wO 2008/0:55010 A 1 |0 00 000 0 O O 0

(19) World Intellectual Property Organization f 11”11

52 IO O O O O

International Bureau

(43) International Publication Date
8 May 2008 (08.05.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2008/055010 A1l

(51)

21

(22)
(25)
(26)
(30)

(1)

(72)

International Patent Classification:
GOGF 12/06 (2006.01) GOGF 12/00 (2006.01)

International Application Number:
PCT/US2007/081878

International Filing Date: 19 October 2007 (19.10.2007)

Filing Language: English
Publication Language: English
Priority Data:

11/555,727 2 November 2006 (02.11.2006) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: HAVENS, Jeffrey L.; c/o Microsoft Corpo-
ration, One Microsoft Way, Redmond, WA 98052-6399
(US). SMITH, Frederick J.; c/o Microsoft Corporation,
One Microsoft Way, Redmond, WA 98052-6399 (US).
KHALIDI, Yousef A.; c/o Microsoft Corporation, One

(74)

(81)

(34)

Microsoft Way, Redmond, WA 98052-6399 (US). TAL-
LURI, Madhusudhan; c/o Microsoft Corporation, One
Microsoft Way, Redmond, WA 98052-6399 (US).

Common Representative: MICROSOFT CORPORA-
TION; One Microsoft Way, Redmond, Washington 98052-
6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: REVERSE NAME MAPPINGS IN RESTRICTED NAMESPACE ENVIRONMENTS

REQ TO OPEN FILE BY
FILE-ID RECD 402

BUILD LIST OF POSSIBLE
NAMES 404

»| GET NAME FROM LIST 406

ANTPHYSICAL NANME
BE GENERATED IN
SILO? 408

DOES IT HAVE
CORRECT FILE ID?.
40

OPEN USING SILO
RELATIVE NAME 414

YES
SILO RELATIVE NAME? REQMTILS
412
YES

(57) Abstract: A silo-specific view of the file sys-
tem is provided to processes running in the silo. Pro-
cesses can access a file only by uttering the silo-rel-
ative name. To determine if access to a file identi-
fied by a file ID should be permitted, a list of physi-
cal names of the file identified by the file ID is con-
structed. If a silo-relative name that translates to a
name in the list can be uttered, the file is opened and
the file ID for the opened file is retrieved. If the file
IDs match, the silo-relative name is used to open the
file. If a process running within a silo requests a list
of names for a file that has been opened using a file
ID, results returned are filtered so that only names
visible in the silo are returned, thus restricting the
process’ access to files to those files within its hier-
archical namespace.

WO 2008/05501.0 A1 NI DA 00 0000000 0 0

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — as to the applicant’s entitlement to claim the priority of the

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, earlier application (Rule 4.17(iii))

FR, GB, GR,HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, .

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). Published: ,

— with international search report

Declarations under Rule 4.17: — before the expiration of the time limit for amending the
— as to applicant’s entitlement to apply for and be granted a claims and to be republished in the event of receipt of

patent (Rule 4.17(ii)) amendments

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

REVERSE NAME MAPPINGS IN RESTRICTED NAMESPACE ENVIRONMENTS

BACKGROUND

[0001] A file system is a method for storing and organizing computer files and the data
the files contain, on storage (e.g., on disk). Most file systems use an underlying non-volatile data
storage device on which files are persisted. A typical storage device provides access to an array
of fixed-size blocks, sometimes called sectors, which are generally 512 bytes each. The file
system software is responsible for organizing these sectors into files and directories. The file
system also keeps track of which sectors belong to which file and which sectors are not being
used. Traditional file systems offer facilities to open, create, move and delete both files and
directories.

[0002] File systems typically have data structures which associate a file name with a
location on disk where the contents of the file is stored. Usually this is done by connecting the
file name to an index into a file allocation table of some sort, such as the FAT in an MS-DOS file
system, or an inode in a UNIX-like file system. File system directories may be flat, or may
allow hierarchies. In hierarchical directories, each directory may include one or more sub-
directories. In some file systems, file names are structured, with special syntax for filename
extensions and version numbers. In others, file names are simple strings, and per-file metadata is
stored elsewhere.

[0003] In many file systems, a file can be accessed by more than one identifier. For
example, some older operating systems, (and thus older applications) only supported 8.3 file
names. More current operating systems may continue to support the 8.3 file names. For
example, in some older Microsoft operating systems, the “Documents and Settings” folder may
have been accessed by using a name such as “DOCUME~1" (the 8.3 file name) while newer
systems can either use “Documents and Settings” or “DOCUME~1" to access that folder. The
“DOCUME~1" reference is a hard link to the “Documents and Settings” folder, meaning that
“DOCUME~1" is a separate file system entity, and points to the same physical location as the
“Documents and Setting” hard link. The same file can be accessed via either name.
Additionally, the same file may be able to be opened using its file identifier or file ID, which in

Microsoft operating systems is a numeric value frequently referred to as FileID. FileID is an

S 1-

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

alias because it is not a separate file system entity, but instead is another way to access the
physical location of the folder.

[0004] In most current commercial operating systems an application shares file system
namespaces with other applications running on the machine. The application’s access to files is
mediated by a security mechanism that attaches an Access Control List (ACL) to each named
file. The ACL relates a user to a set of access rights for that particular resource. For example,
the ACL for a particular resource may specify that user 1 is allowed read-write access to filel
and that user 2 is allowed read-only access to filel. Because of the widespread use of ACL-
based permission controls, multiple applications are often allowed to share files. Access to the
files is based on privileges associated with the identity of the person running the application or
process rather than being based on the needs and characteristics of the application itself. This
approach can be problematic. For example, a user may have broad access privileges (e.g.,
administrator status) because some of the programs he runs need that level of access. For
example, because program 1 run by user 1 needs access to files one to ten, user 1’s access
privileges must permit him to access files one to ten. Suppose program 2 only needs access to
files one and two. When user 1 runs program 2, program 2 will nevertheless have access to
files one to ten, because user_1’s privileges allow access to files one to ten. Thus, because file
system operations are based on ACL-based permission controls, in general, the file system name
space can be and generally is more or less global to all the processes launched by user 1 running
on the machine. ACL-based permission controls lead to a number of problems including: a
program could waste processing time handling things it should not consider, the presence of a
new file that the program is not expecting might cause the program to operate incorrectly,
different programs may write or modify the same file, causing interference and so on. This
problem is exacerbated because not all programs have the same level of trustworthiness.
Program_2 may not be as trustworthy as program_1 but since the user’s privileges allow him to
access files one to ten, program_2 has access to files one to ten and may maliciously modify
them. In addition, there may be occasions when it is desirable to provide different programs
different files even though the programs use the same name for the file. Finally, different
programs may use the same name but mean different files. Hence, there is a need for better

