to be refined to an accurate degree,

and therefore searched with a small step size. To achieve both these conditions, with

limited processing time, a multi-stage process is used:

1.

Search over a wide range of all five parameters with a coarse step (i.e. few
steps). Searching over five variables is potentially the slowest in terms of
processing time, so the number of steps used is necessarily low.

Refine the camera angles (only) using a fine step size. This stage is performed
twice: once with the original corner source coordinates, and with those derived
using the previous frame’s parameters. The resulting angles from the
coordinate set with the lowest minimum total error are used.

Search within a narrow range of angles around the previous frame’s angles
(using the previous frame’s alpha and camera scale). If this stage produces a
lower total error than stage 2 then use the angles from this stage instead.

Refine the alpha and camera scale using a fine step size.

Even after the above processes have been undertaken, ambiguities may still

exist in both the origin location (especially if part of the board is obscured, or

undetected due to lighting conditions) and the yaw quadrant (i.e. 90 degree)

orientation. Also, if for example, a tiled floor is being used for tracking, rather than a

checkerboard of fixed size, then some translation reference is needed to specify which

tiles are at which world coordinates, as the detection will alias at the tile frequency.



10

15

20

25

34

Therefore, as mentioned above, in some examples, the image processor is operable to
detect from the calibration pattern a plurality of further corner features, each corner
feature being uniquely identifiable by the image processor.

In some examples of the present technique, to remove these ambiguities, four
different coloured markers are placed in the middle of the four outer squares of the
checkerboard. For an 8x8 checkerboard these correspond to world coordinates of
(#3.5, 0, £3.5). The four markers will be of colours that can be preset, for example
red, blue, green and yellow. This is illustrated in Figure 15 in which the four markers
are shown on the checkerboard as “Red”, “Blue”, “Green” and “Yellow”.

To detect the coloured markers shown in Figure 15, firstly the known real-
world coordinates are multiplied by the MVP matrix, described in Equation 2-9, to
give the expected location within the captured image. The nearest pixels to these
captured image locations are then identified.

The identified pixels may not exactly match the preset colours, as the lighting
conditions may vary. However, the identified pixel colours, when considered as
vectors, should be in roughly the same direction from a “central” colour vector.
Therefore, the first step here is to subtract a “central” colour from the presets as well as
the identified colours. The central colour is based on an average luminance of the
checkerboard, as found in earlier stages of processing. A vector dot product between
the two colours (preset minus offset and identified pixel colour minus offset) is
calculated. The dot product is divided by the magnitudes to give the angle between
the vectors. Those with the closest matching angles are flagged as matches.

The MVP Matrix used can be created using the yaw angle between zero and 90
degrees, i.e. yaw90 = mod(yaw, 0.5*PI)

For example, for the red marker:

[ExpectedScreenLocation] = [MVPMatrixI3.5 0 35 1]

[ReadBackColour] = PrYPb Values at Expected Screen Location

[ReadBackColour — Offset ] [PresetRedColour — Offset ]
|ReadBackColour — Offset|PresetRedColour — Offset|

If(cos(angle) > threshold)then Match = true

Else Match = false

cos(angle) = Eq 7-6
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The first purpose of the markers is to confirm the origin location. To that end,
the four possible marker matches are tested for origin locations at integer x and z
translations away from the current estimated real-world origin location (including the

current position). In other words:

[PossibleRedStickerWorldLoc]=[3.5 0 35 1 +[p 0 ¢ of
Eq7-7
Where: p, g are integers between -3 and +3.

The origin offset which produces the highest number of marker detections
becomes the new origin.

Once the correct origin has been found, the colours of the four markers can be
used to determine the correct yaw quadrant (i.e. the 90-degree quadrant in which the
correct yaw angle lies).

As the yaw angle used to find the marker locations was reduced to an angle
between zero and 90 degrees, it is a simple matter to add multiples of 90 degrees back
onto the yaw angle. This works well as the yaw angle rotation is the first to be applied
to the world coordinates (see Equation 2-2).

The world coordinates used to find the stickers can be done in the following
order:

(-3.5,0,-3.5); (3.5, 0, -3.5); (3.5, 0, 3.5); (-3.5, 0, 3.5)
By analysing the four colours detected in these locations, a yaw quadrant offset

can be found, as in the table 1 below:

(-:3.5, 0, -{(3.5,0,-3.5) | (3.5,0,3.5) |(-3.5,0,3.5) yawQuadrantOffset
3.5) (degrees)

Green Yellow Red Blue 0

Blue Green Yellow Red 90

Red Blue Green Yellow 180

Yellow Red Blue Green 270

If fewer than 2 markers are detected, then the yawQuadrantOffset from the

Table1 Colour Marker Locations and their Effect on Yaw Quadrant
The final yaw angle = yaw90 + yawQuadrantOffset

previous captured image is used.
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As mentioned above in regard to the special cases, there are potentially two
sets of camera parameters returned from two separate calculations. The set with the
lowest average corner pixel error is selected, provided that this error is less than 2
pixels on average. If both errors are greater than 2 pixels, then it is believed that the
camera parameters are not correctly locked and the previous frame’s parameters are
used. Therefore, if the checkerboard is not being tracked properly, then the camera
parameters can be “frozen” until the checkerboard is found accurately again.

