wO 2019/139855 A1 |0 000 000000 OO O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2019/139855 Al

18 July 2019 (18.07.2019) WIPO I PCT
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GOGF 8/38 (2018.01) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, B, BN, BR, BW, BY, BZ,
PCT/US2019/012575 CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
(22) International Filing Date: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
07 January 2019 (07.01.2019) KR, KW KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
L. TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:
15/865,385 09 January 2018 (09.01.2018) US (84) Designated States (unless otherwise indicated, for every
) . kind of regional protection available). ARIPO (BW, GH,
(71) Applicant: VMWABE, FNC. [US/US]; 3401 Hillview Av- GM. KE, LR, LS, MW, MZ, NA, RW, SD, SL. ST, SZ. TZ.
enue, Palo Alto, California 94304 (US). UG, ZM. ZW), Eurasian (AM, AZ. BY. KG, KZ. RU. TJ.
(72) Inventors: RYKOWSKI, Adam Stephen; 1155 Perime- TM). European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
ter Center West, Suite 100, Atlanta, Georgia 30338 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
JAIN, Adarsh Subhash Chandra; 1155 Perimeter Cen- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
ter West, Suite 100, Atlanta, Georgia 30338 (US). CHEN, TR), OAPI (BF, BJ, CF, CG. CI, CM, GA, GN, GQ, GW,
Kai; 1155 Perimeter Center West, Suite 100, Atlanta, Geor- KM, ML, MR, NE, SN, TD, TG).
gia 30338 (US). QUINTAS, Daniel; 1155 Perimeter Center
West, Suite 100, Atlanta, Georgia 30338 (US). OSMAN, Published:

(74)

Huda; 1155 Perimeter Center West, Suite 100, Atlanta,
Georgia 30338 (US).

Agent: DIRICO, John et al.; 3401 Hillview Avenue, Palo
Alto, California 94304 (US).

with international search report (Art. 21(3))

(54) Title: DATA DRIVEN USER INTERFACES FOR DEVICE MANAGEMENT

mu\

Management System 103

Management Console 116

Metadata API 118
Data Driven Ul 121

OEM Specific Adapter 124

Data Store 117

Profile Ul Data 127

| Gompliance Rules 130 |

OEM Specific Messaging
Senvice 106

Data Store 166

Definition File Repository 109

Translation App. 174

Device Dala 133

Enterprise Data 136

Data Store 172

[EM Profies 189 |

‘ User Account Data 139 ‘

Definition File Data 175

I

T

e

Client Device(s) 112

Dala Slore 156

| Enterprise Device Profile 125 |

Enterprise Data 158

FIG. 1A

(57) Abstract: Disclosed are various embodiments that related to render-
ing a data driven user interface used to configure device profiles in an en-
terprise device management environment. In some examples, among oth-
ers, a system can receive a request to generate a device profile for a plat-
form and retrieve a definition file associated with the platform from a da-
ta store. The system can also render a data driven user interface for con-
figuring the device profile based at least in part on the definition file and
receive user-input for one of the user interface elements. The system can
retrieve values from the plurality of user interface elements and generate
the device profile based on the retrieved values. The device profile can be
executed in association with the platform on a mobile device.

WO 2019/139855 PCT/US2019/012575

DATA DRIVEN USER INTERFACES FOR DEVICE MANAGEMENT

Inventors: Adam Stephen Rykowski, Adarsh Subhash Chandra Jain, Kai Chen,
Daniel Quintas, and Huda Osman

CROSS-REFERENCE TO RELATED APPLICATION
[1] This application claims the benefit of U.S. Non-Provisional Patent Application No.

15/865,885 filed January 09, 2018, which is incorporated herein by reference in its entirety.

BACKGROUND

[2] With the emergence of the bring your own device (BYOD) culture, users are
preferring to perform work-related tasks on their own devices. In this environment, IT
administrators are tasked with enforcing security policies of an enterprise on a user’s personal
device. Further, this task is made more difficult because these enterprise security policies have
to be enforced on various different user devices that can operate various software platforms.

[3] Typically, devices such as laptops, tablets, and mobile phones, are required to abide
by the enterprise policies. Prior to an employee using his or her own device in the workplace,
a company can require the employee to enroll their client device with a management service
capable of protecting enterprise data from theft, loss, and unauthorized access. Administrators
of the management service can use the management service to oversee operation of the devices
enrolled with or otherwise managed by the service. A device can interact with a management
service through an enterprise agent. For instance, the enterprise agent can oversee the safe
installation and execution of other types of applications, such as word processing applications,

spreadsheet applications, or other applications.

WO 2019/139855 PCT/US2019/012575

BRIEF DESCRIPTION OF THE DRAWINGS

[4] Many aspects of the present disclosure can be better understood with reference to
the following drawings. The components in the drawings are not necessarily to scale, with
emphasis instead being placed upon clearly illustrating the principles of the disclosure.
Moreover, in the drawings, like reference numerals designate corresponding parts throughout
the several views.

[5] FIG. 1A is a drawing of an example of a networked environment that includes a
management system, an OEM specific messaging service, a definition file repository, and a
client device.

[6] FIG. 1B is an exemplary drawing of the components implemented by the
management console.

[7] FIG. 2 is a drawing of an alternative example of a networked environment that
includes a management console in communication with the OEM specific messaging service,
an OEM translation service, the definition file repository, and an OEM definition file service
over a network.

[8] FIG. 3 is an example flowchart illustrating functionalities implemented by the
management console executed in the management system.

9] FIGS. 4A and 4B are example flowcharts illustrating functionalities implemented
by the management console and the definition file repository.

[10] FIG. 5A is an example flowchart illustrating functionalities implemented by the
management console and the OEM specific messaging service for generating and installing a
device profile in the client device.

[11] FIG. 5B is another example flowchart illustrating functionalities implemented by
the management console and the OEM specific messaging service for generating and installing

a device profile in the client device.

WO 2019/139855 PCT/US2019/012575

DETAILED DESCRIPTION

[12] The present disclosure relates to using data driven user interface techniques in an
enterprise management environment. In an enterprise management environment, a
management system enforces security policies of the enterprise on user devices, such as
smartphones, tablets, laptops, and other suitable mobile devices. In some cases, the user device
may be owned by an employee or a contractor. As a result, the administrator can be challenged
with protecting enterprise data and applications on a device that is not owned by the company.
The management system can be used by an enterprise administrator to control which features
of an operating system or an application can be accessed on the user device according to an
enterprise security policy. The management system can generate device profiles specific for
particular operating system platforms and applications that enable the management of the
security policies on the user devices.

[13] Oftentimes, developers of operating systems and applications generate various
versions of their software products in order to provide new features and/or settings. Some
examples of new features may include new camera capabilities, new Wi-Fi settings, a “Do Not
Disturb While Driving” feature, new device tracking capabilities, new messaging applications,
and other suitable features that are added to a software platform. In an enterprise management
context, a management system can require a software revision in order to enable and/or display
new features as being manageable in a user interface for administrators. The software revision
can include generating new profile user interfaces that display new user interface elements for
enabling or disabling the new features from a new version of a software platform. In other
words, in order to support a new feature, profile user interfaces rendered by the management

system for the administrator can require an update to accommodate the new feature.

WO 2019/139855 PCT/US2019/012575

Particularly, the profile user interfaces may need additional parameters displayed in order for
the administrator to be capable of enabling/disabling settings associated with the new feature.
[14] In prior systems, when the management system loaded a profile user interface or a
console user interface, it required retrieving a specific source code file as a basis for generating
the profile user interface. The specific source code file may comprise platform-specific code
programmed for the targeted platform. In other words, the platform-specific code may not be
reusable to support other operating system platforms or other applications. Thus, as new
features become available in a new version of an operating system platform, a new specific
source code file may be manually programmed and tested before becoming available in a
management system for the administrator. Particularly, this may involve manually
programming a new HMTL source file, which can be used to generate a new platform-specific
profile that supports the new feature of the particular software platform. This problem
increases significantly as other original equipment manufacturers (OEM) also produce updates
with new features to their platforms. Therefore, an enterprise management developer can spend
a significant amount of time on development because of the continuous addition of new
features on various software platforms.

[15] Various examples related to using data driven user interface techniques in an
enterprise management environment are described herein, particularly for dynamically
rendering user interfaces that can be used to generate device profiles without having to
manually program platform-specific software. The management system can use a definition
file that can serve as a data source for the platform-specific parameters required to support
features of a software platform. Each supported feature in the definition file can have one or
more platform parameters and can have an assigned unique user interface identifier. The
definition file can be used to generate a platform-specific profile. Using data driven user

interface techniques, the definition file can be used to dynamically render a profile user

WO 2019/139855 PCT/US2019/012575

interface that includes the minimum platform-specific parameters for each supported feature
that require inputs by the administrator. After the administrator provides the inputs, the
management system can translate the inputs for the platform-specific parameters into a device
profile that comprises platform-specific code. Particularly, the management system can
translate the inputs into a platform-specific device profile based on the platform-specific
parameters identified in the definition file. From the management system, the platform-specific
device profile can be routed to the user device and executed to enforce the various security
policies on the user device.