control of shared resources than that which can easily be obtained using ACLs and privileges.

SUMMARY
[0005] To address the need for a more powerful access control mechanism than that
provided for by ACLs, a silo is created that restricts or controls the execution environment of a

process, program, set of programs or application by associating with the silo a silo-specific
-2

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

hierarchical name space. The silo-specific name space provides a view of a global name space
for the process, program, set of programs or application running in the silo. The new name space
is created by creating a virtual hierarchy and joining pieces of an existing physical, non-volatile
(e.g., on disk) file system to the leaf nodes of the virtual hierarchy, to create a silo-specific
virtual hierarchy. The virtual hierarchy is stored in volatile storage (e.g., memory) and has no
effect on the system hierarchy which is stored in non-volatile storage. The new name space may
be created by merging two or more separate physical file system directories which are presented
as a single (virtual) merged file system directory to an application running in the silo.

[0006] A silo-specific view of the file system hierarchy (or view of the parent hierarchy
in the case of a nested silo) may be created by creating and exposing a virtual hierarchy or tree,
the nodes of which may be linked back to a node or name in a physical hierarchy associated with
the external system environment in which the silo resides (or to a node or name in a parent silo).
A virtual hierarchy is volatile. It is not persisted to permanent storage (e.g., is not written to disk
or to other stable storage media) but resides only in memory or other volatile media and may be
created dynamically as the silo is initiated. When the silo exits, the virtual hierarchy may be
discarded. The physical hierarchy in contrast, is permanent (persisted to stable storage) and is
independent of the existence or non-existence of the silo. A silo may be implemented by having
the silo provide the root for the processes running in the silo. For example, the silo may provide
the root of a virtual directory to be used by a process running in the silo. The provided root may
represent the root of the file system directory for the process in the silo. A process within the
silo cannot see or express any names above the virtual root. One or more hierarchies may be
associated with a silo.

[0007] The silo-specific hierarchical namespace can be created by pruning and/or
grafting onto existing hierarchical namespaces. For example, a virtual hierarchy may be created
by grafting branches from the system hierarchy onto nodes directly or indirectly attached to the
virtual root associated with the silo. For the virtual file system, the grafting operation makes
cither a file or a directory appear at one or more places within the process’s view of the file
system. The virtual file system implementation effectively builds a new file system view over
the system’s physical file system name space.

[0008] Two or more separate physical file system directories may be presented as a
single (virtual) merged file system directory to an application running in a silo. All of the
operations normally available to be performed on a file system directory may be able to be
performed on the merged directory, however, the operating system may control the level of

access to the files in the merged directory based on how the silo namespace was originally set up.

-3-

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

The operating system provides the merged view of the file system directories by monitoring file
system requests made by processes in silos on a computer or computer system and in response to
detecting certain types of file system access requests, provides the view of the seemingly merged
directories by performing special processing. Examples of types of changes or requests which
trigger the special processing include enumeration, open, create, rename, close or delete. One or
more of the contributing directories may be a public directory and the other contributing
directory may be a private directory such that a process running in the silo may have one level of
access to a public contributing directory and a second level of access to a private contributing
directory. Similarly, because the merged file system directory is created by combining the public
directory or directories and the private directory, the same name may exist in both locations.
Typically, when this happens, the physical file indicated by the private location name is
accessible to the process and the physical file indicated by the name in the public location(s) is
hidden and thus inaccessible to the process.

[0009] A process running within a silo can access a file in the silo’s hierarchical
namespace by uttering the silo-relative name of the file it wishes to access. Attempting to access
the file by another name will fail. However, some file systems also allow a file to be referred to
by a non-hierarchical file identifier (e.g, by the FileID), a feature important for proper execution
of many applications. Thus a need exists to ascertain whether the file ID issued by a process
running in a silo corresponds to a file within the silo to enable restriction of access of the process
to its hierarchical namespace.

[0010] Some WINDOWS file systems provide the capability to determine a hierarchical
file name or names for a given file ID, thus providing the ability to create a list of all possible
names of a file. To determine if access of a process to a file identified by a file ID should be
permitted, a list of physical names of the file identified by the file ID is constructed, and for each
physical name in the constructed list, it is determined if it is possible to utter a silo-relative name
that translates to the given physical name. This may be implemented by determining if any of
the silo re-direction prefixes match the beginning of the physical name. If there is a prefix
match, the file visible to the silo is opened and the file ID for the opened file is retrieved. If the
file IDs match, the silo-relative name that matches the file ID is saved. If a silo name is found
whose file ID matches the initial file ID, the open operation is allowed to continue using the
saved silo-relative name. Acquiring the file ID of the file and comparing the acquired file ID to
the originally uttered file ID is needed when the same name is used in the public and private

portion of a merged directory. By comparing the original file ID with the acquired file ID,

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

access of the process to the named file can be restricted to access of the process to the private
same-named file.

[0011] Similarly, a process running within a silo may also attempt to build the name of a
file that has been opened using a file ID. Results returned from the build attempt are filtered so
that only names visible in the silo are returned, thus restricting the process’ access to files to

those files within its hierarchical namespace.

