
(19) United States
US 2012O290918A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0290918 A1
MELNYK et al. (43) Pub. Date: Nov. 15, 2012

(54) CONTENT ADAPTATION

(76) Inventors: Miguel MELNYK, Champaign, IL
(US); Suresh Bashyam, Sunnyvale,
CA (US); Andrew Penner,
Champaign, IL (US); John Rochon,
Champaign, IL (US); Kapil
Dakhane, Sunnyvale, CA (US)

(21) Appl. No.: 13/471,057

(22) Filed: May 14, 2012

Related U.S. Application Data

(62) Division of application No. 1 1/636,033, filed on Dec.
8, 2006, now Pat. No. 8,181,107.

SERVER

6O2.

EWECE

604

PARSNG AND
RAWRSNGE

ORIGINAL DOM TREE
SRUCTURE

610

JAWASCRIPT
ROCESSING

612
STYLENG

618

ReCIVING RESPONS
DATA FROM CONEN

DERMINING
WHETHER RESPONSE DATAS
TO BE ADAPTED FORMOBILE

CONTENT

STORMG THE
ADAPTED SUB-PAGES

PROVIDING MAN
ADAPTED SUB-PAGE
TO NOBE DEWCE

Publication Classification

(51) Int. Cl.
G06F 7700 (2006.01)

(52) U.S. Cl. .. 71.5/234

(57) ABSTRACT

A system includes a mobile device and an optimization
server. The mobile device is capable of transmitting request
data that includes a requested webpage and identification
data. The optimization server is configured to receive
response data that corresponds to the request data from a
content server, to adapt the response databased on the iden
tification data, and to transmit the adapted response data to the
mobile device.

PROVIDING
NECN-ADAPTE

RSPONS ATAO
MOBILE DEWCE

608

PAGENATING AN
SNAL SCREEM
TRANSFORMING

816

US 2012/O290918A1 15, 2012 Sheet 1 of 11 NOV. Patent Application Publication

|, "?IH

LNB LNO O LNB LNO O

ÕTT HEAHES NOI LVZIVNI LdO

??? ÅVNAELVE)
HOIABC] LNBITO

LNB LNO O

FIT BOIAEG EÐVIJOLS

00||

US 2012/0290918A1 Nov. 15, 2012 Sheet 2 of 11

LNB LNO O

Patent Application Publication

??'? HOLINOW ?TZ HOLINOIN LSETTOE}} 57?T EOLAECI EÐVAJOLS

?Žž EHOVO LNEJ NOO

Z?z HOIABOJ ETIGOW

??, 8O LINOWN

US 2012/O290918A1

?z? HHOVO LNB LNO O

HOIABOJ ETIEJOW

Nov. 15, 2012 Sheet 3 of 11

LNB LNOO

EOLABOJ EÐVHOLS

Patent Application Publication

Patent Application Publication Nov. 15, 2012 Sheet 4 of 11 US 2012/O290918A1

FIG. 4A

FIG. 4B

Patent Application Publication Nov. 15, 2012 Sheet 5 of 11 US 2012/O290918A1

RECEIVING
REQUEST FROM
MOBILE DEVICE

502

DETERMINING WHETHER THE
REGUEST IS FOR ANADAPTED

SUB-PAGE

504
COMMUNICATING
REOUEST DATA TO

CONTENT CACHE FOR
ADAPTED SUB-PAGE

514

EXTRACTING
DENTIFICATION DATA

FROM REQUEST DATA

506

COMMUNICATING
DENTIFICATION DATA TO
STORAGE DEVICE FOR

ADAPTATION PARAMETERS

508

FORWARDING THE
ADAPTED SUB-PAGE
TO MOBILE DEVICE

516

PROVIDING ADAPTATION
PARAMETERS TO

ADAPTOR

510

PROVIDING REQUEST
DATA TO CONTENT

SERVER

512

FIG. 5

Patent Application Publication Nov. 15, 2012 Sheet 6 of 11 US 2012/O290918A1

RECEIVING RESPONSE
DAA FROM CONTEN

SERVER

602

DETERMINING
WHETHER RESPONSE DATA IS
TO BE ADAPTED FOR MOBILE

DEWECE

604

PROVIDING
NON-ADAPTED

RESPONSE DATA TO
MOBILE DEVICE

608

PARSING AND
TRAVERSING THE

ORIGINAL DOM TREE
STRUCTURE

61O

PAGINATING AND
SMALL SCREEN
TRANSFORMING

616

CONTENT
STYING

614

JAVASCRIPT
PROCESSING

612

STORING THE
ADAPTED SUB-PAGES

618

PROVIDING MAN
ADAPTED SUB-PAGE
TO MOBILE DEVICE

620

Patent Application Publication Nov. 15, 2012 Sheet 7 of 11 US 2012/O290918A1

SAR
700

EXTRACTING JAVASCRIPT FROM
DOM
702

EXTRACTING THE LAST OF JAVASCRIP
OBJECTS FROMAWASCRIPT

704

STORING JAVASCRIP
OBJECS NAWAP

706

ExECUTING ONLOAD"
AWASCRIPT FUNCTIONS

708

GO TO NEXT NODE IN TREE
712

DETERMINING
WHETHER THE HTMLEMENT REFERENCES
JAWASCRIPT IN ONE OR MORE ATTRBUTES

14

DETERMINING
WHETHER THE JAVASCRIPTS eXECUTABLE

ON ANADAPTED SU3-PAG

716

TOKENZING THE JAVASCRIP
CREANGOENFERS

718

EXTRACNG LIST OF DENTIFEERS
HANACH GOBAL OBECNAME

22
UPDATING DePENDENCES EN

MA
724

TOKENzing THE STORING THE SOURCE CODE ECOMPLING THE GLOBAL
SOURCE COE INTO GOBA. OBEC MAP OBJECT NTO SOURCE CODE

730 728 726

DETERMINING
WHETHER SOrCE CODE refeRS

TO OER GOBA. OBJECTS

732

Dee RMINING
WHETHER ALL.HTML ELEMENTS

HAVE BEEN TRAVERSED

736

CONSTRUCTING THE
JAVASCRIPT SOURCE CODE FG 7

738

Patent Application Publication Nov. 15, 2012 Sheet 8 of 11 US 2012/O290918A1

START
800

EXTRACING DOM
TREESTRUCTURE

802

EXTRACTING COMPUTED STYLE PROPERTIES
806

DETERMINING
WHETHER ANY NODESSL
NEED TO BE EXTRACTED

808

SELECTING PARENT NODE AND
SETTING PARENT NOD'S STYLE
TOWARIA CURRENT STYLE

812

DETERMINING WHETHER
PARENT NODE AS

CHDREN TO TRAVERSE
816

DETERMINING
WHETHER ADDITIONAL

NODES REMAIN
828

DERMmmis WHETHER A.
OFFERENCE EXSS BETWEN
CURRENSTYE AND CHILD

NODE'S STYLE
818

ADDING CHILD
NODE OLS OF
CHDREN NODES
THAT SHARE THE
SAME STYLE

820

WRAPPING PreWOUS CHILDREN NODES IN
AN ENCOSURE TAG, SETTING CURRENT
CHILD NODE's STYLE TO CURRENT STYLE,
AND ANG CURRENT CHONOO
NWST OF CHRNS

822

INCLUDING STYLE VALUES
N PAGINAE PAGE THAT
CORRESPOND TO APPEED

CLASS NAMES

830

ASSOCATING THE CURRENT STYLE WITH
A NEW OR EXISING STYLE CLASS

824

FIG. 8

Patent Application Publication Nov. 15, 2012 Sheet 9 of 11 US 2012/O290918A1

START
900

RECEIVING ADAPTIVE PARAMETERS FROM
USERAGENT

902

IDENTIFYING CONTENT SECTIONS
904

TRANSFORMING DOM FOR SMALL
SCREEN RENDERING

906

ENCORPORATING CONTENT STYLE AND
JAVASCRIPT DATA

908

SERIALIZING DOM
910

BUILDING THE PRESENTATION UNITS
912

IDENTIFYING MENU CONTENT SECTIONS
914

ENCLOSING THE ADAPTED WEB PAGES
916

Patent Application Publication Nov. 15, 2012 Sheet 10 of 11 US 2012/O290918A1

START
1 OOO

LOCATING A KFORMD TAG
1002

SEARCHING FOR A <TR> OR <DV>
TAG WITH FORMELEMENTS NESTED

BELOW IT

1004

SAVING THE FIRST OCCURRENCE OF
THE KTR> OR <V& TAG

1006

SCANNING THE NODES CHILDREN
1008

DETERMINING
WHETHER THE FORM. TTLE IN THE FIRST
NODE DESCRIBES THE FORM ELEMENT

N THE SECOND NODE

1010
RE-ARRANGING THE FORMNODES
TO ASSOCATE THE FORM TITLES

WITH THEIR CORRESPONDING FORM
ELEMENTS

1012

FLATTENING THE NODE
1014

END
1018

FIG 10

Patent Application Publication Nov. 15, 2012 Sheet 11 of 11 US 2012/O290918A1

1100 FROMN-1
To u1 1102
DEPARTURE DATES - 1104
RETURN DATE - 1106

1114

1102

1112

1114

US 2012/O290918 A1

CONTENT ADAPTATION

RELATED APPLICATIONS

0001. This application is a divisional of U.S. application
Ser. No. 1 1/636,033, filed Dec. 8, 2006, titled “Content Adap
tation.” which is incorporated herein by reference.

