
(19) United States
US 2005O240931A1

(12) Patent Application Publication (10) Pub. No.: US 2005/024.0931 A1
Padisetty et al. (43) Pub. Date: Oct. 27, 2005

(54) SYSTEM AND METHOD FOR DYNAMIC
COOPERATIVE DISTRIBUTED EXECUTION
OF COMPUTERTASKS WITHOUTA
CENTRALIZED CONTROLLER

(75) Inventors: Sivaprasad Padisetty, Redmond, WA
(US); Shankar Manian, Redmond, WA
(US); Hari S. Narayan, Bellevue, WA
(US)

Correspondence Address:
LEYDIG, VOIT & MAYER, LTD.
TWO PRUDENTIAL PLAZA, SUITE 4900
180 NORTH STETSON
CHICAGO, IL 60601-6780 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 11/150,951

(22) Filed: Jun. 12, 2005

Related U.S. Application Data

(63) Continuation of application No. 10/720,893, filed on
Nov. 24, 2003.

Publication Classification

(51) Int. Cl. ... G06F 9/46
(52) U.S. Cl. .. 718/100
(57) ABSTRACT
A System and method is provided for cooperative eXecution
of distributed tasks by networked computers without the use
of a centralized controller to coordinate the task execution.
Each computer has an execution agent that cooperates with
the execution agents of the other computers to carry out the
execution of a given Sequence of tasks. The execution
instructions for the task Sequence are provided to a first
computer in the Selected Set of computers for task execution.
The first computer processes the instructions and forwards
them to its peer computerS So that each of them knows the
tasks it is to perform in connection with the tasks of the other
computers. The computers then executes the tasks assigned
to them and use peer-to-peer communications to provide
Status update to their peer computers to Synchronize and
coordinate the task execution.

Test Management Server
70

Scheduler
Test Case
Database

Push /
Daemon

Y 106

108

Test Result
Database

YY

120

Peer Messages;
Task Update;
Job Sync etc.

82- Machine 2

Execution
92 Agent

Local Test 74
Resuit ; 38

Database u/
Peer Messages; 86
Task Update; Machine 3
Job Sync etc.

96 Execution
Agent

Peer Messages;
Task Update;
Job Sync etc.

US 2005/0240931 A1 Patent Application Publication Oct. 27, 2005 Sheet 1 of 4

US 2005/0240931 A1

:??epdn » se L. :SaôesseW J33) eseqe?eG aSeO ?sa L

90 ||0/

Patent Application Publication Oct. 27, 2005 Sheet 2 of 4

Patent Application Publication Oct. 27, 2005 Sheet 3 of 4 US 2005/0240931 A1

122
Receive Run XML
from Push Daemon

126

Running
test? Yes

NO

Transform Run XML

130
Send PeerRun XML to Peers

132

128

Peer
running
test?

NO

138

Split XML, store files

140
Machines sequentially

execute tasks

144
Send updates to peers and

results to database

146
Reporting to central

database

FG. 3

Patent Application Publication Oct. 27, 2005 Sheet 4 of 4 US 2005/0240931 A1

Execution Agent

EaCreateRun Time EA HB

Run Manager
Run

152 MessageOelivery
92

Task1 Task2 Task3

(Peer Machine) Peer Messages,
Task Update;

104 Job Sync etc.

158
Execution Agent

EaCreateRun Time EA HB 156

90
Run M 150

Messagedelivery

life

164
154

(1st Machine)

FG. 4

US 2005/0240931 A1

SYSTEMAND METHOD FOR DYNAMIC
COOPERATIVE DISTRIBUTED EXECUTION OF
COMPUTERTASKS WITHOUTA CENTRALIZED

CONTROLLER

TECHNICAL FIELD

0001. This invention relates generally to the controlled
execution of tasks over a computer network, and more
particularly to a computer framework for cooperative auto
mated execution of distributed tasks by a set of computers
without a centralized controller.

