. UK Patent Application ..GB ., 2 165975 A

(43) Application published 23 Apr 1986

(21) Application No 8525903
{22) Date of filing 21 Oct 1985

(30) Priority data

(31) 664131 (32) 24 Oct 1984

(33) US

(71) Applicant

International Business Machines Corporation (USA—New

York),

Armonk, New York 10504, United States of America

{72) Inventors
William Cain Brantley Jr
Kevin Patrick Mcaulifee
Vern Alan Norton

(51) INT CL¢

GO6F 12/10 GO6F 13/00

{52) Domestic classification

G4A FN NV

{56} Documents cited

GB 1411182

G4A

(58) Field of search

US 4414624

US 4285040

Alan J Lewis,
IBM United Kingdom Limited, Patent Operations, Hursley
Park, Winchester, Hants SO21 2JN

(74) Agent and/or Address for Service

(54) Dynamically allocated
local/global storage system

{(57) A virtual address from a
processor is stored in virtual address
register (VAR) 242 and comprises a
segment and/or page index (S/P |)
244, a page offset (PO} 246 and
word offset (WO) 248. The S/P | is
used in a conventional way as an
index into the storage mapping
tables 270 to provide a real address
which is placed in register 250.
Unique to this disclosure, the table
look-up also provides a quantity, the
interleave amount, which indicates
whether the real address is in local or
global storage and, which in the
latter event, is used to derive the
absolute addresses. The low order
bits of the real address may be
hashed using Remap 252 to
introduce a random element into a
sequence of consecutive addresses.
The real address after mapping,
excluding the word offset (WO) is
passed to right rotate device 256
which is controiled by the interleave
amount. The width of the field to be
rotated and the amount the field is to
be rotated are specified by the
interleave amount. The derived
absolute addresses are entered in
register 258 and are passed for use
onto a communication network
interconnecting the processors and
the storage system. Local and global
storage (30) is distributed amongst
the nodes (Fig. 2) of a multiprocessor
network (Fig. 1).

FIG.7

244 From Processor 22
[246 48
PO [wo l‘..Virtual
2/70 Address 242
storage
mapping
tables /24
interleave Y Yy
amount
IJ/P 0 I PO [wo I‘..Real
Address 250
L)]
\ y
Address
{ | | wo b accer
y X Remapping
] J
I 254
\
cs
Hsy YLS
interleave
amount Variable Width Swap
f KS and LS
2561 el
HS'y tis'
l cs
(no
change)
Y
[I l l W0 [Absolute
Address 258
l Node # l Storage Offset [w0

l to Network Interface 28

YV G/6GAL 745

2165975
1/4

IO)

interconnection network

FlG i NODE 0 NODE 1 NODE n

20 20 20

(

PROC MAP/ — CACHE —{NET/STORE b— to network 10
7 INTERLEAVE ™ INTF. ——=< from network
2?2 / 26 T

24 BLOCK
OF

FIG. 2 n| i

local
address O K
TTTTTTTivT IREREREERERRE RN
Node O
EEEEEENERE [AEEENENN SN EEE!
TTTTITTTT] TT T T T i i T Tii133
Node 1
AEEREREENE! NN NN
TTTTT T 117 IREESNEEEREEERRAR
Node 2
HEEREEREEE AN EENNEE RN
F ®* o »
1G. 3
RS ERERREN TTTT T T T I TR ITTT
Node n
Lttty AN AN

2/ 4

a sequential page

local
address 0 K
FTTTTTTT TTHETTTT AT TTIOTTT
I EREEEE Pttt e v r ettt
VT T TATTTTd TTTTT il T T i
RN EREE R Lttt dlrt]d
INREERRERRARE! TTTT i Tyl T i iIg
L]l L)t Lyt tdggd
FIG.4
TTYTVTTTITTd TTTTTTITT T T ITTrITd
Lt gt lllllll[]LJ-_lJli!J
A Sequentially-Mapped Page
an interleaved page
local
7
address O X
T ‘Illl IR
|-l|‘] o [N e
Tir1 11 IEREAEREREEEERRE
O T ,
TTT1 I IR
|Il| LI LI I A L I N B A) Yyt
FIG.5 o
lllll Tt RN

