wo 2015/143405 A1]I NF 10000000 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date
24 September 2015 (24.09.2015)

(10) International Publication Number

WO 2015/143405 A1

WIPOIPCT

(51) International Patent Classification:
HO4L 12/24 (2006.01)

(21) International Application Number:

(74

PCT/US2015/021882 (81)

(22) International Filing Date:

20 March 2015 (20.03.2015)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
14/222,123 21 March 2014 (21.03.2014) US
14/222,118 21 March 2014 (21.03.2014) US
14/222,106 21 March 2014 (21.03.2014) US
(71) Applicant: PTC INC. [US/US]; 140 Kendrick Street,
Needham, Massachusetts 02494 (US).
(72) Inventors: MAHONEY, Mike; c/o PTC INC., 140

Kendrick Street, Needham, 02494 US (US). DEREMER,
Bob; c¢/o PTC Inc., 140 Kendrick Street, Needham, Mas-
sachusetts 02494 (US). BULLOTTA, Rick; 610 Waterfall

Way, Phoenixville, Pennsylvania 19460 (US).

(84)

Agents: TANPITUKPONGSE, T. Paul et al; Choate,
Hall & Stewart LLP, Two International Place, Boston,
Massachusetts 02110 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR ROUTING MESSAGES IN DISTRIBUTED COMPUTING ENVIRONMENTS

1002

Y 108a

[
Beaso]

|| BfeasstH

| 104

Platform Edge Server Groups

Server

1022

P |

5_ 108b

|| Bfesssto

Edge Server Groups

—_——
eS|

11002

5— 108¢

AP|
Server

Edge Server Groups

Bleess]
Bleszso

5— 108d

Edge Server Groups

1109‘(

AP|
Server

®

Platform
Server

10204

Server

118b
118¢

y 116 118a
3 Party

(57) Abstract: Methods and systems herein enables commu-
nication between connected devices and a federation of serv-
ers in a distributed computing system. The federation of
servers allows a given connected device to freely move with-
in the system such that the connected device does not need
any knowledge of its own location or any routing details
about nodes within the federation. The edge and intermedi-
ate servers employ a non-network addressable identifier as-
sociated with the device to establish a binding path from the
platform server to the device. In another aspect, the interme-
diate servers operate as stateless servers and do not maintain
or track the states of communication that relay therethrough.
Rather, the intermediate servers inject the state information
to each inbound message and employ routing rules in direct-
ing the injected information back to its source.

WO 2015/143405 A1 WAL 00N VT 0O O

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))

a patent (Rule 4.17(ii)) — before the expiration of the time limit for amending the

— as to the applicant's entitlement to claim the priority of claims and to be republished in the event of receipt of
the earlier application (Rule 4.17(iii)) amendments (Rule 48.2(h))

10

15

20

WO 2015/143405 PCT/US2015/021882

SYSTEMS AND METHODS FOR ROUTING MESSAGES IN DISTRIBUTED

COMPUTING ENVIRONMENTS

FIELD OF THE INVENTION

The present invention generally relates to operations in a distributed computing
environment. More particularly, in certain embodiments, the invention relates to message
routing using name-based identifiers in distributed computing environments. In other
embodiments, the invention relates to injecting routing and authentication state information
into messages being routing in distributed computing environments. In yet other
embodiments, the invention relates to using intermediate (e.g., connection) servers to manage
persistent connectivity between end-point devices and platform servers in a distributed

computing environment.

RELATED APPLICATIONS

The present application claims priority to and the benefit of U.S. Application No.
14/222,123, titled “System and Method of Message Routing Using Name-Based Identifier in
a Distributed Computing,” and filed March 21, 2014; U.S. Application No. 14/222,118, titled
“System and Method of Injecting States into Message Routing in a Distributed Computing
Environment,” and filed March 21, 2014; and U.S. Application No. 14/222,106, titled
“System and Method of Message Routing via Connection Servers in a Distributed Computing
Environment,” and filed March 21, 2014. The contents of each of these applications are

hereby incorporated by reference herein in their entireties.

BACKGROUND

The Internet of Things (“IOT”) refers to the network of systems, devices, and/or
physical objects (collectively referred to as “systems”) existing in the real world, ranging

from automobiles to heart monitors. These physical objects and/or devices are equipped

o1-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

and/or embedded with software, sensors, electronics, communication means and the like, that
enable them to, among other things, communicate and exchange data. The number of
systems that make up the Internet of Things is rapidly growing. Some industry analysts have
estimated that the number of connected systems (in an industrial, consumer, government,
medical, and business setting) may rise from five billion to one trillion over the next ten
years.

In one type of distributed computing architecture, one or more servers, such as
business logic servers (referred to as “platform servers™), are employed to service data and
information for hundreds of thousands or more computing devices, for example, within the
Internet of Things. These servers may be designated and/or assigned, for example, based on
a given geographic region. For example, a platform server may service a group of devices in
North America or the East Coast of the United States. The number of devices needed to
connect to these servers typically exceeds the resource capacity of such servers.

To this end, intermediate servers may be employed to manage certain functions on
behalf of or for their respective platform servers, including tracking routing state information
between the computing devices and the platform servers, as well as tracking authentication
session information for a given connected device. Such load-balancing functions thus reduce
the processing and storage burdens of a single computing resource by allocating those
burdens among a broader set of computing resources. Intermediate servers can be configured
to be stateless (e.g., they do not maintain information associated with the tracking of the
message) to reduce the processing and storage burdens of the servers.

Moreover, persistent connectivity can be used in conjunction with intermediate
servers to reduce the number of connections and/or communications needed to be processed
by the platform server, thereby lowering the central processing unit (CPU) and memory usage

of these systems (and/or allowing for more devices to be connected). This, in turn, reduces

10

15

20

WO 2015/143405 PCT/US2015/021882

the cost of such connectivity and is particularly beneficial when there are such a vast number
of connected devices. Persistent connectivity generally refers to a single connection (e.g.,
persistent connection) between systems (e.g., devices, servers), which once established is
used to send and receive multiple requests/responses between the systems, for example, on a
one-to-one basis.

However, in combining the intermediate servers with persistent connectivity, the one-
to-one session-connection between the platform server and the connected devices is broken.
That is, because the intermediate servers are stateless, they do not maintain information
associated with the tracking of messages. Consequently, when platform servers communicate
with connected devices through intermediate servers using persistent connectivity, routing
state information of the communicated message is lost.

There is a need, therefore, for systems and methods for managing information, such as
session state and/or session information, in a distributed architecture in which servers and
devices communicate messages over persistent connections through stateless intermediate
servers. There is also a need for such systems and methods to reduce storage and processing
burdens on computing resources, and be adaptable to the rapid change, redistribution and

growth in the number of interconnected devices in the Internet of Things.

SUMMARY
In general overview, the embodiments described herein provide a software library and
computing architecture for building a federation of distributed computing systems to service
data for a vast number of computing devices (e.g., connected devices). To achieve
connectivity to a large number of connected devices, the federation generally includes
multiple server nodes to share the workload. The server nodes can be logical/virtual or

physical.

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In some implementations, a platform server communicates with a given computing
device across one or more intermediate servers over persistent connections. The platform
routes (e.g., transmits) data to and from data storage servers and various back-end servers that
provide services to the computing devices. To this end, the intermediate servers multiplex
messages sent over persistent connections established with the edge servers and over
persistent connections established with the platform server. It is observed that this federation
of distributed computing systems can service over a 100,000 connected devices via a single
platform server.

To maintain these persistent connections formed among the devices within the
federation while beneficially allowing a given computing device to freely move within the
system, the edge and intermediate servers operate using one or more non-network
addressable identifiers associated with a given computing device. Such non-network
addressable identifiers may be name identifiers associated with a given computing system.
This feature allows the computing device to be serviced by the federation while being
connected to any edge server within the federation. Indeed, the computing device does not
need to have any knowledge of the its own location within a network or federation, or any
networking or routing details about nodes within the federation. The computing devices
merely register, by providing their name and/or corresponding security key, to a given edge
server. In turn, the device is bound to a path within the federation.

In some implementations, to share and/or off-load certain functions from the platform
server, the intermediate servers maintain and enforce authentication session information for a
given computing device within the federation, thereby saving the platform server from having
to perform such a task. The intermediate servers maintain the authentication session for a
given computing device once the credentials of the computing device are verified. Indeed,

each intermediate server stores the authentication session information and injects it into the

10

15

20

25

WO 2015/143405 PCT/US2015/021882

message of a given device, thereby freeing the platform server from having to maintain
authentication session information for that device. In doing so, the platform server distributes
the management of the authentication session to the intermediate server while allowing the
platform server to still perform the authentication. To this end, data and information may be
pipelined (e.g., transmitted) to independently operating intermediate servers, which may
share connectivity work load of the platform server.

In some implementations, the intermediate servers are stateless connection managers
that do not maintain state information of messages that they send or receive. To maintain
state information associated with the tracking of messages with the stateless intermediate
servers, the intermediate servers send and/or inject state information associated with the
routing source of the messages into the messages themselves. Consequently, these inbound
messages are injected with such routing state information to allow for the return of such
messages. In particular, the routing state information is associated with a communication
handle of the persistent connection over which the message is sent.

Applications for the systems and methods described herein are not limited to the
aforementioned examples, but may be deployed in any number of contexts, as would be
understood by one of ordinary skill in the art. Contents of the background are not to be
considered as an admission of the contents as prior art.

In one aspect, the present disclosure describes a method of message routing using a
name-based identifier in a distributed computing environment. The method may include
providing a platform server, a set of intermediate servers, and a set of edge servers,
collectively defining a network. In the network, an end-point device communicates with an
edge server of the set of edge servers, the set of edge servers communicates with the set of
intermediate servers, and the set of intermediate servers communicates with a platform

SCIrver.

10

15

20

25

WO 2015/143405 PCT/US2015/021882

The method includes binding, at a platform server, at a first instance, the end-point
device to the platform server. The platform server binds, at the first instance, the end-point
device using a non-addressable name value associated with the end-point device. The
binding, at the first instance, associates a first path across the network where the first path is
defined between the end-point device and the platform server, across one or more
intermediate servers and one or more edge servers.

The method includes communicating, at the platform server, a first message to the
end-point device along the first path.

The method includes rebinding, at the platform server, at a second instance, the end-
point device to the platform server. The platform server binds, at the second instance the
end-point device, using the non-addressable name value associated with the end-point device.
The non-addressable name value may include a character string. The rebinding, at the second
instance, associates a second path across the network. The second path is defined between
the end-point device and the platform server, across one or more intermediate servers and one
or more edge servers, including a second intermediate server.

The method includes communicating, at the platform server, a second message to the
end-point device along the second path. Each of the first path and the second path may
include an established persistent connection associated with a connection handle. The
established persistent connection may include a WebSocket connection. At least one of the
first path and the second path may include at least two intermediate servers.

In some implementations, the method includes receiving, at the platform server, at a
given instance between the first and second instances, a request to unbind the end-point
device from the platform server. The platform server unbinds the end-point device based on
the unbind request. The unbinding dissociates the first path defined between the end-point

device and the platform server.

10

15

20

WO 2015/143405 PCT/US2015/021882

In some implementations, the method includes binding, at the platform server, at the
first instance, a second end-point device to the platform server. The platform server binds, at
the first instance, the second end-point device based on a second non-addressable name value
associated with the second end-point device. The binding of the first end-point device and
the binding of the second end-point device may be the result of a single bind request.

In another aspect, the present disclosure describes a system for executing the above-
discussed method of message routing using a name-based identifier in a distributed
computing environment. The system includes a processor and a memory. The memory
stores instructions that, when executed by the processor, cause the processor to bind, at a first
instance, the end-point device using a non-addressable name value associated with the end-
point device. The binding, at the first instance, associates a first path across the network
where the first path is defined between the end-point device and the bound server, across one
or more intermediate servers and one or more edge servers.

The instructions, when executed, further cause the processor to communicate a first
message to the end-point device along the first path.

The instructions, when executed, further cause the processor to rebind at a second
instance using the non-addressable name value associated with the end-point device. The
non-addressable name value may include a character string. The rebinding, at the second
instance, associates a second path across the network. The second path is defined between
the end-point device and the bound server across one or more intermediate servers and one or
more edge servers.

The instructions, when executed, further cause the processor to communicate a second
message to the end-point device along the second path. Each of the first path and the second

path may include an established persistent connection associated with a connection handle.

10

15

20

25

WO 2015/143405 PCT/US2015/021882

The established persistent connection may include a WebSocket connection. At least one of
the first path and the second path may include at least two intermediate servers.

In some implementations, the instructions, when executed, further cause the processor
to receive a request to unbind the end-point device from the bound server based on the unbind
request. The unbinding dissociates the first path defined between the end-point device and
the bound server.

In another aspect, the present disclosure describes a non-transitory computer readable
medium for executing the above-discussed method of message routing using a name-based
identifier in a distributed computing environment. The computer-readable medium has
instructions stored thereon, where the instructions, when executed by a processor, cause the
processor to bind, at a first instance, the end-point device using a non-addressable name value
associated with the end-point device. The binding, at the first instance, associates a first path
across the network. The first path is defined between the end-point device and the bound
server across one or more intermediate servers and one or more edge servers.

The instructions, when executed, further cause the processor to communicate a first
message to the end-point device along the first path.

The instructions, when executed, further cause the processor to rebind at a second
instance using the non-addressable name value associated with the end-point device. The
non-addressable name value may include a character string. The rebinding, at the second
instance, associates a second path across the network where the second path is defined
between the end-point device and the bound server, across one or more intermediate servers
and one or more edge servers.

The instructions, when executed, further cause the processor to communicate a second
message to the end-point device along the second path. Each of the first path and the second

path may include an established persistent connection associated with a connection handle.

10

15

20

25

WO 2015/143405 PCT/US2015/021882

The established persistent connection may include a WebSocket connection. At least one of
the first path and the second path may include at least two intermediate servers.

In some implementations, the instructions, when executed, further cause the processor
to receive a request to unbind the end-point device from the bound server based on the unbind
request. The unbinding dissociates the first path defined between the end-point device and
the bound server.

In another aspect, the present disclosure describes a computer-implemented method of
communication between a platform server and an end-point device. The method includes
providing a set of intermediate servers connected to a network. The network further
comprises a platform server and a set of edge servers. An end-point device communicates
with an edge server of the set of edge servers. The set of edge servers communicates with the
set of intermediate servers, and the set of intermediate servers communicates with the
platform server. The method includes binding, at an intermediate server of the set of
intermediate servers, at a first instance, the end-point device to the intermediate server. The
intermediate server binds, at the first instance, the end-point device based on a non-
addressable name value associated with the end-point device. The binding, at the first
instance, associates a given persistent connection with a given edge server of the set of edge
servers, the given edge server communicating with the end-point device. The method
includes receiving, at the intermediate server, a signal from platform server, the signal having
a value associated with the non-addressable name value of the end-point device. The method
includes determining at the intermediate server, a persistent connection among a set of
persistent connections having been established to the set of edge servers, where the non-
addressable name value has been associated with the persistent connection during the
binding. The method includes transmitting, at the intermediate server, the signal to the end-

point device using the determined persistent connection.

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In another aspect, the present disclosure describes a system including a processor and
a memory having instructions stored thereon, where the instructions, when executed by the
processor, cause the processor to provide a set of intermediate servers connected to a
network, the network further comprising a platform server and a set of edge servers where an
end-point device communicates with an edge server of the set of edge servers. The set of
edge servers communicates with the set of intermediate servers, and the set of intermediate
servers communicates with the platform server. The instructions, when executed by the
processor, cause the processor to bind, at an intermediate server of the set of intermediate
servers, at a first instance, the end-point device to the intermediate server. The intermediate
server binds at the first instance the end-point device based on a non-addressable name value
associated with the end-point device. The binding, at the first instance, associates a given
persistent connection to a given edge server of the set of edge servers, the given edge server
communicating with the end-point device. The instructions, when executed by the processor,
cause the processor to receive, at the intermediate server, a signal from platform server, the
signal having a value associated with the non-addressable name value of the end-point
device. The instructions, when executed by the processor, cause the processor to determine
at the intermediate server, a persistent connection among a set of persistent connections
having been established to the set of edge servers. The non-addressable name value has been
associated with the persistent connection during the binding. The instructions, when
executed by the processor, cause the processor to transmit, at the intermediate server, the
signal to the end-point device using the determined persistent connection.

In another aspect, the present disclosure describes a non-transitory computer readable
medium having instructions stored thereon, where the instructions, when executed by the
processor, cause the processor to provide a set of intermediate servers connected to a

network. The network further comprising a platform server and a set of edge servers where

-10 -

10

15

20

WO 2015/143405 PCT/US2015/021882

an end-point device communicates with an edge server of the set of edge servers. The set of
edge servers communicates with the set of intermediate servers, and the set of intermediate
servers communicates with the platform server. The instructions, when executed by the
processor, cause the processor to bind, at an intermediate server of the set of intermediate
servers, at a first instance, the end-point device to the intermediate server. The intermediate
server binds at the first instance the end-point device based on a non-addressable name value
associated with the end-point device. The binding, at the first instance, associates a given
persistent connection to a given edge server of the set of edge servers, the given edge server
communicating with the end-point device. The instructions, when executed by the processor,
cause the processor to receive, at the intermediate server, a signal from platform server, the
signal having a value associated with the non-addressable name value of the end-point
device. The instructions, when executed by the processor, cause the processor to determine
at the intermediate server, a persistent connection among a set of persistent connections
having been established to the set of edge servers. The non-addressable name value has been
associated with the persistent connection during the binding. The instructions, when
executed by the processor, cause the processor to transmit, at the intermediate server, the
signal to the end-point device using the determined persistent connection.

In another aspect, the present disclosure describes a method of routing messages in a
distributed computing environment between a platform server and an end-point device. The
method includes providing a platform server and one or more intermediate servers. Each of
the intermediate servers connects and maintains a persistent connection to the platform server
and the intermediate servers communicate and maintain a number of persistent connections
with a number of edge servers. The intermediate server does not maintain state information

associated with tracking and/or routing of the message.

S11 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

The method includes receiving, by a port at a given intermediate server, a service
request from a given edge server of the edge servers over a first persistent connection.

