
United States Patent (19)
Gupta et al.

METHOD FOR CALENOARING FUTURE
EVENTS IN REAL-TIME

Subhash Gupta; Sanjiv S. Sidhu, both
of Dallas; Frank Vlach, Plano, all of
Tex.

54

75) Inventors:

Texas Instruments Incorporate,
Dallas, Tex.

776,713
Oct. 15, 1991

73 Assignee:

21
22

Appl. No.:
Filed:

Related U.S. Application Data
Continuation of Ser. No. 614,956, Nov. 5, 1990, aban
doned, which is a continuation of Ser. No. 408, 163,
Sep. 15, 1989, abandoned, which is a division of Ser.
No. 273.643, Nov. 10, 1988, Pat. No. 4,888,692, which
is a continuation of Ser. No. 895,061, Aug. 11, 1986.
abandoned.

Int. Cl. .. G06F 15/20
J.S.C. .. 364/402

60

(51
52
58

364/402, 153, 401
56) References Cited

PUBLICATIONS

Campbell, K. L. "An alternative-Bucketless net
change MRP, Proc. 20th Int. Tech. Conf. APICS,
Cleveland, Ohio, 1977, 325–333.
Brown, R. "Calendar queues: a fast O(1) priority queue

||||||||||||
USOO5260868A

11) Patent Number: 5,260,868
45) Date of Patent: Nov. 9, 1993

implementation for the simulation event set problem",
Communications of the ACM, vol. 31, No. 10, Oct.
1988, 1220-8.

Primary Examiner-Roy N. Envall, Jr.
Assistant Examiner-X. Chung
Attorney, Agent, or Firm-Frank J. Kowalski; Leo N.
Heiting; Richard L. Donaldson

57 ABSTRACT

A mechanism and method for calendaring a plurality of
events such as scheduling the operation of interrelated
machines which perform a process flow. Future time is
divided into segments, called buckets, of increasing
length. The first two buckets are of the same size and
each of the following buckets twice as large as its pre
ceding bucket. The first bucket slides so as to always
cover a specified length of time following the current
time. Events scheduled in the calendar is added to the
appropriate bucket, depending on how far in the future
it is to take place. When the current time equals the
scheduled time for an event, then that event is removed
from the bucket where it resides. When a bucket has
become empty because all events have been removed
from it, the events in the following bucket are distrib
uted over the two buckets preceding it.

14 Claims, 7 Drawing Sheets

BUCKET

O 2 3 N
O

SLIDING2k 2k O. O. O.

k=10 | e 2k+2 e
A.O 23

4O BITS OBTS OBITS 42 BTS

SORTED UNSORTED

U.S. Patent Nov. 9, 1993 Sheet 1 of 7 5,260,868

PROCESS MACH NE

PROCESS-NAME MACH NE-NUMBER
PROCESS-NUMBER MACHINE-NAME
RESSESSES CESS MACH NE-TYPE

R WHICH-MACH NES EggESSES
REWORK-POINTER SET-UP-T ME
REWORK-PROCESS SCHEDULED - DOWN TIME-FREQUECY
PROCESS-TIME SCHEDULED-DOWNTEME-LENGTH
CONSTRANT-STARTER MTBF
CONSTRANT-MEMBER MTTR
USAGE MTBA
QUEUE MTTA

USAGE
Afg.2 AVAL BILITY

S DES
LOTS-DONE - ON - CURRENT-PROCESS
LOTS-DONE-ON-CURRENT-S DE
LAST-LOADED-AT
NEXT-AVALABLE-AT
NEXT-MAINTENANCE-T ME
DONG
SCHED UNG-TYPE
WANG-TIME
OPTIMIZING 7
CHECKED -UP-TO

A77.3

U.S. Patent Nov. 9, 1993 Sheet 2 of 7 5,260,868

FROM

SET UP
TO T MES

P2 1 O e 5

P3 5 O

(INTIME STEPS)

A77.4

SAFE-ME-CONSTRAINT

BEGINNING-PROCESS
END-PROCESS
PROCESSES
LENGTH
GREATEST-FROCESS-TIME
CONTROLLING-PROCESS
TIME-TO-CONTROLLING-PROCESS
NEXT-AVAILABLE-TMES
LOT-NUMBERS
OPTIMIZNG 2

U.S. Patent

DETERMIN E MACH NE
CAPACTY

DETERM NE
PROCESSES DONE

DETERMINE
AVAILABLTY

Nov. 9, 1993 Sheet 3 of 7

DETERMINE PARAMETERS
OF MANUFACTURNG

FACTY

CALCULATE MACH NE
AND PROCESS
PARAM ETERS

DENT FY CRITICAL
MACH NES

CREATE MACHINE
PROFES

CREATE PROCESS
PROF LES

Aig.6

CONSTRAINT YES CONSTRAINT
MEMBER 7 STARTER7

CAL CULATE
MACH NE
USAGE

A9.7

YES, NO

5,260,868

U.S. Patent Nov. 9, 1993 Sheet 5 of 7 5,260,868

s U

ES
O

U.S. Patent Nov. 9, 1993 Sheet 6 of 7 5,260,868

Avg. /3
FROM

M P2O P8O

P2O - 1O
TO

P4O 20 -

SET UP TMES

Avg. /4

5,260,868
1.

METHOD FOR CALENDARING FUTURE EVENTS
N REAL-TIME

This application is a continuation of application Ser.
No. 07/614,956, filed Nov. 15, 1990 now abandoned,
which is a continuation of application Ser. No.
07/408,163, filed Sep. 15, 1989, now abandoned which
is a division of application Ser. No. 273,643 filed Nov.
10, 1988, issued as U.S. Pat. No. 4,888,692, which is a
continuation of application Ser. No. 895,061 filed Aug.
l 1, 1986, now abandoned.
Attached as a Microfiche Appendix including 8 fiche

and 448 frames, and incorporated by reference hereto, is
a listing of LISP code which implements the scheduler
(Appendix A), a simulator (Appendix B) and user inter
faces (Appendix C).
BACKGROUND AND SUMMARY OF THE

INVENTION

The present invention relates to automated schedul
ing and planning systems.

Resource planning is used extensively by industry. It
is especially useful in the manufacturing sector, where
careful scheduling of a manufacturing facility is neces
sary in order for such plants to be efficient. The flow of
raw and partially finished goods, and scheduling of
work on the various available machines, is a significant
problem in large manufacturing facilities. A few exam
ples of manufacturing facilities which are especially
sensitive to scheduling problems include semiconductor
fabrication facilities (front-ends), job shops, and plants
making automobiles and heavy machinery.
The number of details and computations involved in

completely scheduling a large manufacturing facility
are enormous. No exact mathematical solution can, in
general, be generated for such a facility. This is primar
ily because the facility does not operate in an ideal man
ner. Unforeseeable events are very common, including
machine breakages, bad work which must be reworked
or thrown away, and delays in moving material within
the facility. These minute by minute events can have an
impact on the overall operation of the facility and the
precise nature of such impact cannot generally be deter
mined in advance.
Many different schemes are currently in use for

scheduling factory systems. These include the simplest
scheduling system, that of no preplanned scheduling at
all. In some factories, a work piece simply moves from
machine to machine under the experienced guidance of
the operator, and no particular pre-planning is made. In
slightly more sophisticated systems, various rules of
thumb are used by operators and process experts to
control the flow of material through the plant. Some of
these rules are very simple, such as FIFO (first-in-first
out). These rule of thumb decisions are made at a local
ized level. That is, the operator or expert will decide
which workpiece should next go onto a particular ma
chine based on the list of those workpieces currently
available for the machine.
A more sophisticated system includes coordinated

plant wide planning at some level. This is generally
done by globally defining the manufacturing process
and studying the interrelation between the various sub
processes therein. Such plant wide planning typically
includes the identification of trouble spots such as bot
tlenecks in the overall process flow. An example of a
state-of-the-art system would be OPT (Optimized Pro

10

15

20

25

30

35

45

50

55

65

2
duction Technology) which has been used for modeling
and planning of manufacturing facilities since approxi
mately 1979. The general theory of OPT is that plant
capacity is determined by one or a small number of
bottleneck processes. The overall strategy is then to
ensure that the bottleneck processes are kept constantly
busy by ensuring that queues are maintained in front of
them. Desired work in process inventory levels at key
points throughout the plant are determined at the global
planning stage, and these desired values are compared
to those which actually occur to determine the operat
ing conditions within the plant.

Current sophisticated scheduling procedures gener
ally begin with the creation of a global plan which
outlines the overall characteristics of the manufacturing
facility. Based on the current status of the facility, in
cluding such information as identification of work in
process and machines which are down for repair, a
general plan is made for some future time period. This
plan will include directives such as "begin work on
some number of identified items each hour for the next
eight hours.' Running a global plan periodically can be
referred to as batch processing.

Batch processing of the global plan does not allow
quick or easy response to changing conditions. If plant
conditions change, such as a major piece of machinery
going off-line for repair, the entire global plan must be
recalculated. Such global plans do have the advantage
that they take into account in the relationship between
various parts of the manufacturing process, but they are
relatively inflexible and can only be applied to broad
concepts. Decision making at the level of a particular
machine must still be done using rules of thumb.
Even in sophisticated systems, there is little interac

tion between the global plan and local decision making
processes. The global plan cannot comprehend the ef.
fect of breakage of a particular machine in advance.
Local decision making, that is, which work to load on
which machine and in which order, is generally done by
rules of thumb and cannot comprehend the effect of a
particular action on overall plant operation. Planning is
done only periodically at the global level, and often
incorrect or inaccurate rules of thumb constitute the
entire decision making process at a local level.

It would be desirable for a scheduling system to con
prehend a global planning strategy combined with intel
ligent local decision making which considers the effect
of local decisions elsewhere within the manufacturing
process. It would be further desirable that such system
be able to react to the numerous uncontrollable events
which occur during the manufacturing process.