An Interleave-Mapped Page

2165875

Node 0
Node 1

Node 2

Node n

Node 0
Node 1

Node 2

Node n

interleaved
(global)

paies

3/4

FIG.6

serial
(local)

paies

[T]
T e
TTTTT i Noda
11t |
TT111 TTTT17 Node
11t 14t
TIT T 0 IRERREREEN]
Node n
11111 [EREEENNE
» PE » | NET 4
RTE CON
282 286 -~
PRO - Y A NET-
CESSOR y WORK
290\ 292\
< PE |- — NET -«
CON RTE
\ A
22 - LM P L:‘In‘—Y
RTE /lCON
~-288 284 \28

STORE

L— 30

4/4 1
/ 2165975
244 . From Processor 22
/ 24648
Ss/P1I =+ PO WO | o—Virtual
%]O Address 242
o] N
storage
mapping 1 Table Lookup
tables (2
| : l 272 ~
interleave A 4 4 Y
amount
S/P O PO WO Jw— Real
Address 290
L § l i |
HR YLR
Remap
Y Y 252" yx!
Address
WO ™ After
Remapping
1] 1 I
: 254
Y
CS
HSY YLS
interleave
amount - Variable Width Swap
of HS and LS
256"
HS'Y yLs'
CS
(no .
change)
L Y \
WO [™Absolute
Address 258
Node # l Storage Offset [WOAJ
]

l to Network Interfac028

GB2 165975A

1

10

15

20

25

30

35

40

45

50

55

60

65

SPECIFICATION

Dynamically allocated local/global storage
system

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to data proces-
sor storage systems and more particularly to
dynamic storage systems for multiprocessor
systems.

2. Description of the Prior Art

The following are systems representative of
the prior art.

U.S. Patent 4,365,295 shows a multipro-
cessor system including a memory system in
which the memory of each processor module
is divided into four logical address areas. The
memory system includes a map which tran-
slates logical addresses to physical addresses
and which co-acts with the multiprocessor
system to bring pages from secondary mem-
ory into primary main memory as required to
implement a virtual memory system.

This patent which describes a conventional
memory mapping system, does not address
the efficient access of memory by single or
multiple processors including interleaving sto-
rage references by a processor and dynami-
cally directing storage references to global or
local portions of each storage module.

U.S. Patent 4,228,496 shows a multipro-
cessor system including a memory system as
above to implement a virtual memory system.

However, this patent which describes a con-
ventional memory mapping system, does not
address the efficient access of memory by
single or multiple processors including inter-
leaving storage references by a processor and
dynamically directing storage references to
global or local portions each storage module.

U.S. Patent 4,174,514 shows apparatus for
performing neighbourhood transformations on
data matrices for image processing and the
like achieving processing speeds greater than
serial processors within a economy of mem-
ory through use of a plurality of serial neigh-
bourhood processors that simultaneously oper-
ate upon adjoining partitioned segments of a
single data matrix.

This patent shows a multiprocessor system
without any provision for access by all pro-
cessors to a common global storage.

U.S. Patent 4,121,286 shows apparatus for
allocating and deallocating memory space in a
multiprocessor environment.

This patent which describes a conventional
memory mapping system, does not address
the efficient access of memory by single or
multiple processors including interleaving sto-
rage references by a processor and dynami-
cally directing storage references to global or
local portions of each storage module.

U.S. Patent 3,916,383 shows a resource al-

70

75

80

85

90

95

100

105

110

115

120

125

130

location circuit selectively activating individual
processors by time slice basis where a time
slice has approximately the same time duration
as the system storage time. The resource allo-
cation circuit includes a priority network which
receives real time common resource utilisation
requests from the processors according to the
individual processor needs, assigns a priority
rating to the received request and alters in
response thereto the otherwise sequential acti-
vation of the processors. The patent shows a
system with several independent data proces-
sors within a single central processor which is
not a true multiprocessor system in the usual
sense.

The present invention relates to a system
having one or more independent processors
forming a multiprocessor in which a storage
system is dynamically partitioned into global
storage and local storage.

U.S. Patent 3,820,079 shows a multipro-
cessing computer structured in modular form
around a common control and data bus. Con-
trol functions for the various modules are dis-
tributed among the modules to facilitate sys-
tem flexibility. The patent shows a system in-
cluding conventional memory mapping and in-
terleaving.

Unlike the present invention, the memory
mapping does not control the interleaving and
the interleaving is the same over all modules
for all data.

U.S. Patent, 3,641,505 shows a multipro-
cessor computing system in which a number
of processing units, program storage units,
variable storage units and input/output units
may be selectively combined to form one or
more independent data processing systems.
System partitioning into more than one inde-
pendent system is controlled alternatively by
manual switching or program directed parti-
tioning signals.

