
US009130967B2

(12) United States Patent (10) Patent No.: US 9,130,967 B2
Bauer et al. (45) Date of Patent: Sep. 8, 2015

(54) METHOD AND SYSTEM FOR NETWORK 7,574.499 B1* 8/2009 Swildens et al. 709,223
ELEMENT SERVICE RECOVERY 8,266,473 B2 9/2012 Casale et al.

8,775,589 B2 7/2014 Liss et al.
(75) Inventors: Eric Bauer, Freehold, NJ (US); Daniel 2003/0105981 A1* 62003 Miller et al............ T13/202

W. Eustace, Naperville, IL (US); 2004/011 1652 A1 6/2004 Shoaib et al.
, Nap s 2004/0193969 A1* 9, 2004 Nemoto et al. T14f100

Randee Susan Adams, Naperville, IL 2006/0271813 A1* 11/2006 Horton et al.
(US) 2008/0126833 A1* 5/2008 Callaway et al. 714.f4

2009,0006885 A1 1/2009 Pattabhiraman et al.
(73) Assignee: Alcatel Lucent, Boulogne-Billancourt 2011/0060941 A1 3/2011 Hatasaki et al. 714.f4.11

(FR)
FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 N 1839; A 2.
U.S.C. 154(b) by 767 days. WO WO 01/42908 A2 6, 2001

(21) Appl. No.: 12/948,452 WO WO2006/017199 A2 2, 2006 ppl. No.: 9

(22) Filed: Nov. 17, 2010 OTHER PUBLICATIONS

International Search Report and Written Opinion for PCT/US2011/
(65) Prior Publication Data 0599.18 dated Mar. 12, 2012.

US 2012/O124413 A1 May 17, 2012
* cited by examiner

(51) Int. Cl.
G06F II/I6 (2006.01)
H04L 29/08 (2006.01) Primary Examiner —Nadeem Iqbal
H04Q3/00 (2006.01) riva H04L 29/4 (2006.01) (74) Attorney, Agent, or Firm — Fay Sharpe LLP

(52) U.S. Cl.
CPC H04L 67/1095 (2013.01); H04L 67/1034 (57) ABSTRACT

(2013.01); H04L 69/40 (2013.01); H04O
3/0062 (2013.01) A method and system for network element recovery are pro

(58) Field of Classification Search vided. In one form, frontend servers intelligently proxy error
USPC .. 714f1 57 or unavailability messages returned by backend servers and
See application file for complete search history. simulate frontend server failure. In at least one form, the

frontend server also includes intelligence or logic to deter
(56) References Cited mine that directing the client to recover service to an alternate

system or site would assure better service availability, reli
U.S. PATENT DOCUMENTS ability, and/or quality-of-experience for the client.

6,182,139 B1* 1/2001 Brendel TO9,226
6.421,688 B1* 7/2002 Song 1f1
6,625,750 B1* 9/2003 Duso et al. T14f11 22 Claims, 4 Drawing Sheets

? 500
302

DETECT ERROR OR UNAVAILABILITY

304

RECOVERY STRATECY

ELEMENT 306
SWITCH OVER TO ALTERNATE, ELEMENT

CLUSTER

310

SEND RESPONSE CODE TO CLIENT

308 512

CONTINUE SESSION WITH CENT SUSPEND SESSION WITH CENT

US 9,130,967 B2 Sheet 1 of 4 Sep. 8, 2015 U.S. Patent

Z HIIS NO ATIWNIWON ‘Z NJIST?TO | HIIS NO ATIWNIWON ‘| }}}|S|10

|----------------|-|---------------| No., No.?sºN???i), No.s ?aei | AIIING WNOLIONI? ? LAINE WNOLIONIH I / "f)I, H.

