
(12) (19)	
(54)	Title Phthalic acid diamide derivatives, agricultural and horticultural insecticides, and a method for application of the insecticides
(51) ⁶	International Patent Classification(s) C07C 233/66 C07C 235/56 A01N 037/30 C07C 317/40 A01N 043/40 C07C 323/42 C07C 233/75 C07D 213/46 C07C 233/80
(21)	Application No: 199893292 (22) Application Date: 1998.11.20
(30)	Priority Data
(31)	Number(32)Date(33)Country9-3393931997.11.25JP
(43)	Publication Date : 1999.06.24
(43)	Publication Journal Date : 1999.06.24
(44)	Accepted Journal Date : 1999.11.04
(71)	Applicant(s) Nihon Nohyaku Co., Ltd.
(72)	Inventor(s) Masanori Tohnishi; Hayami Nakao; Eiji Kohno; Tateki Nishida; Takashi Furuya; Toshiaki Shimizu; Akira Seo; Kazuyuki Sakata; Shinsuke Fujioka; Hideo Kanno
(74)	Agent/Attorney DAVIES COLLISON CAVE,1 Little Collins Street,MELBOURNE VIC 3000

ABSTRACT

The present invention provides a phthalic acid diamide derivative represented by the general formula (I),

T

(wherein R^1 , R^2 and R^3 may be same or different, and are each a hydrogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_3 - C_6 cycloalkenyl group, a halo- C_3-C_6 cycloalkenyl group, or a group of the formula $-A^1-Q_\ell$; X may be the same or different and are each a hydrogen atom, a halogen atom, a cyano group, a nitro group, a phenyl group, a substituted phenyl group, a naphthyl group, a substituted naphthyl group, a heterocyclic group, a substituted heterocyclic group; or a group of the formula $-A^2-R^7$; <u>n</u> is an integer of 1 to 4; Y may be same or different and are each a hydrogen atom, a halogen atom, a cyano group, a nitro group, a phenyl group, a substituted phenyl group, a naphthyl group, a substituted naphthyl group, a heterocyclic group, a substituted heterocyclic group or a group of the formula $-A^2-R^7$; m is an integer of 1 to 5; Z^1 and Z^2 are each an oxygen atom or a sulfur atom}, and an agricultural and horticultural insecticide containing said phthaldiamide derivative, as well as to provide a method for use of said insecticide.

The agricultural and horticultural insecticides

1/2

of the present invention show excellent activities for controlling injurious insects.

.

•...•

• • • • • •

•••••

•••••

-

1

AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION

NAME OF APPLICANT(S):

Nihon Nohyaku Co., Ltd.

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE Patent Attorneys 1 Little Collins Street, Melbourne, 3000.

INVENTION TITLE:

•

•••••

Phthalic acid diamide derivatives, agricultural and horticultural insecticides, and a method for application of the insecticides

The following statement is a full description of this invention, including the best method of performing it known to me/us:-

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The present invention relates to phthalic acid diamide derivatives, agricultural and horticultural insecticides containing said derivative as an active ingredient, and a method for application of the insecticides.

RELATED ART

5

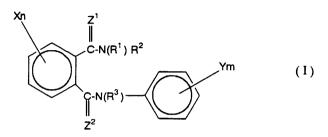
Japanese Patent Application Nos. 59-163353 and 10 61-180753 and J.C.S. Perkin I, 1338-1350, (1978), etc. disclose some of the phthalic acid diamide derivatives of the present invention but neither describe nor suggest their usefulness as agricultural and horticultural insecticides.

15 SUMMARY OF THE INVENTION

The present inventors earnestly studied in order to develop a novel agricultural and horticultural insecticide, and consequently found that the phthalic acid diamide derivatives represented by the general formula (I)

20 of the present invention are novel compounds not known as agricultural and horticultural insecticides in any literature and that said derivatives including the compounds disclosed in the above references can be used for a new purpose as agricultural and horticultural insecticides.

- la -


Thus, the present invention has been accomplished.

DETAILED DESCRIPTION OF THE INVENTION

5

•••••

The present invention relates to phthalic acid diamide derivatives of the general formula (I),

wherein R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_3 - C_6 cycloalkenyl group, a halo- C_3 - C_6 cycloalkenyl group or a group of the formula $-A^1-Q_\ell$ (wherein A^1 is $-O_-$, $-S_-$, $-SO_2-$, -C(=O)-, a 10 group of the formula $-N(R^4)$ - (wherein R^4 is a C_1-C_6 alkylcarbonyl group, a halo- C_1 - C_6 alkylcarbonyl group, a C_1 - C_6 alkoxycarbonyl group, a phenylcarbonyl group, or a substituted phenylcarbonyl group having at least one substituent which may be the same or different, and is 15 selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a

20 C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group,

- 2 -

a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different), a C_1 - C_8 alkylene group, a C_3 - C_6 alkenylene group or a C_3 - C_6 alkynylene group; (1) when A¹ is -O- or a group of the formula -N(R⁴)-

(wherein R^4 is the same as defined above), then Q is a 5 hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a 10 halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy 15 group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkyl sulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$

: · · ·

••••••

••••••

•••••

,....

•••••

•••••

- alkylamino group which may be the same or different, a 20 phenyl- C_1-C_4 alkyl group or a substituted phenyl- C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6
- 25 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6

- 3 -

alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different;

5 (2) when A^1 is -S-, -SO₂- or -C(=O)-, then Q is a C₁-C₆ alkyl group, a halo- C_1 - C_6 alkyl group, a C_3 - C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a C_1-C_6 alkoxy group, a mono- C_1 - C_6 alkylamino group, a di- C_1 - C_6 alkylamino group which may be the same or different, a C_1-C_6 10 alkoxycarbonylamino group, a C_1-C_6 alkoxycarbonyl- C_1-C_6 alkylamino group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl 15 group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkyl-20 sulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a phenylamino group, a substituted phenylamino group having at least one substituent, in the phenyl ring, which may be 25 the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6

.....

:....

•••••

••••••

•••••

•••••

• • • • • •

alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl

- 4 -

••••

•••••

.....

•••••

• • • • • •

• • • • • •

group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, a halo- C_1 -

- 5 C₆ alkylsulfonyl group, a mono-C₁-C₆ alkylamino group and a di-C₁-C₆ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a 10 halogen atom, a cyano group, a nitro group, a C₁-C₆ alkyl group, a halo-C₁-C₆ alkyl group, a C₂-C₆ alkenyl group, a halo-C₂-C₆ alkenyl group, a C₂-C₆ alkenyl group, a halo-C₂-C₆ alkenyl group, a C₂-C₆ alkynyl group, a halo-C₂-C₆ alkynyl group, a C₁-C₆ alkoxy group, a halo-C₁-C₆ alkoxy group, a C₁-C₆ alkylthio group, a halo-C₁-C₆ alkylthio
- sulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a heterocyclic group (which means pyridyl group, pyridine-N-20 oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group,
- 25 imidazolyl group, triazolyl group or a pyrazolyl group), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is

- 5 -

• • • •

•••••

•

·....

• • • • •

••••••

•••••

selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo $-C_1-C_6$ alkyl group, a C_2-C_6 alkenyl group, a halo $-C_2-C_6$ alkenyl group, a c2-C6 alkynyl group, a halo $-C_2-C_6$ alkynyl group, a

5 C₁-C₆ alkoxy group, a halo-C₁-C₆ alkoxy group, a C₁-C₆ alkylthio group, a halo-C₁-C₆ alkylthio group, a C₁-C₆ alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono-C₁-C₆ alkylamino group and a di-C₁-C₆ alkylamino group 10 which may be the same or different,

(3) when A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group, then Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 15 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a di- C_1 - C_6 alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or 20 different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6

25 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6

:....

•

•••••

.....

•••••

alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different

5 and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a 10 C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group 15 (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 20 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 -25 C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a

di-C₁-C₆ alkylamino group which may be the same or different, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is

- 7 -

••••••

•••••

• • •

- (wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group, a halo- C_1 - C_6 alkylcarbonyl group, a C_1 - C_6 alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl 5 group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a phenyl C_1-C_4 alkoxycarbonyl group, or a substituted phenyl C1-C4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a 20 cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a 25 C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group,
 - a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different); and

-O-, -S-, -SO-, -SO₂- or a group of the formula $-N(R^6)$ -

.....

•••••

•••••

•••••

•••••

•••••

• • •

 R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a

- 5 C_1-C_6 alkylcarbonyl group, a halo C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, 10 a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 15 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the 20 phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a
- 25 C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a

:-:.

•••••

••••••

•••••

•••••

mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the

- 5 group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 10 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined 15 above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a 20 halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a
- 25 C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different);

 $\underline{\ell}$ is an integer of 1 to 4); further,

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

5

.....

•••••

•••••

·...;

• • • • • •

•••••

X may be the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one 10 substituents which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkyl-15 thio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a 20 substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6

25 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6

- 11 -

alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as

5 defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C₁-C₆ 10 alkyl group, a halo-C₁-C₆ alkyl group, a C₂-C₆ alkenyl group, a halo-C₂-C₆ alkenyl group, a C₂-C₆ alkenyl group, a halo-C₂-C₆ alkynyl group, a C₁-C₆ alkoxy group, a halo-C₁-C₆ alkoxy group, a C₁-C₆ alkylthio group, a halo-C₁-C₆ alkylthio group, a C₁-C₆ alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl

····

•••••

· · · · ·

· · · · ·

•••••

••••••

• • •

- 15 group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkyl-sulfonyl group, a mono-C₁-C₆ alkylamino group and a di-C₁-C₆ alkylamino group which may be the same or different, or a group of the formula -A²-R⁷ (wherein A² is -O-, -S-, -SO-, -SO₂-, -C(=O)-, -C(=NOR⁸)- (wherein R⁸ is a hydrogen atom, a C₁-C₆ alkyl group, a halo-C₁-C₆ alkyl group, a C₃-C₆ alkenyl group, a C₃-C₆ alkenyl group, a C₃-C₆ alkenyl group, a C₃-C₆ alkyl group, a phenyl-C₁-C₄ alkyl group, or a substituted phenyl-C₁-C₄ alkyl group having at least one substituent, in the phenyl ring, which may be the same or
 - halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6

alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono-

- 5 C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different), a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group;
- 10 (1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_3 - C_6 alkenyl group, a halo- C_3 - C_6 alkenyl group, a C_3 - C_6 alkynyl group, a halo- C_3 - C_6 alkynyl group, a C₃-C₆ cycloalkyl group, a halo-C₃-C₆ cycloalkyl group, a C₃-C₆ cycloalkenyl group, a halo-C₃-C₆ 15 cycloalkenyl group, a $di-C_1-C_6$ alkoxyphosphoryl group which may be the same or different, a $di-C_1-C_6$ alkoxythiophosphoryl group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group 20 consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio 25 group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6

:····

•••••

••••••

•••••

•••••

• • • • • • •

- naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a 5 halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a 10 C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted hetero-15 cyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituents which may be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 20 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a 25 $di-C_1-C_6$ alkylamino group which may be the same or different, or a group of the formula $-A^3-R^9$ (wherein A^3 is
 - -C(=0)-, -SO₂-, a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene

alkylamino group which may be the same or different, a

group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene

group, a C_3-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group,

(i) when A^3 is -C(=0) - or $-SO_2$ -, then R^9 is a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a 5 $mono-C_1-C_6$ alkylamino group, a di-C_1-C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the 10 group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 -15 C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo $-C_1-C_6$ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group 20 having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6

· · ·

••••••

••••••

•••••

•••••

•••••

••••

25 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkyl-

- 15 -

sulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one 5 substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a 10 C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a $mono-C_1-C_6$ alkylamino group and a $di-C_1-C_6$ alkylamino group 15 which may be the same or different,

:....

••••••

••••••

·....;

•••••

•••••

. . .

(ii) when A^3 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_3-C_6 alkynylene group or a halo- C_3-C_6 20 alkynylene group, then R^9 is a hydrogen atom, a halogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is

25 selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo $-C_1-C_6$ alkyl group, a C_2-C_6 alkenyl group, a halo $-C_2-C_6$ alkenyl group, a C_2-C_6 alkynyl group, a halo $-C_2-C_6$ alkynyl group, a

 C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, or a group of the formula $-A^4 - R^{10}$ (wherein A^4 is $-O_{-}$, $-S_{-}$, $-SO_{-}$, $-SO_{2}^{-}$, -C(=0)-, or a group of the formula $-N(R^{11})$ - (wherein R^{11} is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a C_3-C_6 cyclo-10 alkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl 15 group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl 20 group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different 25 and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1 - C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6

: · · · ·

.....

•••••

•••••

•••••

•••••

alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl

- 17 -

••••

•...•

•••••

.....

•••••

• • • • • •

group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, group, a halo- C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alky

- 5 a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent 10 which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a 15 halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or
- 20 different); and

 R^{10} is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a

25 C_3-C_6 cycloalkenyl group, a halo- C_3-C_6 cycloalkenyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6

alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a 10 substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl 15 group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or 20 different, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the

....

••••

•

•••••••

•••••

•••••

25 same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 •

, **. . .** .

•••••

• • • • • •

 C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkyl-5 sulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different)); (2) when A^2 is -C(=0) - or a group of the formula $-C(=NOR^8)$ -(wherein R^8 is the same as defined above), then R^7 is a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_3-C_6 cycloalkyl group, a halo-10 C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a mono- C_1 - C_6 alkylamino group, a di- C_1 - C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least 15 one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 20 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group 25 which may be the same or different, a phenylamino group, a substituted phenylamino group having at least one

substituent which may be the same or different and is selected from the group consisting of a halogen atom, a

10 • • •

5

ວ**້ ເ**ັ້. ••••• • • • • • •

15

20

cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having one or more substituents which may be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino

25 same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 -

group and a $di-C_1-C_6$ alkylamino group which may be the same

or different, a heterocyclic group (which is the same as

(wherein the heterocyclic group is the same as defined

above) having at least one substituent which may be the

defined above), or a substituted heterocyclic group

· • • •

•

••••••

•...;

•••••

•••••

 C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ 5 alkylamino group which may be the same or different, (3) when A^2 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a C_3-C_6 cyclo-10 alkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a 15 halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl 20 group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at 25 least one substituent which may be the same or different

and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 ••••

••••••

•••••

••••••

••••••

•••••

alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a

- 5 C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as 10 defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6
- alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl 15 group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a 20 di- C_1-C_6 alkylamino group which may be the same or different, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is $-O_-$, $-S_-$, $-SO_-$, $-SO_2$ - or a group of the formula $-N(R^{13})$ -(wherein R^{13} is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a C_2-C_6 alkynyl
- 25 group, a C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro

group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group 10 having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 15 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ 20 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituents which may be the same or different and are selected from the group consisting of a halogen atom, a 25 cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6

.....

•••••

.....

••••••

•...•

••••••

•••••

.....

:....

alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a

 C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a 5 mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different); and R^{12} is a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different 10 and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a 15 C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a 20 substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl

••••

.....

.....

••••••

••••••

••••••

••••••

•••••

::..:

25 group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, a halo- C_1 -

 C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having 5 at least one substituents which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl 10 group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, 15 a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, or a group of the formula $-A^6-R^{14}$ (wherein A^6 is -C(=0)-, $-SO_2-$, a C_1-C_6 alkylene group, a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group, a C_2 - C_6 20 alkynylene group or a halo- C_3 - C_6 alkynylene group;

•••••

•••••

·...·

•••••

•••••

•••••

(i) when A^6 is -C(=0)- or $-SO_2-$, then R^{14} is a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the 25 group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_1-C_6 alkynyl group, a C_1-C_6 alkynyl group, a constant.

- 26 -

..... 10 •••• •••• •••••• •••••• ••••• 15 • • • • • • ••••••

 C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a 5 di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$

alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic 20 group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl

group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a 25 C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6

halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 -

· · · · ·

. . .

:....

••••

·....

....

• • • • • •

.....

· · · · ·

alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different;

(ii) when A^6 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 5 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^{14} is a hydrogen atom, a halogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, 10 a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl 15 group, a substituted phenyl group having at least one substituent which may be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl 20 group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, 25 a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the

alkeny group, 5 halo-C C₆ alky alkyls C₆ alky di-C₁-C 10 differ group or dif haloge group, 15 halo-C alkyny group, a C₁-C, group,

20

25

group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a phenylthio group, a substituted phenylthio group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C₁-C₆ alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 - alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a

 C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group 5 which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the 10 group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 -15 C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different)));

20

.....

••••••

•••••

<u>n</u> is an integer of 1 to 4;

further, X may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydro-

25 benzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), by combining together with the adjacent carbon atoms in the phenyl ring, and said condensed ring may have at least one -

.....

:....

•••••

•••••

.....

• • • • • •

••••••

substituents, which may be the same or different, and selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl 5 group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, 10 a mono- C_1-C_6 alkylamino group, a di- C_1-C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro 15 group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 -20 C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or 25 different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a

halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6

••••

:....

••••••

••••••

.....

•••••

.....

25

alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkyl-

sulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 5 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least 10 one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a 15 C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, a halo-C1-C6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group 20 which may be the same or different;

Y is the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a di- C_1-C_6 alkoxythiophosphoryl group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a

halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy 5 group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a 10 naphthyl group, a substituted naphthyl group having at ····· least one substituent which may be the same or different ••••• •••••• 15 • • • • • • • ••••• 20

and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent

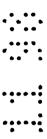
25 which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl

- 33 -

- 34 -

group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, or a group of the formula $-A^2-R^7$ (wherein A^2 and R^7 are the same as defined above);

<u>m</u> is an integer of 1 to 5;


further, Y may form a condensed ring (the 10 condensed ring is the same as defined above), by combining together with the adjacent carbon atoms in the phenyl ring, said condensed ring may have at least one substituents, which may be the same or different, and selected from the 15 group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 20 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group, a di- C_1-C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is 25 selected from the group consisting of a halogen atom, a

cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl

.....

.....

.....

group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a

5 C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro 10 group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 15 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as 20 defined above), and a substituted heterocyclic group (wherein said heterocyclic group is the same as defined above) having at lease one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6

• • • •

•••••

••••••

•••••

.....

••••••

•••••

.....

•••••

25 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group,

not 2-ethoxy group, and

- 36 -

a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different;

5

 Z^1 and Z^2 each represents an oxygen atom or a sulfur atom; provided that,

(1) when X, R¹ and R³ are hydrogen atoms at the same time; <u>m</u> is an integer of 2; Y at 2-position is a fluorine atom and Y at 3-position is a chlorine atom; then R² is not ethyl group,
10 isopropyl group, cyclohexyl group, 2-propenyl group,

methylthiopropyl group and α -methylbenzyl group,

(2) when X and R³ are hydrogen atoms at the same time; <u>m</u> is an integer of 2; Y at 2-position is a fluorine atom and Y at 3-position is a chlorine atom; then the 4 to 7 membered ring by
15 combining R¹ and R² to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom is not morpholino group,

(3) when X, R¹ and R³ are hydrogen atoms at the same time; and
20 R² is 1,2,2-trimethylpropyl group; then Y is not a hydrogen atom, 4-hydroxy group or 2-ethoxy group,

(4) when X, R^1 and R^3 are hydrogen atoms at the same time; R^2 is 2,2-dimethylpropyl group; and <u>m</u> is an integer of 1; then Y is

•••••

25 (5) when X, R¹ and R³ are hydrogen atoms at the same time; and R² is <u>tert</u>-butyl group; and <u>m</u> is an integer of 1; then Y is not 4-chlorine atom, 2-nitro group, 4-nitro group, 3methoxy group or 4-methoxy group; m is an integer of 2; then Y is not 2,6-dimethyl groups,

30 (6) when X, R^1 and R^3 are hydrogen atom at the same time; and R^2 is benzyl group; and <u>m</u> is an integer of 1; then Y is not 4methyl group, and <u>m</u> is an integer of 2; then Y is not 3, 4dichloro groups,

(7) when X and R^3 are hydrogen atoms at the same time; m is an 35 integer of 1; Y is 4-difluoromethoxy group; then R^1 and R^2 are $\overline{ST_{R}}$ t formed $-CH_2CH_2-O-CH_2CH_2$ - by combining to each other,

- 37 -

(8) R¹ and R² are not hydrogen atoms at the same time,
(9) when Z¹ and Z² are oxygen atoms at the same time; X is chlorine atom; n is an integer of 4; Y is 2,6-dinitro-3-chloro-4-trifluromethyl groups; then R¹, R² and R³ are not 5 hydrogen atoms at the same time;

agricultural and horticultural insecticides containing as an active ingredient any of the phthalic acid diamide derivatives of the general formula (I) including known compounds; and a method for application of the insecticides.

In the definition of the general formula (I) representing the phthalic acid diamide derivative of the present invention, the halogen atom includes chlorine atom, bromine atom, iodine atom and fluorine atom. The term "C₁-C₆ alkyl" means a linear or branched alkyl group of 1 to 8 carbon atoms, such as
15 methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, or the like. The term "C₁-C₈ alkylene" means a linear or branched alkylene group of 1 to 8 carbon atoms, such as methylene, ethylene, propylene, trimethylene, dimethylmethylene, tetramethylene, i-butylene,

heptamethylene, octamethylene or the like. The term "halo- C_1 - C_6 alkyl" means a substituted and linear or branched alkyl group of 1 to 6 carbon atoms having as the substituent(s) one or more halogen atoms which may be the same or different.

As the ring which R¹ and R² form by combining to each other, i.e., the 4- to 7-membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom, there can be exemplified 30 azetidine ring, pyrrolidine ring,

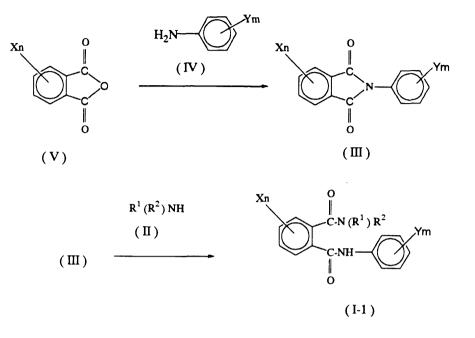
pyrroline ring, piperidine ring, imidazolidine ring, imidazoline ring, oxazolidine ring, thiazolidine ring, isoxazolidine ring, isothiazolidine ring, tetrahydropyridine ring, piperazine ring, morpholine ring, thiomorpholine ring, dioxazine ring, dithiazine ring, etc.

5

10

•••••

25


The phthalic acid diamide derivative of the general formula (I) of the present invention contains an asymmetric carbon atom or some asymmetric center in the structural formula in some cases or has two optical isomers in some cases. The present invention includes these optical isomers and all mixtures containing the optical isomers in arbitrary proportions.

Preferable examples of each substituent of the phthalic acid diamide derivative of the general formula (I)
15 of the present invention are as follows. Preferable examples of each of R¹ and R² which may be the same or different are hydrogen atom, C₁-C₆ alkyl groups such as methyl, ethyl, i-propyl, etc. Preferable examples of R³ are hydrogen atom, and C₁-C₆ alkyl groups such as methyl, ethyl, n-butyl, etc. Preferable examples of X are halogen atoms, nitro group, halo-C₁-C₆ alkyl groups, etc. Preferable examples of X are halogen atoms, halo-C₁-C₆ alkoyy groups, halo-C₁-C₆ alkyl groups,

The phthalic acid diamide derivative of the general formula (I) of the present invention can be produced, for example, by any of the processes illustrated below.

- 38 -

Production process 1.

wherein R^1 , R^2 , X, n, Y and m are as defined above.

5 A phthalic anhydride derivative of the general formula (V) is reacted with an aniline of the general formula (IV) in the presence of an inert solvent to obtain a phthalimide derivative of the general formula (III). The phthalimide derivative (III) is reacted with an amine of 10 the general formula (II) after or without being isolated, whereby a phthalic acid diamide derivative of the general formula (I-1) can be produced.

(1) General formula (V) \rightarrow general formula (III)

As the inert solvent used in this reaction, any 15 solvent may be used so long as it does not markedly inhibit the progress of the reaction. There can be exemplified aromatic hydrocarbons such as benzene, toluene, xylene, etc.; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, etc., chlorinated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene, etc.; a cyclic or cyclic ethers such as diethyl ether, dioxane, tetrahydrofuran, etc., esters such as ethyl 5 acetate, etc.; amides such as dimethylformamide, dimethylacetamide, etc.; acids such as acetic acid, etc.; dimethyl sulfoxide; and 1,3-dimethyl-2-imidazolidinone. These inert solvents may be used alone or as a mixture thereof.

Since the reaction is an equimolar reaction, it 10 is sufficient that the reactants are used in equimolar amounts, though either of them may be used in excess. If necessary, the reaction may be carried out under dehydrating conditions.

••••

• • • • • •

.....

20

As to the reaction temperature, the reaction can 15 be carried out in a temperature range of room temperature to the reflux temperature of the inert solvent used. Although the reaction time is varied depending on the scale of reaction, the reaction temperature, etc., it may be properly chosen in a range of several minutes to 48 hours.

After completion of the reaction, the desired compound is isolated from the reaction solution containing the desired compound by a conventional method, and if necessary, purified by recrystallization, column chromatography, etc., whereby the desired compound can be produced.

25 The desired compound can be subjected to the subsequent reaction without isolation from the reaction solution.

The phthalic anhydride derivative of the general formula (V) can be produced by the process described in J.

- 40 -

Org. Chem., <u>52</u>, 129 (1987), J. Am. Chem. Soc., <u>51</u>, 1865 (1929), J. Am. Chem. Soc., <u>63</u>, 1542 (1941), etc. The aniline of the general formula (IV) can be produced by the process described in J. Org. Chem., <u>29</u>, 1 (1964), Angew.

5 Chem. Int. Ed. Engl., <u>24</u>, 871 (1985), Synthesis, <u>1984</u>, 667, Bulletin of the Chemical Society of Japan, <u>1973</u>, 2351, DE-2606982, JP-A-1-90163, etc.

(2) General formula (III) \rightarrow general formula (I-1)

1

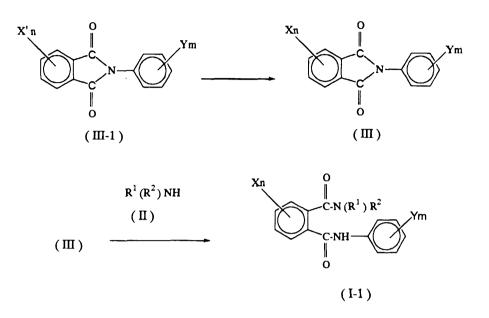
.....

• • • • • • •

.....

In this reaction, there can be used the inert 10 solvents exemplified above as the inert solvent used in the reaction (1).

Since the reaction is an equimolar reaction, it is sufficient that the reactants are used in equimolar amounts, though the amine of the general formula (II) may 15 be used in excess.


As to the reaction temperature, the reaction can be carried out in a temperature range of room temperature to the reflux temperature of the inert solvent used. Although the reaction time is varied depending on the scale of reaction, the reaction temperature, etc., it may be properly chosen in a range of several minutes to 48 hours.

After completion of the reaction, the desired compound is isolated from the reaction solution containing the desired compound by a conventional method, and if

25 necessary, purified by recrystallization, column chromatography, etc., whereby the desired compound can be produced.

- 41 -

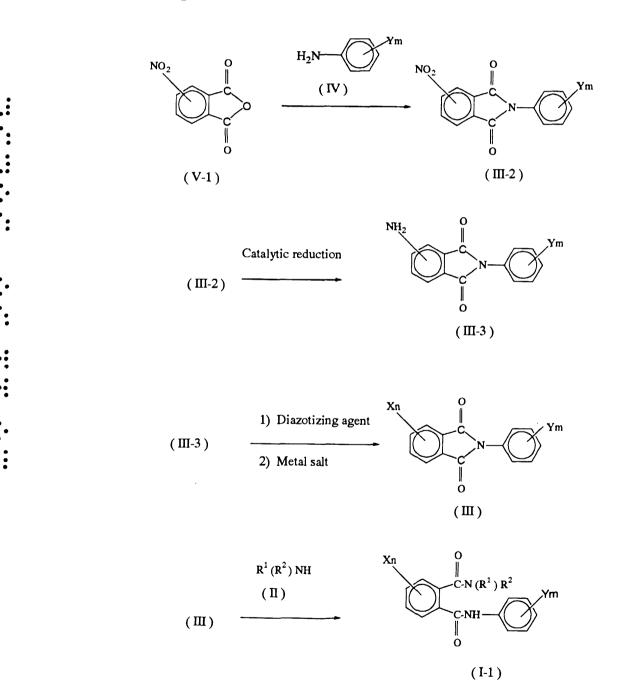
Production process 2.

wherein R^1 , R^2 , n, X, Y and m are as defined above, and X' is a halogen atom or a nitro group, provided that X is other than a hydrogen atom or a nitro group.

A phthalimide derivative of the general formula (III-1) is reacted with a reactant corresponding to X in the presence of an inert solvent to obtain a phthalimide 10 derivative of the general formula (III). The phthalimide derivative (III) is reacted with an amine of the general formula (II) after or without being isolated, whereby a phthalic acid diamide derivative of the general formula (I-1) can be produced.

15 (1) General formula (III-1) \rightarrow general formula (III)

This reaction can be carried out according to the methods described in J. Org. Chem., <u>42</u>, 3415 (1977), Tetrahedron, <u>25</u>, 5921 (1969), Synthesis, <u>1984</u>, 667, Chem. Lett., <u>1973</u>, 471, J. Org. Chem., <u>39</u>, 3318 (1974), J. Org.


5

Chem., <u>39</u>, 3327 (1974), etc.

(2) General formula (III) \rightarrow general formula (I-1)

This reaction can be carried out according to production process 1-(2).

5 Production process 3

wherein R^1 , R^2 , X, Y, m and n are as defined above.

A phthalic anhydride of the general formula (V-1) is reacted with an aniline of the general formula (IV) in the presence of an inert solvent to obtain a phthalimide 5 derivative of the general formula (III-2). The phthalimide derivative (III-2) is subjected to catalytic reduction with hydrogen after or without isolation to obtain a phthalimide derivative of the general formula (III-3). The phthalimide derivative (III-3) is converted to a phthalimide derivative of the general formula (III) by adding a diazotizing agent 10 and then a metal salt after or without isolation of the phthalimide derivative (III-3). The phthalimide derivative (III) is reacted with an amine of the general formula (II) after or without being isolated, whereby a phthalic acid 15 diamide derivative of the general formula (I-1) can be produced.

(1) General formula $(V-1) \rightarrow$ general formula (III-2)

••••

The desired compound can be produced by this reaction in the same manner as in production process 1-(1).
20 (2) General formula (III-2) → general formula (III-3)

Any solvent may be used in this reaction so long as it does not markedly inhibit the progress of the reaction. There can be exemplified alcohols such as methanol, ethanol, propanol, etc.; acyclic or cyclic ethers 25 such as diethyl ether, dioxane, tetrahydrofuran, etc., and acids such as acetic acid, etc. These inert solvents may be used alone or as a mixture thereof.

As the catalyst for catalytic reduction used in

- 44 -

this reaction, there can be exemplified palladium carbon, Raney nickel, palladium black, platinum black, etc. The amount of the catalyst used may be properly chosen in a range of 0.1 to 10% by weight based on the weight of the phthalimide derivative of the general formula (III-2). This reaction is carried out under a hydrogen atmosphere and the hydrogen pressure may be properly chosen in a range of 1 to 10 atmospheric pressure.

5

15

20

.....

As to the reaction temperature, the reaction can 10 be carried out in a temperature range of room temperature to the reflux temperature of the inert solvent used. Although the reaction time is varied depending on the scale of reaction, the reaction temperature, etc., it may be properly chosen in a range of several minutes to 48 hours.

After completion of the reaction, the desired compound is isolated from the reaction mixture containing the desired compound by a conventional method, and if necessary, purified by recrystallization, column chromatography, etc., whereby the desired compound can be produced. The desired compound can be subjected to the subsequent reaction without isolation from the reaction mixture.

(3) General formula (III-3) \rightarrow general formula (III)

In this reaction, an acidic solvent can be used as an inert solvent. The acidic solvent includes, for 25 example, an aqueous hydrochloric acid solution, an aqueous hydrobromic acid solution, an aqueous hydroiodic acid solution, an aqueous sulfuric acid solution, acetic acid and trifluoroacetic acid. These acidic solvents may be used alone or as a mixture thereof. In addition, these acidic solvents may be used in admixture with ethers such as tetrahydrofuran, dioxane, etc.

The diazotizing agent includes, for example, 5 sodium nitrite, nitrosyl hydrogensulfate and alkyl nitrites. The amount of the diazotizing agent used may be properly chosen in a range of equal amount to excess amount relative to the amount of the phthalimide derivative of the general formula (III-3).

10

15

20

, , , , , ,

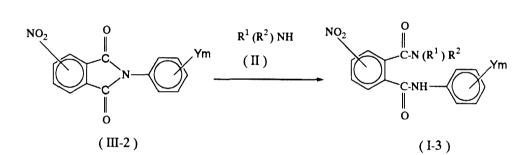
.....

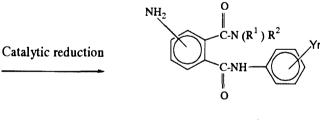
As to the reaction temperature, the reaction can be carried out in a temperature range of -50° C to the reflux temperature of the inert solvent used. Although the reaction time is varied depending on the scale of reaction, the reaction temperature, etc., it may be properly chosen in a range of several minutes to 48 hours.

As the metal salt added after the production of a diazonium salt, there can be used, for example, cuprous chloride, cuprous bromide, potassium iodide, copper cyanide, potassium xanthate and sodium thiorate. The amount of the metal salt used may be properly chosen in a range of 1 equivalent to excess equivalents per equivalent of the phthalimide derivative of the general formula (III-3).

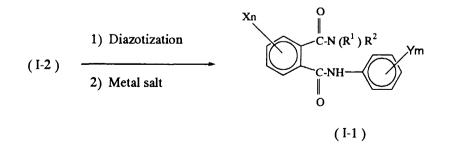
After completion of the reaction, the desired 25 compound is isolated from the reaction mixture containing the desired compound by a conventional method, and if necessary, purified by recrystallization, column chromatography, etc., whereby the desired compound can be produced. The desired compound can be subjected to the subsequent reaction without isolation from the reaction mixture.

The reaction can be carried out according to the method described in Org. Synth., IV, 160 (1963), Org. 5 Synth., III, 809 (1959), J. Am. Chem. Soc., <u>92</u>, 3520 (1970), etc.


(4) General formula (III) \rightarrow general formula (I-1)


10

Production process 4.

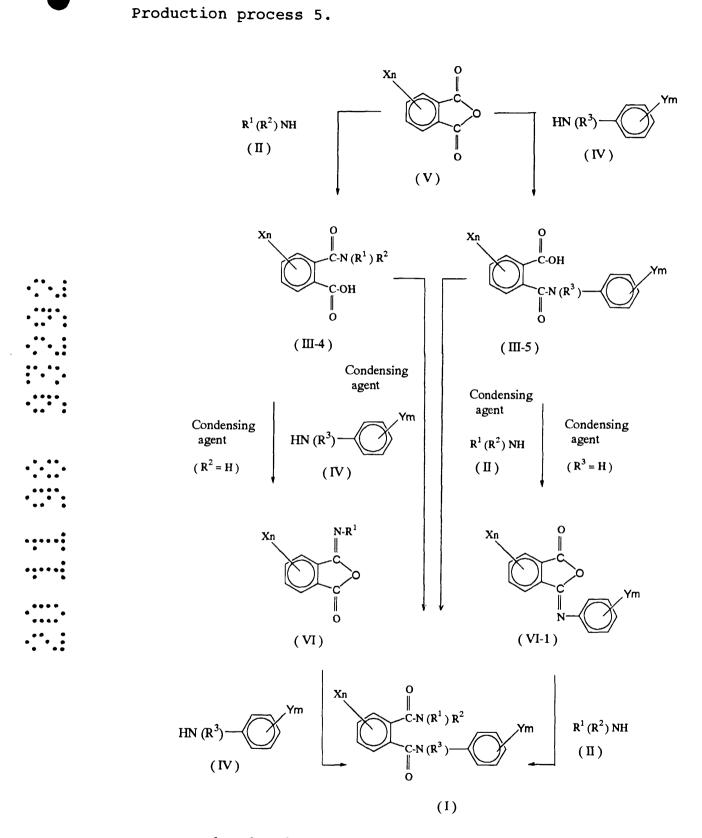

(I-3)

The desired compound can be produced by this reaction in the same manner as in production process 1-(2).

wherein R^1 , R^2 , X, Y, m and n are as defined above.

A phthalimide derivative of the general formula (III-2) is reacted with an amine of the general formula (II) in the presence of an inert solvent to obtain a phthalic acid diamide derivative of the general formula 5 (I-3). The phthalic acid diamide derivative (I-3) is subjected to catalytic reduction with hydrogen after or without isolation to obtain a phthalic acid diamide derivative of the general formula (I-2). A phthalic acid diamide derivative of the general formula (I-1) can be produced 10 from the phthalic acid diamide derivative (I-2) by adding a diazotizing agent and then a metal salt after or without isolating the phthalic acid diamide derivative (I-2). General formula (III-2) \rightarrow general formula (I-3) (1)The desired compound can be produced by this

15 reaction in the same manner as in production process 1-(2).
(2) General formula (I-3) → general formula (I-2)


The desired compound can be produced by this
reaction in the same manner as in production process 3-(2).
(3) General formula (I-2) → general formula (I-1)
The desired compound can be produced by this

reaction in the same manner as in production process 3-(3).

••••••

wherein R^1 , R^2 , R^3 , X, n, Y and m are as defined above.

A phthalic anhydride derivative of the general formula (V) is reacted with an amine of the general formula (II) in the presence of an inert solvent to obtain a phthalamide of the general formula (III-4). The

5 phthalamide (III-4) is treated as follows after or without isolation. When R² of the phthalamide (III-4) is a hydrogen atom, the phthalamide (III-4) is condensed into a compound of the general formula (VI) in the presence of a condensing agent, and the compound (VI) is reacted with an aniline of 10 the general formula (IV) in the presence of an inert solvent after or without being isolated. When R² of the phthalamide (III-4) is other than a hydrogen atom, the phthalamide (III-4) is condensed with an aniline of the general formula (IV) in the presence of a condensing agent.
15 Thus, a phthalic acid diamide derivative of the general formula (I) can be produced.

Alternatively, a phthalic anhydride derivative of the general formula (V) is reacted with an aniline of the general formula (IV) in the presence of an inert solvent to obtain a phthalanilide of the general formula (III-5). The phthalanilide (III-5) is treated as follows after or without isolation. When R^3 of the phthalanilide (III-5) is a hydrogen atom, the phthalanilide (III-5) is condensed into a compound of the general formula (VI-1) in the

20

25 presence of a condensing agent, and the compound (VI-1) is reacted with an amine of the general formula (II) in the presence of an inert solvent after or without being isolated. When R³ of the phthalanilide (III-5) is other

••••

.....

than a hydrogen atom, the phthalanilide (III-5) is condensed with an amine of the general formula (II) in the presence of a condensing agent. Thus, a phthalic acid diamide derivative of the general formula (I) can be 5 produced.

(1) General formula (V) or general formula (VI-1) →
 general formula (III-4) or general formula (I),
 respectively

The desired compound can be produced by this
10 reaction in the same manner as in production process 1-(2).
(2) General formula (III-4) or general formula (III-5) →
general formula (VI) or general formula (VI-1),
respectively

The desired compound can be produced by this 15 reaction according to the method described in J. Med. Chem., <u>10</u>, 982 (1967).

(3) General formula (VI) or general formula (V) → general formula (I) or general formula (III-5), respectively The desired compound can be produced by this

20 reaction in the same manner as in production process 1-(2). (4) General formula (III-4) or general formula (III-5) → general formula (I)

The desired compound can be produced by reacting the phthalamide derivative of the general formula (III-4) 25 or the general formula (III-5) with the aniline of the general formula (IV) or the amine of the general formula (II), respectively, in the presence of a condensing agent and an inert solvent. If necessary, the reaction can be

.....

.....

carried out in the presence of a base.

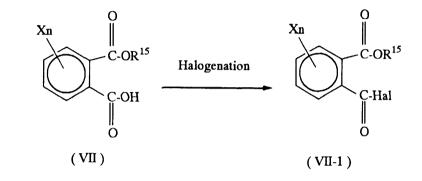
The inert solvent used in the reaction includes, for example, tetrahydrofuran, diethyl ether, dioxane, chloroform and dichloromethane. As the condensing agent

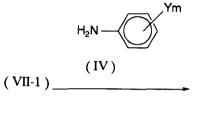
5 used in the reaction, any condensing agent may be used so long as it is used in usual amide synthesis. The condensing agent includes, for example, Mukaiyama reagent (e.g. 2-chloro-N-methylpyridinium iodide), 1,3-dicyclohexylcarbodiimide (DCC), carbonyldiimidazole (CDI) and diethyl 10 phosphorocyanidate (DEPC). The amount of the condensing agent used may be properly chosen in a range of 1 mole to excess moles per mole of the phthalamide derivative of the general formula (III-4) or the general formula (III-5).

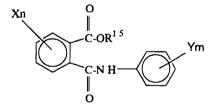
As the base usable in the reaction, there can be 15 exemplified organic bases such as triethylamine, pyridine, etc. and inorganic bases such as potassium carbonate, etc. The amount of the base used may be properly chosen in a range of 1 mole to excess moles per mole of the phthalamide derivative of the general formula (III-4) or the general 20 formula (III-5).

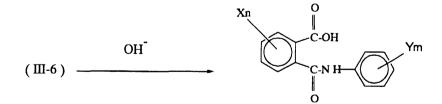
As to the reaction temperature, the reaction can be carried out in a temperature range of 0° to the boiling point of the inert solvent used. Although the reaction time is varied depending on the scale of reaction, the

25 reaction temperature, etc., it ranges from several minutes to 48 hours.


After completion of the reaction, the desired compound is isolated from the reaction solution containing

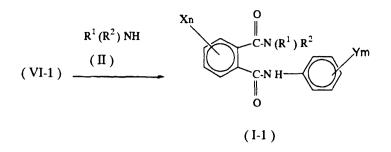

- 52 -


the desired compound by a conventional method, and if necessary, purified by recrystallization, column chromatography, etc., whereby the desired compound can be produced.


Production process 6

5





(VI-1)

wherein R^1 , R^2 , X, n, Y and m are as defined above, Hal is a halogen atom, and R^{15} is a (C_1-C_3) alkyl group.

A phthalic acid ester derivative of the general 5 formula (VII) is halogenated into a phthaloyl halide of the general formula (VII-1) in the presence or absence of an inert solvent. The phthaloyl halide (VII-1) is reacted with an aniline of the general formula (IV) in the presence of an inert solvent and a base after or without being 10 isolated, to obtain a phthalanilide of the general formula (III-6). The phthalanilide (III-6) is hydrolyzed into a phthalanilide of the general formula (III-5) in the presence or absence of an inert solvent after or without being isolated. The phthalanilide (III-5) is condensed 15 into a phthalic anhydride derivative of the general formula (VI-1) after or without being isolated. The phthalic anhydride derivative (VI-1) is reacted with an amine of the general formula (II), whereby a phthalic acid diamide derivative of the general formula (I-1) can be produced. 20 (1) General formula (VII) \rightarrow general formula (VII-1)

As the inert solvent usable in this reaction, any solvent may be used so long as it does not markedly inhibit the progress of the reaction. There can be exemplified

- 54 -

aromatic hydrocarbons such as benzene, toluene, xylene, etc.; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, etc., chlorinated aromatic hydrocarbons such as chlorobenzene, dichloro-

5 benzene, etc.; acyclic or cyclic ethers such as diethyl ether, dioxane, tetrahydrofuran, etc., and esters such as ethyl acetate, etc. These inert solvents may be used alone or as a mixture thereof.

As the halogenating agents, there can be used, 10 for example, thionyl chloride, phosphoryl chloride, and phosphorus trichloride. The amount of the halogenating agent used may be properly chosen in a range of 1 to 10 equivalents per equivalent of the phthalic acid ester of the general formula (VII).

As to the reaction temperature, the reaction can be carried out in a temperature range of 0°C to the reflux temperature of the inert solvent used. Although the reaction time is varied depending on the scale of reaction, the reaction temperature, etc., it may be properly chosen in a range of several minutes to 48 hours.

After completion of the reaction, the desired compound is isolated from the reaction solution containing the desired compound by a conventional method, and if necessary, purified by recrystallization, column chromato-25 graphy, etc., whereby the desired compound can be produced. The desired compound can be subjected to the subsequent reaction without isolation from the reaction solution. The phthalic acid ester of the general formula

- 55 -

(VII) can be produced, for example, by the process described in J. Med. Chem., <u>31</u>, 1466 (1988).

(2) General formula (VII-1) \rightarrow general formula (III-6)

As the inert solvent used in this reaction, there 5 may be used, for example, the inert solvents exemplified in production process 1-(1).

As the base, an inorganic base or an organic base may be used. As the inorganic base, there may be used, for example, hydroxides of alkali metals, such as sodium 10 hydroxide, potassium hydroxide, etc. As the organic base, there may be used triethylamine, pyridine, etc. The amount of the base used may be properly chosen in a range of 0.5 to 3 equivalents per equivalent of the phthaloyl halide of the general formula (VII-1).

Since the reaction is an equimolar reaction, it is sufficient that the reactants are used in equimolar amounts, though the amount of the aniline of the general formula (IV) used may be properly chosen in a range of 0.5 to 2 equivalents per equivalent of the phthaloyl halide of the general formula (VII-1).

15

20

25

•••••

• • • • •

As to the reaction temperature, the reaction can be carried out in a temperature range of 0° C to the reflux temperature of the inert solvent used. Although the reaction time is varied depending on the scale of reaction, the reaction temperature, etc., it may be properly chosen in a range of several minutes to 48 hours.

After completion of the reaction, the desired compound is isolated from the reaction solution containing

- 56 -

- 57 -

the desired compound by a conventional method, and if necessary, purified by recrystallization, column chromatography, etc., whereby the desired compound can be produced. The desired compound can be subjected to the subsequent reaction without isolation from the reaction solution.