This patent which describes a conventional
memory mapping system, does not address
the efficient access of memory by single or
muitiple processors including interleaving sto-
rage references by a processor and dynami-
cally directing storage references to global or
local portions each storage module.

U.S. Patent 3,601,812 shows a memory
system for buffering several computers to a
central storage unit or a computer to several
small memory units and a partitioned address
scheme for the efficient use thereof. The di-
gits of the address are decomposed into two
disjoint subsets one of which is used as a
buffer memory address and the other of which
is stored with data word to effect identifica-
tion thereof.

The patent deals with buffering memory
data in a multiprocessor and does not show a
dynamically partitioned storage system includ-
ing interleaving storage references by a pro-
cessor and directing dynamically storage refer-
ences to global or local portions of storage.

GB2165975A

2

10

15

20

25

30

356

40

45

50

55

60

65

The prior art discussed above does not
teach nor suggest the present invention as
disclosed and claimed herein.

SUMMARY OF THE INVENTION

It is an object of the present invention to
dynamically partition a storage system into a
global storage efficiently accessible by a plu-
rality of processors, and local storage effici-
ently accessible by individual processors, by
method and apparatus comprising: means for
interleaving storage references by a processor;
means under the contro! of each processor for
controlling the means for interleaving storage
references; means for dynamically directing
storage references to first or second portions
of storage.

It is another object of the present invention
to dynamically partition a storage system as
above by method and apparatus further includ-
ing, assigning a first portion of storage to a
referencing processor and a second portion of
storage is assigned to another of the proces-
sors.

It is another object of the present invention
to dynamically partition a storage system as
above by method and apparatus further includ-
ing, a first means for allocating storage on
page boundaries.

It is another object of the present invention
to dynamically partition a storage system as
above by method and apparatus further includ-
ing, a second means for dynamically allocating
storage on variable segment boundaries.

It is another object of the present invention
to dynamically partition a storage system as
above by method and apparatus further includ-
ing, means for controlling storage interleaving
by said first and second means for allocating
storage.

It is another object of the present invention
to dynamically partition a storage system as
above by method and apparatus further includ-
ing, means for interleaving storage by a factor
equal to any power of 2 between O and the
number of processing nodes of the system.

It is another object of the present invention
to dynamically partition a storage system as
above by method and apparatus further includ-
ing, a variable amount right rotate of a vari-
able-width bit-field means for limiting a num-
ber of storage modules over which interleav-
ing is performed to a number less than a pre-
determined maximum.

It is another object of the present invention
to dynamically partition a storage system as
above by method and apparatus further includ-
ing, means to re-map an interleaving sweep
across memories to provide different se-
quences of memory module access for differ-
ent successive interleaving sweeps.

Accordingly, the present invention includes
method and apparatus for dynamically parti-
tioning a storage system into a global storage
efficiently accessible by a number of proces-

70

75

80

85

90

95

100

105

110

115

120

125

130

sors connected to a network, and local sto-
rage efficiently accessible by individual proces-
sors, including means for interleaving storage
references by a processor; means under the
control of each processor for controliing the
means for interleaving storage references and
means for dynamically directing storage refer-
ences to first or second portions of storage.
The foregoing and other objects, features and
advantages of the invention will be apparent
from the more particular description of the
preferred embodiments of the invention, as il-
lustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a multiproces-
sor system according to the present invention.

FIG. 2 is a block diagram of a processing
node according to the present invention.

FIG. 3 shows the physical address space of
the multiprocessor, that is, the address of
each word in all the memories in the multipro-
cessor. The most significant part of the ad-
dress specifies the node number. The least
significant part of the address is the offset
within one of the memories.

FIG. 4 shows the entire contents of a virtual
page as it would be stored with an interleave
amount of zero; that is, sequentially within
one of the node’s memories.

FIG. 6 shows the entire contents of a virtual
page as it would be stored with an interleave
amount of log base 2 of the number of
nodes; that is, fully interleaved across all of
the memories.

FIG. 6 shows how an operating system
would probably chose to allocate a set of se-

quential and interleaved pages within memory.

FIG. 7 is a block diagram of a Map/Inter-
leave block shown in FIG. 2 according to the

- present invention.

FIG. 8 is a block diagram of a Network/Sto-
rage Interface block shown in FIG. 2 according
to the present invention.

In the drawing, like elements are designated
with similar reference numbers, and identical
elements in different specific embodiments are
designated by identical reference numbers.

