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(57) Abstract: Systems and methods for associating cellular constituents with a cellular process of interest are provided. Constituent
vectors comprising abundances for a first plurality of cells representing annotated cell states are formed and used to obtain a latent
representation of constituent modules having subsets of constituents. A constituent count data structure comprising abundances of the
constituents for a second plurality of cells representing covariates of interest is obtained. An activation data structure is formed by
combining the latent representation and the constituent count data structure, using constituents as a common dimension. A model is
trained using a difference between the predicted and actual absence or presence of each covariate in each cellular constituent module
represented in the activation data structure, thus adjusting covariate weights indicating a correlation between covariates and constituent
modules across the activation data structure. The covariate weights are used to identify constituent modules associated with covariates
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METHODS AND SYSTEMS FOR ASSOCIATING CELLULAR CONSTITUENTS

WITH A CELLULAR PROCESS OF INTEREST

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application Nos.
63/210,710, entitled “SYSTEMS AND METHODS FOR TERRAFORMING,” filed June 15,
2021; and 63/210,679, entitled “COMPUTATIONAL MODELING PLATFORM,” filed June

15, 2021, each of which is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

[0002] The present invention relates generally to systems and methods for associating

cellular constituents with cellular processes.

BACKGROUND
[0003] The study of cellular mechanisms is important for understanding disease.

[0004] Biological tissues are dynamic and highly networked multicellular systems.
Dysfunction in subcellular networks in specific cells shift the entire landscape of cell
behaviors and leads to disease states. Existing drug discovery efforts seek to characterize the
molecular mechanisms that cause cells to transition from healthy to disease states, and to
identify pharmacological approaches to reverse or inhibit these transitions. Past efforts have
also sought to identify molecular signatures characterizing these transitions, and to identify

pharmacological approaches that reverse these signatures.

[0005] Molecular data on bulk collections of cells, in tissues or cells enriched by surface
markers, mask the phenotypic and molecular diversity of individual cells in a population.
The heterogeneity of cells in these bulk collections of cells causes the results of current
efforts aimed at elucidating disease-driving mechanisms to be misleading or even wholly
incorrect. New approaches, such as single-cell RNA sequencing, can characterize individual
cells at the molecular level. These data provide a substrate for understanding varied cell
states at higher resolution and reveal the rich and remarkable diversity of states that cells
possess.

[0006] Significant challenges exist when interpreting single cell data, namely the sparsity
of these data, overlooking the presence of molecules present in cells, and noise, with

uncertainty in the accuracy of these molecular measurements. Accordingly, new approaches
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are required to derive insight into pharmacological approaches for controlling individual cell

state, and to correspondingly resolve disease.

[0007] In addition, complex diseases often cannot be broken down to a single or a few
molecular targets. Though recent advances in high-throughput imaging technology and high-
throughput screening for in vitro disease models have somewhat overcome a dependence on
molecular targets, the gap between a hit generated through in-vitro-based screening and an
efficacious drug is immense, and translating a hit obtained from such phenotypic drug
discovery into an efficacious drug often necessitates a return to the slow and inefficient

molecular-target-based drug discovery approach.

[0008] Given the above background, what is needed in the art are systems and methods

for discovery of molecular targets for drug discovery.

SUMMARY

[0009] The present disclosure addresses the above-identified shortcomings. The present
disclosure addresses these shortcomings, at least in part, with cellular constituent data (e.g.,
abundances of genes) corresponding to annotated cell states and covariates of interest (e.g.,
phenotypes, diseases, and/or cellular processes of interest), and using latent representations
and machine learning to determine correlations between modules (e.g., subsets) of cellular
constituents and the cellular process of interest. In particular, the present disclosure provides
systems and methods for elucidating molecular mechanisms underlying various cell states,

such as disease.

[0010] One aspect of the present disclosure provides a method of associating a plurality
of cellular constituents with a cellular process of interest. The method comprises, at a
computer system comprising a memory and one or more processors, obtaining one or more
first datasets in electronic form. The one or more first datasets comprise or collectively
comprise, for each respective cell in a first plurality of cells, where the first plurality of cells
comprises twenty or more cells and collectively represents a plurality of annotated cell states,
for each respective cellular constituent in a plurality of cellular constituents, where the
plurality of cellular constituents comprises 50 or more cellular constituents, a corresponding
abundance of the respective cellular constituent in the respective cell. The method thereby
comprises accessing or forming a plurality of vectors, each respective vector in the plurality
of vectors (1) corresponding to a respective cellular constituent in the plurality of constituents

and (i1) comprising a corresponding plurality of elements, each respective element in the

corresponding plurality of elements having a corresponding count representing the
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corresponding abundance of the respective cellular constituent in a respective cell in the first

plurality of cells.

[0011] The plurality of vectors is used to identify each cellular constituent module in a
plurality of cellular constituent modules, each cellular constituent module in the plurality of
cellular constituent modules including a subset of the plurality of cellular constituents. The
plurality of cellular constituent modules is arranged in a latent representation dimensioned by
(1) the plurality of cellular constituent modules and (i1) the plurality of cellular constituents or
a representation thereof. The plurality of cellular constituent modules comprises more than

ten cellular constituent modules.

[0012] The method further includes obtaining one or more second datasets in electronic
form. The one or more second datasets comprise or collectively comprise, for each
respective cell in a second plurality of cells, where the second plurality of cells comprises
twenty or more cells and collectively represents a plurality of covariates possibly informative
of the cellular process of interest, for each respective cellular constituent in the plurality of
cellular constituents, a corresponding abundance of the respective cellular constituent in the
respective cell. The method thereby obtains a cellular constituent count data structure
dimensioned by (1) the second plurality of cells and (i1) the plurality of cellular constituents or

the representation thereof.

[0013] An activation data structure is formed by combining the cellular constituent count
data structure and the latent representation using the plurality of cellular constituents or the
representation thereof as a common dimension, where the activation data structure comprises,
for each cellular constituent module in the plurality of cellular constituent modules and for
each cellular constituent in the plurality of cellular constituents, a respective activation

weight.

[0014] A model is trained using a difference between (i) a prediction of an absence or
presence of each covariate in the plurality of covariates in each cellular constituent module
represented in the activation data structure upon input of the activation data structure into the
model and (i1) actual absence or presence of each covariate in each cellular constituent
module, where the training adjusts a plurality of covariate weights associated with the model
responsive to the difference. The plurality of covariate weights comprises, for each
respective cellular constituent module in the plurality of cellular constituent modules, for
each respective covariate, a corresponding weight indicating whether the respective covariate
correlates, across the activation data structure, with the respective cellular constituent

module.
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[0015] The method further comprises identifying, using the plurality of covariate weights
upon training the model, one or more cellular constituent modules in the plurality of cellular
constituent modules that is associated with one or more covariates in the plurality of
covariates, thereby associating a plurality of cellular constituents with the cellular process of

interest.

[0016] Another aspect of the present disclosure provides a method of associating a
plurality of cellular constituents with a cellular process of interest. The method comprises, at
a computer system comprising a memory and one or more processors, obtaining one or more
first datasets in electronic form. The one or more first datasets comprise or collectively
comprise, for each respective cell in a first plurality of cells, where the first plurality of cells
comprises twenty or more cells and collectively represents a plurality of annotated cell states,
for each respective cellular constituent in a plurality of cellular constituents, where the
plurality of cellular constituents comprises 50 or more cellular constituents, a corresponding
abundance of the respective cellular constituent in the respective cell. The method thereby
comprises accessing or forming a plurality of vectors, each respective vector in the plurality
of vectors (1) corresponding to a respective cellular constituent in the plurality of constituents
and (i1) comprising a corresponding plurality of elements, each respective element in the
corresponding plurality of elements having a corresponding count representing the
corresponding abundance of the respective cellular constituent in a respective cell in the first

plurality of cells.

[0017] The plurality of vectors is used to identify each cellular constituent module in a
plurality of cellular constituent modules, each cellular constituent module in the plurality of
cellular constituent modules including a subset of the plurality of cellular constituents, and
where the plurality of cellular constituent modules comprises more than ten cellular

constituent modules.

[0018] For each respective cellular constituent module in the plurality of cellular
constituent modules, the identity of each cellular constituent in the respective cellular
constituent module is used to associate the respective cellular constituent module with a
known cellular pathway, a biological process, a transcription factor, a cell receptor, or a

kinase using a contextualization algorithm.

[0019] The method further comprises pruning the activation data structure by removing
from the activation data structure one or more cellular constituent modules that fail to
associate with a known cellular pathway, a biological process, a transcription factor, a cell

receptor, or a kinase that is implicated in the cellular process of interest thereby identifying
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one or more cellular constituent modules in the plurality of cellular constituent modules that
is associated with the cellular process of interest and, from the one or more cellular
constituent modules, the plurality of cellular constituents associated with the cellular process

of interest.

[0020] Another aspect of the present disclosure provides a method of training a model to
identify a set of cellular constituents associated with a cellular process of interest. The
method comprises (e.g., at a computer system comprising a memory and one or more
processors) (A) obtaining one or more first datasets (e.g., in electronic form). The one or
more first datasets individually or collectively comprise, for each respective cell in a first
plurality of cells (e.g., where the first plurality of cells comprises twenty or more cells and
collectively represents a plurality of annotated cell states), for each respective cellular
constituent in a plurality of cellular constituents (e.g., where the plurality of cellular
constituents comprises 50 or more cellular constituents), a corresponding abundance of the
respective cellular constituent in the respective cell, thereby accessing or forming a plurality
of vectors. Each respective vector in the plurality of vectors (1) corresponds to a respective
cellular constituent in the plurality of constituents and (ii) comprises a corresponding
plurality of elements. Each respective element in the corresponding plurality of elements has
a corresponding count representing the corresponding abundance of the respective cellular

constituent in a respective cell in the first plurality of cells.

[0021] The method further comprises (B) using the plurality of vectors to identify each
respective cellular constituent module in a plurality of cellular constituent modules. Each
respective cellular constituent module in the plurality of cellular constituent modules includes
an independent subset of the plurality of cellular constituents. In some embodiments, the
plurality of cellular constituent modules are arranged in a latent representation dimensioned
by (1) the plurality of cellular constituent modules and (i1) the plurality of cellular constituents
or a representation (e.g., dimension reduction components) thereof. In some embodiments
the plurality of cellular constituent modules comprises more than ten cellular constituent
modules. In some embodiments the plurality of cellular constituent modules is in fact just a
single cellular constituent module. In some embodiments the plurality of cellular constituent

modules is two or more cellular constituent modules.

[0022] The method further comprises (C) obtaining one or more second datasets (e.g., in
electronic form). The one or more second datasets individually or collectively comprise, for
each respective cell in a second plurality of cells (e.g., where the second plurality of cells

comprises twenty or more cells and collectively represents a plurality of covariates associated
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with the cellular process of interest), for each respective cellular constituent in the plurality of
cellular constituents, a corresponding abundance of the respective cellular constituent in the
respective cell, thereby obtaining a cellular constituent count data structure dimensioned by
(1) the second plurality of cells and (i1) the plurality of cellular constituents or the

representation thereof.

[0023] The method further comprises (D) forming an activation data structure by
combining the cellular constituent count data structure and the latent representation using the
plurality of cellular constituents or the representation thereof as a common dimension (e.g.,
through matrix multiplication of this common dimension. The activation data structure
comprises, for each cellular constituent module in the plurality of cellular constituent

modules, for each cell in the second plurality of cells, a respective activation weight.

[0024] The method further comprise (E) training the model using, for each respective
covariate in the plurality of covariates, a difference between (i) a calculated activation against
each cellular constituent module represented by the model upon input of a representation of
the respective covariate into the model and (ii) actual activation against each cellular
constituent module represented by the model. The training adjusts a plurality of covariate
parameters associated with the model responsive to each difference. Each respective
covariate parameter in the plurality of covariate parameters represents a covariate in the

plurality of covariates.

[0025] In some embodiments, the plurality of covariate parameters comprises, for each
respective cellular constituent module in the plurality of cellular constituent modules, for
each respective covariate, a corresponding covariate parameter indicating whether the
respective covariate correlates, across the second plurality of cells, with the respective

cellular constituent module.

[0026] In some embodiments, the method further comprises (F) identifying, using the
plurality of covariate weights upon training the model, one or more cellular constituent
modules in the plurality of cellular constituent modules that is associated with one or more
covariates in the plurality of covariates, thereby associating each cellular constituent in the set
of plurality of cellular constituents, from among the cellular constituents in the identified one

or more cellular constituent modules, with the cellular process of interest.

[0027] In some embodiments, an annotated cell state in the plurality of annotated cell
states is an exposure of a cell in the first plurality of cells to a compound under an exposure

condition. In some such embodiments, the exposure condition is a duration of exposure, a
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concentration of the compound, or a combination of a duration of exposure and a

concentration of the compound.

[0028] In some embodiments, each cellular constituent in the plurality of cellular
constituents is a particular gene, a particular mRNA associated with a gene, a carbohydrate, a

lipid, an epigenetic feature, a metabolite, a protein, or a combination thereof.

[0029] In some embodiments, each cellular constituent in the plurality of cellular
constituents is a particular gene, a particular mRNA associated with a gene, a carbohydrate, a
lipid, an epigenetic feature, a metabolite, a protein, or a combination thereof, the
corresponding abundance of the respective cellular constituent in the respective cell in the
first or second plurality of cells is determined by a colorimetric measurement, a fluorescence
measurement, a luminescence measurement, or a resonance energy transfer (FRET)

measurement.

[0030] In some embodiments, each cellular constituent in the plurality of cellular
constituents is a particular gene, a particular mRNA associated with a gene, a carbohydrate, a
lipid, an epigenetic feature, a metabolite, a protein, or a combination thereof, and the
corresponding abundance of the respective cellular constituent in the respective cell in the
first or second plurality of cells is determined by single-cell ribonucleic acid (RNA)
sequencing (scRNA-seq), scTag-seq, single-cell assay for transposase-accessible chromatin
using sequencing (scATAC-seq), CyTOF/SCoP, E-MS/Abseq, miRNA-seq, CITE-seq, or

any combination thereof.

[0031] In some embodiments, the using the plurality of vectors to identify each cellular
constituent module in a plurality of cellular constituent modules comprises application of a
correlation model to the plurality of vectors using each corresponding plurality of elements of
each vector in the plurality of vectors. In some such embodiments, the correlation model
includes a graph clustering (e.g., Leiden clustering on a Pearson-correlation-based distance

metric, Louvain clustering, efc.).

[0032] In some embodiments, the using the plurality of vectors to identify each cellular
constituent module in the plurality of cellular constituent modules comprises a dictionary
learning model that produces the representation of the plurality of cellular constituents as a
plurality of dimension reduction components. In some such embodiments, the dictionary

learning model is LO-regularized autoencoder.

[0033] In some embodiments, the plurality of cellular constituent modules consists of

between 10 and 2000 cellular constituent modules.
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[0034] In some embodiments, the plurality of cellular constituent modules consists of
between 50 and 500 cellular constituent modules, between twenty and 10,000 cellular

constituents, or between 100 and 8,000 cellular constituents.

[0035] In some embodiments, each cellular constituent module in the plurality of
constituent modules consists of between two cellular constituents and three hundred cellular

constituents.

[0036] In some embodiments, the cellular process of interest is an aberrant cell process
associated with a disease, and the first plurality of cells includes cells that are representative
of the disease and cells that are not representative of the disease as indicated by the plurality

of annotated cell states.

[0037] In some embodiments, a respective covariate in the plurality of covariates
comprises cell batch and the representation of the respective covariate is a cell batch

identification.

[0038] In some embodiments, a respective covariate in the plurality of covariates
comprises cell donor and the representation of the respective covariate is an identification of

the cell donor or a characteristic of the cell donor.

[0039] In some embodiments, a respective covariate in the plurality of covariates
comprises cell type and the representation of the respective covariate is a cell type

identification.

[0040] In some embodiments, a respective covariate in the plurality of covariates
comprises disease status and the representation of the respective covariate is an indication of

absence or presence of the disease.

[0041] In some embodiments, a respective covariate in the plurality of covariates
comprises exposure to a compound and the representation of the respective covariate is a
fingerprint of the compound. In some such embodiments, the method further comprising
generating the fingerprint from a chemical structure of the compound using Daylight, BCI,
ECFP4, EcFC, MDL, TTFP, UNITY 2D, RNNS2S, GraphConv, fingerprint SMILES
Transformer, RNNS2S, or GraphConv. In some such embodiments, the representation of the
respective covariate further comprises a duration of time the respective covariate was
incubated with the respective cell. In some such embodiments, the representation of the
respective covariate further comprises a concentration of the respective covariate used to

incubate the respective cell.
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[0042] In some embodiments, the training the model (E) is performed using a categorical
cross-entropy loss in a multi-task formulation, in which each covariate in the plurality of
covariates corresponds to a cost function in plurality of cost functions and each respective

cost function in the plurality of cost functions has a common weighting factor.

[0043] In some embodiments, the method further comprises using the identity of each
cellular constituent in a cellular constituent module in the plurality of cellular constituent
modules to associate the cellular constituent module with a known cellular pathway, a
biological process, a transcription factor, a cell receptor, or a kinase using a contextualization
algorithm. In some such embodiments, the contextualization algorithm is a gene set

enrichment analysis algorithm.

[0044] In some embodiments, the method further comprises, for each respective cellular
constituent module in the plurality of cellular constituent modules, using the identity of each
cellular constituent in the respective cellular constituent module to associate the respective
cellular constituent module with a known cellular pathway, a biological process, a
transcription factor, a cell receptor, or a kinase using a contextualization algorithm. In some
such embodiments, the contextualization algorithm is a gene set enrichment analysis
algorithm. In some such embodiments, the method further comprising pruning the activation
data structure by removing from the activation data structure one or more cellular constituent
modules that fail to associate with a known cellular pathway, a biological process, a
transcription factor, a cell receptor, or a kinase that is implicated in the cellular process of

interest.

[0045] In some embodiments, the compound is an organic compound having a molecular
weight of less than 2000 Daltons. In some embodiments, the compound is an organic
compound that satisfies each of the Lipinski rule of five criteria. In some embodiments, the
compound is an organic compound that satisfies at least three criteria of the Lipinski rule of

five criteria.

[0046] In some embodiments, the plurality of cellular constituent modules comprises five
or more cellular constituent modules, ten or more cellular constituent modules, or comprises

100 or more cellular constituent modules.

[0047] In some embodiments, the independent subset of the plurality of cellular
constituents in the respective cellular constituent module comprises five or more cellular

constituents.
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[0048] In some embodiments, the independent subset of the plurality of cellular
constituents in the respective cellular constituent module consists of between two and 20

cellular constituents in a molecular pathway associated with the cellular process of interest.
[0049] In some embodiments, the model is a regressor.