(3) General formula (III-6) \rightarrow general formula (III-5)

5

15

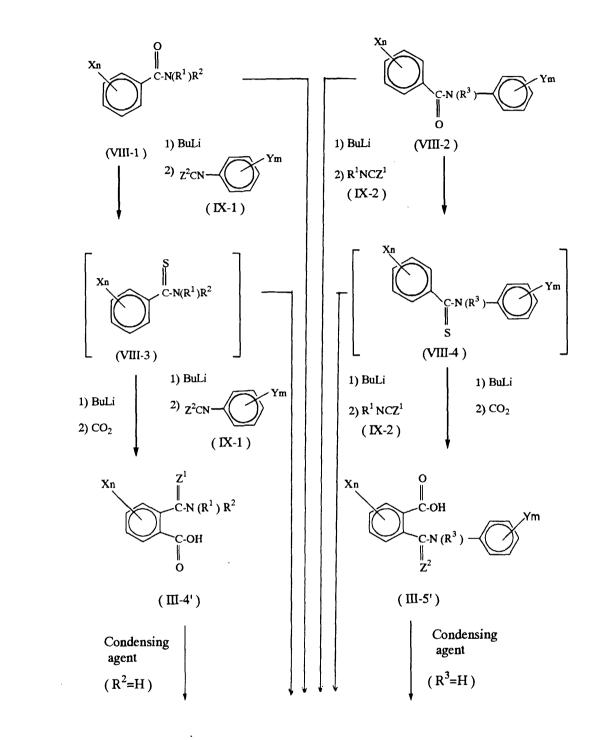
....

• • • • • • •

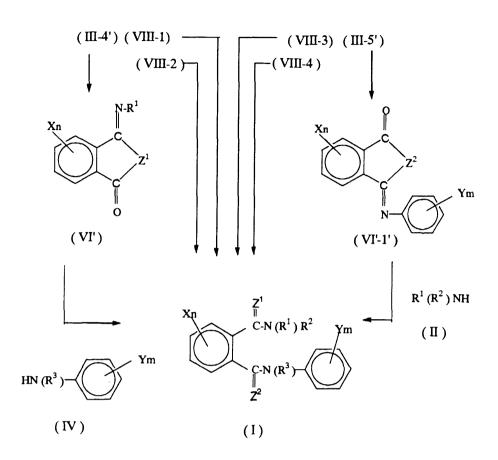
....

As the inert solvent usable in this reaction, there may be used water, alcohols (e.g. methanol, ethanol and propanol) as water-soluble solvents, and mixed solvents 10 of water and a water-soluble solvent.

As the base used for the hydrolysis, there may be used, for example, hydroxides of alkali metals, such as sodium hydroxide, potassium hydroxide, etc. The amount of the base used may be properly chosen in a range of 1 to 10 equivalents per equivalent of the phthalanilide of the general formula (III-6).


As to the reaction temperature, the reaction can be carried out in a temperature range of 0°C to the reflux temperature of the inert solvent used. Although the 20 reaction time is varied depending on the scale of reaction, the reaction temperature, etc., it may be properly chosen in a range of several minutes to 48 hours.

After completion of the reaction, the desired compound is isolated from the reaction solution containing 25 the desired compound by a conventional method, and if necessary, purified by recrystallization, column chromatography, etc., whereby the desired compound can be produced. The desired compound can be subjected to the subsequent reaction without isolation from the reaction solution.
(4) General formula (III-5) → general formula (VI-1)
The desired compound can be produced by this
reaction according to production process 5-(2).


- 58 -

5 (5) General formula (VI-1) → general formula (I-1) The desired compound can be produced by this reaction according to production process 1-(2).

Production process 7.

- 59 -

wherein R^1 , R^2 , R^3 , X, Y, m, n, Z^1 and Z^2 are as defined above.

5 A benzamide derivative of the general formula (VIII-1) or the general formula (VIII-2) or a thiobenzamide derivative of the general formula (VIII-3) or the general formula (VIII-4) obtained by thiocarbonylation of the benzamide derivative of the general formula (VIII-1) or the 10 general formula (VIII-2), respectively, is subjected to ortho-metallation by using a metal reagent such as butyllithium. The compound thus obtained is directly reacted with an isocyanate or isothiocyanate derivative of the general formula (IX-1) or (IX-2), or the compound is 15 reacted with carbon dioxide to obtain a phthalamide

- 60 -

derivative of the general formula (III-4') or the general formula (III-5'), which is treated in the same manner as in production processes 5-(1) to 5-(4). Thus, a phthalic acid diamide derivative of the general formula (I) can be

5 produced.

•

(1) General formula (VIII-1) or general formula (VIII-2) → general formula (VIII-3) or general formula (VIII-4), respectively

The desired compound can be produced by this 10 reaction according to the method described in J. Org. Chem., <u>46</u>, 3558 (1981).

(2) General formula (VIII-1), general formula (VIII-2), general formula (VIII-3) or general formula (VIII-4) → general formula (I)

In this step, the benzamide derivative of the general formula (VIII-1) or the general formula (VIII-2) or the thiobenzamide derivative of the general formula (VIII-3) or the general formula (VIII-4) obtained by thiocarbonylation of the benzamide derivative of the general formula (VIII-1) or the general formula (VIII-2), respectively, is subjected to ortho-lithiation according to the method described in J. Org. Chem., 29, 853 (1964). The compound thus obtained is reacted with the isocyanate or isothiocyanate derivative of the general formula (IX-1) or

25 (IX-2) at -80° C to room temperature, whereby the desired compound can be produced.

After completion of the reaction, the desired compound is isolated from the reaction solution containing

the desired compound by a conventional method, and if necessary, purified by recrystallization, column chromatography, etc., whereby the desired compound can be obtained.

(3) General formula (VIII-1), general formula (VIII-2),

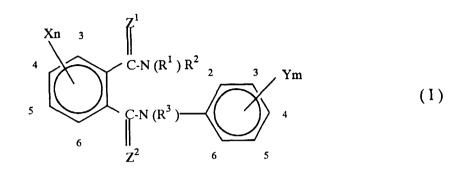
general formula (VIII-3) or general formula (VIII-4) → general formula (III-4') or the general formula (III-5')

5

.....

•

15


In this step, the desired compound can be produced by carrying out the same ortho-lithiation as in 10 the above step (2) and introducing carbon dioxide into the ortho-lithiation product at -80°C to room temperature.

After completion of the reaction, the desired compound is isolated from the reaction solution containing the desired compound by a conventional method, and if necessary, purified by recrystallization, column chromatography, etc., whereby the desired compound can be obtained. (4) General formula (III-4') or general formula (III-5') → general formula (I)

In this step, the desired compound can be 20 produced in the same manner as in production process 1-(2) or 5-(4).

Tables 1 and 2 show typical examples of the phthalic acid diamide derivative of the general formula (I) used as the active ingredient of the agricultural and 25 horticultural insecticide of the present invention, but the examples are not intended in any way to limit the scope of the present invention.

- 62 -

[Table 1]

•••••

.....

•••••

••••••

••••••

Table 1 $(Z^1, Z^2 = 0)$

No	R 1	R 2	R ³	Xn	Үш	Physical Properties (melting point: °C
1	H	Ą	Н	3-NO 2	2-CH3-5-C1	173-175
2	СНз	Н	Н	Н	4-CF 3	129-131
3	CH 3	Н	Н	3-NO2	2-CH₃-5-C1	169-171
4	СН₃	Н	H	3-NO2	2-CH3-4-0CHF2	167-169
5	CH 3	CH₃	H	6-N02	2-CH₃-5-C1	171-173
6	СН₃	СН₃	Н	6-N02	2-CH3-4-0CHF 2	167-169
7	C 2H 5	Н	H	Н	4–CF 3	134-136
8	C 2H 5	H	Н	3-C1	2-CH3-4-0CHF 2	179-180
9	C 2 H 5	Н	H	6-C1	2-CH 3-4-0CHF 2	189-190
10	C2H5	Н	H	3-NO2	2-CH3-5-C1	175-177
11	C2H5	Н	Н	3-NO2	2-CH 3-4-0CHF 2	207-208

- 64 -

Table 1 (Cont'd)

No	R 1	R2	R ³	Xn	Ym	Physical Properties (melting point: °C
12	C ₂ H ₅	C2H5	H	H	4-CF 3	148-150
13	C 2H 5	C 2H 5	Н	3-NO2	2-CH₃-5-C1	175-177
14	n-C3H7	Н	Н	H	4-CF 3	138-140
15	n-C3H7	Н	Н	3-C1	2-CH 3-4-0CHF 2	171-173
16	n-C3H7	Н	Н	6-C1	2-CH 3-4-0CHF 2	189-191
17	n-C3H7	Н	Н	3-N02	2-CH 3-4-0CHF 2	184-186
18	n-C3H7	Н	Н	3-N02	2-CH₃-5-C1	187-189
19	n-C3H7	H	Н	5-CF 3	$2,6-(C_{2}H_{5})_{2}$	230-232
20	i-C3H7	Н	H	Н	Н	192-194
21	i-C3H7	H	H	Н	2-N02	198-200
22	i-C3H7	Н	H	Н	4-N02	139-141
23	i-C3H7	H	Н	Н	4-F	199-201
24	i-C3H7	H	H	Н	2-CH3	191-193
25	i-C3H7	H	H	Н	4-CF 3	198-200
26	i-C3H7	H	H	Н	3-CF 3	174-176
27	i-C ₃ H7	H	H	Н	4-CF 2 CF 2 CF 3	237-238
28	i-C ₃ H7	Н	H	Н	4-(CF ₂) ₃ CF ₃	137-139
29	i-C3H7	H	Н	Н	4-0CF 3	155-157
30	i-C ₃ H7	Н	Н	Н	4-0CF 2 CHF0C 3 F 7 - n	220-222
31	i-C ₃ H7	H	H	Н	3–SCF 3	176-178
32	i-C ₃ H ₇	H	Н	Н	4-SCHF 2	169-170
33	i-C ₃ H ₇	H	Н	Н	4-SCH 2 CF 3	166-167
34	i−C₃H7	H	Н	Н	4-SCF 2 CHF 2	169-170

•••••

••••••

.

- 65 -

Table 1 (Cont'd)

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
35	i-C3H7	H	H	Н	4-S(CF ₂) ₃ CF ₃	159-161
36	i-C 3H7	Н	H	H	4-SCF (CF 3) 2	145-147
37	i-C3H7	Н	Н	Н	4-SCF 2CBrF 2	158-160
38	i-C3H7	Н	Н	H	4-SOCF 2CBrF 2	180-182
39	i-C3H7	Н	Н	Н	$4-SO(CF_2)_3CF_3$	192-193
40	i-C3H7	Н	Н	H	4-S02CH2CF3	169-170
41	i-C3H7	H	H	H	2,3-Cl ₂	151-153
42	i-C ₃ H ₇	H	Н	H	2,4-Cl ₂	162-164
43	i-C3H7	H	H	H	3,4-F2	172-174
44	i-C3H7	H	Н	H	2,4-(CH ₃) ₂	162-163
45	i-C3H7	Н	H	H	2-C1-4-CF 3	197-199
46	i-C 3H7	H	H	H	2-C1-4-CF(CF ₃) ₂	201-202
47	i-C 3H7	H	H	H	2-C1-4-0CF ₃	151-153
48	i-C3H7	Н	H	Н	2-Br-4-0CF₃	146-147
49	i-C3H7	Н	H	H	2-CH₃-3-C1	196-198
50	i-C3H7	Н	H	H	2-CH₃-4-C1	180-182
51	i-C3H7	H	H	Н	2-CH₃-5-C1	161-162
52	i-C3H7	Н	H	H	2-CH3-4-Br	159-261
53	i-C3H7	H	H	Н	2-CH₃-5-F	168-170
54	i-C3H7	H	Н	Н	2-CH₃-5-C₄H₅-t	203-204
55	i-C3H7	H	Н	Н	2-CH3-4-CF2CF3	157-159
56	i-C ₃ H ₇	Н	H	Н	2-CH3-4-CF2CF2CF3	177-178
57	i−C₃H7	Н	Н	H	2-CH ₃ -4-CF(CF ₃) ₂	230-231

••••••

- 66 -

Table 1 (Cont'd)

58				Xn	Үш	Properties (melting point: °C
	і−СзН7	Н	H	Н	2-CH ₃ -4-0CHF ₂	135-137
59	i-C₃H7	Н	Н	H	2-CH3-4-0CF3	172-173
60	i-C3H7	Н	Н	H	2-CH3-4-0CF 2 CHF 2	145-146
61	i-C ₃ H7	H	H	H	2-CH ₃ -3-0CF ₂ CHC1F	172-174
62	i-C3H7	H	H	H	2-CH ₃ -4-OCF ₂ CHC1F	142-144
63	i-C ₃ H7	H	H	H	2-CH 3-4-CF 2CBrF 2	164-166
64	i-C ₃ H7	H	H	H	2-CH ₃ -4-CF ₂ CC ₁₂ F	172-173
65	i−C₃H7	H	H	H	2-CH 3-4-0CF 2 CHFCF 3	151-152
66	i-C₃H7	H	H	H	2-CH ₃ -4-OCF ₂ CBrFCF ₃	163-164
67	i−C₃H7	H	H	H	2-CH ₃ -4-0CF ₂ CHF0CF ₃	146-148
68	i-C3H7	H	H	H	$2-CH_{3}-4-SC_{3}H_{7}-i$	178-180
69	i-C ₃ H ₇	H	H	H	2-CH ₃ -4-0CH ₂ 0CH ₃	165-166
70	i-C ₃ H7	H	H	H	2-CH ₃ -4-0CH ₂ SCH ₃	160-162
71	i-C3H7	H	H	H	2-CH ₃ -4-COOCH ₃	163-165
72	i-C ₃ H7	H	H	H	2-CH ₃ -4-0CH ₂ C00CH ₃	121-122
73	i-C3H7	H	H	H	$2-CH_{3}-4-(F_{5}-Ph0)$	185-187
74	i-C ₃ H ₇	H	H	H	2-CH ₃ -4-(3-CF ₃ -Ph0)	150-152
75	i-C3H7	H	H	H	2-CH ₃ -4-(2-Cl-4-CF ₃ -PhO)	183-185
76	i-C3H7	H	H	H	2-CH ₃ -4-(4-Cl-Ph-CH ₂ 0)	188-189
77	i-C3H7	H	H	H	2-CH ₃ -4-(4-Cl-PhS)	181-182
78	i-C ₃ H ₇	H	H	H	2-CH ₃ -4-(5-CF ₃ -2-Pyi-0)	165-167
79	i-C ₃ H ₇	H	H	H	2-CH ₃ -4-(3-Cl-	184-185
					$5-CF_{3}-2-Pyi-0)$	

•••••

Table 1 (Cont'd)

No	R 1	R 2	Rз	Xn	Ym	Physical Properties (melting point: °C
80	i-C3H7	H	H	Н	4-(3-Cl-5-CF ₃ -2-Pyi-S)	173-175
81	i-C3H7	Н	Н	H	$2-CH_3-4-P=0(0C_2H_5)_2$	134-136
82	i-C3H7	Н	Н	H	$2-CH_3-4-OP=S(OCH_3)_2$	132-134
83	i-C3H7	Н	H	H	2-CF 3-4-0CHF 2	147-149
84	i-C 3H7	Н	H	H	3,5-Cl2-4-0CHF2	183-185
85	i-C3H7	Н	H	Н	3-N=C(CF₃)-NH-4	217-218
86	i-C3H7	Н	H	Н	3-N=C(CF ₃)-N(CH ₃)-4	171-173
87	i-C 3H7	Н	H	3-C1	4-C4H9-n	169-171
88	i-C3H7	Н	H	3-C1	4-C₄H₂-t	224-226
89	i-C ₃ H7	н	H	3-C1	4-CF(CF ₃) ₂	198-200
90	i-C3H7	H	H	3-C1	4–CF 2 CF 2 CF 3	203-204
91	i-C3H7	H	H	3-C1	4-(CF 2) 3CF 3	176-178
92	i-C3H7	H	H	3-C1	4-0CHF 2	205-207
93	i-C3H7	H	H	3-C1	4–0CF 2 CHFOC 3 F 7 – n	169-171
94	i-C3H7	H	H	3-C1	4−SCH ₃	231-232
95	i-C3H7	H	H	6-C1	4−SCH ₃	193-195
96	i-C3H7	H	H	3-C1	4−SOCH ₃	178-182
97	i-C3H7	H	H	3-C1	4-S02CH3	208-210
98	i-C3H7	H	H	3-C1	4-SCHF 2	220-222
99	i-C 3H7	H	H	3-C1	3−SCF ₃	189-191
100	i-C3H7	H	Н	3-C1	3−SOCF ₃	183-187
101	i-C3H7	H	H	3-C1	4-SCH 2 CF 3	191-193
102	i-C 3H7	H	H	3-C1	4-SCF 2 CHF 2	198-200

•••••

Table 1 (Cont'd)

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
103	i-C3H7	H	Н	3-C1	4-SCF 2 CBrF 2	201-203
104	i-C3H7	H	Н	3-C1	$4-SCF(CF_3)_2$	221-223
105	i-C3H7	Н	Н	3-C1	4-S(CF 2) 3CF 3	199-200
106	i-C₃H7	Н	Н	3-C1	4-SOCF(CF ₃) ₂	204-206
107	i-C3H7	Н	Н	3-C1	4-S02CH2CF3	202-204
108	i-C3H7	H	H	3-C1	4-S02CF2CHF2	227-230
109	i-C3H7	H	H	3-C1	4-COCH₃	217-219
110	i-C3H7	H	H	3-C1	4-Ph	215-217
111	i-C3H7	H	H	3-C1	2,3-Cl ₂	168-169
112	i-C3H7	H	H	3-C1	2,4-Cl ₂	190-192
113	i-C 3H7	H	H	3-C1	2,4-F2	188-190
114	i-C 3H7	H	H	3-01	2-C1-4-F	172-173
115	i-C3H7	H	H	3-C1	2-F-4-Cl	181-182
116	i-C3H7	H	H	3-C1	2,3,4-F3	174-176
117	i-C3H7	H	H	3-C1	2,3-(CH ₃) ₂	187-189
. 118	i-C3H7	H	H	3-C1	2-CH ₃ -3-C1	200-202
119	i-C3H7	H	H	3-C1	2-CH3-4-C1	213-215
120	i-C3H7	H	H	3-C1	2-CH₃-5-C1	183-185
121	i-C3H7	H	Н	3-C1	2-CH3-4-Br	210-212
122	i-C3H7	H	н	3-C1	2-CH3-4-I	206-208
123	i−C₃H⁊	H	Н	3-C1	2-CH ₃ -4-0CH ₃	191-192
124	i−C₃H7	H	H	3-C1	2,3-(CH ₃) ₂ -4-0CH ₃	208-210
125	i-C₃H7	H	H	3-C1	2-C1-4-CF ₃	156-157

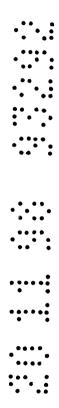
No	R 1	R ²	R ³	Xn	Үш	Physical Properties (melting point: °C
126	i-C3H7	H	H	3-C1	2-C1-4-CF(CF ₃) ₂	204-206
127	i-C3H7	Н	H	3-C1	2-CH ₃ -4-CF ₃	219-220
128	i-C3H7	Ĥ	H	3-C1	2-CH3-4-CF2CF3	199-200
129	i-C3H7	н	H	3-C1	2-CH3-4-0CF2CCl3	169-171
130	i-C3H7	Н	H	3-C1	2-CH3-4-CF2CF2CF3	214-215
131	i-C3H7	Н	H	3-C1	2-CH ₃ -4-CF(CF ₃) ₂	220-222
132	i-C3H7	Н	H	3-C1	2-CH ₃ -4-(CF ₂) ₃ CF ₃	188-189
133	i-C3H7	Н	H	3-C1	2-CH ₃ -4-(CF ₂) ₅ CF ₃	161-163
134	i-C3H7	Н	H	3-C1	3-C1-4-0CHF 2	197-199
135	i-C3H7	Н	H	3-C1	2-C1-4-0CF 3	158-159
136	i-C3H7	H	H	3-C1	2-Br-4-0CF 3	169-170
137	i-C3H7	H	H	3-C1	3-F-4-0CHF 2	211-212
138	i-C3H7	H	H	3-C1	2-CH3-4-0CHF 2	193-195
139	i-C3H7	H	H	3-C1	2-CH 3 - 4-OCF 3	199-201
140	i-C3H7	H	H	3-C1	2-CH3-4-0CBrF2	181-182
141	i-C3H7	H	H	3-C1	2-CH 3-4-OCF 2 CHF 2	202-204
142	i-C3H7	H	H	3-C1	2-CH3-3-0CF2CHC1F	169-171
143	i−C₃H7	H	H	3-C1	2-CH3-4-0CF2CHC1F	194-196
144	i−C₃H7	H	H	3-C1	2-CH3-4-0CF2CBrF2	193-194
145	i-C3H7	H	Н	3-C1	2-CH3-4-0CF2CC12F	202-203
146	i−C₃H7	H	H	3-C1	2-CH3-4-0CF2CHFCF3	186-187
147	i-C3H7	H	H	3-C1	2-CH3-4-OCH2CF2CHF2	207-208
148	i-C3H7	H	H	3-C1	2-CH3-4-OCF2CBrFCF3	205-206

- 70 -

Table 1 (Cont'd)

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
149	i-C3H7	н	Н	3-C1	2-CH3-4-OCF 2 CHFOCF 3	179-181
150	i-C3H7	H	H	3-01	2-CH ₃ -4-0CHF ₂ -5-C1	191-192
151	i-C3H7	H	H	3-C1	3,5-Cl2-4-0CHF2	205-207
152	i-C3H7	Н	Н	3-C1	2-CH3-4-OCF2CHF2-5-C1	211-212
153	i-C3H7	H	Н	3-C1	2-CH3-4-SC3H7-i	189-191
154	i-C3H7	Н	Н	3-C1	2-CH3-4-SCHF 2	189-191
155	i-C3H7	Н	Н	3-C1	2-CH3-4-SOCHF2	173-176
156	i-C3H7	Н	Н	3-C1	2-CH3-4-SO2CHF2	168-170
157	i-C 3H7	н	H	3-C1	2-CH3-4-(F₅-Ph0)	224-226
158	i-C 3H7	H	H	3-C1	2-CH ₃ -4-(5-CF ₃ -2-Pyi-0)	189-191
159	i-C3H7	н	H	3-C1	2-CH₃-4-(3-C1-	204-205
					5-CF ₃ -2-Pyi-0)	
160	i-C 3H7	H	H	3-C1	4-(3-Cl-5-CF ₃ -2-Pyi-S)	213-215
161	i-C3H7	Н	H	3-C1	2-CH ₃ -4-P=0(0C ₂ H ₅) ₂	71-73
162	i-C3H7	H	H	3-C1	2-CH ₃ -4-OP=S(OCH ₃) ₂	168-170
163	i-C3H7	H	H	3-C1	2-CF 3-4-0CHF 2	194-196
164	i-C 3H7	H	H	3-C1	3-CF 3-4-0CHF 2	208-209
165	i-C₃H7	H	H	3-C1	3-N=C(CF ₃)-0-4	248-250
166	i-C3H7	H	H	3-C1	3-N=C(CF ₃)-NH-4	194-196
167	i-C3H7	H	H	3-C1	$3-N=C(CF_3)-N(CH_3)-4$	225-227
168	i-C3H7	H	H	4-C1	Н	190-192
169	i-C₃H7	H	H	4-C1	4-F	213-215
170	i-C3H7	H	H	4-C1	2-CH₃	208-210

.


No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
171	i-C 3H7	Н	Н	4-C1	3-CF 3	196-198
172	i-C 3H7	Н	H	4-C1	4-0CF 3	192-194
173	i-C 3H7	H	H	4-C1	2,4-Cl ₂	174-176
174	i-C 3H7	H	H	4-C1	3,4-F ₂	231-233
175	i-C3H7	H	H	4-C1	2,3-Cl 2	186-188
176	i-C 3H7	H	H	4-C1	2-CH₃-3-C1	203-205
177	i-C 3H7	H	H	4-C1	2-CH₃-4-C1	206-208
178	i-C3H7	H	H	4-C1	2-CH₃-5-C1	207-208
179	i-C3H7	H	H	4-C1	2-CH₃-5-F	229-231
180	i-C 3H7	H	H	4-C1	2-CH 3-4-0CHF 2	223-224
181	i-C 3H7	H	H	5-C1	Н	186-188
182	i-C 3H7	H	H	5-C1	4-F	209-211
183	i-C3H7	H	H	5-C1	2-CH₃	187-189
184	i-C3H7	H	Н	5-Cl	3-CF ₃	198-200
185	i-C3H7	H	H	5-C1	4-0CF 3	180-182
186	i-C3H7	H	H	5-C1	2,3-Cl ₂	167-169
187	i-C3H7	H	н	5-Cl	2,4-Cl ₂	165-167
188	i-C3H7	H	Н	5-C1	3,4-F ₂	207-209
189	i-C3H7	H	H	5-C1	2-CH ₃ -3-Cl	204-206
190	i-C3H7	H	H	5-C1	2-CH ₃ -4-Cl	202-204
191	i-C3H7	Н	H	5-C1	2-CH ₃ -5-Cl	209-210
192	i-C ₃ H ₇	H	H	5-C1	2-CH ₃ -5-F	192-194
193	i-C3H7	Н	H	5-C1	2-CH 3-4-0CHF 2	188-189

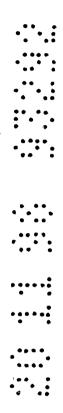
No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
194	i-C ₃ H ₇	H	Н	5-C1	2,3,4-F ₃	224-226
195	i-C ₃ H ₇	H	н	6-C1	4-C4H9-n	194-196
196	i-C ₃ H ₇	Н	Н	6-C1	$4-C_4H_9-t$	235-237
197	i-C3H7	Н	Н	6-C1	4-CF 2 CF 2 CF 3	216-217
198	i-C3H7	Н	Н	6-C1	4-CF(CF ₃) ₂	209-211
199	i-C3H7	Н	H	6-C1	4-(CF ₂) ₃ CF ₃	196-198
200	i-C3H7	Н	H	6-C1	4-0CHF 2	223-225
201	i-C3H7	Н	н	6-C1	4-0CF 2 CHF0C 3 F 7 - n	205-207
202	i-C3H7	Н	н	6-C1	4-SCH 2 CF 3	189-190
203	i-C3H7	Н	н	6-C1	4-SCF 2 CHF 2	211-213
204	i-C3H7	Н	H	6-C1	4-SCF(CF ₃) ₂	250-252
205	i-C 3H7	H	H	6-C1	4-S(CF 2) 3CF 3	210-212
206	i-C₃H7	H	H	6-C1	3−SOCF ₃	212-215
207	i-C3H7	H	H	6-C1	4-COCH₃	230-232
208	i-C3H7	H	H	6-C1	2,3-Cl ₂	179-180
209	i-C3H7	H	H	6-C1	2,4-Cl ₂	199-200
210	i-C3H7	H	H	6-C1	2,4-F ₂	196-198
211	i-C3H7	H	H	6-C1	2-C1-4-F	196-197
212	i-C3H7	H	H	6-C1	2-F-4-C1	184-186
213	i-C3H7	H	H	6-C1	2,3-(CH ₃) ₂	214-216
214	i-C3H7	H	H	6-C1	2-CH₃-4-C1	233-235
215	i-C3H7	H	H	6-C1	2-CH₃-5-C1	204-206
216	i-C3H7	H	H	6-C1	2-CH3-4-Br	242-244

No	R 1	R ²	Rз	Xn	Ym	Physical Properties (melting point: °C
217	i-C3H7	Н	H	6-C1	2-CH₃-4-I	236-238
218	i-C3H7	н	Н	6-C1	2-CH3-4-0CH3	195-197
219	i-C 3H7	Н	H	6-C1	2,3-(CH ₃) ₂ -4-0CH ₃	242-244
220	i-C3H7	H	H	6-C1	2-C1-4-CF 3	171-172
221	i-C ₃ H7	H	H	6-C1	2-CH3-4-CF3	234-236
222	i-C3H7	H	H	6-C1	2-CH3-4-OCF2CC13	169-171
223	i-C 3H7	H	H	6-C1	2-CH 3-4-CF 2 CF 3	215-217
224	i-C3H7	H	H	6-C1	$2-CH_3-4-CF(CF_3)_2$	238-240
225	i-C3H7	H	H	6-C1	2-CH ₃ -4-(CF ₂) ₃ CF ₃	177-178
226	i-C3H7	H	H	6-C1	2-CH ₃ -4-(CF ₂) ₅ CF ₃	167-169
227	i-C3H7	H	H	6-C1	3,5-Cl 2-4-0CHF 2	196-198
228	i-C 3H7	H	H	6-C1	2-CH3-4-0CF2CC12F	218-220
229	i-C 3H7	H	H	6-C1	2-CH3-4-OCF2CBrF2	214-215
230	i-C3H7	H	H	6-C1	2-CH3-4-OCH2CF2CHF2	212-213
231	i-C 3H7	H	H	6-C1	2-C1-4-CF(CF ₂) ₂	212-214
232	i-C3H7	H	H	6-C1	3-C1-4-0CHF 2	204-206
233	i-C3H7	H	H	6-C1	3-F-4-0CHF 2	225-227
234	i-C 3H7	H	H	6-C1	2-C1-4-0CF 3	161-162
235	i-C3H7	H	H	6-C1	2-Br-4-0CF 3	188-189
236	i-C3H7	H	H	6-C1	2-CH3-4-0CHF2	213-215
237	i-C ₃ H7	H	H	6-C1	2-CH ₃ -4-0CF ₃	212-214
238	i-C3H7	H	H	6-C1	2-CH ₃ -4-0CBrF ₂	195-196
239	i-C ₃ H7	H	H	6-C1	2-CH ₃ -4-0CF ₂ CHF ₂	199-201

No	R 1	R ²	R ³	Xn		Уш	Physical Properties (melting point: °C
240	i-C3H7	H	H	6-C1	2-CH₃-3	B-OCF 2 CHC1F	195-197
241	i-C3H7	H	H	6-C1	2-CH3-4	-OCF 2 CHC1F	204-213
242	i-C3H7	H	H	6-C1	2-CH3-4	-OCF 2 CHFCF 3	199-200
243	i-C3H7	H	H	6-C1	2-CH3-4	-OCF 2CBrFCF 3	226-227
244	i−C ₃H7	Н	H	6-C1	2-CH₃-4	-OCF 2 CHFOCF 3	210-212
245	i-C3H7	Н	H	6-C1	2 - CH ₃ -4	-0CHF 2-5-C1	234-235
246	i-C 3H7	Н	H	6-C1	2-CH₃-4	-OCF 2 CHF 2 -5-C 1	230-232
247	i-C3H7	Н	H	6-C1	2-CH₃-4	-SCHF 2	199-201
248	i-C3H7	H	H	6-C1	2-CH₃-4	-(F ₅ -Ph0)	243-245
249	і-СзН7	H	H	6-C1	2 - CH₃-4	-(5-CF ₃ -2-Pyi-0)	116-120
250	i-C 3H7	H	H	6-C1	2 - CH₃-4	-(3-C1-	219-221
	-				5-	CF ₃ -2-Pyi-0)	
251	i-C3H7	H	H	6-C1	2-CH₃-4	-P=0(0C ₂ H ₅) ₂	146-147
252	i-C3H7	H	H	6-C1	2-CH₃-4	$-OP=S(OCH_3)_2$	183-185
253	i-C 3H7	H	H	6-C1	2 - CF ₃-4	-OCHF 2	234-236
254	i-C3H7	H	H	6-C1	3-CF 3-4	-OCHF 2	204-205
255	i-C 3H7	H	H	6-C1	3-N=C(C	F 3)-0-4	270-272
256	i-C3H7	H	H	6-C1	3-N=C(C	F 3)-NH-4	213-215
257	i-C3H7	H	H	6-C1	3-N=C(C	F ₃)-N(CH ₃)-4	239-241
258	i-C3H7	H	H	3,6-C	l 2	2-CH 3-4-0CHF 2	221-222
259	i-C3H7	H	H	3,6-C	l 2	2-CH3-4-C1	234-235
260	i-C ₃ H7	H	H	3,4,5	,6-Cl4	2-CH3-4-C1	265-266

No	R 1	R 2	Rз	Xn	Ym	Physical Properties (melting point: °C
261	i-C ₃ H ₇	H	H	3-Br	4-CF 3	221-223
262	i-C ₃ H7	H	Н	3-Br	4-0CF 3	208-210
263	i-C ₃ H ₇	H	Н	3-Br	2,3-(CH ₃) ₂	248-250
264	i-C3H7	H	Н	3-Br	2,4-(CH ₃) ₂	223-224
265	i-C ₃ H ₇	H	H	3-Br	2,4,6-(CH ₃) ₃	254-255
266	i-C 3H7	H	H	3-Br	2-CH₃-3-C1	215-217
267	i-C3H7	H	H	3-Br	2-CH ₃ -4-Cl	176-178
268	i-C3H7	H	H	3-Br	2-CH₃-5-C1	196-198
269	i-C3H7	Н	H	3-Br	2,3-(CH ₃) ₂ -4-Cl	222-224
270	i-C3H7	Н	H	3-Br	2,4-(CH ₃) ₂ -3-Cl	236-238
271	i-C3H7	Н	H	3-Br	2-C ₂ H ₅ -4-Cl	205-207
272	i-C3H7	H	H	3-Br	2-CH3-4-Br	220-222
273	i-C3H7	Н	H	3-Br	2,3-(CH ₃) ₂ -4-Br	200-202
274	i−C₃H7	H	H	3-Br	2-CH 3-4-I	203-205
275	i-C3H7	H	H	3-Br	2-CH₃-4-F	223-224
276	i-C3H7	Н	H	3-Br	2-C1-4-CF 3	156-157
277	i-C3H7	H	H	3-Br	2-CH 3-4-CF 3	227-228
278	i-C 3H7	Н	H	3-Br	2-CH 3-4-CF 2 CF 3	201-202
279	i−C₃H7	Н	H	3-Br	2-CH3-4-CF2CF2CF3	199-200
280	i−C₃H7	H	H	3-Br	2-CH3-4-CF(CF3)2	222-224
281	i-C3H7	H	H	3-Br	2-CH3-4-(CF2)3CF3	190-191
282	i-C3H7	H	H	3-Br	2-CH3-4-0CH3	199-200

No	R 1	R ²	R ³	Xn	Үш	Physical Properties (melting point: °C
283	i−C₃H7	H	H	3-Br	2-CH3-4-0CH2CF2CHF2	206-207
284	i-C3H7	Н	H	3-Br	2,4-(CH ₃) ₂ -3-0CHF ₂	187-189
285	i-C3H7	Н	H	3-Br	2,3-(CH ₃) ₂ -4-0CH ₃	206-208
286	i-C 3H7	н	H	3-Br	2-C1-4-0CF 3	165-167
287	i-C3H7	H	H	3-Br	2-Br-4-0CF 3	179-180
288	i-C3H7	Н	H	3-Br	2-CH 3-4-0CHF 2	205-207
289	i-C3H7	Н	H	3-Br	2-CH ₃ -4-0CF ₃	211-213
290	i-C3H7	Н	H	3-Br	2-CH3-4-0CBrF2	178-180
291	i-C3H7	Н	H	3-Br	2-CH 3-4-0CF 2 CHFCF 3	196-197
292	i-C3H7	H	H	3-Br	2-CH ₃ -4-0CF ₂ CHC1F	194-195
293	i-C3H7	н	H	3-Br	2-CH 3-4-0CF 2 CHF 2	205-207
294	i-C3H7	Н	H	3-Br	2-CH ₃ -3-C1-4-OCHF ₂	229-230
295	i-C 3H7	H	H	3-Br	2,3-(CH ₃) ₂ -4-0CHF ₂	219-220
296	i-C3H7	H	H	3-Br	2-CH ₃ -4-SCH ₃	215-217
297	i-C 3H7	H	H	3-Br	2-CH ₃ -4-(3-CF ₃ -Ph0)	156-158
298	i-C3H7	H	H	3-Br	2-CH ₃ -4-(3-C1-	206-208
					5-CF ₃ -2-Pyi-0)	
299	i-C3H7	H	H	3-Br	2-CH ₃ -4-(5-CF ₃ -	182-184
					2-Pyi-0)	
300	i-C3H7	H	H	3-Br	-3-0CH20-4-	195-198
301	i-C3H7	H	H	6-Br	4−CF ₃	190-192
302	і-СзН7	H	H	6-Br	4-0CF 3	210-212
303	i-C3H7	H	H	6-Br	2,3-(CH ₃) ₂	250-252


No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
304	i-C ₃ H ₇	H	H	6-Br	2,4,6-(CH ₃) ₃	272-274
305	i-C3H7	H	H	6-Br	2-CH₃-3-C1	214-216
306	i-C3H7	H	H	6-Br	2-CH₃-4-C1	198-200
307	i-C3H7	H	Н	6-Br	2-CH₃-5-C1	194-196
308	i-C3H7	H	Н	6-Br	2,3-(CH ₃) ₂ -4-Cl	227-229
309	i-C3H7	H	H	6-Br	2,4-(CH ₃) ₂ -3-Cl	249-251
310	i-C ₃ H ₇	Н	H	6-Br	2-C ₂ H ₅ -4-Cl	243-245
311	i-C ₃ H ₇	Н	Н	6-Br	2-CH3-4-Br	227-228
312	i-C ₃ H ₇	H	H	6-Br	2,3-(CH ₃) ₂ -4-Br	209-211
313	i-C3H7	Н	H	6-Br	2-CH3-4-I	227-229
314	i-C3H7	Н	H	6-Br	2-CH3-4-F	231-232
315	i-C3H7	H	H	6-Br	2-C1-4-CF 3	169-170
316	i-C3H7	H	H	6-Br	2-CH3-4-CF3	232-234
317	i-C3H7	H	H	6-Br	2-CH3-4-CF(CF3)2	236-238
318	i-C3H7	H	H	6-Br	2-CH ₃ -4-(CF ₂) ₃ CF ₃	208-210
319	i-C3H7	H	H	6-Br	2-CH3-4-0CH2CF2CHF2	209-211
320	i-C3H7	H	H	6-Br	2,4-(CH ₃) ₂ -3-0CHF ₂	247-249
321	i-C3H7	H	H	6-Br	2,3-(CH ₃) ₂ -4-0CH ₃	250-252
322	i−C₃H7	H	H	6-Br	2-CH3-4-0CH3	220-222
323	i-C3H7	H	H	6-Br	2-C1-4-0CF 3	182-183
324	i-C3H7	H	H	6-Br	2-Br-4-0CF 3	195-196
325	i-C3H7	H	H	6-Br	2-CH3-4-0CHF2	225-226
326	i-C3H7	H	H	6-Br	2-CH ₃ -4-0CF ₃	223-225

- 78 -

Table 1 (Cont'd)

328 i 329 i 330 i	i-C ₃ H ₇ i-C ₃ H ₇ i-C ₃ H ₇ i-C ₃ H ₇	H H	H	C Dm			point: °C
329 i 330 i	i-C ₃ H ₇	H		6-Br	2-0	CH 3 - 4 - 0CBrF 2	194-196
330 i			H	6-Br	2-0	CH 3 – 4– OCF 2 CHFCF 3	212-213
	i-C ₃ H ₇	H	H	6-Br	2-0	CH 3 - 4 - OCF 2 CHC 1 F	211-213
221 3		H	H	6-Br	2-0	CH 3 - 4 - OCF 2 CHF 2	214-215
1 201	i-C 3H7	H	H	6-Br	2,3	$3-(CH_3)_2-4-0CHF_2$	228-229
332 i	i-C 3H7	H	H	6-Br	2-0	CH3-3-C1-4-0CHF 2	224-225
333 j	i-C 3H7	н	H	6-Br	2-0	H₃−4−SCH₃	215-217
334 i	i-C 3H7	H	H	6-Br	2-0	H ₃ -4-(3-CF ₃ -PhO)	194-195
335 i	i-C3H7	H	H	6-Br	2-0	CH ₃ − 4 − (5 − CF ₃ −	201-203
						-2-Pyi-0)	
336 i	i-C3H7	H	H	6-Br	2-0	H₃-4-(3-C1-5-	234-236
						CF₃-2-Pyi-0)	
337 i	i-C3H7	H	H	6-Br	-3-	0CH20-4-	205-207
338 i	i-C3H7	H	H	3,4-Br ₂	2-0	H 3 – 4 – OCHF 2	196-197
339 i	i-C3H7	H	H	3,4-Br ₂	2-0	H ₃ -4-Cl	199-201
340 i	i-C3H7	H	H	3,6-Br	2-C	H 3 - 4 - 0CHF 2	233-234
341 i	i-C3H7	H	H	3,6-Br2	2-C	H ₃ -4-Cl	245-247
342 i	i-C3H7	H	H	5,6-Br ₂		2-CH 3-4-0CHF 2	208-210
343 i	i-C3H7	H	H	5,6-Br ₂	i	2-CH3-4-C1	259-261
344 i	i-C3H7	H	H	3,4,5,6-B	r4	2-CH3-4-C1	270-272
345 i	i-C3H7	H	H	3-I		4-C1	230-232
346 i	i-C ₃ H7	H	H	3-I		4-Br	251-253
347 i	i-C3H7	H	H	3-I		4-I	231-233

No	R 1	R ²	R ₃	Xn	Ym	Physical Properties (melting point: °C
348	i-C3H7	Н	H	3-I	3-CF 3	194-197
349	i-C3H7	H	Н	3-I	4-CF 3	223-224
350	i-C3H7	Н	Н	3-I	4-CF 2 CF 2 CF 3	217-219
351	i-C3H7	Н	Н	3-I	4-CF(CF ₃) ₂	209-211
352	i-C3H7	Н	H	3-I	4-0CF 3	222-223
353	i-C3H7	Н	H	3-I	4-OCF 2 CHFOCF 3	192-194
354	i-C3H7	H	H	3-I	4-SCHF 2	204-206
355	i-C3H7	H	H	3-I	4-SCH 2 CF 3	195-197
356	i-C3H7	H	H	3-I	4-SCF 2 CHF 2	196-198
357	i-C3H7	H	H	3-I	4-SCF 2CBrF 2	203-205
358	i-C3H7	H	H	3-I	4-SCF(CF ₃) ₂	170-172
359	i-C3H7	H	H	3-I	4-S(CF 2) 3CF 3	185-187
360	i-C3H7	H	H	3-I	3,4-F ₂	227-229
361	i-C3H7	H	H	3-I	2-CH₃-3-C1	222-224
362	i-C3H7	H	H	3-I	2-CH₃-4-C1	215-217
363	i-C3H7	H	H	3-I	2-CH₃-5-C1	210-212
364	i-C3H7	H	H	3-I	2,4-(CH ₃) ₂ -3-Cl	226-228
365	i-C₃H7	H	H	3-I	2,3-(CH ₃) ₂ -4-Cl	235-237
366	i-C3H7	H	H	3-I	2-CH3-4-Br	227-229
367	i-C3H7	H	H	3-I	2-CH3-4-I	201-203
368	i-C3H7	H	H	3-I	2-CH3-4-F	227-228
369	i-C3H7	Н	H	3-I	2-C1-4-CF 3	170-171
370	i-C3H7	H	H	3-I	2-CH ₃ -3-CF ₃	179-181

- 80 -

Table 1 (Cont'd)

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
371	i−C₃H7	Н	Н	3-I	2-CH ₃ -4-CF ₃	202-203
372	i-C3H7	Н	Н	3-I	2-CH3-4-CF 2 CF 3	195-196
373	i-C 3H7	H	н	3-I	2-CH3-4-CF2CF2CF3	193-195
374	i-C3H7	Н	H	3-I	$2-CH_{3}-4-CF(CF_{3})_{2}$	211-213
375	i-C3H7	H	H	3-I	$2-CH_{3}-4-(CF_{2})_{3}CF_{3}$	203-204
376	i-C3H7	H	H	3-I	2-CH ₃ -4-0CH ₃	204-206
377	i-C3H7	H	H	3-I	2-CH3-4-0-C3H7-i	209-211
378	i-C3H7	H	H	3-I	2,3-(CH ₃) ₂ -4-0CH ₃	220-222
379	i-C 3H7	H	H	3-I	2-CH ₃ -4-0CH ₂ CF ₃	223-224
380	i-C3H7	H	H	3-I	2-CH3-4-OCF 2CBrF 2	228-230
381	i-C 3H7	H	H	3-I	2-CH ₃ -4-OCF ₂ CCl ₂ F	230-231
382	i-C3H7	H	H	3-I	3-F-4-0CHF 2	208-210
383	i-C3H7	H	H	3-I	3,5-Cl ₂ -4-0CHF ₂	234-236
384	i-C3H7	H	H	3-I	3-0CH 3 - 4 - 0CHF 2	196-198
385	i-C3H7	H	H	3-I	3,4-(OCHF ₂) ₂	171-172
386	i-C3H7	H	H	3-I	2-CH 3-4-0CF 3	214-216
387	i-C3H7	H	H	3-I	2-CH3-4-0CHF 2	207-209
388	i-C3H7	H	H	3-I	2-CH3-4-OCH2CF2CHF2	229-231
389	i-C₃H7	H	H	3-I	2-CH3-4-0CBrF2	181-182
390	i-C3H7	H	H	3-I	2-CH3-4-OCF 2 CHF 2	197-199
391	i−C₃H7	н	H	3-I	2-CH3-4-OCF2CHF2-5-C1	198-200
392	i-C3H7	H	Н	3-I	2-CH3-4-OCF2CHC1F	200-201
393	i−C₃H7	H	H	3-I	2-CH 3 - 4 - OCF 2 CHFCF 3	213-214

ģ.