DESCRIPTION OF PREFERRED EMBODIMENTS
OF THE INVENTION

The present invention allows the main store
of a multiple processor computer to be dy-
namically partitioned, at run time, between
storage local to each processor and storage
globally accessible by all processors.

Prior art multiprocessor systems provide
either

1. only local, and no global storage

2. only global, and no local storage

3. global storage and a fixed amount of lo-
cal storage

Some of the systems of type 2. have a
fixed amount of local storage in the form of a
cache to effectively reduce global storage la-

GB2 165975A

3

10

156

20

25

30

35

40

45

50

55

60

65

tency; as will be noted, the present invention
does not preclude the use of a cache or, in
general, the use of a storage hierarchy.

Unlike the above systems, the invention de-
scribed here allows the storage configuration
to be dynamically altered to fit the needs of
the user resulting in substantially improved
performance over a wider range of applica-
tions. Efficient passing of messages between
processors, achieved in systems of type 1.
above by special hardware, is also supported
by this invention.

Configuration

As shown in Fig. 1, the machine organisa-
tion needed consists of N processing nodes
20 connected by some communications net-
work 10. The processors and main storage of
the system are contained in the nodes (see
Fig. 2). Any network providing communication
among all the nodes may be used.

Network Description

Figure 1 shows an interconnection network
(ICN) 10 which is connects the various nodes
20 together. This invention does not require
any specific interconnection network design,
but such network must necessarily have as a
minimum the following capabilities:

Messages which originate at any one node
20 can be reliably routed through network 10
to any other node 20.

The routing of a message is based upon
addressing information contained within a
“Node #" field of the message.

The message-routing functions of the ICN
10, when coupled with those of the various
nodes 20, must enable any processor to ac-
cess any memory location at any node 20
merely by specifying the correct absolute ad-
dress.

The memory-mapping mechanisms of this
invention provide each processor with the ca-
pability of generating such absolute addresses.

Fig. 2 shows the contents of a node. Ad-
dresses for storage references issued by the
processor (PROC) 22 are mapped by the MA-
P/INTERLEAVE (M/l) 24 as described below.

A cache 26 is used to satisfy some storage
references after mapping. The invention de-
scribed here does not require the use of a
cache nor does it restrict the placement of the
cache. For example the cache 26 could reside
between the processor 22 and M/l block 24.

References not satisfied by the cache 26 (or
all references, if there is no cache) are di-
rected by the network/storage interface
(NET/STORE INTF. (NSI)) 28 to either the por-
tion of main store 30 at that node or through
the network 10 to store 30 of another node.

The NSI 28 also receives reference requests
from other nodes and directs them to the sto-
rage of a node to be satisfied. This effectively
makes the node's storage 30 dual-ported.
Close to the same increase in efficiency, at

70

75

80

856

90

95

100

105

110

115

120

125

130

lower cost, can be obtained by locally inter-
leaving a node’s storage 30 and overlapping
the processing of interleaved requests.

Local/Global Mapping

M/l 24 performs the usual two-level seg-
ment/page mapping of virtual addresses pro-
duced by processor 22 to real addresses, un-
der the direction of some form of segment/-
page tables held in the main store 30. The
real addresses produced uniquely identify ev-
ery word or byte in all the nodes’ stores: the
high-order bits specify the node number, and
the low-order bits specify the word or byte
within a node’s store. This is illustrated in Fig.
3.

In this invention, M/l 24 may also perform
an interleaving transformation on the address.
Whether it does so or not is specified by an
additional field, unique to this invention, that is
added to entries in the the segment and/or
page tables. The effect of this transformation
is to make a page of real storage a sequential
block of addresses completely contained
within a node (see Fig. 4); or a block of ad-
dresses that is scattered across several
nodes’ stores (see Fig. 5).

A sequential page can thus be guaranteed
to be in a node’s own store 30, local to that
processor 22 and quickly accessible, providing
the function of a local storage. Since an inter-
leaved page is spread across many storage
blocks, the probability of storage conflicts
when multiple processors reference it is
greatly reduced; this provides efficient glo-
bally-accessible storage.

To further reduce the probability of confl-
icts, the interleaving transformation may also
“hash” the node number portion of the ad-
dress, for example, by XOR-ing (exclusive-OR-
ing) the node number portion of the address
with other address bits. This would reduce
the probability of conflict when regular pat-
terns of access occur.

The degree of interleaving used -- the num-
ber of nodes across which an interleaved page
is spread -- may be specified by the additional
field added to the segment and/or page
tables. This field may also specify character-
istics of the ‘hashing’’ used.