BRIEF DESCRIPTION OF THE DRAWINGS
[0012] In the drawings:

FIG. 1 is a block diagram illustrating an exemplary computing environment in which
aspects of the invention may be implemented;

FIGs. 2 and 2a are block diagrams of a system for reverse mapping of file IDs in
accordance with some embodiments of the invention,;

FIG. 3 is another block diagram of a system for reverse mapping of file IDs in
accordance with some embodiments of the invention,;

FIG. 4 is a flow diagram of a method for reverse mapping of file IDs in accordance with
some embodiments of the invention; and

FIG. 5 is a flow diagram of a method for filtering results returned to a process that

accesses a file using a file ID in accordance with some embodiments of the invention.

DETAILED DESCRIPTION
Overview
[0013] It is often convenient to restrict access to a named resource (such as a file) based

on a hierarchical namespace layout. This may be especially important in an environment in
which a resource name uttered by an application is translated before being sent to the underlying
resource delivery system (e.g., file system). For example, an application may attempt to open a
file by uttering a name. The uttered name may be translated. In some systems the name into
which the name is translated may act to restrict access to the file. For example, perhaps by
translating the file into a particular hierarchical name, the access to the file may be restricted to
“read only” instead of “read-write”. However, when more than one name exists for the resource,
it may be possible to escape the restriction mechanism by accessing the resource using the
alternate name. In other words, a party may be able to defeat or circumvent the hierarchically-
defined restriction mechanism by accessing the resource via a name that does not include the
directory structure. One example of such an escape mechanism is to use an alias for the

file/directory such as a file ID to access the file/directory.

-5-

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

[0014] To address this problem, when a process in a silo attempts to access a file or
directory using a FileID, embodiments of the invention examine each of the possible physical
names of a file to determine if it is possible to issue a silo relative name which will translate to
the physical name of the file having the provided FileID. In some embodiments this is done by
determining if any of the silo redirection prefixes match the beginning of the physical name
under consideration. If that file could be accessed by a process running in the silo, the file is
opened within the silo view, the fileID for the file is retrieved and compared with the original file
ID. If the file IDs match, access is granted. If the file IDs do not match, the request fails.
Typically, an error is returned indicated that the object does not exist.

[0015] For example, suppose a process running within a silo attempts to open a the file
represented by FileID 1234. The silo filtering mechanism will build up a list of all possible
“names” to the file represented by the uttered FileID. For example, lets suppose one of the
possible names was \X\Y\Z\B. The silo filtering mechanisms would now attempt to ascertain
whether there is a name that could be uttered within the silo that would translate into \X\Y\Z\B.
Let us also assume, for sake of example, that the silo namespace had a rule which translates the
silo relative name \A into the physical name \X\Y\Z. Since a name uttered in the silo with a
prefix of \A will translate into the physical name with a prefix \X\Y\Z, there is a way to utter a
name in the silo which will result in the given physical name. The filtering mechanism will now
open the candidate file, using the silo relative name ‘“\A\B” and retrieve the FilelD for it. This is
important because in a merge directory scenario it is possible that there are more than one
physical name that could be mapped to the silo relative name ‘““A\B”. (For example if there is a
file “B” in the private merge directory, this would hide any “B” in the public merge directory).
Therefore after opening the file with the silos relative name and within the silo view the FileID
for the candidate file opened is retrieved. If the file ID matches the originally uttered file id, in
our case 1234, then we can allow the file to be accessed within the silo. If none of the candidate
physical names can be accessed via a silo relative name, or if none of the candidate files result in
the same FileID being returned, then we don’t expose the file to the silo at all. The process in the
silos fails to open the file, and receives a status code indicating there is no file with that file id in
existence.

[0016] A process running in a silo may also try to generate one or more of a list of names
for a file that has been opened using a file ID. When a silo process requests a list of physical
names for a file identified by a file ID, the results returned are filtered so that only names in the
silo hierarchy are returned.

Exemplary Computing Environment

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

[0017] FIG. 1 and the following discussion are intended to provide a brief general
description of a suitable computing environment in which the invention may be implemented. It
should be understood, however, that handheld, portable, and other computing devices of all kinds
are contemplated for use in connection with the present invention. While a general purpose
computer is described below, this is but one example, and the present invention requires only a
thin client having network server interoperability and interaction. Thus, the present invention
may be implemented in an environment of networked hosted services in which very little or
minimal client resources are implicated, e.g., a networked environment in which the client device
serves merely as a browser or interface to the World Wide Web.

[0018] Although not required, the invention can be implemented via an application
programming interface (API), for use by a developer, and/or included within the network
browsing software which will be described in the general context of computer-executable
instructions, such as program modules, being executed by one or more computers, such as client
workstations, servers, or other devices. Generally, program modules include routines, programs,
objects, components, data structures and the like that perform particular tasks or implement
particular abstract data types. Typically, the functionality of the program modules may be
combined or distributed as desired in various embodiments. Moreover, those skilled in the art
will appreciate that the invention may be practiced with other computer system configurations.
Other well known computing systems, environments, and/or configurations that may be suitable
for use with the invention include, but are not limited to, personal computers (PCs), automated
teller machines, server computers, hand-held or laptop devices, multi-processor systems,
microprocessor-based systems, programmable consumer electronics, network PCs,
minicomputers, mainframe computers, and the like. The invention may also be practiced in
distributed computing environments where tasks are performed by remote processing devices
that are linked through a communications network or other data transmission medium. In a
distributed computing environment, program modules may be located in both local and remote
computer storage media including memory storage devices.

[0019] FIG. 1 thus illustrates an example of a suitable computing system environment
100 in which the invention may be implemented, although as made clear above, the computing
system environment 100 is only one example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or functionality of the invention.
Neither should the computing environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of components illustrated in the exemplary

operating environment 100.