[16] In other words, the platform-specific device profiles can be configured by using
dynamically rendered profile user interface, which are viewed and configured by an
administrator according to the enterprise security policies established for a particular
enterprise. The profile user interface can be dynamically rendered by retrieving the required
platform-specific parameters from the definition file. The definition file, such as a metadata
text file for example, can be used as a data source for the various platform-specific parameters
that need to be configured for each supported feature on the targeted platform. In the definition
file, each parameter can be associated with a field type and a unique platform-specific
identifier. In one non-limiting example, the unique platform-specific identifier can be unique
among all of the various parameters required by the various platforms. In cases where a
previous profile user interface was created, the previous profile user interface and a new
definition file can be merged to generate a new profile user interface. The merging process can
involve extracting existing values, i.e. representing previous user-configured settings, from the
previous profile user interface and establishing new parameters that may require input from the
administrator in order to enable/disable a new feature or settings of the new version of the

operating system.

WO 2019/139855 PCT/US2019/012575

[17] Further, when the definition file is updated by adding or removing platform-specific
parameters, the next rendered instance of the profile user interface can display the updated
platform-specific parameters stored in the definition file. In other words, using data driven
user interface techniques, an updated profile user interface can be rendered without having to
modify code associated with the profile user interface.

[18] In addition, some examples of a managed networked environment involve a
distribution of definition files from a networked storage device to a management console
application, without having to upgrade the management console application binary.
Additionally, some examples involve OEM specific translation techniques for translating the
inputs or values retrieved from a profile user interface into an OEM-specific device profile.
For example, a first translation technique can be used for generating device profiles for the
Chrome OS ™ platform, and a second translation technique can be used for generating device
profiles for the Windows 10 ™ platform.

[19] The examples described herein provide several advantages over previous solutions.
For instance, the examples reduce the amount of time needed for software development and
software testing because the source code associated with profile user interfaces are not
manually modified and tested for each new instance of a profile user interface. In other words,
new features generated by OEM platforms can be rapidly supported because an appropriate
profile user interface does not have to be manually programmed after each new feature is
released. The dynamically rendered profile user interfaces can be used to display user interface
elements that can receive user-input of a specification on how the feature should be configured
when generating the device profile.

[20] With reference to FIG. 1, shown is an example of a networked environment 100.
The networked environment 100 can include a management system 103, an OEM specific

messaging service 106, a definition file repository 109, and client device(s) 112 in

WO 2019/139855 PCT/US2019/012575

communication with one another over a network 115. The management system 103 can
provide an enterprise with access to email, corporate documents, social media, and other
enterprise content. The management system 103 can also execute a management console 116
and access a data store 117.

[21] The management system 103 can include a server computer or any other system
providing computing capability. Alternatively, the management system 103 can include a
plurality of computing devices that are arranged, for example, in one or more server banks,
computer banks, or other arrangements. The management system 103 can include a grid
computing resource or any other distributed computing arrangement. The computing devices
can be located in a single installation or can be distributed among many different geographical
locations. The management system 103 can also include or be operated as one or more
virtualized computer instances. For purposes of convenience, the management system 103 is
referred to in the singular. Even though the management system 103 is referred to in the
singular, it is understood that a plurality of management systems 103 can be employed in the
various arrangements as described above. The management system 103 can communicate with
the client device 112, the OEM specific messaging service 106 and the definition file repository
109 remotely over the network 115.

[22] The management console 116 generates and manages device profiles used to
enforce enterprise security policies on user devices. The management console 116 can generate
a new device profile by rendering a profile user interface that enables an administrator to set
an enterprise policy for a specific operating system platform or for individual applications. In
some cases, the management console 116 can also edit an existing device profile to
accommodate a new feature or setting for a specific operating system platform. For example,
the management console 116 can render a profile user interface that enables an administrator

to select whether managed users can access camera and/or microphone features on their

WO 2019/139855 PCT/US2019/012575

devices. In other words, a device profile can restrict a client device, such as mobile device,
from using an audio capturing application, an image capturing application, a phone application,
a text messaging application, and other suitable hardware and software restrictions. The
management console 116 can also include a metadata application programming interface (API)
118, a data driven user interface (UI) 121, and an OEM specific adapter 124.

[23] The metadata API 118 can retrieve the definition file for a specific platform. The
metadata API 118 can retrieve the latest definition file from the data store 117. The metadata
API 118 can retrieve the definition file in response to receiving a request from the management
console 116 to load a profile user interface.

[24] The data driven UI 121 can be used to dynamically render a profile user interface
based on the platform-specific parameters included in the definition file. The data driven Ul
121 can retrieve an existing profile user interface to extract previous values for platform-
specific parameters. These values can be loaded into the profile user interface for the
administrator to view the previous security settings. In some cases, the definition file has new
platform-specific parameters in order to support a new feature. In this situation, the generated
profile user interface will apply the previous values from the previous profile user interface
and assign a value of null to the new platform-specific parameters. The management console
116 renders the profile user interface on a display. The administrator can use the profile user
interface to select which features should be enabled/disabled. For example, in the situation of
a new feature rollout, the administrator can select whether to enable/disable the new feature for
the particular platform.

[25] The OEM specific adapter 124 can be used to translate the values, i.e. profile
settings, extracted from the profile user interface into a platform-specific device profile that
can be executed on the client device 112 of the user. As an example, the OEM specific adapter

124 can be configured to translate extracted values into device profiles for client devices 112

WO 2019/139855 PCT/US2019/012575

executing one or more operating systems provided by Google®, Microsoft®, Apple®, and
other suitable OEM operating system developers. Some example operating systems can include
Apple’s i0OS®, Apple’s macOS®, Apple’s tvOS®, Microsoft’s Windows®, Microsoft’s
Windows Mobile, Google’s Android, Google’s Chrom OS ™, and other suitable operating
systems. After the device profile has been generated, it can be transmitted to the client device
112.

[26] The management system 103 can also include the data store 117. The data store
117 can include memory for the management system 103, mass storage resources of the
management system 103, or any other storage resources on which data can be stored by the
management system 103. The data store 117 can include one or more databases, such as a
structured query language (SQL) database, a non-SQL database, or other appropriate database.
The data stored in the data store 117, for example, can be associated with the operation of the
various applications, device profiles, data driven user interfaces, profile adapters, or functional
entities described below. The data store 117 can include profile user interface data 127,
compliance rules 130, device data 133, enterprise data 136, and user account data 139.

[27] The network 115 can include, for example, the Internet, intranets, extranets, wide
area networks (WANS), local area networks (LANSs), wired networks, wireless networks, other
suitable networks, or any combination of two or more such networks. For example, the
networks can include satellite networks, cable networks, Ethernet networks, cellular networks,
telephony networks, and other types of networks.

[28] In some examples, an enterprise, such as one or more organizations, can operate the
management console 116 to oversee or manage the operation of the client devices 112 of its
employees, contractors, customers, students, or other users having user accounts with the
enterprise. The enterprise or organization can have a hierarchy. A hierarchy can be an

organizational structure that links the individuals and/or groups in the enterprise. For example,

WO 2019/139855 PCT/US2019/012575

an individual or group can be responsible for management of one or more subordinate
individuals or groups, who can in turn be responsible for management of one or more
subordinate individuals or groups, and so on.

[29] The management console 116 can cause various software components to be
installed on the client device 112. Such software components can include, for example, client
application(s) 142, an operating system 145, an enterprise agent 148, resources, libraries,
drivers, or other similar components that require installation on the client device 112 as
specified by an administrator of the management console 116. The management console 116
can further cause policies to be implemented on the client device 112 by way of a device profile.
Policies can include, for example, restrictions or permissions pertaining to capabilities of a
client device 112 such that access to enterprise data is secured on the client device 112.

[30] The management console 116 can interact with one or more client applications 142
executed on the client device 112 to perform management functions. In one example, the
management console 116 can interact with an enterprise agent 148 to enroll a client device 112
with the management console 116. When enrolled, the enterprise agent 148 can be registered
as a device administrator of the client device 112, which can provide the enterprise agent 148
with sufficient privileges to control the operation of the client device 112. In one example, the
enterprise agent 148 can be registered as the device administrator through the installation of a
management profile at an operating system 145 that causes the operating system 145 to
designate the enterprise agent 148 as the device administrator. In some examples, the
enterprise agent 148 can receive instructions from the management system 103 to install the
device profile on the client device 112.

[31] The management console 116 can direct the enterprise agent 148 to perform various
device management functions on the client device 112. For example, the management console

116 can direct the enterprise agent 148 to control access to certain software or hardware

10

WO 2019/139855 PCT/US2019/012575

functions available on the client device 112. As a result, the management console 116 can
verify that the configuration and operation of the client device 112 is in conformance with
predefined criteria that ensures that enterprise data 158 or other data is protected from data loss,
unauthorized access, or other harmful events.