By having some pages mapped sequentially,
and some interleaved, part of main store 30
may be ““local’” and part “‘global”” The amount
that is local vs. global is under control of the
storage mapping tables, and thus may be
changed at run time to match the require-
ments of applications.

An example of the kind of main store use
that this invention makes possible is illustrated
in Fig. 6. This shows global storage allocated
from one end of all nodes’ storage 30, local
storage from the other. While this is not the
only way of using the invention described
here, it illustrates how the invention allows the
proportions of storage used for global and lo-

GB2 165975A

4

10

15

20

25

30

35

40

45

50

55

60

65

cal storage to change in the course of running
applications.

Message Passing

In addition to the communication afforded
by global storage, direct inter-processor mes-
sage passing is supported by this invention:
Direct main storage data movement instruc-
tions (e.g., “MVCL’" IBM System 370 Prin-
ciples of Operation) can be used to move data
from a sequential page in one processor to a
sequential page in another processor, without
disturbing or requiring use of any other node’s
storage.

Description of Storage Mapping Tables

The storage mapping tables are used by the
M/I. They define the mapping performed by
the M/I between the address issued by the
processor and the address accessed in mem-
ory. Specifically, and unique to this invention,
they define whether an interleaving transfor-
mation is to be applied to an address or not,
and may specify what interleaving transforma-
tion if any is to be applied. The tables them-
selves may reside in the M/l itself; or in the
main memory of the system (either global or
local storage), referenced by the M/I; or in
both. Wherever they reside, they are modifia-
ble by software running on the system’s pro-
cessors. It will often be convenient to com-
bine the definition of interleaving in these
tables with a virtual memory mapping of some
form, e.g., page mapping, segment mapping,
or two-level segment and page mapping ((ref-
erence: Baer, J., “"Computer Systems Archi-
tecture’’, Computer Science Press, Rockuville,
MD, 1980)) by extending the usual contents
of such tables to include a field of at least
one bit containing information determining the
interleaving and/or remapping. This has been
done in the preferred embodiment described
here, but is not required by this invention,
which only requires that the existence and/or
amount of the interleave be controlled by each
processor. Other mechanisms for doing -this
include: extending the processors’ instruction
set to have interleaved and non-interleaved
data access instructions; by instruction set ex-
tension or /0 instruction control, have in-
structions that turn interleaving on or off for
data and/or instruction fetch.

Description of the Operation of the M/l 24
Figure 7 illustrates the operation of the Ma-

p/Interleave (M/l} for the case where memory
mapping and low-order remapping are both in-
corporated. The top of the figure shows a
virtual address as received from the processor
and stored in VAR 242. This is subdivided, as
shown, into a segment and/or page index
(S/P 1) 244, a page offset (PO) 246, and a
word offset (WO} 248. These fields have the
conventional meanings in memory mapping
systems. The WO, which specifies which byte

70

75

80

85

90

95

100

105

110

116

120

125

130

in an addressed word (or word in a larger
minimal unit of addressing) is to be accessed
is passed through the entire mapping process
unchanged (as shown), and will not be men-
tioned further.

The S/P | is used in a conventional way as
an index into the storage mapping tables, as
shown. From the storage mapping tables, the
real Segment/Page offset (S/P 0) 250 is de-
rived in a conventional way by Table Lookup
to form a Real Address as shown. Unique to
this invention, the Table Lookup also produces
an interleave amount (shown) associated with
each segment and/or page which is specified
in the storage mapping tables.

After the Real Address is derived, the low-
order Remap 252 may be applied to produce
a Remapped Address in RAR 254. This may
also be applied as part of the variable amount
variable-width right rotate described below, or
may be omitted, in which case the Real Ad-
dress is passed through unchanged to the -
next stage. The low-order Remap operates on
a field LR to produce a new address field LR’
of the same width, using the rest of the Real
Address (field labelled HR) as shown. The
width of LR {(and LR’) may be any value be-
tween two extremes: at largest, it is equal in
width to the page offset (PO); at smallest, it
is the maximum allowed interleave amount,
i.e., if the width is N, the maximum number of
memory modules is 2**N. Fig. 7 shows it at
an intermediate point between these two ex-
tremes. The purpose of the low-order Remap
is to randomise successive addresses that are
to be interleaved across a subset of memory
modules, i.e. accessed in different sequences.
This lowers the probability of many proces-
sors accessing the same memory module si-
multaneously when the data structures being
accessed have a size that is an integer mul-
tiple of the amount of storage in one inter-
leaved sweep across all the memories. The
maximum size of LR arises from the need to
keep pages addressed in contiguously-ad-
dressed blocks; the minimum size is the mini-
mum needed to effectively perform the func-
tion described above. The low-order Remap is
one-to-one, i.e., every possible value of LR
must be mapped into a different value of LR".
One possible low-order Remap is the follow-
ing: Let the bits of LR be named LRO, LR1, ...
LRn from right to left; and the bits of of HR
and LR’ be named similarly. Then, using “‘xor”’
to represent the conventional exclusive-or
logic function, a suitable low-order remap is:
LR'O = LRO xor HRO; LR'1 = LR1 xor HR1;
... LR'n LRn xor HRn.

