
USOO7788391 B2

(12) United States Patent (10) Patent No.: US 7,788,391 B2
Sen et al. (45) Date of Patent: Aug. 31, 2010

(54) USING ATHRESHOLD VALUE TO CONTROL 6,986,046 B1 1/2006 Tuvellet al.
MD-INTERRUPT POLLING

(75) Inventors: Sujoy Sen, Portland, OR (US); Anil
Vasudevan, Portland, OR (US); Linden (Continued)
Cornett, Portland, OR (US); Prafulla
Deuskar, Hillboro, OR (US) FOREIGN PATENT DOCUMENTS

(73) Assignee: Intel Corporation, Santa Clara, CA EP O574140 A1 12/1993
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (Continued)

(21) Appl. No.: 10/973,790 Makineni, S. et al., “Performance Characterization of TCP/IP Packet
Processing in Commercial Server Workloads”, IEEE Conference

(22) Filed: Oct. 25, 2004 Proceedings Article, 2003, pp. 33-41, XPO10670787.

(65) Prior Publication Data (Continued)

US 2005/0223.133 A1 Oct. 6, 2005 Primary Examiner Ario Etienne
O O Assistant Examiner Marshall McLeod

Related U.S. Application Data (74) Attorney, Agent, or Firm—Grossman, Tucker, Perreault
(63) Continuation-in-part of application No. 10/815,895, & Pfleger, PLLC

filed on Mar. 31, 2004.
(57) ABSTRACT

(51) Int. Cl.
G6F 5/6 (2006.01)

(52) U.S. Cl. 709/230; 370/351 In one embodiment, a method is provided. The method of this
(58) Field of Classification Search 710/5, embodiment provides performing packet processing on a

710/62, 109,305; 370/230, 471,392,351: packet, and placing the packet in a placement queue; if no
714/776 read buffer is available, determining if the size of the place

See application file for complete search history. ment queue exceeds a threshold polling value; and if the size
(56) References Cited of the placement queue exceeds the threshold polling value: if

U.S. PATENT DOCUMENTS
there are one or more pending DMM (data movement mod
ule) requests, polling a DMM to determine if the DMM has
completed the one or more pending DMM requests for data 5,090,011 A * 2/1992 Fukuta et al. 370,230

6,314,100 B1 11/2001 Roach et al. associated with an application; and if the DMM has com
6,389.468 B1 5, 2002 Muller et al. pleted the one or more pending DMM requests, then sending
6.438.604 B1 8, 2002 Kuver et al. a completion notification to the application to receive the
6,675.200 B1 1/2004 Sapuntzakis et al. data.
6,751,709 B2 6, 2004 Seidl et al.
6,907,042 B1 6/2005 Oguchi 22 Claims, 7 Drawing Sheets

500

se? FORMPACKEPROCESSING
CNAPACKETAND PACIMG THE
PACKTNAPACEMENTU

FMO REACBUFFERS AWAABE,
ETERMINF THESIZ of THE
PLACEMENUEJHAs
EXCEEDEDATHRESHOLD.

WALUE

F THESIZE OF THELACEN
QUEEHAS EXCEEED THE

THRShowALU, And TRE
508 ARNRCNNEMM

REQUESTS, THEN POLLADATA
MOWEMENTMODULE (DMM). To

TRMINEIF THEMMHAS
MPLETE PENNMM

REQUESTS FOR DATA ASSOCATED
WTHAN APPLICATCN

IFT-EMMAS COMPLETE
508 PENDINGDMMREQUESTS, SENDA

R- COMPLETIONNTIFICATION TO THE
APPLIANCEWE THE

DATA

54

US 7,788,391 B2
Page 2

U.S. PATENT DOCUMENTS

7,012,918 B2 3, 2006 Williams
7,089,344 B1 8, 2006 Rader et al.
7,181,531 B2 2/2007 Pinkerton et al.
7,668,165 B2 2/2010 Hoskote et al.

2003, OO14544 A1
2003/O169738 A1*
2003/0217231 A1
2004/00131-17 A1
2004/0030806 A1
2004.0054837 A1*
2004/0225,748 A1
2005/0223128 A1
2005/02231.34 A1
2006.0075142 A1
2008/O126553 A1

FOREIGN PATENT DOCUMENTS

1/2003 Pettey
9/2003 McDaniel 370,392
11/2003 Seidl et al.
1/2004 Behrens et al.
2/2004 Pandya et al.
3/2004 Biran et al. T10,305

1 1/2004 Chong
10/2005 Vasudevan et al.
10/2005 Vasudevan
4/2006 Cornett
5, 2008 Boucher et al.

EP O642246 A2 3, 1995
EP O657824 A1 6, 1995
JP O6078001 A 3, 1994
JP O6125365. A 5, 1994
JP O7078112 A 3, 1995
JP O7221780 A 8, 1995
JP 2000332817. A 11, 2000
JP 20O2524005 T2 T 2002
JP 2005539.305 T2 12/2005
JP 2006516054 T2 6, 2006
WO 2005104486 11, 2005

OTHER PUBLICATIONS

Written Opinion of the International Searching Authority, mailed
Oct. 12, 2006.
Office Action Received for EP Patent Application No. 04756431.5,
mailed on Oct. 1, 2007, pp. 3.
Office Action Received for SG Patent Application No. 20060601 1-5,
mailed on Oct. 30, 2007, pp. 11.
Office Action Received for SG Patent Application No. 20060601 1-5,
mailed on Feb. 2, 2007, pp. 10.
English Translation of Office Action Received for KR Patent Appli
cation No. 2006-7020469, mailed on Mar. 28, 2007, 3 pages.
English Translation of Notice of Allowance Received for KR Patent
Application No. 2006-7020469, mailed on Nov. 28, 2007, 10 pages.

Notice of Allowance Received for TW Patent Application No.
931 19637, mailed on Dec. 20, 2006, pp. 3.
Office Action Received for U.S. Appl. No. 11/027.719, mailed on
Jun. 13, 2008, pp. 15.
International Preliminary Report on Patentability for PCT Patent
Application No. PCT/US2004/021015, mailed on Oct. 12, 2006, pp.