BACKGROUND INFORMATION

0002. The Internet allows for vast amounts of information
to be communicated over any number of interconnected net
works, computers, and network devices. Typically, informa
tion or content is located at websites on one or more content
servers, and a user can retrieve this content using a user agent,
Such as a web browser, running on a client device. For
example, the user can input a webpage address into the web
browser or access a web link, which sends requests to the
server to access and provide to the user the content on the
respective website. This type of communication is commonly
referred to as “web browsing.”
0003 Web browsing is enjoyed by millions of users on the
Internet. Because web browsing has become so widespread,
many websites provide more complicated, enhanced visual
effects and features. These enhanced qualities are generally
directed towards a user viewing the website from a typical
computer, Such as a laptop, PC, etc.
0004 Mobile web browsing has gained some traction
because of the increased network speed, improved browsers,
more powerful devices, and better pricing plans. But signifi
cant challenges still remain for Internet browsing on a mobile
phone to become more popular among users. Some end user
challenges include the frustration over long download times,
the lack of accessibility, the lack of performance, and the lack
of usability. For example, it may take over a minute for a full
download of www.msn.com from a mobile phone on atypical
network without multipart encoding. Accessibility chal
lenges include the inability of WAP 2.0 browsers to render
rich HTML content; the lack of plug in support for rich
multi-media content; and the lack of support for DHTML
websites. Performance challenges include the large latency in
wireless networks, the discrepancies between uplink and
downlink bandwidth, and TCP limitations. Along with the
accessibility and performance issues, usability challenges
can include, among other things, attempting to fit a large
complicated page onto a small screen. In addition to these
challenges to the user, website developerS also face chal
lenges such as the lack of standards for defining the device
and the browsers capability, and the large test matrix of a
myriad device and browser combinations. For mobile web
browsing to become more readily operable for the user, these
issues must be addressed.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 FIG. 1 is a block diagram of an exemplary system.
0006 FIG. 2 is a block diagram illustrating an embodi
ment of the exemplary system of FIG. 1.
0007 FIG. 3 is a functional diagram illustrating an exem
plary communication flow for the exemplary system of FIG.
2.

0008 FIGS. 4A & 4B illustrate a Document Object Model
tree structure and a corresponding webpage.
0009 FIG. 5 is a flowchart representing the steps of an
exemplary method for processing request data.

Nov. 15, 2012

0010 FIG. 6 is a flowchart representing the steps of an
exemplary method for processing response data.
0011 FIG. 7 is a flowchart representing the steps of an
exemplary method for processing JavaScript coding.
0012 FIG. 8 is a flowchart representing the steps of an
exemplary method for providing content styling.
0013 FIG. 9 is a flowchart representing the steps of an
exemplary method for performing Small screen adaptation of
the original web page and paginating the response data.
0014 FIG. 10 is a flowchart representing the steps of an
exemplary method for performing form processing.
(0015 FIGS. 11A & 11B are block diagrams illustrating
the exemplary effects of form processing.

DESCRIPTION OF THE EMBODIMENTS

0016 Reference will now be made in detail to the exem
plary embodiments implemented according to the invention,
the examples of which are illustrated in the accompanying
drawings. Wherever possible, the same reference numbers
will be used throughout the drawings to refer to the same or
like parts.
0017 FIG. 1 is a block diagram of an exemplary system.
Exemplary system 100 can be any type of system that trans
mits data over a network, Such as a wireless network, Internet,
etc. For example, the exemplary system can include a browser
requesting access to content from content servers through the
Internet. The exemplary system can include, among other
things, a user agent 102, a client device 104, a gateway 106.
one or more networks 108,112, an optimization server 110, a
storage device 114, and one or more content servers 116-118.
0018 User agent 102 is a client application used with a
network protocol. For example, user agent 102 could be a web
browser, a search engine crawler, a screen reader, or a Braille
browser, and user agent 102 could be used to access the
Internet. User agent 102 can be a software program that
transmits request data (e.g., an HTTP/HTTPS/WAP/WAIS/
Gopher/RTSP request, etc.) to a web server and receives
response data in response to the request data. For example,
user agent 102 can send request data to content servers 116
118 for a particular file or object data of a web page by its
URL, and the content server of the web page can query the
object data in a database and can send back the object data as
part of the response data (e.g., HTTP/WAP response data) to
the user agent. This process continues until every object in the
web page has been downloaded to the user agent.
0019 Client device 104 is a computer program or hard
ware device that can access remote services. Client device
104 can receive request data from user agent 102, can transmit
the request data to the content servers, and can receive
response data in response to the request data. For example,
client device 104 can be Bytemobile Optimization Client
Software. In some embodiments, user agent 102 and client
device 104 can be housed in the same device, such as a
computer, a PDA, a cellphone, a laptop, or any device access
ing the Internet. In some embodiments, client device 104 can
be removed and its functionality can be included in user agent
102.
0020 Gateway 106 is a device that converts formatted data
provided in one type of network to a particular format
required for another type of network. Gateway 106, for
example, may be a server, a router, a firewall server, a host, or
a proxy server. The gateway 106 has the ability to transform
the signals received from client device 104 into signals that
network 108 can understand and vice versa. Gateway 106

US 2012/O290918 A1

may be capable of processing audio, video, and T. 120 trans
missions alone or in any combination, and is capable of full
duplex media translations.
0021 Networks 108 and 112 can include any combination
of wide area networks (WANs), local area networks (LANs).
or wireless networks Suitable for networking communication
Such as Internet communication.

0022 Optimization server (OS) 110 is a server that pro
vides communication between gateway 106 and content serv
ers 116-118. For example, OS 110 could be a Bytemobile
Optimization Services Node. OS 110 can optimize perfor
mance by enabling significantly faster and more reliable ser
vice to customers. OS 110 can include optimization tech
niques, which are further described below.
0023 Storage device 114 is a device that stores adaptation
parameters relating to the specifications of user agent 102 and
a device utilizing the user agent 102. In some embodiments,
storage device 114 can be included with OS 110, local to OS
110, or remote from OS 110. The stored adaptation param
eters can assist OS 110 in determining what kind of optimi
Zation techniques are provided to user agent 102 and the
device. Storage device 114 can be any type of device that
stores data.

0024 Content servers 116-118 are servers that receive the
request data from user agent 102, process the request data
accordingly, and return the response data back to user agent
102. For example, content servers 116-118 can be a web
server, an enterprise server, or any other type of server. Con
tent servers 116-118 can be a computer or a computer pro
gram responsible for accepting HTTP requests from the user
agent and serving the user agents with web pages.
0025 FIG. 2 is a block diagram illustrating an embodi
ment of the exemplary system of FIG.1. Mobile device 202 is
a wireless device that can include, among other things, user
agent 102 and/or client device 104. OS 110 may include,
among other things, a request monitor 210, a content cache
220, a response monitor 230, an adaptor 240, and interfaces
250, 260. As stated above, in some embodiments, storage
device 114 can be located within, local to, or remote from OS
110.

0026 Request monitor 210 can be a software program or a
hardware device that receives or intercepts the request data,
such as an HTTP request for a specific URL, from mobile
device 202. Request monitor 210 has the ability to extract
identification data, from the request data and to provide the
identification data to the storage device 114 in exchange for
adaptation parameters, which can be provided to adaptor 240
for future processing. Identification data can include, among
other things, the type of user agent and the type mobile
device, and the adaptation parameters can include data
describing the properties of the user agent and mobile device,
Such as screen size, etc. Request monitor 210 can also com
municate with the content cache 220 to provide stored
adapted response data (e.g., Sub-pages) to the mobile device
202. Further, request monitor 210 can transmit the request
data to content server 116 if the request data does not request
the adapted response data.
0027. Response monitor 230 can be a software program or
a hardware device that receives response data from content
server 116. After receiving the response data, response moni
tor 230 provides the content data to adaptor 240, which adapts
the response data for mobile device 202. Depending upon
whether the response data is to be adapted for the mobile

Nov. 15, 2012

device, response monitor 230 can provide either the response
data or the adapted response data to mobile device 202.
0028 Adaptor 240 can be a software program or a hard
ware device that receives the response data from response
monitor 230 and adapts the response data in accordance with
the adaptation parameters received from request monitor 210.
This adaptation process will be further described below.
Adaptor 240 can provide the adapted response data to
response monitor 230 and/or content cache 220. In some
embodiments, the adapted response data includes a main
adapted Sub-page and Subsequent adapted Sub-pages. The
main adapted Sub-page could be provided to the response
monitor 230, which provides it to mobile device 202 for
downloading and displaying. These Sub-pages could be
stored at content cache 220 for future referencing.
0029 Content cache 220 is a device that stores adapted
response data (e.g., adapted Sub-pages) for future referenc
ing. Content cache 220 can provide this adapted response data
to request monitor 210, which can provide the adapted
response data to mobile device 202 without having to re
request response data from content server 116. Content cache
220 can also provide adapted response data to response moni
tor 230, which transmits this data to mobile device 202. In
some embodiments, content cache 220 can directly provide
the adapted response data to mobile device 202.
0030 Interfaces 250 and 260 are software programs or
hardware devices that communicatively couple OS 110 with
mobile device 202 and content server 116 through wired or
wireless communication means. Each interface has the ability
to communicate with the elements of OS 110, translate the
communication so that the communication means can utilize
the data, and transmit the translated communication across
the corresponding communication means. In some embodi
ments, interfaces 250 and 260 can include encryption means
and/or decryption means to encrypt communications leaving
from and decrypt communications coming into OS 110.
0031 FIG. 3 is a functional diagram illustrating an exem
plary communication flow in the exemplary system of FIG. 2.
It is assumed for the purposes of explaining this exemplary
communication flow that the request data corresponds to a
request for a URL and that content cache 220 has not stored
any adapted response data corresponding to the requested
URL. Further, while the exemplary communication flow
illustrates OS 110 providing the content adaptation, in some
embodiments, the user agent may include additional compo
nents to locally assist the content adaptation process by trans
ferring or further translating the adapted information.
0032. The user inputs a URL into a user agent of the
mobile device 202. Mobile device 202 then transmits (302)
the request data to OS 110. The request data can include,
among other things, the requested URL and identification
data identifying the mobile device and the type of user agent
on the mobile device. The request data can be directed explic
itly to a gateway or proxy and then to OS 110, or it can be
directed to content server 116 and the request can be inter
cepted transparently by an inline proxy or gateway.
0033 Request monitor 210 extracts the identification data
from the request data and then transmits (304) the identifica
tion data to storage device 114. Responsive to the identifica
tion data, storage device 114 returns (306) adaptation param
eters to request monitor 210. In some embodiments, the
adaptation parameters may include, among other things, the
following data:

US 2012/O290918 A1

Adaptation parameters

JavaScript support
Screen width
Screen height
Markup language
Color depth
Maximum bytes per page

Maximum images per page

Maximum links per page

Font-size support
Font-family support
Preferred font-family
Minimum fontsize

Maximum fontsize

Number of available font
sizes
HTML table support

Meaning Use

whether the device supports JavaScript
usable screen width in pixels
usable screen height in pixels
usually XHTML or XHTML/MP
bit-depth used for image transcoding?byte-reduction
devices generally have problems when the page size
exceeds this limit
some devices have problems when the number of
images exceeds this limit
few devices have problems when the number of links
exceeds this limit
whether variable font-sizes can be used
whether variable font-families can be used
default font-family of the device
the smallest size where differences in fontsize are no
longer rendered
the largest size where differences in fontsize are no
longer rendered
how many different fontsizes can be specified between
min and max where each fontsize is rendered differently
whether the browser can render tables

Nov. 15, 2012

Previous sub-page soft-key
“Previous sub-page' action

Next sub-page soft-key
“Next Sub-page' action

Top of page soft-key
“Top of the page action

Bottom of page soft-key
“bottom of page action

The key number in the handset keypad to link to the

The key number in the handset keypad to link to the

The key number in the handset keypad to link to the

The key number in the handset keypad to link to the

Referring page soft-key The key number in the handset keypad to link to the
“Previously viewed site' action

Maximum URL length Some devices cannot handle long URLS
Maximum HTML title length Used to chop title for browser which don't manage long

titles properly
User Agent Used for device-specific adaptations

0034. Upon receiving the adaptation parameters, request
monitor 210 can forward (308) the adaptation parameters to
adaptor 240 for future referencing. In some embodiments,
adaptor 240 receives the identification data from request
monitor 210, stores it, and exchanges the identification data
for the adaptation parameters located in storage device 114.
0035. After communicating with adaptor 240, request
monitor 210 forwards (310) the request data to content server
116. Subsequently, content server 116 provides (312)
response data (e.g., HTTP response), associated with the
request data, to response monitor 230 of OS 110. The
response data can include, among other things, an HTML
document, a Cascaded Style Sheet Files, and one or more
JavaScript files, all of which constitute the requested
webpage. These web pages include a collection of nested
HTML elements, represented by tags. The OS 110 can utilize
a parser to create a data structure that stores the tags found in
the HTML document for accessing and manipulating each
individual element in the HTML document. Because HTML
tags can be nested, this data structure is likely to be in the form
of a tree.

0036. The Document Object Model (DOM) interface is a
standard method to access this tree-like data structure, com
monly referred to as the DOM tree of the HTML document,
and represents the requested web page. The embodiments
described herein generally assume a DOM tree as the input,
but it would be readily appreciated by one of ordinary skill in
the art that any other type of data structure representing a web
page can be used. Further, it would be readily appreciated by

one of ordinary skill in the art that any other method for
accessing and traversing the elements in the webpage can be
used.
0037. The following sample HTML document illustrates
Some key concepts:

<html>
<head>

<title> The Document Title </title>
</head>
<body>

<div>
<h1> A section header </h1 >
<p a paragraphsip

<div>
 <p> Another Paragraph < p >

</body>.
</html>

For example, FIG. 4A illustrates a very simplified DOM tree
structure that represents the sample HTML document. In this
DOM tree structure, node 400 is the root node and is also the
parent node of child nodes 402,414. An exemplary embodi
ment could be that root node 400 has an <HTMLD tag, which
identifies root node 400 as being written in HTML. Further,
node 402 includes a <Body> tag and node 414 includes a
<Head> tag. The <Body tag encloses the actual, visible
content of the HTML document, and can be used to define
style properties that apply to the entire document, such as the
background image, the text, the link, and the visited link

US 2012/O290918 A1

colors. The <Head> tag encloses special tags bearing infor
mation about the document itself. Node 414 has a child node
416, a descendent of both node 400 and node 414. For this
particular example, node 416 includes a <Title> tag, which
identifies the node having the title of the page at the head of
the document. Node 402 links to nodes 404, 410, which are
both descendents of node 402 and 400. In this example, node
404 is a <div> tag that encloses aheader <h1 > tag (node 406)
and a paragraph <p> tag (node 408) while node 410 is a
 tag used to apply style to the "another paragraph'<p>
tag in node 412. Ultimately, each node in the DOM tree may
be displayed, or rendered for a computer screen by using the
style information provided in the webpage's CSS files. As a
result of the rendering process, each node in the DOM tree can
have geometric and style properties. For example, the render
ing process of the data tree structure provided in FIG. 4A
could produce the exemplary webpage provided in FIG. 4B.
FIG. 4B provides the corresponding reference numbers that
relate to the data tree structure provided in FIG. 4A and the
sample HTML document provided above.
0038 Referring back to FIG. 3, if adaptation is required,
response monitor 230 provides (314) the response data to
adaptor 240, which adapts the response data for mobile
device 202 based on the adaptation parameters provided in
step 308. Adaptor 240 traverses the DOM tree structure, to
create adapted request data that would maintain the look and
feel of the originally requested webpage. This adaptation can
also include content styling, JavaScript processing, Small
screen adaptation, and paginating the response data, wherein
paginating includes, among other things, separating the
request data into several Sub-pages because the screen and/or
user agent on the mobile device may not be able to accom
modate the entire webpage. For example, if a user requests
cnn.com, the entire cnn.com webpage could not be displayed
on the phone because the download would take too long
and/or the mobile device's memory could not be sufficient to
accommodate all of the information. Paginating would allow
cnn.com to be broken up into several Sub-pages while still
maintaining the look and feel of the original page.
0039. If the adaptor creates several sub-pages, the adaptor
can determine the adapted main Sub-page and the Subsequent
Sub-pages. For example, referring back to the cnn.com
example, the breaking news section of cnn.com could be the
adapted main Sub-page while the latest news tab box, the
menu items, etc. could all be in the same or different sub
pages. As will be explained later, the Sub-pages can include
header and footer data that link to prior and Subsequent Sub
pageS.

0040. By creating these sub-pages, adaptor 240 assists
mobile device 202 because mobile device 202 does not have
to download the entire webpage. If the adapted response data
includes one or more Subsequent Sub-pages, adaptor 240 can
forward (316) these one or more Subsequent Sub-pages to
content cache 220 to be stored for future referencing. If the
Sub-page is the adapted main Sub-page, adaptor can forward
(318) the adapted main sub-page to response monitor 230,
which forwards (320) the adapted main sub-page to mobile
device 202 for downloading and displaying. In some embodi
ments, adaptor 240 can forward the adapted main sub-page to
response monitor 230 at step 318 prior to forwarding the
subsequent sub-pages to content cache 220 at step 316. Fur
ther, in some embodiments, adaptor 240 can bypass forward
ing the adapted main Sub-page to response monitor 230 and
can directly forward it to the mobile device 202 itself.