BACKGROUND OF THE INVENTION

0002 Computer software and hardware operations, espe
cially those that involve complex interactions between dif
ferent computerS Such as those Supporting various network
ing protocols and distributed transactions, often have to be
extensively tested to ensure that they function properly.
Typically, to test a given type of computer interactive
operation, a Set of test computers are chosen to run a test
case that includes a Sequence of tasks to be performed by
different ones of the test computers in an interactive fashion.
In one conventional test framework, the execution of the
task Sequence of the test run is controlled by a centralized
test controller. The test control goes through the Sequence of
tasks one by one, instructs a corresponding test computer to
carry out one task, receives the result of the task, and
instructs another test computer to carry out the next task in
the sequence based on the outcome of the previous task.
0003. The use of a centralized controller to control the
automated execution of distributed computer tasks, how
ever, places a Significant constraint on the availability of test
computers. To enable the centralized control, each test
computer is required to form a communication link with the
centralized test controller to receive instructions and report
task execution Status and results. This requirement excludes
many computers that do not have the capability of forming
a direct network connection with the controller from being
used for distributed computer testing.

SUMMARY OF THE INVENTION

0004. In view of the foregoing, the present invention
provides a framework for automated dynamic execution of
distributed tasks by a set of computers without the need to
use a centralized controller to coordinate the execution of
the tasks. Although this framework is especially advanta
geous for the application of testing interactive computer
operations, it can also be used to carry out other types of
distributed tasks. In accordance with the invention, the
execution of a Sequence of tasks is coordinated through the
cooperation of the peer computerS Selected to perform the
tasks. Each computer has an execution agent for handling
the cooperative eXecution of the taskS. Task execution
instructions that identify the Sequence of tasks to be
executed and the corresponding computers that are to per
form the individual tasks are given to a first computer in the
Set of Selected computers. The first computer passes the task
execution information on to the other peer computers
involved in the distributed execution So that each computer
knows which tasks it is to perform in relation to the tasks of
the other computers. The execution agents of the computers
then communicate with each other for Status update and
Synchronize to execute the Sequence of taskS.

Oct. 27, 2005

BRIEF DESCRIPTION OF THE DRAWINGS

0005 FIG. 1 is a block diagram generally illustrating an
exemplary computer System on which an embodiment of an
execution agent for cooperative execution of distributed
tasks in accordance with the invention may be implemented;
0006 FIG. 2 is a schematic diagram showing an embodi
ment of a System that includes a set of computers for
cooperative distributed execution of tasks of a test run;
0007 FIG. 3 is a flow diagram Summarizing the opera
tion of execution agents on Selected computers in an
embodiment of the invention for automated execution of
distributed tasks without a centralized controller; and
0008 FIG. 4 is a schematic diagram showing the struc
ture of execution agents on the computers in the System of
FIG. 2 for carrying out the coordinated execution of dis
tributed tasks by the computers.

DETAILED DESCRIPTION OF THE
INVENTION

0009 Turning to the drawings, wherein like reference
numerals refer to like elements, the invention is illustrated as
being implemented in a Suitable computing environment.
Although not required, the invention will be described in the
general context of computer-executable instructions, Such as
program modules, being executed by a personal computer.
Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform par
ticular tasks or implement particular abstract data types.
Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer System
configurations, including hand-held devices, multi-proces
Sor Systems, microprocessor-based or programmable con
Sumer electronics, network PCs, minicomputers, mainframe
computers, and the like. The invention may be practiced in
distributed computing environments where tasks are per
formed by remote processing devices that are linked through
a communications network. In a distributed computing
environment, program modules may be located in both local
and remote memory Storage devices.
0010. The following description begins with a descrip
tion of a general-purpose computing device that may imple
ment components of a framework of the invention for
coordinated execution of distributed tasks by a Selected Set
of computing devices. The framework of the invention for
cooperative distributed task execution without using a cen
tralized controller will be described in greater detail with
reference to FIGS. 2-4. Turning now to FIG. 1, a general
purpose computing device is shown in the form of a con
ventional personal computer 20, including a processing unit
21, a System memory 22, and a System buS 23 that couples
various System components including the System memory to
the processing unit 21. The System buS 23 may be any of
Several types of bus Structures including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. The System memory
includes read only memory (ROM) 24 and random access
memory (RAM) 25. Abasic input/output system (BIOS) 26,
containing the basic routines that help to transfer informa
tion between elements within the personal computer 20,
such as during start-up, is stored in ROM 24. The personal
computer 20 further includes a hard disk drive 27 for reading