[32] The management console 116 further provisions enterprise data 136 to the client
device 112 through the enterprise agent 148. In one example, the management console 116
can cause the enterprise agent 148 to control use of the client device 112, or provision enterprise
data 136 to the client device 112, through use of a command queue provided by the
management console 116. In some examples, the management console 116 can store
commands and other suitable content in a command queue associated with a particular client
device 112 and can configure the enterprise agent 148 executed by such client device 112 to
retrieve the contents of the command queue. In some examples, the command queue can be
stored in the data store 117. In one example, the enterprise agent 148 can be configured to
retrieve the contents of the command queue on a configured interval, such as every four hours,
or upon detection of a certain event, such as an unauthorized application being executed by the
client device 112. In some cases, the enterprise agent 148 can instruct the client device 112 to
retrieve the content of the command queue by activating a uniform resource locator (URL)
link. The management console 116 can also push commands to the enterprise agent 148 over
the network 115. In addition, a particular command queue can arranged for a particular client
device 112. For example, after a new device profile has been generated for a particular client
device 112, the device profile can be stored in a particular command queue associated with the
particular client device 112 for retrieval by the client device 112.

[33] In any case, the enterprise agent 148 can receive the contents of the command queue
from the management console 116. In one example, the contents of the command queue can

include one or more commands for the enterprise agent 148 to execute on the client device 112.

11

WO 2019/139855 PCT/US2019/012575

In another example, the contents of the command queue can include a resource or a client
application 142 that the enterprise agent 148 should cause to be installed on the client device
112, which the client device 112 can access through a specified uniform resource locator
(URL).

[34] In some examples, the enterprise agent 148 is omitted from the client device 112.
In this scenario, API commands can be sent directly to the operating system of the client device
112 through the OEM specific message service 106. The device profile can be transmitted to
the client device 112. Then, an API command can be sent to the operating system 145 of the
client device 112 to enable the device profile on the client device 112. This approach is
different from previous because the enterprise agent 148 is not used to instruct the operating
system 145 to implement the device profile.

[35] The data stored in the data store 117 can include, for example, profile user interface
data 127, compliance rules 130, device data 133, enterprise data 136, user account data 139, as
well as other data. The profile user interface data 127 can include data related to the definition
files for the various software platforms and previous stored settings for a previous generation
of a device profile. These device settings can be stored as metadata values.

[36] The compliance rules 130 can include hardware, software, and data access
restrictions according to a compliance policy. The compliance policy can be configured by an
administrator of an enterprise. In some cases, the data access restrictions can be based on
access levels assigned to a user. For example, sensitive data, such as confidential data, may
only be accessible for users assigned with a particular access level. In other cases, the
department the user works in can determine what data the user can access.

[37] In addition, the compliance rules 130 can also include constraints specified by an
administrator for compliance of the client device 112 with the management console 116. In

one example, the enterprise agent 148 can configure hardware or software functionality of a

12

WO 2019/139855 PCT/US2019/012575

client device 112 such that the client device 112 is in conformance with the compliance rules
130. For instance, an administrator can specify whether Bluetooth® functionality, camera
functionality, microphone functionality, or other suitable device functionality are permitted on
the client device 112. Additionally, the enterprise agent 148 can identify when the client device
112 is not in compliance with the compliance rules 130, as well as other policies, and can take
appropriate remedial actions, such as denying access to enterprise data 138, restricting access
to particular networks, or enabling or disabling other functionality of the client device 112 of
the enterprise agent 148.

[38] The device data 133 can include indications of the state of the client device 112. In
one example, these indications can specify applications that are installed on the client device
112, configurations or settings that are applied to the client device 112, user accounts associated
with the client device 1015, the physical location of the client device 112, the network to which
the client device 112 is connected, and other information describing the current state of the
client device 112.

[39] The enterprise data 136 can include email, corporate documents, social media,
messages, enterprise applications, confidential documents, and other enterprise content or
communications. The management console 116 can be employed to manage and control access
to the enterprise data 138 associated with an enterprise. The management console 116 can
provide systems and applications with access based on user accounts, user groups, device data
133, compliance rules 130, and other information.

[40] The user account data 139 can include information pertaining to end users of the
client devices 112 enrolled with the management console 116. For instance, the user account
data 139 can include data used to authenticate an end user, such as a username, password, email
address, biometric data, device identifier, registry identifier, or other data. Additionally, the

user account data 139 can include other information associated with an end user, such as name,

13

WO 2019/139855 PCT/US2019/012575

organization unit, or other information. Each user account can be associated with a particular
entity, such as an enterprise, employer, or other entity.

[41] The OEM specific messaging service 106 or a platform specific message service
can represent a specific delivery mechanism for transmitting the platform-specific device
profiles to the client device 112. The OEM specific messaging service 106 can include a data
store 166, which stores OEM device profiles 169 retrieved from the management console 116.
Each OEM can have a unique protocol for delivering the platform-specific device profiles to
client devices 112. . One non-limiting example of an OEM specific messaging service 106
can be Apple’s Apple Push Notification service (APNs).

[42] The OEM specific messaging service 106 can receive generated device profiles
from the management console 116. In some examples, the OEM specific messaging service
106 can be configured to transmit an indication to the client device 112 that a platform-specific
device profile is ready to be retrieved. The OEM specific messaging service 106 can transmit
this indication in response to receiving a notification from the management console 116. In
other cases, the client device 112 can be configured to check with the OEM specific messaging
service 106. In other examples, the client device 112 can check on an interval basis with the
OEM specific messaging service 106 whether there is new device profile. If so, the client
device 112 can proceed to receive the device profile from the OEM specific messaging service
106.

[43] The definition file repository 109 can operate to provide metadata files to the
management console 116. The definition file repository 109 can provide the metadata files on
a synchronized schedule or upon demand. The definition file repository 109 can include a data
store 172 that comprises definition file data 175. The definition file data 175 can include
definition files that provide a definition of the required platform-specific parameters for

rendering user interface elements for a profile user interface. An enterprise management

14

WO 2019/139855 PCT/US2019/012575

developer can update and create new definition files to accommodate new features of software
platforms. The enterprise management developer can store the definition files at the definition
file repository 109. The definition file repository 109 can also execute a translation application
174. 'The translation application 174 can translate an OEM definition file from an OEM
Definition File Service to a console definition file that is used by the management console 116.
[44] The client device 112 can be representative of one or more client devices 112. The
client device 112 can include a processor-based system, such as a computer system, that can
include a desktop computer, a speaker system, a laptop computer, a personal digital assistant,
a cellular telephone, a smartphone, a set-top box, a music player, a tablet computer system, a
game console, an electronic book reader, or any other device with like capability. The client
device 112 can also be equipped with networking capability or networking interfaces, including
a localized networking or communication capability, such as a near-field communication
(NFC) capability, radio-frequency identification (RFID) read or write capability, or other
localized communication capability.

[45] The client device 112 can include an operating system 145 configured to execute
various client applications 142, such as the enterprise agent 148, and any other client
applications 142. Some client applications 142 can access network content served up by the
management system 103 or other servers, thereby rendering a user interface on a display, such
as a liquid crystal display (LCD), touch-screen display, or other type of display device. To this
end, some client applications 142 can include a web browser or a dedicated application, and a
user interface can include a network page, an application screen, or other interface. Further,
other client applications 142 can include device management applications, enterprise
applications, social networking applications, word processors, spreadsheet applications, media

viewing applications, or other applications.

15

WO 2019/139855 PCT/US2019/012575

[46] In some examples, at least a portion of the client applications 142 are “managed
applications” where the enterprise agent 148 oversees or controls operation of the client
applications 142. For instance, using a management console 116, an administrator of the
management console 116 can distribute, secure, and track client applications 142 installed on
client devices 112 enrolled with the management console 116. In some examples, the
enterprise agent 148 can configure and verify that managed applications operate in
conformance with the compliance rules 130.

[47] The client device 112 can also include a data store 156. The data store 156 can
include memory of the client device 112 or any other storage resources on which data can be
stored by the client device 112. The data store 156 can include enterprise device profiles 155
and enterprise data 158. The enterprise device profile 155 can include platform-specific device
profiles that are configured to enforce software and/or hardware restrictions on the client device
112. The platform-specific device profiles can comprise platform-specific code executed on
the targeted platform. The enterprise data 158 can include confidential data that is within the
monitoring scope of the enterprise policies. The data store 156 can include other data
associated with the client application 142, the operating system 145, and the enterprise agent
148. The data stored in the data store 156, for example, can be associated with the operation
of the various applications or functional entities described below.

[48] FIG. 1B illustrates an example of a work flow of various components executed by
the management console 116. Referring between FIG. 1A and 1B, a general description of the
operation of the various components of the networked environment 100 is provided. Assuming
that a new feature has been added to a particular operating system, an enterprise management
developer can update or create a definition file that accommodates the feature. As an example,
a mobile operating system may add a new camera feature, a new Wi-Fi setting, and other

suitable features. In one example, among others, the definition file can be a text file that defines

16

WO 2019/139855 PCT/US2019/012575

the minimum parameters needed to be obtained at the profile creation stage by the
administrator. These parameters are used to render one or more profile user interface instances
for an operating system or application. The parameters can include unique platform-specific
identifiers and a parameter type for a targeted platform. Some non-limiting examples of a
parameter type may include a checkbox, a textbox, drop-down menu, a numerical value, and
other suitable parameter types associated with software platforms.