No	R 1	R ²	R ³	Xn	Үт	Physical Properties (melting point: °C
394	i-C₃H7	H	Н	3-I	2-CH3-4-0CF 2CBrFCF 3	233-234
395	i-C3H7	Н	Н	3-I	2-CH3-4-OCF2CHF0CF3	213-215
396	i-C3H7	Н	Н	3-I	2-CH3-4-0CHF2-5-C1	230-232
397	i-C3H7	H	Н	3-I	2-CH3-4-(F5-Ph0)	245-247
398	i-C3H7	H	H	3-I	2-CH3-4-(3-CF3-Ph0)	168-170
399	i-C3H7	Н	H	3-I	2-CH₃-4-(5-CF₃-2-	186-188
					Pyi-O)	
400	i-C3H7	H	H	3-I	2-CH ₃ -4-(3-C1-5-CF ₃ -	212-214
					2-Pyi-0)	
401	i-C 3H7	H	H	3-I	2-CH ₃ -4-SO ₂ CH ₃	172-175
402	i-C 3H7	H	H	3-I	2-CH ₃ -4-SC ₃ H ₇ -i	190-192
403	i-C3H7	H	H	3-I	2-CH3-4-SCF2CF2CF3	227-228
404	i−C₃H7	H	H	3-I	2-CH₃-4-(4-C1-PhS)	191-192
405	i-C3H7	H	H	3-I	4-(3-Cl-5-CF ₃ -2-Pyi-S)	198-200
406	i-C3H7	H	н	3-I	2-Br-4-0CF 3	196-198
407	i-C3H7	H	H	3-I	2-C1-4-CF 2CF 2CF 3	162-164
408	i-C3H7	H	H	3-I	2-C1-4-0CF 3	173-175
409	i-C3H7	H	H	3-I	2-CF 3-4-0CHF 2	219-220
410	i-C3H7	H	H	3-I	3-CF 3-4-0CHF 2	128-130
411	i-C3H7	H	H	6-I	4-C1	251-253
412	i-C3H7	H	H	6-I	4-Br	270-272
413	i-C3H7	H	H	6-I	4-I	242-244
414	i-C3H7	H	H	6-I	3−CF ₃	210-212

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
415	i-C3H7	Н	Н	6-I	4-CF 3	201-202
416	i-C3H7	H	H	6-I	4-CF (CF 3) 2	238-240
417	i-C3H7	H	Н	6-I	4-CF 2 CF 2 CF 3	238-240
418	i-C3H7	H	H	6-I	4-0CF 3	193-194
419	i−C₃H7	H	H	6-I	4-0CF 2 CHFOC 3 F 7 - n	213-214
420	i−C₃H7	H	H	6-I	4-SCH 2 CF 3	217-219
421	i-C 3H7	H	H	6-I	4-SCHF 2	224-226
422	i-C3H7	H	H	6-I	4-SCF 2 CHF 2	213-215
423	i-C3H7	H	H	6-I	4-SCF 2 CBrF 2	220-222
424	i-C3H7	H	H	6-I	4-SCF 2 CF 2 CF 3	196-197
425	i-C3H7	H	H	6-I	4-SCF(CF ₃) ₂	216-218
426	i-C3H7	H	H	6-I	4-S(CF 2) 3CF 3	201-203
427	i-C3H7	H	H	6-I	2-СН₃-3-С1	252-254
428	i-C3H7	H	H	6-I	2-CH₃-4-C1	244-246
429	i-C3H7	H	H	6-I	2,4-(CH ₃) ₂ -3-Cl	260-262
430	i-C 3H7	H	H	6-I	2-CH3-4-Br	241-243
431	i-C3H7	H	H	6-I	2-CH₃-4-I	213-215
432	i-C3H7	H	H	6-I	2-CH₃-4-F	251-252
433	i-C3H7	H	H	6-I	2-C1-4-CF 3	195-196
434	i-C3H7	H	H	6-I	2,3-(CH ₃) ₂ -4-Cl	253-255
435	i-C3H7	н	H	6-I	2-CH 3-3-CF 3	245-251
436	i-C3H7	H	H	6-I	2-CH ₃ -4-CF ₃	220-221
437	i−C₃H7	H	H	6-I	2-CH 3 - 4-CF 2 CF 3	203-205

.

I

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
438	i-C3H7	H	H	6-I	2-CH3-4-CF 2CF 2CF 3	154-156
439	i-C 3H7	H	H	6-I	$2-CH_3-4-CF(CF_3)_2$	237-239
440	i-C3H7	H	H	6-I	2-CH ₃ -4-(CF ₂) ₃ CF ₃	168-170
441	i-C3H7	H	H	6-I	2-CH ₃ -4-0CH ₃	215-217
442	i-C 3H7	H	H	6-I	2-CH3-4-0-C3H7-i	212-214
443	i-C 3H7	H	H	6-I	2-CH3-4-OCH2CF3	233-234
444	i-C3H7	H	H	6-I	2-CH3-4-OCF2CBrF2	242-244
445	i-C 3H7	H	H	6-I	2-CH3-4-OCF2CC12F	251-253
446	i-C3H7	H	H	6-I	2-CH3-4-OCF2CBrFCF3	251-253
447	i-C3H7	H	H	6-I	2-CH3-4-0CH2CF2CHF2	235-237
448	i-C 3H7	H	H	6-I	3-F-4-0CHF 2	214-216
449	i-C3H7	H	H	6-I	3,5-Cl ₂ -4-0CHF ₂	211-213
450	i-C3H7	H	H	6-I	3-0CH ₃ -4-0CHF ₂	215-217
451	i-C3H7	H	H	6-I	$2, 3-(CH_3)_2-4-OCH_3$	253-254
452	i-C3H7	H	H	6-I	2-CH3-4-0CBrF2	192-194
453	i-C3H7	H	H	6-I	2-CH3-4-0CF 2 CHF 2	216-218
454	i-C3H7	H	H	6-I	2-CH ₃ -4-OCF ₂ CHF ₂ -5-C1	230-232
455	i-C 3H7	H	H	6-I	2-CH3-4-0CF2CHC1F	205-207
456	i-C 3H7	H	H	6-I	2-CH 3-4-OCF 2 CHFCF 3	222-223
457	i-C3H7	H	H	6-I	2-CH3-4-OCF2CHF0CF3	258-260
458	i-C3H7	H	H	6-I	2-CH ₃ -4-(3-CF ₃ -Ph0)	198-199
459	i-C3H7	H	H	6-I	2-CH ₃ -4-(F ₅ -Ph0)	262-264
460	i-C3H7	H	H	6-I	2-CH ₃ -4-(5-CF ₃ -2-Pyi-0)	245-246

•••••

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
461	i-C3H7	Н	Н	6-I	2-CH ₃ -4-(3-Cl-	231-232
					5-CF ₃ -2-Pyi-0)	
462	i-C3H7	H	Н	6-I	2-CH ₃ -4-SC ₃ H ₇ -i	197-199
463	i-C 3H7	Н	H	6-I	2-CH ₃ -4-(4-Cl-PhS)	211-213
464	i-C3H7	н	H	6-I	2-CH 3-4-OCF 3	230-232
465	i-C3H7	Н	H	6-I	2-CF 3-4-0CHF 2	238-239
466	i-C 3H7	Н	H	6-I	2-Br-4-0CF ₃	215-217
467	i-C3H7	н	H	6-I	2-C1-4-0CF 3	186-188
468	i-C3H7	Н	H	6-I	2-C1-4-CF 2 CF 2 CF 3	199-200
469	i-C3H7	Н	H	6-I	2-CH ₃ -4-0CHF ₂	226-228
470	i-C3H7	Н	H	6-I	2-CH ₃ -4-0CHF ₂ -5-C1	239-240
471	i-C3H7	Н	H	6-I	3-CF 3-4-0CHF 2	238-239
472	i-C3H7	Н	H	3-F	4-(CF ₂) ₃ CF ₃	187-188
473	i-C3H7	Н	H	3-F	4-CF 2 CF 2 CF 3	182-183
474	i-C3H7	Н	H	3-F	4-CF(CF ₃) ₂	206-208
475	i-C3H7	Н	H	3-F	4-0CF 3	197-199
476	i−C₃H7	Н	H	3-F	4-0CF 2 CHFOC 3 F 7 - n	142-144
477	i-C3H7	Н	H	3-F	4–SCHF 2	190-192
478	i-C3H7	Н	H	3-F	4-SCH ₂ CF ₃	157-158
479	i−C₃H7	H	H	3-F	4-SCF 2 CHF 2	177-178
480	i−C₃H7	Н	H	3-F	4-SCF 2 CBrF 2	197-199
481	i−C₃H7	Н	H	3-F	$4-SCF(CF_3)_2$	206-208
482	i-C3H7	Н	H	3-F	4-S(CF ₂) ₃ CF ₃	173-174

No	R 1	R²	R ³	Xn	Ym	Physical Properties (melting point: °C
483	i-C3H7	H	H	3-F	4-SOCH ₂ CF ₃	115-119
484	i-C3H7	Н	H	3-F	4-SOCF 2 CBrF 2	181-182
485	i-C3H7	H	H	3-F	4-SOCF(CF ₃) ₂	195-197
486	i-C3H7	H	H	3-F	4-SO(CF ₂) ₃ CF ₃	175-176
487	i-C3H7	Н	H	3-F	4-S02CH2CF3	199-202
488	i-C 3H7	H	H	3-F	2,3-Cl ₂	175-177
489	i-C3H7	H	H	3-F	2-CH₃-3-C1	193-194
490	i-C3H7	H	H	3-F	2-CH₃-4-C1	192-194
491	i-C3H7	H	H	3-F	2-CH₃-5-C1	191-193
492	i-C3H7	Н	H	3-F	2-CH3-4-I	192-194
493	i-C3H7	H	H	3-F	2-CH₃-5-F	175-177
494	i−C₃H7	H	H	3-F	2-CH₃-3-F	187-189
495	i-C3H7	H	H	3-F	2-CH 3-4-CF 2 CF 3	213-214
496	i-C3H7	H	H	3-F	2-CH ₃ -4-CF ₂ CF ₂ CF ₃	191-192
497	i−C₃H7	H	H	3-F	2-CH ₃ -4-CF(CF ₃) ₂	241-243
498	i-C3H7	Н	Н	3-F	2-CH ₃ -4-(CF ₂) ₃ CF ₃	138-139
499	i−C₃H7	Н	H	3-F	2-CH 3-3-0CHF 2	172-174
500	i-C 3H7	Н	H	3-F	2-CH 3-4-0CHF 2	160-162
501	i-C3H7	H	H	3-F	2-CH3-4-0CF2CCl3	162-163
502	i-C 3H7	Н	н	3-F	2-CH ₃ -4-OCF ₂ CCl ₂ F	207-208
503	i-C3H7	Н	Н	3-F	2-CH3-4-OCF2CBrF2	196-197
504	i-C3H7	н	H	3-F	2-C1-4-CF 3	169-170
505	i-C₃H⁊	H	H	3-F	2–C1–4–CF 2CF 2CF 3	169-170

•••••

No	R 1	R²	R ³	Xn	Үш	Physical Properties (melting point: °C
506	i-C3H7	Н	H	3-F	3,5-Cl2-4-0CHF2	201-202
507	i-C3H7	н	H	3-F	2-C1-4-CF(CF ₃) ₂	223-225
508	i-C3H7	Н	H	3-F	2-C1-4-0CF 3	169-170
509	i-C3H7	Н	H	3-F	2-Br-4-0CF 3	164-165
510	i-C3H7	Н	H	3-F	2-CH 3-4-0CF 3	183-184
511	i-C3H7	Н	H	3-F	2-CH3-4-0CBrF2	177-178
512	i-C3H7	H	H	3-F	2-CH 3-4-0CF 2 CHF 2	172-173
513	i-C3H7	Н	H	3-F	2-CH ₃ -4-0CF ₂ CHC1F	168-169
514	i-C3H7	Н	H	3-F	2-CH 3-4-0CF 2 CHFCF 3	160-162
515	i-C3H7	H	H	3-F	2-CH3-4-0CF 2 CHF0CF 3	148-150
516	i-C3H7	H	H	3-F	$2-CH_3-4-OCF_2CBrFCF_3$	148-150
517	i-C3H7	Н	H	3-F	2-CH ₃ -4-0CHF ₂ -5-C1	187-188
518	i-C3H7	H	H	3-F	$2-CH_{3}-4-SC_{3}H_{7}-i$	165-167
519	i-C3H7	H	H	3-F	$2-CH_{3}-4-(3-CF_{3}-Ph0)$	135-136
520	i-C ₃ H7	H	H	3-F	$2-CH_{3}-4-(F_{5}-Ph0)$	206-207
521	i-C3H7	H	H	3-F	2-CH ₃ -4-(2-C1-4-	215-217
					CF 3-PhO)	
522	i-C ₃ H7	Н	H	3-F	2-CH ₃ -4-(4-Cl-PhS)	176-178
523	i-C3H7	Н	H	3-F	$2-CH_{3}-4-(5-CF_{3}-2-Pyi-0)$	175-176
524	i-C3H7	H	H	3-F	2-CH₃-4-(3-C1-	188-190
					5-CF ₃ -2-Pyi-0)	
525	i-C3H7	H	H	3-F	4-(3-Cl-5-CF ₃ -2-Pyi-S)	213-215
526	i-C3H7	H	H	3-F	$2-CH_{3}-4-OP=S(OCH_{3})_{2}$	175-177

No	R 1	R²	R ³	Xn	Ym	Physical Properties (melting point: °C
527	i-C3H7	Н	H	3-F	2-CF 3-4-0CHF 2	180-182
528	i-C3H7	H	H	3-F	-3-0CH20-4-	197-199
529	i-C3H7	Н	H	4-F	2-CH₃-4-Cl	217-218
530	i-C 3H7	H	H	4-F	2-CH₃-5-C1	202-203
531	i-C3H7	H	H	4-F	2-CH 3-4-OCHF 2	191-193
532	i−C₃H7	H	H	5-F	2-CH3-4-C1	197-198
533	i−C₃H7	H	H	5-F	2-CH ₃ -4-CF ₂ CF ₂ CF ₃	213-215
534	i-C3H7	H	H	5-F	2-CH 3-4-OCHF 2	181-182
535	i-C3H7	H	H	6-F	4-CF 2 CF 2 CF 3	201-202
536	i-C3H7	H	H	6-F	4-(CF ₂) ₃ CF ₃	156-158
537	i-C3H7	H	H	6-F	4-0CF 3	212-214
538	i-C 3H7	H	H	6-F	4-0CF 2 CHFOC 3 F 7 - n	178-180
539	i-C 3H7	H	H	6-F	4-SCH 2 CF 3	176-178
540	i-C3H7	H	H	6-F	4-SCF 2 CHF 2	230-232
541	i-C3H7	H	H	6-F	4-SCF(CF ₃) ₂	218-220
542	i-C 3H7	H	H	6-F	4-S(CF 2) 3CF 3	178-181
543	i-C3H7	H	H	6-F	2,3-Cl ₂	158-160
544	i−C₃H7	H	H	6-F	2-CH₃-3-C1	182-184
545	i-C3H7	H	H	6-F	2-CH3-4-C1	204-206
546	i-C 3H7	H	H	6-F	2-CH₃-5-C1	196-199
547	i-C3H7	H	H	6-F	2-CH3-4-I	213-215
548	i-C3H7	H	H	6-F	2-CH₃-3-F	165-167
549	i-C3H7	H	H	6-F	2-CH₃-5-F	181-183

- 88 -

Table 1 (Cont'd)

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
550	i-C3H7	H	H	6-F	2-C1-4-CF ₃	190-191
551	i-C3H7	H	Н	6-F	2-CH ₃ -4-CF ₂ CF ₃	222-223
552	i-C3H7	H	Н	6-F	2-CH ₃ -4-0CF ₂ CCl ₃	184-185
553	i-C3H7	Н	H	6-F	2-CH ₃ -4-0CF ₂ CCl ₂ F	214-215
554	i-C3H7	Н	Н	6-F	2-CH ₃ -4-0CF ₂ CBrF ₂	208-210
555	i-C3H7	Н	н	6-F	2-CH ₃ -4-CF ₂ CF ₂ CF ₃	168-170
556	i-C3H7	Н	H	6-F	$2-CH_{3}-4-CF(CF_{3})_{2}$	255-257
557	i-C3H7	Н	H	6-F	$2-CH_{3}-4-(CF_{2})_{3}CF_{3}$	157-159
558	i-C3H7	Н	н	6-F	2-CH ₃ -3-0CHF ₂	177-179
559	i-C3H7	Н	Н	6-F	2-CH 3-4-0CHF 2	176-178
560	i-C3H7	Н	H	6-F	3,5-Cl 2-4-0CHF 2	198-200
561	i-C3H7	Н	H	6-F	2-Cl-4-CF(CF ₃) ₂	241-243
562	i-C3H7	Н	H	6-F	2-C1-4-0CF 3	171-172
563	i-C3H7	Н	H	6-F	2-Br-4-0CF 3	181-182
564	i-C3H7	н	H	6-F	2-CH ₃ -4-OCF ₃	193-195
565	i-C3H7	Н	H	6-F	2-CH3-4-0CBrF2	181-183
566	i-C3H7	Н	H	6-F	2-CH 3-4-0CF 2 CHF 2	185-187
567	i-C3H7	н	H	6-F	2-CH ₃ -4-OCF ₂ CHC1F	175-176
568	i-C3H7	н	H	6-F	2-CH3-4-OCF 2 CHFCF 3	176-178
569	i-C3H7	Н	H	6-F	2-CH3-4-OCF 2CBrFCF 3	217-219
570	i-C3H7	H	H	6-F	2-CH3-4-OCF 2 CHF0CF 3	183-185
571	i-C3H7	H	H	6-F	2-CH ₃ -4-0CHF ₂ -5-Cl	209-211
572	i-C3H7	H	H	6-F	2-CH ₃ -4-(3-CF ₃ -Ph0)	184-185

No	R 1	R²	R ³	Xn		Ym	Physical Properties (melting point: °C
573	i-C3H7	H	H	6-F	2-CH ₃	-4-(F ₅ -Ph0)	227-228
574	i-C3H7	H	H	6-F	2-CH₃	-4-(2-Cl-4-CF ₃ -Ph0)	220-222
575	i-C3H7	H	H	6-F	2-CH₃	-4-(4-Cl-PhS)	190-193
576	i-C3H7	H	H	6-F	2-CH₃	-4-(5-CF ₃ -2-Pyi-0)	206-207
577	i-C3H7	H	H	6-F	2-CH₃	-4-(3-C1-	177-179
					5-CF ₃ -2-Pyi-0)		
578	i-C3H7	H	H	6-F	-F 2-CH ₃ -4-0P=S(0CH ₃) ₂		188-190
579	i-C3H7	H	H	6-F	2-CF 3	-4-0CHF 2	223-225
580	i-C3H7	H	H	6-F	-3-0C	H ₂ 0-4-	201-203
581	i-C3H7	H	H	3,6-F	2	2-CH 3-4-0CHF 2	203-204
582	i-C3H7	H	H	3,6-F	2	2-CH3-4-C1	221-222
583	i-C ₃ H ₇	H	H	3,4,5	,6-F4	2-CH₃-5-C1	189-191
584	i-C3H7	H	H	3-N0 2		2,3-Cl ₂	201-203
585	i-C 3H7	H	H	3-NO 2		Н	236-238
586	i-C3H7	H	H	3-NO2		2-C1	190-192

.

····:

····:

No	R 1	R²	R 3	Xn	Ym	Physical Properties (melting point: °C
587	i-C3H7	H	H	3-N02	3-C1	227-229
588	i-C 3H7	H	H	3-NO2	4-C1	238-240
589	i-C3H7	H	H	3-N02	2-Br	170-172
590	i-C 3H7	H	H	3-NO2	3-Br	196-198
591	i-C3H7	H	H	3-NO 2	4-Br	205-207
592	i-C 3H7	H	H	3-NO2	2-F	199-201
593	i-C3H7	H	H	3-NO2	3-F	228-230
594	i-C3H7	H	H	3-NO2	4-F	250-252
595	i-C3H7	H	H	3-NO 2	4-I	187-189
596	i-C3H7	H	H	3-N02	4-N02	201-203
597	i-C 3H7	H	H	3-NO2	3-CN	220-222
598	i-C 3H7	H	H	3-NO2	4-CN	226-228
599	i-C3H7	H	H	3-NO2	2-CH ₃	227-228
600	i-C3H7	H	H	3-N02	3-CH ₃	195-197
601	i-C 3H7	H	H	3-NO2	4−CH ₃	196-198
602	i-C3H7	H	H	3-NO2	2-C ₂ H ₅	189-191
603	i-C3H7	H	H	3-NO2	2-C ₃ H ₇ -i	190-192
604	i-C3H7	H	H	3-NO2	$4 - C_3 H_7 - i$	221-223
605	i-C 3H7	H	H	3-NO2	4-C4H9-n	193-195
606	і-СзН7	H	H	3-NO 2	4-CF 3	192-194
607	i−C₃H7	H	H	3-NO2	3-CF 3	220-222
608	i-C3H7	H	H	3-NO2	2-CF 3	215-217
609	i-C ₃ H7	H	H	3-NO2	4-CF 2 CF 2 CF 3	184-185

····:

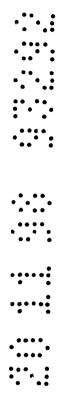
~

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
610	i−C₃H7	Н	Н	3-NO2	4-CF(CF ₃) ₂	243-244
611	i−C₃H7	H	Н	3-N02	4-(CF ₂) ₃ CF ₃	220-221
612	i-C3H7	H	H	3-N02	2-0CH₃	172-174
613	i-C3H7	Н	Н	3-NO2	3-0CH₃	201-203
614	i-C ₃H7	Н	H	3-N02	4-0CH ₃	221-223
615	i-C3H7	Н	Н	3-N02	3-0-C ₃ H ₇ -i	198-200
616	і−С зН7	Н	Н	3-NO2	3-0CHF 2	188-190
617	i-C 3H7	Н	H	3-N02	4-0CHF 2	222-224
618	і−СзН7	Н	Н	3-N02	4-0CF 3	234-236
619	i-C3H7	Н	H	3-N02	4-0CF 2 CHFOC 3 F 7 - n	138-140
620	і−С зН7	Н	Н	3-N02	4-C00CH₃	192-194
621	i-C3H7	Н	Н	3-NO2	3−SCH ₃	205-207
622	i-C3H7	Н	Н	3-NO2	2−SCH ₃	201-203
623	i-C3H7	Н	Н	3-N02	3-SCF 3	203-205
624	і-С зН7	H	H	3-N02	4-SCH 2 CF 3	155-156
625	i-C3H7	H	H	3-N02	4-SCHF 2	183-185
626	i−C₃H7	H	H	3-N02	4-SCF 2 CHF 2	235-237
627	i−C₃H7	Н	Н	3-N02	4-SCF 2 CF 3	190-192
628	i-C3H7	Н	Н	3-N02	4-SCF 2CBrF 2	228-230
629	i−C₃H7	Н	H	3-N02	4-SCF(CF ₃) ₂	242-243
630	i-C3H7	Н	H	3-N02	4-S(CF 2) 3CF 3	229-230
631	i-C3H7	Н	H	3-NO2	$4-SO(CF_2)_3CF_3$	190-193
632	i-C3H7	H	H	3-N02	4-0-Ph	228-230

.

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
633	i-C3H7	H	Н	3-N0₂	2,4-Cl ₂	202-204
634	i-C3H7	H	H	3-N02	2,5-Cl ₂	230-232
635	i-C ₃ H ₇	H	H	3-NO2	2,6-Cl2	210-212
636	i-C3H7	Н	H	3-N02	3,4-Cl2	227-229
637	i-C3H7	Н	H	3-NO2	3,5-Cl2	194-196
638	i-C3H7	H	H	3-N02	2,3-F2	184-186
639	i-C3H7	Н	H	3-N02	2,4-F ₂	210-212
640	i-C3H7	Н	H	3-N02	2,5-F ₂	191-193
641	i-C3H7	Н	H	3-N02	2,6-F ₂	173-175
642	i-C3H7	Н	H	3-N02	3,4-F ₂	241-243
643	i−C₃H7	H	H	3-N02	3-C1-4-F	203-205
644	i-C3H7	H	H	3-N02	2,3,4-Cl ₃	203-205
645	i-C3H7	H	H	3-N02	2,3,4-F3	202-204
646	i-C3H7	H	H	3-NO2	2,3,4,5,6-F₅	192-194
647	i-C 3H7	Н	H	3-N02	2,3-(CH ₃) ₂	200-202
648	i−C₃H7	Н	H	3-N02	2,4-(CH ₃) ₂	201-203
649	i-C3H7	Н	H	3-N02	2,5-(CH ₃) ₂	221-223
650	i−C₃H7	H	H	3-N02	2,6-(CH ₃) ₂	234-236
651	i−C₃H7	Н	H	3-N02	3,4-(CH ₃) ₂	195-197
652	i-C3H7	Н	H	3-N02	2,4,6-(CH ₃) ₃	229-231
653	i-C3H7	H	H	3-N02	$2,6-(C_2H_5)_2$	258-260
654	i-C 3H7	H	H	3-N02	3,5-(CF ₃) ₂	225-227
655	i-C₃H7	H	H	3-N02	3-C1-4-CH₃	208-210

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
656	i-C3H7	Н	H	3-N02	2-C1-4-CH₃	195-197
657	i-C 3H7	H	H	3-NO2	2-F-4-C1-5-CH₃	193-195
658	i-C 3H7	Н	H	3-N02	3-C1-4-0CHF 2	222-224
659	i-C3H7	Н	H	3-NO2	3,5-Cl 2-4-0CHF 2	218-220
660	i-C 3H7	Н	H	3-NO2	2-C1-4-CF 3	217-219
661	i-C3H7	Н	H	3-NO2	2-C1-5-CF 3	193-195
662	i-C3H7	H	H	3-NO2	2,6-Cl 2-4-CF 3	226-228
663	i-C3H7	H	H	3-NO2	2-CH₃-3-C1	198-200
664	i-C 3H7	H	H	3-NO2	2-CH₃-4-C1	235-237
665	i-C ₃ H7	H	H	3-NO2	2-CH₃-5-C1	218-219
666	i-C3H7	H	H	3-NO2	2-CH₃-6-C1	248-250
667	i-C3H7	H	H	3-NO2	2-C2H5-4-C1	235-237
668	i-C3H7	H	H	3-NO2	2-CH ₃ -4,5-Cl ₂	196-198
669	i-C 3H7	H	H	3-NO2	2,3-(CH ₃) ₂ -4-Cl	226-228
670	i-C3H7	H	H	3-NO2	2,4-(CH ₃) ₂ -3-Cl	203-205
671	i-C3H7	H	H	3-NO2	2-CH₃-4-Br	214-216
672	i-C3H7	H	H	3-NO2	2-CH₃-5-Br	191-193
673	i-C3H7	H	H	3-NO2	2-CH3-4-I	227-227
674	i-C3H7	H	H	3-N02	2-CH₃-3-F	199-201
675	i-C3H7	H	H	3-NO2	2-CH3-4-F	226-228
676	i-C3H7	H	H	3-NO2	2-CH₃-5-F	213-215
677	i−C₃H7	H	H	3-NO2	2−C₂H₅−5−F	191-193
678	i-C₃H7	H	Н	3-NO2	3-CF₃-4-C1	215-217


No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
679	i-C3H7	Н	Н	3-N02	2-CF 3-4-C1	208-210
680	i-C3H7	H	H	3-N02	3-CH3-4-Br	199-201
681	i-C3H7	Н	H	3-N02	2−CH ₃ −3−CF ₃	221-222
682	i-C3H7	H	H	3-N02	2-CH ₃ -4-CF ₃	236-237
683	i-C3H7	H	H	3-N02	2-CH 3-4-CF 2CF 3	218-219
684	i-C3H7	Н	H	3-N02	2-CH 3-4-CF 2CF 2CF 3	188-189
685	i-C3H7	H	H	3-N02	2-CH ₃ -4-CF(CF ₃) ₂	248-250
686	і-СзН7	H	H	3-N02	2-CH ₃ -4-(CF ₂) ₃ CF ₃	225-226
687	і-СзН7	H	H	3-N02	2-CH ₃ -3-0CH ₃	198-200
688	i-C 3H7	H	H	3-N02	2-CH ₃ -4-0CH ₃	208-210
689	i-C 3H7	H	H	3-N02	2,3-(CH ₃) ₂ -4-0CH ₃	253-255
690	i-C3H7	H	H	3-N02	2-CH ₃ -4-0-C ₃ H ₇ -i	233-234
691	i-C 3H7	H	H	3-N02	3-CF 3-5-0CH 3	214-216
692	i-C 3H7	H	H	3-N02	2-CF 3-4-0CHF 2	201-203
693	і−СзН7	H	H	3-N02	3-CF 3-4-0CHF 2	231-232
694	і-СзН7	H	H	3-N02	2,4-(CH ₃) ₂ -3-0CH ₃	201-203
695	i-C3H7	H	H	3-N02	2-CH3-3-0CHF 2	200-202
696	i−C₃H7	H	H	3-N02	2-CH3-4-0CHF 2	186-188
697	i−C₃H7	H	H	3-N02	2-CH3-4-OCH2CF3	241-243
698	i-C3H7	H	H	3-N02	2-CH3-4-OCF2CBrF2	229-230
699	i−C₃H7	H	H	3-N02	2-CH3-4-OCH2CF2CHF2	199-200
700	i−C₃H7	H	H	3-N02	2-CH3-4-OCF2CBrFCF3	224-226
701	i−C₃H7	H	H	3-NO 2	2-CH3-4-0CH2CHF0CF3	208-210

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
702	i-C3H7	Н	Н	3-NO2	3-0CH 3-4-0CHF 2	242-243
703	i-C ₃ H7	H	Н	3-NO2	2-C1-4-CF(CF ₃) ₂	198-200
704	i-C3H7	Н	н	3-NO2	2-C1-4-0CF 3	188-190
705	i-C3H7	H	H	3-NO2	2-Br-4-0CF 3	202-203
706	i-C3H7	Н	Н	3-NO2	2-CH3-4-NO2	201-203
707	i-C3H7	Н	H	3-NO2	2-C1-5-N0 ²	193-195
708	i-C3H7	H	H	3-NO2	2-CH ₃ -5-NO ₂	197-199
709	i-C3H7	Н	Н	3-NO2	2,3-(CH ₃) ₂ -4-NO ₂	207-209
710	i-C3H7	H	H	3-NO2	2-CH ₃ -4-0CF ₃	184-186
711	i-C 3H7	H	H	3-NO2	2-CH3-4-0CBrF2	217-218
712	i-C3H7	Н	H	3-NO 2	2-CH 3-4-OCF 2 CHF 2	205-207
713	i-C3H7	H	H	3-NO2	2-CH ₃ -3-OCF ₂ CHC1F	164-166
714	i−C₃H7	H	H	3-NO 2	2-CH3-4-0CF2CHC1F	192-193
715	i-C3H7	H	H	3-N02	2-CH ₃ -4-OCF ₂ CCl ₂ F	212-213
716	i-C3H7	H	H	3-NO2	2-CH3-4-OCF2CHFCF3	198-199
717	i-C3H7	H	H	3-NO2	2-CH ₃ -3-C1-4-0CHF ₂	236-238
718	i−C₃H7	H	H	3-NO2	2-CH ₃ -4-OCF ₂ CHF ₂ -5-C1	233-234
719	i-C3H7	H	H	3-N02	2-CH ₃ -4-SCH ₃	214-216
720	i-C3H7	H	H	3-N02	2,3-(CH ₃) ₂ -4-SCH ₃	254-256
721	i-C3H7	H	H	3-N02	2-CH3-4-SC3H7-i	209-211
722	i-C3H7	H	H	3-N0₂	2-CH3-4-SCHF 2	225-227
723	i-C3H7	H	H	3-N02	2-CH3-4-N(CH3)2	215-217
724	i-C3H7	H	H	3-NO2	2-CH3-4-(3-CF3-Ph0)	174-175

No	R 1	R²	R ³	Xn	Үш	Physical Properties (melting point: °C
725	i-C3H7	Н	H	$3-NO_2$ $2-CH_3-4-(F_5-PhO)$		242-244
726	i-C3H7	H	Н	3-NO2	2-CH₃-4-(2-C1-	191-192
					4-CF 3-Ph0)	
727	i-C3H7	Н	H	3-N02	2-CH₃-4-(4-Cl-PhS)	165-167
728	i−C₃H7	Н	H	3-N02	2-CH ₃ -4-(5-CF ₃ -	216-218
					2-Pyi-0)	
729	i-C 3H7	H	H	3-N02	2-CH ₃ -4-(3-Cl-	236-238
					5-CF ₃ -2-Pyi-0)	
730	i-C 3H7	H	H	3-N02	4-(3-C1-5-CF ₃ -	190-192
					2-Pyi-S)	
731	i-C 3H7	H	H	3-N0 2	$2-CH_3-4-P=0(0C_2H_5)_2$	128-130
732	i-C3H7	H	H	3-N02	$2-CH_3-4-P=S(0CH_3)_2$	128-130
733	i-C3H7	H	H	3-N0 2	-3-0CH20-4-	229-231
734	i-C3H7	H	H	3-N02	3-CH2CH2CH2-4	209-211
735	i-C3H7	H	H	3-N02	2-CH2CH2CH2-3	226-228
736	i-C3H7	H	H	3-N0 2	3-N=C(CF ₃)-NH-4	162-164
737	i-C 3H7	H	H	3-NO 2	3-N=C(CF ₃)-N(CH ₃)-4	186-188
738	i-C3H7	H	H	5-N02	2-CH₃-5-Cl	226-228
739	i-C3H7	H	H	6-N02	2-CH₃-5-C1	247-249
740	i−C₃H7	H	H	6-N02	2-C1-4-CF 3	Crystals
741	i-C3H7	H	H	6-N02	2-C1-4-CF 2 CF 2 CF 3	192-193
742	i-C3H7	H	H	6-N02	2-CH ₃ -4-CF ₃	239-240
743	i-C₃H⁊	H	H	6-N02	2-CH 3-4-0CF 2 CHFCF 3	252-253

No	R 1	R²	R ³	Xn	Ym	Physical Properties (melting point: °C
744	i-C3H7	H	Н	3-CN	2-CH₃-4-C1	162-164
745	i-C3H7	Н	H	6-CN	2-CH ₃ -4-Cl	Crystals
749	i-C3H7	H	H	3−CH ₃	4-0CF 3	180-182
750	i-C3H7	Н	H	З−СН₃	2-CH₃-4-C1	169-171
751	i-C3H7	Н	H	3-СН₃	2-CH 3-4-0CHF 2	192-193
752	i−C₃H7	H	H	5-CH ₃	2-CH₃-5-C1	193-195
753	i-C 3H7	Н	H	6-C2H5	2-CH ₃ -4-C1	180-182
754	i-C3H7	Н	H	3−CF ₃	Н	202-204
755	i-C3H7	Н	H	3−CF ₃	2-CH₃-5-C1	196-198
756	i-C3H7	H	H	3−CF ₃	2-CH₃-3-C1	216-218
757	i-C3H7	Н	H	3-СҒ з	2,6-(C ₂ H ₅) ₂	238-239
758	i-C3H7	н	H	3−CF ₃	2-CH₃-4-C1	207-209
759	i−C₃H7	H	H	3−CF ₃	2-CH 3-4-0CHF 2	212-213
760	i-C3H7	H	H	5-CF ₃	2,6-(C ₂ H ₅) ₂	240-241
761	i-C3H7	Н	H	5−CF ₃	2-CH ₃ -4-C1	203-205
762	i-C3H7	Н	H	5-CF ₃	3-CF 3-5-0CH 3	209-210
763	i-C₃H7	Н	H	5-CF ₃	2-CH ₃ -4-0CHF ₂	196-197
764	i-C3H7	Н	H	6-CF ₃	Н	152-154
765	i-C3H7	Н	H	6−CF ₃	2-CH ₃ -3-C1	158-160
766	i-C3H7	Н	H	6-CF ₃	2-CH₃-5-C1	273-275

.

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
767	i-C3H7	H	Н	3-0CH₃	4-0CF 3	178-180
768	i−C₃H7	Н	Н	3–0CH₃	2-CH3-4-Br	214-215
769	i-C₃H7	Н	Н	6-0CH₃	4-0CF 3	189-190
770	i-C3H7	н	H	6-0CH₃	2-CH₃-5-C1	155-157
771	i-C3H7	Н	H	6-0CH₃	2-CH3-4-Br	195-197
772	i−C₃H7	Н	H	3-0CHF 2	2-CH3-4-C1	212-213
773	i-C3H7	Н	H	3-0CHF 2	2-CH₃-5-C1	198-200
774	i-C3H7	Н	H	3-0CHF 2	2-CH 3-4-0CHF 2	174-175
775	i-C3H7	Н	H	4-0CHF 2	2-CH₃-5-Cl	215-217
776	i-C3H7	Н	H	5-0CHF 2	2-CH₃-5-Cl	173-175
777	i-C3H7	Н	H	6-0CHF 2	2-CH₃-4-C1	224-226
778	i-C3H7	H	H	6-0CHF 2	2-CH₃-5-C1	191-193
779	i-C3H7	H	H	6-0CHF 2	2-CH 3-4-0CHF 2	199-200
780	i-C3H7	H	H	3−SCH 3	2-CH3-3-C1	191-193
781	i-C3H7	H	H	3−SCH₃	2-CH3-4-C1	188-190
782	i-C3H7	H	H	3−SCH₃	2-CH3-4-Br	185-187
783	i-C3H7	H	H	3−SCH₃	2-CH 3-4-0CHF 2	159-161
784	i-C3H7	H	H	6−SCH₃	2-CH3-4-Br	201-202
785	i-C3H7	H	H	6-SCH₃	2-CH₃-3-C1	207-209
786	i-C3H7	H	H	6-SCH₃	2-CH ₃ -4-C1	204-206
787	i-C3H7	H	H	6-SCH₃	2-CH 3-4-0CHF 2	212-214
788	i-C3H7	H	H	3-SC3H7-i	2-CH₃-4-C1	183-184
789	i-C3H7	H	H	6-SC3H7-i	2-CH₃-4-C1	228-229

•••••

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
790	i-C3H7	Н	Н	3-SOCH₃	2-CH3-4-Br	125-130
791	i-C3H7	Н	Н	3-SOCH₃	2-CH 3-4-0CHF 2	215-217
792	i-C3H7	Н	H	6-SOCH₃	2-CH3-4-Br	203-208
793	i-C 3H7	H	Н	3-SOC3H7-i	2-CH3-4-C1	157-160
794	i-C3H7	H	H	6-SOC3H7-i	2-CH3-4-C1	170-173
795	i-C3H7	H	H	3-S02CH3	2-CH 3-4-0CHF 2	211-213
796	i-C3H7	H	H	3-S02C3H7-i	2-CH3-4-C1	240-242
797	i-C ₃ H7	H	H	3-SCH2CF3	2-CH 3-4-0CHF 2	184-186
798	i-C3H7	H	H	6-SCH 2 CF 3	2-CH 3-4-0CHF 2	239-241
799	i-C3H7	H	H	3-SOCH 2 CF 3	2-CH 3-4-0CHF 2	198-200
800	i-C3H7	H	H	6-SOCH ₂ CF ₃	2-CH 3-4-0CHF 2	238-240
801	i-C3H7	H	H	6-C≡CH	2-CH₃-4-C1	253-255
802	i-C3H7	H	H	6-C00CH ₃	2-CH₃-4-C1	149-151
803	i-C3H7	H	H	3-CONHC ₃ H ₇ -i	2-CH3-4-C1	187-189
804	i-C ₃ H ₇	H	H	6-CONHC ₃ H ₇ -i	2-CH3-4-Cl	191-193
807	i-C ₃ H7	H	H	3-Ph	2-CH3-4-C1	228-229
808	i-C ₃ H7	H	H	6-Ph	4-0CF 3	213-214
809	i-C ₃ H7	H	H	6-Ph	2-CH3-4-C1	254-256
810	i-C ₃ H7	H	H	3-0-Ph	2-CH3-4-0CHF 2	175-177
811	i-C3H7	H	H	6-0-Ph	2-CH 3-4-0CHF 2	194-196
812	i-C ₃ H7	H	H	3-(4-Cl-Ph0)	2-CH3-4-Br	204-206

No	R 1	R ²	R 3		Xn	Ym	Physical Properties (melting point: °C
813	i−C ₃H7	H	Н	3-S-Ph		2-CH ₃ -4-Cl	204-206
814	i-C3H7	Н	H	3-S-Ph		2-CH3-4-Br	193-194
815	i-C 3H7	Н	Н	6-S-Ph		2-CH ₃ -4-Cl	211-213
816	i-C ₃ H7	H	H	6-S-Ph		2-CH3-4-Br	193-194
817	i-C3H7	H	H	3-S0-Pł	1	2-CH ₃ -4-Cl	201-203
818	i-C3H7	H	Н	3-802-H	Ph	2-CH ₃ -4-Cl	189-191
819	i-C3H7	Н	H	3-CH=CH	І-СН=СН-4	2-CH ₃ -4-0CHF ₂	158-160
820	i-C ₃ H7	H	H	5-CH=CH	І-СН=СН-6	2-CH ₃ -4-0CHF ₂	154-155
821	i-C ₃ H ₇	H	H	3-CH=CH	I-CH=CH-4	2-CH ₃ -5-C1	156-158
822	i-C3H7	H	H	4-CH=CH	I-CH=CH-5	2-CH₃-5-C1	229-231
823	i-C ₃ H7	H	H	5-CH=CH	І-СН=СН-6	2-CH ₃ -5-C1	232-234
					_		
824	i-C ₃ H7	CH₃		H	Н	4-CF 3	178-180
825	i-C ₃ H7	СН₃		H	3-N02	2-CH 3-4-0CHF 2	148-149
826	i-C 3H7	CH₃		H	Н	2-CH ₃ -4-C1	82-83
827	i-C ₃ H7	H		СHз	Н	2-CH ₃ -4-Cl	165-166
828	i-C3H7	CH 2	OCH ₃	H	Н	2-CH ₃ -4-Cl	0il
829	n-C4H9	H		H	Н	4-CF 3	171-173
830	n-C4H9	H		H	3-N02	2-CH₃-5-C1	172-174
831	i-C4H9	H		Н	3-N02	2-CH₃-5-C1	186-188
832	i-C4H9	H		H	3-N02	2-CH 3-4-0CHF 2	192-193
833	i-C4H9	H		H	Н	4-CF 3	149-151
834	i-C4H9	CH₃		Н	6-N02	2-CH 3-4-0CHF 2	135-137

No	R 1	R ²	2	R ³	Xn	Ym	Physical Properties (melting point: °C
835	s−C₄H9	Н		H	Н	4-CF 3	194-195
836	s-C4H9	Н		H	3-C1	2-CH ₃ -4-0CHF ₂	203-205
837	s-C4H9	Н		H	6-C1	2-CH ₃ -4-0CHF ₂	213-215
838	s-C4H9	Н		H	3-NO 2	2-CH ₃ -5-Cl	205-207
839	s-C4H9	Н		H	3-NO 2	2-CH 3-4-0CHF 2	228-229
840	t-C₄H9	Н		H	Н	Н	237-239
841	t-C4H9	Н		H	Н	2-CH ₃ -5-Cl	200-202
842	t−C₄H9	H		Н	3-N02	2-CH₃-5-C1	256-258
843	t-C₄H9	Н		H	3-NO2	2-CH ₃ -4-0CHF ₂	172-173
844	$CH_2C(CH_3)_3$	H		H	3-N02	2-CH ₃ -4-0CHF ₂	226-227
845	$CH(C_2H_5)_2$		H	H	3-NO2	2-CH ₃ -4-0CHF ₂	245-246
846	CH(CH₃)CH(C	H ₃) ₂	H	H	3-NO2	2-CH ₃ -4-0CHF ₂	245-247
847	n-C8H17		H	H	3-NO2	2-CH₃-5-C1	164-166
848	c−C₃H₅	H		H	Н	4-CF 3	195-197
849	c−C₃H₅	Н		H	3-C1	2-CH 3-4-0CHF 2	156-158
850	c−C₃H₅	Н		H	6-C1	2-CH3-4-0CHF 2	179-181
851	c−C₃H₅	Н		H	3-NO 2	2-CH₃-5-Cl	194-196
852	c−C₃H₅	Н		H	3-NO 2	2-CH ₃ -4-0CHF ₂	191-192
853	c-C4H7	Н		H	Н	2-CH3-5-Cl	205-207
854	c-C4H7	Н		H	3-NO 2	2-CH₃-5-Cl	206-208
855	c-C4H7	Н		H	3-NO 2	2-CH₃-5-F	199-201
856	c−C₅H9	Н		H	3-NO 2	2-CH ₃ -4-0CHF ₂	219-220
857	с−С₅Н9	Н		H	Н	4-CF 3	208-210

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
858	c−C₅H9	Н	Н	3-NO2	2-CH₃-5-C1	200-202
859	$c - C_{6}H_{11}$	H	H	3-NO2	2-CH₃-5-C1	225-227
860	$CH_2-C_3H_5-c$	Н	Н	3-NO2	2-CH₃-5-F	190-192
861	CH ₂ CH ₂ Cl	H	H	3-NO2	2-CH₃-5-F	179-181
862	CH 2 CH 2 F	H	H	3-N02	2-CH3-5-F	179-181
863	CH 2 CH 2 F	H	H	3-N02	2-CH 3-4-0CHF 2	190-191
864	CH 2 CF 3	Н	H	Н	2-CH₃-5-C1	187-189
865	CH 2 CH=CH 2	H	H	Н	4-CF 3	161-163
866	CH 2 CH=CH 2	H	H	3-NO 2	2-CH₃-5-C1	175-177
867	CH 2 CH=CH 2	H	H	3-N0 2	2-CH 3-4-0CHF 2	194-195
868	CH₂C≡CH	H	H	Н	4-CF 3	185-188
869	CH₂C≡CH	H	H	3-N02	2-CH₃-5-C1	191-193
870	CH₂C≡CH	H	H	3-NO 2	2-CH 3-4-0CHF 2	190-191
871	CH 2 CH 2 OCH 3	H	H	3-N0 2	2-CH₃-5-C1	165-167
872	CH 2 CH 2 OCH 3	H	H	3-NO 2	2-CH 3-4-0CHF 2	165-167
873	CH(CH $_3$)CH $_2$ OCH $_3$	H	H	Н	4–CF 3	252-253
874	CH(CH ₃)CH ₂ OCH ₃	H	H	3-NO2	2-CH 3-4-0CHF 2	153-155
875	$CH_2CH(OC_2H_5)_2$	H	H	3-NO 2	2-CH 3-4-0CHF 2	149-151
876	CH2-Ph	H	H	H	4–CF 3	148-150
877	CH 2 - Ph	H	H	3-NO 2	2-CH₃-5-C1	196-198
878	CH(CH₃)-Ph	H	H	3-NO 2	2-CH₃-5-C1	168-170
879	CH(CH₃)-Ph	H	H	3-NO 2	2-CH 3-4-0CHF 2	187-189

