woO 2008/019158 A2 |00 00 000 T I

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f ‘1”1‘

) IO O T O OO O

International Bureau

(43) International Publication Date
14 February 2008 (14.02.2008)

(10) International Publication Number

WO 2008/019158 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2007/017794

(22) International Filing Date: 9 August 2007 (09.08.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/822,068 10 August 2006 (10.08.2006) US

(71) Applicant (for all designated States except US): IN-
TERTRUST TECHNOLOGIES CORPORATION
[US/US]; 955 Stewart Drive, Sunnyvale, CA 94085 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): SPECTOR, Vadim,
0. [US/US]; Redwood City, CA (US).

(74) Agent: THAYER, Linda, J.; Finnegan, Henderson,
Farabow, Garrett & Dunner LLP, 901 New York Avenue,
N.W., Washington, DC 20001-4413 (US).

(81)

(34)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

(54) Title: TRUST MANAGEMENT SYSTEMS AND METHODS

30
14 o

& Application Domain Configuration - nemo-config.x...

File Tools

NS Bl

20~

Role Alias

Leaf

o Monitor

Issuers \ Invokers \

24+

]

ISSUER

26—

]

[XML Y NodesY Principalsy Services) Roles\ |

s

| Leaf]|][|
Monitor][_][]

Monitor

28

SUBJECT

Nemo configuration is valid

a4

(57) Abstract: Systems and methods are presented
for facilitating the configuration of a trust management
framework for use in conjunction with web services,
digital rights management systems, and/or other appli-
cations. A method for configuring a trust management
framework involves providing graphical user interfaces
(GUIs) to a user that prompt the user to define certain
aspects of the trust management framework in a
self-consistent manner. In one embodiment, a method
comprises providing a roles GUI that prompts a user
to define roles, a services GUI that prompts the user to
define services corresponding to the roles, a principals
GUI that prompts the user to define principals, including
associating at least one of the roles with a principal, and
a nodes GUI that presents role bindings for principals
that are designated to function as nodes and that prompts
the user to define interactions between nodes.

WO 2008/019158 PCT/US2007/017794

TRUST MANAGEMENT SYSTEMS AND METHODS

RELATED APPLICATIONS

[001] This application claims the benefit of U.S. Provisional Application No.

60/822,068, filed August 11, 2006, which is hereby incorporated by reference.
COPYRIGHT AUTHORIZATION

[002] A portion of the disclosure of this patent document contains material
which is subject to copyright protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or the patent disclosure, as
it appears in the Patent and Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

BACKGROUND

[003] As network and computer security increases in importance, the design
and implementation of a robust trust management framework has become a more
important part of the creation of networked services and other applications.
However, tHe design and implementation of a trust management framework is often
relatively unrelated to the functionality of the services and applications that rely on it,
and, as a result, the architects of such services or applications may lack the
specialized knowledge to design and implement a trust management framework in
an efficient, correct manner.

[004] Trust management can entail the use of various building blocks, such
as cryptography, the public key infrastructure, digital certificates (and the chaining
thereof), security assertion markup language (SAML) assertions (e.g., to define
roles), and the like. In general terms, a trust management framework typically
defines how a system verifies that entities are who they say they are and ensures
that entities are only allowed to perform the actions that they are authorized to
perform. Configuring a self-consistent, secure trust management framework can be
a complex task, since, in a given system, there will typically be a variety of entities
with overlapping roles and authorizations.

SUMMARY

[005] Systems and methods are presented for facilitating the configuration of
a trust management framework for use in conjunction with web services, digital rights
management systems, and/or other applications. For example, without limitation, the
systems and methods described herein can be used to assist various stakeholders

WO 2008/019158 PCT/US2007/017794

interested in employing technology, such as the Networked Environment for Media
Orchestration (NEMO) service orchestration technology described in commonly
assigned U.S. Patent Application No. 10/863,551 (Publication No. 2005/0027871)
(“the ‘551 application”), and/or the digital rights management (“DRM”) technology
described in commonly assigned U.S. Patent Application No. 11/5683,693
(Publication No. 2007/0180519) (“the ‘693 application”) for designing and
implementing, e.g., secure DRM systems. The ‘551 application and the ‘693
application are hereby incorporated by reference into this application in their entirety.

[006] In one embodiment, a method for configuring a trust management
framework for use in a network environment involves providing various graphical
user interfaces to a user that prompt the user to define certain aspects of the trust
management framework. In particular, a method for configuring a trust management
framework for use in a network environment comprises providing a roles graphical
user interface that prompts a user to define roles, providing a services graphical user
interface that prompts the user to define services corresponding to the roles,
providing a principals graphical user interface that prompts the user to define
principals, including associating at least one of the roles with a principal, and
providing a nodes graphical user interface that presents role bindings for principals
that are designated to function as nodes and that prompts the user to define
interactions between nodes. In one embodiment, the method ensures that the trust
management framework is configured in a self-consistent manner. For example, at
many points, the configuration graphical user interfaces present a user with a set of
options to select from. To ensure self-consistency, the options are limited to only
valid options, where the validity of the selection options is based on previous
configuration decisions.

[007] In one embodiment, a system for configuring a trust management
framework for use in a network environment includes a roles module, a services
module, a principals module, and a nodes module. The roles module prompts a user
to define roles. The services module prompts the user to define services
corresponding to the roles. The principals module prompts the user to define
principals, including associating at least one of the roles with a principal, the nodes
module presents role bindings for principals that are designated to function as nodes
and prompts the user to define interactions between nodes.

WO 2008/019158 PCT/US2007/017794

[008] Other aspects and advantages of the inventive body of work will
become apparent from the following detailed description, taken in conjunction with
the accompanying drawings, illustrating by way of example the principles of the

inventive body of work.

BRIEF DESCRIPTION OF THE DRAWINGS

[009] The inventive body of work will be readily understood by referring to the
following detailed description in conjunction with the accompanying drawings,
wherein like reference numerals designate like elements and in which:

[010] FIG. 1 shows an example of a workflow wizard for configuring a trust
management framework.

[011] FIG. 2 depicts a Roles GUI for defining certain attributes of a role
issuer.

[012] FIG. 3 depicts a Roles GUI for defining certain attributes of a role
invoker.

[013] FIG. 4 depicts a namespace configuration editor.

[014] FIG. 5 depicts a Services GUI for defining services.

[015] FIG. 6 depicts a Principals GUI for defining principals and their
credentials.

[016] FIG. 7 depicts an extended key usage editor for defining extended key
usages.

[017] FIG. 8 depicts a Nodes GUI for defining nodes.