[0050] In some embodiments, the model is a logistic regression model, a neural network
model, a support vector machine model, a Naive Bayes model, a nearest neighbor model, a
boosted trees model, a random forest model, a decision tree model, a multinomial logistic

regression model, a linear model, or a linear regression model.

[0051] In some embodiments, each respective covariate parameter in the plurality of

covariate parameters represents a different covariate in the plurality of covariates.

[0052] In some embodiments, more than one covariate parameter in the plurality of

covariate parameters represents a common covariate in the plurality of covariates.

[0053] In some embodiments, a corresponding abundance of the respective cellular

constituent in the respective cell is determined using a cell-based assay.

[0054] In some embodiments, the first plurality of cells or the second plurality of cells
comprises or consists of cells from an organ (e.g., heart, liver, lung, muscle, brain, pancreas,

spleen, kidney, small intestine, uterus, or bladder).

[0055] In some embodiments, the first plurality of cells or the second plurality of cells
comprises or consists of cells from a tissue (e.g., bone, cartilage, joint, tracheae, spinal cord,

cornea, eye, skin, or blood vessel.

[0056] In some embodiments, the first plurality of cells or the second plurality of cells
comprises or consists of a plurality of stem cells (e.g., a plurality of embryonic stem cells, a

plurality of adult stem cells, or a plurality of induced pluripotent stem cells).

[0057] In some embodiments, the first plurality of cells or the second plurality of cells
comprises or consists of a plurality of primary human cells (e.g., a plurality of CD34+ cells, a
plurality of CD34+ hematopoietic stems, a plurality of progenitor cells (HSPC), a plurality of
T-cells, a plurality of mesenchymal stem cells (MSC), a plurality of airway basal stem cells,

or a plurality of induced pluripotent stem cells).

[0058] In some embodiments, the first plurality of cells or the second plurality of cells
comprises or consists of a plurality of human cell lines.

[0059] In some embodiments, the first plurality of cells or the second plurality of cells
comprises or consists of cells from umbilical cord blood, from peripheral blood, or from bone

marrow.
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[0060] In some embodiments, the first plurality of cells or the second plurality of cells
comprises or consists of cells in or from a solid tissue (e.g., placenta, liver, heart, brain,

kidney, or gastrointestinal tract).

[0061] In some embodiments, the first plurality of cells or the second plurality of cells
comprises or consists of a plurality of differentiated cells (e.g., a plurality of
megakaryocytes, a plurality of osteoblasts, a plurality of chondrocytes, a plurality of
adipocytes, a plurality of hepatocytes, a plurality of hepatic mesothelial cells, a plurality of
biliary epithelial cells, a plurality of hepatic stellate cells, a plurality of hepatic sinusoid
endothelial cells, a plurality of Kupffer cells, a plurality of pit cells, a plurality of vascular
endothelial cells, a plurality of pancreatic duct epithelial cells, a plurality of pancreatic duct
cells, a plurality of centroacinous cells, a plurality of acinar cells, a plurality of islets of
Langerhans, a plurality of cardiac muscle cells, a plurality of fibroblasts, a plurality of
keratinocytes, a plurality of smooth muscle cells, a plurality of type I alveolar epithelial cells,
a plurality of type II alveolar epithelial cells, a plurality of Clara cells, a plurality of ciliated
epithelial cells, a plurality of basal cells, a plurality of goblet cells, a plurality of
neuroendocrine cells, a plurality of kultschitzky cells, a plurality of renal tubular epithelial
cells, a plurality of urothelial cells, a plurality of columnar epithelial cells, a plurality of
glomerular epithelial cells, a plurality of glomerular endothelial cells, a plurality of
podocytes, a plurality of mesangium cells, a plurality of nerve cells, a plurality of astrocytes,

a plurality of microglia, or a plurality of oligodendrocytes.

[0062] In some embodiments, the set of cellular constituents consists of between 2 and 20
cellular constituents in the plurality of cellular constituent and the one or more cellular

constituent modules consists of a single cellular constituent module.

[0063] In some embodiments, the set of cellular constituents consists of between 2 and
100 cellular constituents in the plurality of cellular constituent and the one or more cellular

constituent modules comprises two or more cellular constituent modules.

[0064] In some embodiments, the set of cellular constituents consists of between 2 and
1000 cellular constituents in the plurality of cellular constituent and the one or more cellular

constituent modules comprises five or more cellular constituent modules.

[0065] In some embodiments, the model is an ensemble model comprising a plurality of
component models, and each respective component model in the plurality of component
models provides a calculated activation for a different cellular constituent module in the
plurality of cellular constituent modules responsive to inputting the representation of the

respective covariate into the respective component model. In some such embodiments, the
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ensemble model includes a different component model for each cellular constituent module in
the plurality of cellular constituent modules. In some such embodiments a component model
in the plurality of component models is a logistic regression model, a neural network model,
a support vector machine model, a Naive Bayes model, a nearest neighbor model, a boosted
trees model, a random forest model, a decision tree model, a multinomial logistic regression

model, a linear model, or a linear regression model.

[0066] Another aspect of the present disclosure provides a computer system having one
or more processors, and memory storing one or more programs for execution by the one or
more processors, the one or more programs comprising instructions for performing any of the

methods and/or embodiments disclosed herein.

[0067] Another aspect of the present disclosure provides a non-transitory computer
readable storage medium storing one or more programs configured for execution by a
computer, the one or more programs comprising instructions for carrying out any of the

methods disclosed herein.

[0068] Additional aspects and advantages of the present disclosure will become readily
apparent to those skilled in this art from the following detailed description, where only
illustrative embodiments of the present disclosure are shown and described. As will be
realized, the present disclosure is capable of other and different embodiments, and its several
details are capable of modifications in various obvious respects, all without departing from
the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in

nature, and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

[0069] The embodiments disclosed herein are illustrated by way of example, and not by
way of limitation, in the figures of the accompanying drawings. Like reference numerals
refer to corresponding parts throughout the drawings.

[0070] Figures 1A, 1B, 1C, 1D, and 1E collectively illustrate a block diagram of an
exemplary system and computing device, in accordance with an embodiment of the present
disclosure.

[0071] Figures 2A and 2B collectively provide a flow chart of processes and features of
an example method for associating a plurality of cellular constituents with a cellular process

of interest, in accordance with various embodiments of the present disclosure.
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[0072] Figure 3 provides a flow chart of processes and features of an example method for
associating a plurality of cellular constituents with a cellular process of interest, in

accordance with various embodiments of the present disclosure.

[0073] Figure 4 illustrates an example of a plurality of vectors of cellular constituents and
an example of a latent representation of cellular constituent modules, in accordance with

some embodiments of the present disclosure.

[0074] Figure 5 illustrates an example of a cellular constituent count data structure and an
example activation data structure, in accordance with some embodiments of the present

disclosure.

[0075] Figure 6 illustrates an example of a method of training a model to adjust a
plurality of covariate weights, in accordance with some embodiments of the present

disclosure.

[0076] Figure 7 illustrates an example of a method for cross-system identification of
shared and orthogonal cellular constituent modules, in accordance with some embodiments of

the present disclosure.

[0077] Figure 8 illustrates cellular constituent module activation in megakaryocyte and
basophil differentiation and cellular constituent module activation targeted by 6 compound

treatment conditions, in accordance with an embodiment of the present disclosure.

[0078] Figures 9A and 9B illustrate cellular constituent module activation in different
disease-modulating cell state transitions, in accordance with an embodiment of the present

disclosure.

[0079] Figures 10A and 10B illustrate prediction of clinical response to checkpoint
inhibitors using characterized cellular constituent modules, in accordance with an
embodiment of the present disclosure. Figures 10A and 10B illustrate conserved
upregulation of the TCF7 module (15) and downregulation of the PDCD1 module (6) and the
LAG3+TIGIT module (26) between in vitro Compound K response data and in vivo public
patient data.

[0080] Figure 11 illustrates a genome-wide association study (GWAS) integration
approach for prediction of association of megakaryocytes with platelet diseases, in
accordance with an embodiment of the present disclosure.

[0081] Figure 12 illustrates a heatmap of integrated copy number variation (CNV)

profiles and scRNA-seq DCX+ cells for the determination of malignant cancer cells, in
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accordance with an embodiment of the present disclosure. CNVs for each cell were clustered

and each cell (row) was annotated by clusters inferring malignancy and DCX+ state.

[0082] Figure 13 illustrates prediction of intercellular communication in a triple negative
breast cancer (TNBC) tumor microenvironment, in accordance with an embodiment of the

present disclosure.

[0083] Figure 14A illustrates an experimental scheme of culturing the undifferentiated
basal cells known as primary human bronchial epithelial cells (HBECs) at the air-liquid
interface in the presence or absence of IL-13 and the perturbagens. Figure 14B illustrates the
testing results for Air-liquid interface (ALI) differentiation of HBECs in the presence or
absence of IL-3 and shows that IL-13 treatment during ALI differentiation induces goblet cell
hyperplasia and reduces ciliated cells. Pseudostratified airway epithelium was formed by day
14 of ALI differentiation in the presence of 1 ng/mL of IL-3. Total mucus (AB/PAS), goblet
cells (Muc5ac™), and ciliated cells (acetyl a-tubulin®) were visualized via
immunofluorescence or histology. For histology analysis, the differentiated HBECs on day
14 of ALI were stained with AB/PAS, MucS5ac, and acetyl a-tubulin. For
Immunofluorescence imaging, the differentiated HBECs on day 14 of ALI were stained with
DAPI, Muc5Sac, and acetyl o-tubulin. Immunofluorescence allows for a top down view of the
most apical layer of cells, while histology presents a cross-section of the pseudostratified

epithelium and is amenable for image quantification.

[0084] Figure 15A illustrates results from a qPCR assay demonstrating that Compound
B1 predictably inhibits goblet cells and increases club cells. Using scRNA-seq data,
Compound B1 was predicted to inhibit goblet cells and promote club cells within the top
1.2% of compounds of the intervention library. HBECs from healthy donors were
differentiated at air-liquid interface (ALI) in the presence or absence of 0.3ng/ml IL-13 and
treated with predicted compounds. On day 14, cultures were lysed, RNA extracted, and
cDNA generated. Goblet and club cells were assessed by MucSac and Scgblal primers,
respectively. Figure 15B illustrates results from a qPCR assay demonstrating that Compound
B2 predictably inhibits goblet cells and increases ciliated cells. Using scRNA-seq data,
Compound B2 was predicted to inhibit goblet cells and promote ciliated cells within the top
1.2% of compounds of the intervention library. HBECs from healthy donors were
differentiated at air-liquid interface (ALI) in the presence or absence of 0.3ng/ml IL-13 and
treated with predicted compounds. On day 14, cultures were lysed, RNA extracted, and
cDNA generated. Goblet and ciliated cells were assessed by Muc5Sac and Foxj1 primers,

respectively. Figure 15C illustrates results from an immunofluorescence assay demonstrating
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that a Compound B3 predictably decreased goblet cells and increased ciliated cells. Using
scRNA-seq data, Compound B3 was predicted to inhibit goblet cells and promote ciliated
cells within the top 1.2% of compounds of the intervention library. HBECs from healthy
donors were differentiated at air-liquid interface (ALI) in the presence or absence of 0.3ng/ml
IL-13 and treated with predicted compounds. On day 14, samples were fixed, processed for

histology, anti-MucSac (goblet cells) and anti-acetyl a-Tubulin (ciliated cells) antibodies.

[0085] Figures 16A and 16B illustrates simulated (16A) versus measured (16B) impact of

chaetocin in blood cells in accordance with an embodiment of the present disclosure.

DETAILED DESCRIPTION
[0086] Introduction.

[0087] Given the above background, the present disclosure describes an approach to drug
discovery that targets cellular processes and programs that are critical to disease. This
approach is realized, in some aspects, by predicting therapeutic modalities and their properties
through tying them to computationally engineered representations of cellular programs (e.g.,

cellular processes).

[0088] For example, in some aspects, the present disclosure provides algorithms to learn
disease-critical cellular processes from scRNA-seq and related data types (e.g., cellular

constituents).

[0089] In some embodiments, a computational modeling architecture with predictive
capabilities is used to discover these disease-driving cell behaviors, through the generation of
digital representations (e.g., latent representations) of disease-associated features in molecular
data across one or more domains and/or data types. For instance, in some implementations,
the method combines and determines correlations between a variety of data types
(phenotypic, transcriptional, genetic, epigenetic, and/or covariate data) using latent

representations and machine learning to predict disease-critical cellular processes.

[0090] In some aspects, these algorithms can be further paired with enrichments and
annotations by other data modalities, such as genome-wide association studies (GWAS) and

gene set enrichment analysis (GSEA).

[0091] In an example embodiment, the present disclosure provides a sparse-autoencoder-
based modeling approach for learning and predicting disease-critical features from patient
samples and pre-clinical disease models (e.g., in vivo and/or in vitro), where features that

typically represent disease-critical cellular programs are targeted and clustered. The model is
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trained jointly on paired phenotypic-transcriptional data and data from a knowledge domain
(e.g., GWAS, GSEA, annotations, efc.). In some instances, the model is additionally trained
on genetic and epigenetic data. Targeted features are grouped into “modules” (e.g., disease
modules, gene modules, cellular constituent modules, ezc.), allowing complex molecular and

phenotypic disease variations to be decomposed into targetable, actionable units.

[0092] Advantageously, the systems and methods disclosed herein address the
shortcomings described above by providing systematic, scalable discovery of molecular
targets for drug discovery. For instance, by virtue of the abovementioned modules being
proxies for cellular programs that can be activated in a variety of cell types and cell states,
targeting modules allows systematic targeting of a multitude of cell behaviors. Additionally,
decomposing complex cellular constituent (e.g., transcriptional) and multi-readout cell
representations into modules removes the well-known sensitivity of deep learning to details
of system context, which alleviates the need of data-driven domain adaptation techniques,
allowing the overall model architecture to be more interpretable. Furthermore, modules are
interpretable and meaningfully associate with different stages of cellular biological processes
and pathways. These interpretations facilitate downstream decision-making and application

by researchers and scientists, thus contributing to the prioritization of relevant programs.

[0093] For example, as illustrated in Examples 1 and 2 below, identification of cellular
constituent modules can be used to determine module activation in, and thus association with,
a variety of cellular behaviors and phenotypes (e.g., cell lineages, cell state transitions, and/or
responses to compound treatment). Furthermore, as illustrated in Examples 3 and 4 below,
comparison of module activation with the knowledge domain (e.g., previous observations
and/or annotations obtained from patient data, GWAS, and/or GSEA) can be used to
determine relevant modules for further validation, improving the efficiency and applicability
of the method to drug discovery by reducing the pool of candidate targets for validation to
those with the greatest likelihood of efficacy. Similarly, as described in Examples 5 and 6,
additional data types can be incorporated into the method, such as genomic data (e.g., copy
number variations), which provide additional biological interpretations and actionable
inferences such as malignancy, intercellular interactions and role in disease (e.g., cancers)
leading to the identification of critical cell targets for downstream application.

[0094] Advantageously, the present disclosure further provides various systems and
methods that improve the associating a plurality of cellular constituents with a cellular
process of interest, by improving the training and use of a model for targeted determination of

correlations between cellular constituent modules and covariates. The complexity of a
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machine learning model includes time complexity (running time, or the measure of the speed
of an algorithm for a given input size n), space complexity (space requirements, or the
amount of computing power or memory needed to execute an algorithm for a given input size
n), or both. Complexity (and subsequent computational burden) applies to both training of

and prediction by a given model.

[0095] In some instances, computational complexity is impacted by implementation,
incorporation of additional algorithms or cross-validation methods, and/or one or more
parameters (e.g., weights and/or hyperparameters). In some instances, computational
complexity is expressed as a function of input size n, where input data is the number of
instances (e.g., the number of training samples), dimensions p (e.g., the number of features),
the number of trees #ees (e.g., for methods based on trees), the number of support vectors #sv
(e.g., for methods based on support vectors), the number of neighbors & (e.g., for k nearest
neighbor algorithms), the number of classes ¢, and/or the number of neurons 7; at a layer 7
(e.g., for neural networks). With respect to input size », then, an approximation of
computational complexity (e.g., in Big O notation) denotes how running time and/or space
requirements increase as input size increases. Functions can increase in complexity at slower
or faster rates relative to an increase in input size. Various approximations of computational
complexity include but are not limited to constant (e.g., O(1)), logarithmic (e.g., O(log 1)),
linear (e.g., O(n)), loglinear (e.g., O(n log n)), quadratic (e.g., O(n?)), polynomial (e.g.,
O(7)), exponential (e.g., O(c")), and/or factorial (e.g., O(n!)). In some instances, simpler
functions are accompanied by lower levels of computational complexity as input sizes
increase, as in the case of constant functions, whereas more complex functions such as
factorial functions can exhibit substantial increases in complexity in response to slight

increases in input size.

[0096] Computational complexity of machine learning models can similarly be
represented by functions (e.g., in Big O notation), and complexity may vary depending on the
type of model, the size of one or more inputs or dimensions, usage (e.g., training and/or
prediction), and/or whether time or space complexity is being assessed. For example,
complexity in decision tree algorithms is approximated as O(#°p) for training and O(p) for
predictions, while complexity in linear regression algorithms is approximated as O(p’n + p?)
for training and O(p) for predictions. For random forest algorithms, training complexity is
approximated as O(1°pnuees) and prediction complexity is approximated as O(pruees). For
gradient boosting algorithms, complexity is approximated as O(#phirees) for training and

O(pnirees) for predictions. For kernel support vector machines, complexity is approximated as
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O®#’p + »’) for training and O(nsp) for predictions. For naive Bayes algorithms, complexity
is represented as O(mp) for training and O(p) for predictions, and for neural networks,
complexity is approximated as O(pn; + nmz + ...) for predictions. Complexity in K nearest
neighbors algorithms is approximated as O(knp) for time and O(#p) for space. For logistic
regression algorithms, complexity is approximated as O(#p) for time and O(p) for space. For
logistic regression algorithms, complexity is approximated as O(#p) for time and O(p) for

space.

[0097] As described above, for machine learning models, computational complexity
determines the scalability and therefore the overall effectiveness and usability of a model
(e.g., a classifier) for increasing input, feature, and/or class sizes, as well as for variations in
model architecture. In the context of large-scale datasets, as in the case of gene expression
datasets comprising abundances of at least 10, at least 100, at least 1000 or more genes
obtained for at least 10, at least 100, at least 1000 or more cells, the computational
complexity of functions performed on such large datasets may strain the capabilities of many
existing systems. In addition, as the number of input features (e.g., number of cellular
constituents (e.g., genes)) and/or the number of instances (e.g., number of cells, cell state
annotations, and/or covariates) increases together with technological advancements,
increasing availability of annotations, and expanding downstream applications and
possibilities, the computational complexity of any given classification model can quickly
overwhelm the time and space capacities provided by the specifications of a respective

system.

