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PRIORITY
This application claims priority to U.S. Provisional Patent Application No.

60/870,678 filed December 19, 2006.

BACKGROUND

The present invention generally relates to branch prediction in microprocessors,
and relates in particular to systems and methods for predicting branch misprediction in
MmiCroprocessors.

For modern processors, high performance generally requires high branch
prediction accuracy. Microprocessors typically involve the use of complex processing
paths that permit consecutive instructions to be processed at the same time. Branch
prediction generally involves determining an expected flow of instructions when a
microprocessor encounters a branch instruction. When the expected flow of instructions
turns out to be incorrect (called branch misprediction), then the processing time is at best
not improved (over serial processing), and at worst significantly negatively affected by
the branch misprediction.

Since processors need to have branch predictors with high branch prediction
accuracy to achieve good performance, computer architects have proposed branch
predictors that are increasingly more complex and/or larger. Unfortunately, the cost of
these more aggressive branch predictors are higher prediction latencies and misprediction
penalties, which offset the higher prediction accuracy, in addition to larger chip area and

increased power consumption.
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Typically, increased branch prediction accuracy comes at the cost of increased
complexity (e.g., more complex algorithms), chip area (e.g., larger tables), and power
co.nsumption. Unfortunately, due to longer training times, higher prediction latencies,
and a higher misprediction penalty, a more complex and/or larger branch predictor may
actually result in a net performance loss despite a higher prediction accuracy.
Furthermore, due to increased access latencies, these branch predictors cannot be easily
scaled to further improve the branch prediction accuracy.

It has been shown, for example in “Reconsidering Complex Branch Predictors,”
International Symposium on High- Performance Computer Architecture, by D. Jiménez
(2003), that using large and complex branch predictors is ultimately self-defeating if the
processor does not hide the branch prediction latency. In other words, assuming a more
complex/larger branch predictor has a higher branch prediction latency, if the branch
prediction latency is on the critical path of the processor, then the performance of the
processor may actually decrease, even if the branch prediction accuracy is higher. To
address this problem, a 2-level pattern history table (PHT) similar in concept to a 2-level
inclusive cache hierarchy has been proposed. In this approach, the branch predictor
prefetches entries from the larger, second-level PHT to first-level PHT based on the latest
global history. It is sometimes desirable, therefore, to try to predict branch misprediction.

Confidence estimation for branch prediction is a conventional prediction approach
that involves assigning confidence values to branches. See “Assigning Confidence to
Conditional Branch Predictions,” International Symposium on Microarchitecture, by E.
Jacobsen, E. Rotenberg, and J. Smith (1996), which proposed adding confidence methods

to branch predictors as a means of allocating and optimizing the processor’s resources.
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The confidence that is assigned to a branch is based on the recent prediction history for
that specific branch and the recent global history. The recent prediction history is fed
into a reduction function that assigns a confidence value based on the number of correct
branch predictions.

Accuracy, sensitivity, and specificity of four different confidence estimators were
evaluated, for example, in “Confidence Estimation for Speculation Control,”
International Symposium on Computer Architecture, by D. Grunwald, A. Klauser, S.
Manne, and A. Pleszkun (1998). Their results showed that the performance of the
confidence estimator depends on the branch predictor and confidence estimator having a
similar indexing scheme. While they found that the approach of E. Jacobsen, E.
Rotenberg, and J. Smith above had better performance than the other three, the other
three require very little hardware. In “Branch Prediction using Selective Branch
Inversion,” International Conference on Parallel Architectures and Compilation
Techniques, S. Manne, A. Klauser, D. Grunwald, (1999), the use of up/down counters as
confidence estimators was proposed, in which the prediction for low-confidence branch
predictions is inverted. This approach is similar to the approach of E. Jacobsen, E.
Rotenberg, and J. Smith above with the key difference that incorrect branch predictions
decrement, rather than reset, the counter.

Finally, in “Dynamic Branch Prediction with Perceptrons,” International
Symposium on High Performance Computer Architecture, by D. Jiménez and C. Lin,
(2001), combining several confidence estimators together was proposed to produce a
group confidence estimate. More specifically, they sum the confidence estimates of three

different confidence estimators together to form a group confidence estimate which is
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then compared against a confidence threshold. If the group estimate exceeds the
threshold, then the prediction is marked as confident. One key difference with the
composite confidence estimator and previously proposed estimators is that the composite
estimator is accurate even when the misprediction rate is low. It has been found,
however, that using confidence estimators to change the branch prediction, after it has
already been made, will increase the prediction latency of current branch predictors and
potentially increase the number of frontend pipeline stages and, subsequently, the
misprediction penalty, which could significantly decrease the performance gain due to
higher branch prediction accuracies.