International Search Report/Written Opinion for PCT Patent Appli
cation No. PCT/US2004/021015, mailed on Dec. 23, 2004, pp. 12.
Office Action received for U.S. Appl. No. 10/815,895 mailed on Jan.
8, 2008, pp. 19.
Action received for U.S. Appl. No. 10/815,895 mailed on Jul. 18.
2008, pp. 22.
Notice of Allowance received for SG Application No. 20060601 1-5
mailed on Jun. 25, 2008, pp. 8.
Non Final Office Action received for U.S. Appl. No. 1 1/140,092,
mailed Sep. 29, 2008; 14 pages.
Office Action received for U.S. Appl. No. 1 1/027,719 mailed on Dec.
10, 2008, pp. 18.
Office Action received for U.S. Appl. No. 10/815,895 mailed on Jan.
7, 2009, pp. 25.
Office Action received for Chinese Patent Application No.
200480042550.4, Mailed on Aug. 14, 2009, 4 pages of Office Action
and English translation of 7 pages.
Notice of Allowance received for U.S. Appl. No. 10/815,895, Mailed
on Nov. 5, 2009, pp. 14.
Office Action received for Japanese Patent Application No. 2007
502782, Mailed on Aug. 4, 2009, 3 pages of Office Action and
English translation of 2 pages.
Non-Final Office Action received for U.S. Appl. No. 1 1/027,719,
Mailed on Nov. 9, 2009, pp. 18.
Notice of Allowance received for Japanese Patent Application No.
2007502782, mailed on Jan. 12, 2010.
Final Office Action received for U.S. Appl. No. 1 1/140,092, mailed
on Jan. 5, 2010, 17 Pages.
Notice of Allowance received for U.S. Appl. No. 10/815,895, mailed
on Feb. 23, 2010, 4 Pages.
Final Office Action received for U.S. Appl. No. 1 1/027,719, mailed
on Apr. 5, 2010, 15 Pages.
Non-Final Office Action received for U.S. Appl. No. 1 1/140,092,
mailed on May 13, 2010, 16 Pages.

* cited by examiner

U.S. Patent Aug. 31, 2010 Sheet 1 of 7 US 7,788,391 B2

s

s

U.S. Patent Aug. 31, 2010 Sheet 2 of 7 US 7,788,391 B2

200

218

I/O SUBSYSTEM 238

NETWORK COMPONENT 212

CIRCUIT CARD 250

BUFFER 214A BUFFER 214B

HOST MEMORY
204

APPLICATION
218

DATA
234

OPERATING
SYSTEM220

TCP-ADRIVER
222

DMMDRIVER
224

CIRCUITRY216

6

CHIPSET 208

CIRCUITRY216

23

2O6

U.S. Patent Aug. 31, 2010 Sheet 3 of 7 US 7,788,391 B2

3A 3B

FIG. 3

U.S. Patent Aug. 31, 2010 Sheet 4 of 7 US 7,788,391 B2

316
300

PENDING
DMM REGUESTS
COMPLETED2 302

RECEIVE INTERRUP

304
PENDING

QMMREQUEST(S)?

YES

306 PERFORMPROTOCOL
PROCESSING ON ONE OF

THE ONE OR MORE
PACKETS AND PLACEN
PLACEMENT CRUEUE 318

3O8 SEND COMPLETION
NOTIFICATION TO
APPLICATION

YES NO "f .
32O :

310 FIG. 3B

YES NO

32 PENDING DM NO - 322 ---
RECUESTS? -1 --- FIG.3B

YES
314

POLLDMM FOR DMM
COMPLETIONS OF PENDING

DMM REGUESS

FIG. 3A

U.S. Patent Aug. 31, 2010 Sheet 5 Of 7 US 7,788,391 B2

32O

SCHEDULE PACKET FOR
PLACEMENT AND MOVE

a s

< fA >-YES PACKET FROM PLACEMENT
s t- OUEUE TO SCHEDULED

s- OUEUE

306 1-YES
FIG. 3A MORE PACKETS

seasesses scussess wors-crosses success scuss scussesses TO PROCESS2

31 O PENDING DMM
FIG. 3A -NO REQUEST(S)?

SCHEDULE INTERRUPT TO
BE GENERATED UPON

COMPLETION OF THE ONE
ORMORE PENDING DMM NO

REGUESTS AND TERMINATE
CURRENT INTERRUPT

SEND COMPLETON
NOTIFICATION TO

APPLICATION, IF ANY

FIG. 3B

U.S. Patent

402

406

408

Aug. 31, 2010 Sheet 6 of 7

"2C stard
OPERATING SYSTEM

RECEIVES AREGUEST FROM
APPLICATION TO TRANSMIT

DATA

OPERATING SYSTEM
NOTIFIES TCP-ADRIVER THAT

THERE IS DATA TO BE
TRANSMITTED

TCP-ADRIVER PERFORMS
ONE OR MORE OFERATIONS
THAT RESULT IN DATA BEING
TRANSMITTED TO NETWORK

COMPONENT

N RESPONSE TO RECEIVING
THE DATA, NETWORK

COMPONENT CREATING ONE
ORMORE PACKETS FOR

TRANSMISSION BY
PACKETIZING DATA

FIG. 4

US 7,788,391 B2

U.S. Patent Aug. 31, 2010 Sheet 7 Of 7 US 7,788,391 B2

500

502 PERFORMPACKET PROCESSING
ONAPACKET AND PLACING THE
PACKET IN A PLACEMENT OUEUE

IF NO READ BUFFERISAVAILABE,
504 DETERMINE IF THE SIZE OF THE

PLACEMENT OUEUE HAS
EXCEEDED A THRESHOLD

VALUE

IF THE SIZE OF THE PLACEMENT
OUEUE HAS EXCEEDED THE

THRESHOLD VALUE, AND IF THERE
506 ARE ONE OR MORE PENDING DMM

RECQUESTS, THEN POLLA DATA
MOVEMENT MODULE (DMM) TO
DETERMINE IF THE DMM HAS
COMPLETED PENDING DMM

REGUESTS FOR DATA ASSOCATED
WITH AN APPLICATION

F THE DMM HAS COMPLETED
PENDING DMM REQUESTS, SENDA
COMPLETION NOTIFICATION TO THE
APPLICATION TO RECEIVE THE

DATA

508

510

FIG. 5

US 7,788,391 B2
1.