[0098] Thus, by using a machine learning model with a minimum input size (e.g., at least
10, at least 20, at least 100 or more cells; at least 10, at least 50, at least 100 or more cellular
constituents; and/or at least 5, at least 10, at least 50 or more cellular constituent modules)
and/or a corresponding minimum number of parameters (e.g., corresponding to every
possible pairing of all of the features input to the machine learning model) for the associating
a plurality of cellular constituents with a cellular process of interest, the computational
complexity is proportionally increased such that it cannot be mentally performed, and the
method addresses a computational problem. For example, in an embodiment of the present
disclosure, obtaining a latent representation dimensioned by a plurality of at least 10 cellular
constituent modules and a plurality of at least 50 cellular constituents or a representation
thereof comprises obtaining at least S00 parameters (e.g., weights). In another embodiment
of the present disclosure, obtaining a respective activation weight for each cellular constituent

module in a plurality of at least 10 cellular constituent modules, for each cell in a plurality of
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at least 20 cells comprises obtaining at least 200 activation weights. Imposing similar
minimums for additional input features and/or instances, including but not limited to number
of cell state annotations, covariates, samples, time points, replicates, and/or batches, will

similarly affect the computational complexity of the method.

[0099] Additional details on computational complexity in machine learning models are
provided in “Computational complexity of machine learning algorithms,” published April 16,
2018, available online at: thekerneltrip.com/machine/learning/computational-complexity-
learning-algorithms; Hastie, 2001, The Elements of Statistical Learning, Springer, New York;
and Arora and Barak, 2009, Computational Complexity: A Modern Approach, Cambridge
University Press, New York; each of which is hereby incorporated herein by reference in its

entirety.

[00100] Reference will now be made in detail to embodiments, examples of which are
illustrated in the accompanying drawings. In the following detailed description, numerous
specific details are set forth in order to provide a thorough understanding of the present
disclosure. However, it will be apparent to one of ordinary skill in the art that the present
disclosure may be practiced without these specific details. In other instances, well-known
methods, procedures, components, circuits, and networks have not been described in detail so

as not to unnecessarily obscure aspects of the embodiments.

[00101] Plural instances may be provided for components, operations or structures
described herein as a single instance. Finally, boundaries between various components,
operations, and data stores are somewhat arbitrary, and particular operations are illustrated in
the context of specific illustrative configurations. Other forms of functionality are envisioned
and may fall within the scope of the implementation(s). In general, structures and
functionality presented as separate components in the example configurations may be
implemented as a combined structure or component. Similarly, structures and functionality
presented as a single component may be implemented as separate components. These and
other variations, modifications, additions, and improvements fall within the scope of the
implementation(s).

[00102] It will also be understood that, although the terms “first,” “second,” efc. may be
used herein to describe various elements, these elements should not be limited by these terms.
These terms are only used to distinguish one element from another. For example, a first
dataset could be termed a second dataset, and, similarly, a second dataset could be termed a
first dataset, without departing from the scope of the present invention. The first dataset and

the second dataset are both datasets, but they are not the same dataset.
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[00103] The terminology used herein is for the purpose of describing particular
implementations only and is not intended to be limiting of the claims. As used in the
description of the implementations and the appended claims, the singular forms “a,” “an,”
and “the” are intended to include the plural forms as well, unless the context clearly indicates
otherwise. It will also be understood that the term “and/or” as used herein refers to and
encompasses any and all possible combinations of one or more of the associated listed items.
It will be further understood that the terms “comprises” and/or “comprising,” when used in
this specification, specify the presence of stated features, integers, steps, operations,

elements, and/or components, but do not preclude the presence or addition of one or more

other features, integers, steps, operations, elements, components, and/or groups thereof.

[00104] Asused herein, the term “if”” may be construed to mean “when” or “upon” or “in
response to determining” or “in accordance with a determination” or “in response to
detecting,” that a stated condition precedent is true, depending on the context. Similarly, the
phrase “if it is determined (that a stated condition precedent is true)” or “if (a stated condition
precedent is true)” or “when (a stated condition precedent is true)” may be construed to mean
“upon determining” or “in response to determining” or “in accordance with a determination”
or “upon detecting” or “in response to detecting” that the stated condition precedent is true,
depending on the context.

“j™ denotation, the reference

[00105] Furthermore, when a reference number is given an
number refers to a generic component, set, or embodiment. For instance, a cellular-
component termed “cellular-component i refers to the i cellular-component in a plurality of

cellular-components.

[00106] The foregoing description included example systems, methods, techniques,
instruction sequences, and computing machine program products that embody illustrative
implementations. For purposes of explanation, numerous specific details are set forth in
order to provide an understanding of various implementations of the inventive subject matter.
It will be evident, however, to those skilled in the art that implementations of the inventive
subject matter may be practiced without these specific details. In general, well-known

instruction instances, protocols, structures and techniques have not been shown in detail.

[00107] The foregoing description, for purpose of explanation, has been described with
reference to specific implementations. However, the illustrative discussions below are not
intended to be exhaustive or to limit the implementations to the precise forms disclosed.
Many modifications and variations are possible in view of the above teachings. The

implementations are chosen and described in order to best explain the principles and their
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practical applications, to thereby enable others skilled in the art to best utilize the
implementations and various implementations with various modifications as are suited to the

particular use contemplated.

[00108] In the interest of clarity, not all of the routine features of the implementations
described herein are shown and described. It will be appreciated that, in the development of
any such actual implementation, numerous implementation-specific decisions are made in
order to achieve the designer’s specific goals, such as compliance with use case- and
business-related constraints, and that these specific goals will vary from one implementation
to another and from one designer to another. Moreover, it will be appreciated that such a
design effort might be complex and time-consuming, but nevertheless be a routine
undertaking of engineering for those of ordering skill in the art having the benefit of the

present disclosure.

[00109] Some portions of this description describe the embodiments of the invention in
terms of algorithms and symbolic representations of operations on information. These
algorithmic descriptions and representations are commonly used by those skilled in the data
processing arts to convey the substance of their work effectively to others skilled in the art.
These operations, while described functionally, computationally, or logically, are understood
to be implemented by computer programs or equivalent electrical circuits, microcode, or the

like.

[00110] The language used in the specification has been principally selected for readability
and instructional purposes, and it may not have been selected to delineate or circumscribe the
inventive subject matter. It is therefore intended that the scope of the invention be limited not
by this detailed description, but rather by any claims that issue on an application based
hereon. Accordingly, the disclosure of the embodiments of the invention is intended to be

illustrative, but not limiting, of the scope of the invention.

[00111] In general, terms used in the claims and the specification are intended to be
construed as having the plain meaning understood by a person of ordinary skill in the art.
Certain terms are defined below to provide additional clarity. In case of conflict between the

plain meaning and the provided definitions, the provided definitions are to be used.

[00112] Any terms not directly defined herein shall be understood to have the meanings
commonly associated with them as understood within the art of the invention. Certain terms
are discussed herein to provide additional guidance to the practitioner in describing the
compositions, devices, methods and the like of aspects of the invention, and how to make or

use them. It will be appreciated that the same thing may be said in more than one way.
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Consequently, alternative language and synonyms may be used for any one or more of the
terms discussed herein. No significance is to be placed upon whether or not a term is
elaborated or discussed herein. Some synonyms or substitutable methods, materials and the
like are provided. Recital of one or a few synonyms or equivalents does not exclude use of
other synonyms or equivalents, unless it is explicitly stated. Use of examples, including
examples of terms, is for illustrative purposes only and does not limit the scope and meaning

of the aspects of the invention herein.
[00113]  Definitions.

[00114] Asused herein, the term “about” or “approximately” means within an acceptable
error range for the particular value as determined by one of ordinary skill in the art, which
depends in part on how the value is measured or determined, e.g., the limitations of the
measurement system. For example, in some embodiments “about” means within 1 or more
than 1 standard deviation, per the practice in the art. In some embodiments, “about” means a
range of +20%, +£10%, +5%, or £1% of a given value. In some embodiments, the term
“about” or “approximately” means within an order of magnitude, within 5-fold, or within 2-
fold, of a value. Where particular values are described in the application and claims, unless
otherwise stated the term “about” meaning within an acceptable error range for the particular
value can be assumed. All numerical values within the detailed description herein are
modified by “about” the indicated value, and consider experimental error and variations that
would be expected by a person having ordinary skill in the art. The term “about” can have
the meaning as commonly understood by one of ordinary skill in the art. In some
embodiments, the term “about” refers to £10%. In some embodiments, the term “about”

refers to £5%.

[00115] Asused herein, the terms “abundance,” “abundance level,” or “expression level”
refers to an amount of a cellular constituent (e.g., a gene product such as an RNA species,
e.g., mRNA or miRNA, or a protein molecule) present in one or more cells, or an average
amount of a cellular constituent present across multiple cells. When referring to mRNA or
protein expression, the term generally refers to the amount of any RNA or protein species
corresponding to a particular genomic locus, e.g., a particular gene. However, in some
embodiments, an abundance can refer to the amount of a particular isoform of an mRNA or
protein corresponding to a particular gene that gives rise to multiple mRNA or protein
isoforms. The genomic locus can be identified using a gene name, a chromosomal location,

or any other genetic mapping metric.
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[00116] As used interchangeably herein, a “cell state” or “biological state” refers to a state
or phenotype of a cell or a population of cells. For example, a cell state can be healthy or
diseased. A cell state can be one of a plurality of diseases. A cell state can be a response to a
compound treatment and/or a differentiated cell lineage. A cell state can be characterized by
a measure of one or more cellular constituents, including but not limited to one or more

genes, one or more proteins, and/or one or more biological pathways.

[00117] Asused herein, a “cell state transition” or “cellular transition” refers to a transition
in a cell’s state from a first cell state to an altered cell state (e.g., healthy to diseased). A cell
state transition can be marked by a change in cellular constituent abundance in the cell, and
thus by the identity and quantity cellular constituents (e.g., mRNA, transcription factors)
produced by the cell.

[00118] Asused herein, the term “dataset” in reference to cellular constituent abundance
measurements for a cell or a plurality of cells can refer to a high-dimensional set of data
collected from a single cell (e.g., a single-cell cellular constituent abundance dataset) in some
contexts. In other contexts, the term “dataset” can refer to a plurality of high-dimensional
sets of data collected from single cells (e.g., a plurality of single-cell cellular constituent
abundance datasets), each set of data of the plurality collected from one cell of a plurality of

cells.

[00119] Asused herein, the term “differential abundance” or “differential expression”
refers to differences in the quantity and/or the frequency of a cellular constituent present in a
first entity (e.g., a first cell, plurality of cells, and/or sample) as compared to a second entity
(e.g., a second cell, plurality of cells, and/or sample). In some embodiments, a first entity is a
sample characterized by a first cell state (e.g., a diseased phenotype) and a second entity is a
sample characterized by a second cell state (e.g., a normal or healthy phenotype). For
example, a cellular constituent can be a polynucleotide (e.g., an mRNA transcript) which is
present at an elevated level or at a decreased level in entities characterized by a first cell state
compared to entities characterized by a second cell state. In some embodiments, a cellular
constituent can be a polynucleotide which is detected at a higher frequency or at a lower
frequency in entities characterized by a first cell state compared to entities characterized by a
second cell state. A cellular constituent can be differentially abundant in terms of quantity,
frequency or both. In some instances, a cellular constituent is differentially abundant
between two entities if the amount of the cellular constituent in one entity is statistically
significantly different from the amount of the cellular constituent in the other entity. For

example, a cellular constituent is differentially abundant in two entities if it is present at least
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about 120%, at least about 130%, at least about 150%, at least about 180%, at least about
200%, at least about 300%, at least about 500%, at least about 700%, at least about 900%, or
at least about 1000% greater in one entity than it is present in the other entity, or if it is
detectable in one entity and not detectable in the other. In some instances, a cellular
constituent is differentially expressed in two sets of entities if the frequency of detecting the
cellular constituent in a first subset of entities (e.g., cells representing a first subset of
annotated cell states) is statistically significantly higher or lower than in a second subset of
entities (e.g., cells representing a second subset of annotated cell states). For example, a
cellular constituent is differentially expressed in two sets of entities if it is detected at least
about 120%, at least about 130%, at least about 150%, at least about 180%, at least about
200%, at least about 300%, at least about 500%, at least about 700%, at least about 900%, or
at least about 1000% more frequently or less frequently observed in one set of entities than

the other set of entities.

[00120] Asused herein, the term “perturbation” in reference to a cell (e.g., a perturbation
of a cell or a cellular perturbation) refers to any treatment of the cell with one or more
compounds. These compounds can be referred to as “perturbagens.” In some embodiments,
the perturbagen can include, e.g., a small molecule, a biologic, a therapeutic, a protein, a
protein combined with a small molecule, an ADC, a nucleic acid, such as an siRNA or
interfering RNA, a cDNA over-expressing wild-type and/or mutant sShRNA, a cDNA over-
expressing wild-type and/or mutant guide RNA (e.g., Cas9 system or other gene editing

system), or any combination of any of the foregoing.

[00121] Asused herein, the term “sample,” “biological sample,” or “patient sample,”
refers to any sample taken from a subject, which can reflect a biological state associated with
the subject. Examples of samples include, but are not limited to, blood, whole blood, plasma,
serum, urine, cerebrospinal fluid, fecal, saliva, sweat, tears, pleural fluid, pericardial fluid, or
peritoneal fluid of the subject. A sample can include any tissue or material derived from a
living or dead subject. A sample can be a cell-free sample. A sample can comprise one or
more cellular constituents. For instance, a sample can comprise a nucleic acid (e.g., DNA or
RNA) or a fragment thereof, or a protein. The term “nucleic acid” can refer to
deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or any hybrid or fragment thereof.
The nucleic acid in the sample can be a cell-free nucleic acid. A sample can be a liquid
sample or a solid sample (e.g., a cell or tissue sample). A sample can be a bodily fluid. A
sample can be a stool sample. A sample can be treated to physically disrupt tissue or cell

structure (e.g., centrifugation and/or cell lysis), thus releasing intracellular components into a
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solution which can further contain enzymes, buffers, salts, detergents, and the like which can

be used to prepare the sample for analysis.

[00122] Asused herein the term “fingerprint” as in a fingerprint of a compound is a digital
digest of the compound. Nonlimiting examples of such a digital digest include Daylight
fingerprints, a BCI fingerprint, an ECFC4 fingerprint, an ECFP4 fingerprint, an EcFC
fingerprint, an MDL fingerprint, an atom pair fingerprint (APFP fingerprint), a topological
torsion fingerprint (TTFP) fingerprint, a UNITY 2D fingerprint, an RNNS2S fingerprint, or a
GraphConv fingerprint. See Franco, 2014, “The Use of 2D fingerprint methods to support
the assessment of structural similarity in orphan drug legislation,” J. Cheminform 6, p. 5, and
Rensi and Altman, 2017, “Flexible Analog Search with Kernel PCA Embedded Molecule
Vectors,” Computational and Structural Biotechnology Journal,
doi:10.1016/.¢sbj.2017.03.003, each of which is hereby incorporated by reference. See also
Raymond and Willett, 2002, “Effectiveness of graph-based and fingerprint-based similarity
measures for virtual screening of 2D chemical structure databases,” Journal of Computer-
Aided Molecular Design 16, 59-71, and Franco et al., 2014, “The use of 2D fingerprint
methods to support the assessment of structural similarity in orphan drug legislation” Journal

of chemoinformatics 6(5), each of which is hereby incorporated by reference.

[00123] Asused herein the term “classification” can refer to any number(s) or other
characters(s) that are associated with a particular property (e.g., a cellular process, a
covariate, a cell state annotation, efc.) of an entity (e.g., a cell, a sample, a cellular
constituent, a cellular constituent modules, efc.). For example, a “+” symbol (or the word
“positive”) can signify that an entity is classified as positive for a particular property (e.g., a
cellular constituent module is positively associated with a cellular process of interest). In
another example, the term “classification” can refer to a determination of correlation between
an entity and a particular property (e.g., a correlation between a respective covariate and a
respective cellular constituent module). In some embodiments, the classification is a
correlation coefficient and/or a weight. The classification can be binary (e.g., positive or
negative) or have more levels of classification (e.g., a scale from 1 to 10 or O to 1). The terms
“cutoff” and “threshold” can refer to predetermined numbers used in an operation. For
example, a cutoff value can refer to a value above which entities are excluded. A threshold
value can be a value above or below which a particular classification applies. Either of these

terms can be used in either of these contexts.

2%
2

[00124]  Asused interchangeably herein, the term “classifier”, “model”, algorithm,

“regressor”, and/”or classifier” refers to a machine learning model or algorithm. In some
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embodiments, a model is an unsupervised learning algorithm. One example of an

unsupervised learning algorithm is cluster analysis.

[00125] In some embodiments, a model is supervised machine learning. Nonlimiting
examples of supervised learning algorithms include, but are not limited to, logistic regression,
neural networks, support vector machines, Naive Bayes algorithms, nearest neighbor
algorithms, random forest algorithms, decision tree algorithms, boosted trees algorithms,
multinomial logistic regression algorithms, linear models, linear regression,
GradientBoosting, mixture models, hidden Markov models, Gaussian NB algorithms, linear
discriminant analysis, or any combinations thereof. In some embodiments, a model is a
multinomial classifier algorithm. In some embodiments, a model is a 2-stage stochastic
gradient descent (SGD) model. In some embodiments, a model is a deep neural network
(e.g., a deep-and-wide sample-level model). In some embodiments, a classifier or model of
the present disclosure has 25 or more, 100 or more, 1000 or more 10,000 or more, 100,000 or
more or 1 x 10° or more parameters and thus the calculations of the model cannot be mentally

be performed.

[00126] Moreover, as used herein, the term “parameter” refers to any coefficient or,
similarly, any value of an internal or external element (e.g., a weight and/or a
hyperparameter) in an algorithm, model, regressor, and/or classifier that can affect (e.g.,
modify, tailor, and/or adjust) one or more inputs, outputs, and/or functions in the algorithm,
model, regressor and/or classifier. For example, in some embodiments, a parameter refers to
any coefficient, weight, and/or hyperparameter that can be used to control, modify, tailor,
and/or adjust the behavior, learning, and/or performance of an algorithm, model, regressor,
and/or classifier. In some instances, a parameter is used to increase or decrease the influence
of an input (e.g., a feature) to an algorithm, model, regressor, and/or classifier. As a
nonlimiting example, in some embodiments, a parameter is used to increase or decrease the
influence of a node (e.g., of a neural network), where the node includes one or more
activation functions. Assignment of parameters to specific inputs, outputs, and/or functions
is not limited to any one paradigm for a given algorithm, model, regressor, and/or classifier
but can be used in any suitable algorithm, model, regressor, and/or classifier architecture for a
desired performance. In some embodiments, a parameter has a fixed value. In some
embodiments, a value of a parameter is manually and/or automatically adjustable. In some
embodiments, a value of a parameter is modified by a validation and/or training process for
an algorithm, model, regressor, and/or classifier (e.g., by error minimization and/or

backpropagation methods). In some embodiments, an algorithm, model, regressor, and/or
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classifier of the present disclosure includes a plurality of parameters. In some embodiments,
the plurality of parameters is n parameters, where: n>2; n>5; n> 10; n > 25; n > 40; n > 50,
n>75;n>100; n> 125; n> 150; n> 200; n > 225; n > 250; n> 350; n> 500; n > 600; n >
750, n > 1,000; n > 2,000; n > 4,000; n > 5,000; n > 7,500; n> 10,000; n > 20,000; n >
40,000; n > 75,000; n > 100,000; n > 200,000; n > 500,000, n>1x 10°, n>5x 10°, orn > 1
x 107, As such, the algorithms, models, regressors, and/or classifiers of the present disclosure
cannot be mentally performed. In some embodiments, n is between 10,000 and 1 x 107,
between 100,000 and 5 x 10°, or between 500,000 and 1 x 10°. In some embodiments, the
algorithms, models, regressors, and/or classifier of the present disclosure operate in a k-
dimensional space, where k is a positive integer of 5 or greater (e.g., 5, 6,7, 8, 9, 10,
efc.). As such, the algorithms, models, regressors, and/or classifiers of the present disclosure

cannot be mentally performed.