There remains a need, therefore, for an improved system for branch misprediction

prediction.

SUMMARY

In accordance with an embodiment, the invention provides a system for providing
branch misprediction prediction in a microprocessor. The system includes a mispredicted
branch table that includes address, distance, and true / not true fields, and an index to the
mispredicted branch table that is formed responsive to 1) a current mispredicted branch,
2) a global history, 3) a global misprediction history, and 4) a branch misprediction
distance.

In accordance with another embodiment, the system includes a mispredicted
branch table that includes address and distance data regarding mispredictions, a distance
estimator register and a history register that are coupled to the mispredicted branch table

for providing the address and distance data to the table regarding a future branch that is
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expected to be mispredicted and misprediction time that the future branch is expected to
be mispredicted, and an index to the mispredicted branch table that is employed to predict
branch mispredictions.

In accordance with a further embodiment, the invention provides a method of
predicting branch mispredictions in a microprocessor. The method includes the steps of
providing misprediction address and distance data to a mispredicted branch table
responsive to a history register and a distance estimator, and accessing the mispredicted
branch table outside of the function path of a branch predictor to predict branch

misprediction.

BRIEF DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

The following description may be further understood with reference to the
accompanying drawings in which:

Figure 1 shows an illustrative view of a system in accordance with an
embodiment of the invention;

Figure 2 shows a baseline branch prediction rate for a system in accordance with
an embodiment of the invention;

Figures 3A and 3B show integer benchmarks and floating point benchmarks
respectively for reduction in branch misprediction rate due to adding a system in
accordance with an embodiment of the invention to an 8KB branch predictor;

Figure 4 shows prediction accuracy for a system in accordance with an

embodiment of the invention for an 8KB branch predictor;
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Figure 5 shows differences in the percentage reduction of the branch
misprediction rate;

Figure 6 shows the breakdown of branches that were successfully predicted due to
using a loop predictor or a system in accordance with an embodiment of the invention as
a percentage of the total number of mispredictions;

Figure 7 shows percentage reduction in mispredictions with a 0.5kB prediction
system in accordance with an embodiment of the invention for varying sizes of gshare
branch predictions for conflict mispredictions in branch predictions and non-conflict
mispredictions in branch predictions; and

Figure 8 shows a programming code example in which a prediction system in
accordance with an embodiment of the invention works well.

The drawings are shown for illustrative purposes only.

DETAILED DESCRIPTION

Although high branch prediction accuracy is necessary for high processor
performance, achieving such accuracy typically requires using a branch predictor that is
either too complex and/or large, which, due to higher latencies and misprediction penalty,
could actually reduce the performance. Since the approaches for these mechanisms are
ultimately self-defeating, the present application proposes an entirely new class of branch
predictor — complementary branch predictors — which can be easily added to any branch
predictor to improve the overall accuracy. This mechanism differs from conventional
branch predictors in that it focuses only on the subset of branches that degrade the

processor’s performance, mispredicted branches. This mechanism predicts which future
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branch will be mispredicted next and when that will occur, and then changes the
prediction at the predicted time. Results of analyses of systems of the invention show that
a branch predictor with a branch misprediction predictor achieves the same prediction
accuracy as a conventional branch predictor that is 4 to 16 times larger, but without
lengthening the critical path or increasing the overall complexity.

Although certain prior art approaches appear to be parallel solutions (when they
are used to change the branch prediction) compared to the approach presented herein,
there are several important differences as compared, for example to the use of confidence
estimators. First, the reason for changing the branch prediction differs. Systems of the
invention change the branch prediction based on the global branch and misprediction
history and the misprediction distance, while confidence estimators change the branch
prediction based on the prediction confidence.