[49] After the definition file has been configured to accommodate the new feature, the
enterprise management developer can load the definition file in the definition file repository
109. The definition file repository 109 can transmit the definition file to the management
console 116. A schedule sync service 180 can synchronize the latest definition file stored in
the definition file repository 109 with the version stored in the data store 117. In some
examples, the management console 116 can periodically check with the definition file
repository 109 to determine if there is a new definition file to retrieve. In other examples, the
management console 116 can transmit a notification to the management console 116 that a new
definition file needs to be obtained from the definition file repository 109. When there is a new
definition file to retrieve, the management console 116 can retrieve the new definition file and
store it in the data store 117. The metadata API 118 can retrieve the definition file in order to
determine the parameters needed to render a particular user interface instance associated with
a particular operating system platform. For example, the management console 116 can receive
a request to generate a device profile for a platform from a user interface. The management
console 116 can then retrieve the definition file associated with the platform from the data store
117.

[50] The Data Driven Ul 121 can reference the definition file to determine what
minimum parameters need to be rendered on a particular profile user interface for the targeted

platform. The definition file can comprise platform-specific parameters associated with the

17

WO 2019/139855 PCT/US2019/012575

platform. These platform-specific parameters can represent the settings that need to be
configured to generate the device profile. The Data Driven Ul 121 can use the unique user
interface identifiers associated with each platform-specific parameter for rendering on a
browser, which involves painting, using HTML 5 for example, user interface elements that
correspond with the platform-specific parameters on the profile user interface. The unique user
interface identifiers can be used as a reference for an element within the profile user interface
and the unique user interface identifiers can be used for formatting of the element (e.g., ordering
and placement of elements on a web page layout, font color, size, etc.). In other words, Data
Driven UI 121 renders a data driven user interface for configuring the device profile based at
least in part on the definition file. Rendering the data driven user interface can comprises
displaying user interface elements that each correspond with one of the platform-specific
parameters.

[51] In some cases, the Data Driven UI 121 can retrieve a previous instance of a profile
user interface from the profile UI data 127. The previous instance of the profile user interface
and its previous settings can be stored in the data store 117 as metadata. Additionally, the
previous settings can be saved as values, as indicated by reference number 181. The Profile
UI Console 183 can enable an administrator to add a new profile or edit an existing profile, as
shown by reference number 186. When adding a new profile, the Profile UI Console 183 can
extract existing values from the previous profile and apply the extracted values to the
corresponding parameters in the new profile. In some cases, the new definition file for the new
profile can require new parameters. After the extracted values from the previous profile have
been applied, the new parameters can be assigned a null value.

[52] The Profile UI Console 183 can receive user-inputs for at least one of the user
interface elements and retrieve values from the user interface elements. The retrieved values

can be used to configure the platform features for the platform. As an example, an existing

18

WO 2019/139855 PCT/US2019/012575

definition file can comprise first name and last name parameters. The first name parameter can
comprise a first parameter type, such as a textbox, and a first platform-specific user interface
identifier. The last name parameter can comprise a second parameter type, such as a textbox,
and a second platform-specific user interface identifier. In this example, the definition file has
a new parameter for address. The address parameter can comprise a textbox for a parameter
type and a third platform-specific user interface identifier. Since the previous profile user
interface has values for the first name and last name, those values can be applied to the new
profile user interface. In this example, the previous values were “John” for the first name and
“Doe” for the last name. The new profile user interface would apply these values and assign a
null value to the address parameter because it is a new parameter. When rendered, the
administrator can insert a value for the address parameter in order to proceed with generating
a device profile for the software platform. After the profile has been configured, the
administrator can trigger the management console 116 to generate the platform-specific device
profile.

[53] The Profile Output API 192 can provide an output of the data driven user interface
after the administrator manipulates the management console 116 to initiate the creation of a
device profile. The Profile Output API 192 can also process the values associated with the data
driven user interface in preparation for the OEM specific adapter 124. Continuing with the
previous example, the Profile Qutput API 192 can retrieve the values of “John,” “Doe,” and a
new entry for the address parameter. The Profile Output API 192 would also retrieve the
corresponding platform-specific user interface identifiers.

[54] The OEM specific adapter 124 can use the definition file to translate the retrieved
values and platform-specific user interface identifiers into an executable platform device
profile that can be executed on a particular client device 112. Some examples of an executable

device profile file formats may include a JavaScript Object Notation (JSON), an Extensible

19

WO 2019/139855 PCT/US2019/012575

Markup Language (XML), and other suitable device file formats. The device profile can
include one or more restrictions that correspond with the enterprise policies of the enterprise.
[55] In some examples, the device profile can be transmitted from the management
console 116 to the OEM specific messaging service 106 and later transmitted to the client
device 112 from the OEM specific messaging service 106. In other examples, after the device
profile has been generated, it can be stored in a command queue for a particular client device
112. The device profile can be transmitted from the command queue upon receiving a request
from the client device 112. Once stored within the client device 112, the device profile can
enforce the restrictions on the client device 112.

[56] With reference to FIG. 2, shown is an alternative networked environment 200 that
includes a management console 116 in communication with the OEM specific messaging
service 106, the definition file repository 109, an OEM translation service 203, and an OEM
definition file service 206 over the network 115. In the illustrated example, the OEM definition
file service 206 can provide an OEM definition file for a new version of the OEM’s platform.
For example, a new version of an operating system platform may support new features such as
new camera control settings or new methods of customizing power management for the client
device 112. New platform-specific parameters can be included in a new OEM definition file,
which can be transmitted to the definition file repository 109. The definition file repository
109 can use the translation application 174 to translate the OEM definition file to a console
definition file, which is a definition file that used by the management console to render a data
driven user interface. 'The translation process can involve mapping platform-specific
parameters in the OEM definition file to the platform-specific identifier and it corresponding
parameter type associated with the console definition file.

[57] In addition, the translation application 174 can identify new parameters in the OEM

definition file. This process may involve a comparison with the previous OEM definition and

20

WO 2019/139855 PCT/US2019/012575

the latest definition file. After identifying new parameters, the translation application 174 can
assign a new platform-specific identifier and a null value to the platform-specific identifier. In
addition, the translation application 174 can identify a field type for the new parameters. In
some examples, the definition file repository 109 can be omitted and the OEM definition file
can be transmitted to the management console 116. In this case, the translation application 174
would be executed by the management system 103.

[58] In other examples, the management console 116 can use an OEM translation service
203 to generate a device profile from the retrieved values of the data driven user interface. In
this example, the management console 116 may not execute a translation step, as discussed
previously. Instead, in one example, the management console 116 can transmit the retrieved
values from the data driven user interface to the OEM translation service 203 for generating
the device profile. In some examples, this process may involve mapping the retrieve values to
an OEM definition file format.

[59] In some examples, the device profile can be transmitted from the OEM translation
service 203 to an OEM specific messaging service 106 for facilitating an installation of the
device profile at the client device 112. In other examples, the generated device profile can be
transmitted to the management console 116, which can then facilitate the installation of the
device profile at the client device 112.

[60] Next, a general description of the operation of the various components of the
networked environment 200 is provided. To begin, the management console 116 can receive,
over the network 115, the definition file for a target platform from the definition file repository
109. The definition file can comprise various platform-specific parameters associated with the
target platform. In some examples, the definition file repository can periodically transmit to
the management console 116 the latest version of the definition file, and in some cases the

previous definition file may be deleted.

21

WO 2019/139855 PCT/US2019/012575

[61] In addition, in some examples, the definition file repository 109 can receive an
OEM definition file from an OEM definition file service 206. In this scenario, an entity
associated with the management console 116 does not have to manually configure a new
definition file after the release of a new version of an OEM’s platform. Instead, the OEM can
provide the OEM definition file to the definition file repository 109. The OEM definition file
can be translated to a console definition file that is used for rendering the data driven user
interface. In this scenario, the release of new features by an OEM can be automatically
supported when the OEM provides the OEM definition file.

[62] The management console 116 can then receive a request to generate a device profile
for the target platform from a user interface manipulated by a user. A data driven user interface
can be rendered for configuring the device profile based at least in part on the console definition
file. For example, rendering the data driven user interface can involve displaying user interface
elements that correspond with the platform-specific parameters. Then, the management
console 116 can receive user-input for the user interface elements. In some cases, when a user-
input is received, the input can modify a respective value associated with a platform-specific
parameter. After the user has completed entering their security settings, the user can
manipulate a user interface button to initiate generating the device profile.

[63] The management console 116 can retrieve the values from the user interface
elements rendered on the data driven user interface. For example, whether or not a check box
is checked on the profile user interface for a specific feature of the platform can correspond
with a particular value. The management console 116 can then generate the device profile
based on a translation of the values into an executable device profile. In some examples, the
translation of the values can be performed by the OEM translation service 203.