Therefore, a scheduling system includes a global,
steady-state model of the entire manufacturing process.
This global calculation is done one time and recalcu
lated only when there is a major change in process flow
definition or machine availability. This global plan gen
erates parameters which are used to control local deci
sion making strategies. The local strategies are applied
to each machine in the manufacturing facility, and are
relatively simple. Based upon the parameters extracted
from the global definition, and information regarding
the current state of the neighborhood of the particular
machine, local decisions can be made on a real time
basis. Special decision making strategies may be used by
machines which are indentified as critical to the manu
facturing process flow.
The novel features which characterize the present

invention are defined by the appended claims. The fore

5,260,868
3

going and other objects and advantages of the present
invention will hereafter appear, and for purposed of
illustration, but not of limitation, a preferred embodi
ment is shown in the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a sample process flow, including a
rework loop;
FIG. 2 illustrates a Process data structure;
FIG. 3 illustrates a Machine data structure;
FIG. 4 is a setup time matrix for a machine having

sides;
FIG. 5 is a safe time constraint data structure;
FIG. 6 is a flowchart of a portion of the global plan

ning process;
FIG. 7 is a flowchart illustrating another portion of

the global planning process;
FIG. 8 is an illustration of a portion of a process flow

near a large capacity machine;
FIG. 9 illustrates a portion of a process flow for a 20

multiple process machine;
FIG. 10 illustrates a portion of a process flow for

multiple process machines operating on multiple ma
chine processes;
FIG. 11 is a timing diagram for the process flow of 25

FIG. 10;
FIG. 2 is a portion of a process flow illustrating a

bottleneck machine;
FIG. 13 illustrates a different bottleneck machine

situation;
FIG. 14 is a chart of setup times for the process flow

of FIG. 13;
FIG. 15 illustrates a process flow utilizing a negative

request signal; and
FIG. 16 illustrates a preferred calendar mechanism.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The following description of the preferred embodi
ment includes detailed examples as well as the general
approaches used in making a scheduling system. The
description is broken into 4 major areas: a general de
scription of a factory system, including definitions of
terms found elsewhere; the global (steady-state) plan
ning process: local planning and optimization; and a
preferred calendar mechanism for use by the scheduler.
It is understood that particular references and descrip
tions are not intended to limit the scope of the claims to
the details shown therein, but are for illustrative pur
poses.

DESCRIPTION OF THE FACTORY SYSTEM

The scheduling system is itself constrained by the
nature of the factory to be controlled. It must be able to
handle special situations which occur in the factory,
such as relationships between certain machines. Many
relationships which are found in factories and other
systems which can be controlled by a scheduler are
similar, and will be the same as those which will now be
described.
The preferred scheduling system will be described

with relation to a front-end manufacturing facility for
integrated circuits. This type of manufacturing facility
is sufficiently complex to illustrate many features of the
scheduling system. Other types of manufacturing facili
ties will have different specific machine types and other
considerations, but most will be clearly adaptable from
the described system.

10

15

30

35

40

45

50

55

65

4.
The scheduling system will be described with respect

to a front end which is highly automated, but automa
tion is not a necessary feature for its use. Commands
which are made to machines and controllers in the
automated system can just as easily be made to human
operators running the machines. As will be described
most of the control functions will be handled directly
by the scheduling system, but it is a straightforward task
to have some of these functions handled by the ma
chines themselves if they are capable of doing so.
The period of time which will be used herein is called

the time step. A time step is preferably 0.1 hours or 6
minutes. All times used by the scheduler are expressed
in time steps, and all absolute times, such as the pre
dicted time for an event, are expressed as a number of
time steps from some arbitrary beginning. Thus, clock
time is not used, but there is a simple correlation be
tween actual time and time indicated by the time step
Count.
The procedure by which a semiconductor slice is

transformed into integrated circuits can be conceptual
ized as a series of discrete process steps. These process
steps are independent of the machines actually located
on the factory floor. These process steps are the func
tional description of what actually happens to the slices
at each stage of manufacture. For example, a short
series of process steps night be: apply photoresist, pat
tern photoresist, develop photoresist, inspect, bake pho
toresist. These process steps are the atomic elements of
the scheduling plan: each is an indivisible action which
occurs at a single place and over a fixed, unbroken
period of time. A typical front end process will include
several hundred such process steps. In addition, multi
ple process flows may operate in one facility simulta
neously, such as when a front end has several product
lines. Each product line will have different process
steps for each stage of manufacturing. Even though
there may be much similarity between two different
process flows, for simplicity it is preferable that each
step of each process be uniquely identified. The fact that
a single machine may perform a similar step for each
process flow causes no confusion, as will be explained
below.
The process steps can be visualized as a long string of

events which operate to transform a bare silicon slice at
the first process step to finished integrated circuits at
the last process step. As far as a front-end is concerned,
the finished product is usually a semiconductor slice
having fully formed integrated circuits thereon. The
individual circuits are separated and packaged else
where.
The string of process steps is not always a single

string of events occuring in a fixed order. It is some
times necessary to rework some slices at various stages
of the process. For example, if for some reason a photo
resist patterning step did not occur properly, it is neces
sary to remove all of the resist, clean the slice, reapply
photoresist, and redo the patterning step. This is re
ferred to as a rework loop, and, on a schematic diagram
of the manufacturing process, appears as a small loop of
process steps off to one side of the main process flow.
Rework loops are not available for all types of process
ing; for example, a metal workpiece which has been
incorrectly drilled may not be salvagable.
FIG. 1 shows a very short process flow for an imagi

nary front end. Process steps are identified by P, so the
main flow has process steps P1-P7. A single rework
loop is shown containing process steps P8-P11.

5,260,868
5

A process step has several important properties. The
most important of these are collected in a process data
structure such as shown in FIG. 2. The process must be
uniquely identified, preferably by a PROCESS-NAME
and PROCESS-NUMBER. The preceding and follow
ing processes are identified in PRECEDING-PROC
ESS and NEXT-PROCESS. A list of machines that
perform this process is included. If this process is a
rework decision point, that is, a check or inspection
process that might cause slices to branch into a rework
loop as described above, a pointer to the start of the
rework loop is kept. This pointer is nil if the process
step is not a rework decision point. If this process is part
of a rework sequence, that rework sequence is identi
fied. The other data contained in the structure of FIG.
2 will be described later.
The basic unit of material will be referred to as the

lot. In a semiconductor front end. a lot is a group of
slices which are processed together. A lot typically
consists of 24 slices. Most machines used in the front
end operate on some number of lots, which in this case
is a multiple of 24. Machine capacity will be referred to
by lot size, so that a 4 lot machine can handle 96 slices
simultaneously in the present description. Of course,
lots may be of other sizes if desired. Also, in many man
ufacturing facilities, individual items (such as a metal
ingot) would be the basic unit of material. The lot is
considered to be a single atomic unit, in that operations
on partial lots are not allowed.
As stated above, process steps are independent from

the actual machines on the factory floor. Several ma
chines are often used for a single process step. These
machines may not be identical. Additionally, a single
machine could be used for more than one process step.
For example, a machine for applying photoresist can be
used for any process step that requires application of
resist. If a process flow requires 4 applications of resist,
and there is only one machine for the job, that machine
is actually used in four distinct process steps. A typical
application might have 8 identical photoresist applica
tion machines, ten normal process steps for applying
resist, and ten rework process steps for applying resist.
Each process may have access to each machine, so that
each process thinks that it has 8 machines to choose
from whenever a lot passes through that process. How
ever, there will be contention for the machines by the
various processes, so that, on the average, each process
has access to each machine for only its proportional
share of the time. For example, in the case of 8 ma
chines. 10 process steps, and 10 rework process steps, it
may be that a rework sequence needs to be done on the
average of 1 time in 10. Every normal process step will
have the same utilization because every lot must go
through every step, while the rework steps will, on the
average, have only one-tenth the utilization of the nor
mal steps.
Each machine also has an associated data structure,

such as shown in FIG. 3. This structure includes a
unique machine number and name for each machine,
and the machine's type and the processes in which it is
involved. The capacity of the machine is expressed in
number of lots.
The structure for each machine has a pointer labelled

SET-UP-TIME, which points to a series of tables, each
table corresponding to one machine. When a machine
changes over from one process to another, there may be
some machine setup which must be done. This setup
time will be added to the total job time when it is neces

5

10

15

20

25

30

35

40

45

50

55

65

6
sary. The setup time may be different for each pair of
processes moved from and to, so a setup time matrix
such as that shown in FIG. 4 is used by the scheduler.
This matrix is for a machine which does 3 different
processes, and shows the setup time to be added to the
job time whenever moving from any process to any
process. Setup times are shown in time steps as de
scribed above.

Each machine also has information showing its
scheduled downtime. This includes both the frequency
and expected length of such downtimes. Scheduled
downtimes are those required for preventive mainte
nance, plant shutdowns, and other predictable events.
Mean time between failure (MTBF) and mean time to
repair (MTTR) information is also included. This infor
mation helps provide statistical information on the ma
chine's availability. Related to MTBF and MTTR infor
mation is mean time between assists (MTBA) and mean
time to assist (MTTA). An assist is a very short and
simple fix that doesn't qualify as a repair and doesn't
require a major recalculation of other machine's opera
tion. An assist would typically be something that could
be repaired in less than one time step by a single opera
tor. MTBA and MTTA information is also used for
statistical availability calculations.
USAGE for a machine is an indicator of how much

of the time a machine actually processes each lots as it
goes through the entire process flow, adjusted for avail
ability. A high usage indicates that the machine spends
more time processing each lot than machines having
low usage. If the manufacturing facility is operating at
or near maximum capacity, machines having a high
usage will be nearly always busy. Machines having a
high usage are referred to as bottlenecks and are treated
in more detail in the discussion of global plant optimiza
tion. Low usage machines are idle more of the time.
Typical manufacturing operations are fairly sparse, that
is, a large number of the machines have a moderate to
low usage factor. A term related to usage is utilization,
which is a percentage indicating how much of the time
a machine is actually processing lots. If the facility is
operating at or near maximum capacity, machines hav
ing the highest usage numbers will also have nearly
100% utilization. If the facility is operating at, for exam
ple, 50% of maximum capacity, the bottleneck ma
chines will have a utilization of approximately 50%.
The usage number is constant regardless of current
plant output.
The AVAILABILITY of a machine is an indication

of how much of the time the machine is operational. A
machine which breaks down often, or takes a long time
to repair, has a low availability factor.
The next item shown in FIG. 3 is the SIDES item.

The concept of sides is an illustration of the types of
complex interactions which occur between the con
cepts of processes and the machines which perform
them. A side is a grouping of processes on which a
machine can operate simultaneously. An example of
such a machine is shown in Table 1. The machine in this
example can handle 4 lots simultaneously, and is used
for (hypothetical) processes 4, 12, 35, 48, and 62. Pro
cesses 4, 12, and 62 are short, low temperature bake
steps, while steps 35 and 48 are high temperature bakes.
Thus, lots from steps 4, 12 and 62 form a side, and steps
35 and 48 form a side.