Second, the focus of confidence estimators for branch prediction inversion is on
the current branch while the approach presented herein focuses on future branches. By
focusing on future branches, the mechanism of the invention may be removed from the
processor’s critical path, which, in contrast, then increase the prediction latency. The
components of both overriding and prophet/critic hybrid predictors, as disclosed for
example in “Prophet/critic hybrid branch prediction”, International Symposium on
Computer Architecture, by A. Falcon, J. Stark, A. Ramirez, K. Lai, and M. Valero
(2004), make predictions for the same branch instruction. The difference between them is
overriding predictors use the same history information to make predictions concurrently,
whereas, for a prophet/critic predictor, critic predictor makes a prediction for the same

branch as the prophet predictor, but at a later time and with a different history (the
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previous history and the history after the prophet predicted branch). Prophet/critic
predictor has the advantage to reduce aliasing by potentially using some misprediction
information. The branch misprediction prediction (BMP) technique of the present
invention, on the other hand, does not make prediction for a specific current branch

instruction. It predicts a distance. It also uses different information than any other

- predictor when predicting this distance. When, in future, this distance is reached, the

branch predictor’s decision is inverted. It is a distinguishing difference that BMP
operation is off the critical path, while overriding and prophet/critic hybrid operation is
not.

In accordance with various embodiments of the invention, the invention provides
a system that: 1) Directly focuses on the branches that are responsible for the
performance loss, i.e., mispredicted branches, 2) Makes predictions for future branches,
thus moving this mechanism completely off the critical path, and 3) Reduces hardware
budget necessary to achieve a specific branch prediction accuracy.

The invention, therefore, provides a new class of branch predictors —
complementary branch predictors — that significantly improves the branch prediction
accuracy. Systems of the invention are both more scalable and flexible, yet do not
adversely affect the prediction latency, and does not occupy the branch predictor’s
critical path. Systems of the invention focuse on improving the branch prediction
accuracy of the subset of branches that degrade the processor’s performance, i.e.,
mispredicted branches, rather than targeting all branches. Results indicate that patterns of
branch mispredictions exist for all branch predictors, but that these branches cannot be

easily identified and exploited when the branch prediction mechanism considers all
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branches. Based on this insight, complementary branch predictors are designed herein to
focus on this subset of branches and to detect patterns in the branch mispredictions of the
conventional branch predictor and to correct those mispredictions at the appropriate time.
This mechanism uses the branch misprediction history to predict which future branch will
mispredict next and when that will occur. Then, before the misprediction actually occurs,
the branch misprediction predictor —a complementary branch predictor — changes the
prediction to avoid a misprediction (and the subsequent recovery) so the processor can
continue executing down the correct-path. Since it only focuses on the mispredicted
branches, it can improve the branch prediction accuracy of any branch predictor, static or
dynamic, simple or complex.

In contrast with the state of- the-art, the BMP is not on the processor’s critical
path because it: 1) Is accessed only after a branch misprediction and 2) Makes predictions
only for future branches. Consequently, a BMP using complementary branch predictors
in general, can be easily added to the pipeline of any processor without changing the
existing branch predictor and since it does not affect the prediction latency, it can be
easily scaled.

Systems of certain embodiments of the invention, therefore, provide several
advantages. First, they provide a new class of branch predictor (the complementary
branch predictor) that improves the processor’s branch prediction accuracy by tracking,
detecting, and correcting patterns in the branch mispredictions.

Second, they provide complementary branch predictors that have the advantages

of scalability, smaller chip area, lower power consumption, and lower prediction latency
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(i.e., lower misprediction penalties). They can also be added to any branch predictor or
pipeline with minimal changes.

Third, the provide complementary branch predictors, as demonstrated by the
BMP, that may significantly improve the branch prediction accuracy of all branch
predictors, from simple gshare branch predictors to complex piecewise-linear branch
predictors, for the SPEC CPU 2000 benchmarks.

Fourth, the complementary branch predictors may improve the processor’s
performance since they significantly improve the branch prediction accuracy without
increasing the prediction latency and/or misprediction penalty.

The simulation methodology employed involved implementing the BMP in sim-
bpred from the SimpleScalar Tool Set, version 3.0d D, University of Wisconsin-Madison
Computer Sciences Department Technical Report, #1342, by D. Burger and T. Austin
(1997). To evaluate the impact the efficacy of the BMP over a wide range of branch
predictors, we evaluated the following predictors: gshare (see “Combining Branch
Predictors,” Digital Western Research Laboratory Technical Report TN-36M, S.
McPFarling, (1993.)), PAp (see “Two-Level Adaptive Branch Prediction,” International
Symposium on Microarchitecture, by T. Yeh and Y. Patt, (1991)), Alpha (see “The Alpha
21264 Microprocessor,” IEEE Micro, Vol. 19, No. 2, by R. Kessler, March-April 1999,
pp. 24-36.), and piecewise-linear (see “Piecewise Linear Branch Prediction,”
International Symposium on Computer Architecture, by D. Jiménez (2005)) (PWL)
branch predictors. These predictors were chosen because, collectively, they had a wide
range of accuracy, complexity, and algorithms. It is expected that the BMP may be easily

added to any branch predictor. The size of these predictors was varied to use a hardware
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budget of 1KB to 64KB. The size of the BMP ranged from less than 0.11KB (64 entries)
to less than 4KB (2048 entries).