[00127]  Neural networks. In some embodiments, the model is a neural network (e.g., a
convolutional neural network and/or a residual neural network). Neural network algorithms,
also known as artificial neural networks (ANNs), include convolutional and/or residual neural
network algorithms (deep learning algorithms). Neural networks can be machine learning
algorithms that may be trained to map an input data set to an output data set, where the neural
network comprises an interconnected group of nodes organized into multiple layers of nodes.
For example, the neural network architecture may comprise at least an input layer, one or
more hidden layers, and an output layer. The neural network may comprise any total number
of layers, and any number of hidden layers, where the hidden layers function as trainable
feature extractors that allow mapping of a set of input data to an output value or set of output
values. As used herein, a deep learning algorithm (DNN) can be a neural network
comprising a plurality of hidden layers, e.g., two or more hidden layers. Each layer of the
neural network can comprise a number of nodes (or “neurons”). A node can receive input
that comes either directly from the input data or the output of nodes in previous layers, and
perform a specific operation, e.g., a summation operation. In some embodiments, a
connection from an input to a node is associated with a parameter (e.g., a weight and/or
weighting factor). In some embodiments, the node may sum up the products of all pairs of
inputs, xi, and their associated parameters. In some embodiments, the weighted sum is offset
with a bias, b. In some embodiments, the output of a node or neuron may be gated using a
threshold or activation function, f, which may be a linear or non-linear function. The
activation function may be, for example, a rectified linear unit (ReLU) activation function, a

Leaky ReL.U activation function, or other function such as a saturating hyperbolic tangent,
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identity, binary step, logistic, arcTan, softsign, parametric rectified linear unit, exponential
linear unit, softPlus, bent identity, softExponential, Sinusoid, Sine, Gaussian, or sigmoid

function, or any combination thereof.

[00128] The weighting factors, bias values, and threshold values, or other computational
parameters of the neural network, may be “taught” or “learned” in a training phase using one
or more sets of training data. For example, the parameters may be trained using the input
data from a training data set and a gradient descent or backward propagation method so that
the output value(s) that the ANN computes are consistent with the examples included in the
training data set. The parameters may be obtained from a back propagation neural network

training process.

[00129] Any of a variety of neural networks may be suitable for use in analyzing an image
of a subject. Examples can include, but are not limited to, feedforward neural networks,
radial basis function networks, recurrent neural networks, residual neural networks,
convolutional neural networks, residual convolutional neural networks, and the like, or any
combination thereof. In some embodiments, the machine learning makes use of a pre-trained
and/or transfer-learned ANN or deep learning architecture. Convolutional and/or residual
neural networks can be used for analyzing an image of a subject in accordance with the

present disclosure.

[00130] For instance, a deep neural network model comprises an input layer, a plurality of
individually parameterized (e.g., weighted) convolutional layers, and an output scorer. The
parameters (e.g., weights) of each of the convolutional layers as well as the input layer
contribute to the plurality of parameters (e.g., weights) associated with the deep neural
network model. In some embodiments, at least 100 parameters, at least 1000 parameters, at
least 2000 parameters or at least S000 parameters are associated with the deep neural network
model. As such, deep neural network models require a computer to be used because they
cannot be mentally solved. In other words, given an input to the model, the model output
needs to be determined using a computer rather than mentally in such embodiments. See, for
example, Krizhevsky ef al., 2012, “Imagenet classification with deep convolutional neural
networks,” in Advances in Neural Information Processing Systems 2, Pereira, Burges, Bottou,
Weinberger, eds., pp. 1097-1105, Curran Associates, Inc.; Zeiler, 2012 “ADADELTA: an
adaptive learning rate method,” CoRR, vol. abs/1212.5701; and Rumelhart ez al., 1988,
“Neurocomputing: Foundations of research,” ch. Learning Representations by Back-
propagating Errors, pp. 696-699, Cambridge, MA, USA: MIT Press, each of which is hereby

incorporated by reference.
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[00131] Neural network algorithms, including convolutional neural network algorithms,
suitable for use as models are disclosed in, for example, Vincent ez al., 2010, “Stacked
denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion,” J Mach Learn Res 11, pp. 3371-3408; Larochelle ez al., 2009,
“Exploring strategies for training deep neural networks,” J Mach Learn Res 10, pp. 1-40; and
Hassoun, 1995, Fundamentals of Artificial Neural Networks, Massachusetts Institute of
Technology, each of which is hereby incorporated by reference. Additional example neural
networks suitable for use as models are disclosed in Duda et al., 2001, Pattern Classification,
Second Edition, John Wiley & Sons, Inc., New York; and Hastie et al., 2001, The Elements
of Statistical Learning, Springer-Verlag, New York, each of which is hereby incorporated by
reference in its entirety. Additional example neural networks suitable for use as models are
also described in Draghici, 2003, Data Analysis Tools for DNA Microarrays, Chapman &
Hall/CRC,; and Mount, 2001, Bioinformatics: sequence and genome analysis, Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, New York, each of which is hereby

incorporated by reference in its entirety.

[00132]  Support vector machines. In some embodiments, the model is a support vector
machine (SVM). SVM algorithms suitable for use as models are described in, for example,
Cristianini and Shawe-Taylor, 2000, “An Introduction to Support Vector Machines,”
Cambridge University Press, Cambridge; Boser ef al., 1992, “A training algorithm for
optimal margin classifiers,” in Proceedings of the Sth Annual ACM Workshop on
Computational Learning Theory, ACM Press, Pittsburgh, Pa., pp. 142-152; Vapnik, 1998,
Statistical Learning Theory, Wiley, New York; Mount, 2001, Bioinformatics: sequence and
genome analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y; Duda,
Pattern Classification, Second Edition, 2001, John Wiley & Sons, Inc., pp. 259, 262-265; and
Hastie, 2001, The Elements of Statistical Learning, Springer, New York; and Furey et al.,
2000, Bioinformatics 16, 906-914, each of which is hereby incorporated by reference in its
entirety. When used for classification, SVMs separate a given set of binary labeled data with
a hyper-plane that is maximally distant from the labeled data. For cases in which no linear
separation is possible, SVMs can work in combination with the technique of "kernels’, which
automatically realizes a non-linear mapping to a feature space. The hyper-plane found by the
SVM in feature space can correspond to a non-linear decision boundary in the input space. In
some embodiments, the plurality of parameters (e.g., weights) associated with the SVM

define the hyper-plane. In some embodiments, the hyper-plane is defined by at least 10, at
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least 20, at least 50, or at least 100 parameters and the SVM model requires a computer to

calculate because it cannot be mentally solved.

[00133] Naive Bayes algorithms. In some embodiments, the model is a Naive Bayes
algorithm. Naive Bayes models suitable for use as models are disclosed, for example, in Ng
et al., 2002, “On discriminative vs. generative classifiers: A comparison of logistic regression
and naive Bayes,” Advances in Neural Information Processing Systems, 14, which is hereby
incorporated by reference. A Naive Bayes model is any model in a family of “probabilistic
models” based on applying Bayes’ theorem with strong (naive) independence assumptions
between the features. In some embodiments, they are coupled with Kernel density
estimation. See, for example, Hastie et al., 2001, The elements of statistical learning : data
mining, inference, and prediction, eds. Tibshirani and Friedman, Springer, New York, which

is hereby incorporated by reference.

[00134]  Nearest neighbor algorithms. In some embodiments, a model is a nearest
neighbor algorithm. Nearest neighbor models can be memory-based and include no model to
be fit. For nearest neighbors, given a query point xo (a test subject), the k training points x¢),
r, ..., k (here the training subjects) closest in distance to xo are identified and then the point xo
is classified using the k nearest neighbors. Here, the distance to these neighbors is a function
of the abundance values of the discriminating gene set. In some embodiments, Euclidean

distance in feature space is used to determine distance as d;y = [|x) — X(g)|l- Typically,

when the nearest neighbor algorithm is used, the abundance data used to compute the linear
discriminant is standardized to have mean zero and variance 1. The nearest neighbor rule can
be refined to address issues of unequal class priors, differential misclassification costs, and
feature selection. Many of these refinements involve some form of weighted voting for the
neighbors. For more information on nearest neighbor analysis, see Duda, Pattern
Classification, Second Edition, 2001, John Wiley & Sons, Inc; and Hastie, 2001, The
Elements of Statistical Learning, Springer, New York, each of which is hereby incorporated

by reference.

[00135] A k-nearest neighbor model is a non-parametric machine learning method in
which the input consists of the k closest training examples in feature space. The output is a
class membership. An object is classified by a plurality vote of its neighbors, with the object
being assigned to the class most common among its k nearest neighbors (k is a positive
integer, typically small). If k = 1, then the object is simply assigned to the class of that single
nearest neighbor. See, Duda et al., 2001, Pattern Classification, Second Edition, John Wiley

& Sons, which is hereby incorporated by reference. In some embodiments, the number of
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distance calculations needed to solve the k-nearest neighbor model is such that a computer is

used to solve the model for a given input because it cannot be mentally performed.

[00136] Random forest, decision tree, and boosted tree algorithms. In some embodiments,
the model is a decision tree. Decision trees suitable for use as models are described generally
by Duda, 2001, Pattern Classification, John Wiley & Sons, Inc., New York, pp. 395-396,
which is hereby incorporated by reference. Tree-based methods partition the feature space
into a set of rectangles, and then fit a model (like a constant) in each one. In some
embodiments, the decision tree is random forest regression. One specific algorithm that can
be used is a classification and regression tree (CART). Other specific decision tree
algorithms include, but are not limited to, ID3, C4.5, MART, and Random Forests. CART,
ID3, and C4.5 are described in Duda, 2001, Pattern Classification, John Wiley & Sons, Inc.,
New York, pp. 396-408 and pp. 411-412, which is hereby incorporated by reference. CART,
MART, and C4.5 are described in Hastie ef al., 2001, The Elements of Statistical Learning,
Springer-Verlag, New York, Chapter 9, which is hereby incorporated by reference in its
entirety. Random Forests are described in Breiman, 1999, “Random Forests--Random
Features,” Technical Report 567, Statistics Department, U.C. Berkeley, September 1999,
which is hereby incorporated by reference in its entirety. In some embodiments, the decision
tree model includes at least 10, at least 20, at least 50, or at least 100 parameters (e.g.,
weights and/or decisions) and requires a computer to calculate because it cannot be mentally

solved.

[00137] Regression. In some embodiments, the model uses a regression algorithm and
thus can be referred to as a regressor. A regressor can use any type of regression. For
example, in some embodiments, the regression algorithm is logistic regression. In some
embodiments, the regression algorithm is logistic regression with lasso, L2 or elastic net
regularization. In some embodiments, those extracted features that have a corresponding
regression coefficient that fails to satisfy a threshold value are pruned (removed from)
consideration. In some embodiments, a generalization of the logistic regression model that
handles multicategory responses is used as the model. Logistic regression algorithms are
disclosed in Agresti, An Introduction to Categorical Data Analysis, 1996, Chapter 5, pp. 103-
144, John Wiley & Son, New York, which is hereby incorporated by reference. In some
embodiments, the regressor makes use of a regression model disclosed in Hastie ez al., 2001,
The Elements of Statistical Learning, Springer-Verlag, New York. In some embodiments, the

logistic regression includes at least 10, at least 20, at least 50, at least 100, or at least 1000
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parameters (e.g., weights) and requires a computer to calculate because it cannot be mentally

solved.

[00138] Linear discriminant analysis algorithms. Linear discriminant analysis (LDA),
normal discriminant analysis (NDA), or discriminant function analysis can be a
generalization of Fisher’s linear discriminant, a method used in statistics, pattern recognition,
and machine learning to find a linear combination of features that characterizes or separates
two or more classes of objects or events. The resulting combination can be used as the model

(linear model ) in some embodiments of the present disclosure.

[00139] Mixture model and Hidden Markov model. In some embodiments, the model is a
mixture model, such as that described in McLachlan ez a/., Bioinformatics 18(3):413-422,
2002. In some embodiments, in particular, those embodiments including a temporal
component, the model is a hidden Markov model such as described by Schliep ez al., 2003,
Bioinformatics 19(1):1255-1263.

[00140] Clustering. In some embodiments, the model is an unsupervised clustering model.
In some embodiments, the model is a supervised clustering model. Clustering algorithms
suitable for use as models are described, for example, at pages 211-256 of Duda and Hart,
Pattern Classification and Scene Analysis, 1973, John Wiley & Sons, Inc., New York,
(hereinafter "Duda 1973") which is hereby incorporated by reference in its entirety. The
clustering problem can be described as one of finding natural groupings in a dataset. To
identify natural groupings, two issues can be addressed. First, a way to measure similarity (or
dissimilarity) between two samples can be determined. This metric (e.g., similarity measure)
can be used to ensure that the samples in one cluster are more like one another than they are
to samples in other clusters. Second, a mechanism for partitioning the data into clusters using
the similarity measure can be determined. One way to begin a clustering investigation can be
to define a distance function and to compute the matrix of distances between all pairs of
samples in the training set. If distance is a good measure of similarity, then the distance
between reference entities in the same cluster can be significantly less than the distance
between the reference entities in different clusters. However, clustering may not use of a
distance metric. For example, a nonmetric similarity function s(x, x') can be used to compare
two vectors x and x'. s(x, x') can be a symmetric function whose value is large when x and x'
are somehow “similar.” Once a method for measuring “similarity” or “dissimilarity”
between points in a dataset has been selected, clustering can use a criterion function that
measures the clustering quality of any partition of the data. Partitions of the data set that

extremize the criterion function can be used to cluster the data. Particular exemplary
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clustering techniques that can be used in the present disclosure can include, but are not
limited to, hierarchical clustering (agglomerative clustering using a nearest-neighbor
algorithm, farthest-neighbor algorithm, the average linkage algorithm, the centroid algorithm,
or the sum-of-squares algorithm), k-means clustering, fuzzy k-means clustering algorithm,
and Jarvis-Patrick clustering. In some embodiments, the clustering comprises unsupervised
clustering (e.g., with no preconceived number of clusters and/or no predetermination of

cluster assignments).

[00141] Ensembles of models and boosting. In some embodiments, an ensemble (two or
more) of models is used. In some embodiments, a boosting technique such as AdaBoost is
used in conjunction with many other types of learning algorithms to improve the performance
of the model. In this approach, the output of any of the models disclosed herein, or their
equivalents, is combined into a weighted sum that represents the final output of the boosted
model. In some embodiments, the plurality of outputs from the models is combined using
any measure of central tendency known in the art, including but not limited to a mean,
median, mode, a weighted mean, weighted median, weighted mode, efc. In some
embodiments, the plurality of outputs is combined using a voting method. In some

embodiments, a respective model in the ensemble of models is weighted or unweighted.

[00142]  Asused herein, the term “untrained model” (e.g., “untrained classifier” and/or
“untrained autoencoder”) refers to a machine learning algorithm such as a model or an
autoencoder that has not been trained on a training dataset. As used herein, the term “training
a model” refers to the process of training an untrained or partially trained model. For
instance, in some embodiments, training a model comprises obtaining a plurality of cellular
constituent modules arranged in a latent representation and a cellular constituent count data
structure discussed below. The plurality of cellular constituent modules arranged in a latent
representation and the cellular constituent count data structure are combined to form an
activation data structure that is applied as collective input to an untrained or partially trained
model, in conjunction with the actual absence of present of each covariate in a plurality of
covariates for the plurality of cellular constituent modules in the activation data structure,
(hereinafter “primary training dataset”) to train the untrained or partially trained model on
covariate-module correlation, thereby obtaining a trained model. Moreover, it will be
appreciated that the term “untrained model” does not exclude the possibility that transfer
learning techniques are used in such training of the untrained model. For instance, Fernandes
et al., 2017, “Transfer Learning with Partial Observability Applied to Cervical Cancer

Screening,” Pattern Recognition and Image Analysis: 8% Iberian Conference Proceedings,
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243-250, which is hereby incorporated by reference, provides non-limiting examples of such
transfer learning. In instances where transfer learning is used, the untrained model described
above is provided with additional data over and beyond that of the primary training dataset.
That is, in non-limiting examples of transfer learning embodiments, the untrained model
receives (1) the primary training dataset and (i1) additional data. Typically, this additional
data is in the form of coefficients (e.g., regression coefficients) that were learned from
another, auxiliary training dataset. Moreover, while a description of a single auxiliary
training dataset has been disclosed, it will be appreciated that there is no limit on the number
of auxiliary training datasets that may be used to complement the primary training dataset in
training the untrained model in the present disclosure. For instance, in some embodiments,
two or more auxiliary training datasets, three or more auxiliary training datasets, four or more
auxiliary training datasets or five or more auxiliary training datasets are used to complement
the primary training dataset through transfer learning, where each such auxiliary dataset is
different than the primary training dataset. Any manner of transfer learning may be used in
such embodiments. For instance, consider the case where there is a first auxiliary training
dataset and a second auxiliary training dataset in addition to the primary training dataset. The
coefficients learned from the first auxiliary training dataset (by application of a model such as
regression to the first auxiliary training dataset) may be applied to the second auxiliary
training dataset using transfer learning techniques (e.g., two-dimensional matrix
multiplication), which in turn may result in a trained intermediate model whose coefticients
are then applied to the primary training dataset and this, in conjunction with the primary
training dataset itself, is applied to the untrained model. Alternatively, a first set of
coefficients learned from the first auxiliary training dataset (by application of a model such as
regression to the first auxiliary training dataset) and a second set of coefficients learned from
the second auxiliary training dataset (by application of a model such as regression to the
second auxiliary training dataset) may each individually be applied to a separate instance of
the primary training dataset (e.g., by separate independent matrix multiplications) and both
such applications of the coefficients to separate instances of the primary training dataset in
conjunction with the primary training dataset itself (or some reduced form of the primary
training dataset such as principal components or regression coefficients learned from the
primary training set) may then be applied to the untrained model in order to train the
untrained model. In either example, knowledge regarding covariate-module correlations
(e.g., additional cell state annotations, additional covariates, and/or cellular constituent

abundances thereof, efc.) derived from the first and second auxiliary training datasets is used,
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in conjunction with the covariate-labeled primary training dataset, to train the untrained

model.