US 2005/0240931 A1

from and writing to a hard disk 60, a magnetic disk drive 28
for reading from or writing to a removable magnetic disk 29,
and an optical disk drive 30 for reading from or writing to
a removable optical disk 31 such as a CD ROM or other
optical media.

0.011 The hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are connected to the system bus 23 by
a hard disk drive interface 32, a magnetic disk drive inter
face 33, and an optical disk drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile Storage of computer readable instruc
tions, data Structures, program modules and other data for
the personal computer 20. Although the exemplary environ
ment described herein employs a hard disk 60, a removable
magnetic disk 29, and a removable optical disk 31, it will be
appreciated by those skilled in the art that other types of
computer readable media which can Store data that is
accessible by a computer, Such as magnetic cassettes, flash
memory cards, digital Video disks, Bernoulli cartridges,
random acceSS memories, read only memories, Storage area
networks, and the like may also be used in the exemplary
operating environment.

0012. A number of program modules may be stored on
the hard disk 60, magnetic disk 29, optical disk 31, ROM 24
or RAM 25, including an operating system 35, one or more
applications programs 36, other program modules 37, and
program data 38. A user may enter commands and informa
tion into the personal computer 20 through input devices
such as a keyboard 40 and a pointing device 42. Other input
devices (not shown) may include a microphone, joystick,
game pad, Satellite dish, Scanner, or the like. These and other
input devices are often connected to the processing unit 21
through a Serial port interface 46 that is coupled to the
System bus, but may be connected by other interfaces, Such
as a parallel port, game port or a universal Serial bus (USB)
or a network interface card. A monitor 47 or other type of
display device is also connected to the System buS 23 via an
interface, Such as a Video adapter 48. In addition to the
monitor, personal computers typically include other periph
eral output devices, not shown, Such as Speakers and print
CS.

0013 The personal computer 20 may operate in a net
worked environment using logical connections to one or
more remote computers, Such as a remote computer 49. The
remote computer 49 may be another personal computer, a
Server, a router, a network PC, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the personal com
puter 20, although only a memory storage device 50 has
been illustrated in FIG. 1. The logical connections depicted
in FIG. 1 include a local area network (LAN) 51 and a wide
area network (WAN) 52. Such networking environments are
commonplace in offices, enterprise-wide computer net
Works, intranets and the Internet.

0.014 When used in a LAN networking environment, the
personal computer 20 is connected to the local network 51
through a network interface or adapter 53. When used in a
WAN networking environment, the personal computer 20
typically includes a modem 54 or other means for establish
ing communications over the WAN 52. The modem 54,
which may be internal or external, is connected to the System
bus 23 via the serial port interface 46. In a networked