Nov. 15, 2012

0041. The user can then view the adapted main sub-page at
mobile device 202. If preferring to view a subsequent sub
page, a user can request this Sub-page by linking to it through
a footer on the bottom of the downloaded main Sub-page.
Then, mobile device transmits (322) the request data, which
includes the request for the subsequent sub-page, to OS 110.
0042. Request monitor 210 receives the request data and
analyzes it to determine whether the request data includes a
request for new content data or for another Subsequent Sub
page. In this particular case, request monitor 210 determines
that the request is for another Sub-page. Because of this deter
mination, request monitor 210 communicates (324) the
request to content cache 220 for the requested adapted sub
page. Upon receiving the adapted Sub-page, request monitor
210 can forward (326) it to mobile device 202 for download
ing. In some embodiments, one of ordinary skill in the art
would appreciate that content cache 220 can forward the
cached adapted sub-page directly to mobile device 202.
0043 FIG. 5 is a flowchart representing an exemplary
method for processing request data. It will be readily appre
ciated by one of ordinary skill in the art that the illustrated
procedure can be altered to delete steps or further include
additional steps. After initial start step 500, an OS receives
(502) request data from a mobile device.
0044. After receiving the request data from mobile device,
the OS determines (504) whether the request is for an adapted
sub-page. If so, the OS communicates (514) the request data
to the content cache for the particular adapted Sub-page cor
responding to the request data and then forwards (516) the
particular Sub-page to the mobile device for downloading and
displaying. After the forwarding, the method can proceed to
connector 518 and then end (520).
0045. On the other hand, if the request data does not cor
respond to a request for an adapted Sub-page, the request data
corresponds to a request for content data (e.g., HTTP content)
resulting in the OS extracting (506) identification data from
the request data. The identification data provides a sequence
of alphanumeric symbols that include data about the mobile
device type and the user agent type. The OS communicates
(508) the identification device to a storage device in exchange
for adaptation parameters (e.g., the adaptation parameters
provided in the chart above), which assist the OS in determin
ing how to adapt the content data for the requesting mobile
device. Upon receiving the adaptation parameters, the OS can
provide (510) the adaptation parameters to the adaptor for
future processing.
0046. The OS can then transmit (512) the request data to a
content server where the content server transmits response
data to the OS, the response data including content data
corresponding to the request. In some embodiments, the OS
can add additional parameters to the request data to ensure
that the content server will reply with a webpage. In some
embodiments, transmission step 512 can be located between
extraction step 506 and communication step 508. After the
transmission, the method can proceed to connector 518 and
then end (520).
0047 FIG. 6 is a flowchart representing an exemplary
method for processing response data. It will be readily appre
ciated by one of ordinary skill in the art that the illustrated
procedure can be altered to delete steps or further include
additional steps. After initial start step 600, an OS receives
(602) response data from a content server.
0048. After receiving the response data, the OS deter
mines (604) whether the response data is to be adapted for the

US 2012/O290918 A1

mobile device. For example, some websites, such as Google,
are mobile-aware, and provide a response already adjusted
specifically for mobile devices and hence, may not need the
adaptation process. In some embodiments, mobile-aware
response data may still require adapting by the OS. If the
request data is not to be adapted, the OS can transmit (608) the
non-adapted response data to the mobile device for down
loading. After the transmission, the method can proceed to
connector 622 and then end (624).
0049. On the other hand, if the response data is to be
adapted for the mobile device, the OS parses and traverses
(610) an original DOM tree structure of the response data
(e.g. HTTP response data). As a result of the parsing, the OS
can provide a DOM tree that can be traversed to perform at
least one of the following for adaptation: JavaScript process
ing (612), content styling (614), and paginating and Small
screen transforming (616), which will be further described in
FIGS. 7, 8, & 9, respectively. These adaptation processes can
work together or operate as a single standalone process.
These adaptation processes can alter a webpage provided by
the response data to be broken down into several Sub-pages,
which can include a first adapted main page and/or one or
more subsequent adapted sub-pages. The OS caches (618)
these one or more adapted Sub-pages for future referencing
and provides (620) the adapted main adapted page to the
mobile device for downloading. If the user at the mobile
device requests one of these adapted Sub-pages, the OS can
provide them to the mobile device without having to re
request the data from the content server. In some embodi
ments, where only one main adapted page was created from
the original web-page, the method can bypass storage step
618. After the providing step, the method proceeds to con
nector 622 and then ends (624).
0050 FIG. 7 is a flowchart representing an exemplary
method for processing JavaScript coding. This particular
example is concerned with sending JavaScript code and its
relevant execution context state information in the adapted
Sub-page(s) to retain key JavaScript functionality in the
adapted sub-page to be provided to the mobile device. This
exemplary method effectively provides a “snapshot' and
transfers the execution context to the mobile device browser.
In this example, JavaScript functionality considered critical
relates to the animation and processing of HTML forms and
tab boxes. This exemplary method can be extended to pre
serve other types of functionality. It will be readily appreci
ated by one of ordinary skill in the art that the illustrated
procedure can be altered to delete steps or further include
additional steps or functionality. It is assumed for purposes of
this method that upon receiving the response data, an OS
creates a JavaScript Engine to prepare the JavaScript Execu
tion Context according to Standard JavaScript Specifications,
summarized herein at steps 702 to 708.
0051. After initial start step 700, the OS extracts (702) all
JavaScript code and references from the original DOM tree
structure and any related JavaScript files to build the JavaS
cript Execution Context (JSContext). The JSContext provides
a list of all JavaScript objects defined in the global scope of
the requested web page. This list includes objects of user
defined type, objects of built-in type (data, string, etc.), native
objects exposed to JavaScript (document, window, etc.), and
special objects, such as functions. Then, a JSProcessor
extracts (704) the list of JavaScript objects from the JSCon
text and stores (706) them as keys in a global object map. In
Some embodiments, native objects are not included in the

Nov. 15, 2012

global object map because these objects can be provided by
the user agent's JavaScript implementation. Once the web
page is fully loaded and the JS execution context (JSContext)
is built, the JSProcessor executes (708) all “onload” JavaS
cript functions. Onload JavaScript functions perform addi
tional downloads, initialization, and formatting of the
webpage. After onload Script execution, the web page reaches
a static state and usually waits for user interaction.
0052. Then, the OS can begin traversing the DOM tree
structure by traversing (712) the next non-traversed node
(e.g., first designated node). During the DOM tree traversal,
the OS examines each DOM node, which represents an
HTML element, to determine whether it references JavaS
cript objects, and if so, whether those JavaScript objects will
be needed in the adapted page to retain desired functionality.
The OS determines (714) whether the current HTML element
node in the DOM tree structure being visited references Java
Script in one or more of its attributes. For example, a node
meeting this first condition can include an anchor tag, with an
<href> attribute, containing a JavaScript function call and a
select tag with an onchange attribute containing actual Java
Script. If the attributes do not reference JavaScript, the
method proceeds to connector 734 and the method further, if
needed, traverses the next node within the DOM tree struc
ture

0053. On the other hand, if the attributes refer to JavaS
cript, the OS determines (716) whether the JavaScript object
(s), referenced by this HTML element node, are necessary
(and can be executed) in the resulting adapted sub-page to
retain the desired functionality. This determination involves
the OS determining whether at least one of the following can
be satisfied: this DOM node is located in a DOM sub-tree
marked for direct copy (e.g., as a result of a tab box preser
vation technique further described below); this DOM node is
a descendant of a form node; this DOM node is form-related
even though it may not be inside a form (select, input, etc.);
and this DOM node includes any other criteria related beyond
tab-box and form processing (if used as an extension of this
exemplary method). If none of these conditions are met, the
method proceeds to connector 734 and the method, if needed,
further traverses the DOM tree structure. Otherwise, if at least
one of these conditions is met, then the JavaScript object(s)
should be provided in the adapted page, and this object, as
well as all the objects referenced during its execution, should
be extracted from the global map and sent in the adapted page.
0054 For this purpose, the OS can build an object depen
dency graph, which identifies the relationship of the current
object to other objects in the global map, during the DOM tree
traversal. Steps 718 to 732 refer to building this dependency
graph and extracting the JavaScript code to be included in the
adapted Sub-page(s). These steps are exemplary and may vary
in different embodiments to achieve the objective of retriev
ing JavaScript code required to continue the execution in the
adapted page. The dependency graph in this case is imple
mented as a set (a type of data structure). In addition, the
“class' and “id' attributes (if any) of this HTML element are
retained in the adapted page.
0055. Next, the OS parses the JavaScript found in the
attribute value for any reference to objects in the global map.
To begin the parsing, the OS tokenizes (718) the JavaScript
code (e.g., by using the JavaScript Engine's lexical scanner)
into a list of identifiers. After the tokenization, the OS extracts
(722) the identifiers matching the JavaScript object in the
global object map. The identifiers that match a global object

US 2012/O290918 A1

name are added (724) to the current DOM node's dependency
set, which stores global object names that this JavaScript
depends upon. The OS decompiles (726) the global object
into source code, which provides a Snapshot of the global
object at this instant in time. The OS then stores (728) this
Source code in the global object map at an entry correspond
ing to the global object's name. Next, the OS tokenizes (730)
this source code to determine if it references other global
objects by looking up the identifier tokens in the global object
map.
0056. After tokenizing this new fragment of source code,
the OS determines (732) whether the source code references
other global objects by looking up identifiers in the global
object map. If so, the process is iterated by proceeding to
connector 720 until no more dependencies are found. After
decompiling and tokenizing a global object, any dependen
cies found during the recursive dependency search are cached
in the object's dependence set. If an object, whose dependen
cies were already processed, is queried again during a Subse
quent recursive dependency search, a cached dependence set
is used, avoiding the re-processing. The following example
illustrates dependency caching. Suppose there are two HTML
elements in the original document and the objects in the left
column are defined in the global scope of this document as
well.