In the below analysis, benchmarks from the SPEC 2000 benchmark suite were
used, and precompiled binaries (from http://www.simplescalar.com/benchmarks.html)
were downloaded. Results are presented below for all 26 SPEC 2000 benchmarks when
using the reference input set, but, for the benchmarks with more than one input set, to
reduce the simulation time, one input set was randomly selected. The input set is listed in
parenthesis for the following list of benchmarks that had more than one input set: gzip
(graphic), vpr (route), gcc (166), art (110), eon (cook), vortex (refl), and bzip2 (graphic).

To reduce the simulation time of the SPEC 2000 benchmarks, multiple 100M
i_nstruction simulation points were used (using “Automatically Characterizing Large
Scale Program Behavior,” International Conference on Architectural Support for
Programming Languages and Operating Systems, by T. Sherwood, E. Perelman, G.
Hamerly, and B. Calder, (2002)) that were generated using SimPoint 1.1 with a max_ K of
10 and with 7 random seeds.

In accordance with an embodiment, the BMP system of the invention uses a
simple mechanism to detect branch misprediction patterns. Namely, it counts the distance
(in terms of committed branches) between consecutive branch mispredictions for that
particular context (i.e., index). Although more complex methods of misprediction pattern
detection are possible, we found that this approach worked well enough. In further
embodiments of the invention, more complex misprediction pattern detectors may be
employed. The distance represents a prediction as to when the next branch misprediction

will occur.

12
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A primary component of the BMP is the mispredicted branch table (MPBT) 10 as
shown in Figure 1. The width of each MPBT entry (e.g., 12) is 14 bits wide; 4 bits for the |
address (as shown at 14), 8 bits for the distance (as shown at 16), 1 used bit (as shown at
18), and 1 T/NT bit (as shown at 20). The index is formed to the MPBT 10 by XOR-ing
(22) the PC of current mispredicted branch (24) with a concatenation of the global history
bits (26) and global misprediction history bits (28), and with the branch misprediction
distance (30), which is the number of branches between the last two mispredictions. Note
that other indexing methods may be employed in further embodiments of the invention.

After a branch misprediction, the BMP uses the index to access the MPBT and the
corresponding entry is copied into two registers: 1) The 8-bit misprediction distance
(MPD) register (32) and a 2) 5-bit register (34) that holds the 4-bit next-to- be-
mispredicted PC (NMPC) and a 1-bit T/NT field. Subsequent branches are either
correctly predicted (and committed) or are mispredicted. In the former case, the MPD
decrements while in the latter case, the BMP copies new values into the MPD and
NMPC-T/NT registers. By contrast, the NMPC register updates only after a branch
misprediction. When the MPD decrements to zero, the BMP predicts that the next branch
instruction will be mispredicted and corrects the predicted direction only if the: 1) bits 3
to 6 of the program counter (PC) match the NMPC field and 2) Branch predictor’s
predicted direction is the same as the T/NT field of the NMPC-T/NT register. If a branch
misprediction occurs before the MPD register decrements to zero (36), i.e., the BMP
overestimated the distance, the BMP’s prediction of a branch misprediction is not used
(38), which subsequently does not result in any extra branch mispredictions. It is

important to note that output of the BMP is a prediction of the distance and address of the
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next-to-be mispredicted branch. This output is fundamentally different than the predicted
direction that is the output of conventional branch predictors (i.e., direction). Finally,
since the results indicate that incorrect MPBT distance prediction cause very, very few
extra branch mispredictions, saturating confidence counters are not employed.

To track the number of correct branches between mispredictions, the BMP uses
an 8-bit branch counter (BC). The BC increments each time a branch commits. Note that
the difference between the MPD and BC register is that the MPD measures the distance
between mispredicted branches while the BC register holds the predicted distance until
the next misprediction.