The method includes inserting (e.g., injecting), by the processor at the intermediate
server, a given state identifier to the service request where the given state identifier (e.g., an
endpoint identifier) is associated with a connection identity (e.g., a communication handle) of
the first persistent connection over which the service request was received. In some
implementations, the association is also stored in memory at the intermediate server. The
method also includes transmitting, at the intermediate server, the service request to the
platform server over a second persistent connection, where the service request includes the
given state identifier. The method includes receiving, at the intermediate server, a response
message over the second persistent connection, the response message having been generated
by the platform server in response to the service request. The response message includes the
given state identifier. The method also includes retrieving, at the intermediate server, the
connection identity of the first persistent connection using the given state identifier. The
given state identifier is the same state identifier transmitted within the service request.

The method includes routing, at the intermediate server, the response message to a
selected connection of the persistent connections with the edge servers. The selected
connection is based on the retrieved connection identity.

In some implementations, the persistent connections include WebSocket connections.
In some implementations, the given state identifier is inserted into a header portion of the
service request.

In some implementations, the intermediate server maintains, in the memory, a second
state identifier associated with an authentication exchange having been conducted between
the computing device connected to the given edge server and the platform server. The second

state identifier may be associated with a name value associated with that of the computing

S12-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

device. In such implementations, the method includes comparing, using the processor at the
intermediate server, a device identifier located within the service request to the name value.
If there is a match, the intermediate server may inject the second state identifier into the
service request where the device identifier is associated with an identity of a given computing
device operatively communicating with the given edge server. If the comparison does not
result in a match, the intermediate server may send an unbind request to the given edge
server. The unbind request causes the device identifier to be removed from a binding list of
one or more device identifiers stored at the edge server. The second state identifier may be
associated with the connection identity of the first persistent connection. The association is
stored in memory at the intermediate server.

In another aspect, the present disclosure describes a system, namely an intermediate
server, including a processor and a memory, the memory storing instruction that, when
executed by the processor, cause the processor to receive, by a port, a service request from a
given edge server over a first persistent connection. The instructions, when executed, further
cause the processor to insert a given state identifier to the service request. The given state
identifier is associated with a connection identity of the first persistent connection over which
the service request was received. The instructions, when executed, further cause the
processor to transmit the service request to the platform server over a second persistent
connection, wherein the service request includes the given state identifier. The instructions,
when executed, further cause the processor to receive a response message over the second
persistent connection, the response message having been generated by the platform server in
response to the service request where the response message includes the given state identifier.
The instructions, when executed, further cause the processor to retrieve, at the intermediate
server, the connection identity of the first persistent connection using the given state identifier

where the given state identifier is the same state identifier transmitted within the service

-13 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

request. The instructions, when executed, further cause the processor to route the response
message to a selected connection of the persistent connections with the edge servers where
the selected connection is based on the retrieved connection identity.

In some implementations, the given state identifier is inserted into a header portion of
the service request. The persistent connections may be WebSocket connections. In some
implementations, the association to a connection identity of the first persistent connection is
stored in memory at the intermediate server.

In some implementations, the intermediate server maintains, in the memory, a second
state identifier associated with an authentication exchange having been conducted between
the computing device connected to the given edge server and the platform server. The second
state identifier may be associated with a name value associated with that of the computing
device. In such implementations, the intermediate server compares, by the processor, a
device identifier located within the service request to the name value. If there is a match, the
intermediate server may inject the second state identifier into the service request. The device
identifier is associated with an identity of a given computing device operatively
communicating with the given edge server. If the comparison is not a match, the
intermediate server may send an unbind request to the given edge server. The unbind request
causes the device identifier to be removed from a binding list of one or more device
identifiers stored at the edge server. The second state identifier may be associated with the
connection identity of the first persistent connection. The association is stored in memory at
the intermediate server.

In another aspect, the present disclosure describes a non-transitory computer readable
medium having instructions stored thereon, where the instructions, when executed by a
processor, cause the processor to receive, by a port, a service request from a given edge

server over a first persistent connection. The instructions, when executed, further cause the

- 14 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

processor to insert a given state identifier to the service request. The given state identifier is
associated with a connection identity of the first persistent connection over which the service
request was received. The instructions, when executed, further cause the processor to
transmit the service request to the platform server over a second persistent connection. The
instructions, when executed, further cause the processor to receive a response message over
the second persistent connection, the response message having been generated by the
platform server in response to the service request. The response message includes the given
state identifier. The instructions, when executed, further cause the processor to retrieve, at
the intermediate server, the connection identity of the first persistent connection using the
given state identifier. The given state identifier is the same state identifier transmitted within
the service request. The instructions, when executed, further cause the processor to route the
response message to a selected connection of the persistent connections with the edge servers
where the selected connection is based on the retrieved connection identity.

In some implementations, the persistent connections include WebSocket connections.
In some implementations, the given state identifier is inserted into a header portion of the
service request.

In some implementations, the intermediate server maintains, in the memory, a second
state identifier associated with an authentication exchange having been conducted between
the computing device connected to the given edge server and the platform server. The second
state identifier may be associated with a name value associated with that of the computing
device. In such implementation, the intermediate server may compare, by the processor, a
device identifier located within the service request to the name value. If there is a match, the
intermediate server may inject the second state identifier into the service request. The device
identifier is associated with an identity of a given computing device operatively

communicating with the given edge server. If the comparison is not a match, the

-15-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

intermediate server may send an unbind request to the given edge server. The unbind request
causes the device identifier to be removed from a binding list of one or more device
identifiers stored at the edge server. The second state identifier may be associated with the
connection identity of the first persistent connection. The association is stored in memory at
the intermediate server.

In another aspect, the present disclosure describes a method of routing message
between a platform server and a plurality of end-point devices via a connection server in a
distributed computing environment. The method includes providing a platform server, a set
of intermediate servers, and a set of edge servers, collectively defining a network where an
end-point device communicates with an edge server of the set of edge servers, the set of edge
servers communicates with the set of intermediate servers, and the sct of intermediate servers
communicates with a platform server.

The method includes receiving, by a port at the platform server, a first data message
from a first end-point device over a first persistent connection. The first data message has
been routed through a first intermediate server over a second persistent connection.

The method includes receiving, by the port at the platform server, a second data
message from a second end-point device over a third persistent connection, wherein the
second data message has been routed through a second intermediate server over a fourth
persistent connection. The persistent connections may include a WebSocket connection.

The method includes servicing, by a processor at the platform server, the first data
message and the second data message. Each of the first intermediate server and second
intermediate server manages connectivity between the end-point devices and the platform
servers. Each of the first intermediate server and second intermediate servers may manage
authentication sessions between the end-point devices and the platform server. The platform

server may service the first data message and the second data message by routing the

- 16 -

10

15

20

WO 2015/143405 PCT/US2015/021882

messages to a back-office server selected from the group consisting of a persistence server, a
database server, a customer relationship management (CRM) server, an enterprise resource
planning (ERP) server, an operation support system (OSS) server, a business support system
(BSS) server, and a data warchouse.

In another aspect, the present disclosure describes a system including a processor and
a memory, the memory storing instructions that, when executed by the processor, cause the
processor to receive, by a port, a first data message from a first end-point device over a first
persistent connection. The first data message has been routed through a first intermediate
server over a second persistent connection.

The instructions, when executed, further cause the processor to receive, by the port, a
second data message from a second end-point device over a third persistent connection,
wherein the second data message has been routed through a second intermediate server over a
fourth persistent connection. The persistent connections may include a WebSocket
connection.

The instructions, when executed, further cause the processor to service the first data
message and the second data message. Each of the first intermediate server and second
intermediate server manages connectivity between the end-point devices and the platform
servers. Each of the first intermediate server and second intermediate server may manage
authentication sessions between the end-point devices and the platform servers. The platform
server may service the first data message and the second data message by routing the
messages to a back-office server selected from the group consisting of a persistence server, a
database server, a customer relationship management (CRM) server, an enterprise resource
planning (ERP) server, an operation support system (OSS) server, a business support system

(BSS) server, and a data warchouse.

-17-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In another aspect, the present disclosure describes a non-transitory computer readable
medium having instructions stored thereon, where the instructions, when executed by a
processor, cause the processor to receive, by a port, a first data message from a first end-point
device over a first persistent connection. The first data message has been routed through a
first intermediate server over a second persistent connection.

The instructions, when executed, further cause the processor to receive, by the port, a
second data message from a second end-point device over a third persistent connection,
wherein the second data message has been routed through a second intermediate server over a
fourth persistent connection. The persistent connections may include a WebSocket
connection.

The instructions, when executed, further cause the processor to service the first data
message and the second data message where each of the first intermediate server and second
intermediate server manages connectivity between the end-point devices and the platform
servers. Each of the first intermediate server and second intermediate server may manage
authentication sessions between the end-point devices and the platform servers. The platform
server may service the first data message and the second data message by routing the
messages to a back-office server selected from a group consisting of a persistence server, a
database server, a customer relationship management (CRM) server, an enterprise resource
planning (ERP) server, an operation support system (OSS) server, a business support system
(BSS) server, and a data warchouse.

In another aspect, the present disclosure describes a computer-implemented method of
managing a communication exchange between a platform server and plurality of end-point
device. The method includes providing an intermediate server of a set of intermediate servers
connected to a network. The network further includes a platform server and a plurality of

end-point devices, where the end-point devices communicate to the set of intermediate

- 18 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

servers, and the set of intermediate servers communicating communicates with the platform
server. The method includes determining, by a processor at the intermediate server, whether
to inject routing information into a received message from a given end-point device. The
routing information is associated with a persistent connection established with the given end-
point device. The persistent connection is among a set of persistent connections established
with the end-point devices. The method includes determining, by the processor at the
intermediate server, whether to inject an authenticated session information into the received
message. The authenticated session information is related to an authenticated session
associated with the persistent connection. The method includes determining, by the processor
at the intermediate server, whether to bind the persistent connection to an identifier associated
with the end-point device. The binding associates the persistent connection to the end-point
device. The method includes causing, by the processor at the intermediate server, at least one
of a first service to inject routing information into a received message, a second service to
inject an authenticated session information into the received message, and a third service to
bind the persistent connection to the identifier, the causing being based on the determinations.
In another aspect, the present disclosure describes a system including a processor and
a memory having instructions stored thereon, where the instructions, when executed by the
processor at an intermediate server, cause the processor to manage a communication
exchange between a platform server and a number of end-point devices. The instructions,
when executed by the processor, cause the processor to provide an intermediate server of a
set of intermediate servers connected to a network. The network further includes a platform
server and a plurality of end-point devices. The end-point devices communicate to the set of
intermediate servers, and the set of intermediate servers communicate with the platform
server. The instructions, when executed by the processor, cause the processor to determine

whether to inject routing information into a received message from a given end-point device.

-19-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

The routing information is associated with a persistent connection established with the given
end-point device, and where the persistent connection is among a set of persistent
connections established with the end-point devices. The instructions, when executed by the
processor, cause the processor to determine whether to inject an authenticated session
information into the received message. The authenticated session information is related to an
authenticated session associated with the persistent connection. The instructions, when
executed by the processor, cause the processor to determine whether to bind the persistent
connection to an identifier associated with the end-point device. The binding associates the
persistent connection to the end-point device. The instructions, when executed by the
processor, cause the processor to cause at least one of a first service to inject routing
information into a received message, a second service to inject an authenticated session
information into the received message, and a third service to bind the persistent connection to
the identifier, the causing being based on the determinations.

In another aspect, the present disclosure describes non-transitory computer readable
medium having instructions stored thereon, where the instructions, when executed by the
processor at an intermediate server, cause the processor to manage a communication
exchange between a platform server and a number of end-point devices. The instructions,
when executed by the processor, cause the processor to provide an intermediate server of a
set of intermediate servers connected to a network. The network further includes a platform
server and a plurality of end-point devices, where the end-point devices communicate to the
set of intermediate servers, and the set of intermediate servers communicating communicates
with the platform server. The instructions, when executed by the processor, cause the
processor to determine whether to inject routing information into a received message from a
given end-point device. The routing information is associated with a persistent connection

established with the given end-point device, and the persistent connection is among a set of

-20 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

persistent connections established with the end-point devices. The instructions, when
executed by the processor, cause the processor to determine whether to inject an
authenticated session information into the received message. The authenticated session
information is related to an authenticated session associated with the persistent connection.
The instructions, when executed by the processor, cause the processor to determine whether
to bind the persistent connection to an identifier associated with the end-point device. The
binding associates the persistent connection to the end-point device. The instructions, when
executed by the processor, cause the processor to cause at least one of a first service to inject
routing information into a received message, a second service to inject an authenticated
session information into the received message, and a third service to bind the persistent
connection to the identifier, the causing being based on the determinations.

In some implementations a system is provided for routing messages in a distributed
computing environment. The system comprises a processor and a memory. The memory
stores instructions that, when executed by the processor, cause the processor to
communicatively couple (e.g., a platform server) to a network and to one of a set of
intermediate servers. The network includes the set of intermediate servers and an end-point
device connected thereto. The end-point device is communicatively coupled with an
intermediate server of the set of intermediate servers. The end-point device is bound (e.g., to
the platform server) at a first instance. The binding to the end-point device at the first
instance is performed using a non-addressable name value associated with the end-point
device. The binding to the end-point device at the first instance includes associating to a first
path across the network. The first path is a path to and from the end-point device across one
or more of the set of intermediate servers. A first message is communicated to the end-point
device along the first path. The end-point device is bound (e.g., to the platform server) at a

second instance. The binding to the end-point device at the second instance is performed

221 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

using the non-addressable name value associated with the end-point device. The binding to
the end-point device at the second instance includes associating to a second path across the
network. The second path is a path to and from the end-point device across one or more of
the set of intermediate servers different than the one or more of the set of intermediate servers
in the first path. A second message is communicated to the end-point device along the
second path.

In some implementations, a system is provided for routing messages in a distributed
computing environment. The system comprises a processor and a memory. The memory
stores instructions that, when executed by the processor, cause the processor to
communicatively couple (e.g., an intermediate server) to a network, a platform server, and an
end-point device. The network includes the platform server and the end-point device
connected thereto. The end-point device is bound (e.g., to the intermediate server) at a first
instance. The binding to the end-point device at the first instance is performed using a non-
addressable name value associated with the end-point device. The binding to the end-point
device at the first instance includes establishing a persistent connection with the end-point
device. The establishing a persistent connection with the end-point device includes
associating the persistent connection with the non-addressable name value associated with the
end-point device. A signal is received from the platform server. The signal includes a value
associated with the non-addressable name value of the end-point device. The persistent
connection established with the end-point device is identified from among a set of persistent
connections. The signal is transmitted to the end-point device using the persistent connection
identified from among the set of persistent connections.

In some implementations, a method of routing messages in a distributed computing
environment is provided. A network and a set of intermediate servers are communicatively

coupled (e.g., to a platform server). The network includes the set of intermediate servers and

2.

10

15

20

25

WO 2015/143405 PCT/US2015/021882

an end-point device connected thereto. The end-point device is communicatively coupled
with an intermediate server of the set of intermediate servers. The end-point device is bound
(e.g., to the platform server) at a first instance. The binding to the end-point device at the
first instance is performed using a non-addressable name value associated with the end-point
device. The binding to the end-point device at the first instance includes associating (e.g., by
the platform server) to a first path across the network. The first path is a path to and from the
end-point device across one or more of the set of intermediate servers. A first message is
communicated to the end-point device along the first path. The end-point device is bound
(e.g., by the platform server) at a second instance. The binding to the end-point device at the
second instance is performed using the non-addressable name value associated with the end-
point device. The binding to the end-point device at the second instance includes associating
to a second path across the network. The second path is a path to and from the end-point
device across one or more of the set of intermediate servers different than the one or more of
the set of intermediate servers in the first path. A second message is communicated to the
end-point device along the second path.

In some implementations, a request to unbind from the end-point device is received at
a third instance between the first instance and the second instance. The end-point device is
unbound (e.g., by the platform server) based on the unbind request. The unbinding from the
end-point device includes dissociating from the first path across the network.

In some implementations, the first path includes a first intermediate server, of the set
of intermediate servers, along the path to and from the end-point device. The second path
includes a second intermediate server, of the set of intermediate servers, along the path to and
from the end-point device. Each of the first path and the second path include corresponding
established persistent connections. Each of the established persistent connections includes a

corresponding connection handle.

_23 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In some implementations, the established persistent connections are WebSocket
connections.

In some implementations, the non-addressable name value includes a character string.

In some implementations, a second end-point device is bound (e.g., by the platform
server) at the first instance. The binding (e.g., the platform server) to the second end-point
device at the first instance is performed using a second non-addressable name value
associated with the second end-point device.

In some implementations, the binding (e.g., the platform server) to the end-point
device and the binding (e.g., the platform server) to the second end-point device are
performed in response to a single bind request.

In some implementations, at least one of the first path and the second path includes
two or more intermediate servers of the set of intermediate servers.

In some implementations, the end-point device is communicatively coupled with at
least one of a set of edge servers. The set of edge servers are communicatively coupled with
the set of intermediate servers. The first path is a path to and from the end-point device
further across one or more of the set of edge servers. The second path is a path to and from
the end-point device further across one or more of the set of edge servers different than the
one or more of the set of edge servers in the first path.

In some implementations, a method of routing messages in a distributed computing
environment is provided. For example, an intermediate server is communicatively coupled to
a network, a platform server, and an end-point device. The network includes the platform
server and the end-point device connected thereto. The end-point device is bound (e.g., by a
platform server) at a first instance. The binding (e.g., the platform server) to the end-point
device at the first instance is performed using a non-addressable name value associated with

the end-point device. The binding (e.g., the platform server) to the end-point device at the

-4 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

first instance includes establishing a persistent connection with the end-point device. A
persistent connection is established with the end-point device includes associating the
persistent connection with the non-addressable name value associated with the end-point
device. A signal is received from the platform server, the signal including a value associated
with the non-addressable name value of the end-point device. The persistent connection
established with the end-point device is identified from among a set of persistent connections.
The signal is transmitted to the end-point device using the persistent connection identified
from among the set of persistent connections.