- 103 -

Table 1 (Cont'd)

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
880	CH2CH2O-(2,4-	H	Н	3-NO 2	2-CH3-5-C1	126-128
	(CH3)2-Ph)					
881	-CH2CH2CH2	CH 2 -	H	Н	4-CF 3	170-171
882	-CH2CH2CH2	CH 2 -	H	6-N02	2-CH₃-5-C1	157-159
883	$-CH_2CH_2CH_2$	CH 2 -	H	6-N02	2-CH 3-4-0CHF 2	163-165
884	$-CH_2CH_2OCH_2$	CH 2 -	H	Н	4-CF 3	167-168
885	-CH2CH2OCH2	CH 2 -	H	6-N02	2-CH₃-5-C1	192-194
886	$-CH_2CH_2OCH_2$	CH 2 -	H	6-N02	2-CH 3-4-0CHF 2	186-188
887	-CH2CH(CH3)		H	6-N02	3-CF 3-5-0CH 3	164-165
	OCH(CH₃)	CH 2 -				
888	CH ₂ -3-Pyi	H	H	3-NO 2	2-CH₃-4-Br	180-182
889	i-C ₃ H7	H	H	H	4–CF 2 CF 3	155-157
890	i-C3H7	H	H	3-NO2	4-CF 2 CF 3	223-225
891	i-C ₃ H ₇	H	H	3-F	4-CF 2CF 3	199-201
892	i-C ₃ H ₇	H	H	6-F	4-CF 2 CF 3	213-215
893	i-C ₃ H ₇	H	H	3-C1	4-CF 2 CF 3	214-216
894	i-C ₃ H ₇	H	H	6-C1	4–CF 2CF 3	225-227
895	i-C3H7	H	H	3-I	4–CF 2 CF 3	208-210
896	i-C3H7	H	H	6-I	4-CF 2 CF 3	224-226
897	i-C ₃ H7	H	Н	H	2-CH3-4-0S02-	135-137
					(4-CH₃-Ph)	
898	i-C3H7	Н	Н	3-N0 2	2-CH ₃ -4-0S0 ₂ -	208-210
					(4-CH₃-Ph)	

•

•••••

таb

Table 1 (Cont'd)

No	R 1	R ²	R ³	Xn	Үш	Physical Properties (melting point: °C
899	i-C 3H7	Н	H	3-C1	2-CH3-4-0S02-	187-189
					(4-CH₃-Ph)	
900	i-C3H7	H	H	6-C1	2-CH ₃ -4-0S0 ₂ -	218-220
					(4-CH₃-Ph)	
901	i-C3H7	Н	Н	3-F	2-F-4-0-(4-CF ₃ -2-	137-139
					Cl-Ph)	
902	i-C 3H7	Н	Н	6-F	2-F-4-0-(4-CF ₃ -2-	155-157
					Cl-Ph)	
903	i-C3H7	H	Н	3-C1	2-F-4-0-(4-CF ₃ -2-	119-121
					Cl-Ph)	
904	i-C 3H7	H	Н	6-C1	2-F-4-0-(4-CF ₃ -2-	154-156
					Cl-Ph)	
905	i-C 3H7	H	Н	3-F	2-CH 3-4-SCF 2CF 3	140-142
906	i-C 3H7	Н	Н	6-F	2-CH 3-4-SCF 2 CF 3	162-164
907	i-C 3H7	Н	Н	3-C1	2-CH 3-4-SCF 2 CF 3	172-173
908	i-C 3H7	H	Н	6-C1	2-CH 3 - 4 - SCF 2 CF 3	193-195
909	i-C3H7	Н	Н	3-I	2-CH 3-4-SCF 2 CF 3	207-209
910	i-C ₃ H ₇	Н	Н	6-I	2-CH 3-4-SCF 2 CF 3	196-198
911	i-C3H7	Н	Н	3-C1	4-CH=C(Cl)CF ₃	196.3-208.2
912	i-C 3H7	Н	Н	6-C1	4-CH=C(Cl)CF ₃	202.8-209.4
913	i-C 3H7	Н	Н	3-C1	4-CH=CBr ₂	209.8-214.8
914	i-C3H7	Н	Н	6-C1	4-CH=CBr ₂	207.7-213.9
915	i-C3H7	H	Н	3-C1	4-CH=CC1 2	120.1

••••••

····

••••••

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
916	i-C3H7	Н	Н	6-C1	4-CH=CC1 2	199.7
917	i−C₃H7	Н	H	3-I	4-CH=C(C1)CF ₃	196.6
918	i-C3H7	Н	H	6-I	4-CH=C(C1)CF ₃	203.3
919	i-C3H7	Н	H	3-I	2-C ₂ H ₅ -4-I	195.5
920	i-C3H7	H	Н	6-I	2-C ₂ H ₅ -4-I	242.3
921	C 2H 5	H	H	Н	2-C ₂ H ₅ -3-Cl-6-C ₂ H ₅	171-173
922	i-C3H7	H	Н	Н	2-C2H5-3-C1-6-C2H5	185-186
923	t-C4H9	H	Н	H	2-C2H5-3-C1-6-C2H5	166-167
924	i-C3H7	Н	Н	3-C1	2-C ₂ H ₅ -3-Cl-6-C ₂ H ₅	260-261
925	i-C 3H7	H	Н	3-I	2-C2H5-3-C1-6-C2H5	269-271
926	t-C4H9	Н	Н	3-C1	2-C ₂ H ₅ -3-Cl-6-C ₂ H ₅	221-222
927	t-C4H9	H	Н	H	2-CH₃-4-C1	216-218
928	t-C₄H9	H	Н	H	4-CF 3	220-221
929	t-C4H9	H	H	H	4-0CF 3	178-179
930	t-C4H9	H	Н	Н	2-CH 3-4-0CF 3	184-185
931	t-C4H9	H	Н	H	2-CH 3-4-CF 2 CF 3	223-224
932	t-C₄H9	H	H	3-C1	2-CH 3-4-CF 2 CF 3	219-220
933	t-C₄H9	H	СНз	H	4-0CF 3	155-158
934	t-C₄H9	H	Н	3-C1	4-CF 3	228-229
935	t-C₄H9	H	Н	6-C1	4-CF 3	253-255
936	t-C₄H9	H	Н	3-C1	4-0CF 3	268-270
937	t-C₄H9	H	Н	3-C1	2-CH ₃ -4-Cl	242-244
938	t-C4H9	H	Н	6-C1	2-CH3-4-C1	262-264

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
939	t-C4H9	H	Н	3-I	4-CF 3	268-269
940	t-C₄H9	H	Н	3-I	4-0CF 3	263-265
941	t−C₄H9	H	H	3-I	2-CH₃-4-C1	218-220
942	t−C₄H₃	H	H	3-I	2-CH 3-4-CF 2 CF 3	205-207
943	t-C₄H9	H	H	6-I	2-CH 3-4-CF 2 CF 3	216-217
944	t-C₄H9	H	H	3-C1	2-CH 3-4-0CF 3	260-262
945	n-C4H9	H	H	3-I	2-CH 3-4-CF 2 CF 3	173.1-178.5
946	n-C4H9	H	Н	6-I	2-CH 3-4-CF 2 CF 3	181.8-187.7
947	n-C 5 H 1 1	H	H	3-I	2-CH 3-4-CF 2 CF 3	140.2-151.4
948	n-C 5 H 1 1	H	Н	6-I	2-CH 3-4-CF 2 CF 3	168.7-171.3
949	n-C6H13	H	H	3-I	2-CH 3-4-CF 2CF 3	135.5-143.9
950	n-C6H13	H	H	6-I	2-CH 3-4-CF 2 CF 3	167.1-169.9
951	i-C3H7	H	H	3-I	2-C ₂ H ₅ -4-I	254.8-273.8
952	i-C3H7	H	H	3-I	2-n-C3H7-4-I	179.7
953	i-C3H7	H	H	3-CH₃	2-CH 3-4-CF 2 CF 3	184-186
954	i-C3H7	H	H	6-CH₃	2-CH 3-4-CF 2 CF 3	177-179
955	t-C₄H9	H	H	3-CH₃	2-CH 3-4-CF 2 CF 3	198-200
956	t-C ₄ H ₉	H	H	6-CH ₃	2-CH 3-4-CF 2 CF 3	236-237
957	t-C₄H9	H	Н	3-I	2-CH 3-4-OCF 3	208-210
958	t-C4H9	H	Н	6-I.	2-CH 3-4-0CF 3	253-255
959	n-C 3H7	H	Н	3-I	2-CH₃-3-C1	190-192
960	n-C3H7	H	H	6-I	2-CH ₃ -3-C1	159-161
961	n-C3H7	H	H	6-I	2-C ₂ H ₅ -3-Cl-6-C ₂ H ₅	225-228

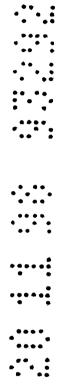

.

Table 1 (Cont'd)

No	R 1	R²	R ³	Xn	Ym	Physical Properties (melting point: °C
962	i-C3H7	Н	H	3-NO2	4-0C0CF 3	185-187
963	i-C3H7	Н	H	3-Cl	4-0C0CF ₃	Paste
964	i-C3H7	Н	H	3-I	4-0C0CF 3	Paste
965	i-C3H7	Н	H	3-I	2-i-C3H7-4-I	132.5
966	i-C3H7	H	H	3-I	2-n-C4H9-4-I	194.2-198.3
967	i-C3H7	Н	H	3-I	2-CH3-4-Br-6-CH3	119.1
968	i-C3H7	Н	H	3-C1	4-C02CH(CF3)2	168-170
969	i-C3H7	H	H	3-I	4-C02CH(CF3)2	193-195
970	i-C3H7	H	H	3-NO2	4-C02CH(CF3)2	215-217
971	i-C 3H7	H	H	3-C1	2-CH ₃ -4-C≡C-	123-125
					(2,4-Cl ₂ -Ph)	
972	i-C3H7	Н	H	3-I	$2-CH_3-4-C\equiv C-$	138-140
					(2,4-Cl ₂ -Ph)	
973	i-C3H7	Н	H	3-C1	3-0CF 2CF 2-4	125-128
974	i-C3H7	H	H	3-I	3-0CF 2CF 2-4	123-126
975	i-C3H7	H	H	Н	3-0CF 2CF 20-4	152-154
976	i-C3H7	Н	H	3-NO2	3-0CF 2CF 20-4	247-248
977	i-C3H7	Н	H	3-C1	3-0CF 2CF 20-4	224-226
978	i-C3H7	Н	H	Н	4-C(CF ₃) ₂ OH	87-89
979	i-C 3H7	Н	H	3-NO2	4-C(CF 3) 20H	205-207
980	i-C3H7	H	H	3-C1	4-C(CF 3) 20H	187-189
981	CH 2 CH 2 OCH 3	Н	H	3-I	2-CH 3-4-CF 2CF 3	145.3-151.7
982	CH ₂ CH ₂ OCH ₃	Н	H	6-I	2-CH 3-4-CF 2CF 3	166.7-169.4

No	R 1	R ²	R³	Xn	Ym	Physical Properties (melting point: °C
983	CH 2 CH 2 OC 2 H 5	Н	Н	3-I	2-CH3-4-CF2CF3	146.5-150.3
984	CH 2 CH 2 OC 2 H 5	Н	Н	6-I	2-CH 3-4-CF 2CF 3	157.3-160.4
985	(CH ₂) ₃ 0CH ₃	H	Н	3-I	2-CH 3 - 4 - CF 2 CF 3	151.9-155.8
986	(CH ₂) 30CH 3	Н	Н	6-I	2-CH3-4-CF2CF3	156.5-158.8
987	CH 2 CH=CH 2	H	Н	3-I	2-CH3-4-CF2CF3	157.5
988	CH 2 CH=CH 2	H	Н	6-I	2-CH 3-4-CF 2 CF 3	164.6-171.3
989	CH₂C≡CH	Н	Н	3-I	2-CH3-4-CF 2 CF 3	153.6-158.4
990	$CH_2C\equiv CH$	H	Н	6-I	2-CH3-4-CF2CF3	171.5-178.1
991	c-C5H9	H	Н	3-I	2-CH 3-4-CF 2CF 3	212.9
992	c-C5H9	H	Н	6-I	2-CH3-4-CF 2CF 3	205.2
993	$c - C_{6}H_{11}$	H	Н	3-I	2-CH 3 - 4 - CF 2 CF 3	219.7-224.3
994	$c - C_{6}H_{11}$	H	Н	6-I	2-CH 3 - 4 - CF 2 CF 3	239.0-244.4
995	i-C3H7	H	Н	Н	4-SCF 3	182-184
996	i-C3H7	Н	Н	3-N02	4–SCF 3	228-229
997	i-C3H7	H	Н	3-C1	4−SCF 3	229-231
998	i-C3H7	Н	Н	3-I	4−SCF 3	226-227
999	i-C3H7	Н	н	Н	4–SOCF 3	175-178
1000	i-C3H7	H	Н	3-N02	4-SOCF 3	202-205
1001	i-C3H7	Н	H	3-C1	4–SOCF 3	242-244
1002	i-C3H7	Н	Н	3-I	4-SOCF 3	229-231
1003	i-C3H7	Н	Н	3-I	3–0CF 2CF 20–4	163-165
1004	i-C3H7	Н	Н	3-I	4-C(CF ₃) ₂ OH	227-229
1005	i-C4H9	Н	H	3-I	2-CH 3-4-CF 2 CF 3	200.4-206.8

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1006	i-C4H9	н	H	6-I	2-CH3-4-CF2CF3	179.2-181.8
1007	s-C4H9	Н	Н	3-I	2-CH ₃ -4-CF ₂ CF ₃	226.0-230.9
1008	s-C4H9	H	Н	6-I	2-CH 3-4-CF 2 CF 3	216.1-218.0
1009	s-C ₅ H ₁₁	H	Н	3-I	2-CH 3-4-CF 2CF 3	215.3-218.2
1010	s-C ₅ H ₁₁	Н	H	6-I	2-CH 3-4-CF 2CF 3	191.4-210.5
1011	$CH(C_2H_5)_2$	H	H	3-I	2-CH 3 - 4 - CF 2 CF 3	234.8-236.9
1012	$CH(C_2H_5)_2$	H	H	6-I	2-CH 3-4-CF 2CF 3	253.7-255.7
1013	$CH(C_2H_5)CH_2O$	H	H	3-I	2-CH 3-4-CF 2 CF 3	177
	-CH 3					
1014	$CH(C_2H_5)CH_2O$	H	H	6-I	2-CH 3-4-CF 2CF 3	198.3-201.0
	-CH 3					
1015	i-C ₅H₁₁	H	H	3-I	2-CH 3 - 4 - CF 2 CF 3	190.0-192.5
1016	i-C ₅ H ₁₁	H	H	6-I	2-CH 3-4-CF 2CF 3	187.8
1017	i-C3H7	H	H	3-I	2-C2H5-4-CF2CF3	232.5-235.8
1018	t-C4H9	H	H	H	2-CH 3-4-0CHF 2	138-140
1019	t-C₄H9	H	H	3-C1	2-CH 3 - 4-OCHF 2	206-208
1020	t-C₄H9	H	H	3-I	2-CH 3 - 4-0CHF 2	204-206
1021	t−C₄H ₉	H	H	H	2-C1-4-0CF 3	162-164
1022	t-C₄H9	H	H	3-C1	2-C1-4-0CF 3	189-191
1023	t-C4H9	H	H	3-I	2-C1-4-0CF 3	188-190
1024	c−C₃H₅	H	H	3-I	2-CH 3-4-CF 2 CF 3	156.0-165.0
1025	c−C₃H₅	H	H	6-I	2-CH ₃ -4-CF ₂ CF ₃	173.2-176.4

····: ••••• ••••• ····: •••••• •••• •••••• ••••• •••••• •••••

	No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
	1026	CH ₂ CH(CH ₃)	H	H	3-I	2-CH3-4-CF2CF3	148.6
		-C2H5					
	1027	CH ₂ CH(CH ₃)	Н	H	6-I	2-CH ₃ -4-CF ₂ CF ₃	157.8
		-C ₂ H ₅					
	1028	$CH_2 - c - C_6H_{11}$	Н	H	3-I	2-CH3-4-CF2CF3	186.8-188.7
	1029	$CH_2(4-t-C_4H_9)$	Н	Н	3-I	2-CH3-4-CF2CF3	226.0-231.2
		-c-C ₆ H ₁₁)					
,	1030	$CH_2(4-t-C_4H_9)$	H	H	6-I	2-CH ₃ -4-CF ₂ CF ₃	215.4
		$-c-C_{6}H_{11}$)					
	1031	CH(CH ₃)CH ₂ O	H	H	3-I	2-CH 3-4-CF 2 CF 3	187.2-189.9
		-CH 3					
	1032	$CH(CH_3)CH_2O$	H	H	6-I	2-CH ₃ -4-CF ₂ CF ₃	169.7-176.1
		−CH 3					
	1033	CH(CH₃)CH	Н	H	3-I	2-CH ₃ -4-CF ₂ CF ₃	208.3-212.7
		-(CH ₃) ₂					
	1034	CH(CH₃)CH	Н	H ·	6-I	2-CH ₃ -4-CF ₂ CF ₃	219.3-223.0
		-(CH ₃) ₂					
	1035	C 2H 5	C 2H 5	H	3-I	2-CH ₃ -4-CF ₂ CF ₃	131.3
	1036	C 2 H 5	C 2H 5	H	6-I	2-CH ₃ -4-CF ₂ CF ₃	137
	1037	t-C₄H9	H	H	H	$2-CH_3-4-CF(CF_3)_2$	172-175
	1038	t−C₄H₃	H	H	3-C1	2-CH ₃ -4-CF(CF ₃) ₂	241-243
	1039	t-C₄H9	H	H	3-I	$2-CH_3-4-CF(CF_3)_2$	238-240
	1040	CH 2 CF 3	H	H	3-I	2-CH 3-4-CF 2CF 3	166.1-175.5

•••••

•••••

•••••

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1041	CH 2 CF 3	Н	H	6-I	2-CH3-4-CF2CF3	184.7-202.5
1042	i-C3H7	СН₃	H	3-I	2-CH ₃ -4-CF ₂ CF ₃	201.4
1043	i-C4H9	СН₃	H	3-I	2-CH3-4-CF 2CF 3	183.5-189.0
1044	n-C ₃ H ₇	n-C 3H7	H	3-I	2-CH3-4-CF 2CF 3	142.6-145.4
1045	CH 2 CH=CH 2	CH 2 CH	H	3-I	2-CH 3-4-CF 2 CF 3	100.2-105.6
		=CH 2				
1046	CH_2CH_2O	CH ₂ CH ₂ O	H	3-I	2-CH 3-4-CF 2 CF 3	84.0-87.3
	-C ₂ H ₅	-C 2H 5				
1047	CH 2 CH 2 CH 2 CH 2			3-I	2-CH3-4-CF2CF3	172.7-177.3
1048	C_2H_5	C_2H_5	H	3-I	2-CH ₃ -4-CF ₂ CF ₃	119.1
1049	t-C₄H9	H	H	Н	$2-CH_3-4-OCBrF_2$	195-197
1050	t-C₄H9	H	H	3-C1	$2-CH_3-4-OCBrF_2$	198-200
1051	t-C ₄ H ₉	H	H	3-I	2-CH3-4-0CBrF2	196-198
1052	t-C ₄ H ₉	H	H	H	4-C(CF ₃) ₂ OH	123-125
1053	t-C ₄ H ₉	H	H	3-C1	4-C(CF ₃) ₂ OH	185-187
1054	t-C ₄ H ₉	H	H	3-I	4-C(CF ₃) ₂ OH	203-205
1055	i-C3H7	H	H	3-I	2,4-F ₂	236-237
1056	C ₂ H ₅	H	Н	3-I	2-CH 3-4-0CF 2	176-178
					-CHF 2	
1057	C ₂ H ₅	H	Н	6-I	2-CH 3-4-0CF 2	207-209
					-CHF 2	
1058	n-C3H7	H	Н	3-I	2-CH3-4-0CF 2	185-187
					-CHF 2	

•

Table 1 (Cont'd)

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1059	n-C3H7	Н	Н	6-I	2-CH 3 - 4-OCF 2	215-217
					-CHF 2	
1060	t-C4H9	H	Н	Н	2-CH 3 - 4-OCF 2	197-198
					-CHF 2	
1061	t-C4H9	Н	Н	3-C1	2-CH 3-4-0CF 2	192-194
					-CHF 2	
1062	t-C4H9	H	Н	3-I	2-CH 3-4-0CF 2	217-218
					-CHF 2	
1063	i-C3H7	Н	Н	3-C1	2-CH₃-4-0-(3,5	186-188
					-(CH ₃ 0) ₂ -2-Pym)	
1064	i-C3H7	H	Н	3-I	2-CH₃-4-0-(3,5	201-202
					$-(CH_{3}O)_{2}-2-Pym)$	
1065	t-C ₄ H ₉	H	H	Н	3-0CF 2 CF 2 0-4	156-158
1066	t-C ₄ H ₉	Н	Н	3-C1	3-0CF 2 CF 2 0-4	240-241
1067	t-C4H9	Н	H	3-I	3-0CF 2CF 20-4	252-253
1068	CH₃	СН₃	Н	3-I	2-CH3-4-CF2CF3	148.7
1069	n-C3H7	СН₃	H	3-I	2-CH 3-4-CF 2CF 3	129.3
1070	CH2CH2O	CH 2 CH 2	Н	3-I	2-CH 3-4-CF 2CF 3	164.7
1071	i-C ₃ H7	i-C ₃ H7	Н	H	2-CH 3-4-CF 2CF 3	169.1
1072	i-C3H7	i-C 3H7	Н	6-I	2-CH 3-4-CF 2CF 3	201.2
1073	C_2H_5	H	Н	3-I	$2-CH_{3}-4-CF(CF_{3})_{2}$	194-195

•••••

••••••

····:

No	R 1	R ²	R ³	Xn	Үш	Physical Properties (melting point: °C
1074	C ₂ H ₅	Н	Н	6-I	$2-CH_3-4-CF(CF_3)_2$	218-220
1075	n-C3H7	Н	H	3-I	$2-CH_3-4-CF(CF_3)_2$	188-190
1076	n-C3H7	H	Н	6-I	$2-CH_3-4-CF(CF_3)_2$	201-203
1077	i-C3H7	H	H	H	4-S02CF 3	184-186
1078	i−C₃H7	Н	H	3-C1	4-S02CF 3	239-241
1079	i-C3H7	H	H	3-I	4-S02CF 3	225-227
1080	t-C4H9	Н	H	3-I	4-S02CF3	230-232
1081	i−C₃H7	i-C 3H7	H	3-I	2-CH 3-4-CF 2CF 3	Paste
1082	CH2CH2CH2	CH 2 CH 2	H	3-I	2-CH 3-4-CF 2CF 3	140.0-146.8
1083	CH2CH2CH(CH 3) CH 2	H	3-I	2-CH 3-4-CF 2CF 3	171.4
		-CH 2 -				
1086	i-C3H7	H	H	H	2-CH 3-4-0CF 2 CF 2	138-140
					-Ph	
1087	i-C3H7	H	H	3-C1	2-CH 3-4-0CF 2 CF 2	160-162
					-Ph	
1088	i-C3H7	H	H	3-I	2-CH 3-4-0CF 2 CF 2	209-211
					-Ph	
1089	i-C3H7	H	H	3-	2-CH ₃ -4-0CF ₂ CF ₂	190-192
				NO 2	-Ph	

••••

- 114 -

Table 1 (Cont'd)

	No	R 1	R2	R ³	Xn	Ym	Physical Properties (melting point: °C
	1090	i-C ₃ H7	H	H	Н	2-CH3-4-SCH2CH2	190-192
						-CF=CF 2	
	1091	i-C3H7	Н	H	Н	2-CH3-4-SOCH2CH2	149-153
•						-CF=CF 2	
	1092	i-C 3H7	H	Н	Н	2-CH3-4-S02CH2	183-185
•						$-CH_2CF=CF_2$	
	1093	i-C3H7	H	Н	3-C1	2-CH ₃ -4-SCH ₂ CH ₂	168-170
						-CF=CF 2	
	1094	i-C3H7	H	H	3-C1	$2-CH_3-4-SOCH_2CH_2$	164-167
						-CF=CF 2	
•	1095	i-C 3H7	H	H	3-C1	$2-CH_{3}-4-SO_{2}CH_{2}$	181-183
						$-CH_2CF=CF_2$	
	1096	i-C3H7	H	H	3-I	$2-CH_3-4-SCH_2CH_2$	193-195
						-CF=CF 2	
	1097	i-C ₃ H7	H	H	3-I	$2-CH_3-4-SOCH_2CH_2$	182-186
						-CF=CF 2	
	1098	i-C3H7	H	H	3-I	2-CH ₃ -4-SO ₂ CH ₂	208-210
						$-CH_2CF=CF_2$	
	1099	i-C ₃ H7	H	H	H	3-0CF 20-4	216-218
	1100	i-C3H7	H	H	3-	3-0CF 20-4	227-229
•					NO 2		
	1101	i-C 3H7	H	H	3-C1	3-0CF 20-4	243-245
	1102	i-C ₃ H ₇	H	H	3-I	3-0CF 20-4	229-231

•••••

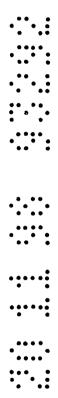
••••

.

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1103	t-C4H9	H	Н	Н	3-0CF 20-4	209-211
1104	t-C₄H9	Н	Н	3-C1	3-0CF 20-4	206-208
1105	t-C4H9	Н	Н	3-I	3-0CF 20-4	228-230
1106	i-C3H7	Н	H	Н	4-SCBrF 2	175-177
1107	i-C3H7	H	H	Н	4-SOCBrF 2	158-161
1108	i-C3H7	H	H	3-N0 2	4-SCBrF 2	180-182
1109	i-C3H7	Н	H	3-N02	4-SOCBrF 2	195-198
1110	i-C3H7	H	Н	3-C1	4-SCBrF 2	156-158
1111	i-C3H7	H	H	3-C1	4-SOCBrF 2	218-220
1112	i-C3H7	Н	H	3-I	4-SCBrF 2	206-208
1113	i-C3H7	H	H	3-I	4-SOCBrF 2	158-160
1114	t-C4H9	Н	Н	3-C1	4-SCBrF 2	210-212
1115	t-C4H9	H	H	3-I	4-SCBrF 2	219-220
1116	C 2H 5	C 2 H 5	H	3-I	2–CH 3–4–CF 2CF 3	179.8-183.7
1117	CH2CH2CH2		H	3-I	2–CH 3 – 4–CF 2 CF 3	170.7
	-CH 2	CH 2 CH 2				
1118	C 2H 5	C 2 H 5	Н	3-N02	2-CH3-4-0CF3	161.9
1119	C ₂ H ₅	C 2 H 5	H	3-N02	$2-CH_{3}-4-CF(CF_{3})_{2}$	169.1
1120	CH 3	CH₃	CH₃	3-I	2-CH 3-4-CF 2CF 3	141.9-146.6
1121	i-C3H7	СН₃	СН₃	3-I	2-CH 3-4-CF 2CF 3	Paste
1122	C ₂ H ₅	C 2 H 5	СН₃	3-I	2-CH 3-4-CF 2CF 3	Paste
1123	i-C 3H7	Н	H	Н	4−SCF ₃	135-137
1124	i-C3H7	Н	H	3-N02	4−SCF 3	187-189

•:••:

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1125	i-C3H7	H	Н	3-C1	4–SCF 3	192-194
1126	i-C3H7	H	H	3-I	4−SCF 3	194-196
1127	t-C4H9	H	Н	3-I	4–SCF 3	195-197
1128	C 2H 5	C 2H 5	H	3-I	4−SCF 3	173-175
1129	C 2 H 5	C 2H 5	Н	3-I	3-0CF 20-4	128-130
1130	C 2H 5	C 2H 5	Н	3-I	4-C(CF ₃) ₂ 0H	152-154
1131	C ₂ H ₅	C 2H 5	Н	3-NO2	2-CH3-4-0CF3	178.7-182.6
1132	C ₂ H ₅	C 2H 5	Н	3-NO2	2-CH 3-4-0CF 2 CHF 2	160.8-165.0
1133	C 2H 5	C₂H₅	H	3-NO2	2-C1-4-CF 2 CF 3	91.9-95.2
1134	C2H5	C 2H 5	H	3-NO2	2-F-4-CF 2CF 3	162.6-166.8
1135	C ₂ H ₅	C₂H₅	H	3-NO2	2-CH₃-4-C1	188.8-190.8
1136	C2H5	C 2H 5	Н	3-NO2	4-0CF 3	185.7-187.9
1137	C2H5	C 2H 5	Н	6-N02	2-CH 3-4-0CF 2 CHF 2	111.2
1138	C2H5	C 2H 5	H	6-N02	2-CH₃-4-Cl	149.7
1139	C ₂ H ₅	C 2H 5	Н	6-N02	4–0CF 3	173.4
1140	CH₂CH(CH₃)CH 2	H	6-I	2-CH3-4-CF 2CF 3	166.4
	-CH(C	H 3) CH 2				
1141	t−C₄H9	Н	Н	3-I	2-CH 3 - 4-CF 3	197-198
1142	i-C3H7	H	Н	3-I	$3-N=C(CF_2CF_3)O-4$	214-216
1143	t−C₄H9	H	Н	3-I	3-N=C(CF ₂ CF ₃)0-4	253-254
1144	C ₂ H ₅	C 2H 5	Н	3-I	2-CH3-4-CF3	160-161
1145	i-C3H7	Н	Н	Н	3-0CHFCF 20-4	102-104
1146	i-C3H7	Н	Н	3-NO 2	3-0CHFCF 20-4	190-192


No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1147	i-C3H7	H	H	3-C1	3-0CHFCF 20-4	123-125
1148	i-C ₃ H7	H	H	3-I	3-0CHFCF 20-4	218-220
1149	t-C4H9	H	Н	Н	3-0CHFCF 20-4	165-167
1150	t-C4H9	H	H	3-I	3-0CHFCF 20-4	240-241
1151	C2H5	C 2H 5	H	3-I	3-0CHFCF 20-4	193-195
1152	t-C ₅ H ₁₁	H	Н	3-F	2-CH 3-4-CF 2 CF 3	223.3
1153	t-C5H11	H	H	3-F	2-CH3-4-	222
					CF(CF ₃) ₂	
1154	t-C ₅ H ₁₁	H	Н	3-F	2-CH 3-4-0CF 3	193.6-195.8
1155	t-C5H11	Н	H	3-F	2-CH 3-4-0CHF 2	165.5-174.0
1156	n-C 3H 7	n-C3H7	Н	3-I	2-CH 3-4-0CF 3	132.2-135.0
1157	n-C3H7	n-C3H7	Н	3-I	2-CH 3-4-0CHF 2	81.4-87.8
1158	n-C 3H7	n-C3H7	Н	3-I	2-CH 3-4-	116.3
					OCF 2 CHF 2	
1159	i-C 3H7	C 2H 5	Н	3-I	2-CH 3-4-CF 2 CF 3	124.4
1160	i-C3H7	C 2 H 5	Н	3-I	4-0CF 3	137.3-144.1
1161	i-C3H7	H	H	3-I	3-0CF 2CHF0-4	161-163
1162	i-C3H7	H	Н	3-N02	3-0CF 2 CHF0-4	238-240
1163	i-C3H7	Н	Н	3-C1	3-0CF 2 CHF0-4	243-245
1164	i-C3H7	Н	H	3-I	3-0CF 2 CHF0-4	192-194
1165	t-C4H9	Н	H	Н	3-0CF 2 CHF0-4	205-207
1166	t-C4H9	Н	H	3-I	3-0CF 2 CHF0-4	238-240
1167	C 2H 5	C ₂ H ₅	Н	3-I	3-0CF 2 CHF0-4	195-197

.....

No	R 1	R2	R ³	Xn	Үш	Physical Properties (melting point: °C
1168	i-C3H7	H	Н	3-I	2-CH3-4-SOCF 3	148-152
1169	t-C4H9	H	H	3-I	2-CH ₃ -4-SOCF ₃	165-168
1173	i-C3H7	H	H	3-I	3-N=C(4-CF ₃ -Ph)	253-255
					-0-4	
1174	t-C4H9	H	H	3-I	3-N=C(4-CF ₃ -Ph)	251-253
					-0-4	
1175	C₂H₅	C 2 H 5	Н	3-I	3-N=C(4-CF ₃ -Ph)	231-233
			- -		-0-4	
1176	i-C 3H7	H	H	3-I	3-0-C(2-CF ₃ -Ph)	242-244
					=N-4	
1177	t-C4H9	H	H	3-I	3-0-C(2-CF₃-Ph)	229-231
					=N-4	
1178	C_2H_5	C ₂ H ₅	H	3-I	3-0-C(2-CF ₃ -Ph)	203-205
					=N-4	
1179	C2H5	C 2 H 5	C 2 H 5	3-I	2-CH3-4-CF 2CF 3	Paste
1180	i-C3H7	H	Н	3-I	$3-0-C(CF_2CF_3)$	130-132
					=N-4	
1181	t−C₄H9	H	H	3-I	3-0-C(CF2CF3)	205-207
					=N-4	
1182	C ₂ H ₅	C2H5	Н	3-I	3-0-C(CF 2CF 3)	188-190
					=N-4	
1183	i−C₃H7	H	H	3-CF ₃	2-CH3-4-0CF3	222-224
1184	i-C3H7	H	H	3−CF ₃	2-CH3-4-CF2CF3	219-221

• • • •

No	R ¹	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1185	C 2H 5	C ₂ H ₅	Н	3-CF 3	2-CH ₃ -4-0CF ₃	192-194
1186	C 2H 5	C2H5	H	3-CF 3	2-CH 3 - 4-CF 2 CF 3	218-220
1187	i-C3H7	H	H	3-C1	2-F-4-0CF ₃	126-128
1188	i-C3H7	Н	H	3-I	2-F-4-0CF ₃	220-222
1189	t-C₄H9	H	H	3-I	2-F-4-0CF ₃	198-200
1190	C 2 H 5	C ₂ H ₅	H	3-I	2-F-4-0CF 3	129-131
1191	i-C3H7	Н	Н	3-0CF 3	2-CH3-4-CF2CF3	190-192
1192	t-C4H9	H	H	3-0CF 3	2-CH ₃ -4-CF ₂ CF ₃	205-207
1193	C ₂ H ₅	C 2H 5	Н	3-0CF 3	2-CH3-4-CF2CF3	146-148
1202	i-C3H7	H	H	4-I	2-CH 3-4-CF 2CF 3	197-199
1203	i-C3H7	Н	H	5-I	2-CH3-4-CF2CF3	201-203
1204	i-C3H7	H	H	4-I	2-CH3-4-0CHF2	241-243
1205	i-C3H7	H	H	5-I	2-CH3-4-0CHF 2	214-216
1206	i-C3H7	H	H	3-CF ₃	2-CH 3-4-0CF 2CHF 2	195-197
1207	i-C3H7	H	H	3−CF ₃	$2-CH_{3}-4-CF(CF_{3})_{2}$	227-229
1208	i-C ₃ H ₇	H	H	Н	2-C ₂ H ₅ -4-0CF ₃	160-162
1209	i-C 3H7	H	H	3-C1	2-C2H5-4-0CF3	205-207
1210	i-C3H7	H	H	3-I	2-C ₂ H ₅ -4-0CF ₃	241-243
1211	t-C4H9	H	Н	3-I	2-C ₂ H ₅ -4-0CF ₃	224-225
1212	C ₂ H ₅	C 2H 5	Н	3-I	2-C2H5-4-0CF3	141-143
1221	i-C3H7	H	Н	3,4-Cl2	2-CH3-4-0CF3	199-200
1222	i-C 3H7	H	H	3,4-Cl2	2-CH 3-4-CF 2 CF 3	208-209
1223	i-C3H7	H	H	3,4-Cl2	2-CH ₃ -4-CF(CF ₃) ₂	228-229

No	R 1	R 2	R ³	Xn	Үш	Physical Properties (melting point: °C
1224	i-C3H7	H	H	3,5-Cl2	2-CH ₃ -4-0CF ₃	228-230
1225	i-C3H7	H	H	3,5-Cl2	2-CH ₃ -4-CF ₂ CF ₃	219-220
1226	i-C3H7	H	H	3,5-Cl2	$2-CH_3-4-CF(CF_3)_2$	211-212
1227	i-C ₃ H7	H	H	3-C1-4-F	2-CH ₃ -4-OCF ₃	184-186
1228	i-C3H7	H	H	3-C1-4-F	2-CH ₃ -4-CF ₂ CF ₃	178-180
1229	i-C ₃ H7	H	H	3-C1-4-F	$2-CH_{3}-4-CF(CF_{3})_{2}$	200-201
1230	t-C4H9	H	H	3−CF ₃	2-CH ₃ -4-0CF ₃	209-210
1231	t-C₄H9	H	H	3−CF ₃	2-CH 3-4-CF 2CF 3	210-211
1232	t-C₄H9	H	H	3−CF ₃	$2-CH_{3}-4-CF(CF_{3})_{2}$	242-243
1233	i-C3H7	H	H	3−0CF ₃	2-CH 3-4-0CF 3	219-220
1234	t-C4H9	H	H	3−0CF ₃	2-CH ₃ -4-OCF ₃	222-223
1235	C2H5	C ₂ H ₅	H	3−0CF ₃	2-CH 3-4-0CF 3	125-126
1236	i-C ₃ H7	H	H	3–0CF ₃	$2-CH_{3}-4-CF(CF_{3})_{2}$	235-236
1237	t-C₄H9	H	H	3−0CF ₃	$2-CH_{3}-4-CF(CF_{3})_{2}$	220-222
1238	C ₂ H ₅	C 2 H 5	H	3-0CF 3	$2-CH_3-4-CF(CF_3)_2$	156-157
1245	i-C3H7	H	H	3-CN	2-CH ₃ -4-CF ₂ CF ₃	168-170
1246	i-C3H7	H	H	4-I	2-CH ₃ -4-OCF ₃	238-240
1247	i-C3H7	H	H	5-I	2-CH ₃ -4-OCF ₃	205-206
1248	i-C3H7	H	H	4-I	2-CH3-4-OCF 2 CHF 2	222-223

· · · · ·

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1249	i−C₃H7	H	H	5-I	2-CH 3-4-0CF 2 CHF 2	203-204
1250	i-C3H7	Н	H	4-I	$2-CH_{3}-4-CF(CF_{3})_{2}$	215-216
1251	i-C3H7	Н	H	5-I	$2-CH_3-4-CF(CF_3)_2$	216-217
1256	i-C3H7	H	H	3-C1	2-CH3-4-CF 2CF 3	235-236
				-4-F		
1257	t−C₄H9	H	H	3-C1	2-CH 3-4-CF 2CF 3	225-226
				-4-F		
1258	C_2H_5	C₂H₅	H	3-C1	2-CH 3-4-CF 2CF 3	155-156
				-4-F		
1259	i-C3H7	H	H	3-C1	2-CH3-4-OCF3	229-231
				-4-F		
1260	t-C ₄ H ₉	H	H	3-C1	2-CH 3 - 4-OCF 3	237-238
				-4-F		
1261	C_2H_5	C 2 H 5	H	3-C1	2-CH 3-4-0CF 3	140-141
				-4-F		
1262	i-C3H7	H	H	3-C1	2-CH3-4-	264-265
				-4-F	CF (CF 3) 2	
1263	t-C ₄ H ₉	Н	H	3-C1	2-CH3-4-	253-154
				-4-F	CF (CF ₃) ₂	
1264	C 2H 5	C 2 H 5	H	3-C1	2-CH3-4-	158-159
				-4-F	CF(CF ₃) ₂	
1266	i-C3H7	Н	H	3,4-	2-CH3-4-	162-164
				Br 2	CF 2 CF 3	

•••••••

)

Table 1 (Cont'd)

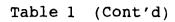
No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1277	i-C ₃ H ₇	Н	Н	4-C1	2-CH3-4-	185-186
					CF 2 CF 3	
1278	t-C₄H9	Н	H	4-C1	2-CH3-4-	206-207
					CF 2 CF 3	
1280	C ₂ H ₅	C ₂ H ₅	H	4-C1	2-CH₃-4-	163-164
					CF 2 CF 3	
1281	C2H5	C2H5	H	4-C1	2-CH3-4-	193-194
				-6-I	CF 2 CF 3	
1283	i-C3H7	Н	H	3,4-F2	2-CH3-4-OCF3	194-195
1284	t-C₄H9	Н	H	3,4-F2	2-CH ₃ -4-OCF ₃	216-217
1285	C 2H 5	C ₂ H ₅	H	3,4-F2	2-CH ₃ -4-OCF ₃	156-157
1287	i-C3H7	Н	H	4,5-F2	2-CH ₃ -4-0CF ₃	195-196
1288	t-C₄H9	H	H	4,5-F2	2-CH 3-4-0CF 3	223-224
1290	i−C₃H7	H	H	3-I	2-CH3-4-0C	226-227
					-(CF 2 CF 3)=C	
					-(CF ₃) ₂	
1291	i-C3H7	H	H	3-C1	2-CH3-4-0C	204-205
					-(CF 2 CF 3)=C	
					-(CF ₃) ₂	
1292	i-C3H7	Н	H	3-I	2-CH3-4-0C	198-199
					-(0CH₃)=C	
					-(CF ₃) ₂	
1293	i-C3H7	Н	H	3-C1	2-CH₃-4-0C	179-180
					-(0CH₃)=C	
					-(CF ₃) ₂	

••••••

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1294	CH(CH₃)CH₂OH	Н	Н	Н	2-CH ₃ -4-C ₂ F ₅	73-74
1295	i-C3H7	Н	Н	6-C1	2-0CH₃-5-Ph	120
1296	i-C3H7	Н	н	3-C1	2-0CH₃-5-Ph	195
1297	n-C3H7	Н	Н	6-C1	2-0CH₃-5-Ph	200
1298	CH(CH₃)CH₂OH	Н	Н	3-C1	2-CH3-4-C2F5	195
1299	CH(C2H5)CH2OH	Н	н	H	2-CH3-4-C2F5	78
1300	CH(CH₃)CH₂OH	H	Н	3-I	$2-CH_{3}-4-C_{2}F_{5}$	98-99
1301	i-C3H7	H	Н	3-C1	$2-CH_3-4-C\equiv C$	210
					−C₄H∍−t	
1302	i-C3H7	H	Н	6-C1	$2-CH_3-4-C\equiv C$	205
					-C4H9-t	
1303	n-C3H7	H	Н	3-I	$2-CH_{3}-4-C_{2}F_{5}$	200
1304	n-C ₃ H ₇	H	H	6-I	$2-CH_{3}-4-C_{2}F_{5}$	195
1305	i-C3H7	H	H	3-I	$2-CH_3-4-C\equiv C$	205
					-C4H9-t	
1306	i-C3H7	H	H	6-I	$2-CH_3-4-C\equiv C-$	170
					-C4H9-t	
1307	CH2-Ph	H	H	3-C1	$2-CH_{3}-4-C_{2}F_{5}$	175
1308	CH ₂ -Ph	H	H	6-C1	2-CH ₃ -4-C ₂ F ₅	175
1309	CH ₂ -(2-Cl-Ph)	H	H	3-C1	$2-CH_{3}-4-C_{2}F_{5}$	170
1310	$CH_2-(2-C1-Ph)$	H	H	6-C1	2-CH3-4-C2F5	210
1311	CH 3	H	H	3-I	2-CH3-4-C2F5	190
1312	СН з	H	H	6-I	$2-CH_{3}-4-C_{2}F_{5}$	200

.