U.S. Patent Sep. 8, 2015 Sheet 2 of 4 US 9,130,967 B2

100

\, f cluster 1, NOMINALLY ONSTETT
104 106

NEB1
105

in M :
-

NEB2 NEC2
109 111

CLUSTER 2, NOMINALLY ON SITE 2 - - - - - --------------------------

U.S. Patent Sep. 8, 2015 Sheet 3 of 4 US 9,130,967 B2

100 \
104 106

NE 'B'
105

t

NEB2 NEC2
109 111

U.S. Patent Sep. 8, 2015 Sheet 4 of 4 US 9,130,967 B2

FIG. 4
200 \

DETECTERROR OR UNAVAILABILITY

SEND RESPONSE CODE TO CLIENT

SUSPEND SESSION WITH CENT

FIC. 6 ? 300

302

DETECT ERROR OR UNAVAILABILITY

304

RECOVERY STRATECY

ELEMENT 306
SWITCH OVER TO ALTERNATE, ELEMENT

308

CONTINUE SESSION WITH CLIENT

CLUSTER

310

SEND RESPONSE CODE TO CLIENT

312

SUSPEND SESSION WITH CLIENT

US 9, 130,967 B2
1.

METHOD AND SYSTEM FOR NETWORK
ELEMENT SERVICE RECOVERY

FIELD OF THE INVENTION

This invention relates to a method and system for network
element service recovery. While the invention is particularly
directed to the art of network client service recovery, and will
be thus described with specific reference thereto, it will be
appreciated that the invention may have usefulness in other
fields and applications.

BACKGROUND

By way of background, many modern systems are imple
mented by integrating several network elements, such as a
frontend web server that interacts with a backend database
server. When these systems provide critical services, they are
often replicated on multiple sites to maximize service avail
ability, especially following failures of networking equip
ment or facilities, or other externally attributable events that
render site hosting equipment unavailable or inaccessible.
While failures (e.g., profound unavailability/non-responsive
ness) of the frontend machines facing client devices (e.g., web
browsers) may be automatically detected by the client and
trigger the client to automatically recover service to an alter
nate site, failures of backend servers typically will not trigger
client initiated recovery. For example, if the database server
Supporting an e-commerce site is unavailable, then the typical
implementation would simply return a webpage to the client
saying the site was temporarily unavailable and to try again
later. Thus, standard practice today is for complex, multi
element solutions to return descriptive errors to clients (for
failure of backend elements that do not directly communicate
with clients).

If a backend server (Such as a database) fails, a traditional
strategy is to leverage geographically distributed redundant
systems. In this regard, the frontend server (e.g. a web server)
recovers service onto the redundant database server on a
geographically remote site. However, this causes messages to
be sent between two geographically remote sites. If these sites
are far apart, and there are many messages needed between
the web server and the database, this can significantly
increase the response time of the web server and use signifi
cant bandwidth between sites. Thus, this solution might
increase delay and network traffic if the element is located in
a remote site.

SUMMARY

A method and system for network element service recov
ery are provided. Standard practice today is for complex,
multi-element solutions to return descriptive errors to clients
(for failure of backend elements that do not directly commu
nicate with clients) rather than to manipulate the errors to
trigger automatic service recovery. While fully descriptive
errors are informative to some classes of users, many other
users would rather have their (smart) client device automati
cally recover service for them.

In one embodiment, the method comprises detecting by the
frontend server of an error in or unavailability of a down
stream network element, and, sending a response code to the
client to trigger the client to redirect service to or recover on
an alternate frontend server.

In another embodiment, the frontend server is a web server.
In another embodiment, the downstream network element

is a database server.

10

15

25

30

35

40

45

50

55

60

65

2
In another embodiment, the method further comprises sus

pending the session between the client and the frontend
SeVe.

In another embodiment, the detecting comprises one of
receiving a message from the downstream network element
or detecting a timed out response timer.