In some implementations, a non-transitory computer readable medium is provided,
having instructions stored thereon, wherein the instructions, when executed by a processor,
cause the processor to communicatively couple (e.g., a platform server) to a network and to a
set of intermediate servers. The network includes the set of intermediate servers and an end-
point device connected thereto. The end-point device is communicatively coupled with an
intermediate server of the set of intermediate servers. The end-point device is bound at a first
instance. The binding (e.g., the platform server) to the end-point device at the first instance is
performed using a non-addressable name value associated with the end-point device. The
binding (e.g., the platform server) to the end-point device at the first instance includes
associating to a first path across the network. The first path is a path to and from the end-
point device across one or more of the set of intermediate servers. A first message is
communicated to the end-point device along the first path. The end-point device is bound
(e.g., by the platform server) at a second instance. Binding (e.g., the platform server) to the
end-point device at the second instance is performed using the non-addressable name value
associated with the end-point device. Binding (e.g., the platform server) to the end-point
device at the second instance includes associating to a second path across the network. The

second path is a path to and from the end-point device across one or more of the set of

_25.-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

intermediate servers different than the one or more of the set of intermediate servers in the
first path. A second message is communicated to the end-point device along the second path.

In some implementations, a request to unbind from the end-point device is received at
a third instance between the first instance and the second instance. The platform server is
unbound from the end-point device based on the unbind request. The unbinding (e.g., the
platform server) from the end-point device includes dissociating (e.g., the platform server)
from the first path across the network.

In some implementations, each of the first path and the second path include
corresponding established persistent connections, each of the established persistent
connections including a corresponding connection handle.

In some implementations, the established persistent connections are WebSocket
connections.

In some implementations, the non-addressable name value includes a character string.

In some implementations, the platform server is bound to a second end-point device at
the first instance. The binding (e.g., the platform server) to the second end-point device at the
first instance is performed using a second non-addressable name value associated with the
second end-point device.

In some implementations, the binding (e.g., the platform server) to the end-point
device and the binding to the second end-point device are performed in response to a single
bind request.

In some implementations, at least one of the first path and the second path includes
two or more intermediate servers of the set of intermediate servers.

In some implementations, the end-point device is communicatively coupled with at
least one of a set of edge servers. The set of edge servers are communicatively coupled with

the set of intermediate servers. The first path is a path to and from the end-point device

-26 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

further across one or more of the set of edge servers. The second path is a path to and from
the end-point device further across one or more of the set of edge servers different than the
one or more of the set of edge servers in the first path.

In some implementations, a non-transitory computer readable medium is provided
having instructions stored thereon, wherein the instructions, when executed by a processor,
cause the processor to communicatively couple (e.g., a platform server) to a network, a
platform server, and an end-point device, the network including the platform server and the
end-point device connected thereto. The platform server is bound to the end-point device at a
first instance. The binding (e.g., the platform server) to the end-point device at the first
instance is performed using a non-addressable name value associated with the end-point
device. The binding (e.g., the platform server) to the end-point device at the first instance
includes establishing a persistent connection with the end-point device. A persistent
connection is established with the end-point device includes associating the persistent
connection with the non-addressable name value associated with the end-point device. A
signal is received from the platform server. The signal includes a value associated with the
non-addressable name value of the end-point device. The persistent connection established
with the end-point device is identified, from among a set of persistent connections. The
signal is transmitted to the end-point device using the persistent connection identified from
among the set of persistent connections.

In some implementations, a method for injecting states into data streams is provided.
An intermediate server is communicatively coupled to a network and to a platform server.
The network includes the platform server connected thereto. The platform server is
communicatively coupled to a plurality of intermediate servers over corresponding persistent
connections. The plurality of intermediate servers are communicatively coupled to a plurality

of computing devices over corresponding persistent connections. A service request is

_27-

10

15

20

WO 2015/143405 PCT/US2015/021882

received, via a port, over a first persistent connection, from one of the plurality of computing
devices. A state identifier is inserted into the service request, the state identifier being
associated with a connection identity of the first persistent connection. The service request is
transmitted to the platform server over a second persistent connection. A response message
is received over the second persistent connection. The response message is generated by the
platform server in response to the service request. The response message includes a state
identifier of the response message. The connection identity of the first persistent connection
is retrieved using the state identifier. The state identifier of the response message is the same
state identifier included in the service request. The response message is transmitted, over the
first persistent connection, to the one of the plurality of computing devices. The first
persistent connection is selected based on the retrieved connection identity.

In some implementations, a second state identifier associated with an authentication
exchange between the one of the plurality of computing devices and the platform server, the
second state identifier being associated with a name value of the one of the plurality of
computing devices. A device identifier included in the service request is compared to name
values of the plurality of computing devices, the device identifier being associated with the
one of the plurality of computing devices. The second state identifier is injected into the
service request, if the device identifier included in the service request is matched with a name
value of the plurality of computing devices.

In some implementations, in the event that the device identifier included in the service
request is not matched with a name value of the plurality of computing devices, an
intermediate server causes to remove the device identifier from a binding list (e.g., a binding
list of an intermediate server, a binding list of an edge server) including one or more device

identifiers.

_28 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In some implementations, the second state identifier is associate with the connection
identity of the first persistent connection; and the association of the second state identifier
with the connection identity of the first persistent connection is stored in a memory.

In some implementations, state information is associated with message content
embedded within the response message, such that an intermediate server is stateless.

In some implementations, the state identifier is inserted into a header portion of the
service request.

In some implementations, the first persistent connection and the second persistent
connection are WebSocket connections.

In some implementations, a system is provided comprising a processor and a memory,
the memory storing instructions that, when executed by the processor, cause the processor to
communicatively couple (e.g., a platform server) to a network and to a platform server, the
network including the platform server connected thereto. The platform server is
communicatively coupled with a plurality of intermediate servers over corresponding
persistent connections. The plurality of intermediate servers are communicatively coupled
with plurality of computing devices over corresponding persistent connections. A service
request is received, via a port, over a first persistent connection, from one of the plurality of
computing devices. A state identifier is inserted into the service request, the state identifier
being associated with a connection identity of the first persistent connection. The service
request is transmitted to the platform server over a second persistent connection. A response
message is received over the second persistent connection. The response message is
generated by the platform server in response to the service request, and the response message
includes a state identifier of the response message. The connection identity of the first
persistent connection is retrieved using the state identifier, the state identifier of the response

message being the same state identifier included in the service request. The response

-29 .-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

message is transmitted over the first persistent connection to the one of the plurality of
computing devices, the first persistent connection being selected based on the retrieved
connection identity.

In some implementations, a second state identifier associated with an authentication
exchange between the one of the plurality of computing devices and the platform server is
stored in the memory. The second state identifier being associated with a name value of the
one of the plurality of computing devices. A device identifier included in the service request
is compared to name values of the plurality of computing devices, the device identifier being
associated with the one of the plurality of computing devices. The second state identifier is
injected into the service request, if the device identifier included in the service request is
matched with a name value of the plurality of computing devices.

In some implementations, in the event that the device identifier included in the service
request is not matched with a name value of the plurality of computing devices, cause to
remove the device identifier from a binding list (e.g., binding list of an intermediate server,
binding list of an edge server) including one or more device identifiers.

In some implementations, the memory stores instructions that, when executed by the
processor, cause the processor to: associate the second state identifier with the connection
identity of the first persistent connection; and store, in the memory, the association of the
second state identifier with the connection identity of the first persistent connection.

In some implementations, state information is associated with message content
embedded within the response message, such that an intermediate server is stateless.

In some implementations, the state identifier is inserted into a header portion of the
service request.

In some implementations, the first persistent connection and the second persistent

connection are WebSocket connections.

-30 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In some implementations, a non-transitory computer readable medium has
instructions stored thereon, wherein the instructions, when executed by a processor, cause the
processor to: communicatively couple (e.g., an intermediate server) to a network and to a
platform server, the network including the platform server connected thereto. The platform
server is communicatively coupled with a plurality of intermediate servers over
corresponding persistent connections. The plurality of intermediate servers are
communicatively coupled with plurality of computing devices over corresponding persistent
connections. A service request from one of the plurality of computing devices is received,
via port, over a first persistent connection. A state identifier is inserted to the service request,
the state identifier being associated with a connection identity of the first persistent
connection. The service request is transmitted. to the platform server over a second persistent
connection. A response message is received over the second persistent connection. The
response message is generated by the platform server in response to the service request. The
response message includes a state identifier of the response message. The connection identity
of the first persistent connection is retrieved using the state identifier, the state identifier of
the response message being the same state identifier included in the service request. The
response message is transmitted to the one of the plurality of computing devices, the first
persistent connection being selected based on the retrieved connection identity.

In some implementations, the instructions, when executed by a processor, cause the
processor to: store, in the memory, a second state identifier associated with an authentication
exchange between the one of the plurality of computing devices and the platform server, the
second state identifier being associated with a name value of the one of the plurality of
computing devices; compare a device identifier included in the service request to name
values of the plurality of computing devices, the device identifier being associated with the

one of the plurality of computing devices; and inject the second state identifier into the

-31 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

service request, if the device identifier included in the service request is matched with a name
value of the plurality of computing devices.

In some implementations, the instructions, when executed by a processor, cause the
processor to: in the event that the device identifier included in the service request is not
matched with a name value of the plurality of computing devices, cause to remove (e.g., by
the intermediate server) the device identifier from a binding list (e.g., binding list of an
intermediate server, binding list of an edge server) including one or more device identifiers.

In some implementations, the instructions, when executed by a processor, cause the
processor to: associate the second state identifier with the connection identity of the first
persistent connection; and store, in the memory, the association of the second state identifier
with the connection identity.

In some implementations, state information is associated with message content
embedded within the response message, such that an intermediate server is stateless.

In some implementations, the state identifier is inserted into a header portion of the
service request.

In some implementations, the first persistent connection and the second persistent
connection are WebSocket connections.

In some implementations, a method of managing (e.g., by a platform server)
communications with end-point devices is provided, comprising: communicatively coupling
(e.g., the platform server) to a network and to one of a set of intermediate servers, the
network including the set of intermediate servers and an end-point device connected thereto,
wherein the end-point device is communicatively coupled with an intermediate server of the
set of intermediate servers; receiving, by a port, over a second persistent connection, a first
data message originating from a first end-point device, wherein the first data message is

routed through a first intermediate server over a first persistent connection; receiving, by a

-32-

10

15

20

WO 2015/143405 PCT/US2015/021882

port, over a fourth persistent connection, a second data message originating from a second
end-point device, wherein the second data message is routed through a second intermediate
server over a third persistent connection; and servicing the first data message and the second
data message, wherein each of the first intermediate server and the second intermediate
server manages connectivity to and from the first end-point device and the second end-point
device, respectively.

In some implementations, the first intermediate server and the second intermediate
server manage authentication sessions to and from the first end-point device and the second
end-point device, respectively.

In some implementations, the servicing the first data message and the second data
message includes: routing the first data message and the second data message to a back-office
server selected from the group consisting of a persistence server, a database server, a
customer relationship management (CRM) server, an enterprise resource planning (ERP)
server, an operation support system (OSS) server, a business support system (BSS) server,
and a data warchouse.

In some implementations, the persistent connections are WebSocket connections.

In some implementations, a non-transitory computer readable medium has
instructions stored thereon, wherein the instructions, when executed by a processor, cause the
processor to: receive, by a port, over a second persistent connection, a first data message
originating from a first end-point device, wherein the first data message is routed through a
first intermediate server over a first persistent connection; receive by a port, over a fourth
persistent connection, a second data message originating from a second end-point device,
wherein the second data message is routed through a second intermediate server over a third

persistent connection; and service the first data message and the second data message,

-33-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

wherein each of the first intermediate server and the second intermediate server manages
connectivity to and from the first end-point device and the second end-point, respectively.

In some implementations, the first intermediate server and the second intermediate
server manage authentication sessions to and from the first end-point device and the second
end-point device, respectively.

In some implementations, the servicing the first data message and the second data
message includes: routing the first data message and the second data message to a back-office
server selected from the group consisting of a persistence server, a database server, a
customer relationship management (CRM) server, an enterprise resource planning (ERP)
server, an operation support system (OSS) server, a business support system (BSS) server,
and a data warchouse.

In some implementations, the persistent connections are WebSocket connections.

In some implementations, a system comprises a processor and a memory, the
memory storing instructions that, when executed by the processor, cause the processor to:
receive by a port, over a fourth persistent connection, a second data message originating from
a second end-point device, wherein the second data message is routed through a second
intermediate server over a third persistent connection; and service the first data message and
the second data message, wherein each of the first intermediate server and the second
intermediate server manages connectivity to and from the first end-point device and the
second end-point device, respectively.

In some implementations, the first intermediate server and the second intermediate
server manage authentication sessions to and from the first end-point device and the second
end-point device, respectively.

In some implementations, the servicing the first data message and the second data

message includes: routing the first data message and the second data message to a back-office

-34 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

server selected from the group consisting of a persistence server, a database server, a
customer relationship management (CRM) server, an enterprise resource planning (ERP)
server, an operation support system (OSS) server, a business support system (BSS) server,
and a data warchouse.

In some implementations, the system comprising a single physical server.

In some implementations, the system comprising a plurality of physical servers.

In some implementations, the persistent connections are WebSocket connections.

In some implementations, a method of managing communications with end-point
devices is provided, comprising: communicatively coupling (e.g., the intermediate server) to
a network, a platform server and an end-point device, the network including the platform
server and a plurality of end-point devices connected thereto; determining whether to inject
routing information into a received message from an end-point device of the plurality of end-
point devices, wherein the routing information is associated with a persistent connection
established with the end-point device, and wherein the persistent connection is a persistent
connection among a set of persistent connections established with the plurality of end-point
devices; determining whether to inject authenticated session information into the received
message, wherein the authenticated session information is related to an authenticated session
associated with the persistent connection; determining whether to bind the persistent
connection to an identifier associated with the end-point device, wherein the binding
associates the persistent connection to the end-point device; and causing at least one (i) a first
service to inject the routing information into the received message, (ii) the second service to
inject the authenticated session information into the received message, and (iii) the third
service to bind the persistent connection to the identifier associated with the end-point device.

In some implementations, a system comprises a processor and a memory having

instructions stored thereon, wherein the instructions, when executed by the processor, cause

-35-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

the processor to: communicatively couple to a network, a platform server and an end-point
device, the network including the platform server and a plurality of end-point devices
connected thereto; determine whether to inject routing information into a received message
from an end-point device of the plurality of end-point devices, wherein the routing
information is associated with a persistent connection established with the end-point device,
and wherein the persistent connection is a persistent connection among a set of persistent
connections established with the plurality of end-point devices; determine whether to inject
authenticated session information into the received message, wherein the authenticated
session information is related to an authenticated session associated with the persistent
connection; determine whether to bind the persistent connection to an identifier associated
with the end-point device, wherein the binding associates the persistent connection to the
end-point device; and cause at least one (i) a first service to inject the routing information into
the received message, (ii) the second service to inject the authenticated session information
into the received message, and (iii) the third service to bind the persistent connection to the

identifier associated with the end-point device.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, features, and advantages of the present
disclosure will become more apparent and better understood by referring to the following
description taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a block diagram of an example system for enabling communications
between a platform server and a plurality of computing devices in accordance with an
exemplary embodiment of the invention.

FIG. 2 is a block diagram of example persistent communication channels established
between a given platform server and a given computing device in accordance with an

embodiment of the invention.

-36-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

FIG. 3 is an example of a messaging structure of an application protocol interface
(API) communication in accordance with an embodiment of the invention.

FIG. 4 illustrates example messaging codes employed by the communication API
protocol in accordance with an embodiment of the invention.

FIG. 5 is a swim-lane diagram of an example method of injecting state and routing
information into a communication exchange between a platform server and an end-point
device over a stateless persistent connection in accordance with an embodiment of the
invention.

FIG. 6 is a swim-lane diagram of the method of injecting state and routing
information into a data-request communication-exchange between a platform server and an
end-point device over a stateless persistent connection in accordance with an embodiment of
the invention.

FIG. 7 is a flow chart for an example method of controlling a connection server in
accordance with an embodiment of the invention.

FIG. 8 illustrates a method of rebinding a persistent connection path for a computing
device in accordance with an embodiment of the invention

FIG. 9 is a block diagram of an example system in accordance with an embodiment of
the invention.

FIG. 10 is a flowchart of an example method of injecting state and routing
information into a communication exchange between a platform server and an end-point
device over a stateless persistent connection in accordance with an embodiment of the
invention.

FIG. 11 is a flowchart of an example method of communication between two network
nodes and an intermediary node over a persistent connection in accordance with an

embodiment of the invention.

-37-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

FIG. 12 is a flow chart of an example method of communication between the platform
server and a plurality of an end-point device in accordance with an embodiment of the
invention.

FIG. 13 is a block diagram of a computing device and a mobile computing device.

The features and advantages of the present disclosure will become more apparent
from the detailed description set forth below when taken in conjunction with the drawings, in
which like reference characters identify corresponding elements throughout. In the drawings,
like reference numbers generally indicate identical, functionally similar, and/or structurally

similar elements.

DETAILED DESCRIPTION

It should be understood that systems, devices, methods, and processes of the claimed
invention encompass variations and adaptations developed using information from the
embodiments described herein. Adaptation and/or modification of the systems, devices,
methods, and processes described herein may be performed by those of ordinary skill in the
relevant art.

Throughout the description, where articles, devices, and systems are described as
having, including, or comprising specific components, or where processes and methods are
described as having, including, or comprising specific steps, it should be understood that,
additionally, there are articles, devices, and systems of the present invention that consist
essentially of, or consist of, the recited components, and that there are processes and methods
according to the present invention that consist essentially of, or consist of, the recited
processing steps.

It should be understood that the order of steps or order for performing actions is
immaterial so long as the invention remains operable. Moreover, two or more steps or

actions may be conducted simultaneously.

-38 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

The mention herein of any publication or patent application, for example, in the
Background section, is not an admission that such publication or patent application
constitutes prior art with respect to any of the claims or subject matter presented herein. The
Background section is presented for purposes of clarity and is not intended to be a description
of prior art with respect to any claim.

Methods and systems are described herein that enable communications between a vast
number of connected devices and a federation of servers in a distributed computing
environment.

The federation of servers allow a given connected devices to freely move (e.g.,
become connected with, to, or through different networks and/or servers) within the
distributed computing environment. As a result, the connected devices do not need to
maintain information regarding the device’s own location or any networking or routing
details about nodes within the federation. Rather, edge and intermediate servers of the
federation of servers use one or more non-network addressable identifiers associated with the
connected devices to establish a binding path through the federation of servers, through
which messages from a platform server may be sent to the connected devices. The federation
of servers is beneficially configured to transmit messages from the edge of the federation
(e.g., at edge servers) to the platform server via an inbound path. Thus, binding is only
necessary to facilitate outbound messages from the platform server to the connected device.
In some implementations, the edge and intermediate servers of the federation of servers allow
binding of the device once the device has been authenticated within the federated system.