After a branch misprediction, the BMP updates the 1) 8-bit MPD field with the
value of the BC register, 2) 4-bit NMPC field with bits 3 to 6 of the misprediction
branch’s PC, and 3) 1-bit T/NT field with the predicted direction (which was wrong) for
the corresponding MPBT entry.

A BMP prediction is correct when the NMPC and T/NT fields match the PC and
predicted direction, respectively, after the MPD register decrements to zero. Correct
predictions set the used bit for that entry. However, it takes two incorrect predictions to
evict an MPBT entry; the first incorrect prediction clears the used bit, but does not clear
the MPD, NMPC, or T/NT fields, while second misprediction evicts the MPBT (clears all
fields). This approach protects MPBT entries from eviction based on a single
misprediction and from potential aliasing.

The only information that the BMP needs from the pipeline is the predicted
direction, bits 3 to 6 of the PC, and when a branch instruction commits. The BMP only

interacts with the branch predictor for a branch that is predicted to be mispredicted or an
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actual misprediction, which is significantly less often than other mechanisms do, e.g., a
confidence estimator that interacts with the branch predictor on every predicted branch.

Since 1) the BMP is essentially dormant for most of the application (Other than
MPBT updates after branch mispredictions, the only activity within the BMP is the
decrementing of the MPD and the incrementing of the BC), 2) the BMP Relatively
narrow (only 14-bits wide in this implementation, and 3) Small BMPs (e.g., 16 entries)
can still significantly improve the branch prediction accuracy, the BMP is both extremely
energy and power efficient.

Figure 2 shows average branch misprediction rate for the integer and floating-
point suites across all branch predictors and hardware budgets. The solid and dotted lines
show the average misprediction rates for the integer and floating-point benchmarks,
respectively. In particular, the baseline branch misprediction rate for gshare (integer) is
shown at 50 and floating point is shown at 52, the baseline branch misprediction rate for
Pap (integer) is shown at 54 and floating point is shown at 56, the base line branch
misprediction rate for Alpha (integer) is shown at 58 and floating point is shown at 60,
and the base line branch misprediction rate for PWL (integer) is shown at 62 and floating
point is shown at 64.

The results in Figure 2 show that the average branch misprediction rate is less
than 10% for all branch predictors, hardware budgets, and suites. And, with the
exception, of twolf, the misprediction rate is under 10% for all benchmarks.

Figures 3A and 3B show the percentage reduction in the branch misprediction rate
due to adding a BMP to the base branch predictor for the integer (Figure 3A) and

floatingpoint suites (Figure 3B), respectively. The results in these Figures are for a
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branch predictor hardware budget of 8KB, but are representative of the results for the
other hardware budgets. Results are shown for 8KB in the following discussion for the
same reason. The right-most set of bars show the average reduction for each branch
predictor for each suite of benchmarks.

For each bar, the bottom-most segment shows the percentage reduction in the
misprediction rate due to adding a 64-entry BMP (e.g., 70 and 80). The three top-most
segments (e.g., 72, 74, 76 and 82, 84, 86) show the additional reduction in the
misprediction rate due to using 256-, 1024-, and 4096-entry BMPs respectively. For
example, in eon, adding a 64-entry BMP reduces the misprediction rate by 65.4%;
increasing the BMP to 256 entries further reduces the misprediction rate by 10.3%, for a
total of 75.7%.

For the integer benchmarks (Figure 3A), adding a 4096-entry BMP to the base
predictor reduces the average branch misprediction rate by 24.2% (Alpha) to 31.3%
(PAp). The reduction in the misprediction rate for the floatingpoint benchmarks ranges
from 60.2% (piecewise-linear) to 75.4% (PAp). From the results in these two figures, it
may be determined that adding a BMP may reduce the misprediction rate of all branch
predictors, small or large, simple or complex, for all benchmarks. This conclusion is
extremely significant because it shows that patterns of branch mispredictions exist for all
branch predictors, and can be easily detected and corrected, thus validating the efficacy
of complementary branch predictors.

Finally, the results in Figure 3A show that increasing number of BMP entries
further decreases the branch misprediction rate, albeit with diminishing returns. By

contrast, the results in Figure 3B show that, for most benchmarks, a 64-entry BMP is
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large enough to capture most of the reduction in the misprediction rate. Although larger
BMPs yield diminishing returns, as is the case for larger branch predictors, they are not
on the critical path of the processor and do not increase the misprediction penalty.