[00143] Asused interchangeably herein, the term “neuron,” “node,” “unit,” “hidden
neuron,” “hidden unit,” or the like, refers to a unit of a neural network that accepts input and
provides an output via an activation function and one or more parameters (e.g., coefficients
and/or weights). For example, a hidden neuron can accept one or more inputs from a prior
layer and provide an output that serves as an input for a subsequent layer. In some
embodiments, a neural network comprises only one output neuron. In some embodiments, a
neural network comprises a plurality of output neurons. Generally, the output is a prediction
value, such as a probability or likelihood, a binary determination (e.g., a presence or absence,
a positive or negative result), and/or a label (e.g., a classification and/or a correlation
coefficient) of a condition of interest such as a covariate, a cell state annotation, or a cellular
process of interest. For single-class classification models, the output can be a likelihood
(e.g., a correlation coefficient and/or a weight) of an input feature (e.g., one or more cellular
constituent modules) having a condition (e.g., a covariate, a cell state annotation, and/or a
cellular process of interest). For multi-class classification models, multiple prediction values
can be generated, with each prediction value indicating the likelihood of an input feature for

each condition of interest.

[00144] Asused herein, the term “parameter” refers to any coefficient or, similarly, any
value of an internal or external element (e.g., weight and/or hyperparameter) in a model,
classifier, or algorithm that can affect (e.g., modify, tailor, and/or adjust) one or more inputs,
outputs, and/or functions in the model, classifier, or algorithm. In some embodiments,
parameters are coefficients (e.g., weights) that modulate one or more inputs, outputs, or
functions in a classifier. For instance, a value of a parameter can be used to upweight or
down-weight the influence of an input (e.g., a feature) to a classifier. Features can be
associated with parameters, such as in a logistic regression, SVM, or naive Bayes model. A
value of a parameter can, alternately or additionally, be used to upweight or down-weight the
influence of a node in a neural network (e.g., where the node comprises one or more
activation functions that define the transformation of an input to an output), a class, or an
instance (e.g., of a cell in a plurality of cells). Assignment of parameters to specific inputs,
outputs, functions, or features is not limited to any one paradigm for a given classifier but can
be used in any suitable classifier architecture for optimal performance. In some instances,
reference to the parameters (e.g., coefficients) associated with the inputs, outputs, functions,

or features of a classifier can similarly be used as an indicator of the number, performance, or
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optimization of the same, such as in the context of the computational complexity of machine
learning algorithms. In some embodiments, a parameter has a fixed value. In some
embodiments, a value of a parameter is manually and/or automatically adjustable (e.g., using
a hyperparameter optimization method). In some embodiments, a value of a parameter is
modified by a classifier validation and/or training process (e.g., by error minimization and/or

backpropagation methods, as described elsewhere herein).

[00145] Asused herein, the term “vector” is an enumerated list of elements, such as an
array of elements, where each element has an assigned meaning. As such, the term “vector”
as used in the present disclosure is interchangeable with the term “tensor.” As an example, if
a vector comprises the abundance counts, in a plurality of cells, for a respective cellular
constituent, there exists a predetermined element in the vector for each one of the plurality of
cells. For ease of presentation, in some instances a vector may be described as being one-
dimensional. However, the present disclosure is not so limited. A vector of any dimension
may be used in the present disclosure provided that a description of what each element in the
vector represents is defined (e.g., that element 1 represents abundance count of cell 1 of a

plurality of cells, efc.).

[00146] As used herein, the term “cellular process” means a specific objective that a cell is
genetically “programmed” to achieve. Each cellular process is often described by its
outcome or ending state, e.g., the cellular process of cell division results in the creation of
two daughter cells (a divided cell) from a single parent cell. A cellular process is
accomplished by a particular set of molecular processes carried out by specific gene products,
often in a highly regulated manner and in a particular temporal sequence. A determination
that a particular cellular constituent is associated with a cellular process means that the
cellular constituent carries out a molecular process that plays an integral role in that cellular
process. But a cellular constituent can affect a biological objective even if it does not act
strictly within the cellular process. First, a cellular constituent can control when and where
the cellular process is executed; that is, it might regulate the cellular process. In this case, the
cellular constituent acts outside of the cellular process, and controls (directly or indirectly)
the activity of one or more cellular constituent that act within the cellular process. Second,
the cellular constituent might act in another, separate cellular process that is required for the
given cellular process to occur. For instance, animal embryogenesis requires translation,
though translation would not generally be considered to be part of the embryogenesis
program. Thus, a given cellular process could be associated with a cellular process by being

an integral component of the cellular process, by regulating the cellular process, or be
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upstream of but still necessary for, the cellular process. Cellular processes span an entire
range of how biologists characterize biological systems. They can be as simple as a generic
enzymatic process, e.g., protein phosphorylation, to molecular pathways such as glycolysis or
the canonical Wnt signaling pathway, to complex programs like embryo development or
learning, and even including reproduction. Cellular processes also includes molecular-level
processes that cannot always be distinguished from molecular functions. For instance, the
cellular process class “protein phosphorylation” overlaps in meaning with the cellular process
class “protein kinase activity,” as protein kinase activity is the enzymatic activity by which
protein phosphorylation occurs. The main difference is that while a molecular function
annotation has precise semantics (e.g., the gene carries out protein kinase activity), the
cellular process annotation does not (e.g., the gene either carries out, regulates, or is upstream
of but necessary for a particular protein kinase activity). Because of this diversity, in practice
not all cellular process classes actually represent coherent, regulated biological programs.
Cellular process, interchangeably referred to herein as “biological processes” are further
described in The Gene Ontology Handbook, Methods in Molecular Biology, eds., Dessimoz
and Skunca, 2017, Human Press, Springer Science+Business Media LLC New York, Chapter

2, which is hereby incorporated by reference.

[00147] L Exemplary System Embodiments

[00148] Now that an overview of some aspects of the present disclosure and some
definitions used in the present disclosure have been provided, details of an exemplary system

are described in conjunction with Figures 1A-E.

[00149] Figures 1A-E collectively provide a block diagram illustrating a system 100 in
accordance with some embodiments of the present disclosure. The system 100 provides a
determination of one or more cellular constituent modules in a plurality of cellular constituent
modules that is associated with a cellular process of interest. In Figure 1A, the system 100 is
illustrated as a computing device. Other topologies of the computer system 100 are possible.
For instance, in some embodiments, the system 100 can in fact constitute several computer
systems that are linked together in a network, or be a virtual machine or a container in a cloud
computing environment. As such, the exemplary topology shown in Figure 1A merely serves
to describe the features of an embodiment of the present disclosure in a manner that will be

readily understood to one of skill in the art.

[00150] Referring to Figure 1A, in some embodiments a computer system 100 (e.g., a
computing device) includes a network interface 104. In some embodiments, the network

interface 104 interconnects the system 100 computing devices within the system with each
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other, as well as optional external systems and devices, through one or more communication
networks (e.g., through network communication module 158). In some embodiments, the
network interface 104 optionally provides communication through network communication
module 158 via the Internet, one or more local area networks (LANs), one or more wide area

networks (WANS), other types of networks, or a combination of such networks.

[00151] Examples of networks include the World Wide Web (WWW), an intranet and/or a
wireless network, such as a cellular telephone network, a wireless local area network (LAN)
and/or a metropolitan area network (MAN), and other devices by wireless communication.
The wireless communication optionally uses any of a plurality of communications standards,
protocols and technologies, including Global System for Mobile Communications (GSM),
Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA),
high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+,
Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication
(NFC), wideband code division multiple access (W-CDMA), code division multiple access
(CDMA), time division multiple access (TDMA), Bluetooth, Wireless Fidelity (Wi-Fi) (e.g.,
IEEE 802.11a, IEEE 802.11ac, IEEE 802.11ax, IEEE 802.11b, IEEE 802.11g and/or IEEE
802.11n), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet
message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g.,
extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant
Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence
Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication
protocol, including communication protocols not yet developed as of the filing date of this

document.

[00152] The system 100 in some embodiments includes one or more processing units
(CPU(s)) 102 (e.g., a processor, a processing core, efc.), one or more network interfaces 104,
a user interface 106 including (optionally) a display 108 and an input system 105 (e.g., an
input/output interface, a keyboard, a mouse, etc.) for use by the user, memory (e.g., non-
persistent memory 107, persistent memory 109), and one or more communication buses 103
for interconnecting the aforementioned components. The one or more communication buses
103 optionally include circuitry (sometimes called a chipset) that interconnects and controls
communications between system components. The non-persistent memory 107 typically
includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, ROM,
EEPROM, flash memory, whereas the persistent memory 109 typically includes CD-ROM,

digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape,

38



WO 2022/266256 PCT/US2022/033680
magnetic disk storage or other magnetic storage devices, magnetic disk storage devices,
optical disk storage devices, flash memory devices, or other non-volatile solid state storage
devices. The persistent memory 109 optionally includes one or more storage devices
remotely located from the CPU(s) 102. The persistent memory 109, and the non-volatile
memory device(s) within the non-persistent memory 109, include non-transitory computer
readable storage medium. In some embodiments, the non-persistent memory 107 or
alternatively the non-transitory computer readable storage medium stores the following
programs, modules and data structures, or a subset thereof, sometimes in conjunction with the

persistent memory 109:

e an optional operating system 156 (e.g., ANDROID, i0S, DARWIN, RTXC, LINUX,
UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks),
which includes procedures for handling various basic system services and for
performing hardware dependent tasks;

e an optional network communication module (or instructions) 158 for connecting the
system 100 with other devices and/or a communication network 104;

e a count data structure for a first plurality of cells 110;

e alatent representation 118;

e a count data structure for a second plurality of cells 160;

® an activation data structure 170;

e a cellular constituent module knowledge store 124;

e a classification construct 180; and

e a cellular process construct 182.

[00153] In some embodiments, the count data structure for a first plurality of cells 110
comprises a count matrix comprising, for each cell in the first plurality of cells, a
corresponding abundance for each cellular constituent in the plurality of cellular constituents.
For example, as illustrated in Figure 1B, the count matrix comprises, for each cell 114 in the
first plurality of cells (e.g., 114-1-1,...114-1-N), where the first plurality of cells collectively
represents a plurality of annotated cell states 116 (e.g., cell types and/or exposure conditions
166-1-1,...,166-1-N), for each cellular constituent 112 in a plurality of cellular constituents
(e.g., 112-1,...112-7), a corresponding abundance 114 of the respective cellular constituent in

the respective cell.

[00154] In some embodiments, the latent representation 118 is formed from the count data

structure for the first plurality of cells 110 and represents correlations between each
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respective cellular constituent in the plurality of cellular constituents in the count data
structure and each respective cellular constituent module in a plurality of cellular constituent
modules. For example, as illustrated in Figure 1C, the latent representation 118 includes, for
each cellular constituent module 120 in a plurality of cellular constituent modules (e.g., 120-
1, 120-2, 120-K), a weight 122 for each cellular constituent (e.g., gene) in the plurality of
cellular constituents (e.g., a plurality of genes; 122-1-1,...122-K-Z).

[00155] In some embodiments, the count data structure for a second plurality of cells 160
comprises a count data structure comprising, for each cell in the second plurality of cells, a
corresponding abundance for each cellular constituent in the plurality of cellular constituents.
For example, as illustrated in Figure 1D, the count data structure includes, for each cell 164
in the second plurality of cells (e.g., 164-1-1,...164-1-G), where the second plurality of cells
collectively represents a plurality of covariates possibly informative of a cellular process of
interest 166 (e.g., 166-1-1,...,166-1-G), for each cellular constituent 162 in the plurality of
cellular constituents (e.g., 162-1,...162-Z), a corresponding abundance 164 of the respective

cellular constituent in the respective cell.

[00156] In some embodiments, the activation data structure 170 is formed by combining
the latent representation 118 and the count data structure for the second plurality of cells 160
using the plurality of cellular constituents as a common dimension. For example, as
illustrated in Figure 1D, the activation data structure 170 comprises, for each cellular
constituent module 172 in the plurality of cellular constituent modules (e.g., 172-1,...172-K),
for each cell in the second plurality of cells, a respective activation weight 174 (e.g., 174-1-
1,...174-1-G).

[00157] In some embodiments, the cellular constituent module knowledge store 124 is
obtained by training a model using the activation data structure 170 and represents
correlations between each respective covariate in the plurality of covariates and each
respective cellular constituent module in the plurality of cellular constituent modules. For
example, as illustrated in Figure 1E, the cellular constituent module knowledge store 124
includes, for each cellular constituent module 126 in a plurality of cellular constituent
modules (e.g., 126-1, 126-2, 126-K), a knowledge term identity 128 in a plurality of
knowledge term identities (e.g., 128-1-1,...128-K-S) and a knowledge term weight 130in a
plurality of knowledge term weights (e.g., 130-1-1,...130-K-S), where each knowledge term
identity refers to a corresponding covariate possibly informative of a cellular process of
interest and each knowledge term weight indicates whether the respective covariate correlates

with the respective cellular constituent module.
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[00158] In some embodiments, the classification construct 180 is used for training the
model, where the training adjusts a plurality of covariate weights associated with the model
responsive to a difference between a calculated and an actual activation against each cellular
constituent model in the plurality of cellular constituent modules. In some embodiments, the
cellular process construct 182 is used for identifying, using the plurality of covariate weights
upon training the model, one or more cellular constituent modules in the plurality of cellular
constituent modules that is associated with one or more covariates in the plurality of

covariates.

[00159] In various embodiments, one or more of the above identified elements are stored
in one or more of the previously mentioned memory devices, and correspond to a set of
instructions for performing a function described above. The above identified modules, data,
or programs (e.g., sets of instructions) need not be implemented as separate software
programs, procedures, datasets, or modules, and thus various subsets of these modules and
data may be combined or otherwise re-arranged in various implementations. In some
implementations, the non-persistent memory 107 optionally stores a subset of the modules
and data structures identified above. Furthermore, in some embodiments, the memory stores
additional modules and data structures not described above. In some embodiments, one or
more of the above identified elements is stored in a computer system, other than that of the
system 100, that is addressable by the system 100 so that the system 100 may retrieve all or a

portion of such data when needed.

[00160] Although Figures 1A, 1B, 1C, 1D, and 1E depict a “system 100,” the figure is
intended more as a functional description of the various features that may be present in
computer systems than as a structural schematic of the implementations described herein. In
practice, and as recognized by those of ordinary skill in the art, items shown separately could
be combined and some items could be separated. Moreover, although Figures 1A, 1B, 1C,
1D, and 1E depict certain data and modules in non-persistent memory 107, some or all of
these data and modules instead may be stored in persistent memory 109 or in more than one
memory. For example, in some embodiments, at least data store 160 and count data structure
110 are stored in a remote storage device which can be a part of a cloud-based infrastructure.
In some embodiments, at least data store 160 and count data structure 110 are stored on a
cloud-based infrastructure. In some embodiments, data store 160 and count data structure

110 can also be stored in the remote storage device(s).
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[00161] While a system in accordance with the present disclosure has been disclosed with
reference to 1A, 1B, 1C, 1D, and 1E, methods 200 and 300 in accordance with the present

disclosure are now detailed with reference to Figures 2A-B and 3.

[00162] II. Methods of Associating Cellular Constituents with Cellular Processes

[00163] Referring to Figures 2A and 2B, one aspect of the present disclosure provides a
method 200 of associating a plurality of cellular constituents with a cellular process of

interest.

[00164] Referring to Block 202, the method comprises obtaining one or more first datasets
in electronic form, the one or more first datasets comprising or collectively comprising, for
each respective cell in a first plurality of cells, where the first plurality of cells comprises,
e.g., twenty or more cells and collectively represents a plurality of annotated cell states, for
each respective cellular constituent in a plurality of cellular constituents, where the plurality
of cellular constituents comprises, e.g., 50 or more cellular constituents, a corresponding

abundance of the respective cellular constituent in the respective cell.

[00165] Figure 1B illustrates an example dataset for the one or more first datasets, in
accordance with some embodiments of the present disclosure. For instance, a count data
structure (e.g., a count matrix 110) is obtained for a first plurality of cells (e.g., N cells),
collectively representing a plurality of annotated cell states 116. For each respective cell, for
each respective cellular constituent in a plurality of cellular constituents 112 (e.g., Z cellular
constituents), the count data structure includes a corresponding count 114 of the respective

cellular constituent in the respective cell.
[00166] Cell states and processes.

[00167] In some embodiments, the cellular process of interest is an aberrant cell process.
In some embodiments, the cellular process of interest is a cell process associated with a
disease. For example, as described above, in some embodiments, the method provides for the

targeting and elucidation of cellular processes and programs that are critical to disease.

[00168] In some embodiments, the cellular process of interest is indicative of or related to
a mechanism underlying any of the characteristics of disease, including but not limited to
onset, progression, symptoms, or severity of disease.

[00169] In some embodiments, the disease is selected from the group consisting of
infectious or parasitic diseases; neoplasms; diseases of the blood or blood-forming organs;
diseases of the immune system; endocrine, nutritional or metabolic diseases; mental,

behavioral or neurodevelopmental disorders; sleep-wake disorders; diseases of the nervous
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system; diseases of the visual system; diseases of the ear or mastoid process; diseases of the
circulatory system; diseases of the respiratory system; diseases of the digestive system;
diseases of the skin; diseases of the musculoskeletal system or connective tissue; diseases of
the genitourinary system; conditions related to sexual health; diseases related to pregnancy,
childbirth or the puerperium; certain conditions originating in the perinatal period; and
developmental anomalies. In some embodiments, the disease is one or more entries of the
ICD-11 MMS, or the International Classification of Disease. The ICD provides a method of
classifying diseases, injuries, and causes of death. The World Health Organization (WHO)
publishes the ICDs to standardize the methods of recording and tracking instances of

diagnosed disease.

[00170] In some embodiments, the cellular process of interest is a functional pathway. In
some embodiments, the cellular process of interest is a signaling pathway. In some
embodiments, the cellular process of interest is a mechanism of action (e.g., of a compound, a
small molecule, and/or a therapeutic). In some embodiments the cellular process of interest is
a transcriptional network (e.g., a gene regulatory network). Any cellular or biological
process known in the art is contemplated for the present disclosure, as well as any aberrations

thereof, as will be apparent to one skilled in the art.

[00171] In some embodiments, the cellular process of interest is an aberrant cell process
associated with a disease, and the first plurality of cells includes cells that are representative
of the disease and cells that are not representative of the disease as documented by the

plurality of annotated cell states.