[018] FIG. 9 depicts an illustrative computer system for practicing
embodiments of the configuration tool.

[019] FIG. 10 depicts an expanded view of the configuration tool from FIG. 9.

[020] FIG. 11 is a process flow diagram of a method for configuring a trust
management framework in accordance with one embodiment.

DETAILED DESCRIPTION

[021] A detailed description of the inventive body of work is provided below.
While several embodiments are described, it should be understood that the inventive
body of work is not limited to any one embodiment, but instead encompasses
numerous alternatives, modifications, and equivalents. In addition, while numerous
specific details are set forth in the following description in order to provide a thorough
understanding of the inventive body of work, some embodiments can be practiced

WO 2008/019158 PCT/US2007/017794

without some or all of these details. Moreover, for the purpose of clarity, certain
technical material that is known in the related art has not been described in detail in
order to avoid unnecessarily obscuring the inventive body of work.

[022] Systems and methods are presented for facilitating the configuration of
a trust management framework for use with web services, digital rights management
systems, and/or other applications. For example, without limitation, the systems and
methods described herein can be used to assist various stakeholders interested in
employing technology, such as the Networked Environment for Media Orchestration
(NEMO) service orchestration technology described in the ‘551 application, and/or
the digital rights management technology described in the ‘693 application for
designing and implementing, e.g., secure DRM systems. It will be appreciated that
these systems and methods are novel, as are many of the components, systems,
and methods employed therein.

[023] As described in more detail in the ‘551 application, trust management
can entail the use of various building blocks, such as cryptography, the public key
infrastructure, digital certificates (and the chaining thereof), security assertion
markup language (SAML) assertions (e.g., to define roles), and the like. In general
terms, a trust management framework is typically concerned with defining how a
system verifies that entities are who they say they are and ensuring that entities are
only allowed to perform the actions that they are authorized to perform. Defining a
self-consistent, secure trust management framework can be a complex task, since,
in a given system, there are typically a variety of entities with overlapping roles and
authorizations.

[024] In preferred embodiments, a configuration tool (sometimes referred to
herein simply as “the tool”) is used to facilitate the configuration of a trust
management framework for use with web services, digital rights management
systems, application programs, and/or the like. Embodiments of the configuration
tool can be valuable in presenting complex networks (such as those described in the
‘551 application, and/or any other suitable network) in an intuitive, graphical form that
makes it easier to grasp the relations between the various system elements.

[025] Embodiments of the configuration tool can help system architects by
continuously validating a trust management framework for internal consistency as
the trust management framework is being configured, and by capturing the

configuration in an unambiguous, computer- and human-readable form.

4

WO 2008/019158 PCT/US2007/017794

[026] Embodiments of the configuration tool can enhance the productivity of
system implementers. From the network model produced by the design process, the
configuration tool can be used to automatically generate all trust management
credentials for all NEMO principals. In some embodiments, the configuration tool
can also be used to generate a default Java-based project with stub code for
applications and services implied by the model, such that a quickly realizable
implementation is able to perform live interactions between NEMO nodes as defined
by the model. Thus, embodiments of the configuration tool can help developers to
quickly obtain the working baseline functionality, thereby enabling the developers to
concentrate on implementing the business logic for NEMO services and consumer
applications, while remaining agnostic to the trust management issues which, in the
absence of the configuration tool, might otherwise consume a large share of the
development effort.

[027] In one embodiment, the configuration tool includes a trust management
editor that guides a user through the configuration of a trust management framework.
FIG. 1 shows an example of a workflow wizard dialog 10 that allows a user to
configure a new trust management framework or to modify the configuration of an
existing trust management framework. In the example shown in FIG. 1, selecting the
“Create..."” button 12 of the workflow wizard causes the user to be presented with an
application domain configuration editor, also referred to herein as the trust
management editor.

[028] In a preferred embodiment, the trust management editor includes four
main modules that are presented to the user through function-specific graphical user
interfaces (GUIs). The function-specific GUIs include a Roles GUI, a Services GUI,
a Principals GUI, and a Nodes GUI. An embodiment of the trust management editor
is described with reference to FIGS. 2 — 8. With reference to FIG. 2, the trust -
management editor includes a tool bar 14 and function-specific tabs 20, 22, 24, 26,
and 28. The tool bar provides access to common application operations, including,
for example, file management operations and some application-specific operations
such as namespace (NS) and extended key usage (XKU) operations. The function-
specific tabs are used to launch the function-specific GUIs. The function-specific
GUls and their associated functions are described below with reference to FIGS. 2 -
8.

Roles GUI

WO 2008/019158 PCT/US2007/017794

[029] FIG. 2 depicts an embodiment of the trust management editor in which
the Roles GUI 30 is displayed. The Roles GUI prompts a user to define roles. In
one embodiment, a role is a set of services that a given peer exposes in combination
with a specific behavior pattern. In this embodiment, the Roles GUI includes a two-
column Role Name editor with the left column labeled as the “Role” column and the
right column labeled as the “Alias” column. The “Role” column is configured to be
populated with a list of role names and the “Alias” column is configured to be
populated with corresponding role aliases. In a preferred embodiment, role aliases
are optional and if defined, they are used to display role names in shorter form. In
the embodiment of FIG. 2, roles identified as the “Leaf” role and the “Monitor” role
are defined. For this example, the Leaf role is a client-only role that exposes no
services and the Monitor role is a role that exposes one service, which is described
in more detail below.

[030] In the embodiment shown in FIG. 2, the Roles GUI also includes
Issuers and Invokers tabs, which, when selected, present the user with a
corresponding Issuers or Invokers matrix. FIG. 2 depicts the Roles GUI with the
Issuers matrix 32 selected. The Issuers matrix is used to define what roles can be
asserted by what roles. In one embodiment, a role assertion identifies what role “X”
a principal should possess, in order to be entitled to issue a role assertion for role “Y”
to other principals. For example, “X” corresponds to an “Issuer Role”, while “Y”
corresponds to a “Subject Role”. In the embodiment of FIG. 2, the Issuers matrix
includes Issuer roles on the x-axis and Subject roles on the y-axis and each axis of
the matrix is automatically populated with each role that is defined in the Role Name
editor. Interactions between roles are identified by marking the intersection point
between an Issuer role and a Subject role and in the embodiment of FIG. 2, marking
the intersection point between an Issuer role and a Subject role indicates that the
marked Issuer role can assert the marked Subject role. That is, a marking at the
intersection between an Issuer role and a Subject role defines what role, as indicated
in the x-axis, should a role issuer have in order to assert the Subject role, as
indicated in the y-axis. Note that in the embodiment shown in FIG. 2, only a subset
of the defined roles happens to correspond to role issuers; other roles may refer to
the roles used by NEMO nodes to authorize access to various NEMO services. In
one embodiment, this is due to overloading of the notion of “Role”, resulting in two