In another embodiment, the method comprises detecting
by the frontend server an error in or unavailability of a down
stream network element, determining whether element recov
ery or cluster recovery should be performed, if element recov
ery is determined, switching over by the frontend server to an
alternate downstream network element corresponding to the
failed downstream network element, and, if cluster recovery
is determined, sending a response code by the frontend server
to the client to trigger the client to redirect service to or
recover on an alternate redundant frontend server.

In another embodiment, the frontend server is a web server.
In another embodiment, the downstream network element

is a database server.
In another embodiment, the method further comprises sus

pending the session between the client and the frontend
SeVe.

In another embodiment, the detecting comprises one of
receiving a message from the downstream network element
or detecting a timed out response timer.

In another embodiment, the determining is based on data
traffic.

In another embodiment, the system comprises a control
module of the frontend server detecting an error in or unavail
ability of a downstream network element and sending a
response code to the client to trigger the client to redirect
service to or recover on an alternate frontend server.

In another embodiment, the frontend server is a web server.
In another embodiment, the downstream network element

is a database server.
In another embodiment, the frontend server detects the

error by receiving a message from the downstream network
element or detecting a timed out response timer.

In another aspect, the client, frontend server, downstream
network elements, alternate frontend server and alternate
downstream network elements are IMS elements.

In another embodiment, the system comprises a control
module of the frontend server detecting an error in or unavail
ability of a downstream network element, determining
whether element recovery or cluster recovery should be per
formed, if element recovery is determined, switching over by
the frontend server to an alternate downstream network ele
ment corresponding to the failed downstream network ele
ment and, if cluster recovery is determined, sending a
response code by the frontend server to the client to trigger the
client to redirect service to or recover on an alternate frontend
SeVe.

In another embodiment, the frontend server is a web server.
In another embodiment, the downstream network element

is a database server.
In another embodiment, the frontend server detects the

error by receiving a message from the downstream network
element or detecting a timed out response timer.

In another embodiment, the frontend server detecting is
based on data traffic.

In another embodiment, the client, frontend server, down
stream network elements, alternate frontend server and alter
nate downstream network elements are IMS elements.

Further scope of the applicability of the present invention
will become apparent from the detailed description provided
below. It should be understood, however, that the detailed
description and specific examples, while indicating preferred

US 9, 130,967 B2
3

embodiments of the invention, are given by way of illustration
only, since various changes and modifications within the
spirit and scope of the invention will become apparent to
those skilled in the art.

BRIEF DESCRIPTION OF THE FIGURES

Some embodiments of apparatus and/or methods in accor
dance with embodiments of the present invention are now
described, by way of example only, and with reference to the
accompanying drawings, in which:

FIG. 1 is a block diagram of an example system into which
the presently described embodiments may be incorporated.

FIG. 2 is a block diagram illustrating an example operation
of the system of FIG. 1.

FIG.3 is a block diagram illustrating an example operation
of the system of FIG. 1.

FIG. 4 is a flow chart illustrating an example method
according to the presently described embodiments.

FIG. 5 is a flow chart illustrating an example method
according to the presently described embodiments.

DETAILED DESCRIPTION

According to the presently described embodiments, in the
event of a failure or unavailability of a downstream element in
a network, frontend servers (e.g., web servers) trigger the
client to attempt automatic recovery or redirection to an
operational system/site (e.g., a redundant or alternate path or
cluster) rather than simply return a static error statement or
other terminal response to the client. A goal is to automati
cally recover or redirect service to an available system/site to
avoid a longer service outage while the failed or unavailable
server is repaired or recovered.

In this regard, according to the presently described
embodiments, frontend servers intelligently proxy error mes
sages returned by backend servers (i.e., downstream servers
that typically do not directly interact with client) and simulate
or spoof circumstances to redirect service away from the
frontend (e.g., server failure or overload conditions). In at
least one form, the frontend server also includes intelligence
or logic to determine that redirecting the client to recover
service to an alternate (i.e., georedundant) system or site
would assure at least one of better service availability/reli
ability/quality-of-experience for the client.