0057 HTML Element 1: <input onmouseover-alert
(y) >

0058 HTML Element 2: <select onchange="foo() >

Dependence Dependence
Sets After HTML Set After HTML

Global Object Element 1 Element 2

war x = 5
vary = x + 10 X X (cache hit)
bar() { alert(y – 2) X, y
foo() { bar()} bar, x,y

0059. Notice that the alert identifier would be after
decompiling and tokenizing bar. The alert function (ob
ject) is provided by the native implementation. Thus, in some
embodiments, this non-native object is not included in the
dependency sets because it is assumed that the target device
will provide this object.
0060. This example also illustrates the concept of taking a
snapshot of the execution context. For example, variable X
holds the value 5. To continue the execution in the target
device, the current value of x will be needed for the JavaScript
application to work properly. The de-compilation step at step
726 can provide JavaScript code that would set the variable to
the value it had at snapshot time. If determination step 732
determines that the source code refers to other global objects
on the map, the method proceeds to connector 720 for further
decompiling, storing, and tokenizing the remaining objects.
0061. On the other hand, if the source code does not refer
to other objects in the global object map, the OS determines
(736) whether all DOM nodes have been traversed in the
original DOM tree structure. If not, the method proceeds with
the traversal of the original DOM tree by advancing to con
nector 708 and the next DOM node is traversed.
0062 On the other hand, if the traversal has reached the
root node, the OS constructs (738) JavaScript source code.
This construction can occur during a serialization function
(provided in FIG.9) used for preparing the final HTML code
to be sent, managing the dependency sets for each HTML

Nov. 15, 2012

element in the DOM tree structure and merging them (elimi
nating duplicates between DOM sub-trees) as the DOM tree
representing a Sub-page is traversed bottom-up. Serialization
is performed in several bottom-up traversals (one for each
identified Content Section), and once these traversals reach
the root node, the merged dependency graph represents all
global objects on which the entire DOM tree is dependent.
Constructing the adapted Source code involves querying each
name in the merged dependency set provided in the root DOM
node of each content section. The Source code for each object
(which has already been stored for these objects) is returned
and appended to the Sub-page being prepared for output to
mobile device for all the content sections included in the
sub-page (the appending is provided in FIG. 9 at step 916).
The resulting source code for all required objects can compile
into a state identical to the state of the original document after
onload scripts have been executed—without any of the origi
nal onload Scripts present in the resulting document—result
ing in a transfer of the execution context to the mobile device.
After constructing the final JavaScript code, the method can
end 740.
0063 FIG. 8 is a flowchart representing an exemplary
method for content styling. It will be readily appreciated by
one of ordinary skill in the art that the illustrated procedure
can be altered to delete steps or further include additional
steps. Providing this content styling process to the resulting
Small-screen adapted content structures helps an OS signifi
cantly reduce the bytes of Cascading Style Sheet (CSS) infor
mation while preserving the original look and feel of the
original webpage. Of the numerous CSS properties that can
be applied to an HTML tag of the DOM tree structure, this
method defines a Subset of essential style properties affecting
the rendering and displaying of HTML elements to retain the
look and feel of the original content in the Small-screen
adapted content. For example, the essential properties may
include, among other things, the following:

0.064 font-style The font-style property sets the style
of a font (italic, oblique).

0065 font-variant The font-variant property is used
to display text in a small-caps font, which means that all
the lower case letters are converted to uppercase letters,
but all the letters in the small-caps font have a smaller
font-size compared to the rest of the text.

0.066 font-size The font-size property sets the size of
a font.

0067 font-weight The font-weight property sets how
thick or thin characters in text should be displayed (often
used to bold characters).

0068 font-family. The font-family property is a pri
oritized list of font family names and/or generic family
names for an element. The browser will use the first
value it recognizes.

0069 text-decoration. The text-decoration property
decorates the text.

0070 text-transform. The text-transform property
controls the letters in an element.

0071 background-color The background-color prop
erty sets the background color of an element.

0.072 color The color property allows authors to
specify the color of an element.

0.073 display The display property sets how/if an ele
ment is displayed.

0.074 width. The width property sets the width of an
element.

US 2012/O290918 A1

0075. The essential properties can be the only properties
considered by the style application method. But there can be
exceptions programmed into the OS, wherein an exception
may include the styling of tab boxes in which all CSS prop
erties explicitly set in the original page are transferred to the
adapted page.
0076. By applying these retained properties to the result
ing content sections of the DOM trees during the serialize
stage, a significant portion of the original's page style can be
achieved. The OS can discard the layout-specific CSS prop
erties, thereby significantly reducing the amount of data
transmitted to and downloaded at the mobile device.
0077. The first stage in the style application process
extracts the essential CSS style properties from each HTML
element to be included in the adapted page. Extraction can be
performed during the traversal of the original. DOM tree,
simultaneously with JavaScript processing, flattening, etc.
After initial start step 800, to begin the extraction process the
OS begins extracting (802) the DOM tree structure. Upon
reaching a node, the OS extracts (806) the essential computed
CSS style properties from this node during the traversal of the
DOM tree structure, saves the CSS style properties to a style
structure, and copies the structure to this node's children
nodes. The OS next determines (808) whether any nodes still
need to be extracted. If so, the method proceeds to connector
804 to extract additional nodes; otherwise, the OS begins the
second stage of content styling.
0078. The second stage of content styling involves apply
ing the appropriate style to each node. This function occurs
during a serialization process (further explained below in
FIG. 9) that creates actual HTML code for each content
section being serialized. Style application can be performed
differentially by including an HTML code imposing style
when a change in style is detected. The method for applying
style changes tries to incorporate the inheritance features of
HTML CSS, and can be applied in the following exemplary
ways:

0079. When a change in a background color needs to be
applied, the OS wraps all contiguous DOM nodes shar
ing the same style within a <DIV> tag thereby forcing
the style change.

0080. If background color change is not necessary, the
OS uses a <SPAND tag that forces the new style prop
erties to wrap contiguous nodes with the same style.

I0081 Style is applied directly to each node (without
using inheritance) in the following cases:
I0082 (1) the tag of the node is a h1-hô tag:
I0083 (2) the tag of the node is an <anchord tag being
provided to an openwave browser because these tags
have trouble inheriting style;

I0084 (3) the node is a preformatted node resulting
from the layout preservation Small screen adaptation
process; or

I0085 (4) the tag of the node is a tag that cannot be
directly wrapped within a or <div> tag (e.g.,
an <option> tag).

I0086. The second stage is conducted on each of the
adapted Content Section DOM trees, in a bottom-up fashion
during serialize step in FIG. 9. In the particular embodiment
explained in FIG. 8, the method assumes that all stored style
properties for each node contain absolute style values (i.e.
“background-color-blue', and therefore, in addition to the
differential style application, the method includes the detec
tion of style changes between a parent node and its children).

Nov. 15, 2012

The method can be modified to cover other cases as well. To
begin the second stage, the OS selects (812) a parent node and
sets the parent node's style as the variable CurrentStyle. After
setting the variable, the OS determines (816) whether the
parent node has any children nodes to traverse.
I0087. If the parent node has children nodes to traverse, the
OS further determines (818) whether a difference exists
between the CurrentStyle and the child node's style. For
determining the difference, the OS specifies the style content
by defining classes. One class is defined for each style prop
erly: value pair that is found necessary to be applied at Some
point to force a desired style change. Classes are created on
demand during the serialization process as changes in style
are found, and are used in enclosure tags (<div> or
tags) for inheritance, or applied directly as discussed above. If
a difference does not exist, the OS adds (820) the child node
to the list of children node that share the same style and the
method proceeds through connectors 826826 and 814 to
determination step 816.
I0088. On the other hand, if a difference exists, OS wraps
(822) the previous children nodes in an enclosure tag, sets the
current child node style to CurrentStyle, and adds the current
child node to a new list of children nodes. For example, the
enclosure tag can be a <div> tag or a tag. Then, the OS
associates (824) the CurrentStyle with either a new or an
existing style class. If the CurrentStyle is a new style, the OS
could create a style class name; add that style value to a global
index and future nodes having the same or similar styles could
be added to this class name; and apply the class name to the
enclosure tag. Otherwise, if this nodes style value is the same
as or similar to an existing style value, this node could be
added to the pre-existing class name associated with the exist
ing style value.
I0089. If the parent node does not have any remaining
children to traverse in determination step 816, the OS further
determines (828) whether additional nodes remain to be
enclosed or wrapped. If so, the method proceeds to connector
810 and then selection step 812; otherwise, the OS includes
(830) the style values in a paginated sub-page that corre
sponds to the applied class name. When an adapted Sub-page
is constructed, all classes used to style the content sections
enclosed in the Sub-page are explicitly included inside the
page's<style> tag. After the including step, the method can
proceed to end (832).
0090 FIG. 9 is a flowchart representing an exemplary
method for transforming the original webpage into a set of
Sub-pages. These Sub-pages bear the relevant content of the
original webpage in an order that is best Suited for viewing in
a mobile device; are formatted to fit the small screen of a
mobile device; and fit in the available memory of the mobile
device. It will be readily appreciated by one of ordinary skill
in the art that the illustrated procedure can be altered to delete
steps or further include additional steps. After initial start step
900, the OS receives (902) adaptation parameters from a
storage location. The adaptation parameters (e.g., the adap
tation parameter provided in the chart above) provide infor
mation regarding the properties of a mobile device and its user
agent and it helps the OS determinehow to adapt the response
data for transmitting it to the mobile device.
0091. A key definition on which the present method relies

is a classification of HTML elements, used to determine
which action should be performed on each corresponding
node in the original DOM tree. These types of classifications
break into three main groups: (1) grouping elements, such as

US 2012/O290918 A1

<table> or <div> tags, that impose a specific layout or struc
ture to the content, but do not usually represent actual content;
(2) ignored elements that do not provide any useful content;
and (3) simple elements, such as font formatting tags, links,
images, etc., that represent content or non-layout inducing
markup. An exemplary classification chart is provided below
in Appendix A illustrating the specific classifications for all
HTML tags.
0092. To further paginate, the OS identifies (904) sections
of related content in the original DOM tree to allow advanced
content manipulation. For example, menus can be moved, or
content can be reordered into a more usable sequence, while
preserving the logical and semantical grouping. The OS can
perform identification of a content section based on statistical
pattern recognition techniques to minimize the classification
error. Content sections are used for arranging data that should
belong together so that the adapted Sub-pages maintain the
look and feel of the original webpage. To identify the content
sections, the OS traverses the DOM tree structure. The OS
then determines (906) whether to create a content section
based on the geometric information (or box modelwidth,
height) of a node. The geometric information of the node
determines whether a content section may be created from its
sub-tree. To classify a node in the DOM tree as a content
section, a series of rectangles in the width:xheight plane (also
called buckets) can be used. The first condition for consider
ing whether a DOM node should be included in a content
section is to determine whether the node fits in one of these
buckets, which are described in more detail below. If a node
fits in one of the content section buckets, it is likely that its
sub-tree will be in the same content section bucket. During the
traversal of each node of the original DOM tree, the following
steps are performed for finding content sections:

(0093. The depth first pre-order traversal of the DOM
tree starts at the root—an <html> tag.