separate matrices — “Issuers” and “Invokers”. The latter describes interactions

6

WO 2008/019158 PCT/US2007/017794

(invocations) between nodes, playing different roles. The former — how those roles
get assigned in the first place. Sometimes roles have both functions. For example,
services with the role “A” may issue role “B” assertions to the clients with the role
“C”. In this example, the Issuers matrix defines a {"A”, “B"} tuple, indicating that role
‘A" may assert role “B”. At the same time, the “Invokers” matrix defines a {*C”", “A"}
tuple, meaning that any client with the role “C” may contact a service with the role “A”
— most naturally, to ask for granting a new, role “B", assertion, to gain more
capabilities as a participant in a given trust management ecosystem.

[031] FIG. 3 depicts the Roles GUI 30 with the Invokers matrix selected. The
Invokers matrix 34 is used to define the relationship between Requester and
Responder roles. In the embodiment of FIG. 3, the Invokers matrix includes
Requestor roles on the y-axis and Responder roles on the x-axis and again each
axis of the matrix is automatically populated with each role that is defined in the Role
Name editor. Interactions between roles are identified by marking the intersection
point between a Requestor role and a Responder role and in the embodiment FIG. 3,
marking the intersection point between a Requestor role and a Responder role
indicates that the marked Requester role can invoke the marked Responder role.
That is, a marking at the intersection point between a Requester role and a
Responder role defines what role, as identified in the x-axis, is required for one node
to invoke a service on another node acting in the role, as identified in the y-axis. In
the example of FIG. 3, the checked box indicates that the Leaf role (Requestor) can
invoke the Monitor role (Responder).

[032] With the Roles GUI 30, a user is free to name any roles and to define
the relationships between roles in any fashion. As is described below, the
relationships specified in the Issuers and Invokers matrices are reflected in
subsequent configuration operations. The graphical representation of the
relationships between roles, as graphically expressed through the matrices, is one of
the features that makes the trust management tool user friendly. Although the roles
GUI uses the Issuers and Invokers matrices as depicted in FIGS. 2 and 3 to
graphically depict the relationship between roles, other forms of presentation are
possible.

[033] Once the roles are named and the role relationships are specified,
services can be configured for the roles. In one embodiment, prior to configuring

per-role services, the user is prompted to launch a namespaces configuration editor.

7

WO 2008/019158 PCT/US2007/017794

The namespaces configuration editor prompts a user to define namespaces for
schema types of all request and response message payloads defined for services
and their operations. FIG. 4 depicts an embodiment of a namespaces configuration
editor 38 that is launched by pressing the “NS” button on the tool bar of the trust
configuration editor (see FIGS. 2 and 3). In the embodiment of FIG. 4, the
namespaces configuration editor includes “Alias,” “Namespace,” and “Schema
Location” columns. The “Alias” column is used to define an alias for each
namespace, the “Namespace” column is used to define the namespace of an XML
schema, and the “Schema Location” column is used to define the location of the
schema for the corresponding namespace. Once the namespaces are configured,
the user is returned to the active function-specific GUI by selecting the “OK” button.

Services GUI

[034] In one embodiment, after the roles and the namespaces have been
defined, the Services tab 22 is selected to launch the Services GUI. FIG. 5 depicts
an embodiment of the trust management editor in which the Services GUI 40 is
displayed. The Services GUI includes a services editor that prompts a user to define
services corresponding to the roles that were defined via the Roles GUI. A service
encapsulates the representation of a set of well-defined functionality exposed or
offered by a responder Node. In one embodiment, the Services GUI is pre-
populated with the roles that were previously defined via the Roles GUI 30 (for
example, the “Leaf’ and “Monitor” roles that were defined in FIG. 3). For each role,
the user may define the set of services that are exposed by a node with the
corresponding role. Note, that some roles may have no corresponding services
because they are either issuer roles or client-only roles. The exemplary service
depicted in FIG. 5 is a “Presence” service whose function is to ensure that a node is
available. It should be noted that the number and type of services associated with
the roles is application-specific. The software code associated with the specified
services is embodied in service-specific software modules. Development of service
modules for peer-to-peer interactions is described, for example, in the ‘551
application.

[035] Each service can have one or more corresponding operations and
each operation can have different messaging characteristics that can be defined. In
the embodiment of FIG. 5, the Services GUI 40 prompts the user to define certain

messaging characteristics related to trust management. The characteristics are

8

WO 2008/019158 PCT/US2007/017794

organized into columns within which the user can make certain specifications. The
particular messaging characteristics presented in the Services GUI of FIG. 5 are:

(a) “Element” field — XML element type representing the XML schema type of
the message payload;

(b) “Integrity” checkbox — an indication of whether or not the message must be
integrity-protected (e.g., digitally signed);

(c) “Confidentiality” checkbox — an indication of whether or not the message
must be confidential (e.g., encrypted);

(d) “Timestamp” checkbox — an indication of whether or not the message must
be time-stamped;

(e) “Nonce” checkbox — an indication of whether or not the message must
include a nonce (number once) to guarantee its uniqueness.

[036] In the embodiment of FIG. 5, the Services GUI 40 organizes the roles,
corresponding services, and corresponding operations in a hierarchical manner
using folders and subfolders to graphically represent the relationships between the
various roles, the corresponding services, and the corresponding operations. The
graphical representation of the relationships between roles, services, and operations
and the associated messaging characteristics is one of the features that makes the
trust management editor more user friendly than having to write service-related code
for each new service and read through lines of configuration code to decipher similar
relationships and characteristics.

Principals GUI

[037] The Principals tab 24 is selected to launch the Principals GUI. FIG. 6
depicts an embodiment of the trust management editor in which the Principals GUI
50 is displayed. In one embodiment, a Principal is an entity that has a unique
identity. That is, a Principal roughly corresponds to a notion of a single identity, but
how this identity is established is domain-specific. For example, both X.509
certificates and SAML assertions have a notion of a “subject”, to whom they are
issued. Subject name is part of those credentials’ content, and it should be the same
for a given Principal. However, other credentials may have no subject, e.g. secret
keys. Once any private credential leaks, this Principal may be impersonated.