Figure 4 shows the prediction accuracy of the BMP. To compute the prediction
accuracy, the number of branch predictions that were successfully corrected were divided
by the sum of the numbers of successfully and unsuccessfully corrected branch
predictions. Note that successful/unsuccessful branches do not include the branches that
were correctly identified by the BMP, but where the estimated distance was too high (i.e.,
the BMP predicts that the branch will mispredict much further in the future).

Figure 4 shows at 90, 92, 94 and 96 prediction accuracies for 64, 256, 1024, and
4096 entry BMPs respectively. Figure 4 shows that for most BMP sizes and branch
predictors, the BMP prediction accuracy is over 90%. This means that the BMP is
extremely accurate in predicting both which future branch will mispredict next and when
it will be mispredicted.

There are also several significant differences between the BMP and a loop
predictor (LP). First, the BMP is not limited only to loops, but rather may target all types
of branches. Second, the loop predictor uses local history to make predictions while the
BMP uses different types of global history (e.g., global misprediction history) to make its
predictions. Third, the LP makes a prediction for every branch, while the BMP only
makes a prediction after a mispredicted branch. Therefore, the BMP is accessed less
frequently, which is important for power reasons, and is not on the processor’s critical
path. Finally, since the LP competes with other constituent predictors within the branch

predictor, even if it is chosen as the highest confidence prediction, its prediction may not
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be different than the predictions from the other constituent predictors, 7.e., may predict
correctly anyways. By contrast, the BMP only makes predictions for branches that are
frequently mispredicted, i.e., unlikely to be predicted correctly. However, to quantify the
performance difference between a LP and a BMP, a loop predictor that was implemented
described in “A 256 Kbits L-TAGE branch predictor,” Journal of Instruction-Level
Parallelism Second Championship Branch Prediction Competition, by A. Seznec (2006).

Figure 5 shows the difference in the percentage reduction of the branch
misprediction rates for four different loop predictor sizes (100 for 64 entry BMP, 102 for
256 entry BMP, 104 for 1024 entry BMP, and 106 for 4096 entry BMP. The number of
BMP entries was set to match the number of entries of the loop predictor for all loop
predictor sizes. The values on the y-axis were computed using the following formula:

Difference = % reduction in the branch misprediction rate due to
the BMP - % reduction in the branch misprediction rate due to the
loop predictor.

Positive results mean that the BMP reduces the branch misprediction rate more
than the Joop predictor, while the opposite is true for negative numbers. Note that the
average result in Figures 3A and 3B show the percentage reduction in the misprediction
rate due to the BMP. Figure 5 shows, therefore, the difference in the percentage
reduction of the branch misprediction rate, i.e., % misprediction reductionBMP - %
misprediction reduction loop predictor for an 8KB branch predictor.

Figure 6 shows breakdown of branches that were successfully predicted due to
using a loop predictor or a BMP as a percentage of the total number of mispredictions.
The sum shown at 110 relates to the use of the loop predictor only, the sum at 112 relates

to the use of the loop predictor and the BMP, and the sum at 114 relates to the use of the
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BMP only. The sum of the bottom two segments therefore, is the percentage of
mispredictions that were avoided due to using the LP, while the sum of the top two
segments shows the percentage of mispredictions that were successfully corrected by the
BMP. The loop predictor and BMP size was 4096 entries and the hardware budget of the
branch predictor was 8KB.

Since the y-axis values in Figure 5 for all branch predictors are significantly
greater than zero, the BMP reduces the branch misprediction rate more significantly than
the loop predictor does.

Figure 6 shows the breakdown of branches, as percentage of all branch
mispredictions (i.e., when the loop predictor and BMP are not used), that were
successfully predicted by the loop predictor, but not by the BMP (bottom-most segment —
“LP - Only” as shown at 110); the BMP, but not by the LP (top-most segment — “BMP
Only” as shown at 114); and by both the BMP and LP (middle segment — “BMP and LP
Both Correct” as shown at 112). Therefore, the height of the bottom two segments shows
the percentage of mispredictions that were avoided due to using the LP, while the height
of the top two segments shows the percentage of mispredictions that were successfully
corrected by the BMP. The size of both the loop predictor and BMP was 4096 entries.