In general, application protocols generally support differ
ent types of response codes, some of which are essentially
terminal or descriptive (e.g., web page not found, user not
authorized, gateway failed) and some of which may trigger
the client to take some recovery action to the same or different
server (e.g., move temporarily, service unavailable, too busy,
try again, . . . etc.). According to the presently described
embodiments, the frontend server maps potentially recover
able errors or difficulties from backend systems into mes
sages, such as response codes returned to the client. These
mapped response codes trigger the client to retry their request
to an alternate system/site. Thus, according to the presently
described embodiments, rather than having the webserver
front end map a database server failure or condition of
unavailability into, for example, an error webpage for the
client to display, the frontend webserver simulates a circum
stance (e.g., a failure) that causes the client to recover or
redirect service to a fully operational system/site.

It should be appreciated that the types of response codes
referenced above, as examples of codes or messages used to
implement the presently described embodiments, may vary
by application. For example, when a downstream failure is

10

15

25

30

35

40

45

50

55

60

65

4
detected by the frontend server, a code indicating a profound
problem, such as a 503 Service Unavailable code, may be
repurposed by the frontend server and transmitted by the
frontend server to the client to simulate its own failure to
triggera Switch-over. Similarly, whena downstream overload
condition (or other condition that will make a downstream
element unavailable) is detected, the frontend server may
transmit a redirection response, such as 302 Moved Tempo
rarily code, to the client to trigger redirection to the alternate
cluster.

In a further example, the frontend server may transmit a
redirection response, such as 302 Moved Temporarily code,
in all circumstances of unavailability including a failure or
other conditions of unavailability. This scenario would negate
the need for use of codes indicating profound problems (such
as the 503 Service Unavailable codes noted above) to imple
ment the presently described embodiments.

Inafurther example, a code indicating a profound problem,
such as a 503 Service Unavailable code, may be repurposed
by the frontend server and transmitted by the frontend server
to the client to simulate its own failure to triggera Switch-over
in all circumstances of unavailability, including a failure or
other conditions of unavailability.

Referring now to the drawings wherein the showings are
for purposes of illustrating the exemplary embodiments only
and not for purposes of limiting the claimed Subject matter,
FIG. 1 provides a view of a system 100 into which the pres
ently described embodiments may be incorporated. As illus
trated, the system 100 includes a network element or client A
(102) in communication, or conducting a session, with a
functional entity that offers service “B” This functional entity
includes a networkelement or server B1 (104) and a network
element or server B2 (108). The noted functional entity offer
ing service B is in communication with a functional entity
offering service “C.” This functional entity includes a net
work element or server C1 (106) and a network element or
server C2 (110). As shown, these elements C1 and C2 are
downstream relative to the elements B1 and B2.

Further, each network element is shown to include a con
trol module, e.g. control modules 103,105,107,109 and 111.
The control modules are understood to provide functionality
to the network elements and, in some embodiments, house
and/or execute suitable routines to realize the functionality of
the presently described embodiments. For example, frontend
server B1 (104) includes a control module 105 that, in at least
one form, is operative to execute routines corresponding to
methods according to the presently described embodiments,
including the methods hereafter described in connection with
FIGS. 2-5.

In the configuration shown, it should be appreciated that
the network elements B2 and C2 serve as alternate redundant
elements (also referred to as alternate elements or redundant
elements) for network elements B1 and C1, respectively. In
this regard, it should be appreciated that Such alternate servers
or redundant servers or alternate redundant servers do not
necessarily exactly replicate the primary server to which it
corresponds. It should also be understood that a network
element may have more than one corresponding alternate
redundant element, although only one corresponding alter
nate redundant element (e.g. for B1 and C1) is shown herein
for ease of reference. As shown, elements B1 and C1 form a
cluster of geographically close elements, and elements B2
and C2 form a cluster of geographically close elements. In at
least one example form, the network elements B1 and B2
function as frontend servers such as web servers while the
network elements C1 and C2 function as backend servers
Such as database servers. It should be appreciated that,