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1313	C ₂ H ₅	H	Н	3-I	2-CH3-4-C2F5	182
1314	C ₂ H ₅	H	Н	6-I	2-CH3-4-C2F5	205
1315	CH₂CH(OH)CH₃	H	Н	3-C1	2-CH3-4-C2F5	187
1316	CH(C2H5)CH2OH	H	H	3-C1	2-CH3-4-C2F5	208
1317	C(CH3)2CH2OH	Н	Н	3-C1	2-CH3-4-C2F5	181-182
1318	CH2CH(OH)C2H5	Н	Н	3-C1	2-CH3-4-C2F5	171-172
1319	CH2CH2-Ph	H	Н	3-C1	2-CH3-4-C2F5	150
1320	CH2CH2-Ph	Н	Н	6-C1	2-CH3-4-C2F5	190
1321	CH(CH₃)-Ph	Н	H	3-C1	2-CH3-4-C2F5	160
1322	CH(CH ₃)-Ph	Н	H	6-C1	2-CH3-4-C2F5	190
1323	i-C ₃ H ₇	Н	H	3-C1	2-CH₃-4	220
					-CH2CH2C(CH3)3	
1324	i-C3H7	H	H	6-C1	2-CH3-4	205
					-CH2CH2C(CH3)3	
1325	i-C3H7	Н	H	3-C1	$2-CH_3-4-C\equiv C-Ph$	215
1326	i-C3H7	H	H	6-C1	$2-CH_3-4-C\equiv C-Ph$	230
1327	0-n-C ₃ H ₇	H	H	3-C1	2-CH3-4-C2F5	165
1328	0-n-C ₃ H ₇	Н	H	6-C1	$2-CH_{3}-4-C_{2}F_{5}$	150
1329	0-CH₂CH=CHC1	H	H	3-C1	2-CH3-4-C2F5	150
	(E)					
1330	i-C ₃ H ₇	Н	H	3-C1	2-CH3-4-CN	230
1331	(CH ₂) ₃ -Ph	Н	H	3-C1	2-CH 3-4-C 2F 5	112
1332	(CH ₂) ₃ -Ph	H	H	6-C1	2-CH 3-4-C 2F 5	105

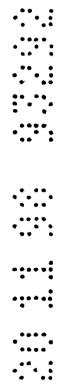


No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1333	CH2(4-C1-Ph)	H	Н	3-C1	2-CH3-4-C2F5	198
1334	CH2(4-Cl-Ph)	H	H	6-C1	2-CH3-4-C2F5	156
1335	CH2(3-C1-Ph)	H	Н	3-C1	2-CH3-4-C2F5	168
1336	CH2(3-C1-Ph)	H	Н	6-C1	2-CH3-4-C2F5	177
1337	CH ₂ (2-CH ₃ -Ph)	Н	н	3-C1	2-CH 3-4-C 2F 5	152
1338	CH ₂ (2-CH ₃ -Ph)	H	Н	6-C1	2-CH 3-4-C 2F 5	147
1339	CH₂(3-CH₃-Ph)	Н	Н	3-C1	2-CH3-4-C2F5	Crystals
1340	CH₂(3-CH₃-Ph)	Н	Н	6-C1	2-CH3-4-C2F5	173
1341	CH2(4-CH3-Ph)	H	Н	3-C1	2-CH 3-4-C 2F 5	175
1342	CH2(4-CH3-Ph)	Н	H	6-C1	2-CH3-4-C2F5	Crystals
1343	CH ₂ (2-CH ₃ 0-Ph)	H	Н	3-C1	2-CH 3-4-C 2F 5	Crystals
1344	CH ₂ (2-CH ₃ 0-Ph)	H	H	6-C1	2-CH3-4-C2F5	176
1345	CH₂(3-CH₃0-Ph)	H	Н	3-C1	2-CH 3-4-C 2F 5	73
1346	CH2(3-CH30-Ph)	H	H	6-C1	2-CH 3-4-C 2F 5	86
1347	CH ₂ (4-CH ₃ 0-Ph)	H	H	3-C1	2-CH3-4-C2F5	169
1348	CH ₂ (4-CH ₃ 0-Ph)	H	H	6-C1	2-CH 3-4-C 2F 5	168
1349	CH ₂ (2,4-Cl ₂ -Ph)	H	H	3-C1	2-CH3-4-C2F5	169
1350	CH ₂ (2,4-Cl ₂ -Ph)	Н	H	6-C1	2-CH3-4-C2F5	205
1351	CH ₂ (3,4-Cl ₂ -Ph)	H	H	3-C1	2-CH3-4-C2F5	179
1352	CH ₂ (3,4-Cl ₂ -Ph)	H	H	6-C1	2-CH3-4-C2F5	192
1353	CH ₂ (2,3-Cl ₂ -Ph)	H	H	3-C1	2-CH 3-4-C 2 F 5	179
1354	CH ₂ (2,3-Cl ₂ -Ph)	H	H	6-C1	2-CH ₃ -4-C ₂ F ₅	208
1355	CH2-2-Pyi	H	H	3-C1	2-CH 3-4-C 2F 5	143

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1356	(CH2)2(2-Cl-Ph)	Н	Н	3-C1	2-CH3-4-C2F5	141
1357	(CH ₂) ₂ (2-C1-Ph)	Н	Н	6-C1	2-CH3-4-C2F5	Paste
1358	(CH ₂) ₂ (3-Cl-Ph)	Н	Н	3-C1	2-CH3-4-C2F5	117
1359	(CH ₂) ₂ (3-Cl-Ph)	H	H	6-C1	2-CH3-4-C2F5	Paste
1360	(CH ₂) ₂ (4-Cl-Ph)	Н	H	3-C1	2-CH3-4-C2F5	118
1361	(CH ₂) ₂ (4-Cl-Ph)	Н	H	6-C1	2-CH3-4-C2F5	138
1362	CH(CH₃)(2-C1-Ph)	Н	H	3-C1	2-CH3-4-C2F5	Paste
1363	CH(CH ₃)(2-C1-Ph)	Н	H	6-C1	2-CH3-4-C2F5	197
1364	CH(CH ₃)(3-C1-Ph)	H	H	3-C1	2-CH 3-4-C 2F 5	100
1365	CH(CH₃)(3-C1-Ph)	Н	Н	6-C1	2-CH3-4-C2F5	Crystals
1366	CH(CH ₃)(4-C1-Ph)	H	Н	3-C1	2-CH3-4-C2F5	195
1367	$CH(CH_3)(4-C1-Ph)$	H	H	6-C1	2-CH 3-4-C 2F 5	Paste
1368	$(CH_2)_2O(2-C1-Ph)$	H	H	3-C1	2-CH3-4-C2F5	162
1369	(CH ₂) ₂ 0(2-C1-Ph)	H	H	6-C1	2-CH3-4-C2F5	160
1370	(CH ₂) ₂ O(3-C1-Ph)	H	H	3-C1	2-CH3-4-C2F5	115
1371	(CH ₂) ₂ O(3-C1-Ph)	H	H	6-C1	2-CH3-4-C2F5	172
1372	(CH ₂) ₂ 0(4-C1-Ph)	H	H	3-C1	2-CH3-4-C2F5	185
1373	$(CH_2)_2O(4-C1-Ph)$	H	H	6-C1	2-CH3-4-C2F5	148
1374	(CH ₂) ₂ O-Ph	H	H	3-C1	2-CH3-4-C2F5	154
1375	(CH ₂) ₂ O-Ph	H	H	6-C1	2-CH3-4-C2F5	183
1376	(CH 2) 2 NH-Ph	H	H	3-C1	2-CH3-4-C2F5	104
1377	(CH ₂) ₂ NH-Ph	H	H	6-C1	2-CH3-4-C2F5	Paste
1378	CH(CH ₃)CH ₂ OH	H	H	6-C1	2-CH ₃ -4-C ₂ F ₅	192

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1379	CH(Ph)CH₂OH	H	H	Н	2-CH3-4-C2F5	100-101
1380	CH(4-t-C₄H₃-Ph)	H	H	Н	2-CH3-4-C2F5	107-108
	-CH₂OH	d in the second se				
1381	C(CH ₃) ₂ CH ₂ OH	Н	Н	Н	2-CH3-4-C2F5	227
1382	i-C3H7	H	Н	3-C1	2-F-4-C ₂ F ₅	190
1383	i-C3H7	H	H	3-C1	2-C1-4-C2F5	180
1384	i-C3H7	Н	Н	3-C1	2-CF 3-4-C 2F 5	235
1385	i-C3H7	Н	Н	3-I	2-F-4-C ₂ F ₅	190
1386	i-C3H7	H	H	3-I	2-C1-4-C2F5	200
1387	i-C ₃ H ₇	H	H	3-I	2-CF 3-4-C 2F 5	255
1388	i-C3H7	H	H	3-I	2-0CH 3 - 4 - C 2 F 5	152
1389	i-C ₃ H ₇	H	H	3-I	2-CH3-4-CN	215
1390	2-Fur	H	H	3-C1	2-CH3-4-C2F5	178
1391	2-Fur	H	H	6-C1	2-CH3-4-C2F5	149
1392	2-TetFur	H	H	3-C1	2-CH3-4-C2F5	153
1393	2-TetFur	H	H	6-C1	2-CH3-4-C2F5	130
1394	$CH_2-4-Pyi$	H	H	3-C1	2-CH3-4-C2F5	88
1395	CH ₂ -4-Pyi	H	H	6-C1	2-CH3-4-C2F5	Paste
1396	(CH ₂) ₃ OH	H	H	H	2-CH 3 - 4 - C 2 F 5	83-84
1397	(CH 2) 2 OH	H	H	H	2-CH 3-4-C 2F 5	136
1398	CH2CH(OH)CH2Ph	H	H	H	2-CH 3-4-C 2F 5	77-78
1399	(CH ₂) ₃ 0H	H	H	3-C1	2-CH 3-4-C 2F 5	188
1400	CH2-Ph	H	H	3-I	2-CH3-4-C2F5	172

.



.

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1401	CH2-Ph	H	H	6-I	2-CH3-4-C2F5	212
1402	CH2(2-Cl-Ph)	Н	Н	3-I	2-CH3-4-C2F5	136
1403	CH2(2-C1-Ph)	Н	H	6-I	2-CH3-4-C2F5	214
1404	CH₂(2-CH₃-Ph)	Н	Н	3-I	2-CH 3-4-C 2F 5	100
1405	CH₂(2-CH₃-Ph)	Н	H	6-I	2-CH3-4-C2F5	185
1406	CH₂−Ph	СН₃	H	3-C1	2-CH3-4-C2F5	Paste
1407	CH2-Ph	CH2-Ph	H	3-C1	2-CH 3-4-C 2F 5	136
1408	CH2-Ph	CH2-Ph	H	6-C1	2-CH3-4-C2F5	Paste
1409	i-C 3H7	Н	H	3-I	2-C ₂ F ₅ -4-Br	250
1410	i-C ₃ H7	Н	H	3-I	2-C ₂ F ₅ -4-C ₂ F ₅	245
1411	CH₂C≡CH	Н	H	H	2-CH 3-4-C 2F 5	133-135
1412	CH(4-Ph-Ph)CH2	Н	H	3-C1	2-CH 3-4-C 2F 5	112
	-0H					
1414	$C(CH_3)_2C\equiv CH$	H	H	H	2-CH3-4-C2F5	207
1415	C(CH3)2CH2OH	H	H	6-C1	2-CH 3-4-C 2F 5	231
1416	CH(4-Cl-Ph)CH ₂	H	H	6-C1	2-CH ₃ -4-C ₂ F ₅	225
	-0H					
1417	C(CH3)2-Ph	H	H	3-C1	2-CH3-4-C2F5	190
1418	$C(CH_3)_2CH_2-Ph$	H	H	3-C1	2-CH 3-4-C 2F 5	192
1419	CH ₂ -3-Pyi	H	H	3-C1	2-CH3-4-C2F5	Paste
1420	CH ₂ -3-Pyi	H	H	6-C1	2-CH3-4-C2F5	Paste

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1421	CH 2 - Ph	Н	H	3-C1	2-CH3-4-0CHF 2	187
1422	CH 2 - Ph	Н	H	6-C1	2-CH3-4-0CHF2	198
1423	CH2-(2-Cl-Ph)	Н	H	3-C1	2-CH3-4-0CHF 2	178
1424	CH2-(2-Cl-Ph)	Н	H	6-C1	2-CH3-4-0CHF 2	192
1425	CH₂-(2-CH₃-Ph)	Н	Н	3-C1	2-CH3-4-0CHF 2	183
1426	$CH_2-(2-CH_3-Ph)$	Н	H	6-C1	2-CH3-4-0CHF 2	192
1427	t-C4H9	Н	H	3-I	2-F-4-C ₂ F ₅	220
1428	t-C4H9	Н	H	3-I	2-C1-4-C ₂ F ₅	187
1429	t−C₄H9	H	H	3-I	2-CF 3-4-C 2F 5	240
1430	CH 2 – Ph	H	Н	3-I	2-CH 3-4-0CHF 2	176
1431	CH ₂ -Ph	H	H	6-I	2-CH 3-4-0CHF 2	196
1432	CH ₂ -(2-Cl-Ph)	H	Н	3-I	2-CH3-4-0CHF2	189
1433	CH ₂ -(2-C1-Ph)	H	H	6-I	2-CH 3-4-0CHF 2	227
1434	$CH_2 - (2 - CH_3 - Ph)$	H	H	3-I	2-CH3-4-0CHF 2	215
1435	$CH_2 - (2 - CH_3 - Ph)$	Н	H	6-I	2-CH 3 ~ 4-0CHF 2	209
1436	CH ₂ -Ph	СН₃	H	6-C1	2-CH3~4-C2F5	Paste
1437	CH2-Ph	СН₃	H	3-C1	2-CH 3-4-0CHF 2	Paste
1438	CH2-Ph	CH 3	H	3-I	2-CH3-4-C2F5	175
1439	CH2-Ph	СН₃	H	6-I	2-CH3-4-C2F5	Paste
1440	CH 2 – Ph	СН 3	Н	3-I	2-CH 3-4-0CHF 2	Paste
1441	CH(C ₂ H ₅)CH ₂ OH	H	H	6-C1	2-CH 3-4-C 2F 5	213
1442	(R)-C*H(Ph)	Н	H	3-C1	2-CH3-4-C2F5	105-107
	−CH 2 OH					

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1443	(R)-C*H(Ph) -CH2OH	H	H	6-C1	2-CH ₃ -4-C ₂ F ₅	145-146
1445	(S)-C*H(CH₃) -CH₂OH	Н	Н	3-C1	2-CH3-4-C2F5	93-95
1446	(S)-C*H(CH₃) -CH₂OH	Н	Н	6-C1	2-CH3-4-C2F5	93-95
1447	t-C4H9	H	Н	3-C1	4-C ₂ F ₅	275
1448	t-C4H9	Н	H	3-C1	2-F-4-C ₂ F ₅	225
1449	t-C4H9	H	Н	3-C1	2-C1-4-C2F5	200
1450	n-C3H7	Н	Н	3-I	2-CH 3-4-0CHF 2	181
1451	n-C3H7	Н	н	6-I	2-CH 3-4-0CHF 2	233
1452	c−C ₃ H ₅	H	Н	3-I	2-CH 3-4-0CHF 2	182
1453	c−C ₃ H ₅	Н	н	6-I	2-CH 3-4-0CHF 2	231
1454	s-C4H9	H	H	3-I	2-CH 3-4-OCHF 2	225
1455	s-C4H9	Н	H	6-I	2-CH 3-4-0CHF 2	244
1456	CH₂C≡CH	Н	H	3-I	2-CH 3-4-0CHF 2	196
1457	CH 2 - Ph	C 2H 5	H	3-C1	2-CH3-4-C2F5	Paste
1458	(R)−C*H(CH ₃)	Н	H	3-C1	2-CH 3-4-OCHF 2	136
	-Ph					
1459	(S)−C*H(CH ₃)	Н	H	3-C1	2-CH3-4-0CHF 2	136
	-Ph					

- 131 -

Table 1 (Cont'd)

.

.

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1460	(R)-C*H(CH₃) -CH₂OH	Н	Н	3-C1	2-CH₃-4-C₂F₅	94-95
1461	(R)-C*H(CH₃) -CH₂OH	H	H	6-C1	2-CH₃-4-C₂F₅	94-95
1464	C(CH3)2CH2OH	H	H	3-I	2-CH3-4-C2F5	118
1465	CH(CH₃)CH₂OH	Н	H	6-I	2-CH3-4-C2F5	130-131
1466	$C(CH_3)_2C\equiv CH$	Н	H	3-C1	2-CH3-4-C2F5	210-211
1467	$C(CH_3)_2C\equiv CH$	Н	H	6-C1	2-CH3-4-C2F5	230
1468	CH2(2-F-Ph)	H	H	3-C1	2-CH3-4-C2F5	187
1469	CH₂(2-F-Ph)	H	H	6-C1	2-CH3-4-C2F5	165
1470	CH 2 - Ph	H	H	3-F	2-CH3-4-C2F5	158
1471	CH2-Ph	H	H	6-F	2-CH3-4-C2F5	134
1472	s-C4H9	H	H	3-I	2-F-4-C ₂ F ₅	200
1473	s-C4H9	Н	H	3-I	2-C1-4-C2F5	205
1474	i-C3H7	H	H	3-I	2-F-4-n-C3F7	165
1475	t-C ₄ H ₉	H	H	3-I	2-C ₂ H ₅ -4-C ₂ F ₅	235
1476	CH2CH(OH)Ph	H	H	3-C1	2-CH3-4-C2F5	108
1477	CH₂CH(OH)Ph	Н	H	6-C1	2-CH3-4-C2F5	105
1478	$C(CH_3)_2C\equiv CH$	Н	H	3-C1	2-CH ₃ -4-C ₂ F ₅	105

,

•••••

•••••

- 132 -

Table 1 (Cont'd)

No	R 1	R 2	R ³	Xn	Үш	Physical Properties (melting point: °C
1479	$C(CH_3)_2C\equiv C$	Н	H	3-C1	2-CH ₃ -4-C ₂ F ₅	110
	-2-Thi					
1480	$C(CH_3)_2C\equiv C-Ph$	H	H	6-C1	$2-CH_{3}-4-C_{2}F_{5}$	194
1481	(R)-C*H(CH₃) -CH₂OH	H	H	3-I	2-CH3-4-C2F5	103-105
1482	(S)-C*H(CH₃) -CH₂OH	H	H	3-I	2-CH3-4-C2F5	103-105
1483	(R)-C*H(CH₃) -CH₂OH	H	H	6-I	2-CH3-4-C2F5	173-174
1484	C(CH₃)₂(4-Cl -Ph)	Н	H	3-C1	2-CH3-4-C2F5	218
1485	C(CH₃)₂(3-Cl -Ph)	Н	H	3-C1	2-CH3-4-C2F5	128
1486	CH2-Ph	H	Н	3-C1	2-F-4-C ₂ F ₅	162
1487	CH 2 - Ph	H	Н	3-C1	2-C1-4-C2F5	153
1488	C ₂ H ₅	H	H	3-C1	2-F-4-C ₂ F ₅	135
1489	C₂H₅	Н	H	3-C1	2-C1-4-C2F5	125
1490	C ₂ H ₅	Н	H	3-C1	2-F-4-n-C3F7	128
1491	n-C 3H7	H	н	3-C1	2-F-4-C ₂ F 5	153
1492	n-C 3H 7	H	H	3-C1	2-C1-4-C ₂ F ₅	147
1493	n-C 3H 7	H	H	3-C1	2-F-4-n-C ₃ F ₇	142
1494	i-C3H7	H	H	3-C1	2-F-4-n-C3F7	142
1495	i-C3H7	Н	Н	3-C1	2-C ₂ H ₅ -4-C ₂ F ₅	213

···:

····:

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1496	t-C₄H9	Н	H	3-C1	2-F-4-n-C3F7	172
1497	t-C₄H9	Н	H	3-C1	2-C ₂ H ₅ -4-C ₂ F ₅	194
1498	s-C4H9	Н	H	3-C1	2-F-4-C ₂ F 5	209
1499	s-C4H9	Н	Н	3-C1	2-C1-4-C2F5	194
1500	s-C4H9	Н	Н	3-C1	2-F-4-n-C3F7	182
1501	s-C4H9	Н	Н	3-01	2-C ₂ H ₅ -4-C ₂ F ₅	212
1502	C 2 H 5	Н	Н	3-I	2-F-4-C ₂ F ₅	135
1503	C ₂ H ₅	Н	H	3-I	2-C1-4-C ₂ F ₅	155
1504	t-C4H9	Н	H	3-I	2-F-4-n-C3F7	180
1505	t-C₄H9	H	H	3-F	2-CH3-4-C2F5	220
1506	t-C₄H9	H	H	3-F	2-CH 3-4-0CHF 2	186
1507	t-C4H9	H	H	3-F	2-F-4-C ₂ F ₅	214
1508	t-C₄H9	H	H	3-F	2-C1-4-C2F5	222
1509	t-C ₄ H ₉	H	H	3-F	2-F-4-n-C3F7	179
1510	C 2 H 5	H	H	3-F	2-F-4-C2F5	125
1511	C 2 H 5	H	H	6-F	2-F-4-C ₂ F 5	155
1512	n-C 3H7	H	H	3-F	2-F-4-C ₂ F ₅	130
1513	n-C3H7	Н	H	6-F	2-F-4-C ₂ F ₅	170
1514	i-C3H7	Н	H	3-F	2-F-4-C ₂ F ₅	190
1515	i-C3H7	Н	H	6-F	2-F-4-C ₂ F ₅	180
1516	i−C3H7	Н	H	3-F	2-C1-4-C2F5	210
1517	i−C₃H7	Н	H	6-F	2-C1-4-C2F5	160

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1518	(S)−C*H(CH₃)	Н	Н	6-I	2-CH3-4-C2F5	173-174
	-CH 2 OH					
1519	$C(CH_3)_2CH_2OH$	Н	Н	3-I	2-CH 3-4-OCF 3	205
1520	$C(CH_3)_2CH_2OH$	H	Н	6-I	2-CH ₃ - 4-0CF ₃	248
1521	i-C ₃ H ₇	Н	Н	3-I	2-CH₃-4-(4-CF₃0	247-250
					-Ph)	
1522	i-C3H7	H	Н	3-I	2-CH ₃ -4-(4-CF ₃	243-246
					-Ph)	
1523	CH2(2-CF3-Ph)	H	H	3-C1	2-CH3-4-C2F5	183
1524	n-C 3H 7	H	H	3-I	2-F-4-n-C ₃ F ₇	145
1525	C 2H 5	C ₂ H ₅	H	3-F	2-CH3-4-C2F5	135
1526	C 2H 5	C 2H 5	H	3-F	2-CH3-4-i-C3F7	150
1527	C 2 H 5	C₂H₅	H	3-F	2-CH 3 - 4-OCF 3	125
1528	C 2 H 5	C₂H₅	H	3-F	2-CH3-4-0CHF 2	110
1529	C 2H 5	C 2H 5	H	3-F	2-CH3-4-0CF 2 CHF 2	155
1530	C 2 H 5	C2H5	H	3-F	2-F-4-C ₂ F 5	130
1531	C ₂ H ₅	C 2H 5	H	3-F	2-C1-4-C2F5	110
1532	C 2H 5	C 2H 5	H	3-I	2-CH3-4-i-C3F7	142
1533	C ₂ H ₅	C 2H 5	H	3-I	2-CH 3 - 4-OCF 3	142
1534	C ₂ H ₅	C 2H 5	H	3-I	4-0CF 3	142
1535	C ₂ H ₅	C 2 H 5	H	3-C1	2-CH 3-4-C 2F 5	150
1536	C 2H 5	C ₂ H ₅	H	3-C1	2-CH 3-4-0CF 3	123
1537	C ₂ H ₅	C_2H_5	H	3-C1	2-CH3-4-i-C3F7	147

•

No	R 1	R 2	R 3	Xn	Ym	Physical Properties (melting point: °C
1538	C2H5	C ₂ H ₅	Н	3-C1	2-CH 3-4-0CHF 2	92
1539	C 2 H 5	C ₂ H ₅	Н	3-C1	2-CH 3-4-0CF 2 CHF 2	135
1540	C ₂ H ₅	C2H5	Н	3-C1	2-C1-4-C2F5	110
1541	C ₂ H ₅	C2H5	Н	3-C1	2-F-4-C ₂ F ₅	113
1542	C ₂ H ₅	C 2 H 5	H	3-C1	2-CH₃-C1	142
1543	C ₂ H ₅	C2H5	H	3-C1	2-C ₂ H ₅ -4-C ₂ F ₅	101
1544	C 2 H 5	C 2 H 5	Н	3-C1	4-0CF 3	138
1545	C ₂ H ₅	C2H5	Н	3-C1	4–CF 3	188
1546	C ₂ H ₅	C 2 H 5	Н	3-F	2-CH3-4-Cl	135
1547	C ₂ H ₅	C 2 H 5	Н	3-F	4-CF 3	175
1548	C2H5	C 2H 5	Н	3-F	4-0CF 3	155
1549	C ₂ H ₅	C 2H 5	H	3-F	2-C ₂ H ₅ -4-C ₂ F ₅	80
1550	C2H5	C 2H 5	Н	3-NO2	2-CH3-4-C2F5	185
1551	C2H5	C 2H 5	H	6-N02	2-CH3-4-C2F5	145
1552	t-C₄H9	Н	Н	3-I	3-CH3-4-C2F5	215
1553	CH2-Ph	CH₃	СН₃	3-C1	2-CH3-4-C2F 5	Paste
1554	CH(CH₃)-Ph	Н	СН₃	3-C1	2-CH3-4-C2F5	Paste
1555	C ₂ H ₅	C 2H 5	H	3-I	2-CH 3-4-0CHF 2	138-139
1556	C ₂ H ₅	C 2H 5	H	3-I	2-CH3-4-0CF2CHF2	136
1557	C ₂ H ₅	C 2H 5	H	3-I	2-CH3-4-C1	179
1558	C ₂ H ₅	C 2H 5	Н	3-I	4-CF 3	187
1559	C ₂ H ₅	C 2H 5	H	3-I	2-C2H5-4-C2F5	106
1560	C2H5	C2H5	H	3-I	2-C1-4-C ₂ F ₅	103-105

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1561	C ₂ H ₅	C ₂ H ₅	Н	3-I	2-CH ₃ -4-C ₂ F ₅	115
1562	t-C₄H9	Н	Н	3-I	$2-Br-4-C_2F_5$	185
1563	i−C₃H7	H	Н	3-I	3-CH ₃ -4-C ₂ F ₅	240
1564	i-C3H7	Н	Н	Н	4-0-(2-Pym)	246
1565	C(CH ₃) ₂	Н	Н	3-I	2-CH3-4-C2F5	193
	-CH 2 CH 3					
1566	C(CH ₃) ₂	H	H	3-I	2-CH3-4-0CF 3	180
	-CH 2 CH 3					
1567	C(CH ₃) ₂ CH ₂ CH ₃	Н	H	3-I		178-179
1568	C(CH ₃) ₂ CH ₂ CH ₃	Н	H	3-I	2-CH 3-4-OCHF 2	176-177
1569	$C(CH_3)_2CH=CH_2$	Н	H	3-C1	2-CH3-4-C2F5	223-224
1570	C(CH ₃)₂CH≡C	H	H	3-C1	2-CH3-4-C2F5	92-93
	-(4-CH₃-Ph)					
1571	$C(CH_3)_2CH\equiv C$	H	H	3-C1	2-CH3-4-C2F5	96-97
	-(2,4-Cl2-Ph)					
1572	$C(CH_3)_2CH\equiv C$	H	H	3-C1	2-CH3-4-C2F5	88-89
	-(4-CH₃0-Ph)					
1573	n-C3H7	C 2H 5	H	3-I	2-CH3-4-C2F5	93
1574	n-C 3H7	C 2 H 5	H	3-I	2-CH 3-4-OCF 3	109
1575	n-C ₃ H ₇	C 2H 5	H	3-I	2-CH 3-4-0CHF 2	102
1576	CH ₂ (4-CF ₃ 0-Ph)	H	H	3-C1	2-CH3-4-C2F5	172
1577	$CH_2(4-CF_30-Ph)$	H	H	6-C1	2-CH3-4-C2F5	193
1578	CH2(3-C1-Ph)	CH 3	H	3-C1	2-CH3-4-C2F5	Paste
1579	CH2(2-F-Ph)	CH 3	H	3-C1	2-CH3-4-C2F5	115
1580	i-C3H7	H	H	3-I	2-Br-4-C₂F₅	190

•••••

No	R 1	R ²	Rз	Xn	Ym	Physical Properties (melting point: °C
1581	n-C3H7	C 2 H 5	Н	3-F	2-CH3-4-C2F5	120
1582	n-C 3H 7	C 2 H 5	Н	3-F	4-0CF 3	115
1583	n-C3H7	C 2 H 5	Н	3-F	4–0CHF 2	85
1584	n-C 3H 7	C 2H 5	H	3-F	2-C1-4-C ₂ F ₅	75
1585	$C(CH_3)_2CH \equiv C$	H	H	3-C1	2-CH3-4-C2F5	102-103
	-(4-CF 3-Ph)					
1586	$C(CH_3)_2CH\equiv C$	Н	H	3-C1	2-CH3-4-C2F5	115-117
	-(2,6-Cl ₂ -Ph)					
1587	$C(CH_3)_2CH\equiv C$	H	H	3-C1	2-CH3-4-C2F5	169
	-2-Pyi					
1588	$C(CH_3)_2CH\equiv CH$	Н	H	3-C1	2-CH 3-4-0CHF 2	191-192
1589	$C(CH_3)_2CH=CH_2$	Н	H	6-C1	2-CH3-4-C2F5	242
1590	$C(CH_3)_2CH\equiv C$	H	H	3-C1	2-CH 3-4-C 2F 5	134-135
	-3-Pyi					
1591	i-C3H7	H	H	H	2-CH₃-4-(2,6	165
					-(CH ₃ 0) ₂ -Ph)	
1592	i-C3H7	H	H	H	2-CH₃-4-(3,5	150
					-(CH30)2-Ph)	
1593	C2H5	C 2H 5	H	H	2-CH₃-4-(3,5	Paste
					-(CH ₃ 0) ₂ -Ph)	
1594	i-C3H7	H	H	3-C1	2-F-4-(0CF₂0)-5	195
1595	i-C3H7	H	H	3-I	2-F-4-(0CF₂0)-5	208
1596	t-C₄H9	H	H	3-I	2-F-4-(0CF 20)-5	202

) 1

Table 1 (Cont'd)

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1597	i-C3H7	Н	Н	3-C1	2-CH 3-4-(0CHFCF 2	211
					-0)-5	
1598	i-C ₃ H7	H	H	3-I	2-CH3-4-(0CHFCF2	212
					-0)-5	
1599	t-C ₄ H ₉	H	H	3-I	2-CH3-4-(0CHFCF2	217
					-0)-5	
1600	i-C ₃ H7	H	H	3-I	2-C1-4-(0CHFCF 2	210
					-0)-5	
1601	i-C ₃ H ₇	Н	H	3-I	2-C1-4-(0CF 2CHF	214
					-0)-5	
1602	$C(CH_3)_2C\equiv CH$	Н	H	3-C1	2-CH 3-4-0CF 3	178-180
1603	C(CH3)2CHBr	H	H	3-C1	2-CH3-4-C2F5	130-131
	-CH2Br					
1604	C(CH ₃) ₂ CH=CH	H	H	3-C1	2-CH ₃ -4-C ₂ F ₅	90-93
	-Ph(E)					
1605	C(CH3)2CH2Br	H	H	3-I	2-CH 3-4-0CF 3	139-141
1606	(S)-C*H	H	H	3-I	2-CH 3-4-C 2F 5	105-107
	-(CH3)-CH2Br					
1607	(R)-C*H	H	H	3-I	2-CH3-4-C2F5	105-107
	-(CH3)-CH2Br					
1608	i-C ₃ H ₇	H	н	3-I	3-C1-4-C ₂ F ₅	145
1609	t-C4H9	Н	H	3-I	3-C1-4-C ₂ F ₅	260

- 139 -

Table 1 (Cont'd)

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1610	i-C ₃ H ₇	Н	H	3-I	$2-CH_{3}-4-C_{2}F_{5}-5-CH_{3}$	210
1611	t-C ₄ H ₉	Н	H	3-I	2-CH ₃ -4-C ₂ F ₅ -5-CH ₃	215
1612	i-C ₃ H ₇	Н	Н	3-I	2,3-(CH ₃) ₂ -4-C ₂ F ₅	210
1613	t-C ₄ H ₉	Н	Н	3-I	$2, 3-(CH_3)_2-4-C_2F_5$	220
1614	C ₂ H ₅	C ₂ H ₅	Н	3-I	2-CH3-4-(4-F-Ph)	130-133
1615	C2H5	C 2H 5	H	3-I	2-CH ₃ -4-(4-Cl-Ph)	173-175
1616	i-C3H7	Н	H	Н	2-CH ₃ -4-0-(2-Thz)	149
1617	i-C3H7	H	H	3-I	Mixture of 2-CH ₃ -4-	235
					$(4-(2-CH_3-Thz))$ and	
					2-CH₃-5-(4-(2-CH₃-	
					Thz)) (1:1)	
1618	i-C3H7	Н	H	3-I	2-CH ₃ -4-0-(2-Pym)	239
1619	C ₂ H ₅	C 2 H 5	H	3-I	2-CH ₃ -4-(4-CF ₃ -Ph)	112-115
1620	i-C3H7	Н	H	3-I	4-CF 2CF 20-5	239
1621	i-C3H7	H	H	3-C1	4-CF 2CF 20-5	243
1622	i-C3H7	H	H	3-I	2-C1-4-0CF 20-5	226
1623	i-C₃H7	H	H	3-C1	2-C1-4-0CF 20-5	223
1624	t−C₄H9	Н	H	3-I	2-C1-4-0CF 20-5	221
1625	i-C3H7	Н	H	3-I	2-C1-4-0CF 2CF 20	241
1626	i-C3H7	H	H	3-I	2-C1-3-0CF 2 CF 2 0-4	219
1627	C(CH ₃) ₂ CH ₂ Cl	H	H	3-I	2-CH3-4-0CF3	160
1628	$C(CH_3)_2C\equiv C$	H	H	3-C1	2-CH ₃ -4-C ₂ F ₅	78-80
	-3-Thi					

••••••

•••••••

No	R ¹	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1629	$C(CH_3)_2C\equiv CH$	H	Н	3-I	2-CH ₃ -4-C ₂ F ₅	187-188
1630	i-C3H7	Н	H	3-I	2-CH ₃ -4-(3,5-(CH ₃ 0) ₂	199
					-Ph)	
1631	i-C3H7	Н	Н	Н	3-0CH20-4	195
1632	i-C3H7	H	H	Н	2-F-4-C1	177
1633	$C(CH_3)_2C\equiv C$	Н	H	3-C1	2-CH ₃ -4-C ₂ F ₅	92-93
	-(4-CF ₃ 0-Ph)					
1634	$C(CH_3)_2C\equiv CH$	H	H	3-I	2-CH 3-4-OCF 3	188-189
1635	$C(CH_3)_2C\equiv CH$	H	H	3-I	2-CH 3-4-0CHF 2	175-176
1636	i−C₃H7	H	H	3-I	$4-N=(n-C_{3}F_{7})C-0-5$	182
1637	i-C3H7	Н	H	3-I	$4-0-C(n-C_{3}F_{7})=N-5$	250
1638	i−C₃H7	H	H	3-C1	$4-0-C(n-C_{3}F_{7})=N-5$	168
1639	t-C₄H9	H	H	3-I	$4-0-C(n-C_{3}F_{7})=N-5$	248
1640	i-C3H7	H	H	3-I	2,3-(CH ₃) ₂ -4-C ₂ F ₅	195
1641	i-C3H7	H	H	3-I	$2-CH_{3}-4-OC(CF_{3})=N-5$	229
1642	i-C₃H7	H	H	3-C1	2-C1-3-0CF 2CF 20-4	188
1643	i-C₃H7	H	H	3-C1	2-C1-4-0CF 2CF 20-5	203
1644	t-C4H9	H	H	3-I	2-C1-3-0CF 2CF 20-4	189
1645	t-C₄H9	H	H	3-I	2-C1-4-0CF 2CF 20-5	234
1646	$C(CH_3)_2CH_2Cl$	H	H	3-I	2-CH3-4-C2F5	168-169
1647	C(CH ₃) ₂ CH ₂ Br	H	H	3-I	2-CH ₃ -4-C ₂ F ₅	167-168
1648	$C(CH_3)_2C\equiv C$	H	H	3-I	2-CH ₃ -4-C ₂ F ₅	90
	-Naph					

•••••

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1649	C(CH₃)₂C≡C -(5-Br-2-Pyi)	H	H	3-C1	2-CH3-4-C2F5	105-106
1650	$C(CH_3)_2C \equiv C$ $-(2, 4-F_2-Ph)$	Н	Н	3-C1	2-CH3-4-C2F5	103-105
1651	(S)-C*H(CH ₃) -CH ₂ F	H	Н	3-C1	2-CH3-4-C2F5	135
1652	(S)-C*H	Н	Н	3-C1	2-CH3-4-C2F5	193-198
1653	-(CH3)-CH2Br i-C3H7	Н	Н	3-I	2-CH₃-4-C₂F₅-5	210
1654	t-C₄H9	Н	Н	3-I	-C1 2-CH ₃ -4-C ₂ F ₅ -5	200
1655	i−C₃H7	Н	Н	3-I	-C1 2-CH₃-4-C₂F₅-5	190
1656	t-C₄H9	H	H	3-I	-CH ₃ 2-CH ₃ -4-C ₂ F ₅ -5	195
1057	: 0 U				-CH₃	011
1657 1658	i−C3H7 i−C3H7	H H	H H	Н 3-I	$3-(2-CH_3-4-Thz)$ $3-(2-CF_3-4-Thz)$	211 122
1659	i-C _{3H7}	H	н Н	3-1 3-1	$3-(2-CH_3-4-1HZ)$ $3-(2-CH_3-4-0xa)$	122
1660	i-C ₃ H ₇	H	H	3-I	$2 - I - 4 - 0 CF_2 0 - 5$	252
1661	i-C3H7	H	H	3-C1	2-CH ₃ -4-0CF ₂ 0-5	218
1662	t-C4H9	H	H	3-I	2-CH30-4-C2F5	135

•:••• •..•• •••• · · · · · ·

•••••• •••••• ••••• ••••••

•••••

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1663	i-C 3H7	H	H	3-I	$2-CH_3-4-i-C_3F_7-5-F$	235
1664	t-C4H9	H	H	3-I	2-CH ₃ -4-i-C ₃ F ₇ -5-F	230
1665	i-C3H7	Н	H	3-I	2-CH ₃ -4-i-C ₃ F ₇ -5-Cl	210
1666	i-C 3H7	H	H	3-I	2-CH ₃ -4-CF ₂ CF ₂ 0-5	198
1667	i-C3H7	H	H	3-I	2-CH3-4-i-C3F7	270
1668	t-C4H9	H	H	3-I	2-CH ₃ -4-i-C ₃ F ₇	290
1669	i-C3H7	H	H	3-I	$2-F-4-i-C_{3}F_{7}$	205
1670	t-C4H9	H	H	3-I	$2-F-4-i-C_{3}F_{7}$	210
1671	i-C3H7	H	H	3-I	2-SCH3-4-i-C3F7	205
1672	t-C4H9	Н	H	3-I	2-SCH3-4-i-C3F7	205
1673	i-C3H7	Н	H	3-I	$2,4-(CH_3)_2-4-i-C_3F_7$	240
1674	t-C4H9	H	H	3-I	$2,4-(CH_3)_2-4-i-C_3F_7$	245
1675	i-C3H7	H	H	3-I	$4-(2-CH_3-4-Thz)$	217
1676	i-C3H7	H	H	3-I	$4-(2-CH_{3}-4-0xa)$	212
1677	i−C₃H7	H	H	3-I	$4-(2-i-C_{3}H_{7}-4-Thz)$	199
1678	i-C3H7	H	H	3-N02	$4-(2-CH_{3}-4-Thz)$	230
1679	i-C3H7	H	H	3-I	2-C1-3-0CF 2CHF0-4	188
1680	i-C3H7	H	H	3-I	2-C1-3-0CHFCF 20-4	191
1681	i-C3H7	H	H	3-I	Mixture of 2-Cl-3-	199
					OCHFCF20-4-5-Cl and	
					2-C1-3-0CHFCF20-4-6-	
					Cl (1:1)	

••••

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1682	i-C3H7	H	Н	3-I 2-C1-3-N=C(CF ₃)-0-4		265
1683	t-C₄H9	H	Н	3-I	2-C1-3-N=C(CF ₃)-0-4	259
1684	i-C3H7	Н	Н	3-I	2-Br-4-0CF 2CHF0-5	185
1685	i-C3H7	Н	H	3-I	Mixture of 2,3-Br ₂ -4-	250
1686	i-C3H7	Н	Н	3-I	OCF ₂ CHFO-5; 2,5-Br ₂ -3- OCHFCF ₂ O-4; and 2,6- Br ₂ -3-OCF ₂ CHFO-4(1:1:1) Mixture of 2,3-Br ₂ -4-	228
1000				U I	OCHFCF ₂ O-5; 2,5-Br ₂ -3- OCF ₂ CHFO-4; and 2,6- Br ₂ -3-OCF ₂ CHFO-4(1:1:1)	220
1689	i-C3H7	H	H	3-I	$2, 3-(CH_3)_2-4-i-C_3F_7$	270
1690	t-C4H9	H	H	3-I	$2,3-(CH_3)_2-4-i-C_3F_7$	280
1691	i-C3H7	H	H	3-I	2-i-C ₃ H ₇ -4-i-C ₃ F ₇	240
1692	t-C4H9	H	H	3-I	2-i-C ₃ H ₇ -4-i-C ₃ F ₇	245
1693	i-C3H7	H	H	3-I	$2-0C_{2}H_{5}-4-i-C_{3}F_{7}$	195
1694	t-C ₄ H ₉	H	H	3-I	2-0C ₂ H ₅ -4-i-C ₃ F ₇	210
1695	i-C3H7	H	H	3-I	3-F-4-i-C ₃ F ₇	265
1696	t-C ₄ H ₉	H	H	3-I	3-F-4-i-C ₃ F ₇	285
1697	i-C3H7	H	H	3-I	3-C1-4-i-C ₃ F ₇	295
1698	i-C3H7	H	H	3-I	2-Br-4-i-C ₃ F ₇ -5-CH ₃	240
1699	i-C3H7	H	H	3-I	$2-Br-4-i-C_{3}F_{7}$	240
1700	i-C3H7	H	H	3-I	2-SCH ₃ -4-C ₂ F ₅	200
1703	i-C3H7	H	H	3-I	$4-(2-c-C_{3}H_{5}-4-Thz)$	198

••••• •••••• ••••••

•••••• •••••• ••••••

••••••• · · · · ·

•

••••••

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1714	i-C3H7	Н	H	3-I	2-C2H5-4-i-C3F7	220
1715	i-C3H7	H	H	3-I	2-0CH3-4-i-C3F7	190
1716	i-C 3H7	H	H	3-I	$2,6(CH_3)_2-4-i-C_3F_7$	275
1717	i-C3H7	H	H	3-I	2,6-(CH ₃) ₂ -4-C ₂ F ₅	250
1722	i-C3H7	H	H	3-I	2-C1-4-i-C ₃ F ₇	220
1723	t-C4H9	H	H	3-I	2-Cl-4-i-C ₃ F ₇	210
1726	i-C3H7	H	H	3-I	2-(CH ₂) ₄ -3-4-i-C ₃ F ₇	260
1727	t−C₄H₃	H	H	3-I	2-(CH ₂) ₄ -3-4-i-C ₃ F ₇	272
1732	i-C3H7	H	H	3-I	2-C1-3-0CF 2CF 20-4	245
1733	i-C3H7	H	H	3-I	2-C1-3-0CHFCF 20-4	190
1737	i-C3H7	H	H	3-I	$4-C(CH_3)=NOCH_3$	190
1742	i-C3H7	H	H	3-I	2-0CF 20-3	190
1743	i-C 3H7	H	H	3-I	2-0CF 20-3-6-C1	213
1744	i-C ₃ H ₇	H	H	3-I	2-0CF 20-3-4-C1	202
1745	i-C3H7	H	H	3-I	2-0CF20-3-4,6-Cl2	228
1746	i-C3H7	H	H	3-I	2-0CF 20-3-4-i-C 3F 7	175
1747	t-C4H9	H	H	3-I	2-0CF 20-3-4-C1	235
1748	t−C₄H9	H	H	3-I	2-0CF 20-3-4,6-Cl 2	243
1749	i-C3H7	H	H	3-I	4-C(CH ₃)=NOCH ₂ -Ph	205
1750	i−C₃H7	H	H	3-I	$4-C(CH_3)=NOCH_2$	Decomp.
					-CH=CH ₂	

.

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1751	СНз	СНз	Н	H	2-CH3-4-C1	149
1752	C2H 5	C2H5	H	H	2-CH3-4-C1	172
1753	n-C3H7	n-C3H7	H	H	2-CH3-4-C1	126
1762	i-C ₃ H7	Н	H	3-I	3-C(i-C ₃ F ₇)=NN	Paste
					-(i-C ₃ F ₇)-4	
1763	i-C ₃ H ₇	H	H	3-I	4-i-C ₃ H ₇ -2-N=CH-S-3	200
1764	i-C3H7	H	H	3-I	3-S-C(i-C ₃ H ₇)=N-4	218
1765	i-C ₃ H7	H	H	3-I	4-(2-CF ₃ -4-Thz)	105
1766	i-C3H7	H	H	3-I	3-SCH3-4-i-C3F7	160
1767	i-C ₃ H ₇	H	H	3-I	2-Ph-4-i-C3F7	240
1768	i-C3H7	H	H	3-I	2-0Ph-4-i-C ₃ F ₇	180
1769	i-C3H7	H	H	3-I	2-0CH3-4-i-C3F7	265
1770	(CH ₂) ₂ -3-Pyi	H	H	3-I	2-CH3-4-i-C3F7	Amorphous
1771	(CH ₂) ₂ -3-Pyi	H	H	6-I	2-CH3-4-i-C3F7	Amorphous
1772	(CH ₂) ₂ -3-Pyi	H	H	3-I	2-CH 3-4-0CF 3	169-173
1773	CH(CH₃)-2-Pyi	H	H	3-I	2-CH3-4-i-C3F7	Amorphous
1774	CH(CH₃)-2-Pyi	H	H	6-I	2-CH3-4-i-C3F7	Amorphous
1775	CH(CH₃)-2-Pyi	H	H	3-I	2-CH3-4-OCF3	158-161
1776	CH(CH₃)-2-Pyi	H	H	6-I	2-CH 3-4-OCF 3	213-216
1777	CH(CH₃)-2-Pyi	H	H	3-I	$2-CH_{3}-4-C_{2}F_{5}$	149-152
1778	CH(CH₃)-2-Pyi	H	H	6-I	2-CH 3-4-C 2F 5	194-196

- 146 -

Table 1 (Cont'd)

····:

•••••

•••••

•••••

.....