The determined camera parameters may also be filtered using a simple infinite
impulse response (IIR) filter, by mixing the current values with values derived from a
previous captured image (currently an equal, 50/50 mix). For the camera angles, the
mixing may be complicated slightly by the fact that angles can wrap around 360
degrees. To account for this, the angle difference (between current and previous
frames’ angles) is found (allowing for wrap-around), and a fraction of this (currently
50%) is added to the previous frame’s angle.

As will be understood, not all the above described steps are necessary for the
estimation of the orientation and position of the camera when the calibration pattern is
a checkerboard pattern. Many of the steps, for example those improving the accuracy
of the estimation of the camera parameters are optional, or may be conditional
depending on certain factors such as the quality of the images provided by the camera,
the distance of the camera from the calibration surface, the quality of the lighting
conditions and so on.

Figure 16 shows a flowchart illustrating the steps comprising a method of
estimating camera parameters from a captured image. At step S1, the image of the
calibration surface is captured; at step S2 corner locations on the calibration surface
are detected by identifying from the video signal a plurality of potential corner
locations, defining an area of the scene as viewed by the camera centred around each
potential corner location, analysing a colour of points lying on a periphery of each
area and thereby estimating a likelihood that a corner is located at each potential
corner location. At step S3 a first and second group of lines are identified from the
corner locations; at step S4 the lines are extrapolated; at step S5 a presence and
location of first and second intersection points is determined, and at step S6 one or

more estimated roll angle value, pitch angle value and yaw angle value are generated.
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Although the examples described above, have largely been explained in terms
of individual captured images, the captured images referred to could be part of a video
stream (for example video frames) generated by the camera and transmitted to the
image processor in any appropriate video format. Furthermore, the captured
images/video transmitted by the camera may be appropriately compressed at suitable
points during processing, in accordance with appropriate compression standards for
example Mpeg 4.

Furthermore, when implementing the examples of the technique described
above, various modifications may be made. For example, if a computer generated
object is to be inserted into a composite image, the calibration surface could be imaged
temporarily, allowing the image processor to determine the position and orientation of
the camera in a first position. Subsequently the calibration surface could be removed
and any change in orientation and position of the camera could be determined
according to other means such as telemetry feedback from servo motors connected to
the camera.

Furthermore a video signal generated by the camera may comprise a plurality
of video frames and the image processor may be operable to estimate one or more of
the estimated roll angle value, the estimated pitch angle value and the estimated yaw

angle value for individual video frames of the video signal.

Estimating Light Direction

A technique of estimating light direction will now be explained with reference
to Figures 17a to 20.

Figure 17a provides a schematic diagram illustrating a technique of estimating
light direction. A camera 1 is provided as described in the above examples. A
reference object 171, illustrated in Figure 17a is a sphere, but as explained further
below, any suitable three dimensional object, for example a cube, a hemisphere or any
other partially spherical object could be used. In the illustration shown in Figure 17a,
the reference object 171 is being illuminated by a light source (not shown).

The image processor 2 is operable to receive an image of the scene captured by
the camera 1 including the reference object 171 and identify parts of the image which

correspond to the reference object.. In some embodiments the image processor 2 is
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arranged so that it can distinguish the reference object 171 from other objects that may
be present in the captured image. This may be aided by the colouring of the surface of
the reference object and/or by its shape and surface texture. The reference object may
be of a predetermined shape to assist detection by the image processor. In such
embodiments, the image processor 2 does not need to analyse the captured image to
identify the reference object 171 within the captured image because a location of the
reference object 171 within the scene (and thus the position within the captured image)
is predefined, for example by pre-programming the position into the image processor.

In some examples the reference object 171 is provided with a matt surface.

Once the image processor 2 has identified the parts of the image corresponding
to the reference object, it is operable to estimate a direction of light incident on the
reference object based on a luminance distribution across the surface of the reference
object. This is explained further below.