US 9, 130,967 B2
5

although a single frontend server (B1 or B2) is shown (for
ease of reference), there is not necessarily only a single fron
tend server in a solution. A complex service (e.g., an IP
Television head end) might be implemented across a whole
Suite of servers, which could be logically organized into
smaller clusters of systems within the broader solution. Each
of those Smaller clusters could have a system serving as a
frontend server. This includes the recursive case of having
smaller cluster with frontend servers inside of larger clusters
with different frontend servers.
Of course, other types of network elements can be used as

well, including IP Multimedia Subsystem (IMS) elements.
Also, it should be appreciated that various signaling protocols
may be used, including Session Initiated Protocol (SIP). Still
further, it should be appreciated that network elements may
serve as a client for one purpose but a server for another
purpose. Accordingly, the configuration shown should be
understood to be merely an example. Also, along these same
lines, FIG. 1 includes redundant elements C1 and C2, but it
should be understood that redundant element D1 and D2, E1
and E2, ... etc. (not shown) could also be in the system. All
of the primary elements (B1, C1, etc), in at least one form, are
assumed to be located in a first cluster (cluster 1) at one site
and all of the redundant elements (B2, C2, etc), in at least one
form, are assumed to be located in a second cluster (cluster 2)
on a second site.

There is typically only one recovery option from failure of
an edge’ element of the cluster that directly interacts with the
client (e.g., if B1 fails, then client must recover to B2).
However, according to the presently described embodiments,
there are two recovery options for failure of an element inside
the edge. In this regard, one can potentially organize clusters
of elements into recovery groups to enable faster or better
recovery.

With reference to FIG. 2, a technique using element recov
ery for the system is illustrated. In this regard, failure of
non-edge element C1 can be recovered by element B1 switch
ing to element C2. Ideally, element B1 detects the failure fast
enough and recovers Sufficient session context with element
C2 so that the recovery is transparent to client A. As can be
seen, element A1 still communicates with element B1 on path
150, but element B1 communications with element C2 on
path 152.

With reference to FIG. 3, a technique using cluster recov
ery for the system is illustrated. In this regard, failure or
unavailability of non-edge element C1 can be recovered or
addressed by Switching or redirecting the client A away from
cluster 1 to cluster 2. In this case, client A is explicitly
involved in reestablishing service to element B2. Failure or
unavailability of element C1 is explicitly communicated to
client A via a profound response code (e.g., 503 Service
Unavailable or a redirection response such as 302 Moved
Temporarily) that is returned by element B1 to client A in
response to failure or unavailability of element C1, and the
client A is expected to initiate recovery to an alternate cluster.
In this case, after recovery, client A communicates with ele
ment B2 on path 160 and element B2 communications with
element C2 on path 162. Note that, in cluster recovery, the
edge and/or other elements explicitly proxy the failure or
unavailability response back to the client (e.g. client A) rather
than itself attempting recovery. The client then redirects or
switches over to the alternate cluster. In addition, implicit
failures (e.g., timeout expirations, loss of heartbeat) are like
wise translated into appropriate explicit failures which are
proxied back to the client so that the client may redirect or
switch over service.

10

15

25

30

35

40

45

50

55

60

65

6
Note that the distinction between element and cluster

recovery can appear different to various elements in the solu
tion. For example, while element B1 executes element recov
ery from C1 to C2 in FIG. 2, client A should be unaware any
recovery action was taken. Likewise, cluster recovery from
site 1 to site 2 in FIG.3 may appear to client A merely as
element recovery to B2 after an apparent failure of B1.