The actual interleaving transformation is then
performed by a variable amount right rotate
on a variable-Width bit-field device 256, pro-
ducing the actual Absolute Address used to
access the system’s storage modules. This
uses the Interleave Amount derived earlier,
and operates on the real address after re-

GB2165975A

5

10

15

20

25

30

35

40

45

50

55

60

65

mapping (if remapping is done) excluding the
word offset (WO). The width of the field to
be rotated and the amount the field is to be
rotated are specified by the interleave amount.
The operation of the right rotate is as follows:
Let HS be numbered similarly as LS above.
Given an interleave amount of Q, the width of
the field to be rotated is HSg-1 through LRO.
The number of bit positions the field is ro-
tated is Q. Instead of a variable amount vari-
able-Width right rotate, a conventional bitwise
rotation of the combined HS, CS, and LS
fields by Q could be used. However, the
scheme presented allows systems to be con-
structed with fewer than the maximum number
of processing nodes because it retains, in the
Absolute Address Reg 258, high-order (left-
most)} Os that appeared the Remapped Ad-
dress in RAR 254. Conventional rotation
would not do this, and therefore the fact that
all possible values of LS must be allowed
forces addressing of all possible nodes.

in the absolute address, the final HS' field
designates the processing node whose sto-
rage module contains the data to be accessed
(Node #); the combined CS and LS’ fields indi-
cate the offset in that storage module where
the data word is to be found (Storage Offset);
and the WO field indicates which byte or sub-
word is desired.

Note that when the interleave amount is O,
the variable amount Variable-Width right rotate
leaves HS' equal to HS, and LS’ equal to LS.
This leaves the Absolute Address the same
as the Remapped Address, thus providing di-
rect sequential addressing. This provides the
sequential addressing described above. Appro-
priate values in the Storage Mapping Tables
allow this to be storage local to the node
generating the addresses, or storage entirely
contained in other nodes (the latter useful for
message passing and other operations).

Note also that the use of less than the max-
imum possible interleaving effectively restricts
the processors across which global memory is
allocated. This can be used in several ways,
e.g.: (a) to allow the system to continue to
operate, although in a degraded mode, if
some of the storage modules are inoperative
due to their failure, the failure of the network,
etc.; (b) to effectively partition the system,
allowing parts to have their own global and
local memory allocation independent of other
parts, thus reducing interference between
those parts -- either to run several indepen-
dent problems, or a well-partitioned single
problem.

The invention as described above can func-
tion with or without a private cache memory
26. The cache can be positioned as indicated
in Figure 2 or between the processor and NI.
The function of cache memory is to reduce
memory access time for those memory ac-
cesses which occur repeatedly in time or at
contiguous memory addresses. For cache co-

70

75

80

85

920

95

100

105

110

1156

120

125

130

herence to be maintained in a multiprocessor
configuration, it is necessary for such a cache
to have an additional capability which would
not ordinarily be implemented on a uniproces-
sor cache. If for example one processor can
read one memory location at approximately
the same time that another processor is writ-
ing in the same location, it is required that
neither processor satisfy such memory refer-
ences in its own cache. This additional capa-
bility can be provided by a variety of different
means, such as cross-interrogation between
different cache memories, or by specifying
certain memory locations to be non-cachable.
Any such caching scheme (or none at all) can
be applied in conjunction with this invention.

The invention includes a Network-Storage in-
terface (NSI) 28 whose operation is illustrated
in Figure 8. The routing functions of this unit
(as described below) are necessary for the
proper functioning of this invention. Any hard-
ware configuration which provides these same
message-routing functions can be employed in
this invention, and its implementation should
be straightforward for anyone skilled in the
art. Such a unit is associated with each pro-
cessor node, as illustrated in Figure 2. The
function of this unit is to route messages be-
tween the associated processor, the associ-
ated memory-controller, and other processor-
nodes on the network. The types of mes-
sages sent include, but are not limited to

Load requests issued by the local processor.