[64] In addition, the networked environment 200 can support various methods for

delivering the device profile to the client device 112. In one example, after the device profile

22

WO 2019/139855 PCT/US2019/012575

has been generated, the management console 116 can transmit a command to the OEM specific
messaging service 106 to facilitate an installation of the device profile in the client device 112.
The command to the OEM specific messaging service 106 can comprise instructing the OEM
specific messaging service 106 to transmit a notification message to the client device 112. The
notification message can instruct the client device 112 to retrieve the device profile from the
management console 116. For instance, the notification message can comprise a uniform
resource locator (URL) link for the client device 112 to activate in order to retrieve the device
profile from a command queue.

[65] In another delivery method, transmitting the command to the OEM specific
messaging service 106 to the client device 112 can include transmitting the command and the
device profile to the OEM specific messaging service 106. Additionally, the command can
include instructing the OEM specific messaging service 106 to transmit the device profile to
the client device 112 and command the client device 112 to install the device profile.

[66] With reference to FIG. 3, shown is a flowchart that provides one example of the
operation of a portion of the management console 116 according to various examples. It is
understood that the flowchart of FIG. 3 provides merely an example of the many different types
of functional arrangements that can be employed to implement the operation of the portion of
the management console 116 as described herein.

[67] Beginning with step 301, the management console 116 can receive a request to
generate a device profile for a target platform on a data driven user interface. The request can
be generated by an administrator manipulating a user interface, such as clicking on a respective
user interface component. Next, in step 304, the management console 116 can receive the
definition file for the target platform from a definition file repository 109 and store the
definition file in a data store 117 associated with the management console 116. In some

exemplary implementations, the definition file repository 109 can transmit the latest definition

23

WO 2019/139855 PCT/US2019/012575

file for the targeted platform on-demand, on a periodic interval, or at other suitable intervals.
The definition file repository 109 can receive a new definition to support a new setting or
feature of a particular software platform, such as an operating system or a software application.
In some examples, each feature of an operating system in the definition file can be assigned a
unique user interface identifier. The definition file can be a text file that comprises one or more
platform-specific parameters that are used to render a profile user interface. In some examples,
the platform-specific parameters can be the minimum parameters needed to enable/disable the
various features or settings for a device profile. Thus, these platform-specific parameters can
be displayed in a user interface for an administrator to configure. For example, a “yes” box
and/or “no” box can be displayed in a user interface to provide a means for the administrator
to either enable or disable a new camera setting of an operating system.

[68] In step 307, the management console 116 can retrieve the definition file for the
target platform from the data store 117. In some examples, the management console 116 can
transmit a message to the definition file repository 109 on an interval basis in order to determine
whether there is a new definition file.

[69] In step 310, the management console 116 can use the definition file to identify
platform-specific parameters for the data driven user interface. The definition file can provide
a template of the platform-specific parameters that are required to enable a particular feature
in targeted operating system. Each platform-specific parameter can be associated with a unique
user interface identifier from the definition file.

[70] In step 313, the management console 116 can render a data driven profile user
interface for configuring the device profile for the target platform. The data drive profile user
interface can include user interface elements that correspond with each platform-specific
parameters. In some cases, a previous profile user interface may exist with previous values for

the platform-specific parameters. In the previous profile user interface, the values for the

24

WO 2019/139855 PCT/US2019/012575

platform-specific parameters can be extracted and applied to the user interface elements
displayed in the new profile user interface.

[71] In step 316, the management console 116 can receive user-input for the user
interface elements on the data driven profile user interface. For example, the user can enter a
setting such as checking a user interface box that indicates a particular Wi-Fi setting should be
enabled. Each manipulation of a user interface element can be converted to a value. In some
scenarios, a default setting can be set or a previous setting can be retrieved from the previous
rendering of the data driven profile user interface.

[72] In step 319, the management console 116 can retrieve values from the user interface
elements on the data driven profile user interface. In other words, the management console
116 can retrieve a value for each of the user interface elements rendered on the profile user
interface, where each user interface element corresponds to a platform-specific parameter.
[73] In step 322, the management console 116 can generate a device profile for the target
platform using the retrieved values and the definition file. In some exemplary implementations,
the management console 116 can translate the retrieve values into a device profile using the
definition file. Particularly, the translation process can involve referencing the definition file
and the relevant unique user interface identifiers to map the values of the unique user interface
identifiers to an appropriate software code that can configure the device profile according to
the configuration selected by the user on the profile user interface. After the device profile has
been generated, the management console 116 can store the device profile in a command queue
associated with the managed client device 112. For instance, the device profile can be stored
in a command queue stored in the data store 117.

[74] In step 325, the management console 116 can transmit a command to the OEM
specific messaging service to facilitate the installation of the device profile in the client device

112, such as a mobile device. In some exemplary implementations, the OEM specific

25

WO 2019/139855 PCT/US2019/012575

messaging service 106 can transmit an indication to the client device 112 that a new device
profile is ready for retrieval. The client device 112 can then receive the device profile from the
management system 103 or the OEM specific messaging service 106. For instance, the OEM
specific messaging service 106 can transmit a command to the client device 112 to retrieve the
device profile from the command queue associated with the client device 112. The command
queue can be stored in the data store 117 associated with the management system 103. Thus,
from the command queue, the management system 103 can distribute the device profile and
other suitable content to the client device upon receiving a request or an indication of an
activation of an uniform resource location (URL) link from the client device 112. In other
exemplary implementations, the management console 116 can transmit the device profile to
the OEM specific messaging service, which can relay the device profile to the client device
112. Then, the management console 116 proceeds to the end of the process.

[75] Referring next to FIGS. 4A and 4B, shown is a flowchart that provides one example
of the operation of a portion of the management console 116 according to various examples.
It is understood that the flowchart of FIGS. 4A and 4B provides merely an example of the many
different types of functional arrangements that can be employed to implement the operation of
the portion of the management console 116 as described herein.

[76] Beginning with step 401, the management console 116 can establish a
communications channel with a definition file repository 109. In some examples, the
establishment of the communications channel can involve the management console 116
transmitting a request to the definition file repository 109 to receive a definition file. In another
example, the management console 116 can transmit a command to the definition file repository
109 using an application programming instance (API) of the definition file repository 109. In
this example, the command can cause the definition file repository 109 to transmit the

definition file to the management console 116. In another exemplary implementation, the

26

WO 2019/139855 PCT/US2019/012575

establishment of the communications channel can involve the management console 116
participating in an authentication process by transmitting credentials to the definition file
repository 109. In another example, the management console 116 can subscribe to a
subscription service associated with the definition file repository 109. The subscription service
can instruct the definition file repository 109 to transmit a latest definition file to the
management console 116 on a periodic basis, whenever a particular definition file has been
update, or at other suitable intervals.

[77] In step 403, the management console 116 can facilitate receiving an OEM definition
file from an OEM definition file service 206. In some exemplary implementations, the OEM
definition file can be received by the data store 117 and in other implementations, the OEM
definition file can be received by the definition file repository 109.

[78] In step 404, the management console 116 can translate the OEM definition file to a
console definition file in the definition file repository 109. For example, the OEM definition
file can comprise parameter names and field types that may be converted to platform-specific
parameter names, unique user interface identifiers, and data types used by the management
console 116. In some cases, the translation process can involve mapping the OEM platform-
specific parameter to the console platform-specific parameters.

[79] In step 407, the management console 116 can transmit the latest console definition
file to the data store 117 of the management system 103. As previously discussed, the latest
console definition file may be transmitted on a periodic interval, on-demand, or at any other
suitable frequency. Next, in step 410, the management console 116 can receive a request to
generate a device profile for a target platform. For example, a user may desire to configure a
new device profile or edit an existing device profile in response to a new feature has been added
to a target platform. In step 416, the management console 116 can retrieve the console

definition file for the target platform from the data store 117. Next, in step 419, the

27

WO 2019/139855 PCT/US2019/012575

management console 116 can use the definition file to identify platform-specific parameters
for the data driven user interface.

[80] In step 422, the management console 116 can render a data driven user interface for
configuring the device profile for the target platform. The data driven console user interface
can display the platform—specific parameters that are needed to configure a device profile. In
some exemplary implementations, a platform-specific parameter that was recently added to the
console definition file may have a null value because it does not have a value set by the user.
In other implementations, the previously used settings for configuring a device profile for the
platform may be rendered.

[81] In step 425, the management console 116 can receive user-input for a user interface
element on the data driven console user interface. For instance, user-input can comprise a user
checking a box, selecting a menu item from a menu, entering text into a text box, or any other
suitable method for data entry by way of a user interface.

[82] In step 428, the management console 116 can retrieve platform-specific parameter
values from the user interface elements on the data driven user interface, such as a profile user
interface. In some scenarios, a user may enter a value that modifies a previously stored value
for a respective parameter. Next, in step 431, the management console 116 can translate the
platform-specific parameter values into an OEM specific device profile using an OEM specific
adapter 124. In some exemplary implementations, each platform-specific parameter can have
a unique parameter identifier. The unique parameter identifier can be used to configure a
device profile according to the value retrieved from the data driven user interface. After the
values have been translated and the device profile has been generated, the management console
116 can store the device profile in a command queue associated with the managed client device
112. For instance, the device profile can be stored in a command queue stored in the data store

117.