••••••

•••••

•••••

••••••

•••••

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1780	N(Ph)COCF 3	Н	Н	3-I	2-CH3-4-C2F5	239-241
1799	CH(CH ₃)-2-Fur	Н	Н	3-I	2-CH3-4-i-C3F7	191
1800	CH(CH₃)-2-Thi	H	H	3-I	2-CH3-4-i-C3F7	159
1801	i-C ₃ H ₇	Н	Н	3-CF 3	2-CH3-4-C2F5	210-212
1802	i-C ₃ H ₇	Н	H	3-C1-6-	2-CH3-4-C2F5	236-237
				CF 3 S		
1803	i-C ₃ H ₇	H	Н	3-CF ₃ SO	2-CH3-4-C2F5	186-187
1804	i-C ₃ H ₇	H	Н	6-CF 3 SO	2-CH3-4-C2F5	206-208
1805	i-C ₃ H ₇	H	Н	3-CF 3 SO	2-CH3-4-i-C3F7	211-213
1815	i-C3H7	H	Н	3-I	2-CH3-4-s-C4F9	190
1816	i-C3H7	H	H	3-I	2-0H-4-i-C ₃ F ₇	155
1824	i-C ₃ H ₇	H	H	3-I	2-N=C(CF ₃)0-3	132
					-4-i-C3F7	
1825	i-C3H7	H	H	3-I	2-N=C(CF ₃)0-3	145
1826	t-C₄H ₉	H	H	3-I	2-N=C(CF₃)0-3	110
					-4-i-C3F7	
1827	t-C₄H9	H	H	3-I	2-N=C(CF ₃)0-3	120
1829	(CH ₂) 2NH-CO 2C 2H 5	H	H	3-I	2-CH3-4-i-C3F7	155
1830	(CH2)2NHCO2CH2Ph	H	H	3-I	2-CH ₃ -4-C ₂ F ₅	155
1831	(CH ₂) ₂ CH=CF ₂	H	H	3-I	2-CH3-4-C2F5	180

No	R 1	R 2	R 3	Xn	Ym	Physical Properties (melting point: °C
1838	i-C ₃ H ₇	Н	Н	Н	2-CH3-4-OCF 2CF 3	
1839	i-C ₃ H7	Н	Н	3-NO 2	2-CH ₃ -4-0CF ₂ CF ₃	
1840	i-C3H7	Н	Н	3-F	2-CH3-4-0CF 2 CF 3	
1841	i-C3H7	Н	Н	3-C1	2-CH3-4-0CF2CF3	
1842	i-C ₃ H ₇	Н	Н	3-Br	2-CH3-4-0CF2CF3	
1843	i-C ₃ H ₇	Н	Н	3-C1-4-F	2-CH3-4-0CF2CF3	
1844	i-C ₃ H ₇	Н	Н	3,4-Cl2	2-CH3-4-0CF2CF3	
1845	i-C ₃ H ₇	H	н	3-I	4-0CF 2 CF 3	
1846	i-C ₃ H ₇	H	H	3-I	2-C1-4-0CF 2CF 3	
1847	i-C3H7	H	H	3-I	2-CH3-4-0CF2CF3	
1848	t-C4H9	H	H	3-I	2-CH 3-4-0CF 2 CF 3	
1849	C ₂ H ₅	C 2 H 5	H	3-I	2-CH 3-4-0CF 2CF 3	
1850	i-C3H7	H	H	3-I	2-C2H5-4-0CF2CF3	
1851	i-C3H7	H	H	Н	2-CH3-4-0-n-C3F7	
1852	i-C ₃ H7	Н	Н	3-NO2	2-CH3-4-0-n-C3F7	
1853	i-C 3H7	H	H	3-F	2-CH3-4-0-n-C3F7	
1854	i-C3H7	H	H	3-C1	2-CH3-4-0-n-C3F7	
1855	i-C3H7	H	H	3-Br	2-CH3-4-0-n-C3F7	
1856	t-C₄H9	H	H	3-C1-4-F	2-CH3-4-0-n-C3F7	
1857	C2H5	C2H5	H	3,4-Cl ₂	2-CH3-4-0-n-C3F7	
1858	i-C3H7	H	H	3-I	4-0-n-C3F7	
1859	i-C3H7	H	H	3-I	2-C1-4-0-n-C3F7	
1860	i-C ₃ H7	H	H	3-I	2-CH3-4-0-n-C3F7	

No	R 1	R ²	R 3	Xn	Ym	Physical Properties (melting point: °C
1861	t-C₄H9	Н	Н	3-I	2-CH ₃ -4-0-n-C ₃ F ₇	-
1862	C ₂ H ₅	C 2H 5	Н	3-I	2-CH3-4-0-n-C3F7	
1863	i-C3H7	H	Н	3-I	2-C2H5-4-0CF2CF3	
1864	i-C3H7	H	Н	3-I	$2-CH_3-4-C\equiv C-t-C_4F_9$	
1865	i-C3H7	Н	H	3-I	$2-CH_3-4-C\equiv C-CF_3$	
1866	i-C3H7	Н	H	3-I	$2-CH_3-4-C\equiv C-i-C_3F_7$	
1867	i-C3H7	H	H	3-I	2-CH3-4-CF=CF2	
1868	i-C3H7	H	H	3-I	2-CH ₃ -4-CF=CFCF ₃	
1869	i−C ₃H7	Н	H	3-I	$2-CH_3-4-C(CF_3)=CF_2$	
1870	i-C3H7	H	H	3-I	2-CH3-4-COCH3	
1871	i-C3H7	H	H	3-I	2-CH3-4-COCF3	195
1872	i−C ₃H7	H	H	3-I	2-CH3-4-COC2F5	
1873	i-C3H7	H	H	3-I	2-CH ₃ -4-COCF(CH ₃) ₂	
1874	i-C 3H7	Н	H	3-I	2-CH3-4-C00CH3	217
1875	i-C₃H7	H	H	3-I	2-CH3-4-C00C2H5	
1876	i-C ₃H7	H	H	3-I	2-CH ₃ -4-C(CH ₃)=NOCH ₃	218
1877	i−C₃H7	H	H	3-I	2-CH ₃ -4-C(CH ₃)=NOC ₂ H ₅	
1878	i-C3H7	H	H	3-I	2-CH₃-4-C(CH₃)=NO	
					-CH2CH=CH2	
1879	i-C₃H7	Н	H	3-I	2-CH ₃ -4-C(CH ₃)=NO	
					-CH₂C≡CH	
1880	i-C3H7	H	Н	3-I	$2-CH_3-4-C(CH_3)=NOCH_2-Ph$	
1881	i-C ₃ H7	Н	H	3-I	2-CH3-4-CH20H	

····

••••••

No	R 1	R ²	R 3	Xn	Ym	Physical Properties (melting point: °C
1882	i-C ₃ H7	H	H	3-I	4-CH(OH)CH₃	
1883	i-C3H7	Н	Н	3-I	2-CH₃-4-CH(OH)CH₃	
1884	i-C3H7	H	H	3-I	$2-CH_3-4-CH_2ON=C(CH_3)_2$	5
1885	i-C3H7	Н	H	3-I	2-CH ₃ -4-CH ₂ ON=C(Ph)	
					-i-C3H7	
1886	i-C 3H7	Н	H	3-I	2-0CH20-3-4-i-C3F7	
1887	i-C 3H7	H	H	3-I	2-0CH2CH20-3-4-i-C3F7	
1888	i-C 3H7	H	H	3-I	2-0CF 2CF 20-3-4-i-C 3F 7	
1889	i-C3H7	H	H	3-I	2-0CF 2 CHF0-3-4-i-C 3F 7	
1890	i-C3H7	H	H	3-I	2-0CHFCF 20-3-4-i-C 3F 7	
1891	i-C3H7	H	H	3-I	2-SCH2S-3-4-i-C3F7	
1892	i-C3H7	H	H	3-I	2-SCF 2S-3-4-i-C 3F 7	
1893	i-C3H7	H	H	3-I	2-SCH2CH2S-3-4-i-C3F7	
1894	i-C3H7	H	H	3-I	2-SCF 2CF 2S-3-4-i-C 3F 7	
1895	i−C₃H7	H	H	3-I	2-CH2OCH2-3-4-i-C3F7	
1896	i-C3H7	H	H	3-I	2-CH2SCH2-3-4-i-C3F7	
1897	i-C₃H7	H	H	3-I	2-CF 2 OCF 2-3-4-i-C 3 F 7	
1898	i-C ₃ H7	H	H	3-I	2-CF 2 SCF 2-3-4-i-C 3F 7	
1899	i-C₃H7	H	H	3-Br	2-CH3-4-i-C3F7	
1900	і-СзН7	H	H	3-Br	2-CH3-4-i-C3F7	
				-4-Cl		
1901	i-C3H7	H	H	3-I-4-F	2-CH3-4-i-C3F7	
1902	i-C3H7	H	H	3-I-4-Cl	2-CH ₃ -4-i-C ₃ F ₇	

.....

No	R 1	R²	R ³	Xn	Ym	Physical Properties (melting point: °C
1903	i-C3H7	H	Н	3-I-4-CF 3	2-CH3-4-i-C3F7	
1904	i-C3H7	Н	H	3-I-4-0CH₃	2-CH3-4-i-C3F7	
1905	i-C₃H7	Н	H	3-I-4-Br	$2-CH_{3}-4-i-C_{3}F_{7}$	
1906	i-C 3H7	Н	H	3-C1-4-CF₃	2-CH3-4-i-C3F7	
1907	i-C3H7	Н	H	3-CF 3-4-C1	2-CH3-4-i-C3F7	
1908	i-C3H7	Н	H	3-CF 3-4-F	2-CH3-4-i-C3F7	
1919	i-C3H7	Н	H	3-CF 3-4-0CH 3	2-CH3-4-i-C3F7	
1910	i-C3H7	H	H	3-N=CH-CH=CH-4	2-CH3-4-i-C3F7	
1911	i-C3H7	H	H	3-0CH20-4	2-CH3-4-i-C3F7	
1912	i-C3H7	H	H	3-0CH20-4	2-CH3-4-C2F5	
1913	i-C3H7	H	H	3-0CH20-4	2-CH 3-4-0CF 3	
1914	i-C 3H7	H	H	3-0CF 20-4	2-CH3-4-i-C3F7	
1915	i-C3H7	H	H	3-0CF 20-4	2-CH3-4-C2F5	
1916	i-C3H7	H	H	3-0CF 20-4	2-CH 3-4-0CF 3	
1917	i-C3H7	H	H	3-0CH2CH20-4	2-CH3-4-i-C3F7	
1918	i−C₃H7	H	H	3-0CF 2 CF 2 0-4	2-CH3-4-i-C3F7	
1919	i-C3H7	H	H	3-0CHFCF 20-4	2-CH3-4-i-C3F7	
1920	i-C3H7	H	H	3-0CF 2 CHF0-4	2-CH3-4-i-C3F7	
1921	i-C3H7	H	H	3-0CH 2 CH 2-4	2-CH3-4-i-C3F7	
1922	i-C3H7	H	H	3-CH2CH20-4	2-CH3-4-i-C3F7	
1923	i-C₃H7	H	H	3-0CF 2 CF 2-4	2-CH3-4-i-C3F7	
1924	i-C3H7	H	H	3-CF 2 CF 20-4	2-CH3-4-i-C3F7	
1925	i−C₃H7	H	H	3-SOCH₃	2-CH3-4-i-C3F7	

•••••

.

Table 1 (Cont'd)

No	R 1	R²	R ³	Xn	Ym	Physical Properties (melting point: °C
1926	i-C ₃ H7	H	H	3-S02CH3	2-CH3-4-i-C3F7	
1927	i-C3H7	H	H	3–CF 3 S	2-CH3-4-i-C3F7	222-223
1928	i-C3H7	H	H	6–CF 3 S	2-CH3-4-i-C3F7	219-221
1929	t-C4H9	H	H	3−CF ₃ S	2-CH3-4-i-C3F7	231
1930	t-C4H9	H	H	6–CF 3 S	2-CH3-4-i-C3F7	245-247
1931	t-C ₄ H ₉	H	H	3-CF 3 SO 2	2-CH3-4-i-C3F7	
1932	t-C4H9	H	H	3-CF 3 SO 2	2-CH3-4-C2F5	
1933	t-C4H9	H	H	3-CF 3 SO 2	2-CH3-4-0CF 3	
1934	C ₂ H ₅	C 2H 5	H	3-CF 3 SO 2	2-CH3-4-i-C3F7	
1935	C2H5	C2H5	H	3-CONHCH ₃	2-CH3-4-i-C3F7	
1936	C ₂ H ₅	C 2H 5	H	$3-CON(CH_3)_2$	2-CH3-4-i-C3F7	
1937	C ₂ H ₅	C 2H 5	H	3-C0CH₃	2-CH3-4-i-C3F7	
1938	C2H5	C 2H 5	H	3-COC 2H 5	2-CH3-4-i-C3F7	
1939	C ₂ H ₅	C₂H₅	H	$3-C(CH_3)=NOCH_3$	2-CH3-4-i-C3F7	
1940	C ₂ H ₅	C 2H 5	H	3-C(CH ₃)=NO	2-CH3-4-i-C3F7	
				-C2H5		
1941	i-C3H7	H	H	3-C≡CH	2-CH 3-4-C 2F 5	
1942	i-C3H7	H	H	3-C≡CH	2-CH3-4-i-C3F7	
1943	i-C ₃ H7	H	H	$3-C\equiv C-t-C_4H_9$	2-CH3-4-C2F5	195-202
1944	i-C3H7	H	H	$3-C\equiv C-t-C_4H_9$	2-CH3-4-i-C3F7	
1945	i-C3H7	Н	H	$3-C\equiv C-Ph$	2-CH3-4-C2F5	179-183
1946	i-C ₃ H7	H	H	3-C≡C-Ph	2-CH3-4-i-C3F7	

•••••

No	R 1	R 2	R ³	Xn	Ym	Physical Properties (melting point: °C
1947	i-C3H7	Н	H	3-C≡C	2-CH3-4-C2F5	
			ł	-CF з		
1948	i-C ₃ H7	Н	Н	3-C≡C	2-CH3-4-i-C3F7	
			}	−CF 3		
1949	i-C3H7	Н	Н	3-C ₂ F ₅	2-CH 3-4-C 2F 5	
1950	t-C4H9	Н	H	3-C ₂ F ₅	2-CH 3-4-C 2F 5	
1951	C ₂ H ₅	C ₂ H ₅	H	3-C ₂ F ₅	2-CH 3-4-C 2F 5	
1952	i-C3H7	Н	H	3-C ₂ F ₅	2-CH3-4-i-C3F7	
1953	t-C₄H9	H	H	3-C ₂ F ₅	2-CH3-4-i-C3F7	
1954	C2H5	C ₂ H ₅	H	3-C ₂ F ₅	2-CH3-4-i-C3F7	
1955	i-C3H7	SN	H	3-I	2-CH3-4-i-C3F7	
		$-(n-C_4H_9)_2$				
1956	i-C₃H7	SO 2 CH 3	H	3-I	2-CH3-4-i-C3F7	
1957	i-C₃H7	CN	H	3-I	2-CH3-4-i-C3F7	
1958	i-C₃H7	COOCH 3	H	3-I	2-CH3-4-i-C3F7	
1959	i−C₃H7	$COOC_2H_5$	H	3-I	2-CH3-4-i-C3F7	
1960	i−C₃H7	COCH ₃	H	3-I	2-CH3-4-i-C3F7	
1961	i−C₃H7	COC 2H 5	H	3-I	2-CH3-4-i-C3F7	
1962	i-C ₃ H7	CO-Ph	H	3-I	2-CH3-4-i-C3F7	
1963	i-C ₃ H7	NHCOCH ₃	H	3-I	2-CH3-4-i-C3F7	

•••••

No	R 1	R 2	R 3	Xn	Ym	Physical Properties (melting point: °C
1964	C ₂ H ₅	C 2 H 5	SN(n	3-I	2-CH3-4-i-C3F7	
			-C4H9)2			
1965	C ₂ H ₅	C2H5	SO 2 CH 3	3-I	$2-CH_{3}-4-i-C_{3}F_{7}$	
1966	C_2H_5	C₂H₅	CN	3-I	$2-CH_3-4-i-C_3F_7$	
1967	C_2H_5	C2H5	COOCH 3	3-I	2-CH ₃ -4-i-C ₃ F ₇	
1968	C_2H_5	C 2H 5	C00C 2H 5	3-I	2-CH3-4-i-C3F7	
1969	C ₂ H ₅	C 2 H 5	COCH ₃	3-I	2-CH3-4-i-C3F7	
1970	C ₂ H ₅	C 2 H 5	COC 2H 5	3-I	2-CH3-4-i-C3F7	Amorphous
1971	C 2 H 5	C 2H 5	COPh	3-I	2-CH3-4-i-C3F7	
1972	C2H5	C 2H 5	NHCOCH 3	3-I	2-CH3-4-i-C3F7	
1973	(CH ₂) ₂ COO	H	Н	3-I	2-CH3-4-i-C3F7	
	−CH 3					
1974	(CH ₂) ₂ COO	H	Н	3-I	2-CH3-4-C2F5	
	−CH ₃					
1975	(CH ₂) ₂ COO	H	Н	3-I	2-CH3-4-i-C3F7	133.2
	-C2H5					
1976	(CH ₂) ₂ C00	H	H	3-I	2-CH3-4-C2F5	
	-C2H5					
1977	(CH ₂) ₂ COO	H	H	6-I	2-CH3-4-C2F5	163.5
	-C2H5					
1978	CH(CH ₃)CH ₂	Н	H	3-I	2-CH3-4-i-C3F7	
	-C00CH 3					
				1		

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1979	CH(CH ₃)CH ₂ COOC ₂ H ₅	Н	H	3-I	2-CH3-4-i-C3F7	
1980	CH(CH3)CH2COO-i-	H	H	3-I	2-CH3-4-i-C3F7	
	C 3 H 7					
1981	(CH ₂) ₂ CONHCH ₃	H	H	3-I	2-CH3-4-i-C3F7	
1982	$(CH_2)_2CONHC_2H_5$	H	Н	3-I	2-CH3-4-i-C3F7	
1983	CH(CH ₃)CH ₂ CONHCH ₃	H	H	3-I	2-CH3-4-i-C3F7	
1984	CH(CH ₃)CH ₂ CONHC ₂ H ₅	H	H	3-I	2-CH3-4-i-C3F7	
1985	CH(CH ₃)CH ₂ CONH-i-	H	H	3-I	2-CH3-4-i-C3F7	
	С 3 Н 7					
1986	$CH(CH_3)CH_2CON$	H	H	3-I	2-CH3-4-i-C3F7	
	-(CH ₃) ₂					
1987	CH(CH ₃)CH ₂ CON	H	H	3-I	2-CH3-4-i-C3F7	
	-(C ₂ H ₅) ₂					
1988	(CH ₂) ₂ NHCOOCH ₃	H	H	3-I	2-CH3-4-C2F5	
1989	$(CH_2)_2NHCOOCH_3$	H	H	3-I	2-CH3-4-i-C3F7	
1990	$(CH_2)_2NHCOOC_2H_5$	H	H	3-I	2-CH3-4-C2F5	145
1991	(CH ₂) ₂ NHCOOC ₂ H ₅	H	H	3-I	2-CH 3 - 4-0CF 3	210
1992	$CH(CH_3)CH_2NHCOOCH_3$	H	H	3-I	2-CH3-4-i-C3F7	
1993	CH(CH ₃)CH ₂ NHCOO	H	H	3-I	2-CH3-4-i-C3F7	
	-C ₂ H ₅					
1994	(CH ₂) ₂ P(CH ₃) ₂	H	H	3-I	2-CH3-4-i-C3F7	
1995	CH(CH ₃)P(C ₂ H ₅) ₂	H	H	3-I	2-CH3-4-i-C3F7	

,

No	R 1	R ²	R ³	Xn	Ym	Physical Properties (melting point: °C
1996	(CH ₂) ₂ P(Ph) ₂	H	H	3-I	2-CH3-4-i-C3F7	
1997	CH(CH ₃)CH ₂ P(CH ₃) ₂	H	Н	3-I	2-CH3-4-i-C3F7	
1998	CH(CH ₃)CH ₂ P(C ₂ H ₅) ₂	H	Н	3-I	2-CH3-4-i-C3F7	
1999	CH(CH ₃)CH ₂ P(Ph) ₂	H	Н	3-I	2-CH3-4-i-C3F7	
2000	CH(CH ₃)(CH ₂) ₂ P	H	H	3-I	2-CH3-4-i-C3F7	
	-(CH3)2					
2001	CH(CH ₃)(CH ₂) ₃ P	H	Н	3-I	2-CH3-4-i-C3F7	
	-(CH ₃) ₂					
2002	(CH ₂) ₂ PO(CH ₃) ₂	H	н	3-I	2-CH3-4-i-C3F7	
2003	(CH ₂) ₂ PO(OC ₂ H ₅) ₂	H	H	3-I	2-CH3-4-i-C3F7	Amorphous
2004	$CH(CH_3)CH_2PO(OCH_3)_2$	H	Н	3-I	2-CH3-4-i-C3F7	
2005	(CH ₂) ₂ OPO(OCH ₃) ₂	H	H	3-I	2-CH3-4-i-C3F7	
2006	$CH(CH_3)CH_2PS(OCH_3)_2$	H	H	3-I	2-CH3-4-i-C3F7	
2007	CH(CH3)CH2PS	H	H	3-I	2-CH3-4-i-C3F7	
	-(OC2H5)2					
2008	(CH ₂) ₂ OPO(OC ₂ H ₅) ₂	H	H	3-I	2-CH3-4-i-C3F7	
2009	CH(CH₃)CH₂OPO	H	H	3-I	2-CH3-4-i-C3F7	
	-(OCH 3) 2					
2010	CH(CH ₃)CH ₂ OPO	H	H	3-I	2-CH3-4-i-C3F7	
	-(0C2H5)2	i				
2011	(CH ₂) ₂ OPS(OCH ₃) ₂	H	H	3-I	2-CH3-4-i-C3F7	
2012	(CH ₂) ₂ OPS(OC ₂ H ₅) ₂	H	H	3-I	2-CH3-4-i-C3F7	

No	R 1	R²	R ³	Xn	Ym	Physical Properties
						(melting point: °C
2013	CH(CH ₃)CH ₂ OPS -(OCH ₃) ₂	H	Н	3-I	2-CH ₃ -4-i-C ₃ F ₇	
2014	CH(CH ₃)CH ₂ OPS	H	Н	3-I	2-CH3-4-i-C3F7	
2015	-(OC₂H₅)₂ CH(CH₃)-2-Pyi-N	Н	Н	3-I	2-CH3-4-C₂F₅	198-205
2010	-Oxide					
2016	CH(CH₃)-2-Pyi-N -Oxide	H	Н	3-I	2-CH ₃ -4-i-C ₃ F ₇	208-210
2017	i−C₃H7	H	H	3-I	$2-CH_3-4-C(CF_3)$	
2018	i-C3H7	H	Н	3-I	=NOCH 3 2-CH 3-4-C(CF 3)	
2019	i-C3H7	H	Н	3-I	=NOCH₂Ph 2-NCHCHCHCH-3	180
					-4-i-C3F7	
2020	i−C₃H7	H	H	3-I	2-n-C ₃ H ₇ -4-i -C ₃ F ₇	225
2021	i-C ₃ H7	H	H	3-I		158.3-159.8
					-i-C3F7	

The abbreviations in Table 1 stand for the following substituents:

Ph : phenyl group, c- : alicyclic hydrocarbon group, Pyi : pyridyl group, Pym : pyrimidinyl group,

•• 55 •••

**** *

•____•

•••••

- 157 -

Fur : furyl group, TetFur : tetrahydrofuryl group, Thi : thienyl group, Thz : thiazolyl group, Naph : naphthyl group, Oxa : oxazolyl group, C* : asymmetric carbon atom

Table 2

No	R 1	R 2	R ³	Xn	Ym	Z 1	<u>Z</u> 2	Physical Properties (melting point: °C
S-1	i-C ₃ H ₇	Н	H	3-C1	2-CH3-4-CF2CF3	S	0	162-164
S-2	t-C4H9	Н	H	3-C1	2-CH 3-4-CF 2CF 3	S	0	141-143
S-3	c−C₃H₅	Н	H	3-C1	2-CH 3-4-CF 2CF 3	S	0	138-139
S-4	C 2H 5	C 2 H 5	Н	3-C1	2-CH 3-4-CF 2CF 3	S	0	184-186
S-5	i-C3H7	H	H	H	2-CH3-4-C1	S	0	168-170
S-6	i-C3H7	H	H	H	2-CH3-4-Cl	0	S	
S-7	i-C3H7	Н	H	3-I	2-CH3-4-i-C3H7	0	S	
S-8	i-C3H7	H	H	H	2-CH3-4-i-C3H7	S	S	
S-9	i-C3H7	Н	H	3-I	2-CH3-4-i-C3H7	S	S	

The ¹H-NMR data of the compounds obtained as paste (physical properties) are given in Table 3 below.

Table 3

No.	¹ H-NMR[CDCl ₃ /TMS、δ values (ppm)]
1122	1.2-1.4(m.6H), 2.4-2.5(m.3H), 3.1-3.9(m.7H), 6.6-7.9(m.6H)
1218	1.3(d.3H), 2.3(s.3H), 2.9-3.2(m.2H), 4.4(m.1H), 6.2(d.1H),
	7.1-7.5(m.3H), 7.8(d.1H), 8.0(d.1H), 8.4(d.1H),8.5(s.1H).

Agricultural and horticultural insecticides containing the phthalic acid diamide derivative of the general formula (I) of the present invention as an active 5 ingredient are suitable for controlling various insect pests such as agricultural insect pests, forest insect pests, horticultural insect pests, stored grain insect pests, sanitary insect pests, nematodes, etc., which are injurious to paddy rice, fruit trees, vegetables, other 10 crops, flowers and ornamental plants, etc. They have a marked insecticidal effect, for example, on LEPIDOPTERA including summer fruit tortrix (Adoxophyes orana fasciata), smaller tea tortrix (Adoxophyes sp.), Manchurian fruit moth (Grapholita inopinata), oriental fruit moth (Grapholita 15 molesta), soybean pod border (Leguminivora glycinivorella), mulberry leafroller (Olethreutes mori), tea leafroller (Caloptilia thevivora), Caloptilia sp. (Calopilia zachrysa), apple leafminer (Phyllonorycter ringoniella), pear barkminer (Spulerrina astaurota), common white (Piers 20 rapae crucivora), tabacco budworm (<u>Heliothis sp.</u>), codling

- 158 -

.....

.....

moth (<u>Laspey resia pomonella</u>), diamondback moth (<u>Plutella</u> <u>xylostella</u>), apple fruit moth (<u>Argyresthia conjugella</u>), peach fruit moth (<u>Carposina niponensis</u>), rice stem borer (<u>Chilo suppressalis</u>), rice leafroller (<u>Cnaphalocrocis</u>

- 5 medinalis), tabacco moth (Ephestia elutella), mulberry pyralid (<u>Glyphodes</u> <u>pyloalis</u>), yellow rice borer (Scirpophaga incertulas), rice skipper (Parnara guttata), rice armyworm (Pseudaletia separata), pink borer (Sesamia inferens), common cutworm (Spodoptera litura), beet 10 armyworm (Spodoptera exigua), etc.; HEMIPTERA including aster leafhopper (<u>Macrosteles</u> <u>fascifrons</u>), green rice leafhopper (<u>Nephotettix cincticeps</u>), brown rice planthopper (Nilaparvata lugens), whitebacked rice planthopper (Sogatella furcifera), citrus psylla (Diaphorina citri), 15 grape whitefly (<u>Aleurolobus</u> <u>taonabae</u>), sweetpotato whitefly (Bemisia tabaci), greenhouse whitefly (Trialeurodes vaporariorum), turnip aphid (Lipaphis erysimi), green peach aphid (Myzus persicae), Indian wax scale (Ceroplastes ceriferus), cottony citrus scale (Pulvinaria aurantii), 20 camphor scale (<u>Pseudaonidia duplex</u>), San Jose scale (Comstockaspis perniciosa), arrowhead scale (Unaspis yanonensis), etc.; COLEOPTERA including soybean beetle (Anomala rufocuprea), Japanese beetle (Popillia japonica), tabacco beetle (Lasioderma serricorne), powderpost beetle
- 25 (Lyctus brunneus), twenty-eight-spotted ladybird (Epilachna vigintiotopunctata), adzuki bean weevile (Callosobruchus chinensis), vegetable weevil (Listroderes costirostris), maize weevil (Sitophilus zeamais), boll weevil (Anthonomus

- 159 -

<u>gradis gradis</u>), rice water weevil (<u>Lissorhoptrus</u> <u>oryzophilus</u>), cucurbit leaf beetle (<u>Aulacophora femoralis</u>), rice leaf beetle (<u>Oulema oryzae</u>), striped flea beetle (<u>Phyllotreta striolata</u>), pine shoot beetle (<u>Tomicus</u>

5 <u>piniperda</u>), Colorado potato beetle (<u>Leptinotarsa</u> decemlineata), Mexican bean beetle (Epilachna varivestis), corn rootworm (Diabrotica sp.), etc.; DIPTERA including melon fly (<u>Dacus(Zeugodacus</u>) <u>cucurbitae</u>), oriental fruit fly (<u>Dacus(Bactrocera</u>) <u>dorsalis</u>), rice leafminer (<u>Aqnomyza</u> 10 oryzae), onion maggot (Delia antiqua), seedcorn maggot (Delia platura), soybean pod gall midge (Asphondylia sp.), muscid fly (Musca domestica), house mosquito (Culex pipiens pipiens), etc.; and TYLENCHIDA including root-lesion nematode (<u>Pratylenchus</u> <u>sp.</u>), coffer root-lesion nematode 15 (Pratylenchus coffeae), potato cyst nematode (Globodera rostochiensis), root-knot nematode (Meloidogyne sp.), citrus nematode (Tylenchulus semipenetrans), Aphelenchus sp. (Aphelenchus avenae), chrysanthemum foliar (Aphelenchoides ritzemabosi), etc.

• •

.....

.....

20

The agricultural and horticultural insecticide containing the phthalic acid diamide derivative of the general formula (I) of the present invention as an active ingredient has a marked insecticidal effect on the aboveexemplified insect pests, sanitary insect pests, and/or

25 nematodes, which are injurious to paddy field crops, upland crops, fruit trees, vegetables, other crops, flowers and ornament plants, and the like. Therefore, the desired effect of the agricultural and horticultural insecticide of the present invention can be obtained by applying the insecticide to the paddy field water, stalks and leaves of fruit trees, vegetables, other crops, flowers and ornament plants, soil, etc. at a season at which the insect pests, 5 sanitary pests or nematodes are expected to appear, before their appearance or at the time when their appearance is confirmed.

In general, the agricultural and horticultural insecticide of the present invention is used after being 10 prepared into conveniently usable forms according to an ordinary manner for preparation of agrochemicals.

••••

••••••

•••••

.....

20

That is, the phthalic acid diamide derivative of the general formula (I) and, optionally, an adjuvant are blended with a suitable inert carrier in a proper 15 proportion and prepared into a suitable preparation form such as a suspension, emulsifiable concentrate, soluble concentrate, wettable powder, granules, dust or tablets through dissolution, dispersion, suspension, mixing, impregnation, adsorption or sticking.

The inert carrier used in this invention may be either solid or liquid. As the solid carrier, there can be exemplified soybean flour, cereal flour, wood flour, bark flour, saw dust, powdered tobacco stalks, powdered walnut shells, bran, powdered cellulose, extraction residues of

25 vegetables, powdered synthetic polymers or resins, clays (e.g. kaolin, bentonite, and acid clay), talcs (e.g. talc and pyrophyllite), silica powders or flakes (e.g. diatomaceous earth, silica sand, mica and white carbon, i.e. synthetic, high-dispersion silicic acid, also called finely divided hydrated silica or hydrated silicic acid, some of commercially available products contain calcium silicate as the major component), activated carbon,

5 powdered sulfur, powdered pumice, calcined diatomaceous earth, ground brick, fly ash, sand, calcium carbonate powder, calcium phosphate powder and other inorganic or mineral powders, chemical fertilizers (e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, urea and 10 ammonium chloride), and compost. These carriers may be used alone or as a mixture thereof.

.....

•••••

•

The liquid carrier is that which itself has solubility or which is without such solubility but is capable of dispersing an active ingredient with the aid of an adjuvant. The following are typical examples of the liquid carrier and can be used alone or as a mixture thereof. Water; alcohols such as methanol, ethanol, isopropanol, butanol and ethylene glycol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and cyclohexanone; ethers such as ethyl ether, dioxane, Cellosolve, dipropyl ether and tetrahydrofuran; aliphatic hydrocarbons such as kerosene and mineral oils; aromatic hydrocarbons such as benzene, toluene, xylene, solvent naphtha and alkylnaphthalenes; halogenated

25 hydrocarbons such as dichloroethane, chloroform, carbon tetrachloride and chlorobenzene; esters such as ethyl acetate, diisopropyl phthalate, dibutyl phthalate and dioctyl phthalate; amides such as dimethylformamide,

- 162 -

diethylformamide and dimethylacetamide; nitriles such as acetonitrile; and dimethyl sulfoxide.

The following are typical examples of the adjuvant, which are used depending upon purposes and used 5 alone or in combination in some cases, or need not to be used at all.

To emulsify, disperse, dissolve and/or wet an active ingredient, a surfactant is used. As the surfactant, there can be exemplified polyoxyethylene alkyl ethers, polyoxyethylene alkylaryl ethers, polyoxyethylene higher fatty acid esters, polyoxyethylene resinates, polyoxyethylene sorbitan mono-laurate, polyoxyethylene sorbitan monooleate, alkylarylsulfonates, naphthalenesulfonic acid condensation products, ligninsulfonates and higher alcohol sulfate esters.

•••••

••••

Further, to stabilize the dispersion of an active ingredient, tackify it and/or bind it, there may be used adjuvants such as casein, gelatin, starch, methyl cellulose, carboxymethyl cellulose, gum arabic, polyvinyl 20 alcohols, turpentine, bran oil, bentonite and ligninsulfonates.

To improve the flowability of a solid product, there may be used adjuvants such as waxes, stearates and alkyl phosphates.

25 Adjuvants such as naphthalenesulfonic acid condensation products and polycondensates of phosphates may be used as a peptizer for dispersible products.

Adjuvants such as silicon oils may also be used

- 163 -

as a defoaming agent.

••••

••••

.....

The content of the active ingredient may be varied as required. In dusts or granules, the suitable content thereof is from 0.01 to 50% by weight. In 5 emulsifiable concentrates or flowable wettable powders, it is also from 0.01 to 50% by weight.

The agricultural and horticultural insecticide of the present invention is used to control a variety of insect pests in the following manner. That is, it is applied to a crop on which the insect pests are expected to appear or a site where the appearance of the insect pests is undesirable, as it is or after being properly diluted with or suspended in water or the like, in an amount effective for control of the insect pests.

15 The applying dosage of the agricultural and horticultural insecticide of the present invention is varied depending upon various factors such as a purpose, insect pests to be controlled, a growth state of a plant, tendency of insect pests appearance, weather, environmental 20 conditions, a preparation form, an application method, an application site and an application time. It may be properly chosen in a range of 0.1 g to 10 kg (in terms of the active ingredient) per 10 ares depending upon purposes.

The agricultural and horticultural insecticide of the present invention may be used in admixture with other agricultural and horticultural disease or pest controllers in order to expand both spectrum of controllable diseases and insect pest species and the period of time when

- 164 -

effective applications are possible or to reduce the dosage.

Typical examples of the present invention are described below, but they should not be construed as limiting the scope of the invention.

EXAMPLES

5

••••

Example 1

(1-1) Production of 3-chloro-N-[4-(1,1,2,2-tetrafluoroethoxy)-2-methylphenyl]phthalimide

In 10 ml of acetic acid were dissolved 0.55 g of 3-chlorophthalic anhydride and 0.67 g of 4-(1,1,2,2tetrafluoroethoxy)-2-methylaniline, and the reaction was carried out with heating under reflux for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure and the resulting residue was washed with an ether-hexane mixed solvent to obtain 1.1 g of the desired compound.

> Physical property: m.p. 121 - 122℃. Yield: 95%.

20 (1-2) Production of 3-chloro-N¹-[4-(1,1,2,2-tetrafluoro-ethoxy)-2-methylphenyl]-N²-isopropylphthalic acid diamide (compound No. 141) and 6-chloro-N¹-[4-(1,1,2,2-tetrafluoroethoxy)-2-methylphenyl]-N²-isopropylphthalic acid diamide (compound No. 239)
 25 In 10 ml of dioxane was dissolved 1.1 g of 3-

chloro-N-[4-(1,1,2,2-tetrafluoroethoxy)-2-methylphenyl]-

		- 166 -
		phthalimide, followed by adding thereto 0.5 g of
		isopropylamine, and the reaction was carried out at 80 $^{\circ}\mathrm{C}$ for
		3 hours. After completion of the reaction, the solvent was
		distilled off under reduced pressure and the resulting
	5	residue was purified by a silica gel column chromatography
		using a hexane/ethyl acetate (2/1) mixed solvent as an
		eluent, to obtain 0.4 g of the desired compound (compound
••••		No. 141) having an Rf value of 0.5 to 0.7 and 0.5 g of the
****		other desired compound (compound No. 239) having an Rf
••••	10	value of 0.2 to 0.4.
••••		Compound No. 141:
••••		Physical property: m.p. 202 - 204°C.
		Yield: 31%.
•••••		Compound No. 239:
	15	Physical property: m.p. 199 - 201°C.
•••••		Yield: 39%.
•••••		

Example 2

(2-1) Production of N-(4-trifluoromethoxyphenyl)-3nitrophthalimide

In 50 ml of acetic acid were dissolved 5.97 g of 3-nitrophthalic anhydride and 5.31 g of 4-trifluoromethoxyaniline, and the reaction was carried out with heating under reflux for 3 hours. After completion of the reaction, the solvent was distilled off under reduced

25 pressure and the resulting residue was washed with an ether-hexane mixed solvent to obtain 10.2 g of the desired compound. Physical property: m.p. 149 - 150°C. Yield: 97%.

5

••••

••••

15

(2-2) Production of 3-amino-N-(4-trifluoromethoxyphenyl)phthalimide

In a pressure vessel were placed 10.0 g of N-(4trifluoromethoxyphenyl)-3-nitrophthalimide, 100 ml of acetic acid and 0.5 g of 5% palladium carbon, and catalytic reduction with hydrogen was carried out at a hydrogen pressure of 5 kg/cm². After completion of the reaction, the 10 catalyst was filtered off and the filtrate was concentrated under reduced pressure. The resulting residue was washed with an ether-hexane mixed solvent to obtain 9.0 g of the desired compound.

> Physical property: m.p. $161 - 162^{\circ}C$. Yield: 98%.

(2-3) Production of 3-bromo-N-(4-trifluoromethoxyphenyl)phthalimide

In 20 ml of acetic acid was dissolved 1.6 q of 3amino-N-(4-trifluoromethoxyphenyl)phthalimide, and a

20 solution of 0.35 g of sodium nitrite in 5 ml of concentrated sulfuric acid was added dropwise while maintaining the temperature at 15°C or lower. The resulting mixture was stirred at 15° C or lower for another 20 minutes to obtain a diazonium salt. The diazonium salt was slowly 25 added to a mixture of a solution of 0.86 g of cuprous bromide in 50 ml of hydrobromic acid and 10 ml of toluene

- 167 -

which was maintained at 80°C. The resulting mixture was stirred until foaming ceased. After completion of the reaction, the organic layer was washed with an aqueous sodium thiosulfate solution and an aqueous sodium chloride 5 solution, dried over anhydrous magnesium sulfate, and then distilled under reduced pressure to remove the solvent, and the resulting residue was purified by a silica gel chromatography to obtain 1.3 g of the desired compound.

Physical property: m.p. 117 - 118°C.

Yield: 67%.

(2-4) Production of 3-bromo-N¹-(4-trifluoromethoxyphenyl)-N²-isopropylphthalic acid diamide (compound No. 262) and 6-bromo-N¹-(4-trifluoromethoxyphenyl)-N²isopropylphthalic acid diamide (compound No. 302)

From 1.3 g of 3-bromo-N-(4-trifluoromethoxyphenyl)phthalimide, 0.5 g of the desired compound (compound No. 262) and 0.7 g of the other desired compound (compound No. 302) were obtained in the same manner as in Example 1-2.

20 Compound No. 262:

Physical property: m.p. 208 - 210℃. Yield: 33%.

Compound No. 302:

Physical property: m.p. 210 - 212°C.

25 Yield: 47%.

· · · · ·

•••••

10

Example 3

(3-1) Production of N-(4-difluoromethoxy-2-methylphenyl)-3-nitrophthalimide

In 100 ml of acetic acid were dissolved 5.8 g of 5 3-nitrophthalic anhydride and 5.2 g of 4-difluoromethoxy-2methylaniline, and the reaction was carried out with heating under reflux for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure and the resulting residue was washed with an 10 ether-hexane mixed solvent to obtain 10.2 g of the desired compound.

> Physical property: m.p. 163 - 164°C. Yield: 98%.

(3-2) Production of N^1 -(4-difluoromethoxy-2-methylphenyl)- N^2 -isopropyl-3-nitrophthalic acid diamide (compound No. 696)

In 100 ml of dioxane was dissolved 10 g of N-(4difluoromethoxy-2-methylphenyl)-3-nitrophthalimide, followed by adding thereto 2.5 g of isopropylamine, and the 20 reaction was carried out for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure and the resulting residue was washed with ether to obtain 4.0 g of the desired compound.

Physical property: m.p. 148 - 149°C.

25 Yield: 86%.

•••••

•••••

- 170 -

(3-3) Production of 3-amino- N^1 -(4-difluoromethoxy-2methylphenyl)- N^2 -isopropylphthalic acid diamide

In a pressure vessel were placed 5 g of $N^1-(4-diffuoromethoxy-2-methylphenyl)-N^2-isopropyl-3-nitrophthalic$

5 acid diamide, 50 ml of acetic acid and 0.25 g of 5% palladium carbon, and catalytic reduction with hydrogen was carried out at a hydrogen pressure of 5 kg/cm². After completion of the reaction, the catalyst was filtered off and the filtrate was concentrated under reduced pressure.
10 The resulting residue was washed with an ether-hexane mixed solvent to obtain 4.0 g of the desired compound.
Physical property: m.p. 148 - 149°C.

Yield: 86%.

(3-4) Production of N^1 -(4-difluoromethoxy-2-methylphenyl)-3-iodo- N^2 -isopropylphthalic acid diamide (compound No. 387)

In 20 ml of acetic acid was dissolved 1.89 g of 3-amino-N¹-(4-difluoromethoxy-2-methylphenyl)-N²-isopropylphthalic acid diamide, and 1.5 g of concentrated sulfuric 20 acid was added under ice-cooling. While maintaining the resulting solution at 15°C or lower, a solution of 0.35 g of sodium nitrite in 0.5 ml of water was added dropwise. The resulting solution was stirred at 15°C or lower for another 20 minutes to obtain a diazonium salt. The diazonium salt 25 was slowly added to a mixture of 50 ml of an aqueous solution containing 1.0 g of potassium iodide and 50 ml of chloroform which was maintained at 40°C. The resulting

•

•••••

••••••

••••

•••••

mixture was stirred until foaming ceased. After completion of the reaction, the organic layer was washed with an aqueous sodium thiosulfate solution and an aqueous sodium chloride solution, dried over anhydrous magnesium sulfate,

5 and then distilled under reduced pressure to remove the solvent, and the resulting residue was purified by a silica gel chromatography to obtain 0.8 g of the desired compound.

Physical property: m.p. 207 - 209°C.

Yield: 33%.

10 Example 4

(4-1) Production of 3-iodo-2-N-isopropyl-phthalamic acid
A solution of 0.67 g of isopropylamine in 5 ml of acetonitrile was added dropwise to a solution of 1.37 g of 3-iodophthalic anhydride in 10 ml of acetonitrile under
15 ice-cooling, and the reaction was carried out with stirring at room temperature for another 5 hours. After completion of the reaction, the crystals formed in the reaction solution were collected by filtration and washed with a small volume of acetonitrile to obtain 1.45 g of the
20 desired compound.

Yield: 87%.

¹H-NMR [CDCl₃/TMS, δ values (ppm)]

1.23(6H, d), 4.35(1H, m), 5.80(1H, d), 6.85(1H, broad), 7.07(1H, t), 7.93(1H, d), 7.96(1H, d).

•••••

.....

•••••

15

(4-2) Production of 6-iodo-N-isopropyl-phthalic acid isoimide

In 10 ml of toluene was dissolved 0.45 g of 3-iodo-2-N-isopropyl-phthalamic acid, followed by adding 5 thereto 0.85 g of trifluoroacetic anhydride, and the reaction was carried out with stirring for 30 minutes. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain 0.43 g of the desired compound as a crude product. The obtained desired compound 10 was used in the subsequent reaction without purification. Physical property: m.p. 87.5 - 88.5℃.

(4-3) Production of $3-iodo-N^1-(4-pentafluoroethyl-2-methylphenyl)-N^2-isopropyl-phthalic acid diamide (compound No. 372)$

In 10 ml of tetrahydrofuran was dissolved 0.43 g of the 6-iodo-N-isopropyl-phthalic acid isoimide obtained in 4-2, followed by adding thereto 0.30 g of 4-pentafluoroethyl-2-methylaniline, and the reaction was carried out with stirring for 1 hour. After completion of the

20 reaction, the solvent was removed from the reaction solution by distillation under reduced pressure, and the resulting residue was washed with ether-n-hexane to obtain 0.70 g of the desired compound.

Physical property: m.p. 195 - 196°C.

25 Yield: 95%.

- 172 -

Example 5

· • • • •

20

(5-1) Production of ethyl 6-nitro-N-(4-chloro-2methylphenyl)-phthalamate

In 30 ml of tetrahydrofuran was dissolved 1.29 g of 3-nitro-2-ethoxycarbonylbenzoyl chloride, followed by adding thereto 0.71 g of 4-chloro-2-methylaniline and 0.56 g of triethylamine, and the reaction was carried out with stirring for 30 minutes. After completion of the reaction, the reaction solution containing the desired compound was poured into water and the desired compound was extracted with ethyl acetate. The extracted solution was dried over anhydrous magnesium sulfate and distilled under reduced pressure to remove the solvent, and the resulting residue was purified by a silica gel column chromatography to 15 obtain 1.7 g of the desired compound.

> Physical property: m.p. 164 - 165℃. Yield: 94%.