As will be understood, the luminance over the surface of the reference object
171 will vary in dependence on the direction from which it is being illuminated by the
light source. Moreover, for a simple reference object which scatters a proportion of
incident light, a point at which the luminance might be expected to be at a maximal
value would be a point on the reference object where the surface is perpendicular to
the direction of the light. Thus, the detection of such a point can be used to estimate
the direction of the incident light. For example, with reference to Figure 17a, a point
172 at which the luminance is greatest on the reference object 171, would typically be
expected to be at a point on the surface of the reference object which is perpendicular
to the direction of incident light. This can thus be used to determine the direction of the
incident light. |

As discussed above, the image processor 2 may be operable to produce a
composite image based on the image captured by the camera lincluding a rendering of
a computer generated object. Figure 17b shows the apparatus of Figure 17a in which
the estimation of the direction of the light generated by the image processor is used to
render a computer generated object 181 in a composite image 182. Figure 17b shows a
first arrow 183 which corresponds to the estimated direction of light based on the
luminance of the reference object 171. Making the assumption that the light directed

on the reference object 171 is parallel (i.e. focused at infinity), a second arrow 184
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illustrates the direction of light that can be used for rendering the computer generated
object 181. The particular way that the rendered computer generated object 181 will
appear in the composite image 182, will depend on its shape and light reflecting
properties attributed to it by the image processor 2. However, the overall effect should
be an improvement in how realistic it looks as it will be illuminated in a similar way to
other objects within the captured image.

As can be seen from the composite image 182, the computer generated object 181 has
been rendered such that it appears that it is illuminated by light coming from the same
direction as the estimated direction of the light. As explained above, in order for
the image processor to estimate a direction of light incident on the reference object, the
luminance distribution across the surface of the reference object must be determined
along with information regarding the shape of the reference object.

Figure 18a shows a more detailed diagram of a spherical reference object 171.
If a first point 191 on the surface of the spherical reference object 171 is the point at
which the luminance is the greatest, then a vector originating at a centre point 192 of
the spherical reference object 171 and passing through the first point 191 provides a
point at which the surface of the object is perpendicular to the direction of the light and
thus indicates the direction of light incident on the spherical reference object 171. As
shown in Figure 18a, the direction of the vector 193 can be expressed in terms of polar
coordinates 8, @. Although the reference object used here is a sphere it will be
understood that any appropriate shape can be used for a reference object providing the
image processor can determine the three dimensional nature of its surface from the
captured image.

In some examples, x, y and z axis (relative to which the polar coordinates are
defined) can be provided in accordance with the schemes described above for
estimating the position and orientation of the camera 1.

When estimating the direction of light from the captured image of the reference
object, it is possible to simply identify the point on the surface at which the luminance
is the greatest. However, in certain situations, for example if there are multiple light
sources or if the overall luminance of the portion of the reference object visible to the
camera is saturated or approaching saturation, then identifying a single point may be

impossible or may lead to a less accurate and more “noisy” estimate. Therefore, in
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some examples, the image processor samples the reference object at points over its
entire surface and the luminance at each sampled point is determined. This is shown in
Figure 18b. Figure 18b shows the spherical reference surface 171 including a plurality
of sampling points 194. A luminance vector is calculated for each of the sampling
points 194, the magnitude of the vector being determined by the luminance at a
particular sample point, and the direction of the vector (in other words values for 6 and
@) being determined as shown in Figure 18a. In other examples where the reference
object is a different shape, the direction vectors will be determined based on a
direction perpendicular to the surface at the sampled point.

When all the luminance vectors have been generated, an average of all the
luminance vectors is calculated. It is the direction of this averaged vector which forms
the estimate for the direction of the incident light.

In some situations, for example due to the luminance across the visible area of
the reference object being saturated or nearly saturated, the light source being distant
and/or relatively dim, it may be difficult to extract accurate luminance data from the
reference object. Therefore, a clipping level may be set. Any luminance samples which
are determined to be below the clipping level are ignored. The clipping level may be
an absolute predetermined value, or maybe set relative to prevailing luminance
conditions in the captured image. Figure 19a and Figure 19b illustrate the concept of
clipping.

Figure 19a shows an example of a spherical reference object identified from
the captured image. As can be seen, a greater part of the luminance of the visible
surface of the reference object is saturated. Figure 19b shows an example of the
reference object 201 after it has undergone clipping. A hatched area 202, indicates the
parts of the surface of the reference object which have a luminance below the clipping
level. Only samples within a remaining area 203 are used to estimate the direction of
the light.

In some embodiments, the image processor is operable to take into account the
orientation and position of the camera 1 (determined for example with reference to the
calibration surface as described above), when the direction of the incident light is
estimated. Accordingly, the direction of light relative to the calibration surface, i.e. a

“real-world” estimate of the direction of the incident light can be determined.
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Therefore, movement of the camera 1 (which will result in a change of direction of the
incident light, relative to the camera 1) may also be taken into account when rendering
composite images.

Furthermore, movement of the camera will mean that the position of the
reference object, as viewed by the camera, i.e. in the captured image, will change. In
embodiments in which the location of the reference object is pre-programmed within
the image processor, the image processor may recalculate the position of the reference
object in the captured image, to accommodate for movement of the camera.

Figure 20 shows a flowchart illustrating the steps comprising a method of
estimating a direction of light incident on a reference object of predetermined shape.
At step S10 the reference object from a received image signal representative of an
image including the reference object, the reference object being of a predetermined
shape is identified. At S11 a luminance distribution across a surface of the reference
object is detected. At step S12 a direction of light incident on the reference object
derived from the detected luminance distribution across the surface of the reference

object is estimated.