[00172] In some embodiments, the cellular process of interest is an aberrant cell process
associated with a disease, and the first plurality of cells includes cells that are representative
of a disease state and cells that are representative of a healthy or control state as documented

by the plurality of annotated cell states.

[00173] In some embodiments, the cellular process of interest is an aberrant cell process
associated with a plurality of diseases, and the first plurality of cells includes a plurality of
subsets of cells, each respective subset of cells representative of a respective disease in the

plurality of diseases as documented by the plurality of annotated cell states.

[00174] In some embodiments, the cellular process of interest is identified by a
discrepancy between a diseased state (e.g., a cell obtained from a diseased subject and/or a
diseased tissue) and a normal state (e.g., a cell obtained from a healthy or control subject
and/or tissue). For instance, in some embodiments, a diseased state is identified by loss of a

function of a cell, gain of a function of a cell, progression of a cell (e.g., transition of the cell
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into a differentiated state), stasis of a cell (e.g., inability of the cell to transition into a
differentiated state), intrusion of a cell (e.g., emergence of the cell in an abnormal location),
disappearance of a cell (e.g., absence of the cell in a location where the cell is normally
present), disorder of a cell (e.g., a structural, morphological, and/or spatial change within
and/or around the cell), loss of network of a cell (e.g., a change in the cell that eliminates
normal effects in progeny cells or cells downstream of the cell), a gain of network of a cell
(e.g., a change in the cell that triggers new downstream effects in progeny cells of cells
downstream of the cell), a surplus of a cell (e.g., an overabundance of the cell), a deficit of a
cell (e.g., a density of the cell being below a critical threshold), a difference in cellular
constituent ratio and/or quantity in a cell, a difference in the rate of transitions in a cell, or

any combination thereof.

[00175] In some embodiments, the first plurality of cells includes a plurality of subsets of
cells, each respective subset of cells representative of a respective disease, functional
pathway, signaling pathway, mechanism of action, transcriptional network, discrepancy,

and/or cellular or biological process as documented by the plurality of annotated cell states.

[00176] In some embodiments, the first plurality of cells includes single cells, cell lines,
biopsy sample cells, and/or cultured primary cells. In some embodiments, the first plurality
of cells comprises human cells. In some embodiments, the first plurality of cells is obtained

from one or more samples as described herein (see, for example, Definitions: Samples).

[00177] In some embodiments, the first plurality of cells comprises at least 5, at least 10, at
least 15, at least 20, at least 30, at least 40, at least 50, at least 100, at least 200, at least 300,
at least 400, at least 500, at least 1000, at least at least 2000, at least 3000, at least 4000, at
least 5000, at least 10,000, at least 20,000, at least 30,000, at least 50,000, at least 80,000, at
least 100,000, at least 500,000, or at least 1 million cells. In some embodiments, the first
plurality of cells comprises no more than 5 million, no more than 1 million, no more than
500,000, no more than 100,000, no more than 50,000, no more than 10,000, no more than
5000, no more than 1000, no more than 500, no more than 200, no more than 100, or no more
than 50 cells. In some embodiments, the first plurality of cells comprises from 5 to 100, from
10 to 50, from 20 to 500, from 200 to 10,000, from 1000 to 100,000, from 50,000 to 500,000,
or from 10,000 to 1 million cells. In some embodiments, the first plurality of cells falls

within another range starting no lower than 5 cells and ending no higher than 5 million cells.

[00178] In some embodiments, the plurality of annotated cell states (e.g., cell

type/exposure conditions 116 in count data structure 110) comprises one or more of a cell
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phenotype, cellular behavior, disease state, genetic mutation, perturbations of genes or gene

products (e.g., knockdowns, silencing, overexpression, efc.), and/or exposure to a compound.

[00179] In some embodiments, an annotated cell state in the plurality of annotated cell
states is an exposure of a cell in the first plurality of cells to a compound under an exposure
condition. For example, an exposure of a cell includes any treatment of the cell with one or
more compounds. In some embodiments, the one or more compounds includes, for example,
a small molecule, a biologic, a therapeutic, a protein, a protein combined with a small
molecule, an ADC, a nucleic acid (e.g., an siRNA, interfering RNA, cDNA over-expressing
wild-type and/or mutant sShRNA, cDNA over-expressing wild-type and/or mutant guide RNA
(e.g., Cas9 system or other cellular-component editing system, ezc.), and/or any combination
of any of the foregoing. In some embodiments, the exposure condition is a duration of
exposure, a concentration of the compound, or a combination of a duration of exposure and a

concentration of the compound.

[00180] In some embodiments a compound of the present disclosure is a chemical
compound that satisfies the Lipinski rule of five criterion. In some embodiments, a
compound of the present disclosure is an organic compounds that satisfies two or more rules,
three or more rules, or all four rules of the Lipinski's Rule of Five: (i) not more than five
hydrogen bond donors (e.g., OH and NH groups), (ii) not more than ten hydrogen bond
acceptors (e.g. N and O), (ii1) a molecular weight under 500 Daltons, and (iv) a LogP under 5.
The “Rule of Five” is so called because three of the four criteria involve the number five.
See, Lipinski, 1997, Adv. Drug Del. Rev. 23, 3, which is hereby incorporated herein by
reference in its entirety. In some embodiments, a compound of the present disclosure
satisfies one or more criteria in addition to Lipinski's Rule of Five. For example, in some
embodiments, a compound of the present disclosure has five or fewer aromatic rings, four or

fewer aromatic rings, three or fewer aromatic rings, or two or fewer aromatic rings.

[00181] In some embodiments, the plurality of annotated cell states comprises one or more
indications of cell batch, cell donor, cell type, cell line, disease status, time points, replicates,
and/or relevant metadata. In some embodiments, the plurality of annotated cell states
comprises experimental data (e.g., flow cytometry readouts, imaging and microscopy
annotations, cellular constituent data, efc.). In some embodiments, the plurality of annotated
cell states comprises one or more genetic markers (e.g., copy number variations, single
nucleotide variants, multiple nucleotide polymorphisms, insertions, deletions, gene fusions,

microsatellite instability status, amplifications, and/or isoforms).
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[00182] In some embodiments, the plurality of annotated cell states comprises at least 3, at
least 5, at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at
least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 400, at least
500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 2000, or at least
3000 cell states. In some embodiments, the plurality of annotated cell states comprises no
more than 5000, no more than 1000, no more than 500, no more than 200, no more than 100,
no more than 50, or no more than 20 cell states. In some embodiments, the plurality of
annotated cell states comprises from 3 to 10, from 10 to 50, from 20 to 500, from 200 to
1000, or from 1000 to 5000 cell states. In some embodiments, the plurality of annotated cell
states falls within another range starting no lower than 3 cell states and ending no higher than

5000 cell states.

[00183] In some embodiments, the plurality of annotated cell states includes any of the

cellular conditions of interest disclosed herein.

[00184] In some embodiments, the plurality of annotated cell states includes any of the

covariates disclosed herein (see, for example, the section entitled, “Covariates,” below).
[00185] Cellular constituents.

[00186] As described above, in some implementations, the method comprises using one or
more types of molecular data (e.g., cellular constituents) to elucidate the mechanisms and/or
molecular targets underlying cellular processes of interest (e.g., disease-critical cellular

processes).

[00187] In some embodiments, a cellular constituent is a gene, a gene product (e.g., an
mRNA and/or a protein), a carbohydrate, a lipid, an epigenetic feature, a metabolite, and/or a
combination thereof. In some embodiments, each cellular constituent in the plurality of
cellular constituents is a particular gene, a particular mRNA associated with a gene, a

carbohydrate, a lipid, an epigenetic feature, a metabolite, a protein, or a combination thereof.

[00188] In some embodiments, the plurality of cellular constituents includes nucleic acids,
including DNA, modified (e.g., methylated) DNA, RNA, including coding (e.g., mRNAs) or
non-coding RNA (e.g., sncRNAs), proteins, including post-transcriptionally modified protein
(e.g., phosphorylated, glycosylated, myristilated, efc. proteins), lipids, carbohydrates,
nucleotides (e.g., adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine
monophosphate (AMP)) including cyclic nucleotides such as cyclic adenosine
monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), other small molecule
cellular constituents such as oxidized and reduced forms of nicotinamide adenine

dinucleotide (NADP/NADPH), and any combinations thereof.
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[00189] In some embodiments, the corresponding abundance of a respective cellular
constituent comprises an abundance of any of the cellular constituents disclosed above. In
some embodiments, the corresponding abundance of a respective cellular constituent includes

gene expression measurements, such as RNA levels.

[00190] In some embodiments, the plurality of cellular constituents comprises at least 5, at
least 10, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, at least 60, at
least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 400, at least
500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 2000, at least
3000, at least 4000, at least 5000, at least 6000, at least 7000, at least 8000, at least 9000, at
least 10,000, at least 20,000, at least 30,000, at least 50,000, or more than 50,000 cellular

constituents.

[00191] In some embodiments, the plurality of cellular constituents comprises no more
than 70,000, no more than 50,000, no more than 30,000, no more than 10,000, no more than
5000, no more than 1000, no more than 500, no more than 200, no more than 100, no more
than 90, no more than 80, no more than 70, no more than 60, no more than 50, or no more

than 40 cellular constituents.

[00192] In some embodiments, the plurality of cellular constituents consists of between
twenty and 10,000 cellular constituents. In some embodiments, the plurality of cellular
constituents consists of between 100 and 8,000 cellular constituents. In some embodiments,
the plurality of cellular constituents comprises from 5 to 20, from 20 to 50, from 50 to 100,
from 100 to 200, from 200 to 500, from 500 to 1000, from 1000 to 5000, from 5000 to
10,000, or from 10,000 to 50,000 cellular constituents. In some embodiments, the plurality of
cellular constituents falls within another range starting no lower than 5 cellular constituents

and ending no higher than 70,000 cellular constituents.

[00193] As an example, in some embodiments, the plurality of cellular constituents
comprises a plurality of genes, optionally measured at the RNA level. In some embodiments,
the plurality of genes comprises at least 5, at least 10, at least 15, at least 20, at least 25, at
least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at
least 200, at least 300, at least 400, at least 500, at least 600, at least 700, at least 800, at least
900, or at least 1000 genes. In some embodiments, the plurality of genes comprises at least
1000, at least 2000, at least 3000, at least 4000, at least 5000, at least 10,000, at least 30,000,
at least 50,000, or more than 50,000 genes. In some embodiments, the plurality of genes
comprises from 5 to 20, from 20 to 50, from 50 to 100, from 100 to 200, from 200 to 500,
from 500 to 1000, from 1000 to 5000, from 5000 to 10,000, or from 10,000 to 50,000 genes.

47



WO 2022/266256 PCT/US2022/033680
[00194] As another example, in some embodiments, the plurality of cellular constituents
comprises a plurality of proteins. In some embodiments, the plurality of proteins comprises
at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, at
least 60, at least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 400,
at least 500, at least 600, at least 700, at least 800, at least 900, or at least 1000 proteins. In
some embodiments, the plurality of proteins comprises at least 1000, at least 2000, at least
3000, at least 4000, at least 5000, at least 10,000, at least 30,000, at least 50,000, or more
than 50,000 proteins. In some embodiments, the plurality of proteins comprises from 5 to 20,
from 20 to 50, from 50 to 100, from 100 to 200, from 200 to 500, from 500 to 1000, from
1000 to 5000, from 5000 to 10,000, or from 10,000 to 50,000 proteins.

[00195] Any one of a number of abundance counting techniques (e.g., cellular constituent
measurement techniques) may be used to obtain the corresponding abundance for each
respective cellular constituent in each respective cell (e.g., count 114 in count data structure
110). For instance, Table 1 lists non-limiting techniques for single-cell cellular constituent

measurement, in accordance with some embodiments of the present disclosure.

[00196] In some embodiments, for instance, gene expression in a respective cell in the first
plurality of cells can be measured by sequencing the cell and then counting the quantity of
each gene transcript identified during the sequencing. In some embodiments, the gene
transcripts sequenced and quantified include RNA, such as mRNA. In some embodiments,
the gene transcripts sequenced and quantified include a downstream product of mRNA, such
as a protein (e.g., a transcription factor). In general, as used herein, the term “gene transcript”
may be used to denote any downstream product of gene transcription or translation, including
post-translational modification, and “gene expression” may be used to refer generally to any

measure of gene transcripts.

[00197] Thus, in some embodiments, the corresponding abundance of the respective
cellular constituent is determined using one or more methods including microarray analysis
via fluorescence, chemiluminescence, electric signal detection, polymerase chain reaction
(PCR), reverse transcriptase polymerase chain reaction (RT-PCR), digital droplet PCR
(ddPCR), solid-state nanopore detection, RNA switch activation, a Northern blot, and/or a
serial analysis of gene expression (SAGE). In some embodiments, the corresponding
abundance of the respective cellular constituent in the respective cell in the first plurality of
cells is determined by a colorimetric measurement, a fluorescence measurement, a

luminescence measurement, or a resonance energy transfer (FRET) measurement.
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[00198] For example, in some embodiments, the corresponding abundance of the
respective cellular constituent is RNA abundance (e.g., gene expression), and the abundance
of the respective cellular constituent is determined by measuring polynucleotide levels of one
or more nucleic acid molecules corresponding to the respective gene. The transcript levels of
the respective gene can be determined from the amount of mRNA, or polynucleotides derived
therefrom, present in the respective cell in the first plurality of cells. Polynucleotides can be
detected and quantitated by a variety of methods including, but not limited to, microarray
analysis, polymerase chain reaction (PCR), reverse transcriptase polymerase chain reaction
(RT-PCR), Northern blot, serial analysis of gene expression (SAGE), RNA switches, RNA
fingerprinting, ligase chain reaction, Qbeta replicase, isothermal amplification method, strand
displacement amplification, transcription based amplification systems, nuclease protection
assays (Si nuclease or RNAse protection assays), and/or solid-state nanopore detection. See,
e.g., Draghici, Data Analysis Tools for DNA Microarrays, Chapman and Hall/CRC, 2003;
Simon et al., Design and Analysis of DNA Microarray Investigations, Springer, 2004; Real-
Time PCR: Current Technology and Applications, Logan, Edwards, and Saunders eds.,
Caister Academic Press, 2009; Bustin A-Z of Quantitative PCR (IUL Biotechnology, No. 5),
International University Line, 2004; Velculescu et al., (1995) Science 270: 484-487,
Matsumura et al., (2005) Cell. Microbiol. 7: 11-18; Serial Analysis of Gene Expression
(SAGE): Methods and Protocols (Methods in Molecular Biology), Humana Press, 2008; each

of which is hereby incorporated herein by reference in its entirety.

[00199] In some embodiments, the corresponding abundance of the respective cellular
constituent is obtained from expressed RNA or a nucleic acid derived therefrom (e.g., cDNA
or amplified RNA derived from cDNA that incorporates an RNA polymerase promoter) from
a respective cell in the first plurality of cells, including naturally occurring nucleic acid
molecules, as well as synthetic nucleic acid molecules. Thus, in some embodiments, the
corresponding abundance of the respective cellular constituent is obtained from such non-
limiting sources as total cellular RNA, poly(A)+ messenger RNA (mRNA) or a fraction
thereof, cytoplasmic mRNA, or RNA transcribed from ¢cDNA (e.g., cRNA). Methods for
preparing total and poly(A)+ RNA are well known in the art, and are described generally,
e.g., in Sambrook, et al., Molecular Cloning: A Laboratory Manual (3rd Edition, 2001).
RNA can be extracted from a cell of interest using guanidinium thiocyanate lysis followed by
CsCl centrifugation (see, e.g., Chirgwin ef al., 1979, Biochemistry 18:5294-5299), a silica
gel-based column (e.g., RNeasy (Qiagen, Valencia, Calif.) or StrataPrep (Stratagene, La
Jolla, Calif))), or using phenol and chloroform, as described in Ausubel ef al., eds., 1989,
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Current Protocols In Molecular Biology, Vol. III, Green Publishing Associates, Inc., John
Wiley & Sons, Inc., New York, at pp. 13.12.1-13.12.5). Poly(A)+ RNA can be selected, e.g.,
by selection with oligo-dT cellulose or, alternatively, by oligo-dT primed reverse
transcription of total cellular RNA. RNA can be fragmented by methods known in the art,
e.g., by incubation with ZnCl2, to generate fragments of RNA.

[00200] In some embodiments, the corresponding abundance of the respective cellular
constituent in the respective cell in the first or second plurality of cells is determined by
sequencing.

[00201] In some embodiments, the corresponding abundance of the respective cellular
constituent in the respective cell in the first or second plurality of cells is determined by
single-cell ribonucleic acid (RNA) sequencing (scRNA-seq), scTag-seq, single-cell assay for
transposase-accessible chromatin using sequencing (scATAC-seq), CyTOF/SCoP, E-
MS/Abseq, miRNA-seq, CITE-seq, and any combination thereof. The cellular constituent
abundance measurement technique can be selected based on the desired cellular constituent to
be measured. For instance, sScCRNA-seq, scTag-seq, and miRNA-seq can be used to measure
RNA expression. Specifically, scRNA-seq measures expression of RNA transcripts, scTag-
seq allows detection of rare mRNA species, and miRNA-seq measures expression of micro-
RNAs. CyTOF/SCoP and E-MS/Abseq can be used to measure protein expression in the cell.
CITE-seq simultaneously measures both gene expression and protein expression in the cell,
and scATAC-seq measures chromatin conformation in the cell. Table 1 below provides
example protocols for performing each of the cellular constituent abundance measurement

techniques described above.

[00202] Table 1 — Example Measurement Protocols

Technique Protocol

RNA-seq Olsen ef al., (2018), “Introduction to Single-Cell RNA
Sequencing,” Current protocols in molecular biology
122(1), pg. 57.

Tag-seq Rozenberg ez al., (2016), “Digital gene expression
analysis with sample multiplexing and PCR duplicate
detection: A straightforward protocol,” BioTechniques,
61(1), pg. 26.

ATAC-seq Buenrostro ef al., (2015), “ATAC-seq: a method for
assaying chromatic accessibility genome-wide,” Current
protcols in molecular biology, 109(1), pg. 21.
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Technique Protocol

miRNA-seq Faridani et al., (2016), “Single-cell sequencing of the
small-RNA transcriptome,” Nature biotechnology,
34(12), pg. 1264.

CyTOF/SCoPE-MS/Abseq Bandura ef al., (2009), “Mass cytometry: technique for
real time single cell multitarget immunoassay based on
inductivitely coupled plasma time-of-flight mass
spectrometry,” Analystic chemistry, 81(16), pg. 6813.

Budnik ef al., (2018), “SCoPE-ME: mass scpectrometry
of single mammalian cells quantifies proteome
heterogenity during cell differentiation,” Genome
biology, 19(1), pg. 161.