For the integer benchmarks, the results in Figure 6 show that the loop predictor
corrects a very small number of mispredictions (less than 2.3% for all branch predictors)
that the BMP does not correctly predict. Overall, the bottom two segments show that the
loop predictor corrects fewer than 8.1% of the mispredictions. By contrast, the BMP
corrects at least 23% of all mispredictions, including 18% of all mispredictions that the

loop predictor does not correctly predict.
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The results for the floating-point benchmarks are similar, with exception that the
loop predictor corrects a much higher number of mispredictions. Nevertheless, the BMP
outperforms the loop predictor for all predictors.

Although results have shown that the BMP may significantly reduce the branch
misprediction rate, using different and/or larger branch predictors may yield the same
result. However, as described in the introduction, the downside of using more complex
and/or larger branch predictors is higher prediction latencies and misprediction penalties.
An alternative design approach is to partition the branch predictor’s bit budget between
the conventional branch predictor and a complementary branch predictor like the BMP.
Table 1 shows the hardware budget that a branch predictor without a BMP needs to have
to match or exceed the branch prediction accuracy of a 2KB branch predictor with a

1024-entry BMP (< 2KB hardware budget). The total BP+BMP hardware budget is less

than 4KB.
Suite gshare PAp Alpha PWL
Int 16KB >64KB 16KB 32KB
FP >64KB >64KB >64KB >64KB

The results in Table 1 show that for integer benchmarks, a branch predictor

without a BMP needs to have a hardware budget that is at least four times as large as the

branch predictor with the BMP mechanism. For the PAp branch predictor, the hardware

budget needs to be at least 16 times larger. For the floating-point benchmarks, the

hardware budget for the conventional branch predictor needs to be more than 64KB for

all four branch predictors. However, using such a larger branch predictor would most
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likely significantly increase the prediction latency, thus offsetting the performance gains
due to the higher branch prediction accuracy. By contrast, adding the BMP mechanism to
a smaller, faster branch predictor can achieve the same or higher prediction accuracies
without incurring higher prediction latencies.

Example

To investigate why and where a BMP helps to correct branch mispredictions, it
may first be determined whether the BMP corrects branch mispredictions that are the
result of conflicts in branch predictor table, i.e., aliasing. Conflicts occur when multiple
branch-history pairs share the same location in the branch predictor table. Figure 7 shows
at 120 the percentage of branch mispredictions corrected by BMP that are due to the
conflicts in the branch prediction table and shows at 122 the percentage of branch
mispredictions corrected that are due to non-conflicts in the branch prediction table, for
varying sizes of gshare branch predictor. Figure 7 shows the average behavior of 8
selected SPEC benchmarks (gcc, eon, perl, gap, vortex, mesa, fma3d, and apsi) where
BMP does very well. To filter out the impact of fixed loop counts, benchmarks where
both BMP and a loop predictor do well are not included.

Figure 7 shows at 120 that, for a constant 0.5KB size BMP, the percentage of
mispredictions corrected by BMP that are due to conflicts in the branch predictor table
decreases as the branch predictor size increases, from 60% when using 0.25KB BP to less
than 4% for 64KB and larger BPs. Since the percentage of the mispredictions due to
conflicts decreases dramatically for increasing branch predictor sizes (From 68% for
0.25KB gshare to 1.8% for 1MB gshare (not shown here)) and since the BMP can reduce

the overall branch misprediction rate by about 50% for different sizes of the gshare
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predictor, as shown in Figure 7, the BMP does not primarily correct branch
mispredictions that are due to conflict in the branch predictor tables only, but does correct
mispredictions due to other non-capacity-based reasons as well.

To understand the causes of branch mispredictions that are not due to conflicts,
profile data and the source code for the 8 SPEC 2000 benchmarks were analyzed. It was
observed that in these benchmarks, 30 to 60% of the mispredictions that are corrected by
BMP are due to loop branches that have varying loop counts, which are longer than what
a branch predictor can distinguish, or have early loop exits, such as a break in a for or a
while loop. Figure 8 presents at 130 a representative code segment. Variations of this
example code occur in all benchmarks, often with unstable loop counts or early loop
exits. This example shows a simple loop whose loop trip count alternates between 100
and 150. The exit branch for the for loop will be mispredicted as many times as the while
loop condition is true. For the example, 150 bits of history is needed to eliminate the
mispredictions at the loop bound. Simulations confirm that various branch predictors with
a 256KB hardware budget and an 8KB loop predictor mispredicted the loop exit branch
every time. By contrast, a 4-entry BMP can easily correct all of these mispredictions by
predicting the next misprediction distance, which is either 101 or 151.