Shadow Interactions Between Real and Computer Generated Objects

Examples of a technique in which computer generated shadows can be
rendered so that they appear to be cast on real objects will now be described with
reference to Figures 21 to 27.

Figure 21 is a schematic diagram of a virtual object 1000 together with a
virtual model 1010 of a real object arranged such that the virtual object can appear to
cast a shadow on the real object in accordance with examples of the present technique.
As can be seen from Figure 21, a region 1020 of the virtual model (referred to as an
occluded region) is hidden from a virtual light source 1030 by the virtual object 1000
as indicated by the dashed lines. In the example illustrated in Figure 21, the virtual
object 1000 corresponds to the virtual object 41” as described above with reference to
Figures 4 to 6. It will be appreciated that the schematic diagram shown in Figure 21
represents a side view of a three dimensional representation of the virtual object 1000

and the virtual model 1010.
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In examples of the present technique, the virtual model 1010 is mapped to a
position of the real object within real images captured by the camera | so that the
virtual model corresponds with the real object. For example, the real object could be a
chessboard in which squares of the chessboard act as the calibration surface 3. In this
example, the virtual model would comprise a rectangular box which is mapped by the
image processor 2 to correspond to the real chessboard.

In some examples, the virtual model 1010 is positioned so as to correspond to
the real object using the camera tracking and marker detection techniques as described
above. In other words the virtual model is automatically mapped to the position on the
first object by determining an orientation and position of the first object relative to the
camera by reference to a calibration surface comprising a calibration pattern on the
first object. However, it will be appreciated that any other suitable method of aligning
the virtual model with the real object so that they substantially correspond with each
other could be used. For example, a user could manually control the position and
orientation of the virtual model 1010 by using a suitable user interface.

So as to enable computer generated shadows to be rendered so that they appear
to be cast on real objects, in examples of the present technique, the virtual model 1010
is such that a colour of the virtual model 1010 is black and the virtual model 1010 is
substantially transparent. Consequently, if there are no computer generated shadows
present in a scene (for example there are no virtual objects which cast shadows), the
virtual model will be rendered so that it is not visible in the resultant combined image.
It will be appreciated that any other suitable colour could be used for the virtual model,
for purposes of artistic effect, or to emulate a coloured ambient light.

However, if there are computer generated shadows present in a scene (for
example, the situation illustrated in Figure 21), then the image processor 2 is operable
to modify the transparency of the virtual model at the occluded regions so as to
generate modified transparency regions of the virtual model.

In order that the modified transparency regions can appear to be shadows in a
resultant rendered image, in some examples, the image processor 2 can modify a
degree of transparency of the occluded regions (such as the occluded region 1020) so
that the transparency of the occluded regions is less than a degree of transparency of
other regions of the virtual model 1010. In other words, those regions of the virtual
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model which are not hidden from a virtual light source (such as the light source 1030)
by a virtual object (such as the virtual object 1000) do not have their transparencies
modified. Therefore, when the real object is rendered in combination with the virtual
object 1000 and the virtual model 1010 such that the modified transparency regions of
the virtual model appear combined with the real object, the modified transparency
regions will appear as if they are shadows which are cast on the real object. In other
words, the virtual model 1010 can be partially transparent (not completely opaque) so
that light from the real light source can be reflected from the real object so that the real
objects appears as if in shadow.

In examples of the present technique, the virtual model comprises a plurality
of fragments which make up the model. Fragments are commonly used in 3D graphics
to represent graphics data necessary to generate a pixel for output to a frame buffer and
may comprise data such as raster position data, depth buffer data, interpolated attribute
data, alpha value data and the like. The degree of transparency of the virtual model at
each fragment is associated with a respective alpha value for that fragment. In other
words, the respective alpha values of a fragment can be thought of as a transparency
value for that fragment which represents the degree of transparency for that fragment.
By changing the alpha values associated with the virtual model the transparency of the
virtual model can easily be controlled. Alpha values and alpha blending is known in
the art and so will not be described here in detail.

In the examples described herein, the alpha values of the fragments of the
virtual model are modified in accordance with shadow maps associated with the virtual
objects. The generation of shadow maps is described in more detail below.

In the examples described with reference to Figures 21 to 27, all the fragments
associated with the virtual model initially have an alpha value of 0.0 i.e. the virtual
model is completely transparent. It will be understood that a fragment having an
associated alpha value of 1.0 corresponds to that fragment being completely opaque.

Those regions of the virtual model 1010 which are detected as being hidden
from the virtual light source 1030 by the virtual object 1000 (such as the occluded
region 1020) have their alpha values of their respective fragments increased to be
greater than the alpha value of fragments corresponding to other (non-occluded)

regions of the virtual model 1010.
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In an example of the present technique, the alpha values of those fragments
which correspond to the occluded regions are increased by a preset or predetermined
amount. For example, where the preset amount is 0.2, the alpha values of fragments
corresponding to the occluded region 1020 will be increased from 0.0 (the alpha value
of the unmodified virtual model) to 0.2. However, it will be appreciated that any other
suitable predetermined amount could be used subject to a maximum alpha value of 1.0.