USING ATHRESHOLD VALUE TO CONTROL
MID-INTERRUPT POLLING

PRIORITY INFORMATION

This application is a continuation-in-part of U.S. patent
application Ser. No. 10/815,895 entitled “Accelerated TCP
(Transport Control Protocol) Stack Processing, filed Mar.
31, 2004, and claims the benefit of priority thereof.

FIELD

Embodiments of this invention relate to using a threshold
value to control mid-interrupt polling.

BACKGROUND

Networking has become an integral part of computer sys
tems. Advances in network bandwidths, however, have not
been fully utilized due to overhead that may be associated
with processing protocol stacks. Overhead may result from
bottlenecks in the computer system from using the core pro
cessing module of a host processor to perform slow memory
access functions such as data movement, as well as host
processor stalls related to data accesses missing the host
processor caches. A protocol stack refers to a set of proce
dures and programs that may be executed to handle packets
sent over a network, where the packets may conform to a
specified protocol. For example, TCP/IP (Transport Control
Protocol/Internet Protocol) packets may be processed using a
TCP/IP Stack.

U.S. patent application Ser. No. 10/815,895 describes an
accelerated protocol for processing TCP/IP packets. One of
the components of this accelerated protocol is the ability to
optimize the TCP flow by offloading the data copy from the
host to a data movement module (hereinafter “DMM), such
as a DMA (direct memory access) engine. This data copy
offload is furthermore overlapped with the protocol process
ing. However, as protocol processing is further optimized
using faster processors, the data copy time may fall behind.
As a consequence, the processor stays within the current
interrupt utilizing valuable processing power. Furthermore,
since the DMM is not polled for data copy completions until
the driver completes protocol processing for the current inter
rupt, and since the application requesting the data won’t post
new buffers or repost the used buffers until data receives are
completed, a significant latency may result from the data copy
lag time.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by
way of example, and not by way of limitation, in the figures of
the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

FIG. 1 illustrates a network according to one embodiment.
FIG. 2 illustrates a system according to one embodiment.
FIG. 3 is a block diagram illustrating the relationship

between FIGS 3A and 3B.

FIG.3A is a flowchart illustrating a receive method accord
ing to one embodiment.

FIG.3B is a flowchart illustrating a receive method accord
ing to one embodiment.

FIG. 4 is a flowchart illustrating a transmit method accord
ing to one embodiment.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 5 is a flowchart illustrating a receive method accord

ing to another embodiment.

DETAILED DESCRIPTION

Examples described below are for illustrative purposes
only, and are in no way intended to limit embodiments of the
invention. Thus, where examples may be described in detail,
or where a list of examples may be provided, it should be
understood that the examples are not to be construed as
exhaustive, and do not limit embodiments of the invention to
the examples described and/or illustrated.

FIG. 1 illustrates a network 100 in which embodiments of
the invention may operate. Network 100 may comprise a
plurality of nodes 102A, ... 102N, where each of nodes 102A,
... 102N may be communicatively coupled together via a
communication medium 104. As used herein, components
that are “communicatively coupled' means that the compo
nents may be capable of communicating with each other via
wirelined (e.g., copper wires), or wireless (e.g., radio fre
quency) means. Nodes 102A . . . 102N may transmit and
receive sets of one or more signals via medium 104 that may
encode one or more packets.
As used herein, a "packet means a sequence of one or

more symbols and/or values that may be encoded by one or
more signals transmitted from at least one sender to at least
one receiver. As used herein, a “communication medium
means a physical entity through which electromagnetic radia
tion may be transmitted and/or received. Communication
medium 104 may comprise, for example, one or more optical
and/or electrical cables, although many alternatives are pos
sible. For example, communication medium 104 may com
prise air and/or vacuum, through which nodes 102A... 102N
may wirelessly transmit and/or receive sets of one or more
signals.

In network 100, one or more of the nodes 102A ... 102N
may comprise one or more intermediate stations, such as, for
example, one or more hubs, switches, and/or routers; addi
tionally or alternatively, one or more of the nodes 102A . . .
102N may comprise one or more end stations. Also addition
ally or alternatively, network 100 may comprise one or more
not shown intermediate stations, and medium 104 may com
municatively couple together at least some of the nodes 102A
... 102N and one or more of these intermediate stations. Of
course, many alternatives are possible.
At least one of nodes 102A, . . . , 102N may comprise

system 200, as illustrated in FIG. 2. System 200 may com
prise host processor 202, host memory 204, bus 206, and
chipset 208. (System 200 may comprise more than one host
processor 202, host memory 204, bus 206, and chipset 208, or
other types of processors, memories, busses, and chipsets:
however, the former are illustrated for simplicity of discus
Sion, and are not intended to limit embodiments of the inven
tion.) Host processor 202, host memory 204, bus 206, and
chipset 208 may be comprised in a single circuit board, such
as, for example, a system motherboard 218.

Host processor 202 may comprise a core processing mod
ule and other support modules that interface with other sys
tem elements. For example, a support module may include a
bus unit that communicates with a memory controller on
system 200. Host processor 202 may comprise, for example,
an Intel(R) Pentium(R) microprocessor that is commercially
available from the Assignee of the subject application. Of
course, alternatively, host processor 202 may comprise
another type of microprocessor, such as, for example, a
microprocessor that is manufactured and/or commercially

US 7,788,391 B2
3

available from a source other than the Assignee of the subject
application, without departing from embodiments of the
invention.

Host processor 202 may be communicatively coupled to
chipset 208. Chipset 208 may comprise a host bridge/hub
system that may couple host processor 202 and host memory
204 to each other and to bus 206. Chipset 208 may also
include an I/O bridge/hub system (not shown) that may
couple the host bridge/bus system to bus 206. Chipset 208
may comprise one or more integrated circuit chips, such as
those selected from integrated circuit chipsets commercially
available from the Assignee of the Subject application (e.g.,
graphics memory and I/O controller hub chipsets), although
other one or more integrated circuit chips may also, or alter
natively, be used.