Oct. 27, 2005

environment, program modules depicted relative to the
personal computer 20, or portions thereof, may be Stored in
the remote memory Storage device. It will be appreciated
that the network connections shown are exemplary and other
means of establishing a communications link between the
computerS may be used.
0015. In the description that follows, the invention will
be described with reference to acts and Symbolic represen
tations of operations that are performed by one or more
computers, unless indicated otherwise. AS Such, it will be
understood that Such acts and operations, which are at times
referred to as being computer-executed, include the manipu
lation by the processing unit of the computer of electrical
Signals representing data in a structured form. This manipu
lation transforms the data or maintains it at locations in the
memory System of the computer, which reconfigures or
otherwise alters the operation of the computer in a manner
well understood by those skilled in the art. The data struc
tures where data is maintained are physical locations of the
memory that have particular properties defined by the format
of the data. However, while the invention is being described
in the foregoing context, it is not meant to be limiting as
those of skill in the art will appreciate that various ones of
the acts and operations described hereinafter may also be
implemented in hardware.
0016 Referring now to FIG. 2, the present invention is
directed to a new framework 70 for automated execution of
distributed tasks by a Selected Set of computers. In accor
dance with the invention, the Sequence of distributed tasks
is executed by the corresponding computers in an orderly
fashion through the cooperative interactions among the
computers. As a result, there is no need to use a centralized
controller to coordinate and control the progreSS of the
execution of the tasks. For simplicity of illustration, FIG. 2
shows only three computers 80, 82 and 86 in the machine set
88 for executing a given sequence of distributed tasks. It will
be appreciated, however, that the number of computers
required for carrying out a Sequence of tasks depends on the
particular Sequence.

0017. In a preferred embodiment as described below with
reference to FIG. 2, the distributed task execution frame
work of the invention is used for the application of auto
mated computer testing, and the following description will
refer to the context of executing tasks involved in a com
puter test run. It will be appreciated, however, that the
cooperative eXecution of distributed tasks of the invention is
not limited to testing applications, and can be used equally
well for executing other types of distributed taskS.
0018 To carry out the distributed tasks without the help
of a centralized controller, each of the computers 80, 82, 86
participating in the task execution is provided with an
execution agent (EA) 90, 92 or 96. The execution agent 90
is responsible for launching the assigned tasks on the test
machine 80 on which it resides, and for communicating with
the execution agents 92, 96 on the other test machines 82, 86
to coordinate the execution of the distributed tasks of a test
run. In one embodiment, the execution agent is implemented
as part of a dynamic link library (.dll) for computer testing.
The functionality of the execution agents will be described
in greater detail below.
0019. To facilitate the description of a preferred embodi
ment for computer testing operations, Some basic concepts

US 2005/0240931 A1

regarding automated execution by Selected machines as used
in the embodiment are first defined. Generally, a “task” is the
smallest unit of execution by a machine. A "job” is a list of
tasks, and a “run” is a list of jobs. A set of machines is
reserved for a run. All machines participate in the execution
of each job in the run even if they do not have any tasks of
the job or even if that job's logical-to-physical machine
mapping does not include that particular physical machine.
0020 AS implemented in the embodiment, there are three
different types of tasks. An "Exe' task is a command line
(anything that can be created as a process) to be executed.
A “Copyfile' task copies a list of files from a source to a
destination. A “RunJob' task has a pointer to another job. In
this context, the job being pointed to is called a “Subjob.”
which will be explained in greater detail below. The execu
tion of the Run.Job task is basically the execution of the
Subjob. When the execution agent encounters this task, it
finds the associated Subjob and executes it, and the tasks
pass/fail Status is determined by the Success/failure or the
Subjob. The common properties for all types of tasks include
the user name under which the task is run, the password for
the user name, the domain for the user credentials, and a
Failure Action property that Specifies the action to be taken
by the execution agent if the task fails. Each task also has a
TaskCategory property, which tells the execution agent what
kind of task it is. This property in combination with the
Failure Action property determines the course of action to be
taken upon the failure of the task. Also, one of the common
properties of the task is the “Logical Machine” to which the
task is assigned. The MachineName, which is the name of
the physical machine that is to actually execute the task, is
“found out” by using the LogicalMachine and the Logical
Machine To Physical Machine Mapping.
0021. In one implementation, there are five different
categories of taskS: SetupJob, Regular, Cleanup, Cleanup
Pass, and CleanupFail. The Setup.Job tasks are precursors to
the tasks that actually run the tests and may include any task
that is needed to Set up the machine, which can vary from
copying Source binaries to deploying an operating System.
The Regular tasks are the tasks that actually run the tests.
The Cleanup tasks are involved in any cleanup operation
that needs to be done regardless of the Success/failure of the
Setup and Regular tasks. The CleanuppaSS tasks are
involved in any cleanup operation that needs to be done
upon the non-failure of the Setup and Regular tasks. In
contrast, the CleanupFailure tasks are those that are involved
in any cleanup operation to be done upon the failure of the
job. Each task in any of the five categories can be of any type
(Exe, Copy, or Run.Job). As mentioned above, a “job” is a
list of tasks. The tasks in a job may belong to different
categories. Within the job the tasks are executed in the
following order: Setup, Regular, Cleanup, and then Clean
upPass or CleanupFail, depending on the Status of the job at
the end of the regular taskS.
0022. In accordance with a feature of a preferred embodi
ment, a task may be the execution of a “subjob.” A subjob
is basically the same as a job except for a few differences.
A subjob has a “parent” task (a Run.Job task) that refers to
it, and the Subjob is executed as part of running the parent
task within some other job, which is referred to as the
Parentlob in this context. When the list of tasks of a given
test run is given to the test machines, a Subjob may be
referred to without Specifying on which physical machines