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

[0020] With reference to FIG. 1, an exemplary system for implementing the invention
includes a general purpose computing device in the form of a computer 110. Components of
computer 110 may include, but are not limited to, a processing unit 120, a system memory 130,
and a system bus 121 that couples various system components including the system memory to
the processing unit 120. The system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. By way of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced
ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus (also known as Mezzanine bus).

[0021] Computer 110 typically includes a variety of computer readable media. Computer
readable media can be any available media that can be accessed by computer 110 and includes
both volatile and nonvolatile media, removable and non-removable media. By way of example,
and not limitation, computer readable media may comprise computer storage media and
communication media. Computer storage media includes both volatile and nonvolatile,
removable and non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules or other
data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CDROM, digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information and which can
be accessed by computer 110. Communication media typically embodies computer readable
instructions, data structures, program modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” means a signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the signal. By way of example, and not
limitation, communication media includes wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared, and other wireless media.
Combinations of any of the above should also be included within the scope of computer readable
media.

[0022] The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to

transfer information between elements within computer 110, such as during start-up, is typically

-8 -

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878
stored in ROM 131. RAM 132 typically contains data and/or program modules that are

immediately accessible to and/or presently being operated on by processing unit 120. By way of
example, and not limitation, FIG. 1 illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

[0023] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard
disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152,
and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk
156, such as a CD ROM or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used in the exemplary operating
environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital
versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk
drive 141 is typically connected to the system bus 121 through a non-removable memory
interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable memory interface, such as interface
150.

[0024] The drives and their associated computer storage media discussed above and
illustrated in FIG. 1 provide storage of computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for example, hard disk drive 141 is
illustrated as storing operating system 144, application programs 145, other program modules
146, and program data 147. Note that these components can either be the same as or different
from operating system 134, application programs 135, other program modules 136, and program
data 137. Operating system 144, application programs 145, other program modules 146, and
program data 147 are given different numbers here to illustrate that, at a minimum, they are
different copies. A user may enter commands and information into the computer 110 through
input devices such as a keyboard 162 and pointing device 161, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may include a microphone, joystick,
game pad, satellite dish, scanner, or the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160 that is coupled to the system bus
121, but may be connected by other interface and bus structures, such as a parallel port, game
port or a universal serial bus (USB).

[0025] A monitor 191 or other type of display device is also connected to the system bus

121 via an interface, such as a video interface 190. A graphics interface 182, such as

-9.-

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878
Northbridge, may also be connected to the system bus 121. Northbridge is a chipset that

communicates with the CPU, or host processing unit 120, and assumes responsibility for
accelerated graphics port (AGP) communications. One or more graphics processing units
(GPUs) 184 may communicate with graphics interface 182. In this regard, GPUs 184 generally
include on-chip memory storage, such as register storage and GPUs 184 communicate with a
video memory 186. GPUs 184, however, are but one example of a coprocessor and thus a
variety of coprocessing devices may be included in computer 110. A monitor 191 or other type
of display device is also connected to the system bus 121 via an interface, such as a video
interface 190, which may in turn communicate with video memory 186. In addition to monitor
191, computers may also include other peripheral output devices such as speakers 197 and
printer 196, which may be connected through an output peripheral interface 195.

[0026] The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router, a network PC, a peer device or
other common network node, and typically includes many or all of the elements described above
relative to the computer 110, although only a memory storage device 181 has been illustrated in
FIG. 1. The logical connections depicted in FIG. 1 include a local area network (LAN) 171 and
a wide area network (WAN) 173, but may also include other networks. Such networking
environments are commonplace in offices, enterprise-wide computer networks, intranets and the
Internet.

[0027] When used in a LAN networking environment, the computer 110 is connected to
the LAN 171 through a network interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet. The modem 172, which may be
internal or external, may be connected to the system bus 121 via the user input interface 160, or
other appropriate mechanism. In a networked environment, program modules depicted relative
to the computer 110, or portions thereof, may be stored in the remote memory storage device.
By way of example, and not limitation, FIG. 1 illustrates remote application programs 185 as
residing on memory device 181. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the computers may
be used.

[0028] One of ordinary skill in the art can appreciate that a computer 110 or other client
device can be deployed as part of a computer network. In this regard, the present invention

pertains to any computer system having any number of memory or storage units, and any number

-10 -

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

of applications and processes occurring across any number of storage units or volumes. The
present invention may apply to an environment with server computers and client computers
deployed in a network environment, having remote or local storage. The present invention may
also apply to a standalone computing device, having programming language functionality,
interpretation and execution capabilities.

Reverse Mapping for File IDs in a Restricted Namespace Environment

[0029] FIG. 2 is a block diagram illustrating a system for reverse mapping of file IDs in a
restricted namespace environment. Hierarchical name spaces may be used to restrict access to
resources based on the process rather than permissions associated with the user running the
process as described above. System 200 may reside on a computer such as the one described
above with respect to FIG. 1. System 200 may include one or more partitions such as partition
202, etc. A drive letter abstraction as described above may be provided at the user level to
distinguish one partition from another. Each drive letter or partition may be associated with a
hierarchical data structure. Each hierarchy has a root which represents the first or top-most node
in the hierarchy. It is the starting point from which all the nodes in the hierarchy originate. As
cach device may be partitioned into multiple partitions, multiple roots may be associated with a
single device. (For example, a user’s physical hard disk may be partitioned into multiple logical
“disks”, each of which have their own “drive letter” and their own root.) A single instance of the
operating system image serves all the partitions of the computer in some embodiments of the
invention.

[0030] Within each partition, system 200 may include a (global) system environment 201
and one or more restricted namespace environments. In some embodiments of the invention, the
restricted environments are silos. The system environment 201 may include or be associated
with a number of name spaces including but not limited to a file system name space 254 and a
number of system processes 250. System 200 may also include an operating system 280. The
operating system 280 may include one or more operating system components including but not
limited to an operating system kernel 281. System 200 may also include other components not
here shown but well known in the art.