Bus 206 may comprise a bus that complies with the Periph
eral Component Interconnect (PCI) Local Bus Specification,
Revision 2.2, Dec. 18, 1998 available from the PCI Special
Interest Group, Portland, Oreg., U.S.A. (hereinafter referred
to as a “PCI bus”). Alternatively, bus 106 instead may com
prise a bus that complies with the PCI-X Specification Rev.
1.0a, Jul. 24, 2000, (hereinafter referred to as a “PCI-X bus”),
or a bus that complies with the PCI-E Specification Rev.
PCI-E (hereinafter referred to as a “PCI-E bus”), as specified
in “The PCI Express Base Specification of the PCI Special
Interest Group', Revision 1.0a, both available from the afore
said PCI Special Interest Group, Portland, Oreg., U.S.A.
Also, alternatively, bus 106 may comprise other types and
configurations of bus systems.

System 200 may additionally comprise circuitry 216. Cir
cuitry 216 may comprise one or more circuits to perform one
or more operations described herein as being performed by a
driver, such as TCP-A (Transport Control Protocol-Acceler
ated) driver 222, and/or a network component, Such as net
work component 212. Circuitry 216 may be hardwired to
perform the one or more operations, and/or may execute
machine-executable instructions to perform these operations.
For example, circuitry 216 may comprise memory 236 that
may store machine-executable instructions 226 that may be
executed by circuitry 216 to perform these operations. Instead
of being comprised in host processor 202, or chipset 208,
some or all of circuitry 216 may be comprised in a circuit card
250, and/or other structures, systems, and/or devices that may
be, for example, comprised in motherboard 218, and/or com
municatively coupled to bus 206, and may exchange data
and/or commands with one or more other components in
system 200. Circuitry 216 may comprise, for example, one or
more digital circuits, one or more analog circuits, one or more
state machines, programmable circuitry, and/or one or more
ASICs (Application-Specific Integrated Circuits).

System 200 may additionally comprise one or more memo
ries to store machine-executable instructions 226 capable of
being executed, and/or data capable of being accessed, oper
ated upon, and/or manipulated by circuitry, such as circuitry
216. For example, these one or more memories may include
host memory 204, or memory 236. One or more memories
204, 236 may, for example, comprise read only, mass storage,
random access computer-readable memory, and/or one or
more other types of machine-readable memory. The execu
tion of program instructions 226 and/or the accessing, opera
tion upon, and/or manipulation of data by circuitry 216 may
resultin, for example, circuitry 216 carrying out some orall of
the operations described herein as being carried out by vari
ous hardware and/or software components in system 200.

For example, machine-executable instructions 226 may
comprise a set of instructions for an application 218; a set of
instructions for operating system 220; a set of instructions for

10

15

25

30

35

40

45

50

55

60

65

4
TCP-A driver 222; and/or a set of instructions for DMA
(direct memory access) driver 224. In one embodiment, cir
cuitry 216 of host processor 202 may execute machine-ex
ecutable instructions 226 for TCP-A driver 222, for DMM
driver 224, and for operating system 220. Machine-execut
able instructions 226 may execute in memory by circuitry
216, such as in host processor 202, and/or by circuitry 216 in
general.

System 200 may additionally comprise I/O (input/output)
subsystem 238 having a network component 212. “Network
component refers to any combination of hardware and/or
Software on an I/O (input/output) Subsystem that may process
one or more packets sent and/or received over a network. In
one embodiment, I/O subsystem 238 may comprise, for
example, a NIC (network interface card), and network com
ponent 212 may comprise, for example, a MAC (media
access control) layer of the Data Link Layer as defined in the
Open System Interconnection (OSI) model for networking
protocols. The OSI model is defined by the International
Organization for Standardization (ISO) located at 1 rue de
Varembé, Case postale 56 CH-1211 Geneva 20, Switzerland.
I/O subsystem 238 may be comprised, for example, in a
circuit card 250. Alternatively, it may be comprised on circuit
board 218 as a component.
A method according to one embodiment is illustrated in the

flowchart of FIG. 5 with reference to system 200 of FIG. 2.
The method begins at block 500 and continues to block 502
where TCP-Adriver 222 may perform packet processing on a
packet and place the packet in a placement queue. Each
packet 228 may comprise aheader 230 and a payload 232. For
each packet 228, network component 212 may split header
230 and payload 232 from packet 228, and post each 230, 232
to one or more post buffers 214A, 214B. In one embodiment,
header 230 may be posted to a first buffer such as post buffer
214A, and payload 232 may be posted to a second buffer such
as post buffer 214B. The one or more packets 228 may be
received in response to a read data request from, for example,
application 218.

In one embodiment placement queue may be PQ (place
ment queue)240. PO240 may store packets 228that are ready
for placement in read buffer 214C. PQ 240 may store packets
228 by storing pointers to the packets 228 such that the
packets 228. Packets 228 ready for placement in read buffer
214C may be packets that are waiting to be scheduled for
placement by DMM 210, or that are waiting to be indicated to
application 218. The method may continue to block 504.
At block 504, if no read buffer 214C is available, TCP-A

222 driver may determine if the size of the placement queue
exceeds a threshold value. In one embodiment, this may be
determined by determining if PO 240 is larger than threshold
polling value (TPV)242. TPV 242 may comprise a value that
represents the maximum number of packets 228 that TCP-A
driver 222 may process while those packets await indication
to application 218 for application to complete receive of
payload 232 associated with those packets 228. TPV 242 may
be applied on a per connection context basis, or on a global
basis. Furthermore, the TPV 242 may be predetermined, and/
or may be adaptive. For example, the TPV 242 may track the
history of application buffer sizes per context, and set the TPV
242 accordingly.
At block 506, if the size of the placement queue exceeds a

threshold value, and if there are one or more pending DMM
requests, then TCP-A driver 222 may poll DMM 210 to
determine if the DMM has completed pending DMM
requests for data associated with an application 218.
As used herein, a “DMM refers to a module for moving

data from a source to a destination without using the core

US 7,788,391 B2
5

processing module of a host processor, Such as host processor
202. In one embodiment, DMM 210 may comprise a DMA
engine. By using the DMM 210 for placement of data, host
processor 202 may be freed from the overhead of performing
data movements, which may otherwise result in the host 5
processor 202 running at much slower memory speeds com
pared to the core processing module speeds.

Application” refers to one or more programs that use the
network. An application 218 may comprise, for example, a
web browser, an email serving application, a file serving 10
application, or a database application. In conjunction with a
read data request, application 218 may designate destination
read buffer 214C where application 218 may access the
requested data. In conjunction with a transmit data request,
application 218 may write data to be transmitted to source 15
buffer 214D.