0094. The OS skips the current node and its sub-trees if
the current node is listed in the in the ignored element
list.

0095. The OS creates a content section for the current
node if the current node is a text node, resulting in the
current node being a leaf node, unless the text is filler
text. Filler text can be considered decorative and other
wise useless text, like a lone pipe symbol or two colons.

(0096. The OS skips the current node if the current node
is odd shaped and is either an <image or <iframe> tag.
This classification identifies images that are used for
layout as spacers, shading, ornamentation, or useless
information that neither preserves the original layout of
the content data nor provides content. For example, the
OS can identify odd shaped elements when any of the
following are true:
(0097 (1) width in range (0.7) pixels;
0.098 (2) height in range (0.4) pixels;
(0099 (3) aspect ratio>5 and width-17 pixels;
0100 (4) aspect ratio ~0.04 and height<17 pixels;
0101 (5) x coordinate.<-width (no part of the object
is rendered on the Screen); and

0102 (6) y coordinate-height (no part of the object
is rendered on the Screen).

(0103. The OS can create a content section out of the
current node if tab box processing is enabled and the
current node is classified as a tabbed box (as described
below).

Nov. 15, 2012

0104. The OS creates a content section if the current
node has been classified as a simple element.

0105. The OS creates a content section if the current
node is a grouping element whose shape fits a content
section bucket classification (as described below) or is a
hidden node, which is determined through the CSS prop
erties visibility and display.

0106. The OS can recover from misidentifications of
content sections caused by the presence of nodes within
the content sections that have the “float CSS property
set. For detecting this situation, the OS saves the geom
etry properties of the content section and compares each
node's geometry to the content section's geometry dur
ing the Small screen adaptation stage. A content section
is considered misidentified when the dimensions of one
if the node's children exceeds its own dimensions
(meaning that either the child's width or height are larger
than the content sections width or height).

0.107 If detecting a misidentification, the OS can dis
card the originally misidentified content section and will
invoke the process for finding content sections on each
of children of the node originally misidentified as a
content section.

0.108 If none of the above conditions are true for the
current node, the OS recursively invokes the aforemen
tioned process on each of the current node's children to
determine whether any other content sections should be
created.

0109 To classify nodes as content sections according to
geometric properties, the OS can compare the content section
buckets to the geometric data from a node. The content sec
tion buckets are empirically adjusted beforehand to minimize
the error in detecting content sections. For example, the fol
lowing are exemplary content section buckets where the nor
malized height or width is the height or width of the node,
divided by the total height or width of the page:

0110 Small regions in width and height
0111 (1) Width range 26, 165
(O112 (2) Height range 1, 100000
0113 (3) Normalized Width range 0, 10
0114 (4) Normalized Height range 0.01, 0.324

0115 Wide, short regions (header and footer)
0116 (1) Width range 165, 2000
0117 (2) Height range 1, 100000
0118 (3) Normalized Width range 0, 10
0119 (4) Normalized Height range 0.01, 0.324

0120 Small Boxes
I0121 (1) Width range 26, 2000
(0.122 (2) Height range 10, 150
(0123 (3) Normalized Width range 0, 10
0.124 (4) Normalized Height range 0, 0.01

0.125 Columns
(0.126 (1) Width range 26, 165
(O127 (2) Height range 1, 100000
I0128 (3) Normalized Width range 0, 10
I0129 (4) Normalized Height range 0.324, 2

0130. Large Boxes
I0131 (1) Width range 165,331
(0132 (2) Height range 1, 100000
(0.133 (3) Normalized Width range 0, 10
0.134 (4) Normalized Height range 0.324, 0.541

US 2012/O290918 A1

While these exemplary content section buckets are illus
trated, one of ordinary skill in the art would appreciate that
any variations of this model can similarly be derived for
different cases.
0135 Tab boxes are complex HTML constructs that fully
exploit JavaScript HTML visibility control. For example,
cnn.com provides a tab box having two tabs: a Top Stories tab
and a Most Popular tab. When a user clicks on either tab, the
user gets the most recent stories corresponding to that par
ticular tab for that particular time. Because of the tab box's
complex structure, if configured to do so, the OS can recog
nize the tab box constructs and can provide special adaptation
to preserve the tab box structures, which applies only to target
devices that Support JavaScript.
0.136 To recognize tab boxes, the OS first examines a
parent node's one or more child nodes for a tab box structure
having some visible and hidden children nodes. At least one
of each should be present for the node to be considered a tab
box. Next, the OS discards child elements that are not likely
to represent "tabs. In some embodiments, the OS assumes
that all tabs in the tab box should have a similar DOM struc
ture such as, the number of children of each tab being the
same. For elements with far more or less children than the tabs
of a tab box, the OS assumes that these elements do not
represent tabs and discards these elements from the decision.
Finally, after considering only elements determined to be
tabs, the OS can compute the ratio of visible tabs to total tabs.
If the ratio is low (allowing for error in tab detection), the OS
determines that the node, whose child elements are the tabs in
question, is a tab box. If a tab box is identified during the
process of finding content sections, a new content section is
created out of it.
0.137 After identifying the content sections, the OS begins
to process these content sections by adapting the resulting
DOM tree fragments for displayable at the mobile device.
First, the OS transforms (906) the original DOM tree struc
ture for small screen rendering into an adapted DOM tree
structure (Small screen adaptation). The transformation can
involve two main ways: (1) flattening content that is too wide
for the mobile device's screen when rendered, and (2) pre
serving the layout for content that fits on the screen when
rendered (e.g., the tab box identification described above,
etc.).
0138 Flattening involves fitting content that is too wide to
be displayed on a mobile device's screen when rendered, and
can be performed on all identified content sections. The flat
tening process can include deconstructingaportion of HTML
that renders an area too wide for the target handset into
smaller pieces. The OS can flatten the sub-tree by removing
layout imposing HTML tags until: the content itself is
reached (e.g., simple elements), the current node fits in the
target screen, the current node is identified as a tab box, etc.
The flattening process copies useful, formatted content out of
the original DOM tree into a new DOM tree for each content
section. Other processing, such as transcoding, JavaScript
Processing, Style Extraction, etc., can be executed simulta
neously while visiting each node in the content section. The
following provides an exemplary flattening scheme:

0.139. The OS copies the current node to the new docu
ment tree if the current node is a text node, and it is not
empty or filler text.

0140. The OS skips the current node and its sub-tree if
the current node is odd-shaped and includes either an
<image or <iframe> tag.

Nov. 15, 2012

0.141. The OS skips the current node if the current node
is on the list of ignored elements.

0142. The OS skips the current node if the mobile
device's markup language is XHTML/MP and the
transcoder module indicates to skip the node.

0.143. The OS skips the current node if the current node
is a tag and its CSS visibility property is set to
hidden.

0144. If the current node is visible (CSS "display” prop
erty is set to block and its CSS visibility property is not
set to hidden, and coordinates are greater than Zero) the
OS checks the current node's geometry against the
geometry of its parent to determine if the height or width
of the current node is larger than its parent. If this occurs,
the currently processed content section is most likely
misidentified because of misleading geometry resulting
from the CSS float property. The flattening process can
then be aborted, and the process of finding content Sec
tions resumes as previously explained. This step relates
to the process for checking cases of content section
misidentification.

0145 The OS directly copies the current node's JavaS
cript information and all relevant style information if the
current node is a tab box. This preserves the complete
look and functionality of the tab box as it would appear
on the original page.

0146 The OS copies the current node's layout configu
ration to the new DOM tree structure (unless the con
figuration disallows this in the case where the target
device does not support tables) if the current node is a
<tdd, <table>, or <div> and its geometry is between 0
and the screen width (non-inclusive).

0147 The OS copies the current node to the new docu
ment tree and flattens the node's children if the current
node is on the list of simple elements.

0.148. The OS gives special consideration to the current
node to ensure its width has been set correctly if the
current node is an <input or <select> tag.

0149. The OS further processes the current node if the
node is an HTML element and the mobile device's
markup language is XHTML/MP. The OS can coerce the
node to comply with XHTML/MP by adjusting the tag
type or attribute list accordingly. For example the
transcoder would replace a <center tag with <div
align="center tag.