[0031] System 200 may include one or more side-by-side silos 204, efc. in each partition
or associated with each drive letter. Each silo in some embodiments is associated with its own
silo process space and silo file system name space but shares a single operating system instance
with all the processes in the system. For example, in FIG. 2, silo 204 is associated with silo
process 208 and silo file system name space 264. Silo 204, efc. may include one or more child

silos 210, etc. Silo 210 itself may include one or more child silos and so on to any degree of

-11 -

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878
nesting. Child silo 210 in FIG. 2 is associated with child silo process 270 and child silo file

system name space 274 but is served by the same operating system instance that serves all the
other environments. A child silo may be created by a process running in its parent silo. For
example, in FIG. 2, a process 208 may have created child silo 210 by creating a view into the silo
204 name space, as described more fully below. A process may not escape from its silo. For
example a process in silo 204 may not escape from silo 204. Similarly, a child process of child
silo process 270 may not escape from child silo 210.

[0032] The operating system 280 monitors file system access requests made by a process
running in a silo. A silo-specific view of a silo-specific file system directory may be created by
the operating system by an apparent merging of two or more physical backing stores (file
directories) together into what appears to the silo to be a single directory. That is, two or more
separate file system directories may be exposed to a silo (and the processes running within the
silo) as a single directory. One or more of the physical backing stores may be used to build a
portion of the silo-specific view for one or more of the silos.

[0033] A silo may be used to create an isolated namespace execution environment so that
resources associated with one silo are available to processes running within that silo but are not
accessible to other silos running on the computer or on other computers in the computer system
or computer network. For example, referring now to FIG. 2a, if silo 204 were an isolated
execution environment a resource such as a file (not shown) available to process 216 running in
silo 204 would be unavailable to a process 226 or 227 running in a second silo, silo 220. A
second process (e.g., process 217) running in silo 204 would however, have access to that
resource. Similarly a resource available to processes running in the second silo 220 would be
unavailable to processes such as process 216, 217 running in silo 204.

[0034] Alternatively, a silo may be used to create a semi-isolated, restricted or controlled
execution environment in which some resources (such as files) are shared and some resources are
not shared or in which some portions of a resource are shared and other portions of the resource
are not shared. One such contemplated resource is the file system directory. For example, and
referring again to FIG. 2a, in silo 204 one or more processes such as process 216, 217, efc. may
be running and have access to a file system directory. In some embodiments of the invention,
the file system directory is a virtual merge directory such as virtual merge directory 222 wherein
the virtual merge directory (e.g., directory 222), although appearing to processes in silo 204 as a
single physical directory is actually a virtual view of the union of two or more directories created
by the operating system using callbacks to perform special processing for certain types of

operations under certain circumstances. Similarly, the virtual merge directory 232 may appear to

-12-

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

processes 226 and 227 in silo 220 as a single physical directory while it is actually a virtual view
of directories 214 and 216. The view created by the operating system 280 may comprise the
union of the entries of at least one (physical) public or global (to the computer system) shareable
directory 214 and at least one (physical) private or local (to the silo) directory 216 merged
together to create the virtual merge directory 222, although the invention as contemplated is not
so limited. Similarly, a merge directory may be built up from any combination of two or more
public or private directories, one or more portions or all of which is designated as read-only or
read-write. Furthermore, no public backing store may exist for one or more of the contributing
directories. For example, the shareable portion of the virtual merge directory created by the
operating system in some embodiments of the invention is a global directory (e.g., a WINDOWS
directory) while a private, unshared portion of the virtual merge directory is associated with a
particular silo (e.g., with silo 204), and may represent, for example, local or private files for
applications running in that silo. That is, the private portion of the virtual merge directory may
be read-only or read-write or may include portions which are read-only or read-write. Similarly,
the shareable portion of the virtual merge directory may be read-only or read-write or may
include portions which are only read-only or read-write. Moreover, it will be appreciated that
the invention as contemplated is not limited to merging two directories. Any number of
directories (n directories) may be merged to create the virtual merge directory. The virtual
merge directory in some embodiments of the invention is not persisted on permanent storage or
created per se in memory but is dynamically deduced by the operating system 280 as required,
by monitoring file access requests and performing special processing associated with the type of
file access request.

[0035] Thus, it will be appreciated that as more than one silo may exist on a computer or
in a computer system at one time, more than one virtual merge directory may also exist at one
time, that is, there is a one-to-one correspondence between silo and virtual merge directory but
any number of silos and merge directories may exist at any one time on a particular computer or
computer system. (For example, in FIG. 2a, two virtual merge directories are depicted: virtual
merge directory 222 including private directory 216a and WINDOWS directory 214a and virtual
merge directory 232 including private directory 236a (created from private directory 203) and
WINDOWS directory 214a.) Moreover, a portion of each virtual merge directory may include a
shareable portion (e.g., the WINDOWS directory) which may or may not be the same for all
silos in the computer system and may or may not be identical to a physical backing directory. In
some embodiments of the invention, all of the applications or processes running within all the

silos in the system share a single shareable portion of the silo’s merge directory which may or

-13 -

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

may not exist on the particular computer on which the silo is running. Moreover, the physical
directory which “backs” a shareable or unshareable portion of the merge directory may exist on
removable media, such as a removable disk, CD ROM, USB key, efc. Similarly, the physical
backing directory may reside on a remote system. The same is true for the private or unshareable
portion of the merge directory and its backing store.

[0036] Each of the contributing (backing store) directories may be associated with a rank,
(e.g, in FIG. 2a private (backing store) directory 216 is associated with rank 230, public
WINDOWS (backing store) directory 214 is associated with rank 218). Rank in some
embodiments is used as a tie breaker when required. For example, if a directory file access (e.g.,
open, enumerate, delete, efc.) is requested, and the indicated file exists in both directories under
the same name, the rank of the contributing directory may be used to determine which file is
exposed to the requestor, that is, the file in the directory having the highest rank is exposed to the
requestor. Similarly, if a given name is a file in one contributing directory and the same name is
a sub-directory in another contributing directory, the entry in the directory having the highest
rank is exposed to the requestor in some embodiments. In some embodiments of the invention,
the private directory 216 is given a higher rank than the public directory 214.