Shahi ef al., (2017), “Abseq: Ultrahigh-throughoutput
single cell protein profiling with droplep microfluidic
barcoding,” Scientific reports, 7, pg. 44447.

CITE-seq Stoeckius et al., (2017), “Simultaneous epitope and
transcritome measurement in single cells,” Nature
Methods, 14(9), pg. 856.

[00203] In some embodiments, the plurality of cellular constituents is measured at a single
time point. In some embodiments, the plurality of cellular constituents is measured at
multiple time points. For instance, in some embodiments, the plurality of cellular
constituents is measured at multiple time points throughout a cell state transition (e.g., a
differentiation process, a response to an exposure to a compound, a developmental process,

efc.).

[00204] TItis to be understood that this is by way of illustration and not limitation, as the
present disclosure encompasses analogous methods using measurements of other cellular
constituents obtained from cells (e.g., single cells). It is to be further understood that the
present disclosure encompasses methods using measurements obtained directly from
experimental work carried out by an individual or organization practicing the methods
described in this disclosure, as well as methods using measurements obtained indirectly, e.g.,
from reports of results of experimental work carried out by others and made available through
any means or mechanism, including data reported in third-party publications, databases,
assays carried out by contractors, or other sources of suitable input data useful for practicing

the disclosed methods.
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[00205]  All of the techniques described herein are equally applicable to any technique that
obtains data from one or more cells (e.g., single cells) in the plurality of cells for the one or
more first datasets. Examples include gene transcripts and gene expression, proteomics
(protein expression), chromatin conformation (chromatin status), methylation, or other

quantifiable epigenetic effects.

[00206] In some embodiments, the one or more first datasets comprises the same plurality
of cellular constituents for each respective cell in the first plurality of cells. In some
embodiments, the one or more first datasets comprises, for two or more respective cells in the
first plurality of cells, a different plurality of cellular constituents. In some embodiments, the
corresponding abundance of each respective cellular constituent for a respective cell in the
first plurality of cells is measured only from the respective cell (e.g., using a single-cell
measurement technique). In some embodiments, the corresponding abundance of each
respective cellular constituent for a respective cell in the first plurality of cells is measured

from a plurality of cells.

[00207] In some embodiments, the obtaining the one or more first datasets comprises
preprocessing the corresponding abundances for the plurality of cellular constituents. In
some embodiments, the preprocessing includes one or more of filtering, normalization,

mapping (e.g., to a reference sequence), quantification, scaling, deconvolution, cleaning,

dimension reduction, transformation, statistical analysis, and/or aggregation.

[00208] For example, in some embodiments, the plurality of cellular constituents is filtered
based on a desired quality, e.g., size and/or quality of a nucleic acid sequence, or a minimum
and/or maximum abundance value for a respective cellular constituent. In some
embodiments, filtering is performed in part or in its entirety by various software tools, such
as Skewer. See, Jiang, H. ef al., BMC Bioinformatics 15(182):1-12 (2014). In some
embodiments, the plurality of cellular constituents is filtered for quality control, for example,
using a sequencing data QC software such as AfterQC, Kraken, RNA-SeQC, FastQC, or
another similar software program. In some embodiments, the plurality of cellular
constituents is normalized, e.g., to account for pull-down, amplification, and/or sequencing
bias (e.g., mappability, GC bias efc.). See, for example, Schwartz ef al., PLoS ONE
6(1):e16685 (2011) and Benjamini and Speed, Nucleic Acids Research 40(10):¢72 (2012),
the contents of which are hereby incorporated by reference, in their entireties, for all
purposes. In some embodiments, the preprocessing removes a subset of cellular constituents

from the plurality of cellular constituents.
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[00209] In some embodiments, the obtaining the one or more first datasets comprises
preprocessing the corresponding abundances for the plurality of cellular constituents to
improve (e.g., lower) a high signal-to-noise ratio.

[00210] In some embodiments, the preprocessing comprises performing a comparison of a
corresponding abundance of a respective cellular constituent in a respective cell to a reference
abundance. In some embodiments, the reference abundance is obtained from, e.g., a normal
sample, a matched sample, a reference dataset comprising reference abundance values, a
reference cellular constituent such as a housekeeping gene, and/or a reference standard. In
some embodiments, this comparison of cellular constituent abundances is performed using
any differential expression test including, but not limited to, a difference of means test, a
Wilcoxon rank-sum test (Mann Whitney U test), a t-test, a logistic regression, and a
generalized linear model. Those of skill in the art will appreciate that other metrics are also

possible for comparison and/or normalization of cellular constituent abundances.

[00211] Thus, in some embodiments, the corresponding abundance of a respective cellular
constituent in a respective cell in the first dataset comprises any one of a variety of forms,
including, without limitation, a raw abundance value, an absolute abundance value (e.g.,
transcript number), a relative abundance value (e.g., relative fluorescent units, transcriptome
analysis, and/or gene set expression analysis (GSEA)), a compound or aggregated abundance
value, a transformed abundance value (e.g., log2 and/or log10 transformed), a change (e.g.,
fold- or log-change) relative to a reference (e.g., a normal sample, matched sample, reference
dataset, housekeeping gene, and/or reference standard), a standardized abundance value, a
measure of central tendency (e.g., mean, median, mode, weighted mean, weighted median,
and/or weighted mode), a measure of dispersion (e.g., variance, standard deviation, and/or
standard error), an adjusted abundance value (e.g., normalized, scaled, and/or error-
corrected), a dimension-reduced abundance value (e.g., principal component vectors and/or
latent components), and/or a combination thereof. Methods for obtaining cellular constituent
abundances using dimension reduction techniques are known in the art and further detailed
below, including but not limited to principal component analysis, factor analysis, linear
discriminant analysis, multi-dimensional scaling, isometric feature mapping, locally linear
embedding, hessian eigenmapping, spectral embedding, t-distributed stochastic neighbor
embedding, and/or any substitutions, additions, deletions, modification, and/or combinations
thereof as will be apparent to one skilled in the art. See, for example, Sumithra ef al., 2015,

“A Review of Various Linear and Non Linear Dimensionality Reduction Techniques,” Int J
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Comp Sci and Inf Tech, 6(3), 2354-2360, which is hereby incorporated herein by reference in

its entirety.

[00212] Referring to Block 204, the method further includes accessing or forming a
plurality of vectors, each respective vector in the plurality of vectors (i) corresponding to a
respective cellular constituent in the plurality of constituents and (ii) comprising a
corresponding plurality of elements, each respective element in the corresponding plurality of
elements having a corresponding count representing the corresponding abundance of the

respective cellular constituent in a respective cell in the first plurality of cells.

[00213] For instance, referring again to Figure 1B, the count data structure 110 includes a
first plurality of N cells and a plurality of Z cellular constituents. The count data structure
110 can be represented as a count matrix, which is further illustrated in Figure 4 (top panel).
Each cell in the first plurality of N cells is arranged along the x-axis (columns) and each
cellular constituent in the plurality of Z cellular constituents are arranged along the y-axis
(rows). Each row forms a respective vector for the corresponding cellular constituent, where
each entry for each respective column in the row is an abundance (e.g., a count) of the
cellular constituent for the respective cell corresponding to the respective column. Thus, as
illustrated in Figure 4, the vector corresponding to cellular constituent 1 includes counti-1

corresponding to cell 1, counti- corresponding to cell 2, and so on.

[00214] In some embodiments, each respective cellular constituent in the plurality of
cellular constituents is a gene, and each gene is represented by an expression vector in which
each entry in the vector represents the abundance of the gene in each cell or each set of cells

having one or more conditions of interest (e.g., annotated cell states).
[00215]  Cellular constituent modules.

[00216] When associated with a cellular process, modules of cellular constituents (e.g.,
genes) can be thought to arise from a sequence of switching events, where cellular
constituents (e.g., genes) that switch at similar times form a module together. Thus, for
instance, in some embodiments, each respective vector in the plurality of vectors is an
expression vector for a gene, in which each entry in the vector represents expression of the
gene in a respective cell (or set of cells) associated with a condition of interest (e.g., a disease
condition versus a healthy condition). Cellular constituent modules therefore can be found
based on similarities in gene expression patterns between different conditions (e.g., groups of

genes with similar expression patterns across a plurality of different cells).

[00217] In some embodiments, a cellular constituent is a gene, a gene product (e.g., an

mRNA and/or a protein), a carbohydrate, a lipid, an epigenetic feature, a metabolite, and/or a
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combination thereof. In some embodiments, each cellular constituent in the plurality of
cellular constituents is a particular gene, a particular mRNA associated with a gene, a

carbohydrate, a lipid, an epigenetic feature, a metabolite, a protein, or a combination thereof.

In some embodiments, the plurality of cellular constituents includes nucleic acids, including
DNA, modified (e.g., methylated) DNA, RNA, including coding (e.g., mRNAs) or non-
coding RNA (e.g., sncRNAs), proteins, including post-transcriptionally modified protein
(e.g., phosphorylated, glycosylated, myristilated, efc. proteins), lipids, carbohydrates,
nucleotides (e.g., adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine
monophosphate (AMP)) including cyclic nucleotides such as cyclic adenosine
monophosphate (cAMP) and cyclic guanosine monophosphate (¢cGMP), other small molecule
cellular constituents such as oxidized and reduced forms of nicotinamide adenine

dinucleotide (NADP/NADPH), and any combinations thereof.

[00218] Accordingly, referring to Block 206, the method includes using the plurality of
vectors to identify each cellular constituent module in a plurality of cellular constituent
modules (e.g., comprising more than ten cellular constituent modules). Each cellular
constituent module in the plurality of cellular constituent modules includes a subset of the
plurality of cellular constituents, where the plurality of cellular constituent modules are
arranged in a latent representation dimensioned by (i) the plurality of cellular constituent

modules and (i1) the plurality of cellular constituents or a representation thereof.

[00219] In some embodiments, the plurality of cellular constituent modules comprises at
least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, at
least 60, at least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 400,
at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 2000, at
least 3000, at least 4000, or at least 5000 cellular constituent modules. In some
embodiments, the plurality of cellular constituent modules comprises no more than 10,000,
no more than 5000, no more than 2000, no more than 1000, no more than 500, no more than
300, no more than 200, no more than 100, no more than 90, no more than 80, no more than

70, no more than 60, or no more than 50 cellular constituent modules.

[00220] In some embodiments, the plurality of cellular constituent modules consists of
between 10 and 2000 cellular constituent modules. In some embodiments, the plurality of
cellular constituent modules consists of between 50 and 500 cellular constituent modules. In
some embodiments, the plurality of cellular constituent modules comprises from 5 to 20,
from 20 to 50, from 50 to 100, from 100 to 200, from 200 to 500, from 500 to 1000, from

1000 to 5000, or from 5000 to 10,000 cellular constituent modules. In some embodiments,
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the plurality of cellular constituent modules falls within another range starting no lower than

5 cellular constituent modules and ending no higher than 10,000 cellular constituent modules.

[00221] In some embodiments, each cellular constituent module in the plurality of cellular
constituent modules comprises the same or a different number of cellular constituents in the
respective subset of the plurality of cellular constituents. In some embodiments, each
respective subset of cellular constituents corresponding to each respective cellular constituent
module has a unique subset of cellular constituents (e.g., each cellular constituent is grouped
into no more than one module). In some embodiments, a first cellular constituent module has
a first subset of cellular constituents that overlaps a second subset of cellular constituents
corresponding to a second cellular constituent module (e.g., a cellular constituent is common

to two or more different modules).

[00222] In some embodiments, a respective cellular constituent module in the plurality of
cellular constituent modules comprises at least 2, at least 5, at least 10, at least 15, at least 20,
at least 25, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at
least 100, at least 200, at least 300, at least 400, at least 500, at least 600, at least 700, at least
800, at least 900, at least 1000, at least 2000, or at least 3000 cellular constituents. In some
embodiments, a respective cellular constituent module in the plurality of cellular constituent
modules comprises no more than 5000, no more than 3000, no more than 1000, no more than
500, no more than 200, no more than 100, no more than 90, no more than 80, no more than

70, no more than 60, or no more than 50 cellular constituents.

[00223] In some embodiments, a respective cellular constituent module in the plurality of
cellular constituent modules comprises from 5 to 100, from 2 to 300, from 20 to 500, from
200 to 1000, or from 1000 to 5000 cellular constituents. In some embodiments, the plurality
of cellular constituents in a respective cellular constituent module falls within another range
starting no lower than 2 cellular constituents and ending no higher than 5000 cellular

constituents.

[00224] In some embodiments, each cellular constituent module in the plurality of

constituent modules consists of between two and three hundred cellular constituents.

[00225] In some embodiments, the using the plurality of vectors to identify each cellular
constituent module in a plurality of cellular constituent modules comprises application of a
correlation model to the plurality of vectors using each corresponding plurality of elements of
each vector in the plurality of vectors. In some embodiments, the correlation model includes
a clustering method (e.g., a clustering algorithm). In some embodiments, the correlation

model includes a graph clustering method (e.g., algorithm) and/or a non-graph clustering
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method. In some embodiments, the graph clustering method is Leiden clustering on a
Pearson-correlation-based distance metric. In some embodiments, the graph clustering

method is Louvain clustering.

[00226] For example, in some implementations, the method comprises application of a
correlation-based cost function. Optimizing a correlation-based cost function includes
computing a nearest-neighbor graph defining neighborhood relations among cellular
constituents (e.g., genes), representing each cellular constituent by a vector formed by storing
the abundance counts (e.g., expression values) for the cellular constituent in each cell, and
computing correlations among cellular constituents. Cellular constituents with high
correlations among one another are determined to be nearest neighbors, and are used to form
a cellular constituent module by clustering the graph using a graph clustering method (e.g.,

Leiden and/or Louvain).

[00227] Any one of a number of clustering techniques can be used, examples of which
include, but are not limited to, hierarchical clustering, k-means clustering, and density based
clustering. In an embodiment, a hierarchical density based clustering algorithm is used
(referred to as HDBSCAN, see, e.g., Campello ef al., (2015). Hierarchical density estimates
for data clustering, visualization, and outlier detection. ACM Trans Knowl Disc Data, 10(1),
5). In another embodiment, a community detection based cluster algorithm is used, such as
Louvain clustering (see, e.g., Blondel et al., (2008). Fast unfolding of communities in large
networks. J stat mech: theor exp, 2008(10), P10008). In yet another embodiment, Leiden
clustering is used. The Leiden algorithm proceeds by moving individual nodes between
communities to determine partitions, refining partitions, and creating aggregate networks
based on the refined partitions. Aggregate networks are further partitioned based on the
unrefined partitions determined in earlier steps of the process, and new partitions are refined
by moving individual nodes within each aggregate network. See, e.g., Traag et al., (2019),
“From Louvain to Leiden: guaranteeing well-connected communities,” Sci Rep 9:5233, doi:
10.1038/541598-019-41695-z. In still another embodiment, a diffusion path algorithm is

used.

[00228]  Generally, clustering algorithms such as Louvain clustering and/or Leiden
clustering use hard partitioning techniques, in which each element (e.g., each cellular
constituent) is uniquely assigned to a single cluster without overlapping. However, and
without being bound to any one particular theory, cellular processes may be characterized by
complex and dynamic interactions between networks of cellular constituents within the cell,

where a single gene, for instance, can play a role in two, three, four, or more cellular
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processes within a cell, in combination with any number of other genes that similarly
function in any number of the same or different processes and pathways. Thus, in paralleling
the complexity of intracellular activity, the clustering of cellular constituents into a first
module need not necessarily be exclusive of any other module. In some embodiments,
therefore, the identification of cellular constituent modules comprises obtaining modules with

overlapping subsets of cellular constituents.

[00229] Instead of using a hard partitioning technique via a correlation based model, in
some embodiments, the using the plurality of vectors to identify each cellular constituent
module in a plurality of cellular constituent modules comprises a dictionary learning model
that produces the representation of the plurality of cellular constituents as a plurality of
dimension reduction components. In some embodiments, the dictionary learning model is
LO-regularized autoencoder. An advantage of these models is that they do not enforce a 1:1
correspondence between modules and cellular constituents, but allow cellular constituents to

appear in several modules at the same time.

[00230] For example, in some implementations, the method comprises application of a
spare autoencoder cost function. In some such instances, optimizing a sparse autoencoder
cost function includes training a one-layer autoencoder with LO regularization of its weights,
and a reconstruction loss, using standard training algorithms as implemented in pytorch or

tensorflow.

[00231] Other methods of overlapping partitioning algorithms are possible, including, but
not limited to, fuzzy K-means, overlapping K-means (OKM), weighted OKM (WOKM),
overlapping partitioning cluster (OPC), and multi-cluster overlapping K-means extension

(MCOKE), and/or any variations or combinations thereof.
[00232] Latent representations.

[00233] In some embodiments, statistical techniques can be used to compress high
dimensional data (e.g., abundances of a plurality of cellular constituents across a plurality of
cellular constituent modules, for each cell in the first plurality of cells collectively
representing a plurality of annotated cell states) to a lower dimensional space, while
preserving the shape of the latent information encoded in the one or more first datasets (e.g.,
a count matrix 110 dimensionality reduced to a latent representation 118, as illustrated in
Figures 1B, 1C, and 4). The data reduced to the lower dimensional space represents the
clustering of cellular constituents across the first plurality of cells, based on similarities of

their corresponding abundances under conditions of different annotated cell states (e.g., cell
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types, exposure conditions, diseases, efc.) and thus can be used to indicate associations

between cellular constituents and cell states.

[00234] In some embodiments, the latent representation for the plurality of cellular
constituent modules is obtained using a dimensionality reduction. For instance, in some
implementations, the dimensionality reduction is performed by the computing device (e.g.,
system 100) to reduce the dimensionality of the data while preserving the structure of any

latent patterns that are present in the one or more first datasets.

[00235]  As illustrated in Figures 1B and 4, the input for dimensionality reduction is
generally a matrix such as the count matrix 110, in which the count vectors for each cell in
the first plurality of cells is concatenated for each cellular constituent (e.g., cellular
constituent vector 112 of Figure 1B). In some implementations, the output of the
dimensionality reduction is also a matrix, as illustrated by the latent representation 118 of
Figures 1C and 4. The latent representation encodes the original data from the one or more
first datasets into a compressed form while maintaining the underlying latent structure of the
data. Referring to Figure 4, each row in the matrix is associated with a respective cellular
constituent module in the plurality of K cellular constituent modules. Each column in the
matrix is associated with one of the dimensions in the reduced dimensional space provided by
the dimensionality reduction. For instance, in some embodiments, each dimension
corresponds to a respective cellular constituent (e.g., in a plurality of Z cellular constituents)

or a representation thereof.