At block 508, if the DMM has completed pending DMM
requests, then TCP-A driver 222 may send a completion
notification to the application to receive the data. As used
herein, a “completion notification” refers to a notification that 20
data is available from a read buffer, and “completing a
receive” refers to data being read from the read buffer. Once
application 218 has completed a receive, application 218 may
post more buffers, and/or repost the buffers. For example,
application 218 may read data from read buffer 214C so that 25
it can repost read buffer 214C for further data. Furthermore,
the packet on PQ 240 corresponding to the DMM completion
may be removed from PQ 240, which may result in reducing
the size of PQ 240.

The method ends at block 510. 30
A method according to another embodiment is illustrated

in the flowcharts of FIG. 3A and FIG. 3B, with reference to
system 200 of FIG. 2, and where the relationship between
these flowcharts is illustrated in FIG. 3. In reference to FIG.
3A, the method begins at block 300, and continues to block 35
302 where an interrupt may be received. The interrupt may be
a NIC interrupt where network component 212 may notify
TCP-A driver 222 that one or more packets 228 are available
for processing. This may be done, for example, in response to
network component 212 receiving an indication that one or 40
more packets 228 (only one shown) have been received from
network 100.

In certain embodiments, TCP-Adriver 222 may be notified
by network component 212 notifying operating system 220 of
the availability of one or more packets 228 in accordance with 45
an interrupt moderation scheme. An interrupt moderation
scheme refers to a condition where an interrupt may be
asserted for every n packets received by network component
212. Thus, if network component 212 receives n or more
packets, network component 212 may notify operating sys- 50
tem 220 that one or more packets 228 have arrived. Likewise,
if network component 212 receives less than n packets, net
work component 212 may instead wait until more packets 228
are received before notifying operating system 220. Operat
ing system 220 may notify TCP-Adriver 222 that packets 228 55
are ready to be processed.

Alternatively, in one embodiment, the interrupt may be a
DMM interrupt. This interrupt refers to an interrupt that may
indicate the completion of one or more pending DMM
requests. A “pending DMM request” refers to a pending write 60
of payload associated with a packet from a post buffer to a
read buffer, where the payload has already been indicated to
DMM for placement. Upon receipt of an interrupt, pending
DMM requests may be from a previous interrupt, such as the
interrupt immediately preceding the current interrupt. In one 65
embodiment, pending DMM requests may be stored in SQ
246. SQ 246 may store pending DMM requests by storing

6
pointers to the packets corresponding to the pending DMM
requests. For example, if there are one or more packets 228 for
which the associated payload 232 is to be copied from post
buffer 214B to read buffer 214C, and the payload 232 has
already been scheduled for DMM placement, then the pend
ing DMM requests may be found in SQ 246. In one embodi
ment, if size of SQ 246 is greater than 0, then there are
pending DMM requests. The method may continue to block
304.
At block 304, TCP-Adriver 222 may determine if there are

pending DMM requests. In one embodiment, this may be
determined by checking SQ 246. In one embodiment, pend
ing DMM requests for a particular context may be checked.
Pending DMM requests for a particular context may be stored
in SQC (scheduled queue-context) 244 such that if size of
SQC 244 for the given context is >0, then there are pending
DMM requests for the given context. SQC 244 may store
pending DMM requests for a given context by storing point
ers to the packets corresponding to the pending DMM
requests for the given context. A "previous context” refers to
a protocol context prior to the current interrupt received at
block 302. As used herein, “protocol context”, hereinafter
referred to as a “connection context” refers to information
about a connection. For example, the information may com
prise the sequence number of the last packet sent/received,
and amount of memory available. A "connection' as used
herein refers to a logical pathway to facilitate communica
tions between a first node on a network and a second node on
the network.

Since TCP-A driver 222 may not know whether the
received interrupt is from a NIC, for example, or a DMM, it
may determine if there are pending DMM requests. Ifat block
304, there are pending DMM requests, then TCP-A driver
222 knows to poll DMM 210 for DMM completions, and the
method may continue to block 314. If, at block 304, there are
no pending DMM requests from the previous context, the
method may continue to block 306.
At block 306, TCP-A driver 222 may perform protocol

processing on one of the one or more packets 228, and place
the packet 228 in a placement queue. As mentioned above,
placement queue may comprise PO 240. Packet processing
may be performed by TCP-Adriver 222 retrieving header 230
from post buffer 214A, parsing the header 230 to determine
the connection context associated with the packet, and per
forming TCP protocol compliance. TCP protocol compliance
may comprise, for example, Verifying the sequence number
of a received packet to ensure that the packet is within a range
of numbers that was agreed upon between the communicating
nodes; Verifying the payload size to ensure that the packet is
within a range of sizes that was agreed upon between the
communicating nodes; ensuring that the headerstructure con
forms to the protocol (e.g., TCP/IP); and ensuring that the
timestamps are within an expected time range.
As part of packet processing, TCP-Adriver 222 may deter

mine ifpacket 228 is ready for placement. A payload 232 may
be ready for placement if for example, the corresponding
header has been Successfully processed, and/or one or more
read buffers, such as read buffer 214C, have been designated.
Where payload 232 cannot be placed because one or more
read buffers 214C do not exist, for example, TCP-A driver
222 may indicate to operating system 220 the presence of
payload 232 ready to be placed. Operating system 220 may
then designate a buffer, or may ask application 218 to desig
nate a buffer. Also, if payload 232 cannot be placed because
one or more read buffers 214Carefull, TCP-Adriver 222 may
wait until application 218 posts more buffers or reposts buff
CS.

US 7,788,391 B2
7

TCP-Adriver 222 may fetch a next header to process prior
to completing the processing of a current header. This may
ensure that the next header is available in the host processors
caches (not shown) before the TCP-A driver 222 is ready to
perform TCP processing on it, thereby reducing host proces
sor stalls. In one embodiment, TCP-A driver 222 may addi
tionally determine if a connection associated with a packet is
to be accelerated prior to performing packet processing.
TCP-A driver 222 may accelerate select connections. Select
connections may comprise, for example, connections that are
long-lived, or which comprise large data. If TCP-Adriver 222
determines that network connection is to be accelerated,
TCP-A driver 222 may perform packet processing as
described at block 306. If TCP-A driver 222 determines that
network connection is not to be accelerated, TCP-A driver
222 may relinquish packet processing control to TCP driver
(not shown) to perform non-accelerated packet processing.
The method may continue to block 308.