[0037] In some embodiments of the invention, the operating system 280 creates the silo-
specific directory via a filter driver which is able to insert itself into the code paths of operations
by registering callbacks. In some embodiments of the invention, the filter drivers comprise a
part of the file system. In some embodiments of the invention, For example, in FIG. 2 and 2a
operating system 280 may monitor file system access requests such as request 240 initiated by
process 208, 216 or 217 in silo 204 and may perform special processing so that when an open
request that uses a file ID is received, a list of physical names for the file represented by the file
ID is created. For each physical name in the list, the operating system determines whether it is
possible to issue a silo-relative name which translates to the given physical name. In some
embodiments of the invention, this is done by determining if any of the silo redirection prefixes
match the beginning of the name under consideration. If the file name could be accessed within
the silo, the file indicated by the silo-relative name is opened and the file ID for the opened file is
retrieved. If the file ID matches the original file ID, then the file is opened using the silo-relative
name. If no silo-relative names can be created that translate to the given physical name, the open
request fails. If the file indicated by the silo-relative name is opened but the file ID for the
opened file does not match the original file ID, then the next name in the list is examined. This
process continues until there are no more names in the list or until a file ID is found that matches.

If a process such as process 208, 216 or 217 in silo 204 requests a list of physical file names for a

-14 -

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

file ID, the list that is returned is filtered so that only files in the silo hierarchy are returned to the
process.

[0038] FIG. 3 is a more detailed illustration of a portion 300 of system 200. In FIG. 3,
name space 206 of silo 204 on computer 110 may represent the file system name space. Each
name space may have its own virtual root. For example, each silo (parent silo 204, child silo
210) may have its own virtual root for the file system (e.g., the virtual root directory 212
illustrated within name space 206 for silo 204 may be a file system virtual root directory) for
cach physical volume exposed to the silo. Similarly, each silo (parent silo 204, child silo 210)
may have its own virtual root for the process identifier name space (e.g., the virtual root
directory 212 illustrated within name space 206 for silo 204 may be a process identifier root) for
cach physical volume exposed to the silo, and so on. The virtual root for the silo may or may not
have the same set of nodes or entries as the corresponding physical global name space of the
volume, but typically it does not. The virtual root hierarchy may include junctions or links back
to the physical name space. The processes in the silo (208a, 208b, etc.) therefore can be given an
alternate view of the global name space on the physical volume.

[0039] In some embodiments of the invention, the operating system monitors file system
access requests made by a process running in a silo and creates a silo-specific view of a file
system directory by an apparent merging of two or more physical backing stores (file directories)
together into what appears to the silo to be a single directory. That is, two or more separate file
system directories may be exposed to a silo (and the processes running within the silo) as a
single directory. One or more of the physical backing stores may be used to build a portion of
the silo-specific view for one or more of the silos. In some embodiments of the invention, the
merged directory view is created by monitoring file system access requests and performing
special processing in response to detecting certain types of file system access requests using
operating system level filter drivers and callback processing.

[0040] FIG. 4 is a flow diagram of a method for reverse mapping of file IDs in a
restricted namespace environment in accordance with embodiments of the invention. The
operating system (e.g., OS 280 of FIG. 2, 2a) monitors file system access requests (such as file
system access request 240 made by process 208, 216 or 217 running in silo 204). When at 402 a
file system open request using a file ID, a list of possible physical names is created (404). The
list of physical names is created by the operating system by exiting the silo view, and retrieving
all possible aliases for the given file ID via standard OS mechanisms. At 406, one of the
possible names is examined. At 408, the operating system determines if it is possible to utter a

silo name which translates to the physical name. This is done by looking for “translation”

-15 -

10

15

20

25

30

WO 2008/055010 PCT/US2007/081878

information for the given silo namespace and determining if any of the physical prefixes matches
the base of the physical name in question. For example, suppose a process running within a silo
attempts to open a file by uttering the file ID 99. At 404, suppose the operating system
determines that there are two names that both refer to the file identified by the file ID 99:
“\Silos\0000\Program Files\Microsoft Office” and “\Silos\0000\Program FilessMICROS~1". At
406, the first name “\Silos\0000\Program Files\Microsoft Office” is selected. At 408, the
operating system determines if the physical name could be generated by a process in the silo.
This is achieved by seeing if any of the junctions in the current namespace are a prefix for this
name. So for example, lets assume the path “Program Files” in the silo maps to “‘\Program Files”
and “\Silos\0000\Program Files” where the former is a public read-only location, and the later is
a private read-write location. Since the junction information has “\Silos\0000\Program Files” as
a redirect location, and since this is a prefix to the generated possible name ‘“\Silos\0000\Program
Files\Microsoft Office” there is a candidate name, and processing continues. If there were no
match, then the next possible name in the list is examined. Since a match was found, instead of
opening the physical file “\Silos\0000\Program Files\Microsoft Office”, the candidate silo
relative name which conceivably maps to this file (“\Program Files\Microsoft Office” within the
silo view) is opened within the silo view. The file ID for this file is obtained (410). If the file ID
for the silo-relative file “\Program Files\Microsoft Office” and the file ID received at 402 (e.g.,
99) are the same, then the name “\Silos\0000\Program Files\Microsoft Office” is converted back
into a silo relative name (in the example, this would be Program Files\Microsoft Office). This is
done by replacing the prefix used to match on above, by the silo prefix which it corresponds to
(414), that is, in the example, ‘“\Silos\0000\Program Files\Microsoft Office” is replaced with
“Program Files\Microsoft Office”. If none of the possible candidate names have silo relative
equivalents (412), then the request fails (416).

[0041] FIG. 5 is a flow diagram of a method for filtering results returned to a process that
accesses a file using a file ID in accordance with some embodiments of the invention.