In another aspect, the intermediate servers are beneficially optimized to handle
connections to a vast number of edge servers. The intermediate servers operate as stateless
servers, in that they do not maintain or track the states of messages and/or communications

that relay therethrough. Rather, the intermediate servers inject the state information into each

-39

10

15

20

25

WO 2015/143405 PCT/US2015/021882

inbound message and employ routing rules in directing the injected information back to its
source. The injected state information may correspond to a communication handle of an
outbound WebSocket connection associated with a return outbound path for the inbound
message.

FIG. 1 is a block diagram of an example system 100 for enabling communications
between a platform server 102 (shown as either “platform server” 102a or 102b) and a
plurality of computing devices 104 in accordance with an embodiment of the invention. Each
of the computing devices 104 may connect to an edge server 106 that services and provides
communications with a group of computing devices 108 (shown as 108a, 108b, 108c, and
108d). In some example implementations, the computing devices 108 may communicate
with a connection or application protocol interface (API) server 110 (described in further
detail below). The communication of the computing devices 104 to the connection server
may be performed via an edge server 106 and/or gateway device. A computing device 104,
in some examples, is an electronic device that can communicate properties-, services-, and
events-data, and the like, relating to physical assets/devices, computer applications and
systems, people, data objects, and platform services.

In some implementations, the computing device 104 is a sensor or a machinery at an
industrial complex; a computer or an office equipment at a business or government office; a
point-of-sale machine at a market place or a vending machine; a construction equipment or a
vehicle; a power generation or distribution equipment; a power substation or transmission
equipment; a building meter; a server; a networking or routing equipment; a smart appliance;
an exercise machine; a medical device or a prosthesis device; a medical diagnostic device or
a hospital equipment; a commercial vehicle or a transport container; a motor vehicle or an
electric bicycle; a cellphone, a laptop, a tablet, an electronic reader; or a clothing electronic-

tag.

- 40 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

An edge server, in some implementations, is an electronic device that includes
communication ports to interface with other systems, such as the endpoint device (e.g.,
computer device 104) and/or other servers. The edge server may be, for example, but not
limited to, a gateway device, a network server, a single board computer, a supervisory control
and data acquisition system (“SCADA”), or a programmable logic controller (“PLC”). The
edge server may communicate to (e.g., and/or with) the endpoint device by industrial,
commercial, computing, and military physical connection standards. These standards may
include, for example , but not limited to, Modbus, RS-232, RS-422, RS-485, Serial-ATA,
SCSI, FireWire (IEEE 1394), Ethernet, Universal Serial Bus, SONET (“Synchronous Optical
Networking”), MIL-STD-1553, I’C (“Inter-Integrated Circuit”), CAN-bus (“controller area
network™), ARINC 739 (“Avionics Digital Video Bus”), BACnet, and LonWorks. The
standards may also include health/medical communication standards, such as CEN ISO/IEEE
11073. These examples are merely for illustrative purposes. To this end, other standards
may also be employed.

To service data and information for (e.g., to, from) sets of computing devices 104, the
computing devices 104 and/or one or more edge servers 106 may communicate with an
intermediate server 110 (also referred to as a connection server 110 or an API server 110,
shown as 110a, 110b, 110c, and 110d), over a first persistent connection 103. A persistent
connection, or persistent connectivity, refers to a single connection between systems (e.g.,
intermediate server 110, edge server 106), which once established is used to send and receive
multiple requests/responses between the systems.

The connection server 110, in turn, communicates with the platform server 102 over a
second persistent connection 105. In essence, the connection server 110 forms or identifies a
persistent path between the platform server 102 and a computing device 104 and/or edge

server 106, across the first persistent connection 103 and the second persistent connection

4] -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

105. That is, in some implementations, a persistent path refers to one or more connections
(e.g., persistent connections) through which two systems are interconnected. In some
implementations, the connection server 110 employs the Unix-based (e.g., Amazon EC2
Linux) or Windows-based (e.g., Windows Servers) operating system, operating Apache
Tomcat with Oracle Java Runtime Environment or Java Development Kit.

Collectively, the platform servers 102, the connection servers 110, the edge servers
106 and/or the computing devices 104 form a federation of distributed computing system. In
some implementations, the platform servers 102 are business logic servers that maintain
connectivity to a given computing device 104. In such instances, the platform server 102
may include, or communicate with various back-office servers that include business logic
and/or rules for providing service functions, such as searching, storing, and managing data
and information, for example, of the computing device 104. To this end, the platform server
102 may primarily serve to route data to and from various applications and systems (e.g.,
back-office servers) and the computing devices 104.

In some implementations, the platform server 102 manages the authentication process
of the computing devices 104.

In some implementations, the platform server 102 routes data to and from the various
back-office applications and systems. For example, when data is received from a specific
computing device 104, the platform server 102 may route (e.g., transmit across paths in a
network) the data to another database server (e.g., back-office applications and systems). In
other embodiments, a third party application requests the data to be sent by the platform
server.

Back-office systems, including servers, may include, for example, third party products
(e.g., software, hardware) for CRM/ERP (“customer relationship management” and/or

“enterprise resource planning”), data analytics, Big Data Store (e.g., Hadoop, Data

42

10

15

20

25

WO 2015/143405 PCT/US2015/021882

Warehouses, and various distributed file systems), identity management, billing,
provisioning, and providing Web service. Examples of such back-office systems may include
SAP® Enterprise Resource Planning “ERP”, Salesforce® Customer Relationship
Management “CRM?”, Operations Support System “OSS”, and Business Support Systems
“BSS” Components.

Various data storage and applications may communicate with the platform server 102.
In some implementations, this communication is performed using Web Services, Java
Database Connectivity (JDBC), or native APIs.

In some implementations, the communication exchange between the connection
servers 110 and the edge servers 106 and/or the computing devices 104 occurs across a
network infrastructure 112, such as the Internet 112a, a Wide-area network 112b, or a third
party network 112¢. In turn, one or more connection servers 110 communicate with the
platform server 102. The platform server 102, the connection servers 110, the edge servers
106 and/or the computing devices 104, collectively, form a distributed computing system. In
some implementations, a connection server 110 communicates with a set of edge servers 106
and/or computing devices 104 through a set of network security equipment 114. The security
equipment secures the connection server 110, platform server 102, edge servers 106, and
computing devices 104 from the open network infrastructure 112. The network security
equipment 114 may include, for example, a firewall or Network Address Translation (NAT)
protocol.

FIG. 2 is a block diagram of an example persistent communication channel 200
established between a given platform server 102 and a given computing device 104 in
accordance with an embodiment of the invention.

The platform server 102 runs, in some implementations, a server-client application

using an API protocol library 204 (shown as 204a). The API protocol library manages the

-43 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

communication over the channel 200. The edge server 106 and/or computing device 104
runs a server-client application that runs the same communication API protocol library 204
(shown as 204c). To this end, messages being communicated between the platform server
102 and the edge servers 106 and/or computing device 104 are, for the most part,
symmetrical in that these messages share the same message structure and features.

In some implementations, the API protocol library 204 is a binary Dynamic
REpresentational State Transfer (REST) APL or “RESTful” API. Examples of methods of
communicating using the binary Dynamic REST APIs are described in co-pending and
concurrently filed U.S. patent application, titled “System and Method of Using Binary
Dynamic Rest Messages,” and filed March 21, 2014, naming inventors Rick Bullotta, John
Canosa, Bob DeRemer, and Mike Mahoney, and having attorney docket no. 2009132-0035.
The content of this application is hereby incorporated by reference herein in its entirety.

This symmetry of the messages is intended to reduce the complexity of operation of
the connection server 110, as the connection server 110 can generally service (e.g., process)
cach communicated message in the same manner without much regard to the source or target.

In some implementations, the communication API protocol is used to generate each
message with metadata relating to the connection. The connection metadata may include a
message identifier, authentication session information, and/or routing state information.

In some implementations, the connection server 110 uses the connection metadata,
among other things, to preserve routing state information for messages transmitted between
the edge server 106 (and/or computing device 104) and the platform server 102 (in particular,
for inbound messages from the edge server 106 (and/or computing device 104) to the
platform server 102). To this end, the routing state information for a given edge server 106
(and/or computing device 104) and a given platform server 102 is communicated within each

message, rather than stored, thereby allowing the servers to be stateless. That is, the servers

_44 -

10

15

20

WO 2015/143405 PCT/US2015/021882

are stateless because they do not store routing state information, but rather communicate that
information along with each message.

In addition, in some implementations, the connection server 110 uses the connection
metadata to communicate authentication session information for a given connected device to
the platform server. In some implementations, once a given connected device (e.g.,
computing device 104) has been authenticated (e.g., by the platform server 102), the
authentication session information (e.g., session identification number) is stored at the
connection server and is associated with the given connected device (e.g., via the device
name). Indeed, when a message is a received from a given device (e.g., computing device
104), the connection server 110 compares the identifier of the given device (e.g., the device
name embedded within the message) to a list of stored authenticated devices maintained by
the connection server 110. Upon identifying a match of the device name in the stored list, the
connection server 110 inserts the authentication session information (e.g., session
identification number) into the message and forwards the updated message to the platform
server 102. In some example implementations, the connection server 110 also inserts an
endpoint identifier corresponding to the edge server 106 and/or computing device 104.
Consequently, the platform server 102 does not need to maintain the authentication session
information for a given device.

FIG. 3 is an example message structure 300 of the communication API protocol 204
in accordance with an embodiment of the invention. The message structure 300 may include
a header 302 that provides the connection metadata and a message payload or body 304 that
provides the message content (e.g., data to be serviced). The header 302 may include base
transport data for inbound messages from the edge server 106 and/or computing devices 104

to the platform server 102.

- 45 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In some implementations, the header 302 includes a session identification number
308, referred to as a “Sessionld 308.” The session identification number is a unique identifier
used to identify a session for a given device that has undergone the authentication process
and is thus authenticated by the system. The session identification number may be associated
with an identifier (e.g., name) of an end-point device (e.g., computing device 104) from
where a message is originated, a corresponding edge server 106 through which a message is
received, and/or a connection (e.g., WebSocket connection) over which a message is
received. That is, in some implementations, the session identification number is associated
with a connection handle of a persistent connection associated with the end-point device (e.g.,
edge server, computing device).

The connection server 110 may use the session identification number to manage
authentication session state on behalf of the platform server 102. In some embodiments, the
association is used by the connection server 110 to determine a binding path with the
computing device 104,

In some implementations, the connection server 110 generates the session
identification number 308 during an authentication process of a given computing device 104.
Device authentication refers to the process of one system (e.g., computing device 104)
verifying to another system (e.g., platform server 102) that it is indeed the system that it
claims to be. The authentication process may be achieved by a number of techniques,
including those using passwords, certificates, smart cards, tokens, biometrics, proximity, and
the like. One example implementation of an authentication process is described in more
detail below with reference to FIG. 5.

During the authentication process, the connection server 204 generates and stores the
session identification number 308 when an authentication message is received. In some

implementations, the connection server 204 maintains a counter, or the like, associated with a

- 46 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

session identification number. Upon receiving a request to authenticate an end-point device
(e.g., edge server 106, computing device 104), the connection server 204 may use the latest
value from the counter as the session identification number. The connection server 204
forwards the session identification number, in conjunction with the authentication message,
to the platform server 102, where the authentication message is evaluated. Upon a success
message being received from the platform server 102, the connection server 204 stores the
session identification number 308 in a local table, memory, database, or the like. In some
implementations, the connection server 204 maintains an association of the session
identification number with one or more of an edge servers, a WebSocket connection and/or
the name of any devices that are connected to the federation via the WebSocket connection .
This preferably includes the end point devices and/or the edge servers. In some
implementations, the session identification number 308 is preferably a 32-digit long binary
number with the most-significant digit (MSB) first, though it can be of various data length
and endian.

In some implementations, the header 302 may include an endpoint identification
number 310, referred to as an “EndPointld 3107, which is associated with a connection
handle of a given persistent connection 200, over which a message from an edge server
and/or computing device is received. The connection server can thereby readily retrieve the
connection handle of the persistent connection 200 using the endpoint identification number
310. The endpoint identification number 310 is preferably a 32-digit long binary number
with the most-significant digit (MSB) first. The connection server 110 may use the endpoint
identification number to preserve routing state information that would otherwise be lost due
to the multiplexing of the persistent connection through the stateless connection server.

The header 302 may include other information fields to further improve the

operational efficiency of the messaging protocol. In some implementations, the header 302

_47 -

10

15

20

WO 2015/143405 PCT/US2015/021882

includes a request identification number 306 (referred to as a “Requestld 306”) that is
associated with a given message (and used to identify that given message). The request
identification number 306 may be randomly generated or incrementally generated to be
unique for a messages transmitted over a given persistent connection or connection channel
200. The request identification number 306 may be employed to determine, for example,
whether a message has been processed (e.g., a service request included in the message has
been fulfilled). In some implementations, the request identification number 306 is preferably
a 24-digit long binary number with the most-significant digit (MSB) first, though it can be of
various data length and endian. In some implementations, 1-bit of the request identification
number 306 is designated as the message source identifier, indicating the originating platform
server 102, edge server 106 and/or computing device 104. This ensures that the request
identification number 306 is unique.

In some implementations, the header 302 may include a message type field 312,
referred to as a “Method code 312.” The message type field 312 may include one or more
codes to allow for the quick identification of the type of message being received (e.g.,
request, response, status, acknowledgement, etc.). For simpler messages, such as
acknowledgement or error messages, the message type field 312 may constitute the message
payload. That is, because the message code can correspond to an acknowledgment or error,
which constitutes the entirety of the intended communication, those messages can omit other
data within the message body 304. For request type messages, the message type field 312
may include a code corresponding to a type of request (e.g., get, put, post, delete, bind,
authenticate, etc.). In some implementations, the request type message may be based on an

Hypertext Transfer Protocol (HTTP) framework.

- 48 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In some implementations, the header 302 may include a multi-part message field 314,
referred to as “Multipart 314.” This field may be used to identify whether the message is a
part of a group of messages having the same request identification number 306.

In some implementations, the header 302 may include a header identification number
316, referred to as “Headerld 316.” This field is used to identify the version number of the
header format. The header identification number 316 is preferably an 8-bit number.

In some implementations, the body 304 includes an “entity type” and “entity name”
(e.g., corresponding to the source of the data or request), a “characteristic” ficld, a “target
name” (e.g., corresponding to an intended recipient of the data or request), and a number of
message count.

FIG. 4 illustrates example message codes employed by the communication API
protocol in accordance with an embodiment of the invention. The codes include HTTP-based
request messages 318, HTTP-based success codes 320, HTTP-based server-error codes 322,
and HTTP-based client-error codes 324.

In an aspect of an embodiment of the invention, the connection server 110 injects
routing state information into an inbound message being sent to the platform server 102.
Injecting routing state information over a stateless connection improves performance of the
connection over typical stateful connections by reducing the amount of information stored by
a server (e.g., connection server 110). That is, by having the routing state information
embedded within each message, the connection server can complete a roundtrip message
transfer, in some implementations, using merely a lookup of the connection handle associated
with the routing state information.

In another aspect of an embodiment of the invention, the connection server 110 injects
(e.g., appends, replaces) the authentication session information into an inbound message

being sent to the platform server 102. In having the authentication session information

- 49 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

embedded within the message, the connection server 110 takes over, for the platform server
102, the managing and tracking of the authentication session for a given connected device
(e.g., the computing device 104). This frees resources for the platform server 102 to perform
other tasks, e.g., preferably to manage more devices.

FIG. 5 is a swim-lane diagram of an example method 500 of injecting authentication
session and routing state information into a communication exchange between a platform
server 102 and an end-point device 104 over a multiplexed stateless persistent connection in
accordance with an embodiment of the invention. It should be understood that messages of
various types (e.g., requests, responses) for different purposes (e.g., authentication, deleting,
binding) may be processed using the systems and/or methods described herein.

The method 500, in some implementations, begins with a computing device 104
(referred to as endpoint device “D1”) registering with an edge server 106 (referred to as edge
server “E17) (step 501a). In some implementations, the registration may be a handshake,
information exchange, or some automated process of negotiation to establish communication
between the endpoint device “D1” and the edge server “E1.” The edge server “E1” is an
electronic device that includes communication ports to interface to the endpoint device D1.

The edge server “E1”, which is executing a client-side application using the API
protocol library 204, prepares (step 502a) an authentication request message 502b in
accordance, for example, with the request message structure (shown as “A”) described in
relation to FIGS. 3 and 4. The request message 502b further includes a “Requestld R1”
(shown as “R1”) corresponding to the request identification number 306 described in relation
to FIG. 3.

The edge server “E1” (106) sends (step 502¢) the authentication request message
502b to the connection server 110 over a first persistent connection established between the

edge server “E1” (106) and the connection server “A1” (110).

-50-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In some example implementations, the end-point device (e.g. computing device) 104
prepares the authentication request message and transmits it to the connection server “A1”
(110), without first communication with or through an edge server.

The body of the message (e.g., FIG. 3, message payload 304), in some
implementations, includes an authentication message (shown as “<Auth>""). The
authentication message may include a name (or name identifier) of the endpoint device “D1”
(104) and a corresponding security code, along with any other information that is used in the
applicable authentication technique. Alternatively, in some implementations, the
authentication name may be the name identifier of the edge server “E1” (106). The name
identifier may be random or descriptive. The name identifier may have some reference to the
owner and/or type of device. For example, an electrocardiogram device number 123 owned
by the John Doe Medical Institute may have a descriptive name identifier of
“JohnDMedInt EKG Dev_123.” As described in more detail below with reference to FIG.
10, the name or name identifier is a non-addressable identifier.

In some implementations, the authentication name and the corresponding security
code are formatted in an UTF-8 data-type string (“Unicode Standard— 8 bits”). The string
may be of any length and may be preceded, in the message, by a length value corresponding
to the string length in the UTF-8 format. The corresponding security code may be, for
example, a password, such as “GoodPassWord123.” Of course, various values and lengths
may be employed. In other implementations, the authentication message (“<AUTH>")is a
security key, which can be an encrypted data string generated using a token associated with a
name identifier of the edge server “E1.” Various conventional authentication techniques may
be employed.