Where there is more than one virtual object and/or more than one virtual light
source in a scene, then any regions of the virtual model which are hidden from one or
more virtual light sources by one or more virtual objects have their alpha values
increased accordingly. An example scene in which there are two light sources and two
virtual objects is shown in Figure 22.

Figure 22 is a schematic diagram of the virtual object 1000 and a virtual object
1040 arranged on the virtual model 1010 and illuminated by the virtual light source
1030 and a virtual light source 1050. In the example shown in Figure 22, an occluded
region 1060 of the virtual model 1010 is hidden from the virtual light source 1030 by
the virtual object 1000, an occluded region of the virtual model 1010 is hidden from
the virtual light source 1050 by the virtual object 1040, and an occlusion overlap
region 1080 of the virtual model 1010 is hidden from both the virtual light source 1030
and the virtual light source 1050 by the virtual objects 1000 and 1040 respectively.

Accordingly, the image processor 2 detects where any occlusion overlap
regions occur by detecting whether at least part of a first occluded region (such as the
occluded region 1060) overlaps with at least part of at least a second occluded region
(such as the occluded region 1070). In examples of the present technique, those
fragments of the virtual model which correspond to the first occluded region are
associated with a first alpha value and those fragments which correspond to the second
occluded region are associated with a second alpha value. The image processor is then
operable to add the first alpha value to the second alpha value so as to generate an
occlusion overlap region alpha value. The degree of transparency of the virtual model
at the detected occlusion overlap regions is then modified in accordance with the
occlusion overlap region alpha value. In some embodiments, the modification of the
alpha value is carried out by the image processor 2 by incrementing the alpha value by

a predetermined amount.
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In one example, the first alpha value and the second alpha value are the same
and are set to be a predetermined alpha value as described above. For example, where
the predetermined alpha value is 0.2, the alpha value of the fragments in the occlusion
overlap region 1080 will be modified from 0.0 to 0.2 + 0.2 = 0.4. However, it will be
appreciated that any other suitable predetermined alpha value may be used.

In alternative examples, the first alpha value and the second alpha value may
be different from each other. This may occur where one or more of the virtual objects
has some degree of transparency.

It will be appreciated that increasing the transparency value corresponds to
decreasing the degree of transparency.

It will be appreciated that the techniques described herein are not limited to
simulating shadows from two virtual light source and may be applied more generally
to a plurality of light source. In some examples, for every shadow that is detected as
falling on particular fragment of the virtual model from a respective light source, a
predetermined alpha value is added to the alpha value for that fragment. Here, a
shadow is said to fall on a fragment if the fragment is hidden from a virtual light
source by a virtual object. In other words, wherever a shadow falls on the virtual object
corresponds to a shadow region, the shadow region being a region of the virtual model
which is hidden from a virtual light source by a virtual object. In examples of the
present technique, each shadow region is associated with a respective predetermined
alpha value.

The image processor then detects for each ﬁagment of the virtual model, a
number of shadow regions whose position corresponds with a position of that
fragment. For each shadow region whose position is detected as corresponding with
that fragment, the respective predetermined alpha value which is associated with that
shadow region is added to the alpha value associated with that fragment. For example,
if a position of a fragment corresponds with that of four shadow regions, and the
predetermined alpha value is 0.2, then the alpha value for that fragment will be 0.2 +
02 + 02 + 0.2 = 0.8. However, it will be appreciated that any other suitable
predetermined alpha increment could be used.

In some examples, the predetermined alpha values associated with the

respective shadow regions could be the same as each other. This simplifies calculating
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the alpha values as well as helping improve the realism of an image by simulating
uniform shadows.

Alternatively, in other examples, the respective predetermined alpha values are
different from each other, in order to achieve a desired aesthetic effect, or to simulate
occlusion by transparent virtual objects.

In examples of the present technique, the alpha value of a fragment is a sum of
the alpha values associated with the shadow regions whose position corresponds to
that fragment subject to a maximum alpha value. If the sum of the alpha values for the
fragment is greater than the maximum alpha value, then the alpha value for that
fragment is limited to the maximum alpha value. In some examples, the maximum
alpha value is 1.0 although it will be appreciated that any other suitable alpha value
could be used as the maximum alpha subject to the maximum alpha value being less
than or equal to 1.0.

In other words, detecting whether a position of a shadow region corresponds
with that of a fragment and adding the respective predetermined alpha value which is
associated with that shadow region to the alpha value associated with that fragment is
the more general case of the examples described with respect to Figure 22.

A known method of rendering computer generated shadows which can be used
with examples of the present technique will now be described with reference to Figure
23.