At 502 a process in a silo acquires a file ID. At 504, the process may request a list of possible
names that refer to the file identified by the file ID. At 506, the results that are returned are
filtered so that only names that are visible in the silo are returned.

[0042] The various techniques described herein may be implemented in connection with
hardware or software or, where appropriate, with a combination of both. Thus, the methods and
apparatus of the present invention, or certain aspects or portions thereof, may take the form of
program code (i.¢., instructions) embodied in tangible media, such as floppy diskettes, CD-

ROMs, hard drives, or any other machine-readable storage medium, wherein, when the program

- 16 -

10

15

WO 2008/055010 PCT/US2007/081878

code is loaded into and executed by a machine, such as a computer, the machine becomes an
apparatus for practicing the invention. In the case of program code execution on programmable
computers, the computing device will generally include a processor, a storage medium readable
by the processor (including volatile and non-volatile memory and/or storage elements), at least
one input device, and at least one output device. One or more programs that may utilize the
creation and/or implementation of domain-specific programming models aspects of the present
invention, e.g., through the use of a data processing API or the like, are preferably implemented
in a high level procedural or object oriented programming language to communicate with a
computer system. However, the program(s) can be implemented in assembly or machine
language, if desired. In any case, the language may be a compiled or interpreted language, and
combined with hardware implementations.

[0043] While the present invention has been described in connection with the preferred
embodiments of the various figures, it is to be understood that other similar embodiments may be
used or modifications and additions may be made to the described embodiments for performing
the same function of the present invention without deviating therefrom. Therefore, the present
invention should not be limited to any single embodiment, but rather should be construed in

breadth and scope in accordance with the appended claims.

-17 -

10

15

20

25

WO 2008/055010 PCT/US2007/081878
What is Claimed:

1. A system for restricting access to resources comprising;:

an operating system module (280) adapted to serve a system processing environment
(201), the system processing environment (201) associated with a physical file system (254)
comprising a plurality of nodes representing files or directories and a restricted environment
comprising a silo (204) within the system processing environment (201), the silo (204)
associated with a silo-specific view of the physical file system (264), the view constraining
access of a process executing in the silo (208) to elements of the physical file system, wherein
the operating system module (280) is adapted to restricting access of the process (208) executing
in the silo (204) to only those elements visible in the silo-specific view (264), wherein an

clement of the physical file system is identified via a numeric file identifier.

2. The system of claim 1, further comprising a filter driver that inserts itself into code paths

of file access requests so that silo-specific processing is performed.

3. The system of claim 1, wherein the operating system module monitors file system access
requests and in response to detecting an open request using a numeric file identifier, generates a

list comprising at least one physical name for the element identified by the file identifier.

4. The system of claim 3, wherein the operating system module determines whether a silo-
relative name that translates to the at least one physical name can be generated by the process

running in the silo.

5. The system of claim 4, wherein in response to determining that the silo-relative name can
be generated, determining a numeric file identifier for an element identified by the silo-relative

namece.

6. The system of claim 5, wherein in response to determining that the numeric file identifier
for the element identified by the silo-relative name is the same as the file identifier of the open

request, opening the element identified in the open request using the silo-relative name.

7. A method of restricting access to elements of a file system comprising:

- 18 -

10

15

20

25

WO 2008/055010 PCT/US2007/081878

determining whether an element identified by a numeric file identifier is visible to a
process executing within a restricted execution environment comprising a silo, wherein the
process can access only those elements visible in a hierarchical silo-specific view of a physical

file system (402-414).

8. The method of claim 7, wherein determining whether the element identified by the

numeric file identifier is visible to the process comprises:

receiving a file access request, the file access request identifying an element to be opened

using a numeric file identifier.

9. The method of claim 8, further comprising creating a list of physical names for the
element to be opened identified by the numeric file identifier by exiting a silo view and

retrieving a list of aliases for the element identified by the numeric file identifier.

10. The method of claim 9, further comprising examining a name in the list of aliases and
determining if a silo-relative name that translates to the examined name can be generated within

the silo.

11. The method of claim 10, further comprising determining if the silo-relative name that
translates to the examined name can be generated by examining translation information for the
silo and determining if a physical prefix used for translation matches a portion of a physical

name for the element.

12. The method of claim 11, further comprising in response to determining that the silo-
relative name could be generated in the silo, opening the element using the generated silo-

relative name.

13. The method of claim 12, further comprising retrieving a numeric file identifier for the

element opened using the generated silo-relative name.

14. The method of claim 13, further comprising comparing the numeric file identifier
retrieved for the element opened using the generated silo-relative name with the numeric file

identifier of the file access request.

-19 -

10

15

20

25

WO 2008/055010 PCT/US2007/081878

15. The method of claim 14, further comprising in response to determining that the numeric
file identifier retrieved for the element opened using the generated silo-relative name and the
numeric file identifier of the file access request are identical, opening the element using the silo-

relative name.

16. The method of claim 14, further comprising in response to determining that the numeric
file identifier retrieved for the element opened using the generated silo-relative name and the

numeric file identifier of the file access request are not identical, denying access to the element.

17. The method of claim 11, further comprising in response to determining that no silo-

relative name that translates to any one of the list of aliases, denying access to the element.

18. A computer-readable medium comprising computer-executable instructions for:

restricting a set of files available to a process running in a restricted execution
environment comprising a silo by creating a silo-specific view of a physical file system
hierarchy, wherein the view restricts access to an element in the physical file system using a
numeric file identifier by restricting access to only those elements of the physical file system

visible in the silo-specific view (402-414).

19. The computer-readable medium of claim 18, comprising additional computer-executable
instructions for determining a list of possible names for the element identified by the numeric file

identifier.

20. The computer-readable medium of claim 19, comprising additional computer-executable
instructions for filtering the list of possible names for the element so that only those elements

visible in the silo-specific view are returned to the process.