5,260,868

TABLE 1
MACHINEM Processes Description

4. low temp bake
2 low temp bake
35 high temp bake
48 high temp bake
62 low temp bake

This machine can process any mix of lots from one
side at a time. Lots from the two sides cannot be mixed,
and there may be a setup time associated with changing
from the process of one side to that of the other. This
side information allows the machine to operate much
more efficiently in many instances, because it need not
wait for four lots of a single process to arrive in its input
queue before it can process a full load. This has the
effect of increasing the percentage of the time that M1
operates full (4 lots), as well as minimizing the average
amount of time that lots wait in the queue.
The remaining items in the data structure of FIG. 3

are related to the dynamic operation of the scheduler,
rather than the steady-state structure of the machine as
do the above described data items. The information
concerning lots done on the current process and side are
used in the local decision making process, or local opti
mization, of the machines as will be described under
that section. The LAST-LOADED-AT and NEXT
AVAILABLE-AT items are used to determine when
the machine will be available to accept the next incom
ing load. The NEXT-AVAILABLE-AT item also indi
cates the expected time that a machine will be returned
to service if it is currently down for repair or mainte
nance. The NEXT-MAINTENANCE-TIME item in
dicates when the machine is next expected to be taken
out of service. This refers to scheduled maintenance.
The DOING data item is a list of lot and process

pairs, which indicates which lots are currently in the
machine, and which processes those lots are involved
in. As shown in the discussion on sides, it is not neces

O

15

20

25

30

35

sary for all lots in the machine to be in the same step of 40
the process flow.
SCHEDULING-TYPE indicates what type of deci

sion making process should be used on this machine
whenever a load decision is to be made. Some of the
preferred decision types include multi-lot machine opti
mization, round robin, and constraint member. These
decision making processes are discussed under the local
optimization topic. WAITING-TIME is a number indi
cating at which time step the machine should load the
next group of lots. During the local optimization pro
cess, it is sometimes desirable that a particular machine
not load right away, but instead wait for another lot that
is expected in the near future. In such cases, WAIT
ING-TIME contains the time at which the machine is
next expected to take some action. As far as the sched
uler is concerned, the machine will simply sit idle until
the current time, as defined by the calendar mechanism,
catches up to the value in WAITING-TIME.
The values OPTIMIZING and CHECKED-UP

TO are used in the local prediction process as described
under the subject of local optimization.
Sometimes there will exist a special relationship be

tween groups of processes which requires that succes
sive process steps be performed with very little wait
between them. This is especially true in semiconductor
processing. wherein lots must be moved quickly from
step to step for some span of process steps. If a delay
occurs in the middle of this sequence, the semiconduc

45

50

55

65

8
tor slices may be ruined. An example of such a series of
related process steps could be the several steps involved
in applying, patterning and baking photoresist on a
slice. Extended interruption of this set of processes
could ruin the work in process, requiring that the slices
in question be reworked or discarded.
The group of process steps so related is referred to as

a time constraint, or simply a constraint. The timing of
the steps in the constraint is critical: no large queues
must be allowed to build up within the constraint. Once
a lot or batch of lots has entered the constraint, they
must be moved through to the end with relatively little
interruption. Process steps which are contained within
such a constraint are referred to as constraint members,
and the first step of the constraint is the constraint
starter. Membership in a constraint, or being a con
straint starter, is indicated in the process data structure
(FIG. 2).
The timing of the constraint is controlled by its slow

est members. For example, if one constraint member is
a process that is one lot wide and take 10 time steps to
complete, and there is only one machine to do that
process, only one lot can pass through the constraint
every 10 time steps regardless of the speed and capacity
of the remaining members. Thus, when load decisions
are made for the process starter, it is necessary to know
the characteristics of all processes in the constraint.
A separate data structure is kept for each constraint.

Such a structure is shown in FIG. 5. This structure
indicates the beginning and end processes, lists the ac
tual processes by number, and gives the total processing
time of the constraint. The longest process time of any
process in the constraint is given in GREATEST
PROCESS-TIME, and the first process having that
process time is considered to be the controlling process.
TIME-TO-CONTROLLING-PROCESS is the num
ber of time steps from the constraint starter, including
the process time of the constraint starter, until a lot or
group of lots is available for loading into the controlling
process. If the next available time for the controlling
process is known, TIME-TO-CONTROLLING
PROCESS determines when the next batch of iots can
be started into the constraint. Also included in the struc
ture are the lot numbers currently within the constraint,
and a flag to indicate whether this constraint is cur
rently included in a local optimization process.

In the embodiment of the scheduler which is de
scribed herein, delays which occur between unloading a
machine and making a lot available to the next process
are not considered. Such delays are usually small com
pared to the overall operation of the facility, and are not
generally important. However, in cases where delays
are significant, it may be necessary to take them into
account. In such a situation, the transfer time is consid
ered to be simply another process step, and is treated as
are all other process steps. Thus, the overall scheduling
system need not be modified to take such delays into
account; they are handled within the parameters of the
system as is currently described.

GLOBAL PLANNING

Before actual scheduling of the processing facility is
undertaken, a global analysis of the facility must be
made. The results of the global analysis are made avail
able to the local decision making portion of the sched
uler to improve its optimization functions. The global
analysis is preferably made only one time unless process

5,260,868
9

parameters change significantly or process flows are
changed.
The purpose of the global planning stage is to define

the steady-state features of the manufacturing facility.
This includes defining process flows and statistics of the
various process steps. Special features of various ma
chines are taken into account, such as machines which
have a high usage or long process times. Special pro
cessing conditions are considered in terms of their im
pact on the overall plant operation. The results of the
global planning step indicate the macroscopic operation
of the facility, giving such information as the cycle time
and plant capacity. The general strategy by which the
plant will be operated is also determined during this
planning step. Such general strategies can be, for exam
ple: maximizing plant capacity, minimizing cycle time,
minimizing labor or manufacturing costs, or maximizing
product yield (which may be higher for less than maxi
mum plant capacity).
The general approach of the global planning step

which will now be described will attemp to maximize
plant capacity while minimizing average cycle time.
These two goals are not always consistant, so that some
lengthening of cycle time amy need to be suffered in
order to give acceptable plant capacities. In semicon
ductor front-ends, minimizing cycle times tends to im
prove overall yield, because lots that remain in partially
completed states in the facility are especially susceptible
to damage.

In order to maximize plant capacity, it is necessary
that high usage machines be utilized nearly 100% of the
time. These bottleneck machines are identified during
the global planning process, and the throughput of the
plant is adjusted so that the machine or machines having
the highest usage number have a utilization just under
100%.
Queueing theory demonstrates that a machine which

has a maximum processing rate equal to the average
arrival rate of work for that machine will eventually
build an infinite queue (large in practical terms) in front
of it unless the incoming work arrives in precisely regu
lar fashion and the machine never breaks down. If the
machine does break down, a common occurance in
many industries, or the arrival of incoming material is
not completely regular, which is the rule rather than the
exception, the machine can never deplete its input
queue. Since queues build up, cycle times of products
increase and the amount of work in process increases.
The preferred embodiment therefor keeps the bottle

neck machines occupied several percent less than their
entire available time so that long queues do not build up
in front of then. In some cases, 2-3% planned slack
time would be sufficient, while in others 10% or even
20% may be necessary. The amount of slack time which
is necessary depends on the expected statistical fluctua
tions in the arrival rates of lots to the bottleneck ma
chines. Larger fluctions require more slack time, while
a more uniform arrival rate allows less slack time to be
reserved. In addition, the available time for a machine is
defined to include time off for expected repairs and
maintenance. This means that the planned slack time is
not unexpectedly taken away.
The global planning stage is not necessarily done

with a computer, although use of a programmed general
purpose digital computer will greatly speed up some
phases of the process. The global planning stage can be
entirely automated, with human input used only to enter
data on plant operation and machine parameters.

O

15

20

25

30

35

45

50

55

65

10
The general global planning steps are shown in FIG.

6. The order in which these steps are done is generally
not important, and in fact several will often be done
concurrently, and alternating in iterative steps.
The first major step is to determine the parameters of

the manufacturing facility. These include the definition
of the process flows, and identification of machines and
determination of their individual characteristics. Calcu
lations are made of the relationship of the various pa
rameters to the overall process flow. These calculations
include those items shown in FIG. 7 for each machine.
One of the important process parameters to discover

is the usage of each machine. As described above, this is
a number representing how much time each machine
spends operating on each lot which flows through the
plant. For example, if a single machine is available to
work on 4 different processes, every lot will pass
through that machine 4 times. The process times of the
4 different processess must be totalled, and any setup
times must be added, to determine how much time that
machine spends on each lot which flows through the
plant. This calculation will usually reveal that one or a
small number of machines have a very high usage com
pared to the rest; these are the bottleneck machines.
These machines are the ones which control the overall
capacity of the plant.
The local optimization process for the bottleneck

machines may need to be different from that of other
machines. Bottleneck machines must be utilized to the
full needed extent, or the overall plant capacity will
suffer. The local optimization process takes into ac
count the critical nature of bottleneck machines when
making local planning decisions. Not all bottleneck
machines will have the same usage, and the degree of
criticality depends on the usage number. One result of
the global planning process is to give each machine in
the plant a usage number which indicates how much
time each lot spends with that machine. This number is
stored in the data structure for the machine, and is con
sidered to be part of that machine's profile. The com
plete profile includes other data as will now be de
scribed.
Another important parameter is the machine capac

ity. If a machine can handle many lots at one time, it
may have more impact on the overall process flow than
one which handles a smaller number. The machine
capacity is part of its profile. Large capacity machines
which also have long processes have a large impact on
the average cycle time in the plant, and are critical
machines.

For steady-state statistical purposes, a machine with
an actual capacity of two or more lots may have an
effective capacity less than its actual capacity. This will
be controlled in part by the expected distribution of
arrival times of lots into the queue for that machine. For
example, if lots tend to arrive in widely separated pairs,
a machine which has an actual capacity of 4 lots may
effectively only process 2 lots at a time. If this is the
case, the global effect of the machine will not be that of
one having a capacity of four lots, but rather as that of
a machine having less. The effective capacity of the
machine could be a fractional number, such as 3.2 lots,
which indicates the average number of lots processed
for each run of that machine.
Membership in a constraint is an important parameter

of all machines which are constraint members. Ma
chines in constraints must take such membership into
account whenever local decisions are being made. Any

5,260,868
11

machine which is the constraint starter is also flagged
during the global planning stage, as this machine is the
gateway into the constraint. The constraint starter de
termines the flow of lots through the constraint, and as
such must be considered a critical machine, at least 5
locally. Constraint membership and starting informa
tion is included in the machine profile.
Another important factor in a machine's profile is a

list of the processes done by that machine. Machines
which do several processes may turn out to be bottle- 10
necks, or may be long queue wait machines if substantial
process change penalties exist. An indication of the
processes done by a machine is part of its profile.
A portion of this factor relates to contention between

process done on a single machine. Any given machine 15
that works on multiple processes may not spend equal
time on each of those processes. For example, a ma
chine that does processes P1. P2 and P3 may do 100%
of the work on P1 (it is the only machine doing process
P1), 20% of the total work done on process P2 (other 20
machines do the rest), and 50% of the work on process
P3 (splitting time equally with another machine). This
machine should therefor spend different amounts of
time processing lots for the different processes. The
various attributes of the machine, such as availability, 25
are considered to be distributed among the processes it
works on in ratios proportionate to the amount of time
spent on each of those processes. A list indicating which
processes are done by each machine should also indicate
the relative contention factors just described. 30
Another important part of a machine's profile is its

overall availability. This indicates what percentage of
the time a machine is actually operational and available
to process material, as opposed to being down for repair
or maintenance. Machines which are often down can 35
adversely effect overall operation of the plant. Informa
tion on the mean time between failures, mean time to
repair, peventive maintenance schedules, etc. is used to
statistically calculate the amount of time each machine
can be expected to be available for use. 40
Other factors can be included in the profile as appro

priate. Number of operators needed to run, quality in
formation, and the like can all be included to indicate
how each machine relates to the rest and to the overall
process flow. 45
Many of the above factors must actually be consid

ered in calculating the usage number for each machine.
Machine downtime, setup times, effective capacities,
and membership in constraints all have an effect on the
usage of a machine. For example, a machine having an 50
actual capacity of 4 lots but an effective capacity of 2
lots would have a usage number which is, other factors
being equal, twice that which would be calculated with
out modifications. In this example, the machine would
have a usage of one-half the process period per lot in- 55
stead of one-fourth.
The machine profile for any machine, then, gives a

shorthand indication of the importance of that machine
to overall plant operation. Certain machines can be
considered to be critical; these include machines which 60
have the highest usage because they are the bottleneck
machines controlling plant capacity. Machines having
long queue wait times, either because the machines have
long processes or long setup times, are critical because
they influence the average cycle time. Machines which 65
break often can also be expected to build up queues. All
machines involved in time constraints have a large local
effect, and should be considered critical.