Store requests issued by the local proces-
sor.

Cache-line load requests issued by the local
cache, resulting from cache-misses on storage
requests by the local processor.

Cache-line store requests issued by the local
cache, resulting from cache-misses on storage
requests by the local processor.

Responses to storage load or store requests
by the local processor and/or cache.

Load or store requests issued by other pro-
cessors or caches, referencing memory loca-
tions contained in the memory of the local
processor node.

Responses to storage requests issued by
other processors or caches, being returned
from the memory of the local processor node.

Messages from the local processor to re-
mote processors, or from remote processor
nodes to the local processor.

Synchronisation requests (such as test-and-
set, etc.) issued by the local processor, to be
performed at the local memory or at remote
memory locations.

Responses to synchronisation requests.

All such messages must contain information
sufficient to identify the type of the message.

In addition, all such messages arriving at the
NSI 28 must contain information sufficient to
determine whether the message is to be
routed to the local processor/cache 26, the
local store 30, or to the interconnection net-

GB2 165975A

6

10

16

20

25

30

35

40

45

50

55

60

65

work 10. In the case of storage requests, by
a processor or cache, such information is con-
tained in the “Node #'* field of the memory
address. If the value of the “Node #' field
coincides with the number of the local node,
such requests are routed to the local memory
30; otherwise they are routed to the intercon-
nection network 10. The memory-mapping
scheme described above ensures that the re-
quired interleaving is thereby performed. Simi-
larly, responses to storage requests are routed
either to the local processor 22 or to the
interconnection network 10, so as to return to
the processor node which originated the mes-
sage. Other messages also must contain
“Node #"’ fields and message-type identifying
codes, which uniquely identify such messages
in order to be properly routed by NSI 28. The
NSI is capable of routing messages from any
of the three sources to any of the other two
outputs, based on information contained in
fields within the messages. In particular, the
devices shown in the figure can operate to
perform such routing as follows:

The PE router (PE RTE) 282 receives mes-
sages from the PE 22. If the “"Node #'’ indi-
cates the current node, the PE RTE 282 sends
the message to the local store 30 via the
local memory concentrator (LM CON) 284;
otherwise, it sends it to the network via the
network concentrator (NET CON) 286.

The local memory router (LM RTE) 288 re-
ceives response messages from the local
store 30. If the "Node #’’ indicates the cur-
rent node, the LM RTE 288 sends the mes-
sage to the local PE 22 via the PE concentra-
tor (PE CON) 290; otherwise, it sends it to
the network via the network concentrator
(NET CON) 286.

The network router (NET RTE) 292 receives
messages from the network, and on the basis
of the type of each message determines
whether it is (a) a request from another pro-
cessor for access to the local memory mo-
dule; or {b) a reply from another node contain-
ing information requested by the current node
from another node’s local memory. In case
(a), the message is sent to the local memory
via the LM CON 284; otherwise, it is sent to
the local PE 22 via the PE CON 290.

The network concentrator 286 receives
messages (either requests or replies) from
either the PE 22, via the PE RTE 282; or the
LM 30, via the LM RTE 288. It passes both
to the network 10 for routing to another node
based on the message’'s "Node #".

The PE concentrator 290 receives reply
messages from either the local store 30, via
the LM RTE 288; or the network 10, via NET
RTE 292. it passes them to the PE 22 (an-
d/or cache 26).

The local memory concentrator 284 receives
request messages from either the local PE 22,
via the PE RTE 282; or network 10, via NET
RTE 292. It passes them to local store 30.

70

75

80

856

90

95

100

105

110

115

120

125

130

In addition to paths for data communication,
the routers and concentrators indicated above
must communicate control information indicat-
ing when data is valid {from the router to the
mul and when it can be accepted (from the
concentrator to the router).

A two-ported memory could be used in-
stead of the LM RTE 288 and LM CON 284
devices.

Thus, while the invention has been de-
scribed with reference to preferred embodi-
ments thereof, it will be understood by those
skilled in the art that various changes in form
and details may be made without departing
from the scope of the invention.

CLAIMS

1. Apparatus for dynamically partitioning a
storage system into a global storage, effici-
ently accessible by a plurality of processors,
and local storage, efficiently accessible by in-
dividual processors, comprising: means (24)
for interleaving storage references by a pro-
cessor; means (Fig. 7: 270, 272) under the
control of each processor for controlling said
means (24:) for interleaving storage refer-
ences; and means for (Fig. 7: 256) dynami-
cally directing storage references to first or
second portions of storage.