28

WO 2019/139855 PCT/US2019/012575

[83] Next, in step 434, the management console 116 can transmit a command to the
OEM specific messaging service 106 to facilitate an installation of the device profile to the
client device 112. As previously discussed, there are various methods in which the device
profile can be installed in the client device 112. For example, the management system 103 can
transmit the device profile from a command queue associated with the client device 112 upon
receiving a request from the client device 112 or the OEM specific messaging service 106. In
other examples, the OEM specific-messaging service 106 can transmit the device profile to the
client device 112. Then, the management console 116 proceeds to the end of the process.

[84] With reference to FIG. 5A, shown is a flowchart that provides one example of the
operation of a portion of the management console 116 and the OEM specific messaging service
106 for generating and installing a device profile in the client device 112 according to various
examples. It is understood that the flowchart of FIG. 5A provides merely an example of the
many different types of functional arrangements that can be employed to implement the
operation of the portion of the management console 116 as described herein.

[85] Beginning with step 501, the management console 116 can authenticate an
administrator identity. The authentication process can involve validating credentials received
from a user interface rendered for an administrator. In step 503, the management console 116
can receive a request to generate a device profile for a target platform on a data driven user
interface, such as a profile user interface. Next, in step 504, the management console 116 can
retrieve the definition file for the target platform from the data store 117. In step 507, the
management console 116 can use the definition file to identify platform-specific parameters
associated with the target platform, in which user interface elements can be rendered on the
data driven user interface to correspond with the platform-specific parameters. Then, in step
510, the management console 116 can retrieve previous values for the platform-specific

parameters for the data driven user interface. In some examples, a respective platform-specific

29

WO 2019/139855 PCT/US2019/012575

parameter may be rendered for a first time because it was recently added to the definition file.
In this scenario, the respective platform-specific parameter may have a null value assigned.
[86] In step 513, the management console 116 can render the data driven user interface
for configuring the device profile for the target platform. The management console 116 can
render user interface elements that correspond with the platform-specific parameters and the
previously stored values for the platform-specific parameters.

[87] Next, in step 516, the management console 116 can receive user-inputs for one or
more respective user interface elements on the data driven user interface. For example, the
user-input can be received by the user checking a box, selecting a menu item, entering text into
a text box, and any other suitable method for data entry. Next, in step 519, the management
console 116 can retrieve values from the user interface elements on the data driven user
interface. In some exemplary implementations, the values can be retrieved from the user
interface elements rendered on the data driven user interface. The retrieval of the values can
capture the settings the user desires for the device profile.

[88] In step 522, the management console 116 can perform a translation of the values
for the platform device profile. In some exemplary implementations, the translation can be
based on a unique parameter identifier that corresponds with a specific platform feature or
setting associated with the platform feature. The values can be used to configure the device
profile according to the settings entered by the user. In some examples, the translation of the
values can be performed by the OEM translation service 203. After the values have been
translated and the device profile has been generated, the management console 116 can store the
device profile in a command queue associated with the managed client device 112. For
instance, the device profile can be stored in a command queue stored in the data store 117.
[89] In step 523, the management console 116 can determine an OEM specific

messaging service 106 for communicating the device profile to the client device 112. The

30

WO 2019/139855 PCT/US2019/012575

OEM specific messaging service 106 can be determined from multiple OEM specific
messaging services 106, where each OEM specific messaging service 106 can be unique for a
particular target platform. For example, OEM’s such as Google, Apple, Microsoft, Android,
and others may each have one or more messaging services associated with their operating
systems. In some examples, the determination of the OEM specific messaging service 106 can
involve identifying a management record associated with a targeted client device 112 or by
identifying the target platform from the request to generate the device profile. After the OEM
specific messaging service 106 has been identified, the management console 116 can map the
target platform to an applicable OEM messaging service 106 and identify particular servers
used by the OEM specific messaging service 106. The identification of the particular servers
can include retrieving internet protocol (IP) addresses, credentials, authentication tokens,
certificates, keys, and other suitable data used for connecting with the OEM specific messaging
service 106. Then, the management console 116 can establish a communications channel with
the OEM specific messaging service 106. In some examples, the establishment of the
communications channel can involve executing an authentication process, where the
authentication data is provided to the OEM specific messaging service 106.

[90] In step 525, the management console 116 can transmit a notification command to
OEM specific messaging service 106 to facilitate installation of the device profile in the client
device 112. In some exemplary implementation, the notification command instructs the OEM
specific messaging service 106 to transmit a message to the mobile device that instructs the
mobile device to contact the management system 103. For example, the message can comprise
instructions for the mobile device to activate a uniform resource locator (URL) link in order to
retrieve the device profile. The URL link can be an Internet protocol (IP) address of an end
point device configured to distribute the content of a particular command queue to the managed

client device 112 upon receiving a request. In some examples, the request can be generated

31

WO 2019/139855 PCT/US2019/012575

from an activation of the URL link by the client device 112. Then, in step 528, the management
console 116 can transmit the content of a particular command queue associated with the client
device 112 to the mobile device upon activation of the URL link. The content of the particular
command queue can include the device profile and other suitable content for the client device
112. Then, the management console 116 proceeds to the end.

[91] With reference to FIG. 5B, shown is a flowchart that provides another example of
the operation of a portion of the management console 116 and the OEM specific messaging
service 106 for generating and installing a device profile in the client device 112 according to
various examples. It is understood that the flowchart of FIG. 5B provides merely an example
of the many different types of functional arrangements that can be employed to implement the
operation of the portion of the management console 116 as described herein.

[92] Beginning with step 551, the management console 116 can authenticate an
administrator identity of a user. The authentication process can involve validating credentials
received from a user interface. In step 553, the management console 116 can receive a request
to generate a device profile for a target platform on a data driven user interface. Next, in step
554, the management console 116 can retrieve the definition file for the target platform from
the data store 117. Next, in step 557, the management console 116 can use the definition file
to identify platform-specific parameters for the data driven user interface. Then, in step 560,
the management console 116 can retrieve previous values for the platform-specific parameters
for the data driven user interface. In some examples, a respective platform-specific parameter
may be rendered for a first time because it was recently added to the definition file. In this
scenario, the respective platform-specific parameter may have a null value assigned.

[93] In step 563, the management console 116 can render the data driven user interface

for configuring the device profile for the target platform. The management console 116 can

32

WO 2019/139855 PCT/US2019/012575

render user interface elements that correspond with the platform-specific parameters and the
previously stored values for the platform-specific parameters.

[94] In step 566, the management console 116 can receive user-input for a respective
user interface element on the data driven user interface. Next, in step 569, the management
console 116 can retrieve values from the user interface elements on the data driven user
interface. In some exemplary implementations, the values can be retrieved from the user
interface elements rendered on the data driven user interface. The retrieval of the values can
capture the settings the user desires for the device profile.

[95] In step 572, the management console 116 can perform a translation of values for
the platform device profile. In some exemplary implementations, the translation can be based
on a unique parameter identifier that corresponds with a specific platform feature or setting
associated with the platform feature. The values can be used to configure the device profile
according to the settings entered by the user. In some examples, the translation of the values
can be performed by the OEM translation service 203.

[96] In step 573, the management console 116 can determine an OEM specific
messaging service 106 for communicating the device profile to the client device 112. The
OEM specific messaging service 106 can be determined from multiple OEM specific
messaging services 106, where each OEM specific messaging service 106 can be unique for a
particular target platform. For example, OEM’s such as Google, Apple, Microsoft, Android,
and others may each have one or more messaging services associated with their operating
systems. In some examples, the determination of the OEM specific messaging service 106
can involve identifying a management record associated with a targeted client device 112 or
by identifying the target platform from the request to generate the device profile. After the
OEM specific messaging service 106 has been identified, the management console 116 can

map the target platform to an applicable OEM messaging service 106 and identify particular

33

WO 2019/139855 PCT/US2019/012575

servers used by the OEM specific messaging service 106. The identification of the particular
servers can include retrieving data such as internet protocol (IP) addresses, credentials,
authentication tokens, certificates, keys, and other suitable data used for connecting with the
OEM specific messaging service 106. Then, the management console 116 can establish a
communications channel with the OEM specific messaging service 106. In some examples,
the establishment of the communications channel can involve executing an authentication
process, where the authentication data is provided to the OEM specific messaging service 106.
[97] In step 575, the management console 116 can transmit an installation command and
the device profile to the OEM specific messaging service 106. In some exemplary
implementation, the definition file can be transmitted to the OEM specific messaging service
106 as well. The OEM specific messaging service 106 can push the device profile and an
installation command to the mobile device.

[98] The management system 103, the OEM specific messaging service 106, the
definition file repository 109, the client devices 112 and other suitable devices can include at
least one processor circuit, for example, having a processor and at least one memory device,
both of which couple to a local interface, respectively. The client device 112 can include, for
example, at least one computer, a mobile device, smartphone, a table computer, a speaker
system, a personal assistant device, a computing device, or like device. The local interface can
include, for example, a data bus with an accompanying address/control bus or other bus
structure.