12
After critical machines are found by creating the

machine profiles (FIG. 6), process profiles are also cre
ated. These contain the information about processes,
which can, to a certain extent, be considered separately
from the machines which perform those processes.
Local scheduling decisions are made by considering the
combination of machine and process profiles, along
with other information which will be described in con
nection with local planning.
At this point, much steady-state information is avail

able about the manufacturing facility. Capacity, cycle
time, and expected work in process numbers can be
calculated. The various machine profiles indicate the
relationship of each machine to the whole. However,
detailed scheduling cannot be done from the informa
tion available at this stage.

Plant capacity is easily calculated by pinpointing the
one machine or process which has the highest usage.
This machine is the limiting factor for the plant. The
total time which each lot must spend at that machine is
equal to the maximum plant capacity in terms of spacing
between product units. For example, if the bottleneck
machine spends 1 hour processing every lot, is always
available and has a capacity of one lot, the maximum
plant capacity is 1 lot per hour. If the bottleneck ma
chine can process 4 lots at a time, the maximum capacity
is 4 lots per hour.
Minimum cycle time is also very easily calculated.

Simply totalling the process times for each process step
gives the minimum possible cycle time. Totalling the
process times for each process step including average
queue wait times gives the average expected cycle time.
The long term statistical behavior of the various ma

chines is calculated to determine the detailed steady
state operation of the facility. Extra emphasis is given to
those machines which are shown to be critical. One
type of critical machine is the bottleneck. Bottlenecks
which do not have setup times involved are fairly
straightforward to calculate. However, those which
have setup times to switch between processes must be
handled a little differently.
The first step is to calculate the contention numbers

for the machine without considering the setup times
involved in switching between processes. This gives a
usage value for the machine which is lower than the
actual usage. For those machines which have a rela
tively high usage, the setup times are then factored in.
Machines having a low usage need not be treated fur
ther, because an error of a few percent in their opera
tion will not noticebly effect the operation of the plant.
Then, the effect of various strategies are considered for
the bottleneck machines with the setup times included.
For example, requiring a different number of loads
before making a change will effect the usage; changing
over less often will decrease the amount of time spent
doing setups. On the other hand, changing over less
often will increase the amount of time the machine
waits idle while a large queue builds up for the other
process. An example process involved in such a bottle
neck calculation is shown in FIG. 13 and FIG. 14.
A cost function for the bottleneck machine is devised.

This can maximize capacity, minimize cycle time, mini
Inize cost, strike a balance, or achieve whatever global
goal is desired. Then the arrival rate of lots at the bottle
neck machine is modelled as a distribution, and the cost
function is calculated for different loading strategies.
The minimum or maximum point of the cost function, as
appropriate, determines the optimum loading strategy

5,260,868
13

for that bottleneck machine. These detailed calculations
are carried out, preferably, only for the critical ma
chines.
Much of the information needed to rigorously model

the critical machines may not be known or easily avail
able. Often, it is not known in advance which machines
will be critical. The method outlined above allows the
persons designing the scheduler to make a first approxi
mation based on very rough data. Based on these ap
proximations, a few machines and processes will be
identified as potentially critical, and the major part or
the data gathering effort can be concentrated on these
machines. The scheduler described herein is based, in
part, on the fact that only critical machines need com
plete information; less critical machines need not be as
carefully modelled because their impact on overall
plant operation will be relatively small.

Based on the usage factor for each machine, and
given an approximate distribution of lot arrival times,
the proportion of the time in which a machine will be
required to make a loading decision can be calculated.
Many machines, although decisions can be made for
them, will be found to have an actual decision to make
only a very small part of the time. In other words, a
machine having queues for several processes may be so
lightly loaded that having lots arrive in two queues at
the same time, thus requiring a decision, will be a rare
event. These machines need not be burdened with a
complicated decision making process. One of the bene
fits of the present approach to scheduling is that re
sources are directed to the critical machines, and it is
recognized that the short term happenings at most ma
chines, other than fluctuations caused by machine
breakage, simply do not matter to the overall operation
of the plant.
The proper selection of desired global operating pa

rameters depends on which goals are most important. If
the overriding concern is maximizing plant capacity,
bottleneck machines will be operated at nearly 100%
utilization. If minimizing cycle time is more important,
plant capacity will be lowered until acceptable average
cycle times are obtained. If other concerns are overrid
ing, such as minimizing operating or labor costs, plant
loading will be adjusted to allow these goals to be real
ized. A mathematical function is generated for each
machine in the plant which incorporates the relevent
factors, and global plans are made to minimize or maxi
mize that function, whichever is appropriate.
The information from the global planning stage is

used to control the local decision making process. Each
machine has a profile which indicates its place in the
overall scheme; it will then take real time local knowl
edge and combine it with this information to do local
planning, as will be described below.

LOCAL OPTIMIZATION

The real-time portion of the scheduling system de
pends on local optimization to function efficiently. In
stead of recalculating the complete global state for the
system each time a decision must be made only the
relevant local state is recalculated. This greatly de
creases the processor load.
Once the global system parameters have been deter

mined, each machine has several data structures which
determine its behavior during operation of the manufac
turing facility. These data structures act as a set of
guideline instructions which tell each machine what to
do next. Decision-making is event driven, and a deter

O

15

20

25

30

35

45

50

55

65

14
mination of what comes next for each machine is made
whenever certain events take place. Events which drive
the decision making process include machine loads and
unloads, and a machine going off-line or coming on-line.
Whenever one of these events occurs, the scheduling
system must calculate what that machine will do next.
The range of actions which can be taken is fairly

limited. A given machine may need to load a lot imme
diately, and the lot may need to be taken from one of
several input queues. A machine which processes multi
ple lots may be required to wait for a full load, or pro
ceed with a partial load.
The computational resources required for decision

making tend to grow at least geometrically, and usually
exponentially, with the size of the problem. Decisions
which consider many factors, such as those made for
the entire facility at once, tend to require prohibitive
computational resources. However, a larger number of
simpler decisions requires a level of resources which is
available with currently available computer systems. In
the preferred embodiment, a single processing system
runs the entire scheduling system. Since decisions are
made on a local basis, a single moderately powerful
processor can easily handle all the computational de
mands of a large, complex manufacturing facility.
Even if the computational resources of the processor

were strained by operation of the scheduling system on
a real-time basis, the system can make allowances for
expected demand without severe degradation of the
system performance. As shown in FIG. 3, each machine
data structure has data items indicating when that ma
chine will next unload, or when it is next expected to
load after a waiting period. The scheduler makes deci
sions when machines are due to load, or when they
unload. Since the scheduler knows in advance when its
computational resources will be in demand, it is in a
position to look ahead and predict when its resources
will be inadequate to fully compute each required deci
sion.

Using statistics regarding average decision making
time, or rule of thumb formulas which can be built into
the system, the scheduling system knows how long it
will take to make decisions for each machine. If a heavy
demand on computational resources will be required at
some time in the future, the scheduling system will need
to begin making decisions ahead of time. For example, if
the decision making process for an average machine is
30 seconds, and 12 machines are due to be unloaded at
the same time step, an instantaneous demand of 6 min
utes of computation will be required at that time. If this
delay is unacceptable, it will be necessary for the sched
uling system to begin the decision making calculations 6
minutes in advance. The results are stored in any conve
nient temporary location, and used when the machines
unload as if the calculation had been made at that time.

If scheduler resources are very tight, such as a very
large facility using a small computer system for sched
ule planning, it is possible that the scheduler will not
have time to run a complete calculation for every ma
chine each time a decision is to be made. In such in
stances, more critical machines, such as bottlenecks,
long wait machines, and constraint members will have
first call on the computational resources. Less critical
machines will receive less or no processor resources
when a decision is to be made. Instead, simpler decision
strategies can be employed, or even a default strategy,
such as load in round-robin mode, are employed. As
described above, less than optimal decision strategies

5,260,868
15

are not troublesome for non-critical machines. Thus, the
limited processor resources are allocated first to the
decisions that have the most impact on overall plant
operation.
The type of decision making process used can vary

for different process steps. Some processes need very
little or no decision calculations. An example of such a
process would be one that had a single machine to do
that process, and that machine did no other processes.
The process has only a one lot capacity. In such a situa
tion, no decisions need to be made; when a lot or batch
of lots arrives in the queue to that process step, they are
simply processed as available.
A machine which operates on two or more processes

will sometimes have a decision to make. These decisions
and those which will now be described are based on the
state of the neighborhood of the machine under consid
eration only, not on the entire state of the processing
facility. A multiprocess machine should attempt to bal
ance the number of lots from each process which are
operated on. A simple strategy for this balancing is a
round-robin strategy, where the machine processes one
lot (assuming a one lot capacity) from each process
which has a lot in the queue before processing a second
lot for a process. The weighting of the round-robin
strategy varies if the machine is subject to contention
from different processes. In such case, the selection of
the next lot is done on a basis proportional to the per
centage of each process which that machine does. Such
a simple strategy is adequate for machines which have a
low usage factor and relatively short setup times, and
are not closely upstream in the process flow from a
critical machine. The effect of critical machines on the
operation of machines which must make a decision will
be explained below.