(5-2) Production of 3-nitro-N¹-(4-chloro-2-methylphenyl)-N²-isopropyl-phthalic acid diamide (compound No. 664)

In 20 ml of dioxane was dissolved 1.7 g of ethyl 6-nitro-N-(4-chloro-2-methylphenyl)-phthalamate, followed by adding thereto 1.5 g of isopropylamine, and the reaction was carried out with stirring at 80°C for 1 hour. After 25 completion of the reaction, the solvent was removed from the reaction solution containing the desired compound, by distillation under reduced pressure, and the resulting residue was purified by a silica gel column chromatography to obtain 1.5 g of the desired compound.

Physical property: m.p. 202 - 204°C. Yield: 85%.

5 Example 6

.

.

(6-1) Production of N-isopropyl-3,4-dichlorophthalamic acid

In 30 ml of tetrahydrofuran was dissolved 2.32 g of N-isopropyl-3,4-dichlorobenzamide, and 21 ml of s-BuLi (0.96 M/L) was slowly added while maintaining the temperature at -70°C. The resulting mixture was stirred at -70°C for 30 minutes, after which the cooling bath was removed. An excess of carbon dioxide was introduced into the reaction solution, and the thus treated solution was 15 stirred at room temperature for 30 minutes to carry out the reaction.

After completion of the reaction, the reaction solution was poured into water and acidified with diluted hydrochloric acid, and the desired compound was extracted 20 with ethyl acetate. The extracted solution was dried over anhydrous magnesium sulfate and distilled under reduced pressure to remove the solvent, and the crystals thus obtained were washed with an ether-hexane mixed solvent to obtain 2.4 g of the desired compound.

25 Physical property: m.p. 155 - 156℃. Yield: 86.9%.

- 174 -

Production of N-isopropyl-3,4-dichlorophthalic acid (6-2)isoimide

- 175 -

In 10 ml of toluene was dissolved 0.41 g of N-isopropyl-3,4-dichlorophthalamic acid, followed by adding 5 thereto 0.42 g of trifluoroacetic anhydride, and the reaction was carried out with stirring at room temperature for 30 minutes. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain 0.39 g of the desired compound as a crude product. The 10 obtained desired compound was used in the subsequent reaction without purification.

(6-3) Production of 3,4-dichloro- N^1 -(4-pentafluoroethyl-2methylphenyl)-N²-isopropylphthalic acid diamide (compound No. 1222)

15 In 10 ml of acetonitrile was dissolved 0.39 g of N-isopropyl-3,4-dichlorophthalic acid isoimide, followed by adding thereto 0.34 g of 4-pentafluoroethyl-2-methylaniline, and the reaction was carried out with stirring for 2 hours. After completion of the reaction, the reaction 20 solution was maintained at 0° for 10 minutes and the crystals precipitated were collected by filtration and washed with hexane to obtain 0.61 g of the desired compound.

> Physical property: m.p. 208 - 209°C. Yield: 84.1%.

• • • • • •

•••••

Example 7

5

Production of 3-chloro-2-isopropylaminothiocarbonyl-N-(pentafluoroethyl-2-methylphenyl)benzamide (compound No. S-1)

In 20 ml of tetrahydrofuran was dissolved 1.06 g of N-(pentafluoroethyl-2-methylphenyl)-3-chlorobenzamide, and 7 ml of s-BuLi (0.96 M/L) was slowly added while maintaining the temperature at -70° C. The resulting mixture was stirred at -70° C for 30 minutes, after which the cooling 10 bath was removed. A solution of 0.33 g of isopropyl isothiocyanate in 5 ml of tetrahydrofuran was poured into the reaction solution, and the resulting solution was stirred at room temperature for 30 minutes to carry out the reaction.

After completion of the reaction, the reaction solution was poured into water and acidified with diluted hydrochloric acid, and the desired compound was extracted with ethyl acetate. The extracted solution was dried over anhydrous magnesium sulfate and distilled under reduced 20 pressure to remove the solvent, and the crystals thus obtained were washed with an ether-hexane mixed solvent to obtain 1.2 g of the desired compound.

> Physical property: m.p. 162 - 164°C. Yield: 86%.

Typical preparation examples and test examples of the present invention are described below but they should not be construed as limiting the scope of the invention.

15

In the preparation examples, parts are all by weight.

```
Formulation Example 1
```

Each compound listed in Table 1 50 parts 5 Xylene 40 parts Mixture of polyoxyethylene 10 parts nonylphenyl ether and calcium

alkylbenzenesulfonate

An emulsifiable concentrate was prepared by 10 mixing uniformly the above ingredients to effect dissolution.

Formulation Example 2

•••••

15

Each compound listed in Table 1	3 parts
Clay powder	82 parts
Diatomaceous earth powder	15 parts

A dust was prepared by mixing uniformly and grinding the above ingredients.

Formulation Example 3

Each compound listed in Table 1 5 parts 20 Mixed powder of bentonite and clay 90 parts Calcium lignin sulfonate 5 parts

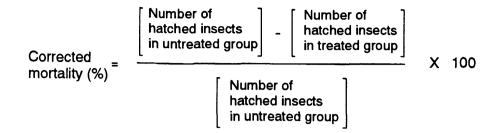
Granules were prepared by mixing the above ingredients uniformly, and kneading the resulting mixture together with a suitable amount of water, followed by 25 granulation and drying. Formulation Example 4

Each compound listed in Table 1 20 parts Mixture of kaolin and synthetic 75 parts high-dispersion silicic acid

5 Mixture of polyoxyethylene 5 parts nonylphenyl ether and calcium alkylbenzenesulfonate

A wettable powder was prepared by mixing uniformly and grinding the above ingredients.

10 Test Example 1


•••••

Insecticidal effect on diamondback moth (<u>Plutella</u> <u>xylostella</u>)

Adult diamondback moths were released and allowed to oviposit on a Chinese cabbage seedling. Two days after 15 the release, the seedling having eggs deposited thereon was immersed for about 30 seconds in a liquid chemical prepared by diluting a preparation containing each compound listed in Table 1 as an active ingredient to adjust the concentration to 500 ppm. After air-drying, it was allowed to stand in a room thermostated at 25° C. Six days after the 20 immersion, the hatched insects were counted. The mortality was calculated according to the following equation and the insecticidal effect was judged according to the criterion shown below. The test was carried out with triplicate 25 groups of 10 insects.

- 178 -

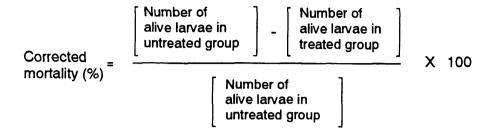
- 179 -

Criterion:

Effect	Mortality(%)
A	100
В	99 - 90
С	89 - 80
D	79 - 50

The results obtained are shown in Table 4.

Test Example 2


Insecticidal effect on common cutworm (<u>Spodoptera</u> <u>Litura</u>)

A piece of cabbage leaf (cultivar; Shikidori) was immersed for about 30 seconds in a liquid chemical prepared by diluting a preparation containing each compound listed 15 in Table 1 as an active ingredient to adjust the concentration to 500 ppm. After air-drying, it was placed in a plastic Petri dish with a diameter of 9 cm and inoculated with second-instar larvae of common cutworm, after which the dish was closed and then allowed to stand in a room

20 thermostated at 25℃. Eight days after the inoculation, the dead and alive were counted. The mortality was calculated according to the following equation and the insecticidal effect was judged according to the criterion shown in Test

10

Example 1. The test was carried out with triplicate groups of 10 insects.

The results obtained are shown in Table 4.

5 Test Example 3

Insecticidal effect on rice leafroller (<u>Cnaphalocrocis</u> <u>medinalis</u>)

The lamina of a rice plant at the 6 to 8 leaf stage was immersed for about 30 seconds in a liquid 10 chemical prepared by diluting a preparation containing each compound listed in Table 1 as an active ingredient to adjust the concentration to 500 ppm. After air-drying, the lamina was placed in a plastic Petri dish with a diameter of 9 cm whose bottom had been covered with a wetted filter 15 The lamina was inoculated with third-instar larvae paper. of rice leafroller, after which the dish was allowed to stand in a room thermostated at 25° C and having a humidity of 70%. Four days after the inoculation, the dead and alive were counted and the insecticidal effect was judged 20 according to the criterion shown in Test Example 1. The test was carried out with triplicate groups of 10 insects.

The results obtained are shown in Table 4.

Table 4

••••••

••••••

••••••

· • • • •

.....

••••••

•••••

No	Test Example		
	1	2	3
1	D	D	А
2	А	С	
3	С	А	
4	А		D
7	А		
8	А	А	А
9	А		А
10	А	D	D
11	А	С	С
12	А	D	
13	D		D
14	А		
15	А		А
16	А		
17	А		D
18	D		А
20	А		

- 182 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
22	A	D	
23	А		D
24	А		D
25	А		А
26	А		D
27	А	А	С
28			А
29	А	В	А
30	А	А	А
31	А		
32	А		
33	А		
34	А	С	
37	А		
41	А		А
42	А	D	А
43	В	D	
44			A
45	А		А
46	А		В
47	А	D	А
48	А	В	А
49	А	А	А
50	А	А	A

^**...**

- 183 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
51	А		А
52	А	А	Α
53	А		А
55	А	В	А
56	А	А	А
58	А	А	A
59	А		
60	А	А	A
61	А	В	A
62	А	А	A
63	А	В	A
64	А	В	A
65	А	А	A
66	А	А	В
67	А	А	A
68	А		
69	А		А
70	А		A
71			D
73	А		
74	А		
75	А		А
76	С		В
77	А	С	А

° , • , •

- 184 -

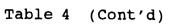

.

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
78	А	А	А
79	А	А	D
81			А
83	А	А	А
84	А		
86	В		В
87	А		А
88	А		
89	А	В	А
90	А	А	В
91	А	А	А
92	А		
93	А	А	А
98	А		С
99	А		А
100	А	А	А
101	А		
102	А	D	А
103	А	С	A
109	А	А	С
110	А		А
111	А	C	В
112	А	А	A
113	А	В	A

- ••••

- 185 -

No	Test Example 1	Test Example 2	Test Example 3
114	A	A	A
115	А	С	А
116	A	D	А
117	А	А	А
118	А	А	А
119	А	А	А
120	А	D	А
121	А	А	А
122	А	А	А
123	А		A
124	А	А	А
125	А	В	А
126	А	А	А
127	А	А	А
128	А	D	А
129	А	А	А
130	А	А	А
132	А	А	А
133	А	А	А
134	А		А
135	А	А	А
136	А	А	А
137	А		А
138	А	А	А

•••••

- 186 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
139	А	А	А
140	А	А	А
141	А	А	А
142	А	А	В
143	А	А	А
144	А	А	А
145	А	А	А
146	А	А	А
147	А	С	
148	А	А	А
149	А	А	А
150	А	А	A
151	А		
152	А	А	А
153	А		D
157	А	А	А
158	А	А	А
159	А	А	А
161	А	D	А
162	А	А	В
163	А	А	А
164	А	А	
165	А	В	С
167	А	А	А

••••••

Table 4 (Cont'd)

168 169 170 171 172 173 174 175 176 177 178	1AAAAAAAAAA	2 D D A D	3 B D D D
169 170 171 172 173 174 175 176 177 178	A A A A A	D A	D D
170 171 172 173 174 175 176 177 178	A A A A	D A	D D
171 172 173 174 175 176 177 178	A A A	А	D D
172 173 174 175 176 177 178	A A		D
173 174 175 176 177 178	А		
174 175 176 177 178		D	Π
175 176 177 178	A		Ц Ц
176 177 178			
177	A		
178	A	D	А
	A	А	А
•	А		А
179	А		
180	А	А	А
181		А	
183	А	B	
185	A		
186	D		
187	А		D
188	D		D
189	А		
190	А		
191	A		А
192	A		**
192	A	D	
150	ι Δ Ι	U	1

•••••

- 188 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
194	А		
195	А		
196	А		D
197	А	А	А
198	А	С	А
199	А		
200	А		А
201	А	В	А
202	А		
203	А		
206	А		А
207	А		
208	А		
209	А		В
210	А		D
211	А		А
212	А	D	А
213	А	А	А
214	А	А	А
215	А	D	
216	А		А
217	А		A
218	А		C
219	А	D	А

·····

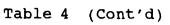
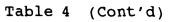

- 189 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
220	А		А
221	А	А	А
222	А	В	А
223	А	А	А
225	А	В	А
226	А		А
227	А		
228		В	А
229	А	D	А
230	А	С	A
231		В	А
232	А		А
233	А		
234	А		А
235	А		А
236	А	А	А
237	А		А
238	А		А
239	А	А	А
240	А		
241	А	В	А
242	А	В	A
243	А	А	В
244	А	С	

••••


- 190 -

No	Test Example 1	Test Example 2	Test Example 3
245	А	D	
246	А	В	В
248	А	С	
249	А	D	А
250	А		D
251	А		А
252	А		
253	А	А	С
254	А	А	
255	А		А
256	А		
257	А		В
258	А		А
259	А		D
261	А	А	D
262	А	А	D
263	А		А
264	—	D	А
265	А		
266	А	А	А
267	А	А	А
268	А	А	А
269	А	А	А
270	А	А	А

••••••

- 191 -

No	Test Example	Test Example	Test Example
	1	2	3
271	A	A	А
272	А	А	А
273	А	D	D
274	А	А	А
275	А	D	А
276	А	А	А
277	А	А	А
278	А	А	А
279	А	А	А
281	А	А	А
282	А	А	А
283	А	А	А
284	А	А	А
285	А	D	А
286	А	А	А
287	А	А	A
288	А	А	А
289	А	А	A
290	А	А	А
291	А	А	А
292	А	А	А
293	А	А	А
294	А	А	A
295	D		

.....

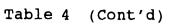
- 192 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
296	А	А	А
297	А	А	В
298	А	А	А
299	А	А	А
300	А		А
301	А	А	D
302	А		D
303	А		D
304	А		
305	А	А	А
306	А	А	А
307	А		D
308	А		
309	А	A	
310	А		
311	А		D
312	А	А	А
313	А	А	А
314	А		А
315	А		А
316	А	А	А
318	А	В	А
319	A	В	В
320	А		D

••••

- 193 -


Table 4 (Cont'd)

No	Test Example	Test Example	Test Example
	1	2	3
321	A	A	
322	А		В
323	А	С	А
324	А		А
325	А	А	А
326	А		А
327	А		А
328	А	А	А
329	А	А	А
330	А		А
332	А		А
333	А		D
334	А	С	С
335	А		В
336	А		D
337	А		A
338	А	В	A
339	А	В	A
340	А		A
341	А		A
342	А		
343	А		
345	А	В	А
346	A	С	А

•••••
•••••
····:
•••••
•••••
••••
·

•••••

- 194 -

No	Test Example 1	Test Example 2	Test Example 3
347	А	В	С
348	А		А
349			А
350	А	А	А
351	А	А	А
352			А
353	А	А	А
354	А	А	А
355	А	С	А
356	А	А	А
360	А	D	А
361	А	А	А
362	А	А	А
363	А	А	А
364	А	А	D
365	А	А	А
366	А	А	А
367	А	А	А
368	А	А	А
369	А	А	А
370	А	А	А
371	А	А	А
372	А	А	А
373	А	А	А

••••••

.

- 195 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
374	А	А	А
375	А	А	А
376	А		А
377	А		А
378	А	D	А
379	А	А	А
380	А	А	А
381	А	А	А
382	А	В	А
383	А		А
384	А		С
385	А	В	А
386	А	А	А
387	А	А	А
388	А	A	В
389	А	А	A
390	А	А	A
391	А	А	А
392	А	А	A
393	А	А	А
394	А	A	A
395	А	А	A
396	А	A	А
397	А	A	А

••••••

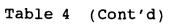
•••••

•••••

.

•••••

- 196 -


Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
398	А		
399	А	А	А
400	А	D	А
402	А		
403	А	В	А
404	А	А	А
406	А	А	А
407	А	А	А
408	А	В	А
409	А	А	А
410	А	А	А
411	А		Α.
412	А		C
413	А		C
414	А		А
415			А
416	А	А	А
417	А	А	А
418			А
419	А	А	А
420	А		D
421	А	В	А
422	А		
424	А	А	

·····

•

- 197 -

No	Test Example	Test Example	Test Example
	1	2	3
427	А		D
428	A		
429	А	D	
430	А	D	D
431	А	А	
432	А		А
433	А		А
434	А		
435	А	В	А
436	А	В	А
437	А	С	A
438	А	В	А
439	А	А	А
440	А	С	В
441	А		В
442	А		
443	А		D
444	А		А
445		В	А
446	А	А	А
447	А	В	С
448	А		A
449	А		
450	А		С

•••• ••••

- 198 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
451	А	А	
452	А	А	А
453	А	D	А
454	А	А	А
455	А	В	А
456	А		А
457	A	А	В
458	А		
459	А		
460	А	В	
461	А		
462	А		
463	А		
464	А		А
465	А		
466	А		А
467	А		А
468	А	А	В
469	А	А	D
470	А	С	С
471	А	А	А
472	А		В
473	А	А	А
474	А	В	А

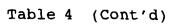
- •••• ••••

- 199 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
475	A		D
476	А	А	А
477	А		С
478	А		
479	А		А
480	А	В	А
488	А	А	А
489	А	А	А
490	А	А	А
491	А	А	А
492	А	А	А
493	А	А	А
494	А		А
495	А	А	А
496	А	А	А
498	А	А	А
499	А	А	А
500	А	В	А
501	А	А	А
502	А	А	А
503	А	В	А
504	А	А	А
505	А	А	A
506	А		

·····; ·····; - 200 -


Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
507	A	B	A
508	А	В	А
509	А	А	А
510	А	В	А
511	А	А	А
512	А	А	А
513	А	А	А
514	А	А	А
515	А		С
516	А	А	А
517	А	А	А
518	А		В
519	А	А	А
520	А		
521	A	А	А
522	А	D	A
523	A	А	А
524	A	А	А
526	А	А	
527	А	А	А
528	А		A
529	А	D	A
530	А		D
531	A		А

.

•....

.

No	Test Example 1	Test Example 2	Test Example 3
532	A		A
533	A	А	А
534	А		A
535	А	А	
536			А
537	А		
538	А	А	А
539	А		
540	А		
543	А		А
544	А		А
545	А		А
546	А		А
547	А	А	D
548	А	А	А
549	А	А	D
550	A .	С	А
551	А		А
552	А		В
553	А	С	А
554	А		А
555	А		В
557	А	С	В
558	А	А	А

•••••

- 202 -

Table 4 (Cont'd)

••••••

•...:

••••••

••••••

••••••

•••••

•••••

••••••

•••••

No	Test Example 1	Test Example 2	Test Example 3
559	А		
560	А		
561	А	С	А
562	А		А
563	А		А
564	А		В
565	А		А
566	А		В
567	А	D	D
568	А	С	A
569	А	А	А
570	А	А	
571	А	С	
573	А		
575	А		A
576	А		C
577	А		А
579	А	А	А
580	А		A
581	А	В	A
582	А		А
584	А	D	
585	А		А
586	А		D

- 203 -

Table 4 (Cont'd)

·:··i

•...:

•••••

••••••

••••••

•••••

••••••

••••••

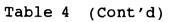
•••••

No	Test Example 1	Test Example 2	Test Example 3
587	А		
588	A		
589	A		А
590	A		
591	А	D	
592	А		
593	А		
594	А		
595	А	А	А
596	D		D
597	В		
598	А		
599	А	D	А
600	А		
601	А		
602	А		А
603	В		C
604	А		D
605			C
606	А	D	А
607	А	А	А
608	А		
609	А	В	A
610	А	А	C

- 204 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
611	А		А
612	А		D
613	А		
614	А		
615	А		
616	А		D
617	А	А	А
618	А	А	А
619	А	А	А
621	А		
622	А		
623	А		А
624	А		
625	А	D	D
626	А		
628	A	В	А
633	А	D	
634	А		D
635	А	D	
636	А	D	A
637	А		
638	В		
639	A		
640	А		



•••••


••••••

· · · · · · ·

- 205 -

No	Test Example 1	Test Example 2	Test Example 3
641	D	D	
642	А		
643	А		А
644	А	А	
645	А		
646	А	D	
647	А		В
648	А	D	А
649	А		С
650	А	•	
652	А		
653	А		
654		D	
656	А		A
657	D		
658	А		
659	А		
660	А		А
661	В		D
662	А		
663	А	А	D
664	А	А	
665	A	А	В
666	A		D

•••••

- 206 -

Table 4 (Cont'd)

No	Test Example	Test Example	Test Example
	1	2	3
667	А	А	А
668	А		
669	А	D	А
670	А		D
671	А		D
672	А		
673	А	D	D
674	А	D	А
675	А	А	А
676	А	С	А
677	А		
678	А		
679	А		A
680	А		D
681	A	А	А
682	А		А
683	А	А	A
684	А	A	А
686	А	А	А
687	А	D	D
688	А		А
689	A	D	A
690	A		A
691	A	D	С

•••••

.

- 207 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
692	А	D	
693	А	А	
694	А		А
695	А	А	А
696	А	А	А
697	А		А
698	А	В	А
699	А	А	D
700	А	А	А
701	А	А	А
703	А	А	А
704	А		А
705	А	D	А
706	А	А	
708	D		
709	А	А	
710	А	С	А
711	А	С	А
712	А	А	А
713	А	В	D
714	А	А	А
715	А	А	A
716	· A	A	A
717	А		A

Table 4 (Cont'd)

••••••

...::

 \cdots

•••••

••••••

••••••

••••••

••••••

••••••

•••••

•••••

No	Test Example	Test Example	Test Example
	1	2	33
718	A		A
719	А	D	
720	А		
721	А		
722	A ·		А
723	D		D
724	А		В
725	А	А	
727	А	В	A
728	А		А
729	А		A
732	А		
733	А		
735			D
737	А		
738	D		
740	А		A
741	A	А	А
742	А		
743	D		
744	С		
745	D		

- 209 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
749	A		
750	A		А
751	А		А
752	А		
753	А	А	D
755	А		А
758			А
759			D
765			А
766	А		
767	А	С	А
768	А	В	А
769	А		D
770	А	А	А
771	А		С
772	А		А
773	А		А
774	А		А
776	В		D
777	А		D
778	А		А
780	А	A	A
781	А	A	А

.....

- 210 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
782	А		А
783	А	А	А
785		А	
788	С		С
790			А
791	А		А
793	А		
795	А	В	А
796	А		
797	А		С
798			Α
799	А		А
800			C
801	А	А	D
802	D		
803	А		А
808	А		
819	А	В	А
821	А		А
822	D		D
824	А		
825	А		

•••••

.

- 211 -

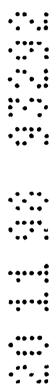
Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
826	А		А
827	А		
830	С		
831	D	D	
832	А		
833	А		D
835	А		
836	А		А
837	А		
838	А	С	А
839	А		С
840	А		D
841	А	D	
842	А	А	D
845	А		
846	А		
847		D	
848	А		
849	А	В	А
850	А		Α
851	А	D	А
852	А		D
854	А		
855	А		

••••••

••••••

Table 4 (Cont'd)


No	Test Example	Test Example 2	Test Example 3
856	A		D
858	C	А	2
859	D		
860	А		
861	А		
862	А	D	D
863	А		В
864	А		
865	А		
866	D		
867	А		С
869	А	D	
870	А		
871	А		
872	A		С
874	А	С	А
875	А		
878	С		
879	A		А
880		D	
881	А	D	
888	D		

.

•••••

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
889	A		A
890	A	А	А
891	A	A	А
892	А		А
893	А	A	А
894	А	А	А
895	А	А	А
901	А	D	А
902	А		
903	А	А	А
904	А		
905	А	А	А
906	А	D	А
907	А	А	А
908	А	D	А
909	А	А	А
910			А
911	А		D
912	А		
913	А		
914	А		
915	А	А	А
916	А		
917	А	А	А

- 214 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
918	A		
919	A		
920	А		
924	А		
925	А		А
927	А	А	А
928	А		А
929	А	А	А
930	А	А	А
931	А	А	А
932	А	А	A
933	А		A
934	А	А	A
935	А	А	А
936	А	А	А
937	А	А	А
938	А	А	
939	А	А	А
940	А	А	A
941	А	А	A
942	А	А	A
943	А	С	А
944	А	А	А
945	А	A	А

•••••

- 215 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
946	А		А
947	А	А	А
949	А	А	А
950			С
951	А	А	A
952	А		А
953	А	А	А
954	А		А
955	А	А	А
956	А		А
957	А	А	А
958	А		А
959	А		А
965	А	С	
966	А		В
971	А	А	А
972		A	
973	А	A	А
974	А	А	А
975	А		А
976	А	A	А
977	А	A	А
978	А	C	А
979	А	А	А

•••••

~******

- 216 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
980	А	А	А
981	А	А	А
982	А		С
983	А	А	А
984	А		
985	А	А	А
986	А		А
987	А	А	А
988	А		
989	А	А	А
990	A		А
991	А	А	A
992	А		
993	А		А
995	А		А
996	А	А	A
997	А	А	A
998	А	A	A
999	А		A
1000	А	D	A
1001	А	А	A
1002	А	А	A
1003	А	А	А
1004	А	А	А

•••••

····

- 217 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1005	А	А	А
1006	A		
1007	А	А	А
1008	А		А
1009	А	А	А
1010	А		А
1011	А	А	А
1013	А	А	А
1014	А		А
1015	А	D	А
1016			А
1017	А	А	А
1018	А	D	А
1019	А	А	А
1020	А	А	A
1021	А		A
1022	А	А	A
1023	А	А	A
1024	А	А	A
1025	А		
1026	А		A
1027			A
1028	А	А	A
1031	А	А	А

•••••

•••••

- 218 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1032	А		А
1033	А	А	А
1034	А		
1035	А	А	А
1036	А		А
1037	А	А	А
1038	А	А	А
1039	А	А	A
1040	А	А	А
1041	А	А	А
1042	А	А	А
1043	А		А
1044	А	А	A
1045	А	А	A
1046	А	А	А
1047	А		А
1048	А		А
1049	А	А	А
1050	А	А	А
1051	А	А	А
1052	А	A	
1053	А	А	A
1054	А	А	A
1055	А	A	A

•••••

•••••

•••••

- 219 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1056	А	А	А
1057	А		А
1058	А	А	А
1059	А		
1060	А	А	А
1061	А	А	А
1062	А	А	А
1063			А
1064	А		А
1065	А		
1066	А	С	А
1067	А	А	А
1068	А	А	А
1069	А	А	А
1070	А	Α	А
1071	А	С	А
1072			А
1073	А	А	А
1074	А	А	А
1075	А	А	А
1076	А		А
1077	А		A
1078	А	A	A
1079	А	A	А

.....

•••••

..... ••••••

- 220 -

• .

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1080	А	А	А
1081	А	А	А
1082	A		
1083	A		
1086	А		А
1087	А	А	А
1088	А		А
1089	А		А
1099	А		А
1100	А	С	А
1101	А	С	А
1102	А	А	А
1103	А		А
1104	А	A	А
1105	А	А	А
1106	А		А
1107	А		А
1108	А		А
1109	А		А
1110	A	С	А
1111	А		А
1112	А	А	А
1113	А	А	А
1114	А	А	А

•••••

••••

- 221 -

Table 4 (Cont'd)

•

•••••

••••

.....

••••••

•••••

••••••

.....

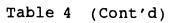
••••••

•••••

No	Test Example 1	Test Example 2	Test Example 3
1115	А	А	А
1116	А	А	А
1117	А	А	А
1118	А	А	А
1119	А	А	А
1120	А	А	А
1121	А	А	А
1122	А	А	А
1123	А	А	А
1124	А	А	А
1125	А	А	А
1126	А	А	А
1127	А	А	А
1128	А	А	A
1129	А	А	А
1130	А	А	А
1131	А	А	А
1132	А		А
1133	А		А
1134	А		A
1135	А		А
1136	А		А
1137	А		
1138			А

- 222 -

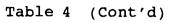
Table 4 (Cont'd)


No	Test Example 1	Test Example 2	Test Example 3
1139	A		
1140			А
1141	А	А	A
1142	А	А	А
1143	А	С	А
1144	А	А	А
1145	А		А
1146	А	С	А
1147	А	А	А
1148	А	А	А
1149	А		А
1150	А	А	А
1151	А	А	А
1152	А	А	А
1153	А	А	А
1154	А	С	А
1155	А		А
1156	А	А	А
1157	А		А
1158	А	D	А
1159	А	А	A
1160	А	А	А
1161	А	D	А
1162	А	A	A

••••

·····

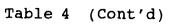
····


- 223 -

No	Test Example 1	Test Example 2	Test Example 3
1163	A	A	A
1164	A	A	A
1165	A	A	A
1166	A	A	A
1167	A	A	A
1168	A	A	A
1169	A	A	A
1173	A	A	A
1174	A	A	A
1175	A	Л	Л
1178	A		
1179	A	Λ	
1179		А	_
	A		_
1181	A		_
1182	A	•	_
1183	A	A	_
1184	A	A	-
1185	A	C	_
1186	A	А	
1187	А	А	—
1188	А	А	-
1189	А	А	_
1190	А	А	A
1191	А	A	A

- •••••
- ·····
- •••••

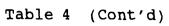
- 224 -



No.	Test Example	Test Example	Test Example
<u> </u>	1	2	3
1192	А	А	А
1193	A	А	А
1202	А	А	А
1203	А	D	А
1204	А	А	А
1205	А		А
1206	А	А	А
1207	А	А	А
1208	А		А
1209	А	D	А
1210	А	А	А
1211	А	А	А
1212	А	А	А
1221	А	А	А
1222	А	A	А
1223	А	A	А
1224			В
1225			A
1226			A
1227	А	А	А
1228	А	А	A
1229	А	А	A
1230	А	А	A
1231	А	A	А

- •••••

•••••


- 225 -

No	Test Example	Test Example	Test Example
	1	2	3
1232	А	А	А
1233	А	А	-
1234	А	А	-
1235	А	D	-
1236	А	А	_
1237	А	А	-
1238	А		-
1245	А	А	-
1246	А	А	А
1247	С		
1248	А	А	А
1249	А		
1250	А	А	A
1251	А	А	А
1256	А	А	-
1257	А	А	-
1258	А	А	-
1259	А		-
1260	А		-
1261	А	А	-
1262	А	А	A
1263	А	A	А
1264	А	А	А
1266	А		А

•••••

- 226 -

No	Test Example 1	Test Example	Test Example 3
1277	A	2A	A
1278	A	A	A
1280	A	A A	A
1280	A	A	
1281			A
	A	_	_
1284	A	_	A
1285	А	_	А
1287	А	А	А
1288	А		
1291	А		
1293			А
1294	А	А	А
1295	А	А	А
1296	А	А	А
1297	А	А	А
1298	А	А	А
1299	А	А	А
1300	А	А	А
1301	А		А
1303	А	A	А
1304	А		А
1305	А	A	А
1306			A
1307	А	A	А

••••••

- ·····
- •••••

- 227 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1308			С
1309	A	А	А
1310			В
1311	А	А	А
1312	А		А
1313	А	А	А
1314	A	А	А
1315	А	А	А
1316	А	А	А
1317	А	С	А
1318	А		А
1319	А	_	_
1321	А	-	А
1322	А		
1323	А		А
1325	А		А
1327	А		
1328	А		
1330	А	А	А
1331	А		А
1332	А		
1333	А		А
1335	А	С	А
1337	А		A

•••••

- 228 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1338	А		
1339	А		А
1340	А		А
1341	А		
1342	А		
1343	А		А
1345	А		
1346	А		
1347	А		
1348	А		
1349	А		
1350			А
1351	А		А
1352	А		А
1353	А	А	А
1355	А	А	А
1356	А		
1358	А		С
1360	А		С
1361			А
1362	А	А	А
1363	А		
1364	А	A	A
1365	А		

••••

- 229 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1366	А	А	А
1367	А		
1368	А		
1370	А		А
1372	А		
1373	А		
1374	А		
1376	А		
1379	А		
1381	А		С
1382	А	А	А
1383	А	А	А
1384	А	А	А
1385	А	А	А
1386	А	А	A
1387	А	A	А
1388	А	D	А
1389	А	А	А
1390	А		А
1392	А		А
1393	А		А
1394	А		A
1395	А		
1398	A		

•..... • • • • • •

••••

- 230 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1399	A	А	А
1400	А	А	А
1401	А		
1402	А	А	А
1404	А	С	А
1406	А	А	А
1409	А		А
1410	А		А
1411	А		А
1412	А		
1414	А	А	А
1415	А		А
1416			А
1417	А	А	А
1418	А	А	A
1419	А		A
1420	А		А
1421	А		
1423	А		
1424		А	A
1427	А	A	А
1428	А	А	A
1429	А	А	A
1430	А	D	А

- 231 -

Table 4 (Cont'd)

No	Test Example	Test Example 2	Test Example 3
1431	А		
1432			А
1434	A		
1436	А	А	А
1438	А	А	А
1439	А		С
1440	А		
1441	А		А
1442	А		
1443	А		
1445	А	А	А
1446	А		
1447	А	А	А
1448	А	А	А
1449	А	А	A
1450	А	A	А
1451	А		
1452	А	А	A
1453	А		
1454	А	А	А
1456	А		A
1457	А		A
1458	А	A	A

- 232 -

Table 4 (Cont'd)

••••••

•••••

••••••

••••••

••••••

••••••

.....

•••••••

No	Test Example	Test Example	Test Example
1459	1	2	3
1	A	A	
1460	A	C	А
1461	A		А
1464	А	A	A
1465	А		А
1466	А	А	А
1467	А	А	А
1468	А	С	А
1469	А		
1470	А		А
1472	А	А	A
1473	А	А	А
1474	А	А	A
1475	А	A	A
1476	А		
1478	А	А	A
1479	А	A	A
1480			А
1481	А	А	A
1482	А	A	A
1484	А	A	A
1485	А	A	A

- 233 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1486	А	А	
1487	А	А	
1488	А		А
1489	А	А	А
1490	А		А
1491	А	А	A
1492	А		А
1493	А		А
1494	А	А	А
1495	А	A	А
1496	А	А	A
1497	А	А	A
1498	А	А	A
1499	А	А	A
1500	А	А	A
1501	А	А	A
1502	A	A	A
1503	А	C	A
1504	А	A	А
1505	А	А	A
1506	A	А	A
1507	A	А	А
1508	А	С	А
1509	А	С	A

- 234 -

Table 4 (Cont'd)

•••••

•••••

•••••

.....

•••••

.....

••••••

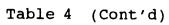
•••••

No	Test Example	Test Example 2	Test Example 3
1510	А		A
1511	А		
1512	А	А	А
1513	А		
1514	А		А
1515	А		
1516	А	А	А
1517	А		А
1518	А		
1519	А		А
1520			А
1521	А		
1522	А	А	А
1523	А		А
1524	A	А	А
1525	А	А	А
1526	А	А	А
1527	А		А
1528	А		А
1529	А		А
1530	А		А
1531	А	А	А
1532	А	А	А
1533	А	A	A

- 235 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1534	A	А	A
1535	A	А	А
1536	А	А	А
1537	А	А	А
1538	А	А	А
1539	А	А	А
1540	А	А	А
1541	А	А	A
1542	А	D	А
1543	А	А	А
1544	А	А	А
1545	А	D	А
1546	А	С	А
1547	А		А
1548	А		А
1549	А	D	А
1550	А	А	А
1551	А	D	А
1552	А	А	А
1553	А		А
1554	А	A,	
1555	А		А
1556	A	А	А
1557	А	А	A



- 236 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1558	A	C	A
1559	А	А	A
1560	А	А	А
1561	A ·	А	А
1562	А	A	А
1563	А	А	А
1565	А	А	А
1566	А	А	А
1567	А	А	А
1568	А	А	А
1569	А	А	А
1570			А
1571	А	А	А
1572	А	А	А
1573	А	А	А
1574	А	А	А
1575	А		A
1576	А	D	А
1577	А		
1578	А		А
1579	А		
1580	А	А	А
1581	А	А	A
1582	А		А

- 237 -

Γ	No	Test Example		Test Example
+		1	2	3
	1583	А		А
	1584	А		А
	1585	А	А	А
	1586	А	С	А
	1587	А	А	А
	1588	А		А
	1589	А		А
	1590	А	А	А
	1594	А	А	-
	1595	А	А	-
	1596	А	А	-
	1597	А	А	-
	1598	А	А	-
ł	1599	А	А	-
	1600	А	А	-
	1601	А	А	-
	1602	А	А	А
	1603	А	A	А
	1604	А	А	А
	1605	А	С	_
	1606	А	А	-
	1607	А	А	-
	1608	А	А	-
	1609	A	A	

••••••
•••••
•••••
· · · · · · · · · · · · · · · · · · ·
••••
•••••
•••••
•••••

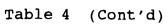
- 238 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1610	А	А	-
1611	А		-
1612	А	А	-
1613	А	А	_
1614	А	С	А
1615	А	A	А
1617	А		А
1618	А	С	А
1619	А	А	
1620	А		А
1622	А	А	А
1623	А	С	А
1624	А	D	А
1625	А	А	А
1626	А		А
1627	А	А	A
1628	A	А	A
1629	А	А	A
1632	А		A
1633	А	А	A
1634	А	А	A
1635	А	А	A
1636	А	D	A
1637	А	А	А

- 239 -

Table 4 (Cont'd)

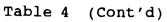

No	Test Example 1	Test Example 2	Test Example 3
1638	А	А	А
1639	А	А	А
1640	А	А	А
1641	А		А
1642	А	А	А
1643	А		А
1644	А	А	А
1645	А	А	А
1646	А	А	А
1647	А	А	A
1648	А	А	А
1649	А	А	А
1650	А	А	А
1651	А	А	A
1652	А	А	А
1653	А	А	А
1654	А	А	А
1655	А	А	A
1656	А	А	А
1658	А		
1659	А		А
1660	А	A	_
1661	А		-
1662	А	A	-

- 240 -

Table 4 (Cont'd)

No	Test Example 1	Test Example 2	Test Example 3
1663	Α	A	_
1664	А	А	-
1665	А	А	_
1666	А	А	_
1667	А	А	_
1668	А	А	_
1669	А	А	_
1670	А	А	_
1671	А	А	_
1672	А	А	-
1673	А		_
1674	А	А	-
1679	А	А	А
1680	А	А	А
1681	А	А	А
1682	А	А	-
1683	А		_
1684	А	А	_
1685	А	А	-
1686	A	· A	_
1689	А	А	_
1690	А	А	. –
1691	А	А	-
1692	А		-

- 241 -



No	Test Example	Test Example	Test Example
	1	2	3
1693	A	А	—
1694	A		-
1695	А	А	_
1696	А	А	_
1697	А	А	_
1698	А		—
1699	А	А	_
1700	А	D	_
1714	А	А	А
1715	А	А	А
1716	А	А	А
1717	А	А	А
1722	А	А	А
1723	А	А	А
1726	А		А
1727	А		А
1732	А	А	А
1733	А	А	А
1737	А	C	А
1742	А		А
1743	A		А
1747	А	С	А
1748	А		A
1750	А		А

•:••;

•••••

- 242 -

••••••

•••••

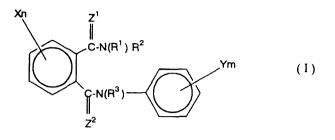
•:•••

••••••

••••••

•••••

.....:


•••••

No	Test Example 1	Test Example 2	Test Example 3
1752	A		A
1763	А		A
1764	A	А	А
1765	А	А	А
1766	А	А	А
1767	А		
1768	А		А
1770	А	_	А
1772	А	-	А
1773	А	А	А
1774	А	-	A
1775	А	_	A
1776	А	_	A
1777	А	А	A
1778	А	-	A
1799	А	A	A
1800	А	А	A
1801	А	A	A
1802	А		
1803	А	A	A
1804	А		
1805	А		

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A phthalic acid diamide derivative represented by the general formula (I),

- 243 -

wherein R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_3 - C_6 cycloalkenyl group, a halo- C_3 - C_6 cycloalkenyl group or a group of the formula $-A^1-Q_\ell$ (wherein A^1 is $-O_-$, $-S_-$, $-SO_2-$, $-C(=O)_-$, a group of the formula $-N(R^4)$ - (wherein R^4 is a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenylcarbonyl group, or a substituted phenylcarbonyl group having at least one substituent which may be the same or different, and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different), a C_1-C_8 alkylene group,

a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; (1) when A^1 is -O- or a group of the formula $-N(R^4)$ -(wherein R^4 is the same as defined above), then Q is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkyl sulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a phenyl- C_1-C_4 alkyl group or a substituted phenyl- C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and

a di-C₁-C₆ alkylamino group which may be the same or different;

••••

•••••

••••••

• • • • • • •

(2) when A^1 is -S-, -SO₂- or -C(=O)-, then Q is a C₁-C₆ alkyl group, a halo- C_1 - C_6 alkyl group, a C_3 - C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a C_1-C_6 alkoxy group, a mono- C_1 - C_6 alkylamino group, a di- C_1 - C_6 alkylamino group which may be the same or different, a C_1-C_6 alkoxycarbonylamino group, a C_1-C_6 alkoxycarbonyl- C_1-C_6 alkylamino group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo $-C_1-C_6$ alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a phenylamino group, a substituted phenylamino group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 -

 C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo $-C_1-C_6$ alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a heterocyclic group (which means pyridyl group, pyridine-Noxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or a pyrazolyl group), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different,

(3) when A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group, then Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a $di-C_1-C_6$ alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a

naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is -O-, -S-, -SO-, -SO₂- or a group of the formula $-N(R^6)$ -(wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group,

····

.....

•••••

•••••

••••••

•••••

•••••

a halo- C_1 - C_6 alkylcarbonyl group, a C_1 - C_6 alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, a phenyl C_1-C_4 alkoxycarbonyl group, or a substituted phenyl C_1-C_4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different); and R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl

group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a

:....

.....

•••••

•••••

•••••

•••••

substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different);

 $\underline{\ell}$ is an integer of 1 to 4); further,

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the

same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

. . .

....

••••

• • • • •

•••••

•...•

•••••

••••••

X may be the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C₃-C₆ cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituents which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo-C1-C6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo-C₂-C₆ alkenyl group, a C₂-C₆ alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a

 $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C₁-C₆ alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, or a group of the formula $-A^2-R^7$ (wherein A^2 is -0-, -S-, -S0-, $-SO_2-$, -C(=O)-, $-C(=NOR^8)-$ (wherein R^8 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3 - C_6 alkenyl group, a C_3 - C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a phenyl- C_1-C_4 alkyl group, or a substituted phenyl- C_1 - C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6

. . .

••••

.....

.....

•••••

•••••

•••••

•••••

alkynyl group, a C₁-C₆ alkoxy group, a halo-C₁-C₆ alkoxy group, a C₁-C₆ alkylthio group, a halo-C₁-C₆ alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different), a C_1-C_6 alkylene group, a

5 halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group, a C_2 - C_6 alkynylene group or a halo- C_3 - C_6 alkynylene group;

(1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a C₁-C₆ alkyl group, a halo C₁-C₆ alkyl group, a C₃-C₆ alkenyl group, a halo-

- group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkyls lfonyl group, a mono-25 C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which
- may be the same or different, a naphthyl group, a substituted naphthyl group having at

.....

:....

••••••

•••••

····:

.....

••••••

least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituents which may be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, or a group of the formula $-A^3-R^9$ (wherein A^3 is -C(=0)-, $-SO_2-$, a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_3-C_6 alkynylene group, or a halo- C_3-C_6 alkynylene

group,

....

••••

••••

••••••

•••••

•....

••••••

••••••

(i) when A^3 is -C(=0) - or $-SO_2$ -, then R^9 is a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a mono- C_1-C_6 alkylamino group, a di- C_1-C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, a

heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different,

.....

••••••

•••••

•••••

••••••

••••••

(ii) when A^3 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_3-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^9 is a hydrogen atom, a halogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 •••••

.....

••••••

•••••

•____

alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, or a group of the formula $-A^4-R^{10}$ (wherein A^4 is $-O_-$, $-S_-$, $-SO_-$, $-SO_2-$, -C(=0)-, or a group of the formula $-N(R^{11})-$ (wherein R^{11} is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6

..... •••• ••••• ••••• •••••• •••••• different); and

alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C₁-C₆ alkyl group, a halo-C₁-C₆ alkyl group, a C₂-C₆ alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or R^{10} is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6

alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_3-C_6 cycloalkenyl group, a halo- C_3-C_6 cycloalkenyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl

group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 •••••• alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a •••••• halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 -..... C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 -••••• C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a ••••• $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group,

> a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group,

group sulfor alkyla (2) wl (where alkyl C_3-C_6 thio alkyla pheny

•••••

.....

•••••

••••••

· · · ·

a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different)); (2) when A^2 is -C(=0) - or a group of the formula $-C(=NOR^8)$ -(wherein R^8 is the same as defined above), then R^7 is a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_3 - C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a mono- C_1 - C_6 alkylamino group, a di- C_1 - C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a phenylamino group, a substituted phenylamino group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl

group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having one or more substituents which may be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy

.....

••••••

•...:

•••••

· . . .

group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group,

group, a (sulfonyl (alkylamind (3) when A group, C₂a C₂-C₆ al then R⁷ is alkyl grou alkoxycark group hav: or differe halogen at group, a h halo-C₂-C₆

•••••

a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, (3) when A^2 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a

 C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is -O-, -S-, -SO-, -SO₂- or a group of the formula $-N(R^{13})$ -(wherein R^{13} is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a C₃-C₆ cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl

....

•

· • • • •

•___

••••••

•••••

group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituents which may be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different); and R^{12} is a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or

- 267 -

different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituents which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, or a group of the formula $-A^6-R^{14}$ (wherein A^6 is -C(=0)-, $-SO_2-$, a C_1-C_6 alkylene group, a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo-C₃-C₆ alkynylene group;

:....

•••••

••••••

•••••

•••••

•••••

(i) when A^6 is -C(=0)- or $-SO_2-$, then R^{14} is a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a context group, a halo- C_1-C_6 alkylthio group, a halo

alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group

••••

.....

····

••••••

••••••

••••••

••••••

• • • • • • •

•••••

which may be the same or different;

(ii) when A^6 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^{14} is a hydrogen atom, a halogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6

alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a phenylthio group, a substituted phenylthio group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo $-C_1-C_6$ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 - alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a

 C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different)));

<u>n</u> is an integer of 1 to 4;

.....