At block 308, TCP-A driver 222 may determine if read
buffer 214C is available. If application 218 has previously
posted read buffer 214C, and TCP-A driver 222 knows that
read buffer 214C is not full, then TCP-A driver 22 may
determine read buffer 214C to be available. On the other
hand, if TCP-A driver 222 knows that read buffer 214C has
been filled to capacity, then TCP-A driver 22 may determine
read buffer 214C is not available. For example, if TCP-A
driver 222 receives 2K of data, and indicates this to the appli
cation 218, application 218 may return a 4K read buffer 214C.
of which 2K may be filled with 2K of data by TCP-A driver
222. If TCP-A driver 222 next receives 2K of data, TCP-A
driver 222 knows that it has 2K of read buffer 214C available
in which to place the data. If TCP-A driver 222 next receives
another 2K of data, then TCP-A driver 222 knows that read
buffer 214C is not available because the previously 4K read
buffer 214C received from application 218 has been filled to
capacity. If read buffer 214C is available, then the method
may continue to block 320 (FIG.3B). If read buffer 214C is
not available, then the method may continue to block 310.

At block 310, it may be determined if the size of the
placement queue exceeds a threshold value. In one embodi
ment, if size of PQ 240 is not larger than TPV 242, the method
may continue to block 322 (FIG.3B). Likewise, if size of PQ
240 is larger than TPV 242, the method may continue to block
312.

At block312, TCP-Adriver 222 may determine if there are
pending DMM requests. Pending DMM requests at this point
may comprise DMM requests stored in SQ 246 in the current
interrupt. If there are pending DMM requests, then the
method may continue to block 314. If there are no pending
DMM requests, then the method may continue to block 322
(FIG. 3B).
At block314, DMM 210 may be polled for DMM comple

tions of pending DMM requests. “DMM completions' refer
to the completion of pending DMM requests. Since DMM
polling is based on TPV 242, the rate of DMM polling may be
controlled. In one embodiment, a completed pending DMM
request means that DMM 210 has moved data associated with
the pending DMM request from buffer 214B to buffer 214C.
The method may continue to block 316.

At block 316, if pending DMM requests have been com
pleted, then the method may continue to block318. Ifat block
314, pending DMM requests have not been processed, then
the method may continue to block 322 (FIG. 3B).

At block 318, TCP-A driver 222 may send completion
notification to application 218. The method may continue to
block 308.

10

15

25

30

35

40

45

50

55

60

65

8
In reference to FIG. 3B, at block 320, TCP-A driver 222

may schedule the packet for placement and move the packet
from the placement queue to a scheduled queue. In one
embodiment, this may comprise TCP-A driver 222 sending a
request to DMM driver 224, and DMM driver 224 scheduling
a request with DMM 210 to write the one or more payloads
232 from post buffer 214B to read buffer 214C. DMM driver
224 may be a standalone driver, or part of some other driver,
such as TCP-A driver 222. Rather than being part of chipset
208, DMM 210 may be a support module of host processor
202.

In this embodiment, scheduled requests may be placed in
SQ 246, and SQ246 may be incremented. Furthermore, SQC
244 for the current context may also be incremented to indi
cate that there are pending DMM requests for the current
context. DMM 210 may complete pending DMM requests by
moving data from post buffer 214B to read buffer 214C as
queued in SQ 246. The method may continue to block 322.

It is also possible that payload 232 may be placed by
TCP-A driver 222 requesting DMM 210 to write the one or
more payloads 232 from post buffer 214B to read buffer
214C. Alternatively, TCP-A driver 222 may write the one or
more payloads 232 from post buffer 214B to read buffer 214C
using host processor 202, for example. In Such cases, the
packet is not scheduled, and SQ246 is not incremented.
At block 322, it may be determined if there are more

incoming packets 228. If there are more incoming packets at
block 320, the method may revert back to block 306 to con
tinue packet processing of received packets 228. If there are
no more incoming packets 228, the method may continue to
block 324.

At block324, TCP-Adriver 222 may determine if there are
more pending DMM requests. This may be determined by
checking SQ 246. If at block 322 there are one or more
pending DMM requests, the method may continue to block
326. If at block 322 there are no more pending DMM
requests, then the method may continue to block 328.
At block 326, TCP-Adriver 222 may schedule an interrupt

to be generated upon completion of the one or more pending
DMM requests, and terminate the current interrupt. The inter
rupt may be a DMM interrupt generated by DMM 210 or a
NIC interrupt generated by I/O subsystem 238, for example.
The method may continue to block 330.

In another embodiment, TCP-A driver 222 may pass con
trol back to operating system 220 after terminating the current
interrupt. If one or more packets 228 have still not been
processed, operating system 220 may notify a TCP driver (not
shown) rather than TCP-A driver 222, where the TCP driver
may perform TCP stack processing by performing packet
processing, and by using the core processing module of host
processor 202 to perform data transfers. Furthermore, if there
are no pending DMM request, TCP-A driver 222 may send a
completion notification to application 218, and application
218 may complete one or more receives.

In one embodiment, rather than terminate the current inter
rupt if there are no more incoming packets, and there are still
one or more pending DMM request, TCP-A driver 222 may
instead perform other tasks. Other tasks may include looking
for more packets in a Subsequent interrupt, setting up the
DMM 210 to issue an interrupt upon completion of a last
queued task for the current interrupt, or other housekeeping,
Such as transmitting data, and performing TCP timer related
tasks.
At block 328, TCP-A driver 222 may send a completion

notification to application 218. Application 218 may com
plete the receive and post and/or repost one or more read
buffers. The method may continue to block 330.

US 7,788,391 B2
9

The method may end at block 330.
A method according to another embodiment is illustrated

in FIG. 4. The method begins at block 400 and continues to
block 402 where operating system 220 may receive a request
from application 218 to transmit data 234 placed in buffer
214D. Operating system 220 may perform preliminary
checks on data 234. Preliminary checks may include, for
example, obtaining the associated connection context. In a
TCP/IP connection, for example, connection context may
comprise packet sequence numbers to identify the order of the
packets, buffer addresses of buffers used to store data, and
timer/timestamp information for retransmissions.