Oct. 27, 2005

the Subjob is to run. In that case, the subjob will be executed
on the machine on which the parent task is Supposed to run.
On the other hand, if a mapping to a physical machine is
specified for a subjob, the subjob will be executed on that
machine.

0023 Generally, when a sequence of tasks is given to a
Set of test computers, the execution instructions may identify
the assignment of those tasks with respect to a set of logical
machines, and provide a mapping between the logic
machine Set to the physical machines Selected to carry out
the tasks. For instance, the instructions may state that task
number 5 is to be performed by logical machine A, which is
mapped to physical machines X and Y. In that case, further
Splitting of the tasks with respect to the physical machines
may be required. In one embodiment, if the logical machine
a task is Supposed to run is mapped into two or more
physical machines, the task is split into as many tasks to
have one task per physical machine. The Splitting is
achieved by making a copy of the task and changing the
MachineName property of the task to the name of the
physical machine that will run the task. If the task is a
Run.Job task that refers to a Subjob with mapping, the task
is not split, and the MachineName of the task is changes to
the list of machine names Specified by the Subjob's mapping.
If the Run.Job task does not Specify the logical-to-physical
machine mapping for the Subjob, then the Subjob is also split
with one Subjob per task. The task dependencies are adjusted
accordingly after the Splitting of the tasks

0024. To use the set 88 of test machines to execute the
Sequence of tasks for a test run, task execution instructions
are provided to one of the test machines. In the illustration
of FIG. 2, the computer 80 is used for that purpose. The task
execution instructions are generated by a test management
server 100, which includes a test case database 102 and
Scheduler 106. The scheduler 106 takes a test run and finds
a set 88 of available test machines for running the test case.
The test management server 100 further includes a push
daemon 108 for delivering the task execution instructions to
the group of test computers. If a network connection 118 is
formed between the push daemon 108 and the computer 80,
the push daemon may send the execution instructions to the
computer 80 via the network connection. Alternatively if
there is no network connection available between the test
management server 100 and any of the test computers 80, 82
and 86, the execution instructions may be loaded onto the
computer 80 using a transportable medium, Such as a
CD-ROM. The execution instructions identify the tasks and
the order in which they are to be executed, and which test
computer is to perform which task. In other words, the
execution instructions provide information for each test
computer involved in the test run to know what its tasks are
in relation to the tasks of the other computers. In accordance
with a feature of a preferred embodiment, the execution
instructions are provided in the form of an XML file or
document. The XML file allows easy viewing and editing
and provides a Standard format for the execution instructions
to be coded.