[038] The Principals GUI 50 prompts a user to define principals of the trust
management framework, including associating at least one of the previously defined
roles with a principal and supplying the principals with credentials that are

9

WO 2008/019158 PCT/US2007/017794

appropriate for their intended use within the trust management framework. In the
embodiment of FIG. 6, the Principals GUI includes a Principals Name editor and a
Principals Credentials editor. The Principals Name editor includes a “Name” column,
a “URN" column, a “NEMO Node” column, and an “Imported” column. The columns
of the Principals Name editor prompt a user to identify the following information for
each principal that is defined:

Name - a short, user-friendly name that is used elsewhere in the tool to
reference the principal;

URN - the Uniform Resource Name (URN) used in credentials issued for/by
the corresponding principal;

NemoNode — whether the corresponding principal is a NEMO node. If the
principal is not a NEMO node then in one embodiment the principal is to be only a
credentials issuer;

[039] Imported — whether the corresponding principal is an internal principal
to be defined and provisioned as part of the designed system or a pre-existing
external principal, whose credentials must be imported and used inside the designed
system. Since the present example is a description of the configuration of an entire
trust management framework from scratch, this box is un-checked in this example.

[040] In one embodiment, the Principals Name editor may include a column
that prompts a user to identify how many times the principal is to be replicated. In
further embodiments, the Principals Name table may include additional replication
information such as the starting identifier for the principal that is to be replicated. In
the case where a principal is to be replicated, the URN of the principal will include a
floating character to indicate where a unique identifier is to be inserted. For
example, if a principal is to be replicated 100 times starting at ID = 1, each principal
will have a URN that includes the same URN except for the ID, with the ID of the 100
different principals ranging from 1 — 100. This feature can be applied to production
environments where multiple similar devices are being produced, with each device
requiring a different URN.

[041] In the example of FIG. 6, the principals “CA,” “RA,” “LeafNode,” and
“MonitorNode” are defined. In this example, the principal CA is defined to act as a
certificate authority, the principal RA is defined to act as a role assertion authority.
For example, any Principal, which has one or more certificates capable of signing
other certificates, is the CA (for X.509 certificates, it is key usage 4 — “certificates

10

WO 2008/019158 PCT/US2007/017794

signing”). Any Principal, which has one or more certificates capable of data signing
(key usage 128 — “data signing”) PLUS this certificate is marked in the GUI as an
attribute issuer, becomes a Role Authority (RA). So, a Principal obtains its
capabilities from its credentials. The principal LeafNode is defined to carry out the
Leaf role, and the principal MonitorNode is defined to carry out the Monitor role.

[042] In one embodiment, the credentials of principals that are defined in the
Principals Name editor are defined via the Principals Credentials editor. In a
preferred embodiment, there are two kinds of credentials, certificates and assertions,
where, for example, a certificate binds a name to a public key and an assertion binds
a name to a role. In the embodiment of FIG. 6, the Principals GUI 50 prompts a user
to identify the credentials of a principal in terms of the following characteristics:

Issuing Principal — the principal from which a certificate is issued

Issuing Certificate — the name of the certificate from which the current
certificate is issued

Attribute Issuer — whether or not the certificate can function as an attribute
issuer

Usage — a code value that represents what the certificate can be used for
(e.g., standard enumerated key usages for X.509 certificates).

Value - defines extended key usages for each certificate. For example, in
one embodiment, the Value field could be a context-dependent field triggering pop-
up dialog with more detailed information for each credential type. For certificates,
the Value field may provide information like key usage, validity dates, XKUs, etc. For
SAML assertions, the Value field may include a list of all attribute names and their
values, validity interval, etc.

Provisioned - indicates whether a Principal gets originally provisioned with
these credentials, or acquires them during operations in the field.

[043] In one embodiment, each principal that is intended to be used as a
certificate authority is supplied with at least one certificate with the key usage for
certificate issuing (e.g., usage = certificate issuing). The certificate name should be
picked as a short user-friendly name used for reference elsewhere in the tool. Each
principal intended to be used as a role issuer is supplied with at least one certificate
for role signing (usage = data signing) and zero or more role assertions, if some role

issuing rules were defined earlier. In one embodiment, each principal that is

11

WO 2008/019158 PCT/US2007/017794

identified as a NEMO node has at least two certificates, one for data signing and one
for key encryption, to support message integrity and confidentiality respectively.

[044] In a preferred embodiment, attribute assertions are populated with
attributes. For example, an assertion “asserts” certain information about its subject
(Principal). Trust to an assertion is based on trust to its signer (assertion issuer).
Attribute assertions consist of one or more attributes. In one embodiment, each
attribute has a name and zero or more values. Role assertion is just a simple case
of an assertion with a single attribute “role” and one or more values (role names). In
one embodiment, all attributes come with the “role” attribute name by default. In one
simplified embodiment, this is the only attribute playing a role in trust management.
In one embodiment, to ensure self-consistency during configuration, the Principals
Credentials table is programmed to only allow the selection of the previously defined
roles as a valid attribute assertion.

[045] Referring to the Principal Credentials table in the example of FIG. 6,
the principal “CA”" has one certificate that is identified as “CA-Cert,” an Issuing
Principal identified as “CA,” an issuing certificate identified as “CA-Cert,” and a
usage of 4, where 4 = certificate signing. The principal “RA” has one certificate
identified as “RA-Cert,” an Issuing Principal identified as “CA,” an issuing certificate
identified as “CA-Cert,” and a usage of 128, wherein 128 = data signing. The
Principal “RA” is also identified as an attribute issuer.

[046] The principal “LeafNode” includes two certificates, “LeafNode-Cert” and
“LeafNode-ConfidentialityCert” and one assertion, “LeafNode-LeafRole.” The
certificate “LeafNode-Cert” has an Issuing Principal “CA,” an issuing certificate “CA-
Cert,” and a usage of 128 and the “LeafNode-ConfidentialityCert” has an Issuing
Principal “CA," an issuing cert “CA-Cert” and a usage of 32, where 32 = encryption.
In one example embodiment, an Issuing Cert is any certificate with the key usage 4
(certificate signing). Correspondingly, an Issuing Principal is a principal that
possesses at least one Issuing Certificate. The assertion “LeafNode-LeafRole” has
an issuing principal “RA” and the attribute of the previously defined “Leaf” role. In
one embodiment, in the usage field, a user is presented only with the previously
defined roles as valid selection options. This feature helps to guide the user to a
self-consistent and valid configuration. '

[047] In the example shown in FIG. 6, the principal “MonitorNode” includes
two certificates, “MonitorNode-Cert” and “MonitorNode-ConfidentialityCert” and one

12

WO 2008/019158 PCT/US2007/017794

assertion, “MonitorNode-MonitorRole.” The certificate “MonitorNode-Cert’ has an
Issuing Principal “CA,” an issuing certificate “CA-Cert,” and a usage of 128 and the
“MonitorNode-ConfidentialityCert” has an Issuing Principal “CA,” an issuing cert “CA-
Cert,” and a usage of 32. The assertion “MonitorNode-MonitorRole” has an issuing
principal “RA" and the attribute of the previously defined “Monitor” role.