In some implementations, the edge server “E1”” (106) (and/or endpoint device “D1”

(104)) uses a second set of authentication credentials in addition to the name and

-51-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

corresponding password used in the authentication request message. The second set of
authentication credentials may be specific to the edge server “E1” (106) (and/or endpoint
device “D1” (104)), to prevent non-authenticated computing devices from binding with it.

Still referring to FIG. 5, upon receiving the authentication request message 502b, in
some implementations, the connection server “A1” (110) generates and injects (step 502d)
“Sessionld S1” (shown in FIG. 5 as “s1”) and “Endpointld e1” (shown as “el”) into the
received message 502b, to produce message 502e. The connection server “A1” (110) in turn
sends (step 502f) the message 502¢ to the platform server 102, referred to as the platform
server “P1” (102), over a second persistent connection established between the connection
server “A1” (110) and the platform server “P1” (102). The “Endpointld e1” may correspond
to the endpoint identification number 310, as described in relation to FIG. 3, that is associated
with the connection handle of the first persistent connection. The “Endpointld el” may be an
identifier used to retrieve a connection handle (e.g., a WebSocket handle), or the like, for
and/or associated with a communication channel from which the inbound message is received
by the connection server “A1” (110). The “Sessionld s1”” may correspond to the session
identification number, as also described in relation to FIG. 3, that is associated with a session
number associated with the connection to edge server “E1” and/or the endpoint device “D1”
(104). The Sessionld s1 indicates an authenticated session state of the endpoint device and/or
the edge server.

In some implementations, the received authentication message 502b has a NULL or
EMPTY wvalue in the header fields 308 and 310. To this end, the “Sessionld s1” and the
“Endpointld el” can replace the values (e.g., NULL) therein. In other implementations, the
received message 502b is concatenated with the “Sessionld s1” and the “Endpointld el.” Of
course, various methods of injecting (e.g., adding, appending, inserting, replacing) data into a

data stream may be employed.

-5

10

15

WO 2015/143405

PCT/US2015/021882

In turn, upon receiving the message 502¢, the platform server “P1”” (102) processes

the authentication message (<“AUTH™>) (step 504a). In some implementations, the platform

server “P1” (102) authenticates the credentials of the endpoint device “D1” (104) using an

authentication registry that it maintains (e.g., by performing a lookup). In other

implementations, the platform server “P1” (102) may route the message to a back-office

authentication-server (not shown) to perform the authentication. Table 1 below illustrates an

exemplary authentication registry for authenticating devices using non-addressable name

identifiers and security codes.

AUTHENTICATION REGISTRY

DEVICE NAME SECURITY CODE
Hospital VendMach pass123
John Smith Tablet 1 pass000word
JohnDMedInt EKG Dev 123 asdfjkl
Store POSDev Securecode
Edge Server 1 Credential000

The platform server “P1” (102), in turn, prepares a return message 506b (step 506a).
The return message 506b may be related to the authentication process (e.g., passed or not
passed), or it may be an acknowledgement of receipt of the message (e.g., success receipt or
receipt error). To this end, the return message S06b may be a status code, as described in
relation to FIG. 4.

In some implementations, the platform server 102 prepares the return message 506b
including the “Requestld R17, the “Sessionld s1”, and/or the “Endpointld el,” received in the
request message 502¢. In essence, the platform server “P1” (102) employs the metadata

information of the received message to include in and route a return message, which may be

-53-

10

15

20

25

WO 2015/143405 PCT/US2015/021882

an indicia of acknowledgement or success. The platform server “P1” (102) then sends the
message 506b (step 506¢) to the connection server 110 over the second persistent connection.

Upon receiving the message 506b, in some implementations, the connection server
“A1” (110) stores the “Sessionld S1” in association with the device name of the endpoint
device “D1” 104 in a table, database, buffer, or the like, associated with an authenticated
session. The connection server 110 employs such table, database, buffer, or the like, to
confirm that an inbound message belongs to and/or is associated with an authenticated
endpoint, and can thus be relayed to the platform server 102. The connection server “A1”
(11) may maintain a session identification number “SessionID S1” for each downstream
connection (e.g., WebSocket connection), such as connections to endpoint devices and/or to
edge servers (e.g., acting as gateways). In some implementations, the connection server
maintains a session identification number for the upstream connections (e.g. WebSocket
connections), for example, to the platform server.

In addition, upon receiving the message 506b, in some implementations, the
connection server “A1” (110) uses the “EndPointld e1” to identify the connection over which
to forward the message 506b (step 506d) to the Edge Server “E1” (106). To this end, no
additional processing is necessary to be performed at the connection server “A1” (110) in
order to route a return outbound message to edge server or endpoint device . In some
implementations, the “EndPointld e1” is indexed to the connection handle associated with the
persistent connection. The index may be or have been stored at the connection server “A1”
(110) within a hash table. In turn, the message 506b is forwarded to the edge server “E1”
(106) (step 506¢) using the retrieved connection handle. To this end, preserving state
information for a roundtrip routing through a multiplexed persistent connection paradigm
may collectively employ a single hash-table (or the like) lookup of an identifier (e.g., end

point identifier) associated with a given persistent connection, a single write function to inject

_54 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

the endpoint identifier into a message header, and a single read of the message header to
retrieve the connection handle of the persistent connection over which to route the message.

In some implementations, the connection server “A1” (110) and/or edge server “E1”
(106) sends a message to the endpoint device “D1” (104) to acknowledge a successful
registration process (step 506f).

Referring still to FIG. 5, in some implementations, a message includes a binding
request. In some implementations, a binding process (e.g., processing a binding request) is
performed subsequent to an authentication process. The binding process binds a path, across
one or more networks and systems (e.g., servers), between the endpoint device “D1” (104)
and the platform server “P1” (102), preferably to allow for transmission of outbound
messages/requests from the platform server 102 to the edge server and/or endpoint device.
At each node (e.g., server) along the path, the binding process associates a connection handle
of each persistent connection leading to the end-point device.

The binding process is synergistic with the usage of connection metadata, in which
routing metadata, like connection metadata, allows for messages from the platform server to
be quickly, accurately, and efficiently returned to the end-point device. However, rather than
the information being located within the message, the binding process results in the
information being maintained at the respective servers in the federation (e.g., the connection
server and edge server).

Referring still to FIG. 5, in some implementations, the edge server “E1” (106)
prepares a binding request message (step 508a) and sends the message 508b (step 508c) to
the connection server “A1” (110) across the first persistent connection. The edge server “E1”
(106) generates a “Requestld R2.” In some implementations, the binding request message
508b includes a “BIND” request code, as described in relation to FIG. 4 and shown as “B” in

message 508b. The binding request message 508b may include, in the payload, the name

-55-

10

15

WO 2015/143405 PCT/US2015/021882

identifier of the endpoint device “D1” (104), illustrated as “<name>" in FIG. 5. In some
implementation, the edge server “E1” maintains a list of endpoint devices that have bound to
it. In some example implementations, the EndPoint device “D1” prepares the binding request
message and sends it to the connection server “A1” (110) across the first persistent
connection.

Upon receiving the binding request message 508b, in some implementations, the
connection server “A1” (110) compares the name of the endpoint device to the list of
authenticated sessions and, upon a match, injects (step 508d) “Sessionld S1” (shown in FIG.
5 as “s1”) and “Endpointld e1” (shown as “e1”) into the received message 508b to produce
message 508e.

The connection server “A1” (110) determines that the received message is a binding
request. To this end, the connection server “A1” (110) adds the name identifier located
within the binding request message to its binding registry. In the binding registry, the name
identifier may be associated with a connection handle of the first persistent connection, an
EndPoint ID and a Session ID. For example, the name identifier is used as an index value in
a hash table (or the like) having the connection handle. Table 2 below illustrates and
exemplary binding registry in a server (e.g., connection server “A1” (110)).

TABLE 2

CONNECTION SERVER BINDING REGISTRY

CONNECTION ENDPOINT SESSION
DEVICE NAME IDENTIFIER
HANDLE IDENTIFIER | IDENTIFIER
Hospital VendMach Persist ConnectAl eplD1 sessID1
John_Smith Tablet 1 Persist ConnectB1 eplD2 sessID2
JohnDMedInt EKG Dev 123 Persist ConnectCl eplD3 sessID3
Store POSDev Persist ConnectAl eplD1 sessID1

-56-

10

15

20

WO 2015/143405 PCT/US2015/021882

The connection server “A1” (110), in turn, sends (step 508f) the binding request
message 508e to the platform server “P1” (102), over a second persistent connection. It
should be understood that, in some example implementations, multiple devices (e.g.,
“Hospital VendMach” and “Store POSDev”) may be associated with the same persistent
connection (e.g., “Persist ConnectA1”), such as a connection between an edge server “E1”
and the connection server “Al.” In some example implementations, the EndPoint ID (e.g.,
“epID1”) and Session ID (“sessID1”) may be associated with the same persistent connection.

Upon receiving the binding request message 508e, in some implementations, the
platform server “P1”” (102) processes the binding request (step 510a). For example, it may
add the name identifier to its binding registry, in association with the connection handle of
the second persistent connection. In some example implementations, the platform server may
also store the EndPoint ID associated with the device name. Table 3 below illustrates and
exemplary binding registry in a server (e.g., platform server “P1” (102)).

TABLE 3

PLATFORM SERVER BINDING REGISTRY

DEVICE NAME IDENTIFIER CONNECTION HANDLE
Hospital VendMach Persist ConnectA2
John Smith Tablet 1 Persist_ConnectB2
JohnDMedInt EKG Dev 123 Persist ConnectC2
Store POSDev Persist ConnectD2

In some implementations, the platform server “P1” (102) prepares a success message
512D (step 512a). The platform server “P1” (102) sends the success message 512b (step
512¢) to the connection server “A1” (110) over the second persistent connection, which may
be determined based on the connection handle retrieved using the name identifier and/or
EndPointID. Upon receiving the message 512b, the connection server “A1” (110) may use
the “EndPointld el” to identify the persistent connection associated with the corresponding

-57-

10

15

20

WO 2015/143405 PCT/US2015/021882

connection handle. The connection server “A1” (110) forwards the message 512¢ (step 512f)
to the edge server “E1” (106) and/or the endpoint device “D1” over the persistent connection
(e.g., the first persistent connection) identified using its binding registry.

FIG. 6 is a swim-lane diagram of a method 600 of communicating from the platform
server 102 over a stateless persistent connection in accordance with an embodiment of the
invention.

The method 600, in some implementations, begins with the platform server “P1”
(102) preparing a request message 606b (step 606a) for the edge server “E1” (106) and or
endpoint device “D1”, in accordance with the message structure of FIG. 3.

The platform server “P1” (102) sends the request message 606b to the connection
server “A1” (110) over the second persistent connection using a connection handle
determined from its binding registry.

Upon receiving the message 606b, in some implementations, the connection server
“A1” (110) determines that the message is an outbound message from the platform server
“P1” (102). This determination may be based on the connection handle of the second
persistent connection, or it may be based on the presence of an endpoint ID or session
identification number 308 within the message 606b. The connection server “A1” (110) may
inject an “Endpointld e2” associated with the received connection handle for the second
persistent connection (step 606d). The connection server “A1” (110) may identify the
appropriate persistent connection for the message 606b using the name identifier (e.g., of the
edge server “E1 or the endpoint device “D1”) in the message 606b and a corresponding
connection handle stored in its binding registry. The connection server “D1” (110) then
forwards the message 606e to the appropriate edge server “E1”” (106) and/or endpoint device

“D1” using the identified connection handle (step 606f).

-58-

10

15

20

WO 2015/143405 PCT/US2015/021882

After receiving the message 606e, the edge server “E1” (106) and/or endpoint device
“D1” (110) uses the requested data in the message’s payload 304 (step 608a) and removes the
data service request from its queue. The edge server “E1” (106) and/or endpoint device “D1”
(110) may generate a success/acknowledgement message 610a (step 608a) and sends the
success/acknowledgment message 610a to the connection server “A1” across the first
persistent connection.

The connection server “A1” (110) receives the message 610a and relays the message
to the platform server “P1” (102) over the second persistent connection using the “endPointId
¢2.” Upon receiving the acknowledgment message 610a, in some implementations, the
platform server “P1” (102) removes the request message from its queue.

FIG. 7 is a flow chart for an example method 700 of controlling a connection server
110 in accordance with an embodiment of the invention. In some implementations, the
controls are based on policies that are executed from a client-side application operating at the
connection servers 110. A policy may include, for example, rule-base methodology, a state
machine, a model-based control, and/or a sequential logic.

Upon receiving a message (step 702), the connection server 110 determines whether
an endpoint identification number 310 is present in the message (step 704), as described in
relation to FIGS. 5 and 6. In some implementations, the endpoint identification number 310
is located in a fixed field within the message header 302. In other implementations, the
connection server 110 parses the message for the information (e.g., the endpoint
identification number 310). If an endpointld 310 is identified in the message, then the
connection server 102 may route the message using the endpointld 310, as described in

relation to FIGS. 3, 5, and 6.

-50 -

10

15

20

WO 2015/143405 PCT/US2015/021882

If the endpointld 310 is NULL or empty, the connection server 110 may inject an
endpoint identification number associated with a connection handle associated with the
channel over which the message was received.

The connection server 110 may, in turn, check the message method code 312 to
determine the message type (step 710, 718, 724) (e.g., authentication message, bind/unbind
message, request message).

If the message type is an authentication message (step 710), the connection server 110
may inject the session identification number 308 into the message (step 712), as described in
relation to FIGS. 5 and 6. The connection server 110 may bind the endpointld 310, the
sessionld 308 and the connection handle of the connection (step 714), as described in relation
to FIG. 5, and forward the message to the platform server 102 (step 716).

If the message type is a bind or unbind message (step 718), the connection server 110
may bind the name identifier located in the message to its binding registry (or, in the case of
an unbind message, dissociate or remove the name identifier in the message from its binding
registry) (step 720) and forward the message to the platform server 102 (step 722).

If the message type is not a request type message (step 724), the connection server
110 may forward the message to the platform server 102 (step 726).

If the message type is a request type message, the connection server 110 may check
the request message to determine whether the Sessionld is present (step 728). If present, the
connection server 100 may route the message to the respective edge server 106 using its
binding registry, to determine the appropriate connection handle. If not present, the
connection server 110 may retrieve the Sessionld using the nameld in the message (step 732),
inject the Sessionld into the message (step 734), and forward the request message to the

platform server (step 736).

- 60 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

FIG. 8 illustrates a method of binding and rebinding in accordance with an
embodiment of the invention. Binding allows a given computing device 104 to be serviced
by the federation (e.g., set of networks and/or systems) while being connected to any end-
point device within the federation without any knowledge of the device’s own location or any
networking or routing details about nodes within the federation. To this end, the federation
allows messages from the computing device to freely route to the platform server regardless
of the intermediate servers in the persistent-connection architecture.

The method initiates with a given computing device 104, namely the end-point device
104a, being registered, as described in relation to FIG. 5, with edge server 106a. The edge
server 106a sends a bind request to a connection server 110a over persistent connection 103a.
The bind request may include a name identifier of the end-point device 104 in the binding
list. In some example implementations, the computing device 104 transmit the bind request
to the connection server 110a, rather than to an edge server 106a to relay to the connection
server 110a. The connection server 110a forwards the bind request 802 to the platform server
over persistent connection 105a. The connection server 110a associates the end-point device
104a with the persistent connection 103a, and stores the association in its binding registry.
The association may be based on the connection handle of the persistent connection. The
binding registry may be a data table or a hash table. The platform server 102a associates the
end-point device 104a with persistent connection 105a and stores the association in its
binding registry. To this end, when sending a request message to end-point device 104a, the
platform server 102a retrieves the persistent connection 105a associated with the end-point
device 104a.

In the event that an end-point device 104a is bound to a connection server 110a via an
edge server 106 (e.g., 106a), if the end-point device 104a moves to another edge server,

namely edge server 106¢, the end-point device 104a de-registers with the edge server 106a.

-6l -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

That is, the edge server 106a sends an unbind request to the primary server 102a through the
bounded path (103a, 105a). The unbind request removes the end-point device 104a from the
binding registry of the connection server 110a and the platform server 102a. The end-point
device 104a registers with the edge-server 106¢ and repeats the same binding process.

FIG. 9 is a block diagram of a network 900 using the system 100 in accordance with
an embodiment of the invention. The network 900 may include back-end office components,
as described in FIG. 2.

In some implementations, the network 900 includes one or more persistent servers
902. The persistence servers can share the load from data being sent to the platform server
102, shown as routing servers 102. The persistence servers 902 may employ specific types of
persistence objects, such as Streams and DataTable. Examples of Streams and DataTable are
described in U.S. Patent Application No. 13/678,885, titled “Methods for Dynamically
Generating Application Interface for Modeled Entity and Devices Thereof,” and filed
November 16, 2012. The content of this application is hereby incorporated by reference
herein in its entirety.

In some implementations, the network 900 may include one or more back-office
servers 904, such as CRM/ERP, and the like, as described in relation to FIG. 2.

In some implementations, the network 900 may include one or more Big Data and
Data Store 906. Such servers 906 may communicate to the platform server 102 using Web
protocols, such as Java Database Connectivity (JDBC) or native APIs. In some
implementations, the platform server 102 may process an event to route the data to the
appropriate database when data is received from a given computing device 104.
Alternatively, a third party application may initiate an event.

FIG. 10 is a flowchart of an example method 1000 of injecting the state and routing

information into a communication exchange between a platform server 102 and an end-point

-62 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

device 104 over a stateless persistent connection in accordance with an embodiment of the
invention. An example of a stateless persistent connection is a WebSocket connection. The
end-point device may be the edge server 106 or the computing device 104. The method 1000
may include providing one or more platform servers 102 connected to one or more
intermediate servers 110. Each of the intermediate servers 110 may connect and maintain a
persistent connection 200a to the platform server 102. The intermediate servers 110 may also
communicate and maintain a number of unique persistent connections 200b with a plurality
of edge servers.