Multiprocess machines which have sides and/or long
setup times have additional considerations. Grouping
work on processes on a side can result in better utiliza
tion of any given machine. Long setup time machines
must balance the inefficiency of switching between
processes and incurring the additional setup time pen
alty with the potential adverse effect on average cycle
time caused by having lots wait longer in the queue. As
described in the global planning section, cycle time is
controlled by the amount of time lots spend waiting in
queues, so, on the average, leaving lots in queues will
increase cycle time. This consideration will be much
less important if a particular machine is a low usage
machine, because the short extra time spent waiting in
this queue will usually result in a correspondingly
shorter time spent waiting in another queue down
stream. If the long setup time machine has a fairly high
usage factor, however, it can have a significant effect on
the average cycle time for the entire facility. Thus, the
decision of whether to undergo a setup procedure at
any given time becomes much more important, and
additional computational resources must be reserved to
make decisions for that machine.
Machines which have a large capacity and a long

process time are often faced with a similar decision,
even if the machine does not operate on multiple pro
cesses. For example, a machine may have a capacity of
4 lots and a process time of 20 time steps. When the
machine unloads, only 2 lots are in the queue. The deci
sion to be made is whether to load those 2 lots now, or
to wait some short period of time until 1 or 2 more lots
arrive so that a larger load can be processed. This deci

10

5

20

25

30

35

40

45

50

55

65

16
sion becomes more complex for a multiprocess ma
chine, especially one with sides.

Bottleneck machines control the maximum capacity
of the facility as described in the global planning sec
tion. Often there is a single bottleneck machine or group
of machines which sets the absolute limit on capacity.
This machine is often a multiprocess machine. It is im
portant that this machine be kept operating at a very
high utilization, or the capacity of the plant will be
reduced below its maximum. If lots are waiting in the
queues, a simple round robin decision will usually suf
fice. However, as explained in the global planning sec
tion, it is undesirable to have queues build up in front of
bottleneck machines. Instead, it is important to have lots
available just as they are needed by the bottleneck ma
chine. This means that the bottleneck machine will need
to look ahead, and perhaps exercise control over pro
cesses upstream from itself. This look ahead planning
for bottleneck machines is critical to overall plant oper
ation, and should receive a large share of computational
resources if these are limited.
A process which has multiple machines to execute it

will require some decision making at load time, but the
problems are generally far simpler than some of those
just mentioned. It may be common for a multimachine
process to utilize multiprocess machines, however, so
the considerations just mentioned will come into ac
count. Machines which do not work equally for all of
the processes, described above as contention, will make
weighted decisions which tend to prefer processes for
which they have the most responsibility. Thus, a ma
chine may spend two-thirds of its time on one process,
and the remaining third on another.

Broken machines will tend to develop large queues
until they are fixed, even if the average usage is low. It
is somewhat inefficient for the processes preceding the
broken machine to keep feeding lots into the queue if
the machines used for those processes could be utilized
for other processes. Thus, a broken machine or perhaps
even one which has developed a large queue through
natural fluctuations in the flow of material through the
facility, can send a negative demand, or lack of demand,
signal to the upstream processes. This signal will tend to
cause the upstream multiprocess machines to prefer
processes which lead elsewhere than to the broken
machine. This alleviates somewhat the build up of
queues in the facility, with the corresponding increase
in average cycle time.
For discussion of the preferred embodiment four

local machine scheduling decision types will be used.
These are: round robin, multi-lot machine optimization,
bottleneck, and constraint member. Round robin is a
simple strategy and has been discussed. It simply causes
the particular machine to evenly rotate its selection of
incoming process queues when there is a choice.

Bottleneck strategies are used for machines which
have been identified as bottlenecks by their high usage
factors. The precise nature of the bottleneck strategy
depends on other features of the bottleneck machine,
such as whether it has sides or long setup times.

Multi-lot machine optimization strategies are done by
machines which are large wait machines. As described
above, these are those which have multiple processes
and relatively long setup times for process changes, and
machines which have multiple lot capacity and long
process times, regardless of the number of processes
done by that machine. Long setup time machines must
decide whether to make another run without changing

5,260,868
17

processes, and whether to wait for more lots to arrive if
the machine has a multiple lot capacity. Long process
time machines must decide whether to wait for a larger
or full load, or to go ahead and process a partial load.
Since the process time is relatively long, having lots
arrive in the queue soon after a partial load has been
started can have an adverse impact on the average cycle
time. An example of this decision process is explained in
connection with FIG. 8.
The general strategy for a constraint member is to

satisfy the requirements of the time constraint. This
involves looking at the other processes in the constraint
before making a decision. Constraint starters do much
of the decision making for the constraint, but individual
machines may be multiprocess machines. This means
that they will have to juggle the requirements of the
constraint with the requirements of other processes. It
should be obvious that the requirements of a constraint
will take precedence over other work for a particular
machine.
The actual decisions to be made by each machine, and

the type of decision process which they will use, are of
course extremely dependent upon the particular config
uration of the manufacturing facility. However, the
general problems are quite common, and examples of
decision making strategies at work on the local level
will now be given with respect to FIG. 8 through 15.

FIG. 9 illustrates the operation and decision making
of a single machine which operates on two processes.
There are no other machines which operate on either
process. M1 is assumed to have a capacity of 1 lot. The
two processes done by machine M1 are P8 and P34. The
preceding processes are P7 and P33, and the following
processes are P9 and P35. The processes P8 and P34
must share M1, but their operation is not affected by
this.
Whenever lots enter a queue, they are actually placed

in the physical queue for a particular machine, in this
case M1. However, the process data structure and the
lot data structure both indicate which process the lot is
waiting for. The separation between the physical posi
tion and the logical position of the lot, in terms of which
logical process it is undergoing, therefor remains clear.
Thus, M1 sees that a lot has entered its physical queue,
and it is appropriately placed into its logical queue by
the information in the lot and process data structures.
Assuming M1 is a low usage machine, and its decision

making is not affected by downstream bottleneck or
long wait machines, its decision strategy will be a simple
round robin strategy. If there are lots in only one pro
cess queue. M1 will process the lot with the longest wait
time as soon as any work in progress is unloaded from
the machine. If there are lots in both process queues, M1
will select the oldest lot from the opposite queue than
the previous lot. Thus, selection of the process queues
will alternate, with the oldest lots for each process
being selected. Processes P8 and P34 will be done
equally over the long run. Of course, due to factory
dynamics, is likely that batches of lots will come from
P7 and P33 at different times. For a relatively low usage
M1, having no setup times associated with changing
processes, the simple round robin strategy is adequate.
A decision process for two machines doing the same

multiple processes is shown in FIG. 10. The machines
M1 and M2 are defined as set forth in Table 2, and are
identical. M1 and M2 have equal contention for both
processes; that is, M1 and M2 are equally responsible
for P10 and P18.

10

15

20

25

30

35

45

50

55

65

18
TABLE 2

Machine Processes Capacity Process Tirne

M P10, P18 ot 4 time steps
M2 PO, Pis 1 lot 4 time steps

Any lots in the queue coming from P9 and P17 are
equally accessible by either machine. That is, lots in a
process queue are not assigned to a machine until that
machine loads a lot. M1 and M2 both use a simple round
robin strategy, and are initially unloaded. FIG. 11
shows arrival times of lots from P9 and P17, and the
number of lots which arrive. These are labelled as arriv
ing in the process queue for processes P10 and P18.
FIG. 11 also shows load and unload times for M1 and
M2, and which logical process it is undertaking, where
L indicates a load. U indicates an unload, and neither
indicates processing only. Note that the capacity of P9
is 4 lots, while that of P17 is 2 lots, although either may
complete a partial load.

Lots arrive in the queue for P10 at times 1, 8, and 19.
Lots arrive in the queue for P18 at times 4, 8, and 18. As
shown in FIG. 11. M1 and M2 alternate which process
they do if there is a lot available in the alternate queue.
If not, such as at time step 6 for M2, the machines will
process the oldest available lot in any available queue.

FIG. 12 illustrates a bottleneck machine which does 3
processes. The machine M1 has a capacity of 1 lot and
a process time of 1 time step. It is the only machine
available to work on any of processes P7, P20, and P40.
This machine uses the bottleneck strategy for decision
making.

Every lot which is produced by the facility must go
through M1 exactly 3 times, assuming no rework loops
are involved. Thus, in the long run, it is essential that
M1 operate on processes P7, P20, and P40 equally.
Otherwise, queues will build up somewhere in the pro
cess flow. In the simple case, there are no setup times
involved in changing between processes. Since the con
tention for M1 by each of processes P7, P20 and P40 is
equal, a straight round robin approach ensures that
equal time is spent working on each process. Since M1
is a bottleneck machine, it will be kept almost con
stantly busy. Queues will tend to build up in front of
M1, and they are handled in the straightforward manner
just described.

If M1 is not equally responsible for each of processes
P7, P20 and P40, the round robin selection will be modi
fied by the relative responsibility M1 has for the three
process. For example, if M1 is soley responsible for P7,
and responsible for 50% of P20 and P40, M1 will spend
one-half of its time on P7, and one-fourth on each of P20
and P40. If queues exist for all three processes, M1 will
typically do 2 lots for P7, followed by one each for P20
and P40.
A more difficult, and perhaps more common, situa

tion for bottleneck machines occurs when there is a
setup time incurred when changing from one process to
another. Such an example is shown in FIGS. 13 and 14,
which depict a bottleneck machine M1 having 100%
responsibility for both P20 and P40. Capacity of M1 is 2
lots, and process time exclusive of setup is 10 steps. As
shown in FIG. 14, it takes 20 time steps to setup for
process P40 after running P20, and 10 time steps for the
reverse setup. If the process done were alternated after
every lot, the actual effective process time for P20
would be 10 time steps, and the effective process time
for P40 would be 40 time steps. As described for this

5,260,868
19

example in the global section, an optimum strategy is
calculated for the number of lots to process before
switching processes. As an example, the optimum point
for FIG. 13 might be to process 4 loads (8 lots) before
changing processes.
With the long setup times involved in this example,

there will nearly always be lots waiting in one or both
queues. If the setup times were relatively short, this
would not necessarily be the case. If, through machine
breakages or unusual natural fluctuations, there are
many lots waiting in both queues, the decision making
process is very simple, M1 simply follows the already
determined optimum plan of doing 4 full loads before
switching processes. In many cases, however, the
queues will be short enough that the queue for the cur
rent process will empty before 4 loads are processed. In
this case, an example would be a queue which had only
6 lots, with no additional lots expected for 50 time steps.

If global goals dictate that the bottleneck machine
must be utilized nearly 100% of the time, it is necessary
that the optimum loading scheme be adhered to as
closely as possible. Therefor, the bottleneck machine
M1 must be able to exercise some degree of control over
the processes which feed it. This is done through the use
of demand signals generated by M1.
When M1 loads or comes back on line after a repair a

decision must be made about loading. Assuming that 4
loads of P40 have just been completed. M1 will prepare
to process 4 loads for P20. At this time a local predic
tion, described in more detail below is made and the
arrival times of lots in the queue for P20 is determined.
Assume that the queues for M1 are as shown in Table 3.