0150. The OS removes unneeded attributes, such as
STYLE, VALIGN, ABBR, ABINDEX attributes.

0151. The OS processes an image associated with the
current node for determining the resizing information
and for encoding the src' attribute accordingly (if the
current node is an<image oran<input of type image).

0152 The OS discards the current node and its sub-tree
if the node is a form element without a submit button and
the mobile device does not support JavaScript.

0153. The OS further processes the current node and its
sub-tree if the node is a form element with a submit
button and the mobile device supports JavaScript.

0154 The OS further flattens each of the current node's
children if the node is a form element with a submit
button and the mobile device supports JavaScript.

0155 The OS further transforms the new DOM sub-tree
by inserting breaks into an HTML tag. The HTML tag's CSS
display property dictates whether a browser should insert a
break before and after the tag when the mobile device's

US 2012/O290918 A1

browser renders the HTML. In some embodiments, some
CSS display property values, in conjunction with being
applied to grouping tags, require breaks to be inserted before
and after the grouping tags' nodes in the content section's
DOM tree to best preserve the original layout. For example, a
paragraph of text containing a link should not contain a break
before or after the link because the link text should appear
inline with the rest of the text. In some embodiments, the CSS
display property values that can cause a break to be inserted
are listed as follows:

0156 Block
O157 Table
0158 List-item
0159 Table-row
(0160 Table-Cell
0.161 Table-column-group
0162 Table-row-group

(0163 The OS further transforms the new DOM sub-tree
by processing the forms found in the original DOM tree
structure. The flattening process generates a sequence of
simple HTML elements in document order. Often in forms,
laying out HTML elements in document order can cause
some difficulty matching up the text used to describe a form
element, a <select> or <input tag, and the form element
itself. Copying elements in document order may result intext,
text, text, followed by form element, form element, form
element. This will confuse the user about which text label
corresponds to which form element. For example, FIG. 11A
illustrates how a mobile device may render form data. For
example, form labels FROM 1100, TO 1102, DEPARTURE
DATE 1104, and RETURN DATE 1106 do not matchup with
their corresponding form elements 1108, 1110, 1112, and
1114, respectively. The purpose of form processing is to
match up the form labels with their corresponding form ele
ments, as shown in FIG. 11B.
0164 FIG. 10 is a flowchart representing an exemplary
method for performing form processing. It will be readily
appreciated by one of ordinary skill in the art that the illus
trated procedure can be altered to delete steps or further
include additional steps. After initial start step 1000, the OS
locates (1002) a <form tag during the flattening process
thereby triggering the form processing on the <form tag's
sub-tree.

0.165. After locating a <form tag, the OS can search
(1004) within the <form tag for a <tre or <div> tag with at
least two form elements nested underneath it. When the OS
locates that instance of a <tro or <div> tag, the OS saves
(1006) the position of the previous occurrence of the <tro or
<div> tag and flattens everything up to that position. At this
point, the OS has isolated two nodes whereby the first node's
Sub-tree might contain text nodes that correspond with the
second nodes sub-tree's form elements.

0166 The OS can then attempt to rearrange the sub-trees
of the two nodes so that the form labels can be associated with
their corresponding form elements. Before the rearranging
occurs, the OS scans (1008) the first node's children to deter
mine (1010) whether the form label exists in the first node that
describes the form elements in the second node. If the OS
finds anotherform element at the same level as the form label
in the first node's sub-tree or finds nothing, the re-arranging
will not occur and the OS will continue flattening (1014) the
node of the DOM tree structure. The method will proceed to
connector 1016 and then end (1018).

Nov. 15, 2012

0.167 On the other hand, if the OS locates a <label tag or
finds text contained inside of a cell of the <tro or <div> tag,
the OS can rearrange (1012) the nodes so that the form labels
will correspond with their form elements. This re-arrange
ment occurs by the OS taking the sub-tree of each of the first
node's children, having the form label, that qualify to be
rearranged and appending these children to a fakeroot. This
fakeroot's children are then interlaced within the second
node's children that contain form elements so that the form
labels are correctly associated with the form elements as
shown in FIG. 11B. After the re-arranging, the method will
proceed to connector 1016 and then end (1018).
0168 Referring back to transformation step (906) in FIG.
9, in some embodiments, flattening can be unnecessary
because a webpage designer has laid out the into an area that
is small enough for the mobile device's screen size. In this
case, a layout preservation function copies the Sub-tree rep
resenting the Small section, including the grouping and layout
tags, to preserve the original designer's layout.
(0169. During DOM traversal, for any <div>, <tdd, or
<table> tag whose dimensions fit within the screen width, the
layout is preserved and the OS copies the sub-tree corre
sponding to these tags as-is. In some embodiments, some
conditions may invalidate a node's sub-tree; hence, allowing
the flattening to continue on that originally discovered node.
Also, the layout preservation function performs much of the
same functionality checks that are provided in the flattening
process because both functions are trying to filter the tags
before adding them to the content section's adapted DOM
tree. For example, the layout preservation function can per
form the following checks and error conditions:

0170 If necessary, the OS performs transcoding on a
node by node basis.

0171 The OS can include <Input or <Select> tags that
are not included inside of forms if JavaScript is sup
ported on the device.

0.172. The OS can ensure that a form has some way of
submitting itself to a mobile device that does not support
JavaScript; otherwise, the layout preservation function
does not preserve the layout of this sub-tree.

0173 The OS ignores odd shaped images and iframes.
0.174. The OS ignores hidden tags.
0.175. The OS can invalidate a float element if the float
element is found because its dimensions are probably
incorrect.

0176 The OS replaces a <td tag with a <div> tag if a
root node includes a <td tag because the flattening
process has removed the parent table tag and the layout
preservation function the adapted DOM tree structure
cannot have floating <td tag in an output HTM.

0.177 Some browsers (specifically NetFront) may have
problems rendering <div> tags with Small dimensions
(e.g., less than 20 pixels). These problems occur when
small <tdd tags are replaced with <div> tags (i.e. www.
cnn.com). To remedy this, the OS can insert a
 tag
before appending the new <div> tag.

(0178. The OS can modify and include filler text. For
example, spacer text, a form of filler test, can be used by
a mobile device's browser for layout information. The
OS can replace the filler text with a single space prior to
removing all filler text.

0.179 The OS can promote Lowsrc attributes values to
Src attribute values.

US 2012/O290918 A1

0180. The OS can set a flag “preFormat' (used for style)
for each node added to the adapted DOM tree. If a node
is created using the layout preservation function (pre
Format flag set), the node's class and <id tag are left
intact so that JavaScripts, that reference them, may still
function properly.

0181 Regarding the processing of a tab box, when locat
ing a tab box, the OS copies the entire DOM sub-tree and all
of its CSS style properties explicitly set in the sub-tree and
applies them to the adapted DOM tree structure to achieve an
exact replica of the original layout.
0182 While transforming the original DOM tree structure
into a new, small screen adapted DOM tree structures, the OS
performs (908) the JavaScript processing in FIG. 7 and the
content styling performed in FIG. 8, collecting all JavaScript
and style data required to assemble the final HTML page(s).
The OS can then serialize (910) the adapted tree structure by
transforming it into HTML text. As noted above, a content
section may exceed the limitations of the target mobile device
(i.e. memory, number of links, etc). Therefore, if it is deter
mined within serialization that the resulting page will breaka
device limit, the OS can break the content section into mul
tiple presentation units. In a truly flattened tree, it can be very
difficult for the OS to determine where to inserta presentation
unit division between two simple elements. Instead of true
flattening, the OS can copy a sub-tree representing a content
section directly from the original DOM sub-tree to the
adapted DOM tree structure to preserve the original sub
tree's structure, and can mark all grouping elements as trans
parent nodes. Transparent nodes assist in retaining the origi
nal grouping of simple elements and assist the serialization
process. Serialization is performed bottom-up, and fails when
any of the device limits are exceeded (determined by counters
for bytes, it of images, etc). When the serialize function fails
on the root of the content section, the OS then attempts to
recursively create a presentation unit for the sub-tree that
begins at each of the root's children. As each presentation unit
is created, the OS caches these presentation units in the nodes
themselves so future invocations of the serialize function will
not perform traversals deeper into the tree. When the sub-tree
of a simple element exceeds the device limits (i.e. a large
paragraph of plain text), the serialization function breaks the
simple element into multiple presentation units and re-serial
izes them.

0183. Once the list of content sections have been created
and each content section contains a list of one or more pre
sentation unit (each being Smaller than the maximum page
size), the OS can construct the actual Sub-pages. To begin
constructing the Sub-pages, the OS can construct (912) one or
more adapted Sub-pages. The construct function populates
the final page list with newly created presentation units by
traversing all content section's presentation units one at a
time. By looping through all presentation units of all content
sections, the construct function determines whether each pre
sentation unit should go on the current Sub-page or whether a
new sub-page should be started so that the generated Sub
pages comply with the mobile device's limitations. For
example, the determination can be based on the following
characteristics:

0184. Adding the presentation unit to the current sub
page if the Sub-page's size is 0.

0185. Starting a new page if adding to the current sub
page would exceed any limit of the device.

11
Nov. 15, 2012

0186. Adding the presentation unit to the current sub
page if the page's byte count is still under the minimum
“preferred byte size (prevents tiny pages except at the
end).

0187. Adding the presentation unit to the current sub
page if it is the last presentation unit (sometimes pre
vents Small final pages).