In some implementations, a port at a given intermediate server 110 receives a service
request from a given edge server 106 over a first persistent connection 200b (step 1002). The
processor, at the intermediate server 110, inserts a routing state identifier to the service
request (step 1004). The routing state identifier is associated with a connection identity of the
first persistent connection. The intermediate server 110 is preferably “stateless” in that it
does not retain state information associated with a given request message. In such
implementations, the intermediate server 110 preferably does not maintain knowledge of
whether a similar request message has been previously sent, which of a sequence of message
actions the message belongs to, and the origin of the message. Put another way, it forgets
(e.g., does not store) a given message after having forwarded along a received message.

Such a stateless paradigm may reduce the workload of the intermediate server 110 as
it can, thus, be configured to operate with a fewer set of instructions and with lower memory
usage requirements. To this end, with fewer resources being required for a given connection,
a given intermediate server 110 can service more numbers of computing devices 104 as
compared to a other hardware systems that operate additional overhead work of maintaining
such state information. In some implementations, the given routing state identifier is injected

into a header portion, such as the header 402, of each request message.

- 63 -

10

15

20

WO 2015/143405 PCT/US2015/021882

The intermediate server may maintain, in its memory, a second state identifier
associated with an authentication session of a computing device 104. The second state
identifier may be associated with a name value associated with the computing device 104. In
some implementations, the intermediate server 110 may maintain the association in a hash
table, or the like. The table may use name values to index the second state identifier (e.g.,
session identification number) and a name (e.g., device name / non-addressable identifier) of
the endpoint device.

In some implementations, the second state identifier is also associated with the
connection identity of the first persistent connection. The association may be stored in the
local memory of the intermediate server 110.

In some implementations, the name value is preferably a non-addressable identifier or
non-network-based addressable identifier. Rather than a network addressable identifiers,
which can be for example a uniform resource identifier (URI) or an Internet Protocol (IP)
address, the name value can be a non-addressable identifier such as a number sequence or a
character string unrelated to a network address.

In some implementations, the intermediate server 110 transmits the service request to
the platform server 102 over a second persistent connection (step 1006).

In some implementations, the intermediate server 110 receives a response message
over the second persistent connection 200a. The response message may have been generated
by the platform server in response to the service request and may include the session
identifier (step 1008).

In some implementations, the intermediate server 110 retrieves the connection
identity of the first persistent connection using the session identifier (step 1010). The session

identifier is the same session identifier transmitted within the service request.

- 64 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In some implementations, the intermediate server 110 routes the response message to
a selected connection among the numbers of persistent connections established with the edge
servers (step 1012) and/or computing devices. The selected connection may be based on the
retrieved connection identity.

FIG. 11 is a flowchart of an example method 1100 of communication between two
network nodes and an intermediary node over a persistent connection in accordance with an
embodiment of the invention. In some implementations, the method 1100 begins at an
initialized state at step 1102, where the two network nodes may include the platform server
102 and an end-point device (e.g., computing device 104. The method 1100 may include
providing one or more platform servers 102 connected to one or more intermediate servers
110. Each of the intermediate servers 110 may connect and maintain a persistent connection
200a to the platform server 102. The intermediate servers 102 may communicate and
maintain a number of unique persistent connections 200b with a plurality of edge servers 106
and/or computing (e.g. endpoint) devices 104.

In some implementations, the platform server 102 binds, at a first time instance, the
end-point device 104 to the platform server 102 (step 1104). The binding, at the first
instance, may associate with a first path across the network. The first path may be defined
between the end-point device 104 and the platform server 102 across one or more
intermediate servers and, in some example implementations, across one or more edge servers.

In some implementations, the platform server 102 communicates a first message to
the end-point device 104 along the first path (step 1106).

In some implementations, the platform server 102 rebinds, at a second instance, the
end-point device 104 to the platform server 102 (step 1108). This may occur after the end-
point device 104 has outside of the first path (e.g., by binding with an edge server located

across a path other than the first path).

- 65 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

In some implementations, the platform server 102 communicates a second message to
the end-point device along the second path (step 1110). To this end, the end-point device can
move among different geographic locations without knowledge of its own location. Rather,
the network may discover a path for messages to flow to and from the platform server
without any knowledge or location information on the part of the end-point device 104.

FIG. 12 is a flow chart of an example method 1200 of communication between the
platform server and a plurality of end-point devices (e.g., end-point device 104) in
accordance with an embodiment of the invention. In some implementations, the method
1200 begins at an initialized state (step 1202). In some implementations, the platform server
102 receives a first data message from a first end-point device 104a. The first data message
is sent from the first end-point device 104a, via a first persistent connection 105a (step 1204),
to a first intermediate server 110a, and, via a second persistent connection 103a, to the
platform server 102.

In some implementations, the platform server 102 receives a second data message
from a second end-point device 104b. The second data message is sent from the second end-
point device 104b, via a third persistent connection 105b (step 1206), to a second
intermediate server 110b, and, via a fourth persistent connection 103b, to the platform server
102.

Each of the first intermediate server 110a and second intermediate server 110b may
manage both the authentication sessions and the connectivity between the end-point devices
104 and the platform servers 102.

In some implementations, the platform server 102 services the first data message and
the second data message (step 1208). The platform server 102 may service the first data
message and the second data message by routing the messages to a back-office server. As

described in relation to FIG. 2, the back-office server may include, for example, a persistence

- 66 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

server, a database server, a customer relationship management (CRM) server, an enterprise
resource planning (ERP) server, an operation support system (OSS) server, a business support
system (BSS) server, a data warehouse or the like.

FIG. 13 shows an example of a computing device 1300 and a mobile computing device
1350 that can be used to implement the techniques described in this disclosure. The
computing device 1300 is intended to represent various forms of digital computers, such as
laptops, desktops, workstations, personal digital assistants, servers, blade servers,
mainframes, and other appropriate computers. The mobile computing device 1350 is
intended to represent various forms of mobile devices, such as personal digital assistants,
cellular telephones, smart-phones, and other similar computing devices. The components
shown here, their connections and relationships, and their functions, are meant to be
examples only, and are not meant to be limiting.

The computing device 1300 may include a processor 1302, a memory 1304, a storage
device 1306, a high-speed interface 1308 connecting to the memory 1304 and multiple high-
speed expansion ports 1310, and a low-speed interface 1312 connecting to a low-speed
expansion port 1314 and the storage device 1306. Each of the processor 1302, the memory
1304, the storage device 1306, the high-speed interface 1308, the high-speed expansion ports
1310, and the low-speed interface 1312, are interconnected using various busses, and may be
mounted on a common motherboard or in other manners as appropriate. The processor 1302
can process instructions for execution within the computing device 1300, including
instructions stored in the memory 1304 or on the storage device 1306 to display graphical
information for a GUT on an external input/output device, such as a display 1316 coupled to
the high-speed interface 1308. In other implementations, multiple processors and/or multiple
buses may be used, as appropriate, along with multiple memories and types of memory.

Also, multiple computing devices may be connected, with each device providing portions of

-67 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

the necessary operations (e.g., as a server bank, a group of blade servers, or a multi-processor
system).

The memory 1304 stores information within the computing device 1300. In some
implementations, the memory 1304 is a volatile memory unit or units. In some
implementations, the memory 1304 is a non-volatile memory unit or units. The memory
1304 may also be another form of computer-readable medium, such as a magnetic or optical
disk.

The storage device 1306 is capable of providing mass storage for the computing device
1300. In some implementations, the storage device 1306 may be or contain a computer-
readable medium, such as a floppy disk device, a hard disk device, an optical disk device, or
a tape device, a flash memory or various solid state memory device, or an array of devices,
including devices in a storage area network or various configurations. Instructions can be
stored in an information carrier. The instructions, when executed by one or more processing
devices (for example, processor 1302), perform one or more methods, such as those described
above. The instructions can also be stored by one or more storage devices such as computer-
or machine-readable mediums (for example, the memory 1304, the storage device 1306, or
memory on the processor 1302).

The high-speed interface 1308 manages bandwidth-intensive operations for the
computing device 1300, while the low-speed interface 1312 manages lower bandwidth-
intensive operations. Such allocation of functions is an example only. In some
implementations, the high-speed interface 1308 is coupled to the memory 1304, the display
1316 (e.g., through a graphics processor or accelerator), and to the high-speed expansion
ports 1310, which may accept various expansion cards (not shown). In the implementations,
the low-speed interface 1312 is coupled to the storage device 1306 and the low-speed

expansion port 1314. The low-speed expansion port 1314, which may include various

- 68 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

communication ports (e.g., USB, Bluetooth®, Ethernet, wireless Ethernet) may be coupled to
one or more input/output devices, such as a keyboard, a pointing device, a scanner, or a
networking device such as a switch or router, e.g., through a network adapter.

The computing device 1300 may be implemented in a number of different forms, as
shown in the figure. For example, it may be implemented as a standard server 1320, or
multiple times in a group of such servers. In addition, it may be implemented in a personal
computer such as a laptop computer 1322. It may also be implemented as part of a rack
server system 1324. Alternatively, components from the computing device 1300 may be
combined with other components in a mobile device (not shown), such as a mobile
computing device 1350. Each of such devices may contain one or more of the computing
device 1300 and the mobile computing device 1350, and an entire system may be made up of
multiple computing devices communicating with each other.

The mobile computing device 1350 may include a processor 1352, a memory 1364, an
input/output device such as a display 1354, a communication interface 1366, and a
transceiver 1368, among other components. The mobile computing device 1350 may also be
provided with a storage device, such as a micro-drive or other device, to provide additional
storage. Each of the processor 1352, the memory 1364, the display 1354, the communication
interface 1366, and the transceiver 1368, are interconnected using various buses, and several
of the components may be mounted on a common motherboard or in other manners as
appropriate.

The processor 1352 can execute instructions within the mobile computing device 1350,
including instructions stored in the memory 1364. The processor 1352 may be implemented
as a chipset of chips that include separate and multiple analog and digital processors. The
processor 1352 may provide, for example, for coordination of the other components of the

mobile computing device 1350, such as control of user interfaces, applications run by the

- 69 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

mobile computing device 1350, and wireless communication by the mobile computing device
1350.

The processor 1352 may communicate with a user through a control interface 1358 and
a display interface 1356 coupled to the display 1354. The display 1354 may be, for example,
a TFT (Thin-Film-Transistor Liquid Crystal Display) display or an OLED (Organic Light
Emitting Diode) display, or other appropriate display technology. The display interface 1356
may comprise appropriate circuitry for driving the display 1354 to present graphical and
other information to a user. The control interface 1358 may receive commands from a user
and convert them for submission to the processor 1352. In addition, an external interface
1362 may provide communication with the processor 1352, so as to enable near area
communication of the mobile computing device 1350 with other devices. The external
interface 1362 may provide, for example, for wired communication in some implementations,
or for wireless communication in other implementations, and multiple interfaces may also be
used.

The memory 1364 stores information within the mobile computing device 1350. The
memory 1364 can be implemented as one or more of a computer-readable medium or media,
a volatile memory unit or units, or a non-volatile memory unit or units. An expansion
memory 1374 may also be provided and connected to the mobile computing device 1350
through an expansion interface 1372, which may include, for example, a SIMM (Single In
Line Memory Module) card interface. The expansion memory 1374 may provide extra
storage space for the mobile computing device 1350, or may also store applications or other
information for the mobile computing device 1350. Specifically, the expansion memory
1374 may include instructions to carry out or supplement the processes described above, and
may include secure information also. Thus, for example, the expansion memory 1374 may

be provide as a security module for the mobile computing device 1350, and may be

-70 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

programmed with instructions that permit secure use of the mobile computing device 1350.
In addition, secure applications may be provided via the SIMM cards, along with additional
information, such as placing identifying information on the SIMM card in a non-hackable
manner.

The memory may include, for example, flash memory and/or NVRAM memory (non-
volatile random access memory), as discussed below. In some implementations, instructions
are stored in an information carrier. that the instructions, when executed by one or more
processing devices (for example, processor 1352), perform one or more methods, such as
those described above. The instructions can also be stored by one or more storage devices,
such as one or more computer- or machine-readable mediums (for example, the memory
1364, the expansion memory 1374, or memory on the processor 1352). In some
implementations, the instructions can be received in a propagated signal, for example, over
the transceiver 1368 or the external interface 1362.

The mobile computing device 1350 may communicate wirelessly through the
communication interface 1366, which may include digital signal processing circuitry where
necessary. The communication interface 1366 may provide for communications under
various modes or protocols, such as GSM voice calls (Global System for Mobile
communications), SMS (Short Message Service), EMS (Enhanced Messaging Service), or
MMS messaging (Multimedia Messaging Service), CDMA (code division multiple access),
TDMA (time division multiple access), PDC (Personal Digital Cellular), WCDMA
(Wideband Code Division Multiple Access), CDMA2000, or GPRS (General Packet Radio
Service), among others. Such communication may occur, for example, through the
transceiver 1368 using a radio-frequency. In addition, short-range communication may
occur, such as using a Bluetooth®, Wi-Fi™, or other such transceiver (not shown). In

addition, a GPS (Global Positioning System) receiver module 1370 may provide additional

-71 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

navigation- and location-related wireless data to the mobile computing device 1350, which
may be used as appropriate by applications running on the mobile computing device 1350.

The mobile computing device 1350 may also communicate audibly using an audio
codec 1360, which may receive spoken information from a user and convert it to usable
digital information. The audio codec 1360 may likewise generate audible sound for a user,
such as through a speaker, e.g., in a handset of the mobile computing device 1350. Such
sound may include sound from voice telephone calls, may include recorded sound (e.g., voice
messages, music files, etc.) and may also include sound generated by applications operating
on the mobile computing device 1350.

The mobile computing device 1350 may be implemented in a number of different
forms, as shown in the figure. For example, it may be implemented as a cellular telephone
1380. It may also be implemented as part of a smart-phone 1382, personal digital assistant,
or other similar mobile device.

Various implementations of the systems and techniques described here can be realized
in digital electronic circuitry, integrated circuitry, specially designed ASICs (application
specific integrated circuits), computer hardware, firmware, software, and/or combinations
thereof. These various implementations can include implementations in one or more
computer programs that are executable and/or interpretable on a programmable system
including at least one programmable processor, which may be special or general purpose,
coupled to receive data and instructions from, and to transmit data and instructions to, a
storage system, at least one input device, and at least one output device.

These computer programs (also known as programs, software, software applications or
code) include machine instructions for a programmable processor, and can be implemented in
a high-level procedural and/or object-oriented programming language, and/or in

assembly/machine language. As used herein, the terms machine-readable medium and

-7 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

computer-readable medium refer to any computer program product, apparatus and/or device
(e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to
provide machine instructions and/or data to a programmable processor, including a machine-
readable medium that receives machine instructions as a machine-readable signal. The term
machine-readable signal refers to any signal used to provide machine instructions and/or data
to a programmable processor.

To provide for interaction with a user, the systems and techniques described here can be
implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD
(liquid crystal display) monitor) for displaying information to the user and a keyboard and a
pointing device (e.g., a mouse or a trackball) by which the user can provide input to the
computer. Other kinds of devices can be used to provide for interaction with a user as well;
for example, feedback provided to the user can be any form of sensory feedback (e.g., visual
feedback, auditory feedback, or tactile feedback); and input from the user can be received in
any form, including acoustic, speech, or tactile input.

The systems and techniques described here can be implemented in a computing system
that may include a back end component (e.g., as a data server), or that may include a
middleware component (e.g., an application server), or that may include a front end
component (e.g., a client computer having a graphical user interface or a Web browser
through which a user can interact with an implementations of the systems and techniques
described here), or any combination of such back end, middleware, or front end components.
The components of the system can be interconnected by any form or medium of digital data
communication (e.g., a communication network). Examples of communication networks
include a local area network (LAN), a wide area network (WAN), and the Internet.

The computing system can include clients and servers. A client and server are

generally remote from each other and typically interact through a communication network.

-73 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

The relationship of client and server arises by virtue of computer programs running on the
respective computers and having a client-server relationship to each other.

In view of the structure, functions and apparatus of the systems and methods described
here, in some implementations, a system and method for injecting state and routing
information into a communication exchange between a platform server and an end-point
device over a stateless persistent connection are provided. Having described certain
implementations of methods and apparatus for supporting injection of the state and routing
information into the communication exchange, it will now become apparent to one of skill in
the art that other implementations incorporating the concepts of the disclosure may be used.

Moreover, in view of the structure, functions and apparatus of the systems and methods
described here, in some implementations, a system and method for communication over a set
of persistent connections between two network nodes and an intermediary node are provided.
Having described certain implementations of methods and apparatus for supporting
communication over the persistent connection, it will now become apparent to one of skill in
the art that other implementations incorporating the concepts of the disclosure may be used.

Moreover, in view of the structure, functions and apparatus of the systems and methods
described here, in some implementations, a system and method for communication over a set
of persistent connections between two network nodes and an intermediary node are provided.
Having described certain implementations of methods and apparatus for supporting
communication over the persistent connection, it will now become apparent to one of skill in
the art that other implementations incorporating the concepts of the disclosure may be used.

Therefore, the disclosure should not be limited to certain implementations, but rather

should be limited only by the spirit and scope of the following claims.

-74 -

WO 2015/143405 PCT/US2015/021882

What is claimed:
1. A system for routing messages in a distributed computing environment, comprising:
a processor; and
a memory, the memory storing instructions that, when executed by the processor,
5 cause the processor to:
communicatively couple (e.g., a platform server) to a network and to one of a
set of intermediate servers, the network including the set of intermediate servers and
an end-point device connected thereto,
wherein the end-point device is communicatively coupled with an
10 intermediate server of the set of intermediate servers,
bind (e.g., the platform server) to the end-point device at a first instance,
wherein the binding to the end-point device at the first instance is
performed using a non-addressable name value associated with the end-point device,
wherein the binding to the end-point device at the first instance
15 includes associating to a first path across the network, and
wherein the first path is a path to and from the end-point device across
one or more of the set of intermediate servers;
communicate a first message to the end-point device along the first path;
bind (e.g., the platform server) to the end-point device at a second instance,
20 wherein the binding to the end-point device at the second instance is
performed using the non-addressable name value associated with the end-point
device,
wherein the binding to the end-point device at the second instance

includes associating to a second path across the network, and

-75 -

10

15

20

WO 2015/143405 PCT/US2015/021882

wherein the second path is a path to and from the end-point device
across one or more of the set of intermediate servers different than the one or more of
the set of intermediate servers in the first path; and

communicate a second message to the end-point device along the second path.