[048] In one embodiment, extended key usages are defined using an
extended key editor, which is launched by selecting the “XKU" button depicted in the
tool bar 14 of the trust configuration editor. FIG. 7 depicts an embodiment of an
extended key editor 52 that includes an “OID" column and an “Alias” column. The
OID column defines the object identifier (OID) valid for extended key usages. The
Alias column defines short, user-friendly aliases used elsewhere in the tool.

[049] Referring back to FIG. 6, the Principals Credentials table of the
Principals GUI 50 organizes the Principals and corresponding credentials
(certificates and assertions) in a hierarchical manner using folders and subfolders to
graphically represent the relationships between the various Principals and the
corresponding credentials. Further, the configurable characteristics of the
credentials are graphically displayed for each Principal. The graphical
representation of the relationships between Principals and credentials and the
associated credential characteristics makes the trust management editor more user
friendly than having to write program code to configure each Principal or read
through lines of configuration code to decipher similar relationships and
characteristics.

[050] In the example shown in FIG. 6, and the Principals GUI 50 in particular,
the order of principals is important, in order to avoid circular dependencies, like A
signs B, B signs C, C signs A. Accordingly, the list of available Issuing Principals
and Issuing Certificates, available for each principal’s certificate, is populated from
the earlier created list of principals (and, therefore, their credentials).

Nodes GUI

[051] The Nodes tab 26 is selected to launch the Nodes GUI. FIG. 8 depicts
an embodiment of the trust management editor in which the Nodes GUI 60 is
displayed. A node is a representation of a participant in the system framework. A
node may act in multiple roles including that of a service consumer and/or a service
provider. Nodes may be implemented in a variety of forms including consumer

electronics devices, software agents such as media players, or virtual service

13

WO 2008/019158 PCT/US2007/017794

providers such as content search engines, DRM license providers, or content
lockers. The Nodes GUI presents role bindings for principals that are designavted to
function as nodes (e.g., NEMO nodes) and prompts a user to define interactions
between nodes. In one embodiment, the Nodes GUI includes a Node Definition
table and a Node Interaction editor. The Node Definition table graphically presents
the role bindings for the principals that are designated as NEMO nodes in the
Principals GUI 50 (see FIG. 6). In the example of FIG. 8, the role bindings are
presented as either client or service role bindings based on the role relationships that
were defined in the Invokers matrix described with reference to FIG. 3. For example,
the list of available client and/or service bindings for a given node can be based on a
set of SAML assertions that a principal has, and the roles those assertions define. In
turn, in this example, the roles that can be used in client binding, in service bindings,
or both, depends on the Invokers matrix (recall that in one embodiment the same
role can be defined in the Invokers matrix both as “requester” and “responder”). As
used herein, the term “node” generally refers to a principal that engage in
interactions with other nodes (e.g., using its credentials).

[052] Further, in a preferred embodiment, the trust management editor
allows nodes to be configured for specific roles only if their corresponding principals
were configured with the corresponding role assertions. Both of these features
ensure that a self-consistent configuration is being established.

(053] In one embodiment, each service or client role binding refers to one of
the principal's role assertions. Once instantiated, a service role binding is
automatically pre-populated with service bindings for each service defined earlier for
the given role. In one embodiment, service bindings can be modified, but not
removed or added, for that would constitute a breach of the role contract. As
described above with regard to FIG. 5, the Services GUI 40 defines the services that
need to be exposed for a node acting in a given role. In one embodiment, once a
“service role binding” is added for a given role “X”, for a given node under the Nodes
GUI 60, the following assertions are made: a) the node has a SAML assertion
defining role “X” (verified automatically); b) the role “X" is mentioned at least once in
the “Invokers” matrix as a “responder role” (verified automatically); and c¢) the node
intends to use this SAML assertion to provide services to other nodes. In one
embodiment, the role contract says that by accepting the service role “X", the node

must provide all services defined under the Services GUI for a given role “X”, not just

14

WO 2008/019158 PCT/US2007/017794

their subset. It is enforced in the Nodes GUI by auto-populating a fixed list of all
service bindings for a given role “X".

[054] In one embodiment, each client role binding is automatically pre-
populated with client bindings for each service that the client with the given role
should be able to invoke. In one embodiment, pre-population of the role bindings
involves: a) from the Invokers matrix, find all tuples where the role “X” is a “requestor
role” and create a list of all “responder roles”; b) from the Services GUI 40, for each
‘responder role,” get the list of services; and c) combine all services lists into one big
list - this is the list of all client bindings. In one embodiment, there is no such thing
as a “Client Contract”. That is, just because a node can act in a client role “X”, does
not mean that the node must contact all services that the node is able to contact with
the given client role. Being able to issue requests of the given types is a capability,
while being able to respond to requests of the given types at any time is an
obligation. For example, the roles (and therefore the services) that a client is able to
invoke are defined via the roles Invokers matrix 34 described above with reference to
FIG. 3.

[0565] In one embodiment, each client or service binding is defined in terms of
the following characteristics:

Role Assertion — the name of the corresponding role assertion identified in the
Principals GUI 50;

Service type — for a service binding the field identifies the type of exposed
service, whereas for a client binding this field identifies the service that can be
invoked by a given client;

Integrity Cert — the name of the certificate that is used for message signing;

Confidentiality Cert — the name of the certificate that is used for message
encryption;

Messaging TA (Trust Anchor) — the trust anchor certificate defined for one of
the certificate authority principals, to be used for validating the peer's certificates for
message signing and/or encryption;

Attribute TA (Trust Anchor) — the trust anchor certificate defined for one of the
certificate authority principals, to be used to validate the peer’s role signing
certificates

Trusted AA (Attribute Assertion) Cert — certificate of the principal, which is
trusted with issuing peer’s roles.

15

WO 2008/019158 PCT/US2007/017794

[056] In the embodiment of FIG. 8, the Nodes GUI 60 organizes the nodes,
service role bindings, and client role bindings in a hierarchical manner using folders
and subfolders to graphically represent the relationships between the various nodes
and their corresponding role bindings. The graphical representation of the
relationships between nodes, service role bindings, client role bindings and the
associated role binding characteristics makes the trust management editor more
user friendly than having to read through lines of configuration code to decipher
similar relationships and characteristics.