At block 404, operating system 220 may notify TCP-A
driver 222 that there is data 234 to be transmitted from buffer
214D.
At block 406, TCP-A driver 222 may perform one or more

operations that result in data 234 being transmitted to network
component 212. For example, these one or more operations
may include TCP-A driver 222 programming DMM 210 to
transmit data 234 from source buffer 214D to network com
ponent 212. Alternatively, TCP-A driver 222 may queue a
buffer, such as queued buffer 214E, to network component
212, where network component 212 may instead read data
234 from queued buffer 214E. Source buffer 214D may be
designated by application 218, for example, and queued
buffer 214E may be designated by network component 212,
for example.

In one embodiment, TCP-A driver 222 may program
DMM 210 to transmit data if the data is small, and TCP-A
driver 222 may queue a buffer, such as queued buffer 214E, if
the data is large. As used herein, “queuing a buffer means to
notify a component that there is a buffer from which it can
access data. For example, TCP acknowledgment packets to
acknowledge receipt of packets may typically be relatively
small-sized packets, and may be sent by TCP-Adriver 222 to
network component 212 by TCP-A driver 222 programming
DMM 210 to transmit data 234. As another example, storage
applications that send large files over the network may be
relatively large, and may therefore be sent by TCP-A driver
222 to network component 212 by queuing buffer 214E.

At block 408, in response to receiving the data, network
component 212 may create one or more packets for transmis
sion by packetizing the data. In one embodiment, network
component 212 may packetize data by performing segmen
tation on the data. “Segmentation” refers to breaking the data
into Smaller pieces for transmission. In one embodiment,
network component 212 may comprise a MAC, and segmen
tation may be referred to as a large send offload, wherein
MAC frames may be created for transmission of data 234 over
the network. Network component 212 may receive data
directly from TCP-A driver 222, or by accessing queued
buffer 214E.

The method may end at block 410. Thereafter, operating
system 220 may send a completion notification to application
218. Furthermore, source buffer 214D may be returned to
application 218, and application may use the buffer for other
purposes.

Embodiments of the present invention may be provided,
for example, as a computer program product which may
include one or more machine-readable media having stored
thereon machine-executable instructions that, when executed
by one or more machines such as a computer, network of
computers, or other electronic devices, may result in the one
or more machines carrying out operations inaccordance with
embodiments of the present invention. A machine-readable
medium may include, but is not limited to, floppy diskettes,
optical disks, CD-ROMs (Compact Disc-Read Only Memo

10

15

25

30

35

40

45

50

55

60

65

10
ries), and magneto-optical disks, ROMs (Read Only Memo
ries), RAMs (Random Access Memories), EPROMs (Eras
able Programmable Read Only Memories), EEPROMs
(Electrically Erasable Programmable Read Only Memories),
magnetic or optical cards, flash memory, or other type of
media/machine-readable medium suitable for storing
machine-executable instructions.

Moreover, embodiments of the present invention may also
be downloaded as a computer program product, wherein the
program may be transferred from a remote computer (e.g., a
server) to a requesting computer (e.g., a client) by way of one
or more data signals embodied in and/or modulated by a
carrier wave or other propagation medium via a communica
tion link (e.g., a modem and/or network connection). Accord
ingly, as used herein, a machine-readable medium may, but is
not required to, comprise Such a carrier wave.

CONCLUSION

Therefore, in one embodiment, a method may comprise
performing packet processing on a packet, and placing the
packet in a placement queue; if no read buffer is available,
determining if the size of the placement queue exceeds a
threshold polling value; and if the size of the placement queue
exceeds the threshold polling value: if there are one or more
pending DMM (data movement module) requests, polling a
DMM to determine if the DMM has completed the one or
more pending DMM requests for data associated with an
application; and if the DMM has completed the one or more
pending DMM requests, then sending a completion notifica
tion to the application to receive the data.

Embodiments of the invention may enable a processor to
terminate a current interrupt, which may otherwise utilize
valuable processing power, without having to wait for the
completion of all pending DMM requests in the current inter
rupt. Furthermore, since DMM polling may be performed
prior to the end of a current interrupt, applications may post
new buffers or repost the used buffers during a current inter
rupt, rather than wait for pending DMM requests to complete
before posting new buffers or repost the used buffers. Since
DMM polling, which may be a very time-consuming process,
is controlled by a threshold value, resources may be further
conserved.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made to these embodiments without depart
ing therefrom. The specification and drawings are, accord
ingly, to be regarded in an illustrative rather than a restrictive
SS.

What is claimed is:
1. A method comprising:
performing packet processing on a packet, and placing the

packet in a placement queue;
if no read buffer is available, then determining if the size of

the placement queue exceeds a threshold polling value;
if a read buffer is available, then scheduling the packet for

placement and moving the packet from the placement
queue to a scheduled queue;

if the size of the placement queue exceeds the threshold
polling value:
then if there are one or more pending DMM (data move

ment module) requests for data associated with an
application, polling a DMM to determine if the DMM
has completed the one or more pending DMM
requests; and

US 7,788,391 B2
11

then if the DMM has completed the one or more pending
DMM requests, then sending a completion notifica
tion to the application to receive the data; and

if the size of the placement queue does not exceed the
threshold polling value, then if there are one or more
packets to process, performing protocol processing on
the one or more packets and placing the one or more
packets in a placement queue.

2. The method of claim 1, wherein the method takes place
in a current interrupt, and if there are no more packets to
process:

determining if there are one or more pending DMM
requests; and

if there are one or more pending DMM requests, then
Scheduling an interrupt to be generated upon completion
of the one or more pending DMM requests and termi
nating the current interrupt.

3. The method of claim 2, additionally comprising if there
are no more pending DMM requests, then sending a comple
tion notification to the application.

4. The method of claim 1, additionally comprising:
prior to performing packet processing on the packet,

receiving an interrupt; and
if there are pending DMM requests from a previous con

text, then:
polling the DMM for DMM completions of pending
DMM requests from the previous context; and

if the pending DMM requests from the previous context
have been completed, then sending a completion noti
fication to the application.