2. A system for routing messages in a distributed computing environment, comprising:

a processor; and

a memory, the memory storing instructions that, when executed by the processor,

cause the processor to:

communicatively couple (e.g., an intermediate server) to a network, a platform
server, and an end-point device, the network including the platform server and the
end-point device connected thereto;
bind (e.g., the intermediate server) to the end-point device at a first instance,
wherein the binding to the end-point device at the first instance is
performed using a non-addressable name value associated with the end-point device,
wherein the binding to the end-point device at the first instance
includes establishing a persistent connection with the end-point device, and
wherein the establishing a persistent connection with the end-point
device includes associating the persistent connection with the non-addressable name
value associated with the end-point device;
receive a signal from the platform server, the signal including a value
associated with the non-addressable name value of the end-point device;
identify, from among a set of persistent connections, the persistent connection

established with the end-point device; and

-76 -

WO 2015/143405 PCT/US2015/021882

transmit the signal to the end-point device using the persistent connection

identified from among the set of persistent connections.

3. A method of routing messages in a distributed computing environment, the method
5 comprising:
communicatively coupling (e.g., a platform server) to a network and to a set of
intermediate servers, the network including the set of intermediate servers and an end-point
device connected thereto,
wherein the end-point device is communicatively coupled with an
10 intermediate server of the set of intermediate servers,
binding (e.g., the platform server) to the end-point device at a first instance,
wherein the binding to the end-point device at the first instance is performed
using a non-addressable name value associated with the end-point device,
wherein the binding to the end-point device at the first instance includes
15 associating (e.g., by the platform server) to a first path across the network, and
wherein the first path is a path to and from the end-point device across one or
more of the set of intermediate servers;
communicating a first message to the end-point device along the first path;
binding (e.g., the platform server) to the end-point device at a second instance,
20 wherein the binding to the end-point device at the second instance is
performed using the non-addressable name value associated with the end-point device,
wherein the binding to the end-point device at the second instance includes

associating to a second path across the network, and

-77 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

wherein the second path is a path to and from the end-point device across one
or more of the set of intermediate servers different than the one or more of the set of
intermediate servers in the first path; and

communicating a second message to the end-point device along the second path.

4. The method of claim 3, further comprising:
receiving, at a third instance between the first instance and the second instance, a
request to unbind from the end-point device; and
unbinding (e.g., the platform server) from the end-point device based on the unbind
request,
wherein the unbinding from the end-point device includes dissociating from

the first path across the network.

5. The method of claim 3 or 4,

wherein the first path includes a first intermediate server, of the set of intermediate
servers, along the path to and from the end-point device,

wherein the second path includes a second intermediate server, of the set of
intermediate servers, along the path to and from the end-point device, and

wherein each of the first path and the second path include corresponding established
persistent connections, each of the established persistent connections including a

corresponding connection handle.

6. The method of claim 5, wherein the established persistent connections are WebSocket

connections.

-78 -

10

15

20

WO 2015/143405 PCT/US2015/021882

7. The method of any one of claims 3 to 6, wherein the non-addressable name value includes

a character string.

8. The method of any one of claims 3 to 7, further comprising:
binding (e.g., the platform server) to a second end-point device at the first instance,
wherein the binding (e.g., the platform server) to the second end-point device
at the first instance is performed using a second non-addressable name value associated with

the second end-point device.

9. The method of claim 8, wherein the binding (e.g., the platform server) to the end-point
device and the binding (e.g., the platform server) to the second end-point device are

performed in response to a single bind request.

10. The method of any one of claims 3 to 9, wherein at least one of the first path and the

second path includes two or more intermediate servers of the set of intermediate servers.

11. The method of any one of claims 3 to 10,

wherein the end-point device is communicatively coupled with at least one of a set of
edge servers,

wherein the set of edge servers are communicatively coupled with the set of
intermediate servers,

wherein the first path is a path to and from the end-point device further across one or

more of the set of edge servers, and

-79 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

wherein the second path is a path to and from the end-point device further across one
or more of the set of edge servers different than the one or more of the set of edge servers in

the first path.

12. A method of routing messages in a distributed computing environment, the method
comprising:
communicatively coupling (e.g., a platform server) to a network, a platform server,
and an end-point device, the network including the platform server and the end-point device
connected thereto;
binding (e.g., the platform server) to the end-point device at a first instance,
wherein the binding (e.g., the platform server) to the end-point device at the
first instance is performed using a non-addressable name value associated with the end-point
device,
wherein the binding (e.g., the platform server) to the end-point device at the
first instance includes establishing a persistent connection with the end-point device, and
wherein the establishing a persistent connection with the end-point device
includes associating the persistent connection with the non-addressable name value
associated with the end-point device;
receiving a signal from the platform server, the signal including a value associated
with the non-addressable name value of the end-point device;
identifying, from among a set of persistent connections, the persistent connection
established with the end-point device; and
transmitting the signal to the end-point device using the persistent connection

identified from among the set of persistent connections.

- R0 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

13. A non-transitory computer readable medium having instructions stored thereon, wherein
the instructions, when executed by a processor, cause the processor to:
communicatively couple (e.g., a platform server) to a network and to a set of
intermediate servers, the network including the set of intermediate servers and an end-point
device connected thereto,
wherein the end-point device is communicatively coupled with an
intermediate server of the set of intermediate servers,
bind to the end-point device at a first instance,
wherein the binding (e.g., the platform server) to the end-point device at the
first instance is performed using a non-addressable name value associated with the end-point
device,
wherein the binding (e.g., the platform server) to the end-point device at the
first instance includes associating to a first path across the network, and
wherein the first path is a path to and from the end-point device across one or
more of the set of intermediate servers;
communicate a first message to the end-point device along the first path;
bind (e.g., the platform server) to the end-point device at a second instance,
wherein the binding (e.g., the platform server) to the end-point device at the
second instance is performed using the non-addressable name value associated with the end-
point device,
wherein the binding (e.g., the platform server) to the end-point device at the
second instance includes associating to a second path across the network, and
wherein the second path is a path to and from the end-point device across one
or more of the set of intermediate servers different than the one or more of the set of

intermediate servers in the first path; and

- Q1 -

10

15

20

WO 2015/143405 PCT/US2015/021882

communicate a second message to the end-point device along the second path.

14. The computer readable medium of claim 13, wherein the instructions, when executed by
the processor, further cause the processor to:
receive, at a third instance between the first instance and the second instance, a
request to unbind from the end-point device; and
unbinding (e.g., the platform server) from the end-point device based on the unbind
request,
wherein the unbinding (e.g., the platform server) from the end-point device

includes dissociating (e.g., the platform server) from the first path across the network.

15. The computer readable medium of claims 13 or 14, wherein each of the first path and the
second path include corresponding established persistent connections, each of the established

persistent connections including a corresponding connection handle.

16. The computer readable medium of claim 15, wherein the established persistent

connections are WebSocket connections.

17. The computer readable medium of any one of claims 13 to 16, wherein the non-

addressable name value includes a character string.

18. The computer readable medium of any one of claims 13 to 17, wherein the instructions,

when executed by the processor, further cause the processor to:

bind (e.g., the platform server) to a second end-point device at the first instance,

-0 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

wherein the binding (e.g., the platform server) to the second end-point device
at the first instance is performed using a second non-addressable name value associated with

the second end-point device.

19. The computer readable medium of claim 18, wherein the binding (e.g., the platform
server) to the end-point device and the binding to the second end-point device are performed

in response to a single bind request.

20. The computer readable medium of any one of claims 13 to 19, wherein at least one of the
first path and the second path includes two or more intermediate servers of the set of

intermediate servers.

21. The computer readable medium of any one of claims 13 to 20,

wherein the end-point device is communicatively coupled with at least one of a set of
edge servers,

wherein the set of edge servers are communicatively coupled with the set of
intermediate servers,

wherein the first path is a path to and from the end-point device further across one or
more of the set of edge servers, and

wherein the second path is a path to and from the end-point device further across one
or more of the set of edge servers different than the one or more of the set of edge servers in

the first path.

22. A non-transitory computer readable medium having instructions stored thereon, wherein

the instructions, when executed by a processor, cause the processor to:

-83 -

10

15

20

WO 2015/143405 PCT/US2015/021882

communicatively couple (e.g., a platform server) to a network, a platform server, and
an end-point device, the network including the platform server and the end-point device
connected thereto;
bind (e.g., the platform server) to the end-point device at a first instance,
wherein the binding (e.g., the platform server) to the end-point device at the
first instance is performed using a non-addressable name value associated with the end-point
device,
wherein the binding (e.g., the platform server) to the end-point device at the
first instance includes establishing a persistent connection with the end-point device, and
wherein the establishing a persistent connection with the end-point device
includes associating the persistent connection with the non-addressable name value
associated with the end-point device;
receive a signal from the platform server, the signal including a value associated with
the non-addressable name value of the end-point device;
identify, from among a set of persistent connections, the persistent connection
established with the end-point device; and
transmit the signal to the end-point device using the persistent connection identified

from among the set of persistent connections.

23. A method for injecting states into data streams, the method comprising:
communicatively coupling (e.g., an intermediate server) to a network and to a
platform server, the network including the platform server connected thereto,
wherein the platform server is communicatively coupled to a plurality of

intermediate servers over corresponding persistent connections, and

-4 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

wherein the plurality of intermediate servers are communicatively coupled to a
plurality of computing devices over corresponding persistent connections;
receiving, via a port, over a first persistent connection, a service request from one of
the plurality of computing devices;
inserting a state identifier into the service request, the state identifier being associated
with a connection identity of the first persistent connection;
transmitting the service request to the platform server over a second persistent
connection;
receiving a response message over the second persistent connection,
wherein the response message is generated by the platform server in response
to the service request, and
wherein the response message includes a state identifier of the response
message;
retrieving the connection identity of the first persistent connection using the state
identifier, the state identifier of the response message being the same state identifier included
in the service request; and
transmitting, over the first persistent connection, the response message to the one of
the plurality of computing devices, the first persistent connection being selected based on the

retrieved connection identity.

24. The method of claim 23, further comprising:

storing, in a memory, a second state identifier associated with an authentication
exchange between the one of the plurality of computing devices and the platform server, the
second state identifier being associated with a name value of the one of the plurality of

computing devices;

-85 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

comparing a device identifier included in the service request to name values of the
plurality of computing devices, the device identifier being associated with the one of the
plurality of computing devices; and

injecting the second state identifier into the service request, if the device identifier
included in the service request is matched with a name value of the plurality of computing

devices.

25. The method of claim 24, further comprising:

in the event that the device identifier included in the service request is not matched
with a name value of the plurality of computing devices, causing (e.g., by an intermediate
server) to remove the device identifier from a binding list (e.g., a binding list of an

intermediate server, a binding list of an edge server) including one or more device identifiers.

26. The method of claim 24 or 25, further comprising:

associating the second state identifier with the connection identity of the first
persistent connection; and

storing, in the memory, the association of the second state identifier with the

connection identity of the first persistent connection.

27. The method of any one of claims 23 to 26, wherein state information is associated with
message content embedded within the response message, such that an intermediate server is

stateless.

28. The method of any one of claims 23 to 27, wherein the state identifier is inserted into a

header portion of the service request.

-6 -

10

15

20

WO 2015/143405 PCT/US2015/021882

29. The method of any one of claims 23 to 28, wherein the first persistent connection and the

second persistent connection are WebSocket connections.

30. A system comprising;
a processor; and
a memory, the memory storing instructions that, when executed by the processor,
cause the processor to:
communicatively couple (e.g., a platform server) to a network and to a
platform server, the network including the platform server connected thereto,
wherein the platform server is communicatively coupled with a
plurality of intermediate servers over corresponding persistent connections, and
wherein the plurality of intermediate servers are communicatively
coupled with plurality of computing devices over corresponding persistent
connections;
receive, via a port, over a first persistent connection, a service request from
one of the plurality of computing devices;
insert a state identifier into the service request, the state identifier being
associated with a connection identity of the first persistent connection;
transmit the service request to the platform server over a second persistent
connection;
receive a response message over the second persistent connection,
wherein the response message is generated by the platform server in

response to the service request, and

_87-

10

15

20

WO 2015/143405 PCT/US2015/021882

wherein the response message includes a state identifier of the
response message;
retrieve the connection identity of the first persistent connection using the state
identifier, the state identifier of the response message being the same state identifier
included in the service request; and
transmit, over the first persistent connection, the response message to the one
of the plurality of computing devices, the first persistent connection being selected

based on the retrieved connection identity.

31. The system of claim 30, the memory storing instructions that, when executed by the
processor, cause the processor to:

store, in the memory, a second state identifier associated with an authentication
exchange between the one of the plurality of computing devices and the platform server, the
second state identifier being associated with a name value of the one of the plurality of
computing devices;

compare a device identifier included in the service request to name values of the
plurality of computing devices, the device identifier being associated with the one of the
plurality of computing devices; and

inject the second state identifier into the service request, if the device identifier
included in the service request is matched with a name value of the plurality of computing

devices.

32. The system of claim 31, the memory storing instructions that, when executed by the

processor, cause the processor to:

- 88 -

10

15

20

WO 2015/143405 PCT/US2015/021882

in the event that the device identifier included in the service request is not matched
with a name value of the plurality of computing devices, cause to remove the device identifier
from a binding list (e.g., binding list of an intermediate server, binding list of an edge server)

including one or more device identifiers.

33. The system of claim 31 or 32, the memory storing instructions that, when executed by the
processor, cause the processor to:

associate the second state identifier with the connection identity of the first persistent
connection; and

store, in the memory, the association of the second state identifier with the connection

identity of the first persistent connection.

34, The system of any one of claims 30 to 33, wherein state information is associated with

message content embedded within the response message, such that an intermediate server is

stateless.

35. The system of any one of claims 30 to 34, wherein the state identifier is inserted into a

header portion of the service request.

36. The system of any one of claims 30 to 35, wherein the first persistent connection and the

second persistent connection are WebSocket connections.

37. A non-transitory computer readable medium having instructions stored thercon, wherein

the instructions, when executed by a processor, cause the processor to:

-89 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

communicatively couple (e.g., an intermediate server) to a network and to a platform
server, the network including the platform server connected thereto,
wherein the platform server is communicatively coupled with a plurality of
intermediate servers over corresponding persistent connections, and
wherein the plurality of intermediate servers are communicatively coupled
with plurality of computing devices over corresponding persistent connections;
receive, via port, over a first persistent connection, a service request from one of the
plurality of computing devices;
insert a state identifier to the service request, the state identifier being associated with
a connection identity of the first persistent connection;
transmit the service request to the platform server over a second persistent connection;
receive a response message over the second persistent connection,
wherein the response message is generated by the platform server in response
to the service request, and
wherein the response message includes a state identifier of the response
message;
retrieve the connection identity of the first persistent connection using the state
identifier, the state identifier of the response message being the same state identifier included
in the service request; and
transmit, over the first persistent connection, the response message to the one of the
plurality of computing devices, the first persistent connection being selected based on the

retrieved connection identity.

38. The computer readable medium of claim 37, wherein the instructions, when executed by a

processor, cause the processor to:

-9 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

store, in the memory, a second state identifier associated with an authentication
exchange between the one of the plurality of computing devices and the platform server, the
second state identifier being associated with a name value of the one of the plurality of
computing devices;

compare a device identifier included in the service request to name values of the
plurality of computing devices, the device identifier being associated with the one of the
plurality of computing devices; and

inject the second state identifier into the service request, if the device identifier
included in the service request is matched with a name value of the plurality of computing

devices.

39. The computer readable medium of claim 38, wherein the instructions, when executed by a
processor, cause the processor to:

in the event that the device identifier included in the service request is not matched
with a name value of the plurality of computing devices, cause to remove (e.g., by the
intermediate server) the device identifier from a binding list (e.g., binding list of an

intermediate server, binding list of an edge server) including one or more device identifiers.

40. The computer readable medium of claim 38 or 39, wherein the instructions, when
executed by a processor, cause the processor to:

associate the second state identifier with the connection identity of the first persistent
connection; and

store, in the memory, the association of the second state identifier with the connection

identity.

-91 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

41. The computer readable medium of any one of claims 37 to 40, wherein state information
is associated with message content embedded within the response message, such that an

intermediate server is stateless.

42. The computer readable medium of any one of claims 37 to 41, wherein the state identifier

is inserted into a header portion of the service request.

43. The computer readable medium of any one of claims 37 to 42, wherein the first persistent

connection and the second persistent connection are WebSocket connections.

44. A method of managing (e.g., by a platform server) communications with end-point
devices, comprising;
communicatively coupling (e.g., the platform server) to a network and to one of a set
of intermediate servers, the network including the set of intermediate servers and an end-
point device connected thereto,
wherein the end-point device is communicatively coupled with an
intermediate server of the set of intermediate servers;
receiving, by a port, over a second persistent connection, a first data message
originating from a first end-point device,
wherein the first data message is routed through a first intermediate server
over a first persistent connection;
receiving, by a port, over a fourth persistent connection, a second data message
originating from a second end-point device,
wherein the second data message is routed through a second intermediate

server over a third persistent connection; and

9D -

10

15

20

WO 2015/143405 PCT/US2015/021882

servicing the first data message and the second data message,
wherein each of the first intermediate server and the second intermediate server
manages connectivity to and from the first end-point device and the second end-point device,

respectively.

45. The method of claim 44, wherein the first intermediate server and the second intermediate
server manage authentication sessions to and from the first end-point device and the second

end-point device, respectively.

46. The method of claim 44 or 45, wherein the servicing the first data message and the
second data message includes:

routing the first data message and the second data message to a back-office server
selected from the group consisting of a persistence server, a database server, a customer
relationship management (CRM) server, an enterprise resource planning (ERP) server, an
operation support system (OSS) server, a business support system (BSS) server, and a data

warechouse.

47. The method of any one of claims 44 to 46, wherein the persistent connections are

WebSocket connections.

48. A non-transitory computer readable medium having instructions stored thereon, wherein
the instructions, when executed by a processor, cause the processor to:
receive, by a port, over a second persistent connection, a first data message

originating from a first end-point device,

-93 -

10

15

20

25

WO 2015/143405 PCT/US2015/021882

wherein the first data message is routed through a first intermediate server
over a first persistent connection;
receive by a port, over a fourth persistent connection, a second data message
originating from a second end-point device,
wherein the second data message is routed through a second intermediate
server over a third persistent connection; and
service the first data message and the second data message,
wherein each of the first intermediate server and the second intermediate server
manages connectivity to and from the first end-point device and the second end-point,

respectively.