0025 Referring now to FIGS. 2 and 3, to initiate a test
run, the Push Daemon 108 of the test management server
100 sends a Run XML file 120 that contains the execution
instructions for a test run to the execution agent 90 on the
computer 80 in the Set of computerS Selected for executing
the test run (step 122). When the execution agent 90 of the

US 2005/0240931 A1

first computer 80 receives the Run XML document, it first
checks to see if it is already running any other test run (Step
126). If So, it rejects the message and exits the run process.
If it is not running any other test, it calls a EaCreateRunT
imeXML API function to transform the Run XML (step
128). This transformation involves splitting the tasks speci
fied in the Run XML document, adjusting the dependencies
of the tasks, and adjusting the Subjobs, if any. AS part of this
reformatting operation, the execution agent Splits the Run
XML into several smaller XML files, including one XML
file for each job of the test run and a global JobList XML file
that contains a list of all jogs of the test run. It also forms a
concatenated version of all of these XML files that is called
a “PeerRun XML.” The execution agent on the first machine
then identify the other machines involved in the run by
reading the list of the test machines from the Global Job List
XML, and sends the PeerRun XML file to each of the other
machines (step 130). When the execution agent on a peer
machine 82 receives the PeerRun XML 84, it recognizes the
document to be from the execution agent of the first
machine. If the peer machine is already involved in another
test run (step 132), its execution agent 92 returns an error
message to the first machine 80 (step 136). Otherwise the
execution agent of the peer machine Splits the concatenated
XML files and store them in the memory (step 138). Once
every machine involved in the test run receives the execu
tion instructions in the XML files, each test machine Starts
running the test jobs one by one Sequentially according to
the test XML files (step 140) and sends the results of the test
jobs to the test result database 72 In executing the tasks of
the test run, the execution agent of each test machine
communicate with all the execution agents of the other test
machines by Sending messages 104 that provide Status
updates to everyone (Step 144). They also Synchronize with
each other at the beginning of every run or job to make Sure
that all the machines Start at the Same time. If the machines
do not have direct network connections to the test result
database 72 of the test manager Server, the test results may
be sent to a local database 74. Once all the jobs of the test
run are completed, the test results collected by the local
database 74 may be sent to the database 72 of the test
management Server 100 for diagnoses and reporting.

0026. In a preferred embodiment, the execution agent has
Several important high-level features. First, the execution
agent can execute a job involving multiple peer test
machines. It accomplishes this by using peer-to-peer mes
Saging, whereby the execution agents running all the test
machines Synchronize with each other and receive the
up-to-date Status of what is happening on all the other test
machines.

0027. During the course of executing a job, a test
machine may be taken off the network. The execution agent
is programmed to Support Such a Scenario and will resume
communications with the other machines when its machine
comes back online. JobS can also span over reboots. To
handle that Scenario, the execution agent Stores its State
information on the file system of the local machine and will
recover its State when the machine reboots and resume
execution. The execution agent also Supports the installation
of an operating System on the local machine as part of the
test job. If the machine has multiple partitions, it also
Supports fresh installations of the operating System with
formatting and deploying an image in the machine. In that

Oct. 27, 2005

case, the execution agent will continue the execution of the
test run tasks after the new operating System boots up on the
machine.

0028. To ensure the reliability of the test results, the
execution agent is preferably built Such that any kind of
failure is either recovered or reported for follow-up. If one
of the test machines for a job is hung or out of reach for Some
reason, the execution agents on the other machines detect it
and cancel the current execution and report a failure. It also
takes care of hooking into the debugger for both user mode
and kernel mode breaks on the machines.

0029. The execution agent also provides functionality to
collect test and System information after the execution of the
job. Different information gathering commands can be
executed based on the outcome of the job. The job can
request for minimal logs to be gathered if the job passes and
for detailed logs to be captured if the job fails. Failure
actions are Supported by the execution agent. If any task in
the job fails, the job can request for many different kinds of
actions to be taken. The job can be canceled, and a set of
failure commands can be executed to collect information
about the System and the job for later diagnosis. The job can
also be defined to recover the machine back to a good State
if the failure leaves the test machine in a bad state. In this
case, the machines are recovered and returned to the avail
able test machine pool So that new test jobs can be assigned
to this machine.