5. The method of claim 4, wherein if there are no pending
DMM requests from the previous context, then performing
protocol processing on one of the one or more packets and
placing the packet in a placement queue.

6. The method of claim 5, additionally comprising ifa read
buffer to receive data associated with the one or more packets
is not available, then determining if a size of the placement
queue exceeds a threshold polling value.

7. The method of claim 6, wherein if the size of the place
ment queue exceeds a threshold polling value, and there are
pending DMM requests, then polling the DMM for DMM
completions of the pending DMM requests.

8. The method of claim 6, wherein if the size of the place
ment queue does not exceed a threshold polling value, then if
there are one or more packets to process, performing protocol
processing on the one or more packets and placing the one or
more packets in the placement queue.

9. An apparatus comprising:
circuitry operable to:
perform packet processing on a packet, and place the

packet in a placement queue;
if no read buffer is available, then determining if the size of

the placement queue exceeds a threshold polling value;
if a read buffer is available, then scheduling the packet for

placement and moving the packet from the placement
queue to a scheduled queue;

if the size of the placement queue exceeds the threshold
polling value:
then if there are one or more pending DMM (data move

ment module) requests for data associated with an
application, poll a DMM to determine if the DMM has
completed the one or more pending DMM requests;
and

then if the DMM has completed the one or more pending
DMM requests, then send a completion notification to
the application to receive the data; and

5

10

15

25

30

35

40

45

50

55

60

65

12
if the size of the placement queue does not exceed the

threshold polling value, then if there are one or more
packets to process, performing protocol processing on
the one or more packets and placing the one or more
packets in a placement queue.

10. The apparatus of claim 9, wherein the operations take
place in a current interrupt, and if there are no more packets to
process:

determine if there are one or more pending DMM requests:
and

if there are one or more pending DMM requests, then
Schedule an interrupt to be generated upon completion
of the one or more pending DMM requests and terminate
the current interrupt.

11. The apparatus of claim 9, additionally comprising:
prior to performing packet processing on the packet,

receive an interrupt; and
if there are pending DMM requests from a previous con

text, then:
poll the DMM for DMM completions of pending DMM

requests from the previous context, and
if the pending DMM requests from the previous context

have been completed, then send a completion notifi
cation to the application.

12. The apparatus of claim 11, wherein if there are no
pending DMM requests from the previous context, then per
form protocol processing on one of the one or more packets
and place the packet in a placement queue.

13. A system comprising:
a circuit board; and
a circuit card coupled to the circuit board, the circuit card

operable to:
perform packet processing on a packet, and place the

packet in a placement queue;
if no read buffer is available, then determining if the size of

the placement queue exceeds a threshold polling value;
if a read buffer is available, then scheduling the packet for

placement and moving the packet from the placement
queue to a scheduled queue;

if the size of the placement queue exceeds the threshold
polling value:
then if there are one or more pending DMM (data move

ment module) requests for data associated with an
application, poll a DMM to determine if the DMM has
completed the one or more pending DMM requests;
and

then if the DMM has completed the one or more pending
DMM requests, then send a completion notification to
the application to receive the data; and

if the size of the placement queue does not exceed the
threshold polling value, then if there are one or more
packets to process, performing protocol processing on
the one or more packets and placing the one or more
packets in a placement queue.

14. The system of claim 13, wherein the operations take
place in a current interrupt, and if there are no more packets to
process:

determine if there are one or more pending DMM requests:
and

if there are one or more pending DMM requests, then
Schedule an interrupt to be generated upon completion
of the one or more pending DMM requests and terminate
the current interrupt.

15. The system of claim 13, additionally comprising:
prior to performing packet processing on the packet,

receive an interrupt; and

US 7,788,391 B2
13

if there are pending DMM requests from a previous con
text, then:
poll the DMM for DMM completions of pending DMM

requests from the previous context, and
if the pending DMM requests from the previous context

have been completed, then send a completion notifi
cation to the application.

16. The system of claim 15, wherein if there are no pending
DMM requests from the previous context, then perform pro
tocol processing on one of the one or more packets and place
the packet in a placement queue.

17. The system of claim 16, additionally comprising if a
read buffer to receive data associated with the one or more
packets is not available, then determine if a size of the place
ment queue exceeds a threshold polling value.

18. An article comprising a machine-readable medium
having stored thereon instructions, the instructions when
executed by a machine, result in the following:

performing packet processing on a packet, and placing the
packet in a placement queue;

if no read buffer is available, then determining if the size of
the placement queue exceeds a threshold polling value;

if a read buffer is available, then scheduling the packet for
placement and moving the packet from the placement
queue to a scheduled queue;

if the size of the placement queue exceeds the threshold
polling value:
then if there are one or more pending DMM (data move

ment module) requests for data associated with an
application, polling a DMM to determine if the DMM
has completed the one or more pending DMM
requests; and

then if the DMM has completed the one or more pending
DMM requests, then sending a completion notification
to the application to receive the data; and

if the size of the placement queue does not exceed the
threshold polling value, then if there are one or more

5

10

15

25

30

35

14
packets to process, performing protocol processing on
the one or more packets and placing the one or more
packets in a placement queue.

19. The article of claim 18, wherein the instructions take
place in a current interrupt, and if there are no more packets to
process, the instructions when executed by a machine, addi
tionally result in:

determining if there are one or more pending DMM
requests; and

if there are one or more pending DMM requests, then
Scheduling an interrupt to be generated upon completion
of the one or more pending DMM requests and termi
nating the current interrupt.

20. The article of claim 18, the instructions when executed
by a machine, additionally result in:

prior to performing packet processing on the packet,
receiving an interrupt; and

if there are pending DMM requests from a previous con
text, then:
polling the DMM for DMM completions of pending
DMM requests from the previous context; and

if the pending DMM requests from the previous context
have been completed, then sending a completion noti
fication to the application.

21. The article of claim 20, wherein if there are no pending
DMM requests from the previous context, then the instruc
tions when executed by a machine, additionally result in
performing protocol processing on one of the one or more
packets and placing the packet in a placement queue.

22. The article of claim 21, if a read buffer to receive data
associated with the one or more packets is not available, then
the instructions when executed by a machine, additionally
result in determining if a size of the placement queue exceeds
a threshold polling value.

k k k k k