It should be appreciated that the presently described
embodiments may be implemented in a variety of manners.
For example, a method of the presently described embodi
ments, may include the functionality of the frontend server
performing a cluster recovery technique for errors or other
responses that it receives. In a further embodiment, the fron
tend server may also execute logic or have intelligence to
make a determination whether element recovery or cluster
recovery should be implemented with respect to a particular
error or response detection. In either case, it will be appreci
ated that the methods according to the presently described
embodiments may be realized in the system in a variety of
manners. In this regard, a variety of software routines or
hardware configurations may be used. For example, a soft
ware routine performing the methods of the present applica
tion may be housed on and/or executed by a control module of
a frontend server, such as control module 105 of frontend
server B1 (104). Of course, such routines may also be distrib
uted within the network on appropriate network elements,
some of which are not shown in FIG. 1.

Accordingly, with reference now to FIG. 4, a method 200
according to the presently described embodiments is shown.
The method 200 includes detecting errors or unavailability
from a downstream network element (at 202). Such detection
could be accomplished in a variety of conventional manners.
For example, the error or unavailability could be detected
upon receipt of an explicit message or an implicit indicator
(e.g. a timing out of a response timer). Upon detection, the
frontend server performs a cluster recovery technique. That
is, the frontend server sends a failure or redirect message to
the client to trigger the client to switch over to the alternate,
redundant frontend server in the system (at 204). The failure
or redirect message could take a variety of forms (e.g., 503
Service Unavailable or a redirection response such as 302
Moved Temporarily). In this manner, the frontend server
simulates a condition of failure or unavailability so that the
client completely switches over or redirects service to the
redundant path (e.g., Switches over to an alternate redundant
frontend server, thus Switching over to an alternate cluster).
Also, the session between the client and the original frontend
server is suspended in favor of the client redirecting service to
the alternate server (at 206). In some embodiments, an over
loaded server might simply redirect a few service requests to
an alternate server during brief periods of overload. Thus,
primary server continue carrying the bulk of a client’s traffic,
but a few transactions are covered by other servers to assure
acceptable quality of service (rather than delivering degraded
service during brief periods of overload).
As noted above, the frontend server may also include logic

orintelligence to determine the appropriateness of using clus
ter recovery or element recovery. In this regard, with refer
ence to FIG. 5, a method 300 is illustrated. The method 300 is
initiated upon detection of an error or unavailability in a
downstream network element (at 402). Such error detection
could be accomplished in a variety of conventional manners.
For example, the error or unavailability could be detected
upon receipt of an explicit message or an implicit indicator
(e.g., a timing out of a response timer). At this point, the
frontend server determines a recovery strategy (at 304). Of
course, in at least one form, the frontend server determines

US 9, 130,967 B2
7

whether an element recovery process or a cluster recovery
process will be performed. This determination could be
accomplished in a variety of manners. For example, the fron
tend server may take into account the amount of data
exchanged with the failed or unavailable server (or data traf- 5
fic). If the data exchange rate (or data traffic) is relatively low,
based on a threshold value that may be adaptively or periodi
cally set, or based on the running of a Subroutine, the frontend
server may determine that element recovery is better for the
system. In other circumstances, based on similar criteria, the 10
frontend server may determine that cluster recovery is to be
conducted.

If an element recovery process is determined, the frontend
server simply switches over to communicate with the alter
nate redundant network element corresponding to the failed 15
network element (at 306). The frontend server continues the
session with the client (at 308).

If, however, the frontend server determines at 304 that
cluster recovery is to be performed, the frontend server sends
a failure or redirect message to the client (at 310). The failure 20
or redirect message could take a variety of forms (e.g., 503
Service Unavailable or a redirection response such as 302
Moved Temporarily). Of course, as noted above, the failure or
redirect message will trigger the client to redirect to the
redundant, alternate server path or cluster. The session 25
between the client and the frontend server is suspended (at
312). As above, in some variations, an overloaded server
might simply redirect a few service requests to an alternate
server during brief periods of overload. Thus, primary server
continue carrying the bulk of a client’s traffic, but a few 30
transactions are covered by other servers to assure acceptable
quality of service (rather than delivering degraded service
during brief periods of overload).