2. Apparatus according to claim 1, wherein
said first portion of storage (Fig. 6—serial
pages) is assigned to a referencing processor
and said second portion of storage (Fig.
6—interleaved pages) is assigned to another
of said plurality of processors.

3. Apparatus according to claim 1, further
comprising: first means (Fig. 7, 270, 272,
252) for allocating storage on page boun-
daries.

4. Apparatus according to claim 3, further
comprising: second means (Fig. 7, 256) for
dynamically allocating storage (Fig. 7, 270,
272, 256 and page 11 lines 15-24) on vari-
able segment boundaries.

5. Apparatus according to claim 4, further
comprising: means for controlling storage in-
terleaving by said first and second means for
allocating storage.

6. Apparatus according to claim 1, further
comprising: means for interleaving storage by
a factor equal to any power of 2 between O
and a number of processing nodes of the sys-
tem.

7. Apparatus according to claim 6, further
comprising: means for limiting a number of
storage modules over which interleaving is
performed to a number less than a predeter-
mined maximum by a variable amount right
rotate of a variable-width bit-field means.

8. Apparatus according to claim 1, further
comprising: means to re-map an interleaving
sweep across storage modules to provide dif-
ferent sequences of storage module access
for different successive interleaving sweeps.

9. Method for dynamically partitioning a sto-

GB2165975A

7

10

15

20

25

30

35

40

45

50

55

60

65

rage system into a global storage, efficiently
accessible by a plurality of processors, and
local storage, efficiently accessible by indivi-
dual processors, comprising the steps of: in-
terleaving storage references by a processor;
controlling a means for interleaving storage
references under the control of each proces-
sor; and dynamically directing storage refer-
ences to first or second portions of storage.

10. A method according to claim 9, further
comprising the steps of: assigning said first
portion of storage to a referencing processor;
and assigning said second portion of storage
to another of said plurality of processors.

11. A method according to claim 9, further
comprising the step of: allocating storage on
page boundaries.

12. A method according to claim 9, further
comprising the step of: dynamically allocating
storage on variable segment boundaries.

13. A method according to claim 9, further
comprising the step of: controlling storage in-
terleaving by first and second means for allo-
cating storage.

14. A method according to claim 9, further
comprising the step of: interleaving storage by
a factor equal to any power of 2 between O
and the number of processing nodes of the
system.

156. A method according to claim 14, further
comprising the step of: limiting a number of
storage modules over which interleaving is
performed to a number less than a predeter-
mined maximum by a variable amount right
rotate of a variable-width bit-field means.

16. A method according to claim 9, further
comprising the step of: remapping an inter-
leaving sweep across storage modules to pro-
vide different sequences of storage module
access for different successive interleaving
sweeps.

17. Data processing apparatus comprising a
multiplicity of processors and an associated
data storage system divided into global sto-
rage accessible by a plurality of the proces-
sors and local storage formed by a multiplicity
of local stores respectively associated with
the multiplicity of processors; and means, re-
sponsive to a storage reference request from
a processor, for accessing the storage loca-
tion in the storage system corresponding to
the reference, said apparatus being character-
ised by storage-control-means, responsive to
inputs from the processors and effective in
operation to cause the processors collectively
to determine the relative magnitudes or sizes
o the global and local storages and to cause
each individual processor to determine, at
least when a storage reference request to en-
ter a quantity in storage is reached in opera-
tion of the processor, whether the quantity is
entered in global or local storage.

18. Data processing apparatus as claimed in
claim 17, in which the storage-control-means
comprise storage mapping tables linking the

70

75

80

storage reference from a processor to the ad-
dress to be accessed in the storage system,
said apparatus being further characterised in
that at least some of the storage-system-ad-
dresses stored in the tables are each accom-
panied by data entered by the processors’ in-
puts and indicating that the storage location
corresponding to that address is in global sto-
rage and comprises two or more separate lo-
cations.

19. Data processing apparatus as claimed in
claim 18, in which the storage system is div-
ided into n areas, further characterised in that
the separate locations are in different storage
areas, the storage-system-address within each
area being the same and the separate loca-
tions being identified by the area identification.

Printed in the United Kingdom for

Her Majesty’s Stationery Office, Dd 8818935, 1986, 4235.
Published at The Patent Office, 25 Southampton Buildings,
London, WC2A 1AY, from which copies may be obtained.