0030 Tests can be defined in great detail. Apart from
giving the actual command line to be executed for an
executable task, the user can also specify the credentials of
which user account to run the task under. The user can also
Specify which computer is to be used as a monitor for
showing the process Status or to create a new monitor
Session for the task. The execution agent also Supports the
ability for any execution to be canceled at any point of time.
The cancel request is processed and passed on to all the peer
machines, and the cleanup processes are executed. The
machines are then returned back to the free machine pool for
further job assignments. The execution agent is incorporated
with error logging to the database for any kind of failures So
that all information is available from the user interface for
the user to diagnose the issues.
0031 Turning now to FIG. 4, in one implementation, the
execution agent 90 has Several major components. The Run
object handles a test run. If the run is a multi-machine
operation, and the machine on which the execution agent
resides is the first machine to be called with the Run XML,
the Run object 150 processes the Run XML to split it and
produce a series of smaller XML files to work with, and
sends the concatenation of all the processed XML files to the
other machines involved in the test run. On the other hand,
if the local machine is not the first machine as in the case of
the computer 82 and is instead receiving the concatenated
XML, the Run object 152 splits the concatenated XML and
stores the files. The Run object 150 or 152 then instantiates
Job objects 154, one for each job present in the test run, and
initialize them. The Job objects 154 are grouped according
to the execution phase they belong to (e.g., Setup, Regular,
and Cleanup). The Run object of each computer initializes
all common data by providing accessors for Job and Task
objects to access them, and executes the jobs in a Sequential
order according to the execution instructions in the XML

US 2005/0240931 A1

files. During the test run, the Run objects Synchronizes the
execution of each job in all the machines Such that at any
point of time all the machines involved run the same job.
The Run object of each computer also initializes and Starts
an EAHB object 154 for maintaining a “heartbeat” with all
the peer machines. The run is canceled upon failure of
heartbeat (i.e., the peer machine being unresponsive) for
three consecutive times. The Run object is also responsible
for Sending updates to the peer machines and the result
database at the beginning and completion of the run.
0032) The Job object 154 instantiates Task objects 160 for
each task of the run that is to be performed by the local
machine and initializes them. The Task objects 160 are
grouped according to the execution phase they belong to.
The Job object 154 manages the dependency between the
tasks, which involves executing only those tasks that do not
have any dependency (i.e., pending the completion of
another task) at that given time, and at the completion of a
task removing the dependencies from other tasks that have
dependency on this task. Generally, a job is a multi-ma
chined entity, and there is on Job object in each test machine
for each job. All the Job objects on the test machines talk to
each other to coordinate the task execution and dependen
cies. Each Job object Sends updates to the peer machines and
the database at the beginning and completion of the asso
ciated job.
0033. The Task object 160 is responsible for executing an
asSociated task in a specified user context and terminal
Session. It has the ability to cancel or kill the task, if needed.
The Task object 158 sends updates to the peer machines and
the database at the beginning and completion of the task.
0034. The Message.Delivery object 162 is responsible for
delivery of messages to the peer machines. It gets the routing
information from the Run XML and constructs the headers
to the peer machines and the database. To that end, it has to
exposed functions: SendMessageToPeers and SendMessag
eToSource. It also maintains a list of the peer machines for
reference.

0035) The EaCreateRunTimeXML object 158 is called
by the Run object 150 to process the input Run XML file and
splits the file into various smaller XML files as described
above. It also handles the mapping from logical machines to
physical machines for the tasks and Subjobs.
0036) The EA SDK objects are a group of APIs that are
used to interface with the execution agent. The EaCreate
function creates an instance of the execution agent. It takes
the Run XML as the input and returns a handle for the
execution agent. It is signaled on completion of the run. The
EaWaitForMultipleObjects is used to wait on the execution
agent handles. The Easignal function is used to Signal the
execution agent and to cancel the execution agent. The
EaQueryStatus function, when invoked, returns the Status of
the run at that point of time in an XML format. The EaClose
function closes the handle for the execution agent.
0037. In view of the many possible embodiments to
which the principles of this invention may be applied, it
should be recognized that the embodiments described herein
with respect to the drawing figures are meant to be illustra
tive only and should not be taken as limiting the Scope of the
invention. Therefore, the invention as described herein con
templates all Such embodiments as may come within the
Scope of the following claims and equivalents thereof.