[057] In addition to listing all the client and service bindings, in one
embodiment the Nodes GUI 60 defines trust management policies for each of those
bindings. Each client or service binding defines: a) what assertion to use to prove
one's role (automatically inherited from the parent role binding); b) what certificate to
use for message signing, ¢) what certificate to use for message encryption; d) what
trust anchor certificate to use to validate message certificates of other nodes that are
interacted with (Messaging Trust Anchor, or MTA); e) what trust anchor certificate to
use to validate role assertions signing certificates (Attribute Trust Anchor, or ATA);
and f) who is the trusted role assertions signer, by name (Trusted Attribute Authority,
or TAA). In one embodiment, TAA is optional. Often, as long as one can
authenticate a role assertion signer TAA using ATA, the TAA is trusted. In one
embodiment, the nodes GUI presents only valid certificate choices: encryption and
signing certificates must be the ones of a given principal (one can only use its own
certificates to sign or encrypt its own messages), plus they must have corresponding
key usages (128 for signing and 32 for encryption). MTA and ATA should be any
certificate of another principal with the key usage 4, for certificates signing. TAA
should be any certificate with data signing key usage 128, additionally marked as
“attribute authority” in the “Principals” GUI.

[058] The Node Interaction editor at the bottom of the Nodes GUI 60 allows a
user to enumerate node role binding pairs that should invoke each other. In one
embodiment, the trust management engine checks whether each client binding
configured under a specific requester node’s role binding will be able to invoke
corresponding service bindings configured under a given role binding of the
responder node, where “being able to invoke” refers to compatibility of credentials
configured for each node’s bindings with their corresponding trust management
policies. In one embodiment, the user is immediately notified if an enumerated role

16

WO 2008/019158 PCT/US2007/017794

binding pair is invalid. In one embodiment, the configuration editor determines the
validity of a role binding pair by checking the compatibility of the assigned
credentials. For example, in one embodiment, for each interaction pair {client role
binding A, service role binding B}, the following is verified: a) messaging trust anchor
(MTA) certificate defined for binding A should be an ancestor of both signing and
encryption certificates used in binding B - and visa versa; and b) Attribute trust
anchor (ATA) defined for binding A should be an ancestor of a signer of the role
assertion used in binding B — and visa versa. In the embodiment of FIG. 8, a
configuration status window in the Nodes GUI provides an indication of the validity of
the configuration. If the configuration is invalid, an indication of the configuration
error is displayed in the configuration status window.

[0569] Referring once again to the Nodes GUI 60 of FIG. 8, while working on
the configuration, it is possible to view the underlying XML representation of the
created configuration at any point by choosing the XML tab 28. While the presented
XML document is editable, direct altering of it is not recommended, because it
typically requires knowledge of the underlying schema.

[060] Once the network configuration is completed and the configuration
status window indicates that the configuration is valid, the configuration process is
complete. The configuration can be saved on a local file system for future reference.
At this point implementers can continue the configuration wizard in order to generate
the implementation project.

[061] The configuration tool described herein simplifies the configuration of a
trust management framework for use with web services, digital right management,
and/or other applications. The configuration of the trust management framework is
constantly validated for consistency and can be saved for future reference.

[062] FIG. 9 depicts an illustrative computer system 70 for practicing
embodiments of the configuration tool. The computer system includes an
input/output 72, a central processing unit (CPU) 74, data storage 76, and system
memory 78. The input/output includes, for example, a display and/or a keyboard.
The CPU includes a conventional multifunction processor as is known in the field.
The data storage includes, for example, a magnetic disk and/or an optical disk,
and/or any other suitable storage means. The data storage may be fixed or
removable as is know in the field. The system memory may include, for example,
some combination of random access memory (RAM) and read only memory (ROM)

17

WO 2008/019158 PCT/US2007/017794

for storing information and instructions to be executed or used by the CPU and/or for
storing temporary variables or other intermediate information during execution of
instructions by the processor. In the embodiment of FIG. 9, the system memory
stores an operating system 80 and the above-described configuration tool 82. It
should be understood, however, that FIG. 9 is provided for purposes of illustration,
not limitation, and that other computer systems with additional components and/or
some suitable subset of the components illustrated in FIG. 9 could also be used.
Indeed one skilled in the art will appreciate that virtually any type of computing
system can be used, including, for example, personal computers and mainframes.

[063] FIG. 10 depicts an expanded view of the configuration tool 82 from
FIG. 9. In the example shown in FIG. 10, the configuration tool includes a roles
module 84, a services module 86, a principals module 88, and a nodes module 90.
In one embodiment, each module includes executable instructions for performing a
function that corresponds to the above-described function-specific GUIls. The
configuration tool also includes a namespaces module 92 and an extended key
usages module 94. The namespaces module includes executable instructions for
implementing the namespaces editor as described above with reference to FIG. 4
and the extended key usages module includes executable instructions for
implementing the extended key editor as described above with reference to FIG. 7.

[064] Although the function-specific GUls are described as being displayed in
separate screen views, the function-specific GUIs can be presented simultaneously
in different combinations. Further, although specific layouts of the GUIs are
provided, other layouts are possible.

[065] FIG. 11 is a process flow diagram of a method for configuring a trust
management framework in accordance with one embodiment. At block 1102, a
Roles GUI that prompts a user to define roles is provided. At block 1104, a Services
GUI that prompts the user to define services corresponding to the roles is provided.
At block 1106, a Principals GUI that prompts the user to define principals, including
associating at least one of the roles with a principal is provided. Atblock 1108, a
Nodes GUI that presents role bindings for principals that are designated to function
as nodes and that prompts the user to define interactions between nodes is
provided.

18

WO 2008/019158 PCT/US2007/017794

[066] The process of configuring a trust management framework may include
the configuration of a new trust management framework or the modification of a
previously configured trust management framework.

[067] Although the foregoing has been described in some detail for purposes
of clarity, it will be apparent that certain changes and modifications may be made
without departing from the principles thereof. It should be noted that there are many
alternative ways of implementing both the processes and apparatuses described
herein. Accordingly, the present embodiments are to be considered as illustrative

and not restrictive.

19

WO 2008/019158 PCT/US2007/017794

WHAT IS CLAIMED IS:

1. A method for configuring a trust management framework for use in a
network environment, the method comprising:

providing a roles graphical user interface that prompts a user to define roles;

providing a services graphical user interface that prompts the user to define
services corresponding to the roles;

providing a principals graphical user interface that prompts the user to define
principals, including associating at least one of the roles with a principal; and

providing a nodes graphical user interface that presents role bindings for
principals that are designated to function as nodes and that prompts the user to
define interactions between nodes.