In other variations of the presently described embodi
ments, solutions with more than two elements (e.g., D1/D2, 35
E1/E2, etc) deploy hybrid recovery strategies in which some
element failures are mitigated via element recovery and some
are mitigated via cluster recovery. Such a scenario may utilize
a method similar to that shown in FIG.5. In addition, recovery
clusters can be smaller than the suite of all solution elements 40
on a site, thus a failure of one element on site 1 could cause
some service to be recovered onto a small recovery cluster of
elements on site 2 while other elements on site 1 continue
delivering service.
The presently described embodiments can be illustrated 45

with a specific example. In this regard, one of the priorities of
cluster recovery is to configure each element to send its ser
Vice requests to local servers first and remote servers if none
of the local servers are available. One way to accomplish this
is with DNS SRV records, which allow a priority to be 50
assigned to each server in a fully qualified domain name
(FQDN) pool. With this configuration, when an element fails
and service is switched to the remote site, that element will
send its own requests to other elements in the remote site.
With most communication between elements occurring 55
within the same site, latency is not increased as much as for
simple element switchover.

In the example above, the FQDNs for the C1/C2 servers
can be implemented this way. Typically, if the client fails over
to server B2, then server B2 will automatically use local 60
server C2. However, if the client is using server B1 and server
C1 fails or becomes unavailable, then server B1 will begin
sending its requests to server C2. Since this traffic will flow
between geographically remote sites, additional bandwidth
will be used and the latency of these requests will increase. In 65
order to conduct a cluster failover according to the presently
described embodiments, server B1 must have special soft

8
ware logic, for example (as described herein), to handle C
server failures differently. After detecting the failure of server
C1, server B1 needs to explicitly return a response code to the
client that was defined to trigger it to initiate a recovery or
redirection to an alternate server. For example, if the protocol
between the client and B1 is SIP, then B1 server could return
a “503 Service Unavailable' or a “302 Moved Temporarily”
response to trigger the client to failover to the remote site.
A person of skill in the art would readily recognize that

steps of various above-described methods can be performed
by programmed computers (e.g. control modules 103, 105,
107, 109 or 111). Herein, some embodiments are also
intended to cover program storage devices, e.g., digital data
storage media, which are machine or computer readable and
encode machine-executable or computer-executable pro
grams of instructions, wherein said instructions perform
some or all of the steps of said above-described methods. The
program storage devices may be, e.g., digital memories, mag
netic storage media Such as a magnetic disks and magnetic
tapes, hard drives, or optically readable digital data storage
media. The embodiments are also intended to cover comput
ers programmed to perform said steps of the above-described
methods.

In addition, the functions of the various elements shown in
the Figures, including any functional blocks labeled as net
workelements, clients or servers may be provided through the
use of dedicated hardware, as well as hardware capable of
executing software and associated with appropriate software.
When provided by a processor, the functions may be provided
by a single dedicated processor, by a single shared processor,
or by a plurality of individual processors, some of which may
be shared. Moreover, explicit use of the term “processor” or
“controller” or “controller module' should not be construed
to refer exclusively to hardware capable of executing soft
ware, and may implicitly include, without limitation, digital
signal processor (DSP) hardware, network processor, appli
cation specific integrated circuit (ASIC), field programmable
gate array (FPGA), read only memory (ROM) for storing
Software, random access memory (RAM), and non volatile
storage. Other hardware, conventional and/or custom, may
also be included. Similarly, any switches shown in the Figures
are conceptual only. Their function may be carried out
through the operation of program logic, through dedicated
logic, through the interaction of program control and dedi
cated logic, or even manually, the particular technique being
selectable by the implementer as more specifically under
stood from the context.
The above description merely provides a disclosure of

particular embodiments of the invention and is not intended
for the purposes of limiting the same thereto. As such, the
invention is not limited to only the above-described embodi
ments. Rather, it is recognized that one skilled in the art could
conceive alternative embodiments that fall within the scope of
the invention.
We claim:
1. A method for network element service recovery in a

network including a client operative to conduct a session with
a frontend server connected to downstream network elements
and at least one alternate frontend server connected to alter
nate downstream network elements, the method comprising:

detecting by a frontend server of an error in or unavailabil
ity of a downstream network element; and,

sending a response code to the client to trigger the client to
redirect service to or recover on an alternate frontend
Sever.