:....

••••••

••••••

•••••

•••••

•••••

•••••

further, X may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), by combining together with the adjacent carbon atoms in the phenyl ring, and said condensed ring may have at least one substituents, which may be the same or different, and selected from the group consisting of a halogen atom, a alkyl group, C₁-C₆ alkylt alkyls C₁-C₆ a mono which which group group, alkeny malo-C

•••••

•••••

alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group, a di- C_1 - C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group,

cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6

- 273 -

a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different;

••••••

••••••

•••••

•••••

•••••

Y is the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a di- C_1-C_6 alkoxythiophosphoryl group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a

halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 •••••• :.... ••••• ••••••• ••••• ••••• •••••

alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, or a group of the formula $-A^2-R^7$ (wherein A^2 and R^7 are the same as defined above);

<u>m</u> is an integer of 1 to 5;

••••••

•..••

•••••

•••••

further, Y may form a condensed ring (the condensed ring is the same as defined above), by combining together with the adjacent carbon atoms in the phenyl ring, said condensed ring may have at least one substituents, which may be the same or different, and selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group, a $di-C_1-C_6$ alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy

group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein said heterocyclic group is the same as defined above) having at lease one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 -

.....

· • • •

·]:•;

•

• • • • • •

•••••

• • • • •

 C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different;

 Z^1 and Z^2 each represents an oxygen atom or a sulfur atom; provided that,

- 5 (1) when X, R^1 and R^3 are hydrogen atoms at the same time; <u>m</u> is an integer of 2; Y at 2-position is a fluorine atom and Y at 3-position is a chlorine atom; then R^2 is not ethyl group, isopropyl group, cyclohexyl group, 2-propenyl group, methylthiopropyl group and α -methylbenzyl group,
- 10 (2) when X and R³ are hydrogen atoms at the same time; <u>m</u> is an integer of 2; Y at 2-position is a fluorine atom and Y at 3-position is a chlorine atom; then the 4 to 7 membered ring by combining R¹ and R² to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected
 15 from the group consisting of oxygen atom, sulfur atom and nitrogen atom is not morpholino group,

(3) when X, R^1 and R^3 are hydrogen atoms at the same time; and R^2 is 1,2,2-trimethylpropyl group; then Y is not a hydrogen atom, 4-hydroxy group or 2-ethoxy group,

20 (4)when X, R^1 and R^3 are hydrogen atoms at the same time; R^2 is 2,2-dimethylpropyl group; and <u>m</u> is an integer of 1; then Y is not 2-ethoxy group, and

(5) when X, R¹ and R³ are hydrogen atoms at the same time; and R² is <u>tert</u>-butyl group; and <u>m</u> is an integer of 1; then Y
25 is not 4-chlorine atom, 2-nitro group, 4-nitro group, 3methoxy group or 4-methoxy group; m is an integer of 2; then Y is not 2,6-dimethyl groups,

(6) when X, R¹ and R³ are hydrogen atom at the same time; and R² is benzyl group; and <u>m</u> is an integer of 1; then Y is not 4-30 methyl group, and <u>m</u> is an integer of 2; then Y is not 3, 4-dichloro groups,

(7) when X and R^3 are hydrogen atoms at the same time; m is an integer of 1; Y is 4-difluoromethoxy group; then R^1 and R^2 are not formed $-CH_2CH_2-O-CH_2CH_2$ - by combining to each other,

35 (8) R^1 and R^2 are not hydrogen atoms at the same time,

(3) when Z^1 and Z^2 are oxygen atoms at the same time; X is

chlorine atom; n is an integer of 4; Y is 2,6-dinitro-3-chloro-4-trifluromethyl groups; then R^1 , R^2 and R^3 are not hydrogen atoms at the same time.

2. The phthalic acid diamide derivative according to Claim 1, wherein R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, or a group of the formula $-A^1-Q_\ell$ (wherein A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; and Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a di- C_1 - C_6 alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which means pyridyl group, pyridine-Noxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), a substituted heterocyclic group (wherein the heterocyclic

.

· · · · · ·

substitu selected C_1-C_6 all group, a halo- C_1-1 halo- C_1-1 and a ha formula group of a C_1-C_6 a group, a a substitu substitu

•••••

• • • • • • •

•••••

substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is -0-, -S-, -S0-, $-S0_2-$ or a group of the formula $-N(R^6)$ - (wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthic group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenyl C_1 - C_4 alkoxycarbonyl group, or a substituted phenyl C_1-C_4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6

group is the same as defined above) having at least one

alkylsulfonyl group); and

 R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthic group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a

halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group); and ℓ is an integer of 1 to 4);

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

.....

:....

•••••

••••••

*....

•••••

•••••

X may be the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituents which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio •••••

:....

••••••

••••••

•••••

•••••

•••••

••••

•••••

group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^2-R^7$ (wherein A^2 is -O-, -S-, -SO-, -SO₂-, -C(=O)-, -C(=NOR⁸)-(wherein R^8 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a phenyl- C_1 - C_4 alkyl group, or a substituted phenyl- C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group), a C_1 - C_6 alkylene group, a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group, a C_2 - C_6 alkynylene group or a halo-C₃-C₆ alkynylene group;

(1) when A^2 is -O-, -S-, -SO- or $-SO_2$ -, then R^7 is a halo- C_3 -C₆ cycloalkyl group, a halo- C_3 - C_6 cycloalkenyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group

:....

• • • • •

•••••

• • • • • •

•••••

(which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^3-R^9$ (wherein A^3 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_3-C_6 alkenylene group, a halo- C_3-C_6 alkenylene group, a C_3-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group; R^9 is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^4-R^{10}$ (wherein A^4 is -0-, -S-, -SO-, $-SO_2$ - or -C(=O)-, and R^{10} is a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl

and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group

•••••

••••••

•:•:•

•••••

•••••

•••••

•••••

group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo-C₁-C₆ alkylsulfonyl group)); (2) when A^2 is -C(=0) - or a group of the formula $-C(=NOR^8)$ -(wherein R^8 is the same as defined the above), then R^7 is a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_3 - C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a mono- C_1 - C_6 alkylamino group, a di- C_1 - C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a

••••

•••••

:....

••••••

••••••

•..••

•••••

•••••

 C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenylamino group, a substituted phenylamino group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo $-C_1-C_6$ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group,

(3) when A^2 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a c₂-C₆ alkynylene group or a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a C_3-C_6 cyclo-alkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy-

carbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is -0-, -S-, -S0- or -SO₂-; and R^{12} is a C₃-C₆ cycloalkyl group, a halo-C₃-C₆ cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo $-C_1-C_6$ alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl

- 287 -

group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^6-R^{14}$ (wherein A^6 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkenylene group, or a halo- C_2-C_6 alkynylene group; and R^{14} is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl

.....

••••••

•....

•...•

••••••

•••••

•••••

group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenoxy group, a substituted phenoxy group having ····

.....

••••••

•••••

·····

· · · ·

at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenylthio group, a substituted phenylthio group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 - alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkyl-

sulfonyl group and a halo-C₁-C₆ alkylsulfonyl group)));

<u>n</u> is an integer of 1 to 4;

further, X may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane,

guinoline, guinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), by combining together with the adjacent carbon atoms in the phenyl ring, said condensed ring may have at least one substituent, which may be the same or different, and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group,

a C_1-C_6 alkylsulfinyl group, a halo $-C_1-C_6$ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo $-C_1-C_6$ alkylsulfonyl group;

Y is the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^2-R^7$ (wherein A^2 and R^7 are the same as defined above);

•••••

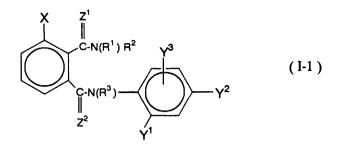
·.....

• • • •

• • • • • •

••••••

 \underline{m} is an integer of 1 to 5;


further, Y may form a condensed ring (the same as defined above), by combining together with the adjacent

..... , 's s , 's s •__• • • • • • • °**_**

carbon atoms in the phenyl ring, said condensed ring may have at least one substituent, which may be the same or different, and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), and a substituted heterocyclic group (wherein said heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group; and

 Z^1 and Z^2 are each represents an oxygen atom or a sulfur atom.

3. The phthalic acid diamide derivative according to Claim 2, represented by the general formula (I-1),

(wherein, R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group or a group of the formula $-A^1-Q_\ell$ (wherein, A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a $di-C_1-C_6$ alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which means pyridyl group,

- 292 -

pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is -0-, -S-, -S0-, $-S0_2-$ or a group of the formula $-N(R^6)$ - (wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C₁-C₆ alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenyl C_1 - C_4 alkoxycarbonyl group, or a substituted phenyl C_1-C_4 alkoxycarbonyl whick group halo alko: group sulf alky alky a hai C₆ al cyclo alky

••••••

•••••

•••••

••••••

group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group); and R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3 - C_6 alkenyl group, a C_3 - C_6 alkynyl group, a halo- C_3 - C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenyl C_1 - C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a

 C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group); and ℓ is an integer of 1 to 4); further,

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

•••••••

•••••

•••••

•••••

.

X is a hydrogen atom or a nitro group;

 Y^1 and Y^3 may be the same or different and are each a hydrogen atom, a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl

- 296 -

group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a pyridyloxy group, a substituted pyridyloxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group;

 Y^2 is a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^2-R^7$ (wherein A^2 is -0-, -S-, -SO-, -SO₂-, a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo-C3-C6 alkynylene group and, (1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a halo-C₃- C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkenyl group, a

substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^3-R^9$ (wherein A^3 is a halo- C_1-C_6 alkylene group, a halo- C_3-C_6 alkenylene group, a C_3-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group; and R^9 is a hydrogen atom, a halogen atom, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group or a group of the formula $-A^4-R^{10}$ (wherein A^4 is -O-, -S- or -SO₂-; and R^{10} is a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 cycloalkyl

•••••

••••••

•....

••••••

••••••

substituted phenyl group having at least one substituent

group, a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a

which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo-C₁-C₆ alkylsulfonyl group)); (2) when A^2 is a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group, a C_2 - C_6 •••••• ••••• alkynylene group or a halo- C_3 - C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a halo- C_3-C_6 cycloalkyl ••••• group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is $-O_-$, $-S_-$, $-SO_-$ or $-SO_2-$; and R^{12} is a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at

••••

•••••

.....

least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a

halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group; or a group of the formula $-A^6-R^{14}$ (wherein A^6 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group; and R¹⁴ is a hydrogen atom, a halogen atom, a halo- C_3-C_6 cycloalkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo-C₁-C₆ alkylsulfonyl group, a

.....

••••••

......

•••••

• • • • • • •

.

phenylthio group, a substituted phenylthio group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1-C_6 -alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1-C_6 alkylsulfonyl group)); further,

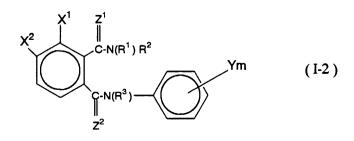
• •

••••

••••••

••••••

•••••


•••••

.

 Y^1 and Y^2 may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole) by combining to each other together with the adjacent Y^3 , said condensed ring may have at least one substituent, which is the same or different, selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo $-C_1-C_6$ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group; and

 Z^1 and Z^2 are each an oxygen atom or a sulfur atom}.

4. The phthalic acid diamide derivative according to Claim 2, represented by the general formula (I-2),

(wherein, R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group or a group of the formula $-A^1-Q_\ell$ (wherein, A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a di- C_1 - C_6 alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which means pyridyl group, pyridine-Noxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one

••••••

•••••

•••••

- 303 -

substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is -0-, -S-, -S0-, $-S0_2-$ or a group of the formula $-N(R^6)$ - (wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthic group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkoxycarbonyl group, or a substituted phenyl C_1-C_4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group); and

••••••

.....

••••••

•••••

 R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group and a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6

alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group); and $\underline{\ell}$ is an integer of 1 to 4); further,

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

.....

·**`.`**.

.....

•••••

••••••

 X^1 and X^2 may be the same or different and are each a halogen atom, a cyano group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group; further, X^1 and X^2 may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole) by combining to each other, and said condensed ring may have at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkyl

sulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, a halo-C1-C6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo $-C_1-C_6$ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group;

Y is the same or different, and are each a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio

group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of $-A^2-R^7$ (wherein A^2 is -0-, -S-, -S0-, $-SO_2-$, -C(=O)-, $-C(=NOR^8)-$ (wherein R^8 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3 - C_6 alkenyl group, a C_3 - C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a phenyl- C_1-C_4 alkyl group, or a substituted phenyl- C_1 - C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group), a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group;

••••

نة في المراجع المراجع المراجع

• • • • • • •

•••••

(1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a halo-C₃- C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkenyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^3-R^9$ (wherein A^3 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_3-C_6 alkenylene group, a halo- C_3-C_6 alkenylene group, a C_3-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group; R^9 is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen

group, a group, a group, a sulfonyl group of -SO₂- or C₆ alkyl group, a group, a least on and is se atom, a alkoxy group, a

• • • • •

••••••

• • • • • •

•••••

atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^4 - R^{10}$ (wherein A^4 is $-O_-$, $-S_-$, $-SO_-$, $-SO_2$ or -C(=O) -, and R^{10} is a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo-C₁-C₆ alkylsulfonyl group)); (2) when A^2 is -C(=0) - or a group of the formula $-C(=NOR^8)$ -

 C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_2-C_6 alkenyl

••••••

••••

•••••

•••••

••••••

••••••

•••••

•••••

••••••

••••

group, a halo- C_2 - C_6 alkenyl group, a C_3 - C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a mono $-C_1-C_6$ alkylamino group, a di $-C_1-C_6$ alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenylamino group, a substituted phenylamino group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6

(wherein R^8 is the same as defined the above), then R^7 is a

alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group,

(3) when A^2 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is -0-, -S-, -S0- or

••••••

.....

.....

.....

.....

•....•

•••••

••••••

•••••

•••••

••••••

.....

.....

.....

••••••

••••••

••••••

•••••

-SO₂-; and R^{12} is a C₃-C₆ cycloalkyl group, a halo-C₃-C₆ cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^6-R^{14}$ (wherein A^6 is a C_1-C_6 alkylene group, a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group, or a halo- C_3 - C_6 alkynylene group; and

 R^{14} is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6

•••••

C₆ alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenylthio group, a substituted phenylthio group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 - alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined above) having at least one substituent which may be the same or different

and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group)); and <u>m</u> is an integer of 1 to 5;

.....

.....

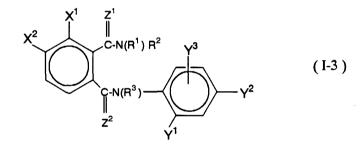
•••••

••••••

••••••

•...•

•••••


••••••

further, Y may form a condensed ring (which is the same as defined above) by combining together with the adjacent carbon atoms in the phenyl ring, said condensed ring may have at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent

which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkyl- sulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group;

 Z^1 and Z^2 are each an oxygen atom or a sulfur atom}.

5. The phthalic acid diamide derivative according to Claim 4, represented by the general formula (I-3),

{wherein, R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group or a group of the formula $-A^1-Q_\ell$ (wherein, A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a di- C_1-C_6 alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenyl-

..... •••• ••••• •••••• •••••• •::•: •••••

phosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which means pyridyl group, pyridine-Noxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is -0-, -S-, -S0-, $-S0_2-$ or a group of the formula $-N(R^6)$ - (wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenylcarbonyl group, a

substituted phenylcarbonyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkoxycarbonyl group, or a substituted phenyl C_1-C_4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6

•

.....

.....

•••••

.....

•

• • • • • •

•••••

group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group,); and

 R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl ·····

•

.....

••••••

•••••

a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group); and $\underline{\ell}$ is an integer of 1 to 4); further,

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

 X^1 and X^2 may be the same or different and are

•____

••••

•••`<u></u>•

•

•

•____

.....

•••••

ີ້

each a halogen atom, a cyano group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group; further, X^1 and X^2 may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole) by combining to each other, and said condensed ring may have at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), and a substituted

heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group;

....

.....

• • •

• • • •

••••••

•....

`**•••**•

•••••

 Y^1 and Y^3 may be the same or different, and are each a hydrogen atom, a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a pyridyloxy group, or a substituted pyridyloxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group,

 Y^2 is a hydrogen atom, a halogen atom, a halo-C₃-

- 320 -

••••

••••••

••••••

••••••

••••••

•••••

 C_6 cycloalkyl group or a group of the formula $-A^2-R^7$ (wherein A^2 -O-, -S-, -SO-, -SO₂-, a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group, or a halo- C_3-C_6 alkynylene group, and

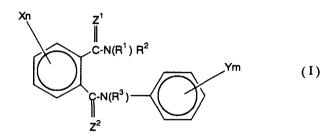
(1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a halo-C₃- C_6 cycloalkyl group, a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group and a halo-C₁-C₆ alkylsulfonyl group, a substituted pyridyloxy group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^3 - R^9$ (wherein A^3 is a halo- $C_1 - C_6$ alkylene group, or a halo- C_3 - C_6 alkenylene group; and R^9 is a hydrogen atom, a halogen atom, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^4-R^{10}$ (wherein A^4 is -O-, -S-, -SO- or $-SO_2-$; R^{10} is a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group,

a halo- C_3 - C_6 alkenyl group, a C_3 - C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, or a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group)), (2) when A^2 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group, a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is -O-, -S-, -SO- or -SO₂-; and R^{12} is a C₃-C₆ cycloalkyl group, a halo-C₃-C₆ cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^6 - R^{14}$ (wherein A^6 is a $C_1 - C_6$ alkylene group, a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group; and R^{14} is a hydrogen atom, a

•••••

••••••

•••••


halogen atom, a halo- C_3-C_6 cycloalkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo-C₁-C₆ alkylsulfonyl group, a phenoxy group, a substituted phenoxy group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenylthio group, or a substituted phenylthio group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group));

further, Y^1 and Y^2 may form a condensed ring (the condensed ring is the same as defined above) by combining to each other together with Y^3 , and said condensed ring may have at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 - 324 -

alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, and a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group;

 Z^1 and Z^2 are each an oxygen atom or a sulfur atom}.

6. An agricultural and horticultural insecticides, which is characterized by containing, as the effective ingredient, a phthalic acid diamide derivative represented by the general formula (I),

wherein R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_3-C_6 cycloalkenyl group, a halo- C_3-C_6 cycloalkenyl group or a group of the formula $-A^1-Q_\ell$ (wherein A^1 is $-O_-$, $-S_-$, $-SO_2-$, -C(=O)-, a group of the formula $-N(R^4)-$ (wherein R^4 is a C_1-C_6 alkyl-

carbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenylcarbonyl group, or a substituted phenylcarbonyl group having at least one substituent which may be the same or different, and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different), a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; (1) when A^1 is -O- or a group of the formula $-N(R^4)$ -(wherein R^4 is the same as defined above), then Q is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl

group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkyl

sulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a phenyl- C_1-C_4 alkyl group or a substituted phenyl- C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different;

(2) when A^1 is $-S_-$, $-SO_2-$ or -C(=O)-, then Q is a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a C_1-C_6 alkoxy group, a mono- C_1-C_6 alkylamino group, a di- C_1-C_6 alkylamino group which may be the same or different, a C_1-C_6 alkoxycarbonylamino group, a C_1-C_6 alkoxycarbonyl- C_1-C_6 alkylamino group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkenyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6

••••

.....

alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy •••• •••• •••••• •••••• •...• •••••• ••••• ••••

group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a phenylamino group, a substituted phenylamino group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo $-C_1-C_6$ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or

different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo-C₁-C₆ alkyl group, a C₂-C₆ alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkyl-

•••••

••••••

•....

•••••

•••••

sulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a heterocyclic group (which means pyridyl group, pyridine-Noxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or a pyrazolyl group), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different,

(3) when A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group, then Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, • J •

••••••

•

••••

•••••

•••••

a di- C_1 - C_6 alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6

alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the

which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a ••••• $di-C_1-C_6$ alkylamino group which may be the same or ••••• different, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is ,••••• -O-, -S-, -SO-, -SO₂- or a group of the formula $-N(R^6)$ -(wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group, •_•_• a halo- C_1 - C_6 alkylcarbonyl group, a C_1 - C_6 alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl ••••• group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkyl-

sulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a phenyl C_1-C_4 alkoxycarbonyl group, or a substituted phenyl

same as defined above) having at least one substituent

 C_1-C_4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different); and R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a

 $di-C_1-C_6$ alkylamino group which may be the same or different, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo-C1-C6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at

least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1 -C₆ alkyl group, a halo-C₁-C₆ alkyl group, a C₂-C₆ alkenyl group, a halo-C₂-C₆ alkenyl group, a C₂-C₆ alkynyl group, a halo-C₂-C₆ alkynyl group, a C₁-C₆ alkoxy group, a halo-C₁-C₆ alkoxy group, a C_1 -C₆ alkylthio group, a halo-C₁-C₆ alkylthio group, a C₁-C₆ alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1 -C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1 -C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a which may be the same or different);

 $\underline{\ell}$ is an integer of 1 to 4); further,

••••••

••••••

• • • • • • •

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

X may be the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituents which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkyl-

sulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6

····

•...•

•••••

•••••

alkylamino group which may be the same or different, or a group of the formula $-A^2-R^7$ (wherein A^2 is -0-, -S-, -S0-, $-SO_2-$, -C(=O)-, $-C(=NOR^8)-$ (wherein R^8 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3 - C_6 alkenyl group, a C_3 - C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a phenyl- C_1-C_4 alkyl group, or a substituted phenyl- C_1 - C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different), a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group, a C_2 - C_6 alkynylene group or a halo- C_3 - C_6 alkynylene group; (1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a hydrogen atom, a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_3 - C_6 cycloalkenyl group, a halo- C_3 - C_6 cycloalkenyl group, a di- C_1 - C_6 alkoxyphosphoryl group which may be the same or different, a di••••

•••••

•••••

 C_1-C_6 alkoxythiophosphoryl group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituents which may

be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group,

a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, or a group of the formula $-A^3-R^9$ (wherein A^3 is -C(=O)-, $-SO_2-$, a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, or a halo- C_2-C_6 alkynylene group, a C_3-C_6 alkynylene group, or a halo- C_3-C_6 alkynylene group,

(i) when A^3 is -C(=0)- or $-SO_2-$, then R^9 is a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a mono- C_1-C_6 alkylamino group, a di- C_1-C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6

•

 C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a $mono-C_1-C_6$ alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different,

(ii) when A^{3} is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_3-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^9 is a hydrogen atom, a halogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, or a group of the formula $-A^4 - R^{10}$ (wherein A^4 is $-O_{-}$, $-S_{-}$, $-SO_{-}$, $-SO_{2}$ -, -C(=0)-, or a group of the formula $-N(R^{11})$ - (wherein R^{11} is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6

••••••

••••••

• • • • • •

•••••

••••••

alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 -

•••••

:....

• • • •

•••••••

•••••

•••••

••••••

 C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6

alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different); and

 R^{10} is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_3-C_6 cycloalkenyl group, a halo- C_3-C_6 cycloalkenyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 -

 C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo $-C_1-C_6$ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono $-C_1-C_6$ alkylamino group and a di $-C_1-C_6$ alkylamino group which may be the same or different)); (2) when A^2 is -C(=0) - or a group of the formula $-C(=NOR^8)$ -(wherein R^8 is the same as defined above), then R^7 is a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_3 - C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a mono-C₁-C₆ alkylamino group, a di-C₁-C₆ alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a

• • • • •

••••••

•••••

•••••

•••••

cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group •••••• which may be the same or different, a phenylamino group, a substituted phenylamino group having at least one substituent which may be the same or different and is :.... selected from the group consisting of a halogen atom, a •••••• cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl •••••• group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a ••••• C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkyl-••••• thio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkyl-••••• sulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having one or more substituents which may be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6

> alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a

- 343 -

halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, (3) when A^2 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a

halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 -

 C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is -O-, -S-, -SO-, -SO₂- or a group of the formula $-N(R^{13})$ -(wherein R^{13} is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group,

۰**۲**۰

• • • • •

•••••

••••••

•••••

- 346 -

a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituents which may be the same or different and are selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different); and R^{12} is a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a

•••••

•••••

.

 C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituents which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, or a group of the

- 348 -

formula $-A^6-R^{14}$ (wherein A^6 is -C(=0)-, $-SO_2-$, a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group;

(i) when A^6 is -C(=0)- or $-SO_2-$, then R^{14} is a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2 - C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6

.....

• • • • • •

•••••

alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different;

••••

•::::

•••••

•••••

•••••

•••••

(ii) when A^6 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^{14} is a hydrogen atom, a halogen atom, a cyano group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a benyl group having at least one substituent which may be the same or different and are

.....

••••••

•••••

•••••

••••••

•••••

selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a phenylthio group, a substituted phenylthio group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy

.....

••••••

•••••

••••••

• • • • • •

- 352 group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 - alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the

group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 C_6 alkylsulfonyl group, a mono- C_1-C_6 alkylamino group and a di- C_1-C_6 alkylamino group which may be the same or different)));

<u>n</u> is an integer of 1 to 4;

further, X may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), by combining together with the adjacent carbon atoms in the phenyl ring, and said condensed ring may have at least one substituents, which may be the same or different, and selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group, a di- C_1 - C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl

.....

••••••

••••••

•..•;

••••••

•••••

.

group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkyl.....

:....

.....

••••••

•••••

•••••

•••••

·**···**

sulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different;

Y is the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a di- C_1 - C_6 alkoxyphosphoryl group which may be the same or different, a $di-C_1-C_6$ alkoxythiophosphoryl group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a

. . . .

••••••

••••••

•••••

•••••

• • • • •

 C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a $di-C_1-C_6$ alkylamino group which may be the same or different, or a group of the formula $-A^2-R^7$ (wherein A^2 and R^7 are the same as defined above);

<u>m</u> is an integer of 1 to 5;

further, Y may form a condensed ring (the condensed ring is the same as defined above), by combining together with the adjacent carbon atoms in the phenyl ring, said condensed ring may have at least one substituents, which may be the same or different, and selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6

• •...• ----••••• •••••• • • • • • • • •

alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group, a di- C_1-C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2-C_6 alkynyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a naphthyl group, a substituted naphthyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2-C_6 alkenyl group, a C_2-C_6 alkynyl group, a halo- C_2 - C_6 alkynyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a mono- C_1 - C_6 alkylamino group and a di- C_1 - C_6 alkylamino group which may be the same or different, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein said heterocyclic

- 5 group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C₁-C₆ alkyl group, a halo-C₁-C₆ alkyl group, a C₂-C₆ alkenyl group, a halo-C₂-C₆ alkenyl group, a C₂-C₆ alkynyl
- 10 group, a halo-C₂-C₆ alkynyl group, a C₁-C₆ alkoxy group, a halo-C₁-C₆ alkoxy group, a C₁-C₆ alkylthio group, a halo-C₁-C₆ alkylthio group, a C₁-C₆ alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C₁-C₆ alkylsulfonyl group, a halo-C₁-C₆ alkylsulfonyl group, a mono-C₁-C₆ alkylsulfonyl group and a di-C₁-15 C₆ alkylamino group which may be the same or different;

 $Z^1 \mbox{ and } Z^2 \mbox{ each represents an oxygen atom or a sulfur atom; provided that,$

(1) when Z¹ and Z² are oxygen atoms at the same time; X is chlorine atom; n is an integer of 4; Y is 2,6-dinitro-320 chloro-4-trifluoromethyl groups; then R¹, R² and R³ are not hydrogen atoms at the same time.

7. The agricultural and horticultural insecticides according to Claim 6,

wherein R^1 , R^2 and R^3 may be the same or different, and 25 are each a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, or a group of the formula $-A^1-Q_7$ (wherein A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; and Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl 30 group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6

••••

ۄؘ**ؚ**ٵڡڔ؋

alkoxyphosphoryl group which may be the same or different, a di- C_1 - C_6 alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which means pyridyl group, pyridine-Noxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is -O-, -S-, -SO-, $-SO_2-$ or a

..... ••••••• •••••• ••••• •••••

group of the formula $-N(R^6)$ - (wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenyl C_1 - C_4 alkoxycarbonyl group, or a substituted phenyl C_1-C_4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group,); and R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be

the same or different and is selected from the group

consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group); and $\underline{\ell}$ is an integer of 1 to 4);

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

.....

••••••

••••••

•••••

•••••

•••••

X may be the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituents which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^2-R^7$ (wherein A^2 is -O-, -S-, -SO-, -SO₂-, -C(=O)-, -C(=NOR⁸)-(wherein R^8 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a phenyl- C_1 - C_4 alkyl group, or a substituted phenyl- C_1-C_4 alkyl group having at least one substituent, in the

- 363 -

phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group), a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylsulfonyl group), a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkenylene group or a halo- C_3-C_6 alkynylene group;

:.....

••••••

••••••

•...•

••••••

•••••

(1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a halo-C₃- C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkenyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl

••••••

••••••

•••••

••••••

•••••

group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^3-R^9$ (wherein A^3 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_3-C_6 alkenylene group, a halo- C_3-C_6 alkenylene group, a C_3-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group; R^9 is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^4-R^{10}$ (wherein A^4 is -0-, -S-, -S0-, $-SO_2$ - or -C(=O)-, and R^{10} is a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the

••••••

•••••

•••••

• • • • • •

above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group)); (2) when A^2 is -C(=0) - or a group of the formula $-C(=NOR^8)$ -(wherein R^8 is the same as defined the above), then R^7 is a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_3 - C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a mono- C_1 - C_6 alkylamino group, a di- C_1 - C_6 alkylamino group which may be the same or different, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenylamino group, a substituted phenylamino group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy

group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group,

•••

••••••

•••••

•••••

•••••

••••••

(3) when A^2 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined

.....

:....

•••••

••••••

•••••

•••••

•••••

••••••

the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is -O-, -S-, -SO- or -SO₂-; and R^{12} is a C₃-C₆ cycloalkyl group, a halo-C₃-C₆ cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^6-R^{14}$ (wherein A^6 is a C_1 - C_6 alkylene group, a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group, a C_2 - C_6 alkynylene group, or a halo- C_3 - C_6 alkynylene group; and

:....

•••••

••••••

•••••

• • • • •

•

 R^{14} is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1 -C₆ alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenylthio group, a substituted phenylthio group having at least one substituent which may be the same or different

••••••

.....

••••

•••••

•••••

and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 - alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo-C1-C6 alkylsulfonyl group)));

<u>n</u> is an integer of 1 to 4;

further, X may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), by combining together with the adjacent carbon atoms in the phenyl ring, said condensed ring may have at least one substituent, which may be the same or different, and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy

، ب

•]]••••

.....

• • • •

• • • • • •

•••••

,**``**•

group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group, a halo- C_1 - C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent

which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group;

Y is the same or different, and is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group,

.

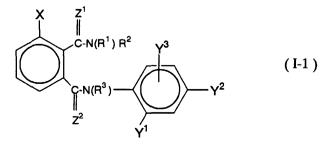
•_____

•••••

• • • • • •

a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^2-R^7$ (wherein A^2 and R^7 are the same as defined above);

<u>m</u> is an integer of 1 to 5;


further, Y may form a condensed ring (the same as defined above), by combining together with the adjacent carbon atoms in the phenyl ring, said condensed ring may have at least one substituent, which may be the same or different, and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkowy group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a composition of a complexity of a comp

one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), and a substituted heterocyclic group (wherein said heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group; and

 $\ensuremath{\mathbb{Z}}^1$ and $\ensuremath{\mathbb{Z}}^2$ are each represents an oxygen atom or a sulfur atom.

•••••

8. The agricultural and horticultural insecticides according to Claim 7, containing as the effective ingredient, a phthalic acid diamide derivative represented by the general formula (I-1),

- 372 -

(wherein, R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a $C_3 - C_6$ cycloalkyl group, a halo- C_3-C_6 cycloalkyl group or a group of the formula $-A^1-Q_\ell$ (wherein, A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di $-C_1-C_6$ alkoxyphosphoryl group which may be the same or different, a di- C_1-C_6 alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which means pyridyl group, pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), a substituted heterocyclic group (wherein the heterocyclic

group is the same as defined above) having at least one

. . .

.....

••••••

•••••

••••••

substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is -0-, -S-, -S0-, $-S0_2-$ or a group of the formula $-N(R^6)$ - (wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenyl C_1 - C_4 alkoxycarbonyl group, or a substituted phenyl C_1-C_4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6

••••••

•••••

•••••

•••••

alkylsulfonyl group); and R^5 is a hydrogen atom, a C_1-C_6

alkyl group, a halo C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- $C_3 C_6$ alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen

••••••

.....

•••••

••••••

• • • • • •

atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkyl-sulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group); and $\underline{\ell}$ is an integer of 1 to 4); further,

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

X is a hydrogen atom or a nitro group;

•••••

•••••

••••••

 Y^1 and Y^3 may be the same or different and are each a hydrogen atom, a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a pyridyloxy group, a substituted pyridyloxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group;

 Y^2 is a halo-C₃-C₆ cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^2-R^7$ (wherein A^2 is -0-, -S-, -SO-, -SO₂-, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3 - C_6 alkynylene group and, (1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a halo-C₃- C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined

••••

••••••

••••••

•...•

•••••

•••••

- 377 -

••••

••••••

•:-:-

•..••

• • • • •

**-*.

above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^3 - R^9$ (wherein A^3 is a halo- $C_1 - C_6$ alkylene group, a halo- C_3-C_6 alkenylene group, a C_3-C_6 alkynylene group or a halo- C_3 - C_6 alkynylene group; and R^9 is a hydrogen atom, a halogen atom, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group or a group of the formula $-A^4-R^{10}$ (wherein A^4 is -O-, -S- or -SO₂-; and R^{10} is a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the

group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined above) having at least one substituent which may be the

same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylsulfinyl group and a halo-C₁-C₆ alkylsulfonyl group)); (2) when A^2 is a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group, a C_2 - C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is $-O_-$, $-S_-$, $-SO_-$ or $-SO_2-$; and R^{12} is a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio

. . .

••••

•••••

•

•••••

• • • • •

group, a halo- C_1-C_6 alkylsulfinyl group and a halo- C_1-C_6 alkylsulfonyl group; or a group of the formula $-A^6-R^{14}$

• ` •

•

^**,,,,**,,

.....

(wherein A^6 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group; and R¹⁴ is a hydrogen atom, a halogen atom, a halo- C_3-C_6 cycloalkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1-C_6 C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenylthio group, a substituted phenylthio group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 -alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the

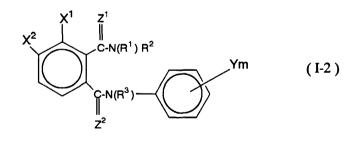
same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group)); further,

 Y^1 and Y^2 may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole) by combining to each other together with the adjacent Y^3 , said condensed ring may have at least one substituent, which is the same or different, selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group

.....

••••••

••••••


••••••

•••••

(which is the same as defined the above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group; and

 Z^1 and Z^2 are each an oxygen atom or a sulfur atom}.

9. The agricultural and horticultural insecticides according to Claim 7, containing as the active ingredient, a phthalic acid diamide derivative represented by the general formula (I-2),

{wherein, R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group or a group of the formula $-A^1-Q_\ell$. (wherein, A^1 is a C_1-C_8 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6

alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a di- C_1 - C_6 alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which means pyridyl group, pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a

•••••

••••••

••••••

• • • • • •

•••••

halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group

halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a

••••••

•••••••

•••••

••••••

•••••

and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is -0-, -S-, -S0-, $-S0_2-$ or a group of the formula $-N(R^6)$ - (wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group a halo- C_1-C_6 alkylcarbonyl group, a C₁-C₆ alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkoxycarbonyl group, or a substituted phenyl C_1-C_4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group); and

- 384 -

 R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a halo- C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group and a C_1-C_6 alkoxycarbonyl group, a phenyl group, a

substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group); and $\underline{\ell}$ is an integer of 1 to 4); further,

••••••

•••••

•••••

•••••

 R^1 and R^2 may form a 4 to 7 membered ring by

combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

 \mathbf{X}^1 and \mathbf{X}^2 may be the same or different and are each a halogen atom, a cyano group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group; further, X^1 and X^2 may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole) by combining to each other, and said condensed ring may have at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkyl sulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy

 group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6

. . .

••••••

••••••

• • • • • •

• • • • •

alkylsulfonyl group;

Y is the same or different, and are each a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_3 - C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the

- 387 -

•••••

.

same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo-C1-C6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of $-A^2-R^7$ (wherein A^2 is $-O_{-7}$, $-S_{-7}$, $-S_$ $-SO_2$ -, -C(=O)-, $-C(=NOR^8)$ - (wherein R^8 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 alkynyl group, a C_3-C_6 cycloalkyl group, a phenyl- C_1-C_4 alkyl group, or a substituted phenyl- C_1 - C_4 alkyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group), a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group; (1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a halo-C₃- C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkenyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy

group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^3-R^9$ (wherein A^3 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_3-C_6 alkenylene group, a halo- C_3-C_6 alkenylene group, a C_3-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group; R^9 is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^4 - R^{10}$ (wherein A^4 is -0-, -S-, -S0-,

 $-SO_2$ - or -C(=O)-, and R^{10} is a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group)); (2) when A^2 is -C(=0) - or a group of the formula $-C(=NOR^8)$ -(wherein R^8 is the same as defined the above), then R^7 is a C_1-C_6 alkyl group, a halo C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a halo- C_2 - C_6 alkenyl group, a C_3 - C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a mono- C_1 - C_6 alkylamino group, a di- C_1 - C_6 alkylamino group which may be the same or different, a

••••••

•

•••••

• • • • • • •

- 390 -

phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenylamino group, a substituted phenylamino group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined the above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group,

(3) when A^2 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group,

.....

•••••

•...•

•••••

••••••

•••••

a C_2-C_6 alkynylene group or a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is -0-, -S-, -S0- or -SO₂-; and R^{12} is a C₃-C₆ cycloalkyl group, a halo-C₃-C₆ cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6

- 392 -

:....

••••••

•••••

•••••

•••••

•••••

alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^6-R^{14}$ (wherein A^6 is a C_1-C_6 alkylene group, a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group, a C_2 - C_6 alkynylene group, or a halo- C_3 - C_6 alkynylene group; and

 R^{14} is a hydrogen atom, a halogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6

alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenylthio group, a substituted phenylthio group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 - alkylsulfonyl group, a heterocyclic group (which is the same as defined the above), or a substituted heterocyclic group (wherein the heterocyclic ring is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group))); and

<u>m</u> is an integer of 1 to 5;

.....

•

•...••

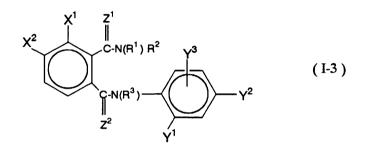
••••••

•••••

••••••

• • • • • • •

further, Y may form a condensed ring (which is the same as defined above) by combining together with the adjacent carbon atoms in the phenyl ring, said condensed ring may have at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo-C₁-C₆ alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6


- 395 -

alkylsulfonyl group;

.

 Z^1 and Z^2 are each an oxygen atom or a sulfur atom}.

10. The agricultural and horticultural insecticides according to Claim 9, containing as the effective ingredient, a phthalic acid diamide derivative represented by the general formula (I-3),

{wherein, R^1 , R^2 and R^3 may be the same or different, and are each a hydrogen atom, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group or a group of the formula $-A^1-Q_\ell$ (wherein, A^1 is a C_1-C_6 alkylene group, a C_3-C_6 alkenylene group or a C_3-C_6 alkynylene group; Q is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a halo- C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkoxycarbonyl group, a di- C_1-C_6 alkoxyphosphoryl group which may be the same or different, a di- C_1-C_6 alkoxythiophosphoryl group which may be the same or different, a diphenylphosphino group, a diphenylphosphono group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, • • •

•••••

:....

·.....

••••

•••••

••••••

a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a heterocyclic group (which means pyridyl group, pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-Z^3-R^5$ (wherein Z^3 is -0-, -S-, -S0-, $-S0_2-$ or a group of the formula $-N(R^6)$ - (wherein R^6 is a hydrogen atom, a C_1-C_6 alkylcarbonyl group a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenylcarbonyl group, a substituted phenylcarbonyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy

group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkoxycarbonyl group, or a substituted phenyl C_1-C_4 alkoxycarbonyl group having at least one substituent, in the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group); and

•••••

.....

:....

•••••

•...•

•...•

••••••

• • • • • •

 R^5 is a hydrogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a C_1-C_6 alkylcarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a halo- C_1-C_6 alkylcarbonyl group, a C_1-C_6 alkoxycarbonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group, a phenyl C_1-C_4 alkyl group, a substituted phenyl C_1-C_4 alkyl group having at least one substituent, in - 399 -

the phenyl ring, which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), or a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group); and $\underline{\ell}$ is an integer of 1 to 4); further,

.....

•••••

.....

•••••••

•...•

••••••

•••••

••••

 R^1 and R^2 may form a 4 to 7 membered ring by combining to each other, in which the ring may contain the same or different 1 to 3 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom;

 X^1 and X^2 may be the same or different and are each a halogen atom, a cyano group, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkyl- 400 -

sulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group; further, X^1 and X^2 may form a condensed ring (which means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole) by combining to each other, and said condensed ring may have at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a heterocyclic group (which is the same as defined above), and a substituted heterocyclic group (wherein the heterocyclic group is the same as defined above) having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a

•••••

•••••

••••••

••••••

•••••

halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkyl-sulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group;

 \textbf{Y}^1 and \textbf{Y}^3 may be the same or different, and are each a hydrogen atom, a halogen atom, a C_1-C_6 alkyl group, a halo- C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a phenoxy group, a substituted phenoxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylthio group, a C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfinyl group, a C_1 - C_6 alkylsulfonyl group and a halo- C_1 - C_6 alkylsulfonyl group, a pyridyloxy group, or a substituted pyridyloxy group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group,

:....

•...•

••••••

•••••

•••••

 Y^2 is a hydrogen atom, a halogen atom, a halo- C_3 -C₆ cycloalkyl group or a group of the formula $-A^2-R^7$ (wherein A^2 -O-, -S-, -SO-, -SO₂-, a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group, or a halo-

(1) when A^2 is -O-, -S-, -SO- or -SO₂-, then R^7 is a halo-C₂-C₆ cycloalkyl group, a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group and a halo- C_1-C_6 alkylsulfonyl group, a substituted pyridyloxy group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1-C_6 alkylsulfonyl group, or a group of the formula $-A^3-R^9$ (wherein A^3 is a halo- C_1-C_6 alkylene group, or a halo- C_3 - C_6 alkenylene group; and R^9 is a hydrogen atom, a halogen atom, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthic group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^4-R^{10}$ (wherein A^4 is -O-, -S-, -SO- or $-SO_2-$; R^{10} is a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_3-C_6 alkenyl group, a halo- C_3-C_6 alkenyl group, a C_3-C_6 cycloalkyl group, a halo- C_3-C_6 cycloalkyl group, a phenyl group, or a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting

.....

of a halogen atom a halo- C_1-C_6 alkyl group, a halo- C_1-C_6 ••••• •••••• ••••••• ••••• -----•••••

alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group)), (2) when A^2 is a C_1-C_6 alkylene group, a halo- C_1-C_6 alkylene group, a C_2-C_6 alkenylene group, a halo- C_2-C_6 alkenylene group, a C_2-C_6 alkynylene group, a halo- C_3-C_6 alkynylene group, then R^7 is a hydrogen atom, a halogen atom, a halo- C_3-C_6 cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfingl group and a halo- C_1 - C_6 alkylsulfongl group, or a group of the formula $-A^5-R^{12}$ (wherein A^5 is -O-, -S-, -SO- or -SO₂-; and R^{12} is a C₃-C₆ cycloalkyl group, a halo-C₃-C₆ cycloalkyl group, a phenyl group, a substituted phenyl group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, or a group of the formula $-A^6-R^{14}$ (wherein A^6 is a C_1-C_6 alkylene group, a halo- C_1 - C_6 alkylene group, a C_2 - C_6 alkenylene group, a halo- C_2 - C_6 alkenylene group; and R^{14} is a hydrogen atom, a halogen atom, a halo- C_3 - C_6 cycloalkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group, a halo- C_1 - C_6 alkylsulfonyl group, a phenyl group, a substituted phenyl group having at least

one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1 - C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenoxy group, a substituted phenoxy group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group, a phenylthio group, or a substituted phenylthio group having at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a halo- C_1-C_6 alkyl group, a halo- C_1 - C_6 alkoxy group, a halo- C_1 - C_6 alkylthio group, a halo- C_1 - C_6 alkylsulfinyl group and a halo- C_1 - C_6 alkylsulfonyl group));

/ · · · ·

••••

....

•••••

••••••

••••••

•••••

·[`•_

further, Y^1 and Y^2 may form a condensed ring (the condensed ring is the same as defined above) by combining to each other together with Y^3 , and said condensed ring may have at least one substituent, which is the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group, a halo- C_1-C_6 alkylsulfonyl group, a phenyl group, and a substituted phenyl group having at least one substituent which may be the same or different and is selected from the group consisting of a halogen atom, a C_1-C_6 alkyl group, a halo- C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a halo- C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a halo- C_1-C_6 alkylthio group, a C_1-C_6 alkylsulfinyl group, a halo- C_1-C_6 alkylsulfinyl group, a C_1-C_6 alkylsulfonyl group and a halo- C_1-C_6 alkylsulfonyl group;

 Z^1 and Z^2 are each an oxygen atom or a sulfur atom}.

• Jan 1990 - Jan 1990

•

• • • • • • •

- 20000

11. A method for controlling undesirable insect pests for a useful crop, characterized by treating an objective crop with an effective amount of the agricultural and horticultural insecticides as claimed in any one of Claims 6 to 10. - 406 -

12. A phthalic acid diamide, agricultural and horticultural insecticides containing it and methods of controlling insect pests involving it substantially as hereinbefore described with reference to any one of the Examples.

5

DATED this 6th day of September, 1999

Nihon Nohyaku Co., Ltd.

10 By DAVIES COLLISON CAVE Patent Attorneys for the Applicant