2. The method of claim 1 wherein providing a roles graphical user
interface comprises providing a graphical user interface that prompts a user to
identify role names and to identify interactions between the roles.

3. The method of claim 1 wherein providing a roles graphical user
interface comprises providing a graphical user interface that prompts a user to
identify role names and to identify which roles can be invoked by which roles.

4 The method of claim 3 wherein the roles graphical user interface
presents the role names in a matrix with requester roles on one axis of the matrix
and responder roles on another axis of the matrix.

5. The method of claim 4 wherein interactions between roles are identified
by marking the intersection point between a requestor role and a responder role in
the matrix.

6. The method of claim 5 wherein a mark at the intersection point
between a requestor role and a responder role indicates that the marked requester
role can invoke the marked responder role.

7. The method of claim 6 wherein the roles graphical user interface is
configured to place each identified role name on each axis of the matrix.

8. The method of claim 1 wherein providing a roles graphical user
interface comprises providing a graphical user interface that prompts a user to
identify role names and to identify which roles can assert which roles.

9. The method of claim 1 wherein the services graphical user interface
prompts a user to identify a name for a service and to identify at least one operation
associated with the service.

20

WO 2008/019158 PCT/US2007/017794

10. The method of claim 9 wherein identifying at least one operation
associated with the service comprises defining a message protocol.

11. The method of claim 10 wherein defining a message protocol
comprises at least one of:

indicating an XML schema type of a message,;

indicating whether or not a message must be integrity protected;

indicating whether or not a message must be confidential;

indicating whether or not a message must be time-stamped; and

indicating whether or not a message must include a nonce.

12. The method of claim 10 further comprising providing a namespace
graphical user interface that prompts a user to define namespaces for schema types
of messages associated with the services.

13. The method of claim 9 wherein the services graphical user interface is
automatically populated with the roles that are identified in the roles graphical user
interface and wherein the services are associated with roles.

14. The method of claim 1 wherein the principals graphical user interface
prompts the user to identify a principal name and a universal resource name (URN)
for each principal.

15. The method of claim 13 wherein the principals graphical user interface
prompts a user to identify whether or not each principal is imported from an external
source.

16. The method of claim 13 wherein the principals graphical user interface
prompts the user to identify credentials related to each principal.

17. The method of claim 16 wherein the principals graphical user interface
prompts a user to identify the credentials of a principal in terms of at least one of:

an issuing principal;

an issuing certificate;

whether or not the principal is an attribute issuer; and

a usage specification.

18. The method of claim 1 wherein the nodes graphical user interface
presents role bindings in terms of client role bindings and service role bindings.

19. The method of claim 18 wherein, for each role binding, the nodes
graphical user interface presents at least one of:

a role assertion;

21

WO 2008/019158 PCT/US2007/017794

an indication of the type of service;

an identity of an integrity certificate;

an identity of a confidentiality certificate;

an identity of a messaging trust anchor;

an identity of an attribute trust anchor; and

an identity of a trusted attribute assertion certificate.

20. The method of claim 4 further comprising checking to see if a client role
binding configured as a requestor node is able to invoke a corresponding service
binding configured as a responder node.

21. The method of claim 20 wherein the nodes graphical user interface
presents an indication as to whether a defined interaction between nodes is valid.

22. The method of claim 1 wherein the nodes graphical user interface
presents a node interaction table that prompts a user to identify an interaction
between two nodes.

23. The method of claim 22 wherein an interaction is represented in the
node interaction table by identifying a requestor node, a requestor role binding, a
responder node, and a responder role binding.

24. A system for configuring a trust management framework for use in a
network environment, the system comprising:

a roles module that prompts a user to define roles;

a services module that prompts the user to define services corresponding to
the roles;

a principals module that prompts the user to define principals, including
associating at least one of the roles with a principal; and

a nodes module that presents role bindings for principals that are designated
to function as nodes and that prompts the user to define interactions between nodes.

25. The system of claim 24 wherein the roles module prompts a user to
identify role names and to identify which roles can be invoked by which roles.

26. The system of claim 24 wherein the roles module prompts a user to
identify role names and to identify which roles can assert which roles.

27. The system of claim 24 wherein the services module prompts a user to
identify a name for a service and to identify at least one operation associated with

the service.

22

WO 2008/019158 PCT/US2007/017794

28. The system of claim 27 wherein identifying at least one operation
associated with the service comprises defining a message protocol, wherein defining
a message protocol comprises at least one of:

indicating an XML schema type of a message;

indicating whether or not a message must be integrity protected,;

indicating whether or not a message must be confidential,

indicating whether or not a message must be time-stamped; and

indicating whether or not a message must include a nonce.

29. The system of claim 28 further comprising providing a namespace
module that prompts a user to define namespaces for schema types of messages
associated with the services.

30. The system of claim 24 wherein the services module automatically
populates a services definition editor with the roles that are identified in the roles
graphical user interface and wherein the services are associated with roles.

31. The system of claim 24 wherein the roles module is configured to
check if a client role binding configured as a requestor node is able to invoke a
corresponding service binding configured as a responder node.

32. The system of claim 31 wherein the nodes module presents an
indication as to whether a defined interaction between nodes is valid.

33. The system of claim 24 wherein the nodes module presents a node
interaction table that prompts a user to identify an interaction between two nodes,
wherein an interaction is represented in the node interaction table by identifying a
requestor node, a requestor role binding, a responder node, and a responder role
binding and wherein the nodes module is configured to present an indication of the
validity of the identified interaction.

34. A system for configuring a trust management framework for use in a
network environment, the system comprising:

means for prompting a user to define roles;

means for prompting the user to define services corresponding to the roles;

means for prompting the user to define principals, including associating at
least one of the roles with a principal; and

means for presenting role bindings for principals that are designated to

function as nodes and that prompts the user to define interactions between nodes.

23

WO 2008/019158 PCT/US2007/017794

35. A computer readable medium contaihing executable instructions for
configuring a trust management framework, the executable instructions including
instructions for:

providing a roles graphical user interface that prompts a user to define roles;

providing a services graphical user interface that prompts the user to define
services corresponding to the roles;

providing a principals graphical user interface that prompts the user to define
principals, including associating at least one of the roles with a principal; and

providing a nodes graphical user interface that presents role bindings for
principals that are designated to function as nodes and that prompts the user to
define interactions between nodes.