TABLE 3
Process Queue Length
P20 5 lots
P40 2 lots

Assume further that the local prediction shows that
the arrival time for the next lots into the queue for P20
is 45 time steps from now at which time 4 lots will
arrive. It is easily seen that, including set up time two
complete loads will be finished in 30 time steps, and a
partial load could be finished within 40 time steps. Wait
ing for the additional lots to arrive will adversely in
pact the capacity of the plant. If possible, it is necessary
to advance processing of the lots for P20 so that they
will arrive by time 30 (from the current time). M1 ac
complishes this by sending a demand signal to its up
stream process. P19.

This demand signal takes the form of a time by which
P19 should load lots if possible. In the current example
if P19 had a capacity of 4 lots and a process time of 20
it should load at least 3 lots by 10 time steps from now.
This number is placed in P19. When P19 next makes a
loading decision, it will comply with the demand if it
can do so.
The local prediction can then be run again with the

demand signal. If P19 is able to supply the necessary lots
in time, M1 will process 4 loads for P20 in the optimum
manner. If local prediction shows that P19 will not be
able to supply the lots in time M1 must make a decision
as to whether to continue processing lots for P40 or
process a few lots for P20, and then switch back. The
decision is made by calculating the function which
states the global goals of the plant. If capacity must be
maximized, the decision may be different than if cycle

O

15

20

25

30

35

45

50

55

65

20
time must be minimized. In the present example, a typi
cal result would be to process one more load for P40.
then switch and process 4 loads for P20. Since more lots
will be arriving soon for P20, the amount of overall
delay will be minimized.
The demand signal sent by M1 will propagate up

stream beyond P19 if necessary and possible. For exam
ple, whether or not P19 can supply lots to P20 in time
may depend on whether P18 makes a certain decision
right now. If P18 uses a multiple process machine, its
current strategy may be to do other processes for the
next few time steps. If P19 cannot satisfy P20 out of its
current queue, it will send P18 a demand signal that it
needs lots in time to begin processing then within 10
time steps. If P18 can supply the lots in time, it will
override its normal strategy and do so. This propaga
tion of demand signal is used when the local prediction
is made.

Local prediction is a fairly simple, but extremely
powerful. concept. Each machine looks at its short term
future, and decides what will happen based on incoming
lots and its own decision process. A machine actually
runs a simulation based on its current state by asking the
immediately preceding processes when it will deliver
lots to the current process, and applying its normal
decision making processes to that information. When a
machine must undertake local optimization, it runs a
local simulation to determine what the future will bring.

Local prediction is always done with respect to some
definite future time, usually no more than a few tens of
time steps away. It simply consists of asking the up
stream processes what they will be doing in that time
frame, and applying the decision making process to the
results. Processes that have machine which are multi
process machines must look at the future plans of all
relavent upstream processes. If the current process is
the recipient of a demand signal, or a request or nega
tive-request signal (both described below), and any
demands imposed by these signals are not met, they
must be passed upstream, and the prediction process
repeated.
The local prediction process is preferably done for all

machines that need it during a single time step. For any
given time step, typically several different machines in
the plant will need local predictions made for the local
optimization process. Intermediate predictions made for
one machine are stored temporarily, as they may be
used in the prediction process for other machines.
The local prediction process results in different parts

of the facility being predicted to different times, so that
different processes "exist" at different times. For exam
ple, consider the processes outlined in Table 4.

TABLE 4
Process Process Time. Predicted Until

P3 10 40
P12 5 35
Pl 20 25
PO 30 O
P40 20 40
P39 5 25
P38 20 25
P37 5 20
P36 30 O

Processes P13 and P40 are to make local optimization
decisions during the current time step. P13 is to predict
40 time steps into the future, and P40 is to predict 30
steps. P13 predicts that it will process the 2 lots in its

5,260,868
21

queue by time 10. To determine what will come into
P13's queue, it is necessary to determine what P12 will
start up until time 35. Any lots started after that time
will not arrive in the queue for P13 before 40 time steps
from now, and need not be considered.
To determine what will happen at P12 until time 35,

a local prediction is run which asks P11 what it will be
doing up until time 25. Any lots started in P11 after time
25 will not arrive in the queue for P12 in time to be
considered. A local prediction is then made for P11. In
order for anything in P10 to effect P11 by time 25, lots
must already be in process in P10. Assuming this not to
be the case, nothing that is decided by P10 can have any
effect on P11 before time 25. Thus, it is not necessary to
make local predictions beyond P11 in order to com
pletely calculate what will happen at the input queue of
P13 up to time 40.
However, assume that P38 uses the same machine as

P11, P11 must know what will happen to P38 in order
to accurately predict the operation of the machine
which is common to both processes. Therefore P38
must also be predicted out to time step 25. This involves
predicting P37 out to time step 20, and P36 out to time
step 0. If P36 is currently empty, it will have no effect
on the decisions made by other machines, and can be
ignored.
Now a local prediction is made for process P40 out to

time 40. P39 must be predicted out to time 25, which
means that P38 must be predicted out to time 15. How
ever, P38 has already been predicted out to time 25, so
no additional prediction must be made. Rerunning the
local prediction for P38 would be redundant, since the
previous calculations were saved. The simulator which
runs the local predictions recognizes that P38 was pre
viously involved in an optimization process, and how
far the prediction has gone. by checking the OPTIMIZ
ING and CHECKED-UP-TO data items in the rele
vant process data structures. (FIG. 2)

Processes P13 and P40 can now make their local
optimization decisions based on complete knowledge of
what will happen to them within the relevant time
frames. This knowledge was obtained by looking at the
future of the neighborhood only. with the future of the
remainder of the facility being a "don't care" as far as
P13 and P40 are concerned.
The local prediction process quickly reached a hori

zon beyond which it was not necessary to make predic
tions. This is typical of local predictions, which are
made for one machine for a short length of time. Of
course, the distance, in time, to the horizon varies with
the details of the particular situation. In addition, it is
not always necessary to carry out a prediction to the
limit of the time horizon. Sometimes a prediction only
part way out will indicate that the machine doing the
local optimization will receive enough lots to complete
a full load, or a series of loads as in the bottleneck exam
ple described above. Therefor, the preferred method of
making local predictions involves making them out to
only a time period less than the maximum, checking to
see if the necessary lots will be received, then checking
for another increment of time, etc. This incremental
approach ensures that a great deal of extra checking is
not made if it is unnecessary.
Thus, the local prediction process is a recursive pro

cedure, simple in concept, which eventually terminates
when the time horizon of the initiating procedure is
reached, or another stopping point is indicated. Many
types of control can be exercised over placement of the

O

15

20

25

30

35

40

45

50

55

22
stopping horizon. In addition to time and receipt of
needed lots, such stopping points as scheduler processor
time, depth of the recursive search, and number of side
branches predicted can be used. This allows a partial
prediction to be made in those cases where the compu
tational powers of the scheduler do not allow full local
predictions to be made. Also, predictions will typically
not be made beyond broken machines, bottlenecks, or
machines which are members of time constraints.
FIG. 8 illustrates the local prediction process for a

multi-lot machine optimization. As described above,
such processes have a large impact on the overall cycle
time of the facility. For simplicity of description, the
long wait process, P19, has only a single machine M1,
and M1 does no other processes. The machines shown
in FIG. 8 are described in Table 5.

TABLE 5
Process Lots in

Machine Processes Time Capacity Queue

M P19 60 time steps 8 iots 5
M2 P8 5 2

P23 5 2 4.
P75 5 2 2

M3 P17 10 2 2
Ps 10 2 4.

M4 P16 15 4.
p7 15 4. 6
P63 5 4. 4.

All machines have just unloaded - no work in process.

As shown in the machine data structure, machines
such as M1 are selected to use the multi-lot machine
optimization decision strategy. This strategy causes the
machine to attempt to minimize a function giving the
total lot-hours of lots in the queue for M1. A local simu
lation is made in the same manner as described above in
connection with bottleneck machines. The results of
this simulation are used to calculate the total lot-time of
lots in the queue for M1. The minimum point for this
calculation is the time at which M1 should be loaded.
Under the circumstances shown in Table 5, 5 lots are

currently waiting in the queue. Thus, for every time
step that M1 delays loading, 5 lot-timesteps are added to
the queue waiting function. This tends to cause M1 to
load as soon as possible. On the other hand, once M1
starts, any lots that arrive within the next 6 hours must
wait in the queue. If M1 starts a partial load now, and
additional lots arrive within the next 5 time steps, each
of those lots must wait an additional 55 time steps in the
queue for M1. This tends to cause M1 to wait for a full
load. The preferred loading scheme balances these two
competing tendencies to minimize the overall queue
wait time.

In FIG. 8, it can be supposed that the expected lot
arrival times in the queue of M1 are (for current ti
me=0): 1 lot at time step 10, and 2 lots at step 40. As
sume for now that no other lots will arrive until at least
time step 80. If M1 begins processing 5 lots now, it will
unload, and thus be available to receive new lots at time
60. The total queue waiting time is 1 lot 50-2 lots"
20=90. If M1 waits until time 10 to run 6 lots, the total
queue waiting period is 5 lots * 10+2 lots "30= 110.
Waiting until a full load is ready gives a total queue wait
of 5 lots * 40--1 lot * 30=230. The best selection under
this situation is to load a partial load of 5 lots imediately.
Different expected arrival times will, of course, yield
different results.

5,260,868
23

A machine using the multi-lot machine optimization
decision strategy has the ability to influence upstream
processes in a manner similar to the demand signals sent
by bottleneck machines. A request signal sent by this
machine will cause upstream machines to advance the
processing of lots needed for the long wait machine if
doing so is convenient. This signal is represented as a
loading time for the upstream machines, expressed as an
absolute time step value. This value is placed in the data
structure for the affected upstream processes.

In the FIG. 8 example, using the machine status
shown in Table 5. M1 could place a request signal to M2
to process lots waiting for process 18 first. Assuming
there was no conflicting demand from P24 or P76. M2
would load and process the single lot in the P18 queue.
Elocal prediction for M2 would now indicate that an
other lot will be made available to M1 in 5 time steps.
M1 recalculates its queue wait function, and determines
that waiting for 1 more lot gives a total wait time of 5
lots * 5-2 lots * 25=75. Since this is less than 90, the
previous minimum. waiting for M2 to process one more
lot is the preferred solution. If, for some reason. M2
could not do process 18 next, the best choice would be
to load M1 now. Such a situation could arise if M2
received conflicting demands, such as a demand signal
from a bottleneck machine propagating from P76.