49. The computer readable medium of claim 48, wherein the first intermediate server and the
second intermediate server manage authentication sessions to and from the first end-point

device and the second end-point device, respectively.

50. The computer readable medium of claim 48 or 49, wherein the servicing the first data
message and the second data message includes:

routing the first data message and the second data message to a back-office server
selected from the group consisting of a persistence server, a database server, a customer
relationship management (CRM) server, an enterprise resource planning (ERP) server, an
operation support system (OSS) server, a business support system (BSS) server, and a data

warechouse.

51. The computer readable medium of any one of claims 48 to 50, wherein the persistent

connections are WebSocket connections.

-94 -

WO 2015/143405 PCT/US2015/021882

52. A system comprising;
a processor;
a memory, the memory storing instructions that, when executed by the processor,
5 cause the processor to:

receive by a port, over a fourth persistent connection, a second data message

originating from a second end-point device,
wherein the second data message is routed through a second
intermediate server over a third persistent connection; and
10 service the first data message and the second data message,

wherein each of the first intermediate server and the second intermediate

server manages connectivity to and from the first end-point device and the second

end-point device, respectively.

15 53. The system of claim 52, wherein the first intermediate server and the second intermediate
server manage authentication sessions to and from the first end-point device and the second

end-point device, respectively.

54. The system of claim 52 or 53, wherein the servicing the first data message and the second
20 data message includes:
routing the first data message and the second data message to a back-office server
selected from the group consisting of a persistence server, a database server, a customer
relationship management (CRM) server, an enterprise resource planning (ERP) server, an
operation support system (OSS) server, a business support system (BSS) server, and a data

25 warehouse.

-95._

10

15

20

25

WO 2015/143405 PCT/US2015/021882

55. The system of any one of claims 52 to 54, the system comprising a single physical server.

56. The system of any one of claims 52 to 54, the system comprising a plurality of physical

SCIvers.

57. The system of any one of claims 52 to 56, wherein the persistent connections are

WebSocket connections.

58. A method of managing communications with end-point devices, comprising:
communicatively coupling (e.g., the intermediate server) to a network, a platform
server and an end-point device, the network including the platform server and a plurality of
end-point devices connected thereto;
determining whether to inject routing information into a received message from an
end-point device of the plurality of end-point devices,
wherein the routing information is associated with a persistent connection
established with the end-point device, and
wherein the persistent connection is a persistent connection among a set of
persistent connections established with the plurality of end-point devices;
determining whether to inject authenticated session information into the received
message,
wherein the authenticated session information is related to an authenticated
session associated with the persistent connection;
determining whether to bind the persistent connection to an identifier associated with

the end-point device,

- 96 -

10

15

20

WO 2015/143405 PCT/US2015/021882

wherein the binding associates the persistent connection to the end-point
device; and
causing at least one (i) a first service to inject the routing information into the
received message, (ii) the second service to inject the authenticated session information into
the received message, and (iii) the third service to bind the persistent connection to the

identifier associated with the end-point device.

59. A system comprising;
a processor;
a memory having instructions stored thereon, wherein the instructions, when executed
by the processor, cause the processor to:
communicatively couple to a network, a platform server and an end-point
device, the network including the platform server and a plurality of end-point devices
connected thereto;
determine whether to inject routing information into a received message from
an end-point device of the plurality of end-point devices,
wherein the routing information is associated with a persistent
connection established with the end-point device, and
wherein the persistent connection is a persistent connection among a
set of persistent connections established with the plurality of end-point devices;
determine whether to inject authenticated session information into the received
message,
wherein the authenticated session information is related to an

authenticated session associated with the persistent connection;

-97.

WO 2015/143405 PCT/US2015/021882

determine whether to bind the persistent connection to an identifier associated
with the end-point device,
wherein the binding associates the persistent connection to the end-
point device; and
cause at least one (i) a first service to inject the routing information into the
received message, (ii) the second service to inject the authenticated session
information into the received message, and (iii) the third service to bind the persistent

connection to the identifier associated with the end-point device.

- 08 -

WO 2015/143405 PCT/US2015/021882

1/13

1002 5_ 108a

105

104

Platform

Server
102a

.. 5‘108b

E((wverss)

Edge Server Groups

I'I".'. 5—108c
=
Slleeres

Edge Server Groups

Slasires

5‘ 108d

Edge Server Groups

Platform API
Server

3" party
Server

3" party
Network

Server
102b

FIG. 1

PCT/US2015/021882

2/13

¢ 'Ol

SEYSETS
1dV

JOAJIDS
23p3

SETVETS
CRIET
wJojie|d

0Ll

[41])

90!

WO 2015/143405

qo00z e00¢

WO 2015/143405

S_ 302

PCT/US2015/021882

3/13

300 Z

S‘ 304

Message Header

Message Payload

(N
Headerld Method code [Requestld | Sessionld | Endpointld | Multipart
l316 l312 l306 l308 l310 l314

FIG. 3

WO 2015/143405 PCT/US2015/021882
4/13
000 00001 (0x01) | GET A
000 00010 (0x02) | PUT
000 00011 (0x03) | POST
000 00100 (0x04) | DELETE -318
000 01010 (0x0A) | BIND
000 01011 (0x0B) | UNBIND
000 11000 (0x14) | AUTH
000 11111 (OxIF) | KEEP ALIVE

01000000 (0x40)

STATUS SUCCESS((short)200,(byte)0x40),

01000001 (0x41)

STATUS CREATED((short)201,(byte)0x41),

01000010 (0x42) STATUS ACCEPTED((short)202,(byte)0x42),

01000100 (0x44) STATUS NO_CONTENT((short)204,(byte)0x44),

01000110 (0x46) STATUS PARTIAL CONTENT((short)206,(byte)0x46),
01100000 (0x60) STATUS MULTIPLE CHOICES((short)300,(byte)0x60),
01100001 (0x61) STATUS MOVED PERMANENTLY((short)301,(byte)0x61),
01100010 (0x62) STATUS FOUND((short)302,(byte)0x62),

01100011 (0x63) STATUS SEE_OTHER((short)303,(byte)0x63),

01100100 (0x64) STATUS NOT MODIFIED((short)304,(byte)0x64),

01100101 (0x65)

STATUS USE PROXY((short)305,(byte)0x65),

01100111 (0x67)

STATUS TEMPORARY REDIRECT((short)307,(byte)0x67),

10000000 (0x80) STATUS BAD REQUEST((short)400,(byte)0x80),

10000001 (0x81) STATUS UNAUTHORIZED((short)401,(byte)0x81),
10000010 (0x82) STATUS PAYMENT REQUIRED((short)402,(byte)0x82),
10000011 (0x83) STATUS FORBIDDEN((short)403,(byte)0x83),

10000100 (0x84) STATUS NOT FOUND((short)404,(byte)0x84),

10000101 (0x85) STATUS METHOD NOT ALLOWED((short)403,(byte)0x85),
10000110 (0x86) STATUS NOT ACCEPTABLE((short)406,(byte)0x86),
10001000 (0x88) STATUS REQUEST TIMEOUT((short)408,(byte)0x88),
10001001 (0x89) STATUS _CONFLICT((short)409,(byte)0x89),

10010010 (0x92) STATUS 1 AM_A_TEAPOT((short)418,(byte)0x92),
10010100 (0x94) STATUS I AM_BUZZED((short)420,(byte)0x94),

10100000 (0xAO) | STATUS INTERNAL ERROR((short)500,(byte)0xA0),
10100001 (0xAl) | STATUS NOT IMPLEMENTED((short)501,(byte)0xAl),
10100010 (0xA2) | STATUS BAD GATEWAY((short)502,(byte)0xA2),
10100011 (0xA3) | STATUS SERVICE UNAVAILABLE((short)503,(byte)0xA3),
10100100 (0xA4) | STATUS _GATEWAY TIMEOUT((short)504,(byte)0xA4),
11100000 (0XE0) STATUS COMM ERROR ((short)700,(byte) 0xE0),
11100001 (0XEI) STATUS SERVER REFUSED((short)701,(byte)0xEI),
11100010 (0XE2) STATUS SERVER UNAVAILABLE((short) 702,(byte)0xE2),

11100011 (0xE3)

STATUS COMM TIMEOUT((short) 703,(byte)0xE3)

FIG. 4

322

>324

WO 2015/143405

5/13

5002

PCT/US2015/021882

Platform
Server —P1

EndPoint Edge API
Device - D1 Server - E1 Server — Al
104 106 110
5_5013 > Prepare Authentication Message
Send device >\§75023
name and 502¢ 502d
authentication Send message S_ Inject sessionld and
endpointld
A ﬂ <Auth> p 3—502,(
l Forward message >
502b A[R1[e1[s1] <auths
Authenticate credential
502¢

506f—a

Prepare return message

102

504a

>§’ 506a

Confirm
registration

Route message 506dk %”d success message 3_506(:
Forward message 5069_& S|Rljel|sl
S|R1|el]s1 506b

Bind device name Z506b
in registry
508a
508¢ Bind and Injects
>end message S_ S08d sessionld/ endpointld
B{R2 <name>
Send message 5_508f>

508b

512d‘<<
Forward message 512f
- I

R2

el | sl | <name>

<

Send success message 5_5120

510a

j512a

S

R2

el | sl

S|R2|el]|sl

2‘512e

FIG.5

512b

6/13 PCT/US2015/021882

WO 2015/143405

9 'Ol

€019
» <
Ts e[€Y (S
‘ahanb wouJj}
plisenbaJ seroway
9909 2909
aSessaw <eiep> | TS [Z9 [€Y | d [oSessaw psemioy
4909 o g
P909 .Gcolm
Zeeps | IS €Y 28essaw puas
>
ogolm
€909
70 ort 90
Td—Joniss TV — JonI3S IV Mge
wJojield 253

3 - IoAJeS

WO 2015/143405 PCT/US2015/021882

702?

7/13

700 Z

704

708 ?

Receive message

endpointld
in message?

5— 706

Route message
using endpointld

Inject endpointld I

Inject sessionld I_f 712

5_ 714

710

724

728

AUTH message?

Associate <name> to endpointlid, sessionld,
and connection of binded platform server

Forward AUTH message to
binded platform server

Yes

716

720 _z

Bind/unbind using <name>

3‘ 722

Forward message to platform
server

S_ 726

“I_l.o“-> Forward message to platform
server

Yes (from
server)

REQUEST
message?

3— 730

Route message using binding data

sessionld
in message?

No (from device)
732

FIG. 7

Retrieve sessionld using nameld

Inject sessionid

736

Forward message to binded platform server

WO 2015/143405 PCT/US2015/021882

8/13

802

Platform

Server
102a

Server

FIG. 8

WO 2015/143405 PCT/US2015/021882

9/13

904

BIG DATA/ DATA STORE
(HADOOP, DATA WAREHOUSE, OTHER)

902 902 902
3 3 3
Q a <4
8| N %8|

PERSISTENCE SERVER PERSISTENCE SERVER ~ PERSISTENCE SERVER

(

& @ (P
ROUTING ROUTING
SERVER SERVER

110 110

CONNECTION CONNECTION CONNECTIO
SERVER SERVER SERVER

FIG. 9 //

WO 2015/143405 PCT/US2015/021882

10/13

10002

Receive a service request from a given edge
server over a first persistent connection

_ 1002

Insert a state identifier, associated with the first
persistent connection, to the service request

_ 1004

Transmit the service request to the platform
server over a second persistent connection

_ 1006

Receive a response message from the platform
server over the second persistent connection
having the state identifier
8 1008

A 4

Retrieve the connection identity of the first
persistent connection using the state identifier

1010

A 4

Route the response message to a persistent
connection using the retrieved connection

identity 1012

FIG. 10

WO 2015/143405 PCT/US2015/021882

11/13

11002

Provide a platform server and a plurality of
intermediary servers

11

N

Bind an end-point device to the platform server
at a first path
11

s

Communicate a first message to the end-point
device along the first path
11

(=73

Rebind the end-point device to the platform
server at a second path

11

Co

Communicate a second message to the end-point
device along the second path
11

S

FIG. 11

WO 2015/143405 PCT/US2015/021882

12 /13

1 ZOOZ

Provide a platform server and a plurality of
intermediary servers

1202

Receive, at the platform server, a first data
message routed through a first intermediary

SCrver 1204

Receive, at the platform server, a second data
message routed through a second intermediary

SCrver LOG

Service the first and second data message

1208

FIG. 12

PCT/US2015/021882
13/13

WO 2015/143405

€T 'Ol

vsel -,

8G€l
09¢€1 .

cortig

o,

) o

e S

R
R

NRIAINNRNNINNNNN

veel

¢
¢
¢
¢
¢
?
‘

SR

&

B T
Y S ke i o

e

e

.
P

g TS A AR e A EAEEEEaerey

7 e
Ww&&««&ﬁvﬂx\\\

i

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2015/021882

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - HO4L 12/24 (2015.01) :
CPC - HO4L 12/24 (2015.04)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8) - GO6F 15/16; HO4L 12/24, 12/701 (2015.01)
USPC - 370/218, 392; 709/249 :

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields hed
CPC - GOSF 15/16; HO4L 12/24, 12/701 (2015.04) (keyword delimited) fields Searche

Orbit, Google Patents, Google Scholar, Google. .

Electr_onic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search terms used:network, intermediate server, first instance, non addressable, name value, end point device, first path, route, binding

C. DOCUMENTS CONSIDERED TO BE RELEVANT

US 2014/0016455 A1 (RUETSCHI et al) 16 January 2014 (16.01.2014) entire document

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2003/0005163 A1 (BELZ]LE) 02 January 2003 (02.01.2003) entire document 1-6,12-16,22 -

Y US 2006/0031520 A1 (BEDEKAR et al) 09 February 2006 (09.02.2006) entire document 1-6,12-16,22

Y US 2007/0104180 A1 (AIZU et al) 10 May 2007 (10.05.2007) entire document: 2,4,12,14,22

Y US 2012./0158825 A1l (GANSER) 21 June 2012 (21.06.2012) entire document ‘ 6,‘16

A 1-6,12-16,22

I:l Further documents are listed in the continuation of Box C.

]

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance -

“E" earlier application or patent but published on or after the international
filing date .

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other

" special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“p” document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

D'

“y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document_is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

08 July 2015

Date of mailing of the international search'report

"Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. §71-273-8300

30JUL 2015

Authorized officer:
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2015/021882

Box No. I1 Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

L. D Claims Nos.: .

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:

because they relate Fo parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically: '

N/l
3. Claims Nos.: 7-11,17-21,27-29,34-36,41-43,47,51,55-57
be.cause they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No.III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See Extra Sheet

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims. '

2. I:I As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees:)

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4, W No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-6,12-16,22

Remark on Protest I:I The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.) :

D The additional search fees were accompanied by the applicant’s protest but the applicabfe protest
fee was not paid within the time limit specified in the invitation.

l___] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2015/021882

Continuation of Box No. Il

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventivel
concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group |, claims 1-6,12-16,22, drawn to routing messageé in a distributed computing environment.
Group |, claims 23-26,30-33,37-40, drawn to injecting states into data streams.

Group lIl, claims 44-46,48-50,52-54, drawn to managing connectivity with end-point

devices.

Group 1V, claims 58,59, drawn to managing communications with end-point devices.

The inventions listed as Groups |, 1I, Il or IV do not relate to a single general inventive concept under PCT Rule 13.1 because, under
PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the special technical feature of
the Group | invention: wherein the binding to the end-point device at the first instance is performed using a non-addressable name value
associated with the end-point.device as claimed therein is not present in the invention of Groups Il, Il or IV. The special technical
feature of the Group |l invention: receiving, via a port, over a first persistent connection, a service request from one of the plurality of
computing devices; inserting a state identifier into the service request, the state identifier being associated with a connection identity of
the first persistent connection as claimed therein is not present in the invention of Groups |, Ill or IV. The special technical feature of the
Group Il invention: servicing the first data message and the second data message, wherein each of the first intermediate server and the
second intermediate server manages connectivity to and from the first end-point device and the second end-point device, respectively as
claimed therein is not present in the invention of Groups |, Il or IV. The special technical feature of the Group |V invention: causing at
least one (i) a first service to inject the routing information into the received message, (ii) the second service to inject the authenticated
session information into .

the received message, and (iii) the third service to bind the persistent connection to the

identifier associated with the end-point device as claimed therein is not present in the invention of Groups |, Il or Iil.

Groups |, Il, 11, and IV lack unity of invention because even though the inventions of these groups require the technical feature of
communicatively coupling (e.g., an intermediate server) to a network and to a platform server, the network including the platform server
connected thereto, wherein the platform server is communicatively coupled to a plurality of

intermediate servers over corresponding persistent connections, and wherein the plurality of intermediate servers are communicatively
coupled to a plurality of computing devices over corresponding persistent.connections; binding an end-point device, this technical feature
is not a special technical feature as it does not make a contribution over the prior art.

Specifically, US 2003/0005163 A1 (BELZILE) 02 January 2003 (02.01.2003) teaches communicatively coupling (e.g., an intermediate
server) to a network and to a platform server, the network including the platform server connected thereto, wherein the platform server is
communicatively coupled to a plurality of intermediate servers over corresponding persistent connections (Devices 14, 16a, 16b, 16¢c
and 18 may be interconnected with network 10 in any of a number of ways. For example, device 14 may be directly interconnected with
a network router using an Ethernet or other physical interface, Para. 55), and wherein the plurality of intermediate servers are
communicatively coupled to a plurality of computing devices over corresponding persistent connections (In the illustrated embodiment,
device 18 is an end-user work station: device 14 is a network server providing the known internet domain name service ("DNS".) as
detailed in RFCs 2136 and 2137, the contents of both of which are hereby incorporated by reference; and devices 16a, 16b and 16c are
other internet servers exemplary of the present invention, Para. 54); binding an end-point device (devices 16a, 16b and 16c could be
connected to network 10, by an asynchronous transfer mode, Para. 55). :

Since none of the special technical features of the Group |, I, Ill, or IV inventions are found in more than one of the inventions, unity of
invention is lacking.

Form PCT/ISA/210 (extra sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - wo-search-report
	Page 115 - wo-search-report
	Page 116 - wo-search-report