-20 -

PCT/US2007/081878
1/6

WO 2008/055010

% SWYY90ud
Lool{oocoooflolle 5™ NoLLYOMddY L w 14
T 310W3N
o8t 191 yigy ovt. ShL oL
¥3LNdWOD 291 p1eoqhe) asnop viva s_«.mmo%oﬁ 4 | SWwuooud | Waisas

J1ON3IN WYHOONd ¥3HLO NOILVYOINddVY | ONILVH3IdO
| o [vwwn svws [owve] v/ = i
foEoz ealy apIM——OPON [« 4

oo [ooocooo] [of ’
52]

r
_
— —
bLL ! 0 € @eq
L | A — weiboad
" A8 09T 0S1 aaepaju| 0T asepau|
}MOMBN sgeuau]| aseuaY| Kowapy v MAowoap GeT
easy jeso] NTLINETY] induj sasn 31A.IOA-UON 3|jejoA-UON ow:wwwn_.uuﬂw_ 3
! ajqesoway a|qEAOWIaY-UON d 1580
y A A Y —
“ | |S€} sweiboag
_Nﬂﬂw..oxawnm _ 121 sng wajshs uonesyddy
| _ v aﬂ y A 4
| |5 aoepiaguy o BT osepau oct $E1 waysAs
[0 soug Jel—7>{ (esoydueg 09pIA saydes nun Bugelado
I inding y Y fuissasoid ZET (W)
| y _ tr | /=TT |
161 Jojiuoy | o €El _
— O, clm._oEoE Alvvuﬂﬂmo \ _ — _ |
= _ —
] ! 1€l (wow)
_

WO 2008/055010 PCT/US2007/081878

2/6
COMPUTER 110
o e D e e
X I
PARTITION202 :
SYSTEM SPACE 201 ! |,
SILO204 ——————— 1
CHILDSILO210 | || , :
SYSTEM SILO cHiLbsiLo | | !
PROCESSES PROCESSES PROCESSES I | :
250 208 | 270 ooy
/ 1Rl
File system Iy '
request 240 1N :
H o
oy |
FILE SILO FILE |
SYSTEM SYSTEM c”",;:?_: Lo : : I
254 204 svstemaza| | | | |
L J _| |
OS 280
KERNEL 281

200 \J

FIG. 2

WO 2008/055010 PCT/US2007/081878

3/6
P | “computerzro ~ T T T T T T T ’l
| —— === |

|

| _Sio2:4 1. | VIRTUAL | PRIVATE DIR |
| . .:/ | MERGE | 216 |
| 216
| PROCESS | | : | DRz : :
m File		RANK		
] system			READAVRITE 230	
request			pRIVATE	,
240	DIR			
: 216a	WINDOWS DIR			
e L. 214				
i	READ ONLY			
I 0S :	W	NDows1	,i/' RANK	
280 l'\|DIR 214a [T 218 '				
¥	1			
e	:			
I . r—-H-—=—-=-=-= II				
———	PR:;:QTE		PRIVATE	
			DIR 203	
	_Si0220 323		2362	!
it		:I		
	PROCESS			
! :	226 I VIRTUAL	e '		
l Lol	MERGE			
: L __ -	DIR232 ! :			
Lo .. ! I				
I				
I I				

WO 2008/055010 PCT/US2007/081878
4/6
(Computer 110)
("silo 204)
(Name space 206 A
Samespace el L e . . — . —. - N
| — 212 | Process 208a 208b
| e o . |
: l
| , oo DRSOy _}—sObjects || o———
| 5
. : | Child Silo 210 }-
© Junctions | Dirsctoy_}——s0bjects |
| Points _ . :
. Can Be Read Objects l
Only J
[Other roots & Silo properties ...]
N J
_ Y,

300

FIG. 3

WO 2008/055010 PCT/US2007/081878

5/6

REQ TO OPEN FILE BY
FILE-ID RECD 402

BUILD LIST OF POSSIBLE F I G 4
NAMES 404 "

»| GET NAME FROM LIST 406

DOES IT HAVE
CORRECT FILE ID?

NO REQ FAILS

SILO RELATIVE NAME?
416

OPEN USING SILO
RELATIVE NAME 414

WO 2008/055010

6/6

PROCESS IN SILO
ACQUIRES FILE-ID 502

PROCESS REQUESTS
LIST OF POSSIBLE
NAMES 504

FILTER RESULTS
RETURNED TO PROCESS

m B

FIG. 5

PCT/US2007/081878

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2007/081878

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 12/06(2006.01)i, GOGF 12/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 : GO6F 12/00, GO6F 15/16, GO6F 15/163, GO6F 17/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility Models and applications for Utility Model since 1975
Japanese Utility Models and applications for Utility Model since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKIPASS(KIPO internal) "virtual file", "namespace", "access right”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2002/0095479 A1 (SCHMIDT BRIAN KEITH) 18 July 2002 1,7,18
See abstract, paragraphs [0037] - [0062], claims

A US 6026402 A (VOSSEN JOSEPH K., et al.) 15 February 2000 1-20
See abstract, claims

A US 2006/0089950 A1 (TORMASOV ALEXANDER, et al.) 27 April 2006 1-20
See abstract, claims

A US 7024427 B2 (BOBBITT JARED E., et al.) 04 April 2006 1-20
See abstract, claims

A US 6789094 B2 (RUDOFF ANDREW M., et al.) 07 September 2004 1-20
See abstract, claims

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
25 FEBRUARY 2008 (25.02.2008) 25 FEBRUARY 2008 (25.02.2008)
Name and mailing address of the ISA/KR Authorized officer .

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo- LEE, Jong Ick
v gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8373

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2007/081878

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 20020095479 A1 18.07.2002 US 7206819 BB 17.04.2007

US 6026402 A 15.02.2000 NONE

US 2006089950 A1 27.04.2006 us 7222132 BB 22.05.2007

US 7024427 B2 04.04.2006 US 20030115218 A1 19.06.2003
US 2006123062 AA 08.06.2006

US 6789094 B2 07.09.2004 EP 1176523 A3 27.07.2005
US 20020062301 A1l 23.05.2002

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report