[99] A number of software components are stored in the memory and executable by a
processor. In this respect, the term “executable” means a program file that is in a form that can
ultimately be run by the processor. Examples of executable programs can be, for example, a
compiled program that can be translated into machine code in a format that can be loaded into

a random access portion of one or more of the memory devices and run by the processor, code

34

WO 2019/139855 PCT/US2019/012575

that can be expressed in a format such as object code that is capable of being loaded into a
random access portion of the one or more memory devices and executed by the processor, or
code that can be interpreted by another executable program to generate instructions in a random
access portion of the memory devices to be executed by the processor. An executable program
can be stored in any portion or component of the memory devices including, for example,
random access memory (RAM), read-only memory (ROM), hard drive, solid-state drive, USB
flash drive, memory card, optical disc such as compact disc (CD) or digital versatile disc
(DVD), floppy disk, magnetic tape, or other memory components.

[100] Memory can include both volatile and nonvolatile memory and data storage
components. Also, a processor can represent multiple processors and/or multiple processor
cores, and the one or more memory devices can represent multiple memories that operate in
parallel processing circuits, respectively. Memory devices can also represent a combination of
various types of storage devices, such as RAM, mass storage devices, flash memory, or hard
disk storage. In this case, a local interface can be an appropriate network that facilitates
communication between any two of the multiple processors or between any processor and any
of the memory devices. The local interface can include additional systems designed to
coordinate this communication, including, for example, performing load balancing. The
processor can be of electrical or of some other available construction.

[101] The client devices 112 can include a display upon which user interface(s) generated
by the client application(s) 142, the enterprise agent 148, or another application can be
rendered. The client device 112 can also include one or more input/output devices that can
include, for example, a capacitive touchscreen or other type of touch input device, fingerprint
reader, or keyboard.

[102] Although the management console 116, the client applications 142, the enterprise

agent 148, the translation application 174, the operating system 145, and other various services

35

WO 2019/139855 PCT/US2019/012575

and functions described can be embodied in software or code executed by general purpose
hardware as discussed above. As an alternative, the same can also be embodied in dedicated
hardware or a combination of software/general purpose hardware and dedicated hardware. If
embodied in dedicated hardware, each can be implemented as a circuit or state machine that
employs any one of or a combination of a number of technologies. These technologies can
include discrete logic circuits having logic gates for implementing various logic functions upon
an application of one or more data signals, application specific integrated circuits (ASICs)
having appropriate logic gates, field-programmable gate arrays (FPGAs), or other components.
[103] The sequence diagram and flowcharts show examples of the functionality and
operation of an implementation of portions of components described. If embodied in software,
each block can represent a module, segment, or portion of code that can include program
instructions to implement the specified logical function(s). The program instructions can be
embodied in the form of source code that can include human-readable statements written in a
programming language or machine code that can include numerical instructions recognizable
by a suitable execution system such as a processor in a computer system or other system. The
machine code can be converted from the source code. If embodied in hardware, each block
can represent a circuit or a number of interconnected circuits to implement the specified logical
function(s).

[104] Although the sequence diagram and flowcharts show a specific order of execution,
it is understood that the order of execution can differ from that which is depicted. For example,
the order of execution of two or more blocks can be scrambled relative to the order shown.
Also, two or more blocks shown in succession can be executed concurrently or with partial
concurrence. Further, in some examples, one or more of the blocks shown in the drawings can

be skipped or omitted.

36

WO 2019/139855 PCT/US2019/012575

[105] Also, any logic or application described that includes software or code can be
embodied in any non-transitory computer-readable medium for use by or in connection with
an instruction execution system such as a processor in a computer system or other system. In
this sense, the logic can include, for example, statements including instructions and
declarations that can be fetched from the computer-readable medium and executed by the
instruction execution system. In the context of the present disclosure, a "computer-readable
medium" can be any medium that can contain, store, or maintain the logic or application
described for use by or in connection with the instruction execution system.

[106] The computer-readable medium can include any one of many physical media, such
as magnetic, optical, or semiconductor media. More specific examples of a suitable computer-
readable medium include solid-state drives or flash memory. Further, any logic or application
described can be implemented and structured in a variety of ways. For example, one or more
applications can be implemented as modules or components of a single application. Further,
one or more applications described can be executed in shared or separate computing devices or
a combination thereof. For example, a plurality of the applications described can execute in
the same computing device, or in multiple computing devices.

[107] It is emphasized that the above-described examples of the present disclosure are
merely possible examples of implementations described for a clear understanding of the
principles of the disclosure. Many variations and modifications can be made to the above-
described examples without departing substantially from the spirit and principles of the
disclosure. All such modifications and variations are intended to be included within the scope

of this disclosure.

37

WO 2019/139855 PCT/US2019/012575

CLAIMS
Therefore, the following is claimed:
1. A system, comprising:
a computing device; and
program instructions executable in the computing device that, when executed
by the computing device, cause the computing device to:

receive a request to generate a device profile for a platform;

retrieve a definition file associated with the platform from a data store,
the definition file comprising a plurality of platform parameters associated with the
platform;

render a data driven user interface for configuring the device profile
based at least in part on the definition file, rendering the data driven user interface
comprises displaying a plurality of user interface elements that each correspond with
one of the plurality of platform parameters;

receive user-input for one of the plurality user interface elements, the
user-input modifying a respective value associated with one of the plurality of platform
parameters;

retrieve a plurality of values from the plurality of user interface
elements, the plurality of values being used to configure a plurality of platform features
for the platform; and

generate the device profile based at least in part on the plurality of
values, the device profile being executed in association with the platform on a mobile

device.

38

WO 2019/139855 PCT/US2019/012575

2. The system of claim 1, wherein the plurality of user interface elements
comprises at least one of a text box, a drop-down menu, or a check-box.

3. The system of claim 1, wherein program instructions further cause the
computing device to generate the device profile based at least in part on a translation of the

plurality of values into an executable file for the platform.

4. The system of claim 3, wherein the executable file comprises at least one of a

JavaScript Object Notation (JSON) file or an Extensible Markup Language (XML) file.

5. The system of claim 1, wherein each of the plurality of platform parameters
comprises a field type and a unique identifier for a plurality of respective parameters for a

plurality of platforms.

6. The system of claim 1, wherein the plurality of platform features comprises at
least one of an audio capturing application, an image capturing application, a phone

application, and a text messaging application.

7. The system of claim 1, wherein the program instructions further cause the
computing device to transmit the device profile to the mobile device by way of a platform

messaging service.

8. A non-transitory computer-readable medium embodying program instructions
executable in a computing device that, when executed by the computing device, cause the
computing device to:

receive a request to generate a device profile for a platform;

39

WO 2019/139855 PCT/US2019/012575

retrieve a definition file associated with the platform from a data store,
the definition file comprising a plurality of platform parameters associated with the
platform;

render a data driven user interface for configuring the device profile
based at least in part on the definition file, rendering the data driven user interface
comprises displaying a plurality of user interface elements that each correspond with
one of the plurality of platform parameters;

receive user-input for one of the plurality user interface elements, the
user-input modifying a respective value associated with one of the plurality of
platform parameters;

retrieve a plurality of values from the plurality of user interface
elements, the plurality of values being used to configure a plurality of platform
features for the platform; and

generate the device profile based at least in part on the plurality of
values, the device profile being executed in association with the platform on a mobile

device.

9. The non-transitory computer-readable medium of claim 8, wherein the
plurality of user interface elements comprises at least one of a text box, a drop-down menu,

or a check-box.

10. The non-transitory computer-readable medium of claim 8, wherein program
instructions further cause the computing device to generate the device profile based at least in

part on a translation of the plurality of values into an executable file for the platform.

40

WO 2019/139855 PCT/US2019/012575

11. The non-transitory computer-readable medium of claim 10, wherein the
executable file comprises at least one of a JavaScript Object Notation (JSON) file or an

Extensible Markup Language (XML) file.

12. The non-transitory computer-readable medium of claim 8, wherein each of the
plurality of platform parameters comprises a field type and a unique identifier for a plurality

of respective parameters for a plurality of platforms.

13. The non-transitory computer-readable medium of claim 8, wherein the
plurality of platform features comprises at least one of a wireless communication setting, a

phone application, and a text messaging application.

14. The non-transitory computer-readable medium of claim 8, wherein the
program instructions further cause the computing device to transmit the device profile to the

mobile device by way of a platform messaging service.

15. A computer-implemented method, comprising:
receiving, in a computing device, a request to generate a device profile for a
platform;
retrieving, in the computing device, a definition file associated with the platform
from a data store, the definition file comprising a plurality of platform parameters associated
with the platform;
rendering, in the computing device, a data driven user interface for configuring

the device profile based at least in part on the definition file, rendering the data driven user

41

WO 2019/139855 PCT/US2019/012575

interface comprises displaying a plurality of user interface elements that each correspond with
one of the plurality of platform parameters;

receiving, in the computing device, user-input for one of the plurality user
interface elements, the user-input modifying a respective value associated with one of the
plurality of platform parameters;

retrieving, in the computing device, a plurality of values from the plurality of
user interface elements, the plurality of values being used to configure a plurality of platform
features for the platform; and

generate, in the computing device, the device profile based at least in part on
the plurality of values, the device profile being executed in association with the platform on a

mobile device.