At a step s100, the image processor 2 maps the virtual model of the real object
to the real object as described above. Then, at a step s105, the image processor 2
detects occluded regions of the virtual model which are hidden form a virtual light
source (e.g. the virtual light source 1030) by a virtual object (such as the virtual object
1000). At a step s110, the image processor modifies the transparency of the virtual
model at the occluded image regions so as to generate modified transparency regions
as described above. Then, at a step s115, the image processor is operable to cause the
real object in combination with the virtual object and the virtual model to be rendered
such that the modified transparency regions of the virtual model appear combined with
images of the real object.

The generation of shadow maps and the detection of occluded regions will now

‘be described with reference to Figures 24 to 27.
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Shadow Mapping typically requires N+1 rendering passes for a scene
containing N shadow casting lights. First the scene is rendered into N off-screen
buffers, once from the point of view of each shadow casting light (as if a camera was
placed at the position of the light). Depth buffers of each rendering pass are then
extracted and the resultant data treated as texture maps. The resultant texture maps
correspond to shadow maps, and represent a distance to a closest object in the scene
from the respective shadow casting light in a given direction.

Once N shadow maps have been generated, the scene can be rendered from a
point of view of the camera. In some examples, projective texture mapping is used to
cast the shadow maps back onto the scene from the point of view of each light (as if a
projector were placed at the position of the light), so as to generate distance data which
corresponds to a distance from the shadow casting light to the closest object along a
ray traced between that object and the light.

The distance from a fragment to each light can also be calculated by the image
processor 2 and compared with the minimum distance from each light read as
indicated by the distance data for that fragment. If the distance from the fragment to
the light is the same as the distance indicated in the distance data for that fragment,
then the fragment is part of the closest object to that light and the fragment will be lit
by that light. If the distance from the fragment to the light is greater than the distance
indicated by the distance data for that fragment, then the fragment is not part of the
object closest to the light, and the lighting calculation from that light is ignored when
calculating the lighting of that fragment.

Additionally, in examples of the present technique, the shadow maps may be
used to modify the transparency of the virtual model as described above.

Figure 24 shows an example of a rendered scene having a first virtual light
sources 2000, a second virtual light source 2010, a spherical virtual object 2020, a
cubic virtual object 2030, and a toroidal virtual object 2040 which intersects with a
textured virtual object 2050. Although the computer generated shadows shown in
Figure 24 appear rendered on the textured virtual object 2050, it will be appreciated
that the textured virtual object could be replaced with a virtual model of a real object
such as a chess board (checkerboard) as described above so that the shadows appear

rendered on the real object. Figure 24 also shows a shadow map (labelled as Shadow
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Map A) corresponding to a shadow map for the virtual light source 2000 and a shadow
map (Jabelled as Shadow Map B) which corresponds to a shadow map for the virtual
light source 2010.

The generation of shadow maps for part of the example rendered scene in
Figure 24 will now be described with reference to Figures 25 to 27.

Figure 25 shows a schematic diagram of a wire frame outline of some of the
virtual objects shown in Figure 24. In particular, Figure 25 shows a wire frame
representation 2020° of the spherical virtual object 2020, a wire frame representation
2030’ of the cubic virtual object 2030, and a wire frame representation 2050° of the
textured virtual object 2050.

The example rendered scene in Figure 24 comprises two virtual light sources
and therefore requires three rendering passes to render the scene and generate the
required shadow maps. Figure 26A shows the first rendering pass, Figure 26B shows
the second rendering pass, and Figures 27A to 27C illustrate examples of the third
rendering pass.

Figure 26A shows a schematic diagram of a first rendering pass used to
generate a shadow map for the virtual light source 2000. In Figure 26A, the scene is
rendered from a point of view of a virtual camera 2000’ using a projection frustum
associated with the virtual camera 2000°, and in which the virtual camera 2000’ is
placed at a position corresponding to that of the virtual light source 2000 so as to
generate a shadow inap 2060 for the virtual light source 2000 (corresponding to
Shadow Map A in Figure 24).

Figure 26B shows a schematic diagram of a second rendering pass used to
generate a shadow map for the virtual light source 2010. In Figure 26B, the scene is
rendered from a point of view of a virtual camera 2010’ using a projection frustum
associated with the virtual camera 2010°, in which the virtual camera 2010’ is placed
at a position corresponding to that of the virtual light source 2010 so as to generate a
shadow map 2070 for the virtual light source 2000 (corresponding to Shadow Map B
in Figure 24).

In Figures 26A and 26B, the shadow map 2070 and the shadow map 2080 are
shown diagrammatically as a profile which represents a distance between the spherical

virtual object 2020 and the respective virtual camera used to carry out the render pass.
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In the examples described herein, the shadow maps are depth textures comprising
values which represent the distance between the virtual object 2020 and the respective
virtual light source, scaled to lie between zNear and zFar of the respective camera’s
projection matrix.