Another example where the BMP works is an early exit branch inside a for loop,
which further complicates the branch history. This type of behavior is also often seen in
the benchmarks that we studied. The early exit branch inside the for loop will be
mispredicted often when it is taken. BMP can also correct this type of mispredictions,

while other branch predictors that we tested can not.
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In summary, the code in Figure 8 shows that a BMP is an alternative approach to
exploit long branch histories. While some advanced branch predictors have been
proposed, such as neural predictors or O-GEHL predictor, they are much more complex
and larger than a simple BMP. BMP complements branch predictors to exploit very long
histories without significant hardware complexity and delay. The ability to provide
longer history and to help alleviate branch predictor table conflicts is therefore a helpful
way in which a BMP may correct mispredictions.

Those skilled in the art will appreciate that numerous modifications and variations
may be made to the above disclosed embodiments without departing from the spirit and
scope of the invention.

‘What is claimed is:
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1. A system for providing branch misprediction prediction in a microprocessor, said
system comprising:

a mispredicted branch table that includes address, distance, and true / not true
fields; and

an index to the mispredicted branch table that is formed responsive to 1) a current
mispredicted branch, 2) a global history, 3) a global misprediction history, and 4) a

branch misprediction distance.

2. The system as claimed in claim 1, wherein said system further includes
misprediction distance register that is in communication with the mispredicted branch

table.

3. The system as claimed in claim 1, wherein said system further includes a

concatenated register of global history bits and global misprediction history bits.

4. The system as claimed in claim 1, wherein said system further includes a branch

counter that is employed to track a number of correct branches between mispredictions.

5. The system as claimed in claim 1, wherein said system operates outside of a

functional path of the branch predictor.

6. The system as claimed in claim 1, wherein said system predicts which future

branch will be mispredicted next and predicts a misprediction time when that will occur.

7. The system as claimed in claim 6, wherein said system further changes the

prediction of the future branch that will be mispredicted next at the prediction time.
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8. The system as claimed in claim 1, wherein said system counts a distance in

committed branches between consecutive branch mispredictions.

9. The system as claimed in claim 8, wherein said distance represents a time

prediction of when a next branch misprediction will occur.

10.  The system as claimed in claim 1, wherein said mispredicted branch table further
includes a used data field that is indicative of whether an associated prediction was

incorrect.

11. A system for providing branch misprediction prediction in a microprocessor, said
system comprising:

a mispredicted branch table that includes address and distance data regarding
mispredictions;

a distance estimator register and a history register that are coupled to the
mispredicted branch table for providing the address and distance data to the table
regarding a future branch that is expected to be mispredicted and misprediction time that
the future branch is expected to be mispredicted; and

an index to the mispredicted branch table that is employed to predict branch

mispredictions.

12. The system as claimed in claim 11, wherein said history register includes a

concatenated register of global history bits and global misprediction history bits.

13.  The system as claimed in claim 11, wherein said mispredicted branch table further

includes true/not true fields.
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14.  The system as claimed in claim 11, wherein said system counts a distance in

committed branches between consecutive branch mispredictions.

15.  The system as claimed in claim 11, wherein said system interacts with a branch
predictor only for branches that are predicted to be mispredicted or have actually been

mispredicted.

16.  The system as claimed in claim 11, wherein said system operates outside of a

function path of the branch predictor.

17. A method of predicting branch mispredictions in a microprocessor, said method
comprising the steps of?:

providing misprediction address and distance data to a mispredicted branch table
responsive to a history register and a distance estimator; and

accessing the mispredicted branch table outside of the function path of a branch

predictor to predict branch misprediction.

18.  The method as claimed in claim 17, wherein said method further includes the step
of counting a distance in committed branches between consecutive branch

mispredictions.

19.  The method as claimed in claim 17, wherein said misprediction branch table

further includes true/not true data.
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1 20. The method as claimed in claim 17, wherein said step of providing misprediction
2  adddess and distance data to the mispredicted branch table further includes at least one

3 exclusive OR operation.
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FIG. 7

while (true) § (//Z 0
N=150;
for (1=0; 1<N; 11++)
{/* Thas 13 a loop with
alternating loop counts */}
N=250-N;

e
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