16. The computer-implemented method of claim 15, wherein the plurality of user

interface elements comprises at least one of a text box, a drop-down menu, and a check-box.

17. The computer-implemented method of claim 15, wherein generating the
device profile is further based at least in part on a translation of the plurality of values into an

executable file for the platform.

18. The computer-implemented method of claim 17, wherein the executable file

comprises at least one of a JavaScript Object Notation (JSON) file or an Extensible Markup

Language (XML) file.

42

WO 2019/139855 PCT/US2019/012575

19. The computer-implemented method of claim 15, wherein the plurality of
platform features comprises at least one of an audio capturing application, an image capturing

application, a phone application, and a text messaging application.

20. The computer-implemented method of claim 15, further comprising
transmitting, by way of the computing device, the device profile to the mobile device by way

of a platform messaging service.

43

WO 2019/139855

100\

1/8

Management System 103

Management Console 116

Metadata APl 118

Data Driven Ul 121

OEM Specific Adapter 124

Data Store 117

Profile Ul Data 127

PCT/US2019/012575

OEM Specific Messaging
Service 106

Compliance Rules 130

Definition File Repository 109

Device Data 133

Translation App. 174

Data Store 166

Enterprise Data 136

OEM Profiles 169

User Account Data 139

Data Store 17

Definition File Data 175

A

Client Device(s) 112

Client Applications 142

Operating System 145

Enterprise Agent 148

Data Store 156

Enterprise Device Profile 155

Enterprise Data 158

FIG. 1A

PCT/US2019/012575

WO 2019/139855

2/8

dal 9Old

601
Aoyisodey
3ll4 uoniuyeq

I1T
2J0}S Ble(

>

o8l
90IAIBS OUAS
a|npeyos

|
" sanjep I
|

panesg Sm_osms_."

vl

Jaydepy oyoads N0

%

6l

|dV IndinQ sjoid

c8l

S[osuo 1N 8jyo.d

1Zl

IN UsALQ ele(

!

8lt

|dV EjepedN

9l @|osuo) Juswaebeue

/7
\

2T
\\ 98l |

ﬁ__om__o_oi

N aloid |
N I

N —_———

90t
90IAI8S
Buibesson

ooedg INJO

i
a0IAe(a1 D

V/oo |

PCT/US2019/012575

WO 2019/139855

3/8

¢ Old

€0c
801N S

uonejsuel] N30

vl
‘ddy uoljejsuel |

601
AlojIsodey
3|4 uoliuyeg

olT
a|osu0)
uswabeuey

colb
welsAg
uswabeuey

901
90INBS
Buibessap

oedg NTO0

90¢
80IAIeS
3|4 uoniuieg N30

!

41
soIne(sl D

V/OON

WO 2019/139855 PCT/US2019/012575

4/8

116
\ (START)

A

Receive a request to generate a device profile for a target platform on a
data driven user interface
301

h 4

Receive the definition file for the target platform from a definition file
repository and store in data store
304

Retrieve the definition file for the target platform from the data store
307

A 4

Use the definition file to identify platform-specific parameters for the
data drive user interface
310

v

Render a data driven profile user interface for configuring the device
profile for the target platform
313

Receive user-input for a user interface element on the data driven
profile user interface
316

y

Retrieve values from the user interface elements on the data driven
profile user interface
319

y

Generate device profile for target platform using the retrieved values
322

y

Transmit a command to OEM specific messaging service facilitate the
installation of the device profile in a mobile device
325

h 4

(END)

FIG. 3

WO 2019/139855

116

5/8

(START)

\ 4

Establish a communications channel with a definition file repository
401

Receive an OEM definition file from an OEM definition file service
403

Translate the OEM definition file to a console definition file in a definition
file repository
404

Transmit the latest console definition file to a data store of a
management system
407

v

Receive a request to generate a device profile for a target platform
410

A

Retrieve the console definition file for the target platform from the data
store
416

\ 4

Use the console definition file to identify platform-specific parameters for
the data driven user interface
419

v

Render a data driven console user interface for configuring the device
profile for the target platform
422

FIG. 4A

PCT/US2019/012575

WO 2019/139855 PCT/US2019/012575

6/8

Receive user-input for a user interface element on the data driven
console user interface
425

A
Retrieve platform-specific parameter values from the user interface
elements on the data driven console user interface
428

A
Translate the platform-specific parameter values into an OEM specific
device profile using an OEM specific adapter
431

A
Transmit a command to the OEM specific messaging service to facilitate
an installation of the device profile to a mobile device
434

h 4

(END)

FIG. 4B

WO 2019/139855 PCT/US2019/012575

718

116

\ FIG. 5A

Authenticate an administrator identity
501

v

Receive a request to generate a device profile for a target platform
503

v

Retrieve the definition file for the target platform from the data store
204

Y
Use the definition file to identify platform-specific parameters for the
data driven user interface
307

v

Retrieve previous values platform-specific parameters for the data
driven user interface
210

4
Render a data driven user interface for configuring the device profile for
the target platform
213

v

Receive user-input for a user interface element on the data driven user
interface
216

v

Retrieve values from the user interface elements on the data driven
user interface
519

v

Perform a translation of the values for the device profile
522

v

Determine OEM specific messaging service for the mobile device
523

v

Transmit a notification command to the OEM specific messaging service
for installation
525

v

Transmit the device profile to the mobile device upon activation of URL
link
228

WO 2019/139855 PCT/US2019/012575

8/8

116

\ FIG. 5B

Authenticate an administrator identity
251

v

Receive a request to generate a device profile for a target platform on a
data driven user interface
353

v

Retrieve the definition file for the target platform from the data store
254

v

Use the definition file to identify platform-specific parameters for the
data driven user interface
357

v

Retrieve previous values platform-specific parameters for the data
driven user interface
560

A
Render a data driven user interface for configuring the device profile for
the target platform
263

v

Receive user-input for a user interface element on the data drive user
interface
566

v

Retrieve values from the user interface elements on the data drive user
interface
569

v

Perform a translation of values for the device profile
572

v

Determine an OEM specific messaging service for transmitting the
device profile to a mobile device
573

v

Transmit an installation command and device profile to OEM specific
messaging service
275

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2019/012575

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 8/38(2018.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 8/38; GOGF 15/173; GO6F 3/00; GO6F 7/00; GO6N 5/00, GO6Q 10/00; HO4L 12/24

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electromic data base consulted during the international search (name of data base and, where practicable, search terms used)
¢eKOMPASS(KIPO internal) & keywords: device profile, definition file, platform, parameters, user interface, XML

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See paragraphs [0066]-[0180]; claims 1, 12, 21; and figures 1-9.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2006-0161646 A1 (MARC CHENE et al.) 20 July 2006 1-20
See paragraphs [0021]1-[0043], [00631; claim 1; and figure 1.
Y US 2009-0099981 A1 (RANDAL J. HEULER et al.) 16 April 2009 1-20
See paragraphs [0033]-[0054], [0066]; and figures 1-6A.
A US 20140280975 A1 (ORACLE INTERNATIONAL CORPORATION) 18 September 2014 1-20
See paragraphs [0024]-10056], [0062]-[0066]: and figures 1-3, 7.
A US 2009-0193445 A1 (ATUL DINESH THAKKER) 30 July 2009 1-20
See paragraphs [0034]-[0039]; claims 18-22; and figure 3.
A US 2004-0111428 A1 (SURYA RAJAN et al.) 10 June 2004 1-20

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A"™ document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priotity claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

g

"

o

wpn

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory undetlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

gn

myn

ngn

Date of the actual completion of the international search
29 April 2019 (29.04.2019)

Date of mailing of the international search report

29 April 2019 (29.04.2019)

Name and mailing address of the ISA/KR

International Application Division

Korean Intellectual Property Office

189 Cheongsa-ro, Seo-gu, Dagjeon, 35208, Republic of Korea

Facsimile No. +82-42-481-8578

Authorized officer

CHIN, Sang Bum

Telephone No. +82-42-481-8398

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2019/012575
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2006-0161646 Al 20/07/2006 CA 2533318 Al 19/07/2006
EP 1842140 Al 10/10/2007
EP 1842140 A4 04/01/2012
US 7774504 B2 10/08/2010
WO 2006-077481 Al 27/07/2006
US 2009-0099981 Al 16/04/2009 US 2009-0099982 Al 16/04/2009
US 2009-0100344 Al 16/04/2009
US 2009-0100402 Al 16/04/2009
US 8364625 B2 29/01/2013
US 8370281 B2 05/02/2013
US 8479175 Bl 02/07/2013
US 8510707 B1 13/08/2013
US 8555239 Bl 08/10/2013
US 8572564 B2 29/10/2013
US 9116705 B2 25/08/2015
US 2014-0280975 Al 18/09/2014 US 9843487 B2 12/12/2017
US 2009-0193445 Al 30/07/2009 US 8301756 B2 30/10/2012
US 2004-0111428 Al 10/06/2004 AU 2003-297697 Al 30/06/2004
WO 2004-053642 A2 24/06/2004
WO 2004-053642 A3 24/03/2005

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report