For the third rendering pass, the scene is rendered from the point of view of the
scene camera i.e. the camera 1 as illustrated in Figures 1 to 6. The image processor 2,
projects the shadow map for each virtual light source onto the scene using projective
texture mapping, as if from a projector placed at the position of the virtual light source.
Further information on projective texture mapping can be found in “The Cg Tutorial:
The Definitive Guide to Programmable Real-Time Graphics” R. Fernando and M.J.
Kilgard, Addison-Wesley Professional (8 March 2003), ISBN: 0-321-19496-9.

In examples of the present technique, the image processor 2 comprises a
fragment shader which is implemented in hardware. However it will be understood
that the fragment shader could also be implemented in software. The fragment shader
carries out the projection of the shadow maps onto the scene. However, it will be
appreciated that any other suitable methods for projecting the shadow maps onto the
scene could be used.

Figure 27A shows an example of points in a scene to be rendered in accordance
with the generated shadow maps. In particular, Figure 27A shows four example points
Py, P2, P3, and P4. Point P, is in a shadow cast by the virtual light 2010, but is lit by the
virtual light 2000. Point P, is in shadows cast by both the virtual lights 2000 and 2010,
and is therefore not lit by either of the virtual lights. Points P; and P4 are not in
shadow, and these points are lit by both the virtual light 2000 and the virtual light
2010.

Figure 27B illustrates how the shadowing for a fragment position at P; is
calculated. The image processor 2 projects the shadow map for the virtual light 2000
(also referred to as light L) onto the scene and a distance dy;.sp1 as shown in Figure
27B is read from the pre-calculated shadow map which was generated from the virtual
light 2000 using known techniques. The distance dy;.sp; represents a distance from the
virtual light 2000 (light L) to a fragment of a virtual model which is detected as being
closest to the virtual light 2000 (light L,) along a ray path between the virtual light
2000 and the point P;. In this case, a fragment of the textured virtual model 2050’ at
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the point P, is closest to the virtual light 2000 as indicated by the double headed arrow
labelled dy.spi in Figure 27B.

Additionally, the shadow map for the virtual light 2010 (also referred to as
light L) is projected onto the scene and a distance di.sp; as illustrated by the double
headed arrow in Figure 27B is calculated. The distance d,»sp; represents a distance
from the virtual light 2010 (light L,) to a fragment of a virtual model which is detected
as being closest to the virtual light 2010 (light L) along a ray path between the virtual
light 2010 and the point P;. In this case, a fragment of the spherical virtual model 2050
at a point Ps (shown in Figure 27B) is closest to the virtual light 2010 as indicated by
the double headed arrow labelled d;».sp; in Figure 27B.

The image processor 2 also calculates a distance dy;.p; between the virtual light
2000 (light L;) and the fragment at the point Py, and a distance di,.p1 between the
virtual light 2010 (light L,) and the fragment at the point P; using known techniques.

Figure 27C shows distances dij.spa, dizsp2, diip2, and diz.p; which are
calculated in a similar way as that described above for the distances shown in Figure
27B.

More generally, the above calculations are carried out in respect of every
virtual light L, (where n is an integer) and each point Py, (where m is an integer) in a
scene by applying known techniques to the respective shadow maps so as to generate
values dp, pm and dy,.spm for each fragment and respective light source. In the examples
shown in Figures 24 to 27, n = 1 to 2 although it will be appreciated that any other
suitable number of virtual light sources could be used.

The image processor 2 then uses the calculated distances dippm to dia-spm tO
detect whether a fragment at a point Py, is hidden from a virtual light source L, by a
virtual object (i.e. whether a position of the fragment corresponds to a shadow region).

If diypm = din-spm, then a fragment at a point Py, is the closest fragment to the
virtual light L, along a ray traced between point Py, and the virtual light L,,. Therefore
the fragment is not occluded and the image processor 2 generates diffuse and specular
lighting parameters for L, and adds the parameters to the lighting parameters for the
fragment at the point Py,

However, if din.pm > din.spm, then there is another fragment closer to the virtual

light L, than the fragment at the point Pp,, meaning that the fragment at the point Py, is
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hidden from the virtual light source L, by a virtual object. Therefore, the position of
the fragment at the point Py, corresponds with a position of a shadow region. The alpha
value of a virtual model can then be modified accordingly as described above.

Where a point P, is on a virtual object, then any diffuse and specular lighting
parameters associated with the virtual light source L, are not added to the lighting
parameters for the fragment at the point Py,.

In other words, in examples of the present technique, the image processor
detects occluded regions of a virtual model (such as the virtual model 1010) by
detecting which fragments of the virtual model correspond to points on the virtual
model which are hidden from a respective light source by a virtual object as described
above with reference to Figures 26 to 27. Those fragments which are hidden from the
respective light source by a virtual object are referred to herein as occluded fragments.
The image processor 2 can then modify the transparency of the occluded fragments in
the occluded regions as described above. However, it will be appreciated that any other
suitable method for detecting occluded regions of the virtual model may be used.