It is possible that lots now waiting for P17 could be
pushed so that they would arrive at M1 at time 15.
However, this would result in a total queue wait time of
at least 5 lots * 15-1 lot * 10 = 85. Thus, any function
which waits for these lots is less desirable than that
described in the previous paragraph.
A similar situation arises when a machine which has

long setup times for different processes makes a local
decision, Long setup times have an effect nearly identi
cal to long process times in that once started, some lots
may have to spend a long time in the queue. There is an
additional complication, however, in that these ma
chines may have a choice between processing a few lots
now and then changing, or changing and letting more
lots accumulate in the current queue. However, the
minimization function is calculated in the same way.
Each machine will decide which process to perform
next by determining which choice gives the shortest
total queue wait time in order to minimize cycle time.
Request signals are sent upstream in the same manner as
for slow, high capacity machines.
Another type of control signal sent to upstream pro

cesses is a negative request, or lack of demand, signal.
This signal is used when a machine is offline for repair
or maintenance, and prevents large queues from build
ing up in front of broken machines. Negative request
signals also consist of placing a time that lots are needed
in the data structure of the next upstream process. In
fact, the negative request signal is the same as the nor
mal request signal, except that the time step which is
placed in the data structure for the upstream process is
later than that for normal requests.

If the machine for a single machine process is down
for repair, or all of the machines for a multiple machine
process, a negative demand signal is sent to upstream
processes. This signal is simply a request that lots be
supplied at some time in the future which is great
enough to prevent build up of a queue at the broken
machine. An example situation is shown in FIG. 15,
which shows 3 processes feeding into a broken machine
M1, which is the only machine doing process P37. The

5

O

15

20

25

30

35

45

50

55

65

24
machines, processes, and current queues are shown in
Table 6.

TABLE 6
Machine/ Process Current
Process Time Capacity Queue

M (P37) 5 steps ot 4 lots
P36 6 steps ot 2 lots
P35 4 steps 1 lot empty
P34. 8 steps lot 2 lots

Process P36 also has liot in process
M1 is expected to be available in 10 time steps

Assuming the current time to be time 0, M1 is ex
pected to be available beginning at time step 10. This
information may be entered directly by a repairman or
other person, or may be calculated from expected aver
age or past statistical behavior for M1.
The queue for M1 will take 20 times steps to process,

so that any lots which arrive in the queue for process
P37 will spend time in the queue if they arrive before
time step 30. Since M1 is down, process P37 will send a
negative request signal to P36 in an attempt to prevent
any more lots from adding to the queue. A simple rou
tine is used to place the negative request signal in the
data structures for the upstream processes. This proce
dure simply moves upstream using addition and subtrac
tion to determine when processes need to be started in
order to arrive at P37 just as M1 becomes available. The
procedure continues until the negative request signal
reaches current time (0 in this example), or until a spe
cial case arises.

Since a lot is currently in process at P36, this lot must
be considered with those already in the queue for P37.
Thus, if P36 makes no new starts, M1 will not actually
become available to process new lots until time step 35.
Since P36 has a process time of 6 steps, it should start a
lot by time 29. This value is placed into the data struc
ture for process P36. If the lots now in the queue for P36
can be processed and put into the queue for P37 before
the queue for P37 becomes empty, the number of lots in
the queue for P36 * the process time for P37 is is added
to 29, giving 39 and the process time for P35 subtracted,
giving 35. This is the time until which P35 is requested
to wait before starting a lot. The queue wait time for
P35 is 0, so the process time for P34 is subtracted from
35, giving 27 to be placed in the data structure for pro
cess P34. This procedure continues until the value prop
agating upstrean reaches 0. For current times other
than 0, the signal propagates until it matches the current
time.
There are several special situations which cause the

negative request signal to cease upstream propagation
even before it reaches the current time. One of these
occurs when the signal propagates upstream until it
reaches a process which uses the same machines as the
one that is broken. It makes no sense for the negative
request signal to be propagated past its origination
point, as another signal will be propagated from that
point for the earlier group of processes anyway. The
signal is also preferably not propagated upstream be
hind machines which use the bottleneck decision strat
egy, or long wait machines, which use the multi-lot
machine optimization strategy. These machines have a
large impact on the overall plant capacity and cycle
time, and it is preferred that a broken machine not affect
their normal operations.
The effect of the negative request signal can vary

depending on the particular implementation. Prefera

5,260,868
25

bly, it is simply a request, and does not absolutely con
trol operation of the upstream process. This means that
an upstream process would cause the machines in the
process to work on other processes if lots are available
to do so, but the upstream processes would still con
tinue to process available lots if their machines had
nothing else to do. Thus, there is not an enforced idle
ness of the upstream processes. Another approach is to
actually enforce idleness of the upstream processes until
the current time catches up with the negative request
signal.

Preferably, the negative request signal is only used
for situations in which all machines available to a pro
cess are down for repair or maintenance. In some manu
facturing facilities, it may be desirable to use a negative
demand signal in other unusual circumstances. These
could include any process which builds up a queue
larger than some desired amount, or could be used
when a near term plant shutdown is expected, and it is
not desirable that certain machines have a queue during
shutdown. In the latter case, the negative request will
usually be a controlling signal.
The decision making process for a machine in a safe

time constraint is relatively simple. All machines in a
constraint will be controlled by the slowest process in
the constraint. In order for any process in a constraint to
make local predictions within the constraint, it is neces
sary only to look to the constraint starter to determine
when lots will start. The constraint starter starts lots
only at a rate which the slowest member can handle, as
set forth in the constraint data structure. Determining
the locations of lots after they are started in the con
straint is straigtforward. The details of constraints are
extrremely domain specific, and certain prediction rules
may need to be modified depending on the nature of the
problem.

Machines which process multiple lots, including bot
tleneck and multi-lot machines as described above, will
sometimes make a decision to wait and load at a later
time. This decision is based on the local prediction made
for that machine, which prediction included certain
assumptions about the operation and availability of
upstream processes. If one of the machines for one of
the upstream process should break down, or come back
on line after a repair, those assumptions may no longer
be valid, and the decision should be reconsidered. As an
extreme example, if the machine immediately upstream
from a machine which is waiting to load should break
down, none of the lots for which the multi-lot machine
is waiting will arrive as scheduled. The multi-lot ma
chine should therefor undertake anew the local optimi
zation process, including a new local prediction based
on the new machine breakage information. If the new
decision is to load now, the time which the lots would
have spent waiting in the queue has been removed. This
process can be referred to as truth maintenance.
Thus, whenever a machine breaks down, any ma

chine which has made a decision to hold loading based
on a local prediction which includes the newly broken
machine should redo its local optimization. The same
holds true for any machine which made a decision based
on some machine being down for repair which has now
returned to service. The easiest way to handle this case
is to, whenever some machine decides to delay loading,
place pointers to that machine in the data structures for
every machine which was involved in the local predic
tion leading to that decision. Then, if any of these ma
chines should change status, the scheduler can easily

10

5

20

25

30

35

40

45

50

55

60

65

26
determine which machines should recalculate their
local optimization. Note that machines involved in a
local optimization wherein the decision is to load imme
diately need not keep such pointers.

CALENDAR MECHANISM

In order to implement the scheduler system effi
ciently, it is necessary to have an efficient calendar
mechanism. The calendar must provide a place to store
information on upcoming events, and to indicate events
which are to take place in the current time step.
A calendar suitable for use with the scheduler de

scribed above must have several properties which are
somewhat conflicting. It must be relatively small and
fast for efficiency, since it will be consulted often. It
must also be able to store information extending far into
the future. For example, two years into the future is
probably a minimum for manufacturing processes in
order to take into account known preventive mainte
nance downtime. For time steps of six minutes, this
requires a minimum of approximately 175,000 time
steps. Also, the calendar must be able to have new
events inserted at any time in the future. New events
will be generated constantly by current events, such as
the loading of a machine generating the future event of
the expected unloading time.
A calendar which has separate slots for each time step

out to some time in the future would be very large. A
calendar mechanism is now presented which is fairly
small, fast and flexible.
The future is divided into buckets of time steps. The

first two buckets cover the same time period, and later
buckets are larger. Referring to FIG. 16, buckets 0
through N are shown. The size of the buckets increases
by powers of 2, except for the first two (0.1) which are
the same size. The size of the buckets may be chosen as
desired, and is 1 K (1024) time steps in the preferred
embodiment for the first two buckets. Buckets 2 is
therefor 2K time slots in size, while Buckets 3 through
N are each twice the size of the preceding bucket.
The size of a bucket refers to the number of time steps

which are calendared within that bucket. This indicates
only the potential number of events which can be con
tained within the bucket. If no events are currently
scheduled for the time span covered by the bucket, the
bucket will be empty. When a new event is scheduled,
the appropriate bucket is determined, and a notice of the
scheduled event is placed into that bucket.

It is seen that one property of dividing future time
steps into buckets as described above is that, starting
with bucket 2, the number of time steps contained
within each bucket is equal to the number of time steps
contained within all preceding buckets. This property
will be used to operate the calendar efficiently.

In order to minimize the amount of sorting which
takes place, only bucket 0 is sorted. The remaining
buckets contain notices of scheduled events in random
order. When a new event is scheduled during the time
period covered by, for example, bucket 2, the new no
tice of the event is merely added to the end of the list of
events currently held in bucket 2.

Bucket 0 is a sliding bucket, in that it moves to in
clude the current time step plus the next 1023 time steps.
Therefor, as time progresses, the time steps at the end of
bucket 0 overlap with those of bucket 1. This does not
cause any problems. Any newly scheduled events
which are within 1023 time steps of the current one are
placed into bucket 0 at the appropriate position. Thus,

5,260,868
27

bucket 0 always contains events which are scheduled
within the next 1023 time steps, and these events are
sorted.
When the current time reaches 1024, which is the

beginning of bucket 1, all of the events in Bucket 1 are
sorted and merged with bucket 0. Bucket 0 continues to
progress with time until time step 2047, overlapping
with bucket 2 in the same manner as just described.
When the current time reaches time step 2048, the con
tents of bucket 2 are put into buckets 0 and 1. The
events associated with the next 1024 time steps are
sorted and merged into bucket 0, with those remaining
simply put into bucket 1. At this point, the latest time
step associated with bucket 1 and with bucket 2 is the
same, so that bucket 2 is not used. The calendar is refer
enced as described above until 2048 more time steps
have passed.
At time step 4095, the end of bucket 1 has again been

reached. Bucket 0 contains newly calendared events for
the next 1024 time steps, as before. Bucket 3 is the next
bucket to use, so the contents of bucket 3 are split into
2 groups. Those events which take place during the last
half of the time period covered by bucket 3 are placed
into bucket 2, and those which occur during the first
half are split between buckets 0 and 1, with those going
into bucket 0 being sorted and merged with the events
currently contained there. The calendar then continues
to be referenced as described above.