24

WO 2008/019158
1/11

/10

PCT/US2007/017794

& Workflow Wizard

O] X

Nemo Network Trust Configuration

continue with the following steps.

In this step, you can create, edit, or select an existing Nemo Network
Trust Model configuration file. If creating or editing the

configuration file in the Nemo Network Trust Configuration
Editor, don't forget to save your changes before exiting the editor.

After you're done with your changes, you can close the Nemo
network trust configuration editor and return to this wizard to

Nemo Network Config File:

12

Create...

4 Back

Next >

Cancel

FIG.1

WO 2008/019158

14

2/11

PCT/US2007/017794

& Application Domain Configuration - nemo-config.x..

File Tools

.

=R

O
0

o
o
(

)

221

24 ~

26—~

28—

Role Alias

Leaf

Monitor

[Tssuers \ Invokers \

ISSUER

Monitor

Leaf

L.eaf } 1
Monitor

/ XML Y Nodes) PrincipalsY Services Y Roles

SUBJECT

Nemo configuration is valid

44 D

FIG.2

WO 2008/019158

14

3/11

PCT/US2007/017794

.

20~1

221

=
)
[XML Y NodesY Principals) Services) Roles\

& Application Domain Configura...
File Tools |
Ql=||8] NS
Al e8| T
Role Alias
Leaf
Monitor
| Issuers) Invokers \
: RESPONDER
S
o = "g
S||=
2| |Monitor
=
~
Nemo configuration is valid f

FIG.3

WO 2008/019158

4/11

PCT/US2007/017794

& Configure namespaces
A\ ||| T .

Alias Namespace Schema Location
xsd | http:/www.w3.0rg/2001/XMLSchema | http:/fwww.w3.0rg/2001/XMLSchema...

tns

http://nemo.intertrust.com/services

0K

Cancel

F1G.4

WO 2008/019158 PCT/US2007/017794

5/11
14 |
& Application Domain Configuration - nemo-config.xml
File Tools
Q|l=|(@] NS
@ Service Element | Integrity | Confidentiality | Timestamp | Nonce
202 services - - - -
> role: Leaf - - - - -
3 role: Monitor - - -
22—~ E = service: Presence - - - - -
;’i =7 operalion: ping - - - - :
= Drequest xsd:any
=3 Cresponse xsd:any
U2
&
g
26~ 2
=
=
28—~
—
Nemo configuration is valid =

FIG.5

WO 2008/019158 PCT/US2007/017794

6/11
14
& Application Domain Configuration - nemo-config.xml ' LIOX
File Tools
Rl=l8] N
]
[/ 0]
O
20~ Name Um Nemo Node Imported
>~ | CA um:nemo:CA [] []
2| |RA um:nemo:RA []]
79 é LeafNode um:nemo:LeafNode]
~11 %1 | MonitorNode um:nemo:MonitorNode]
(7p)
=
<
=
o
24\J\ .8 Credential Issuing Principal | Issuing Cert | Aftrissuer | Usage | Value | Provisioned
o o T s - - - : :
principal: CA - - .
"8 a;:%o%cen CA CA-Cent | 4 - O
26"\ o c-E=principal: RA) .) . . .
& %’ﬁﬁfm CA CA-Cent .e % . -
cert: n 128 -
>\ asserfions - - - . D
. G principal; LeafNode - - - - - -
_qp= cett LeaMode Cert CA CACet [J 128 O
28—
P< cert LeaodeConfdentaitCe A CACt [32 . g
asserfions - - - - - -
— asserton: LeaPode-LeafRole RA RA-Cert . . . O
atfribute: role - . - role Leaf -
principal: MonitorNode - 5 - . - .
cotfcaes - - - - - -
cart: MonitorNode-Cert CA CA-Cent O 128 O
ot Monitodode Confdentialty ~~~ CA CACet [2 - 0O
asserfions - - . - - .
MonitorNode-MoitorF RA RA-Cert . - - O
atiributs: role - - - role Monitor
Nemo configuration is valid 4
2

FI1G.6

WO 2008/019158
7/11

PCT/US2007/017794

& Configure Extended Key Usages
AN IRVAIR::: @
OID Alias
0K Cancel

FIG.7

PCT/US2007/017794

8/11

C

Q
&)
e
= o

PijeA S| uoneunbyuod owisN

4

o) uopN APONJONUON jea apoNyea
Buipuig aj0y Jaysenbay 9poN Jajsanbay Buipuig ejoy Jejsanbay OpoN Jajsanbay

M| @ /\ ||\

_ Sbupugsjo el £
PRIy TALA Yoyy) COPONOION DeO<poelloy SoUaseld - B0U3SI4 JOJLO B
- - - - - - SN0 EPONITELON Jojuoy Bupug 810 =3-&
. . . . - - - sbuipuiq ajou saiwes =2
3PONJONUON :3pou =261

\ $9[0Y)\ 8991A19§) sjedrourig) S9poN £ TINX /
Z
)

ey 1YY P3)YD 0D-SpONBeT Wa)-SpONjE] Boussaly - 30Uasalq Jea Juap ~—~CC
- - - - - - AT IONER] Jea1 Bupug ajs
- - - - - - - sfuipuiq sjos juai
- - . - - - - sBuipuIq ojou soikas
- - . - . - . SPONJea :8poU =3-E |
; $8pOU =2 0
FeO Yy peisru | L enquy |) Gubessoly |"Wemuspio) | yenAwbejy | odd| soweg | uomessy sy 9PON
(XN [&][=]G]
sjoo] eild

WO 2008/019158

<=1l jwxByyuoo-owsu - uonenbyuo) urewoq uoneoyddy ﬁﬂ “— 09

WO 2008/019158 PCT/US2007/017794
9/11

Input/output
System Memory 78 12
Operating System 80 CPU
14
Configuration Tool §2
Data Storage
16
Computer System 70

FIG.9

WO 2008/019158 PCT/US2007/017794

10/11

Configuration Tool
82
Roles Module 34

Services Module 86

Principals Module 88

Nodes module 90
Namespaces
Module 2

~ Extended Key Usages g4
Module -

FIG.10

WO 2008/019158 PCT/US2007/017794

11/11

Provide a roles graphical user interface that prompts
a user to define roles

1102

Y

Provide a services graphical user interface that prompts
the user to define services corresponding to the roles

1104

\

Provide a principals graphical user interface that prompts
the user to define principals, including associating at
least one of the roles with a principal

1106

Y

Provide a nodes graphical user interface that presents
role bindings for principals that are designated to
function as nodes and that prompts the user to define
interactions between nodes

1108

FIG.11

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