2. The method as set forth in claim 1 wherein the frontend
server is a web server.

US 9, 130,967 B2

3. The method as set forth in claim 1 wherein the down
stream network element is a database server.

4. The method as set forth in claim 1 further comprising
Suspending the session between the client and the frontend
SeVe.

5. The method as set forth in claim 1 wherein the detecting
comprises one of receiving a message from the downstream
network element or detecting a timed out response timer.

6. A method for network element service recovery in a
network including a client operative to conduct a session with
a frontend server connected to downstream network elements
and at least one alternate frontend server connected to alter
nate downstream network elements, the method comprising:

detecting by the frontend server an error in or unavailability
of a downstream network element;

determining whether element recovery or cluster recovery
should be performed;

if element recovery is determined, switching over by the
frontend server to an alternate downstream networkele
ment corresponding to the failed or unavailable down
stream network element; and,

if cluster recovery is determined, sending a response code
by the frontend server to the client to trigger the client to
redirect service to or recover on an alternate frontend
SeVe.

7. The method as set forth in claim 6 wherein the frontend
server is a web server.

8. The method as set forth in claim 6 wherein the down
stream network element is a database server.

9. The method as set forth in claim 6 further comprising
suspending the session between the client and the frontend
SeVe.

10. The method as set forth in claim 6 wherein the detecting
comprises one of receiving a message from the downstream
network element or detecting a timed out response timer.

11. The method as set forth in claim 6 wherein the deter
mining is based on data traffic.

12. A system for network element service recovery in a
network including a client operative to conduct a session with
a frontend server connected to downstream network elements
and at least one alternate frontend server connected to alter
nate downstream network elements, the system comprising:

a control module of a frontend server detecting an error in
or unavailability of a downstream network element and

5

10

15

25

30

35

40

10
sending a response code to the client to trigger the client
to redirect service to or recover on an alternate frontend
Sever.

13. The system as set forth inclaim 12 wherein the frontend
server is a web server.

14. The system as set forth in claim 12 wherein the down
stream network element is a database server.

15. The system as set forth inclaim 12 wherein the frontend
server detects the error or unavailability by receiving a mes
sage from the downstream network element or detecting a
timed out response timer.

16. The system as set forth in claim 12 wherein the client,
frontend server, downstream network elements, alternate
frontend server and alternate downstream network elements
are IMS elements.

17. A system for network element service recovery in a
network including a client operative to conduct a session with
a frontend server connected to downstream network elements
and at least one alternate frontend server connected to alter
nate downstream network elements, the system comprising:

a control module of the frontend server detecting an error in
or unavailability of a downstream network element,
determining whether element recovery or cluster recov
ery should be performed, if element recovery is deter
mined, switching over by the frontend server to an alter
nate downstream network element corresponding to the
failed or unavailable downstream network element and,
if cluster recovery is determined, sending a response
code by the frontend server to the client to trigger the
client to redirect service to or recover on an alternate
frontend server.

18. The system as set forth inclaim 17 wherein the frontend
server is a web server.

19. The system as set forth in claim 17 wherein the down
stream network element is a database server.

20. The system as set forth inclaim 17 wherein the frontend
server detects the error or unavailability by receiving a mes
sage from the downstream network element or detecting a
timed out response timer.

21. The system as set forth inclaim 17 wherein the frontend
server detecting is based on data traffic.

22. The system as set forth in claim 17 wherein the client,
frontend server, downstream network elements, alternate
frontend server and alternate downstream network elements
are IMS elements.