In general, whenever the time period represented by
the end of a particular bucket is reached, the events
contained in the next bucket are distributed among the
preceeding buckets according to the time span covered
by such preceding buckets. Each bucket covers a time
span which is twice that of the preceding bucket, so that
the time span covered by any particular bucket will
always exactly span the sum of the time periods of all
preceding buckets.
Only bucket 0 actually orders the scheduled events

according to the time step in which they occur. The
remaining buckets consist of only a list of those events
which occur in the time period covered by that bucket.
Thus, large buckets do not necessarily take up more
storage space than smaller buckets; the size of a bucket,
except for bucket 0, depends only on the number of
events scheduled to occur in the relevant time frame. In
factory scheduling systems, and most other scheduling
situations, most of the currently scheduled events will
occur in the near future. For example, many events will
occur within the next 20-50 time steps, such as machine
loads and unloads, etc. Very few events are scheduled
to happen at a specific time a year in advance, and these
are typically annual maintenance shutdowns, annual
plant shutdowns for vacation, etc. Thus bucket 7, which
covers a time span of 65,536 time steps, begins approxi
mately 273 days after the start time of the calendar.
Very few events will be scheduled that far in advance,
so that bucket 7 will be relatively small.

In order to implement the above described calendar
mechanism efficiently in a computer, several preferred
data structures are used. All buckets except bucket 0
consist of linked lists of events. Each event has an de
scription identifying what is to occur, a time, and a
pointer to the next event in the list. The time is a binary
absolute number dating from the beginning of the use of
the calendar. If 24 bit numbers are used, i6 million time
steps can be calendared, which is equal to approxi
mately 190 years. Larger binary numbers can be used if
longer time periods are desired.

10

15

20

25

30

35

45

50

55

65

28
When events are assigned to particular buckets, the

decision as to which bucket should contain a particular
event can be easily made by manipulating the time bits
for the event. Initially, 10 bits are used for buckets 0 and
1. For those events which have time less than 1024, the
time indicates the slot within bucket 0 to which that
event should be assigned. Bucket 3 will contain events
having 12 bit times. When bucket 3 is distributed be
tween buckets 0-2, those events having times with a
most significant bit of 1 (the larger numbers) are as
signed to the next lower bucket, in this case bucket 2.
The next most significant bit is used to determine
whether the remaining events are assigned to bucket 0
or 1. Those events assigned to bucket 0 are placed into
a time slot according to their 10 least significant bits.
Events in all other buckets are simply kept in a linked
list.

Distribution of larger buckets is done in the same
manner, always using the most significant bit for that
bucket to determine whether an event is to be placed in
the first preceeding bucket (MSB is 1), or in some ear
lier bucket (MSB is 0). Note that the MSB used for this
decision is actually the MSB of the number representing
the size of the bucket. For example, all time periods
above 8M will have a MSB of 1 (assuming 24 bit times)
but distribution of bits from bucket 3 is always made
based on bit 12.
Assignment of newly scheduled events in bucket 0 is

equally simple. If a new event is less that 1024 time steps
later than the current time, that event is simply placed in
bucket 0 at the position indicated by its 10 LSB. This is
effectively a modulo 2*10 operation. A current time
pointer into bucket 0 constantly circulates through the
1023 positions therein; when the pointer reaches 1024, it
goes next to the 0 position in bucket 0.

Since bit manipulation is a very efficient operation on
digital computers, the decisions outlined above are done
very quickly. It should also be noted that no sorting in
the traditional sense is ever done. Events are simply
copied from one place to another based on the values of
1 or more bits. Actual times for two events are not
actually compared.

Each time slot in bucket 0 is actually a pointer to a list
of events which are to occur at that time. This pointer
is nil if no events are scheduled for a particular time.
The list of events which occur at a particular time is
preferably a simple single linked list.
Although a calendar system using powers of 2 has

been described, it is easy to use other bases. For exam
ple, a calendar can utilize powers of 10, which begins
with 10 equal sized buckets, followed by 9 buckets each
10 times as large as the first, etc. Variations on this
arrangement will become apparent to those skilled in
the art.

MODIFICATIONS AND VARATIONS
The scheduler described above has been detailed

with reference to a scheduling system for a semiconduc
tor front-end manufacturing facility which produces
basically one product. However, slight changes allow
the scheduler to be used in a wide variety of situations.

If several major product process flows exist in a facil
ity, an additional factor must be taken into consider
ation. This is that the relative product mix may vary
over time. For example, if three products are normally
fabricated in equal amounts, and it is then desired to
drop one product completely, the global analysis for the
factory will be incorrect. It then becomes necessary to

5,260,868
29

recalculate the global parameters so that the factory can
operate most efficiently.

If a change in product balance is relatively perma
nent, it is desirable to recalculate the entire global de
scription of the facility. If the change is a relatively
short fluctuation, such a total recalculation is not neces
sary. A relatively short fluctuation could be defined as
one which is less than the average cycle time for prod
ucts in the facility, although particular situations may
require special consideration. A two day fluctuation,
perhaps due to raw material supplies, in a facility having
an average cycle time of 3 weeks will not have a large
enough impact to justify a complete global recalcula
tion.

However, some efficiency can be gained by recalcu
lating the global parameters for the critical machines;
that is, the bottleneck and long queue wait machines. By
changing the machine profiles for these machines tem
porarily, until the fluctuation is over; overall operation
of the plant can be kept reasonably efficient. Note that
it is simple to effect the changes; the global recalcula
tions can be done as the time and resources become
available, and the results can simply be used to change
the machine profiles of the affected machines. Those
machines will immediately begin operating under the
new goals without disrupting the overall flow of prod
ucts through the plant.

If multiple products are manufactured in a facility,
especially if some of them are promised to be available
by certain dates, a few minor changes may be made in
the local optimization process. Every lot can carry a
due date within its data structure, and this date will be
given consideration when that lot is involved in a local
optimization. Thus, priority will be given to lots having
a close due date. Some lots may be special rush jobs, and
have a very close due date. These will generally be
moved through the system very quickly. However, it is
important to note that the general system is unchanged;
due dates on certain lots is simply another factor to be
considered by the local decision making process during
local optimization.
The principles described for the scheduler can also be

easily adapted to design a simulator for a factory sys
tem. The simulator simply uses the calendar to step

O

15

20

25

30

35

through times steps. For each time step, the status of 45
any machines, lots or process which changes is updated.
When the simulator indicates that a local decision is to
be made, the same decision as described above is made,
using the status of the neighborhood as held in the simu
lator instead of in the actual factory floor. Since a simu
lacrum of the factory is inherently contained within the
scheduler, it is only necessary for the simulator to ba
able to access that information, and update it. The simu
lator primarily consists of display and operator interac
tion tools, and random number generators to determine
occurances of machine breakages and repairs. The ran
dom numbers are modified by the MTBF and MTTR
numbers for each machine.
A system for scheduling a semiconductor front end

has been implemented consistent with the above de
scription. It is written in Common LISP, and runs on an
EXPLORER symbolic computer from Texas Instru
ments. A detailed simulation of a complete front end has
been run, and the scheduler has proven capable of
scheduling the factory at a speed greater than 1000
times faster than real time. This allows an entire month
of scheduling, and simulation of plant operation, to be
run in less than one hour.

50

55

65

30
TECHNICAL ADVANTAGES

The improved scheduler allows scheduling decisions
to be made in real time, or faster. The important parts of
the problem are highlighted in the global analysis. The
global goals of the facility are abstracted into a set of
information, the machine profile, which allows local
decision to be made which are consistant with and sup
port the global strategies which are desired. Local deci
sions can be made accurately through the use of local
prediction, which allows each machine to make loading
decisions based on the short term future events in its
neighborhood as well as the global goals. Since the
scheduler and simulator are relatively fast, changes in
strategy can be modelled to determine their probable
effect on overall plant operation. The scheduling sys
tem is very flexible, and can easily be adapted to most
classes of automated scheduling, including manufactur
ing, shipping, and other fields which require planning of
future events.
The embodiment described above illustrates the in

vention, but it will be appreciated that modifications,
variations and substitutions will become apparent to
those skilled in the art. The above description does not
define the limits of the invention, which has a scope
defined by the claims.
What is claimed is:
1. A method to be performed by a machine for calen

daring a plurality of events which are to occur on a
plurality of machines at various times to thereby control
operation of and improve scheduling of said plurality of
machines, comprising the steps of:

(a) dividing future time spans into a plurality of seg
ments of unequal length, wherein later segments
are predetermined multiples of the length of the
first segment;

(b) placing events to occur on any of the said plurality
of machines in appropriate buckets representative
of the time segments;

(c) incrementing a clock, wherein each of said events
are removed from the first bucket when the clock
reaches their calendared time; and

(d) dividing the events contained in larger buckets
among appropriate smaller buckets when previous
buckets have been emptied, and resetting the time
represented by the first bucket to the current time.

2. The method for calendaring a plurality of events of
claim 1, wherein said first bucket is a sliding bucket.

3. The method for calendaring a plurality of events of
claim 1, wherein only said first bucket is sorted.

4. The method for calendaring a plurality of events of
claim 1, wherein said events in all buckets other than
said first bucket are linked lists of events.

5. The method for calendaring a plurality of events of
claim 4, wherein each of said events has a description
identifying what is to occur, a time, and a pointer to the
next event in the list.

6. The method for calendaring a plurality of events of
claim 4, wherein said linked lists are simple single linked
lists.

7. The method for calendaring a plurality of events of
claim 1, wherein said second bucket covers a segment of
future time span equal to said first bucket, and each
other said bucket covers a segment of future time spans
which is twice that of an immediately preceding bucket,
so that said segment covered by any particular bucket
will always exactly span the sum of the segments of all
preceding buckets.

5,260,868
31

8. A calendar mechanism for a scheduler system con
trolling the operation of a plurality of machines, com
prising:
a timing means which is adapted to be incremented
by the system;

a means for dividing future time spans into a plurality
of segments of unequal length, assigning each of a
plurality of buckets to correspond to each of the
plurality of segments, wherein later segments are
predetermined multiples of the length of the first
segment;

a means for receiving inputted events from the system
and placing said inputted events in appropriate
buckets representative of the time segments re
ceived from said segmenter;

a means for removing events from a first bucket when
the incremented clock reaches their calendared
time and outputting such event to the system for
appropriate response by the machine; and

a controlling means for dividing the events contained
in later buckets among appropriate earlier buckets
when previous buckets have been emptied, and

10

15

20

25

30

35

45

50

55

65

32
resetting the time represented by the first bucket to
the current time.

9. The calendar mechanism for a scheduler system of
claim 8, wherein said first bucket is a sliding bucket.

10. The calendar mechanism for a scheduler system
of claim 8, wherein only said first bucket is sorted.

11. The calendar mechanism for a scheduler system
of claim 8, wherein said events in all buckets other than
said first bucket are linked lists of events.

12. The calendar mechanism for a scheduler system
of claim 11, wherein each of said events has a descrip
tion identifying what is to occur, a time, and a pointer to
the next event in the list.

13. The calendar mechanism for a scheduler system
of claim 11, wherein said linked lists are simple single
linked lists.

14. The calendar mechanism for a scheduler system
of claim 8, wherein a second bucket covers a segment of
future time span equal to said first bucket, and each
other of said plurality of buckets cover a segment of
future time spans which is twice that of an immediately
preceding bucket, so that said segment covered by an
particular bucket will always exactly span the sum of
the segments of all preceding buckets.

s: k k k