Oct. 27, 2005

1-21. (canceled)
22. A computer-readable medium having computer-ex

ecutable instructions for coordinated execution of distrib
uted tasks comprising:

receiving by a peer computer in a group of at least one
peer computers a Set of execution instructions for the
peer computer, the Set of execution instructions iden
tifying a sequence of tasks to be performed by the peer
computer,

executing by the peer computer the tasks identified by the
Set of execution instructions in connection with execu
tion of any tasks assigned to other peer computers in the
group of at least one peer computers,

transmitting by the peer computer to any other peer
computers in the group of at least one peer computer
communication messages containing task execution
Status to Synchronize and coordinate the execution of
the taskS.

23. The computer-readable medium of claim 22 wherein
the Sequence of tasks to be performed constitutes a test run
of interactive computer operations.

24. The computer-readable medium of claim 22 wherein
the instructions include a job for executing a predefined Set
of taskS.

25. The computer-readable medium of claim 22 further
comprising execution instructions provided in an input XML
document.

26. The computer-readable medium of claim 22 having
further computer-executable instructions for the peer com
puter to report results of execution of the tasks to a database.

27. A method of performing coordinated execution of
distributed tasks by a group of peer computers, comprising:

receiving by a peer computer in a group of at least one
peer computer, a set of execution instructions for the
peer computer, the Set of execution instructions iden
tifying a sequence of tasks to be performed by the peer
computer,

executing by the peer computer the tasks identified by the
Set of execution instructions in connection with execu
tion of any tasks assigned to other peer computers in the
group of at least one peer computers,

transmitting by the peer computer to any other peer
computers in the group of at least one peer computer
communication messages containing task execution
Status to Synchronize and coordinate the execution of
the taskS.

28. The method of claim 27 wherein the sequence of tasks
to be performed constitutes a test run of interactive computer
operations.

29. The method of claim 27 wherein the execution
instructions include a job that executes a predefined set of
taskS.

30. The method of claim 27 wherein the execution
instructions are provided to the peer computer in an input
XML document.

31. The method of claim 27 further comprising reporting
results of execution of the tasks by the group of at least one
peer computer to a database.

32. A computing device for performing automated execu
tion of distributed tasks, the computing device comprising,

US 2005/0240931 A1

a peer computer, the peer computer connected by a
communication link to at least one other peer computer;

at least one execution agent residing on the peer computer,
the execution agent being programmed for receiving a
Set of execution instructions for the peer computer, the
Set of execution instructions identifying a Sequence of
tasks to be performed;

the execution agent capable of executing tasks assigned to
the peer computer and the peer computer transmitting
to the other peer computers communication messages
containing task execution Status to Synchronize and
coordinate the execution of the Sequence of tasks.

33. The computing device of claim 32 wherein the
Sequence of tasks to be performed constitutes a test run of
interactive computer operations.

34. The computing device of claim 32 wherein the execu
tion instructions include a job for executing a predefined Set
of taskS.

Oct. 27, 2005

35. The computing device of claim 32 wherein the execu
tion instructions are in an input XML document.

36. The computing device of claim 35 wherein the execu
tion agent of the peer computer is further programmed to
process the input XML document to derive the execution
instructions for Sending to other peer computers.

37. The computing device of claim 36 wherein the execu
tion agent of the peer computer is further programmed to
format the execution instructions as a Second XML docu
ment.

38. The computing device of claim 32 further including a
test result database, and wherein the execution agent of the
peer computer is further programmed for reporting results of
the execution of tasks to the test result database.