It will be appreciated that one or more of the virtual light sources (such as the
light source 2000) could be positioned so as to correspond to a position of a real light
source in a scene. In this case, the position of the real light source can be estimated as
described above with reference to Figures 16 to 20 and the virtual light source
positioned so as to correspond to the position of the real light source. By applying the
techniques described above for rendering computer generated shadows in accordance
with examples of the present technique, the computer generated shadows can be
generated in such as way so as to give the appearance that a virtual object is casting
shadows on a real object by occluding a real light source. This helps improve the
realism to a user of the resultant combined images. It will be appreciated that the
present technique can accommodate one, two or a plurality of occluded light sources.

Although the modification of the transparency of the virtual model as described
above has been described with reference to the use of alpha values, it will be
appreciated that any other suitable method of modifying the transparency can be used.

It will be appreciated that in embodiments of the present technique described
above, elements of any of the above methods may be implemented in the image

processor 2 in any suitable manner. Thus the required adaptation to existing parts of a
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conventional equivalent device may be implemented in the form of a computer
program product comprising processor implementable instructions stored on a data
carrier such as a floppy disk, optical disk, hard disk, PROM, RAM, flash memory or
any combination of these or other storage media, or transmitted via data signals on a
network such as an Ethernet, a wireless network, the Intemnet, or any combination of
these of other networks, or realised in hardware as an ASIC (application specific
integrated circuit) or an FPGA (field programmable gate array) or other configurable

or bespoke circuit suitable to use in adapting the conventional equivalent device.
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CLAIMS
1. An image processor arranged to receive an image signal representative
of a scene including a reference object of a predetermined shape, the image processor
being operable
to identify the reference object from the image signal,
to detect a luminance distribution across a surface of the reference object, and
to estimate a direction of light incident on the reference object derived from the

detected luminance distribution across the surface of the reference object.

2. An image processor according to claim 1, wherein

the detection of the luminance distribution comprises estimating a luminance
magnitude at a plurality of surface points on the surface of the reference object, and

the estimation of the direction of the light comprises calculating the average of
a plurality of luminance vectors, each luminance vector corresponding to one of the
surface points and comprising a luminance magnitude of the corresponding surface
point and a luminance direction corresponding to a direction perpendicular to the

surface at the corresponding surface point.

3. An image processor according to claim 1 or 2, wherein the luminance
distribution across the surface of the reference object is only detected for luminance

above a threshold clipping level.

4. An image processor according to any preceding claim, wherein the

predetermined shape is at least partly spherical.

5. An image processor according to any preceding claim, wherein the
reference object is identified by the reference object occupying a predefined position

within the scene.

6. A system for generating composite images comprising an image

processor and a camera, the camera being operable to capture an image representative
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of a scene including a reference object of a predetermined shape and to communicate
an information signal representative of the image to the image processor, the image
processor being operable

to identify the reference object from the image signal,

to detect a luminance distribution across a surface of the reference object,

to estimate a direction of light incident on the reference object derived from the
detected luminance distribution across the surface of the reference object, and

to generate a composite image comprising image data captured by the camera
combined with a rendering of a computer generated object, the computer generated

object rendered in accordance with the estimated direction of light.

7. A system according to claim 6, wherein the scene includes a calibration
surface comprising a calibration pattern, the image processor being operable to
determine an orientation and a position of the camera by reference to the calibration

surface and thereby determine the direction of light relative to the calibration surface.

8. A method of estimating a direction of light incident on a reference
object of predetermined shape, comprising

identifying the reference object from a received image signal representative of
a scene including the reference object,

detecting a luminance distribution across a surface of the reference object, and

estimating a direction of light incident on the reference object derived from the

detected luminance distribution across the surface of the reference object.

9. A method according to claim 8, wherein the detection of the luminance
distribution comprises estimating a luminance magnitude at a plurality of surface
points on the surface of the reference object, and

the estimation of the direction of light comprises calculating the average of a
plurality of luminance vectors, each luminance vector corresponding to one of the
surface points and comprising a luminance magnitude of the corresponding surface
point and a luminance direction corresponding to a direction perpendicular to the

surface at the corresponding surface point.



10

15

20

25

55

10. A method according to claim 8 or 9, wherein the detection of the
luminance distribution across the surface of the reference object is only detected for

luminance above a threshold clipping level.

1. A method according to any of claims 8 to 10, wherein the

predetermined shape is substantially spherical.

12. A method according to any of claims 8 to 11, wherein the reference
object is identified by the reference object occupying a predefined position within the

scene.

13. A computer program having computer executable instructions, which
when loaded on to a computer causes the computer to perform the method according to

any of Claims 8 to 12.

14. A computer graphics generation system for combining video images of
a scene captured by a camera with rendered computer generated objects, wherein
the computer generated objects are rendered in accordance with a direction of

incident light estimated accordance with the method of any of claims 8 to 12.

15.  An image processor, system or method as substantially hereinbefore

described with reference to the drawings.
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