0188 Optimizing the current page's byte size towards
the average byte size (bytes left/preferred pages left) by
starting a new page if the current one already exceeds the
average, or if adding the presentation units to this page
would exceed the average more than the current defi
ciency of presentation units.

0189 Adding the presentation unit to the current sub
page if a preferred number of pages have already been
exceeded.

0190. Adding the presentation unit to the current sub gune p
page if none of the above conditions apply.

0191 Because the content styling has already been
applied in the presentation unit's outer-most <div> tag, the
build pages process can add the HTML generated by the
serialization function to put one or more Sub-pages together.
A presentation unit includes information concerning its
respective content styling classes and JavaScript. When mul
tiple presentation units are combined into a sub-page, the
respective content styling classes and JavaScript are also
combined into that Sub-page. The construct function also
extracts each menu content section out of the main page
sequence and creates a new sub-page sequence for these
extracted sections.

0.192 After constructing the sub-pages, the OS identifies
(914) menu content sections and moves these menu content
sections out of the main browsing path to a separate browsing
path. This prevents large sections of links from taking up the
first few pages in a Sub-page sequence. For example, espn.
go.com provides a menu that is Small in size for the browser
but extremely long when displayed in single-column format
on a device. The construction function can insert a menu link
into the DOM tree where the menu content section was
extracted from. In some embodiments, the construction func
tion can replace a section having hundreds of links with a
single link to the new page list; thereby allowing the presen
tation unit to retain all of its original content and allowing the
user to skip browsing through excessive pages of menus to get
to the main content.

0193 To identify these menu content sections, the OS
calculates a menu score on all content sections on the list for
determining whether a content section is a menu content
section. A score is produced from multiple statistics collected
about the content section during flattening and serialization
and if the score exceeds a threshold, the OS classifies this
content section as a menu and moves this content section to a
new Sub-page. For example, the menu score can be based on
the following:

0194 The menu score can be proportional to the link
density, which is the number of links divided by the area
of the content section.

0.195 The menu score can be proportional to the place
ment of the content section relating to the document
order. Sections near the beginning of the document are
classified as menus more aggressively because menus at
the beginning of the adapted Sub-page can hinder the
user's experience.

US 2012/O290918 A1

0196. The menu score can be increased if determined
that the URL of the original document does not look like
the URL of a homepage. This makes menu classification
more aggressive on pages where navigational links are
less important that content.

0197) The menu score can be proportional to the num
ber of links in the content section because having more
links indicates a likelihood that the content section is a
C.

0.198. The menu score can be increased if the links
within the content section refer to pages whose URLs do
not look like the URL of a homepage.

(0199 The menu score can be decreased if the content
section includes more text than link bytes. Long text
links are less likely to be a menu because they are more
likely related to the page's content.

If the menu score of a content section exceeds a predeter
mined threshold, the OS shall classify the content section as a
menu content section and move this section back to a later
Sub-page.
0200. After distinguishing between the menu and non
menu content sections, the OS encloses (916) the sub-pages
with a header and footer when appropriate. The header and/or
footer allow a user to navigate through the Sub-pages within a
Sub-page sequence. The enclose function involves adding the
appropriate header and doctype; writing the <head> tag
(which includes CSS classes and scripts that are used in the
page) into the Sub-page's HTML buffer, and creating a navi
gational header and footer for the user. In some embodiments,
the adapted main Sub-page and/or the Subsequent Sub-pages
may not include a header. Further, the header and/or footer
can include, among other things, links to nearby Sub-pages,
links to sub-pages that are multiples of 10 away from the
present Sub-page, and links to the first and last Sub-page. For
example, the link can be a page number, an image, or a name
of the Sub-page. In some embodiments, links to the previous
and next Sub-page contain soft key attributes. Further, in some
embodiments, the footer may include an anchor with a soft
key. The footer may also include a static description of any
enabled soft keys.
0201 For a menu sub-page, the header and footer can be
exactly the same. If the menu fits in a single page, the header
and footer may only have a link to return to the place the menu
was extracted from in the main sequence; otherwise, Prey and
Next links can be included when there is a previous or next
menu Sub-page. After the Sub-pages have been enclosed, the
method can end (918).
0202 In some embodiments, to improve the usability of
the resulting pages on Small screen devices and minimize the
byte count, it may be desirable to resize large images. The
pagination function can prepare images for resizing by gath
ering geometric data and calculating the necessary resizing
factor. Because the pagination engine already has information
about the size of the target device's screen and has access to
the geometric information of an image when it is rendered on
the screen, the pagination engine is well Suited to perform this
calculation. When receiving the original image URL, the OS
can calculate an appropriate image size and resize it accord
ingly.
0203. In some embodiments, before content adaptation is
performed, there are some HTML responses (e.g., HTML
redirects, etc.) that should not be adapted. Some websites
send back HTML responses that redirect a user to a different
website rather than using the HTTP for redirects. These web

12
Nov. 15, 2012

sites often include this redirect information in the original
document's meta tag, but this information could be stripped
out by the pagination engine thereby creating a blank page
that would not redirect to the intended page. To avoid this, a
mechanism could be provided into the content adaptation
engine to scan the document's meta tag for “HTTP
EQUIV="Refresh content= with the “content” having a
very low timeout and a URL. If this is found, the page can be
transcoded and returned. Now, the mobile device can receive
an HTML page capable of redirecting to the intended page.
0204 The methods disclosed herein may be implemented
as a computer program product, i.e., a computer program
tangibly embodied in an information carrier, e.g., in a
machine readable storage device or in a propagated signal, for
execution by, or to control the operation of data processing
apparatus, e.g., a programmable processor, a computer, or
multiple computers. A computer program can be written in
any form of programming language, including compiled or
interpreted languages, and it can be deployed in any form,
including as a stand alone program or as a module, compo
nent, Subroutine, or other unit Suitable for use in a computing
environment. A computer program can be deployed to be
executed on one computer or on multiple computers at one
site or distributed across multiple sites and interconnected by
a communication network.
0205. In the preceding specification, the invention has
been described with reference to specific exemplary embodi
ments. It will however, be evident that various modifications
and changes may be made without departing from the broader
spirit and scope of the invention as set forth in the claims that
follow. The specification and drawings are accordingly to be
regarded as illustrative rather than restrictive sense. Other
embodiments of the invention may be apparent to those
skilled in the art from consideration of the specification and
practice of the invention disclosed herein.
What is claimed is:
1. A method for identifying a content section of a data

structure that represents a webpage, the method comprising:
traversing one or more nodes of the data structure;
determining whether a content section shall be created by

comparing geometric properties of the node and any
children nodes of the node with the geometric properties
of a content section bucket; and

adapting the content section for a mobile device.
2. The method of claim 1, further comprising skipping the

creation of the content section if the node is classified as the
ignored element, or is an odd-shaped node and is associated
with an <image or <iframe> tag.

3. The method of claim 1, further comprising creating a
content section if the node is classified as a tab box, is a text
node and the text is not filler text, is classified as the simple
element, or is classified as a grouping element whose geo
metric features fit within the content section bucket.

4. The method of claim 3, further comprising determining
whether the node is classified as a tab box based at least on the
relative number of hidden and visible children nodes of the
node.

5. A system comprising:
an optimization server configured to receive from a content

server response data corresponding to request data that
includes a requested webpage and identification data
and that is transmitted from a mobile device, to adapt the
response data to the mobile device based on the identi
fication data, and to transmit the adapted response data

US 2012/O290918 A1

to the mobile device, wherein adapting the response data
includes identifying a content section of a data structure,
wherein the identifying comprises:
traversing one or more nodes of the data structure;
determining whether a content section shall be created
by comparing geometric properties of the node and
any children nodes of the node with the geometric
properties of a content section bucket; and

adapting the content section for the mobile device.
6. The system of claim 5, wherein identifying the content

section further comprises skipping the creation of the content
section if the node is classified as the ignored element, or is an
odd-shaped node and is associated with an <image or
<iframe> tag.

7. The system of claim 5, wherein identifying the content
section further comprises creating a content section if the
node is classified as a tab box, is a text node and the text is not
filler text, is classified as the simple element, or is classified as
a grouping element whose geometric features fit within the
content section bucket.

8. The system of claim 7, wherein identifying the content
section further comprises determining whether the node is
classified as a tab box based at least on the relative number of
hidden and visible children nodes of the node.

9. A non-transitory computer readable medium storing
instructions that, when executed by a computer, cause the

13
Nov. 15, 2012

computer to perform a method of identifying a content sec
tion of a data structure that represents a webpage, the method
comprising:

traversing one or more nodes of the data structure to deter
mine whether a content section shall be created;

comparing geometric properties of the node and any chil
dren nodes of the node with the geometric properties of
a content section bucket based on the determination; and

adapting the content section for a mobile device.
10. The non-transitory computer readable medium of claim

9, wherein the method further comprises skipping the cre
ation of the content section if the node is classified as the
ignored element, or is an odd-shaped node and is associated
with an <image or <iframe> tag.

11. The non-transitory computer readable medium of claim
9, wherein the method further comprises creating a content
section if the node is classified as a tab box, is a text node and
the text is not filler text, is classified as the simple element, or
is classified as a grouping element whose geometric features
fit within the content section bucket.

12. The non-transitory computer readable medium of claim
11, wherein the method further comprises determining
whether the node is classified as a tab box based at least on the
relative number of hidden and visible children nodes of the
node.