[00236] Referring again to the latent representation illustrated in Figure 4, the values in the
entries at each row-column grouping are determined by the dimensionality reduction based
on the original input datasets. For instance, each entry can include an indication of
membership, for each respective cellular constituent represented by the respective column, in
the subset of the plurality of cellular constituents included in the respective cellular
constituent module represented by the respective row (e.g., weighti-1, weighti-, efc.). In
particular, in some embodiments, each entry is a weight indicating whether the respective
cellular constituent is included in the respective module. In some implementations, a weight
is a binary indication of membership (e.g., presence or absence in a respective module is
indicated by a 1 or a 0, respectively). In some implementations, a weight is scaled to indicate
a relative importance of a cellular constituent to a respective module (e.g., a probability of

membership and/or a correlation).

[00237] As described above, in some embodiments, a respective dimension in the latent

representation corresponds to a representation of a respective cellular constituent.
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Representations of cellular constituents can arise, for example, from nonlinear representations
of cellular constituents, such as where a respective entry (e.g., weight) in a latent
representation matrix corresponds to a plurality of cellular constituents. Other embodiments
comprising representations of cellular constituent include latent representations obtained
using principal component analysis, in which each principal component represent variance

and/or other transformations of the data corresponding to the plurality of cellular constituents.

[00238] In some embodiments, dimensionality reduction techniques result in some lossy
compression of the data. However, the resulting latent representation (e.g., latent
representation 118) is smaller in computational storage size, and therefore requires less
computing processing power to analyze in conjunction with other downstream techniques
such as model training. The arrangement of the plurality of cellular constituent modules in a
latent representation thus increases the computational feasibility of the presently disclosed

method, using computing devices of the current era.

[00239] A variety of dimensionality reduction techniques may be used. Examples include,
but are not limited to, principal component analysis (PCA), non-negative matrix factorization
(NMF), linear discriminant analysis (LDA), diffusion maps, or network (e.g., neural network)

techniques such as an autoencoder.

[00240] In some embodiments, the dimension reduction is a principal components
algorithm, a random projection algorithm, an independent component analysis algorithm, or a
feature selection method, a factor analysis algorithm, Sammon mapping, curvilinear
components analysis, a stochastic neighbor embedding (SNE) algorithm, an Isomap
algorithm, a maximum variance unfolding algorithm, a locally linear embedding algorithm, a
t-SNE algorithm, a non-negative matrix factorization algorithm, a kernel principal component
analysis algorithm, a graph-based kernel principal component analysis algorithm, a linear
discriminant analysis algorithm, a generalized discriminant analysis algorithm, a uniform
manifold approximation and projection (UMAP) algorithm, a LargeVis algorithm, a
Laplacian Eigenmap algorithm, or a Fisher’s linear discriminant analysis algorithm. See, for
example, Fodor, 2002, “A survey of dimension reduction techniques,” Center for Applied
Scientific Computing, Lawrence Livermore National, Technical Report UCRL-ID-148494;
Cunningham, 2007, “Dimension Reduction,” University College Dublin, Technical Report
UCD-CSI-2007-7, Zahorian et al., 2011, “Nonlinear Dimensionality Reduction Methods for
Use with Automatic Speech Recognition,” Speech Technologies. doi:10.5772/16863. ISBN
978-953-307-996-7; and Lakshmi ez a/., 2016, “2016 IEEE 6th International Conference on
Advanced Computing (IACC),” pp. 31-34. doi:10.1109/IACC.2016.16, ISBN 978-1-4673-
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8286-1, each of which is hereby incorporated by reference. Accordingly, in some
embodiments, the dimension reduction is a principal component analysis (PCA) algorithm,
and each respective extracted dimension reduction component comprises a respective
principal component derived by the PCA. In such embodiments, the number of principal
components in the plurality of principal components can be limited to a threshold number of
principal components calculated by the PCA algorithm. The threshold number of principal
components can be, for example, at least 5, at least 10, at least 20, at least 50, at least 100, at
least 1000, at least 1500, or any other number. In some embodiments, each principal
component calculated by the PCA algorithm is assigned an eigenvalue by the PCA algorithm,
and the corresponding subset of the first plurality of extracted features is limited to the
threshold number of principal components assigned the highest eigenvalues. For each
respective cellular constituent vector in the plurality of cellular constituent vectors, the
plurality of dimension reduction components are applied to the respective cellular constituent
vector to form a corresponding dimension reduction vector that includes a dimension
reduction component value for each respective dimension reduction component in the
plurality of dimension reduction components. This forms, from the plurality of cellular
constituent vectors, a corresponding plurality of dimension reduction vectors, thereby

forming a plurality of cellular constituent modules arranged in a latent representation.

[00241] In some embodiments, the method further includes performing manifold learning
using the plurality of cellular constituent modules arranged in a latent representation.
Generally, manifold learning is used to describe the low-dimensional structure of high-
dimensional data by determining maximal variations in a dataset. Examples include, but are
not limited to, force-directed layout (Fruchterman and Reingold, 1991, “Graph drawing by
force-directed placement,” Sofiware: Practice and experience 21(11), 1129-1164) (e.g.,
Force Atlas 2), t-distributed stochastic neighbor embedding (t-SNE), locally linear
embedding (Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(5500), 2323-2326, local linear isometric mapping
(ISOMAP, Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500), 2319-2323), kernel
PCA, graph-based kernel PCA, Potential of Heat-Diffusion for Affinity Based Trajectory
Embedding (PHATE), generalized discriminant analysis (GDA), Uniform Manifold
Approximation and Projection (UMAP), or kernel discriminant analysis. Discriminant
analysis may be used particularly where some information is known in advance as to the

specific cell type of each cell. Force-directed layouts are useful in various particular
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embodiments because of their ability to identify new, lower dimensions that encode non-
linear aspects of the underlying data which arise from underlying cellular processes. Force
directed layouts use physics-based models as mechanisms for determining a reduced
dimensionality that best represents the data. As an example, a force directed layout uses a
form of physics simulation in which, in this embodiment, each cell in the one or more first
datasets is assigned a “repulsion” force and there exists a global “gravitation force” that,
when computed over the first plurality of cells, identifies sectors of the data that “diffuse”
together under these competing “forces.” Force directed layouts make few assumptions

about the structure of the data, and do not impose a de-noising approach.

[00242] Manifold learning is further described, for example, in Wang et al., 2004,
“Adaptive Manifold Learning,” Advances in Neural Information Processing Systems 17,

which is hereby incorporated herein by reference in its entirety.
[00243] Covariates.

[00244] Referring to Block 208, the method further comprises obtaining one or more
second datasets in electronic form, the one or more second datasets comprising or collectively
comprising, for each respective cell in a second plurality of cells, where the second plurality
of cells comprises, e.g., twenty or more cells and collectively represents a plurality of
covariates possibly informative of the cellular process of interest, for each respective cellular
constituent in the plurality of cellular constituents, a corresponding abundance of the
respective cellular constituent in the respective cell. Thus, a cellular constituent count data
structure is obtained, where the cellular constituent count data structure is dimensioned by (1)
the second plurality of cells and (i1) the plurality of cellular constituents or the representation

thereof.

[00245] For instance, referring to Figure 1D, a cellular constituent count data structure 160
collectively representing a plurality of covariates (e.g., count data structure — covariate set
160) includes a first plurality of cells (e.g., G cells), collectively representing a plurality of
covariates 166. For each respective cell, for each respective cellular constituent in the
plurality of cellular constituents 162 (e.g., Z cellular constituents), the cellular constituent
count data structure 160 includes a corresponding count 164 of the respective cellular
constituent in the respective cell. The cellular constituent count data structure 160 can
additionally be represented as a matrix, which is further illustrated by the lower left panel of
Figure 5. Each cell in the first plurality of G cells is arranged along the x-axis (columns) and
each cellular constituent in the plurality of Z cellular constituents are arranged along the y-

axis (rows). Each entry for each respective column in each respective row is an abundance
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(e.g., a count) of the cellular constituent for the respective cell corresponding to the
respective column. Thus, as illustrated in Figure 5, the counts corresponding to cellular
constituent 1 includes counti-1 corresponding to cell 1, counti-g corresponding to cell G, and

SO Oon.

[00246] In some embodiments, the plurality of covariates comprises cell batch, cell donor,

cell type, or disease status of one or more cells in the second plurality of cells.

[00247] In some embodiments, the plurality of covariates comprises one or more
indications of time points, replicates, and/or relevant metadata related to one or more cells in
the second plurality of cells. In some embodiments, the plurality of covariates comprises
experimental data (e.g., flow cytometry readouts, imaging and microscopy annotations,
cellular constituent data, efc.). In some embodiments, the plurality of covariates comprises
one or more genetic markers characteristic of one or more cells in the second plurality of cells
(e.g., copy number variations, single nucleotide variants, multiple nucleotide polymorphisms,
insertions, deletions, gene fusions, microsatellite instability status, amplifications, and/or

isoforms).

[00248] In some embodiments, the plurality of covariates comprises one or more of a cell
phenotype, cellular behavior, disease state, genetic mutation, perturbations of genes or gene
products (e.g., knockdowns, silencing, overexpression, efc.), and/or exposure condition for

one or more cells in the second plurality of cells.

[00249] For example, in some embodiments, a covariate is an exposure or a response to an
exposure of a cell in the second plurality of cells to a compound under an exposure condition.
In some embodiments, an exposure of a cell includes any treatment of the cell with one or
more compounds. In some embodiments, the one or more compounds includes, for example,
a small molecule, a biologic, a therapeutic, a protein, a protein combined with a small
molecule, an ADC, a nucleic acid (e.g., an siRNA, interfering RNA, cDNA over-expressing
wild-type and/or mutant sShRNA, cDNA over-expressing wild-type and/or mutant guide RNA
(e.g., Cas9 system or other cellular-component editing system), ezc.), and/or any combination
of any of the foregoing. In some embodiments, the exposure condition is a duration of
exposure, a concentration of the compound, or a combination of a duration of exposure and a
concentration of the compound. In some embodiments, a covariate is a compound applied to
one or more cells that induces a cell state transition and/or a perturbation signature in the one

or more cells (e.g., a perturbagen).

[00250] In some embodiments, a covariate is a knowledge term (e.g., an annotation)

associated with a cellular constituent in the plurality of cellular constituents, or with a cell in
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the second plurality of cells. For instance, in some embodiments, a covariate is a genome-
wide association study (GWAS) annotation, a gene set enrichment assay (GSEA) annotation,
a gene ontology annotation, a functional and/or signaling pathway annotation, and/or a
cellular signature annotation. In some embodiments, a covariate is obtained from any public
knowledge database known in the art, including, but not limited to, NIH Gene Expression
Omnibus (GEO), EBI ArrayExpress, NCBI, BLAST, EMBL-EBI, GenBank, Ensembl, the
KEGG pathway database, and/or any disease-specific database. In some embodiments, a
covariate is obtained from a database providing perturbation (e.g., small-molecule) induced
gene expression signatures, such as the Library of Integrated Network-based Cellular
Signatures (LINCS) L1000 dataset. See, e.g., Duan, 2016, “L1000CDS?: An ultra-fast
LINCS L1000 Characteristic Direction Signature Search Engine,” Systems Biology and

Applications 2, article 16015, which is hereby incorporated herein by reference in its entirety.

[00251] In some embodiments, the plurality of covariates comprises at least 3, at least 5, at
least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at
least 80, at least 90, at least 100, at least 200, at least 300, at least 400, at least 500, at least
600, at least 700, at least 800, at least 900, at least 1000, at least 2000, or at least 3000
covariates. In some embodiments, the plurality of covariates comprises no more than 5000,
no more than 1000, no more than 500, no more than 200, no more than 100, no more than 50,
or no more than 20 covariates. In some embodiments, the plurality of covariates comprises
from 3 to 10, from 10 to 50, from 20 to 500, from 200 to 1000, or from 1000 to 5000
covariates. In some embodiments, the plurality of covariates falls within another range

starting no lower than 3 covariates and ending no higher than 5000 covariates.

[00252] In some embodiments, any of the methods and/or embodiments for obtaining the
one or more first datasets including the first plurality of cells and the corresponding
abundances for the plurality of cellular constituents, described herein in the above sections
entitled “Cell states and processes” and “Cellular constituents,” are applicable with respect to
the methods and/or embodiments for obtaining the one or more second datasets including the
second plurality of cells and the corresponding abundances for the plurality of cellular

constituents.

[00253] For instance, in some embodiments, the corresponding abundance of the
respective cellular constituent in the respective cell in the second plurality of cells is
determined by a colorimetric measurement, a fluorescence measurement, a luminescence
measurement, or a resonance energy transfer (FRET) measurement. In some embodiments,

the corresponding abundance of the respective cellular constituent in the respective cell in the
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second plurality of cells is determined by single-cell ribonucleic acid (RNA) sequencing
(scRNA-seq), scTag-seq, single-cell assay for transposase-accessible chromatin using
sequencing (scATAC-seq), CyTOF/SCoP, E-MS/Abseq, miRNA-seq, CITE-seq, and any

combination thereof.

[00254] In some embodiments, the obtaining the one or more second datasets comprises
preprocessing the corresponding abundances for the plurality of cellular constituents for each
respective cell in the second plurality of cells, using any of the methods and/or embodiments

disclosed herein.

[00255] In some embodiments, the one or more first datasets and the one or more second
datasets comprise abundances for a plurality of cellular constituents, where the plurality of
cellular constituents is the same for the one or more first datasets and the one or more second
datasets. In some embodiments, the plurality of cellular constituents for the one or more first
datasets is different from the plurality of cellular constituents for the one or more second

datasets.

[00256] In some embodiments, the second plurality of cells does not include any cells
included in the first plurality of cells. In some embodiments, the second plurality of cells

includes some or all of the cells included in the first plurality of cells.

[00257] In some embodiments, the second plurality of cells comprises at least 5, at least
10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 100, at least 200, at least
300, at least 400, at least 500, at least 1000, at least at least 2000, at least 3000, at least 4000,
at least 5000, at least 10,000, at least 20,000, at least 30,000, at least 50,000, at least 80,000,
at least 100,000, at least 500,000, or at least 1 million cells. In some embodiments, the
second plurality of cells comprises no more than 5 million, no more than 1 million, no more
than 500,000, no more than 100,000, no more than 50,000, no more than 10,000, no more
than 5000, no more than 1000, no more than 500, no more than 200, no more than 100, or no
more than 50 cells. In some embodiments, the second plurality of cells comprises from 5 to
100, from 10 to 50, from 20 to 500, from 200 to 10,000, from 1000 to 100,000, from 50,000
to 500,000, or from 10,000 to 1 million cells. In some embodiments, the second plurality of
cells falls within another range starting no lower than 5 cells and ending no higher than 5
million cells.

[00258] In some embodiments, the obtaining the cellular constituent count data structure
160 comprises performing a dimension reduction (e.g., using any of the methods and/or
embodiments described herein in the sections entitled, “Cellular constituent modules” and

“Latent representations,” above). In some embodiments, the obtaining the cellular
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constituent count data structure 160 comprises obtaining a representation of the plurality of
cellular constituents, such that the cellular constituent count data structure is dimensioned by
(1) the second plurality of cells and (i1) the plurality of cellular constituents or the

representation thereof.
[00259]  Activation data structures.

[00260] Referring to Block 210, the method further comprises forming an activation data
structure by combining the cellular constituent count data structure and the latent
representation using the plurality of cellular constituents or the representation thereof as a
common dimension, where the activation data structure comprises, for each cellular
constituent module in the plurality of cellular constituent modules, for each cell in the second

plurality of cells, a respective activation weight.

[00261] To accomplish this, in some embodiments, a count matrix (e.g., the cellular
constituent count data structure 160) and a cellular constituent modules matrix (e.g., the latent
representation 118) are multiplied together, such that the weights of the modules matrix are
multiplied by the normalized counts of the count matrix. Generally, two matrices can be
multiplied together by a common dimension (e.g., the x-axis of a first matrix and the y-axis
of a second matrix). Matrix multiplication of the first and second matrices by their common
dimension yields a third matrix of auxiliary data that can be applied, alternatively or in
addition to the first matrix and/or the second matrix, to an untrained or partially trained

model.

[00262] Thus, in some such embodiments, the count matrix has the dimensions n cells x
n_genes, and the latent representation has the dimensions n_genes x n_modules, where

n cells is the number of cells in the second plurality of cells, n genes is the number of
cellular constituents (e.g., genes), or the representation thereof, in the plurality of cellular
constituents, and n_modules is the number of modules in the plurality of cellular constituent
modules. This maps the abundances of the cellular constituents in the count matrix into a
space in which each cell (e.g., corresponding to one or more covariates of interest) is
characterized by its module activations, and in which the resulting matrix representation (e.g.,
the activation data structure 170) has dimensions n_cells x n_modules (e.g., after multiplying

by a common dimension of n_genes).

[00263] Accordingly, Figure 1D illustrates a resulting activation data structure 170 having
dimensions n_cells x n_modules. The activation data structure includes, for each cell in the
second plurality of cells (e.g., G cells), for each respective cellular constituent module in the

plurality of cellular constituent modules 172 (e.g., K cellular constituent modules), a
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corresponding activation weight 174 that indicates the activations of the respective module in

the respective cell.

[00264] Combination of the latent representation 118 and the cellular constituent count
data structure 160 using, e.g., matrix multiplication, and the resulting activation data structure
in matrix form, are collectively illustrated in Figure 5, with further reference to Figures 1C-D.
The latent representation (illustrated in the top panel of Figure 5) has the dimensions Z x K,
where Z is the number of cellular constituents or the representation thereof and K is the
number of cellular constituent modules. The cellular constituent count data structure
(illustrated in the lower left panel) has the dimensions G x Z, where G is the number of cells
in the second plurality of cells and, as for the latent representation, Z is the number of cellular
constituents or the representation thereof. Combination by matrix multiplication, using Z (the
number of cellular constituents or the representation thereof) as a common dimension,
generates the resulting activation data structure having dimensions G x K. Each entry for
each respective column in each respective row is an activation weight indicating the
activation of each respective cellular constituent module in the respective cell in the second
plurality of cells corresponding to the respective column. Thus, as illustrated in Figure 5, the
counts corresponding to module 1 includes activation weighti-1 corresponding to cell 1,

activation weighti-g corresponding to cell G, and so on.

[00265] In some embodiments, the plurality of activation weights in the activation data

structure comprises differential module activations.

[00266] In some embodiments, differential module activations (e.g., differential activation
weights of a respective module between cells in the second plurality of cells in the activation
data structure) are obtained by computing v-scores using the function (mu [/ —mu_ 2)/ (var_1
+var_2)%° where mu_i denotes means of module activations across cells with a respective
condition 7 (e.g., covariate 7), and var i denotes the variance of module activation in
condition i. V-scores can be described as t-scores that are not normalized by the number of

cells in the denominator.

[00267] The activation data structure therefore indicates activations (e.g., the level or
degree of activation) of a respective cellular constituent module corresponding to (e.g.,
correlated to and/or in response to) one or more covariates in the plurality of covariates
represented by the second plurality of cells. Thus, in some embodiments where the plurality
of covariates represented by the second plurality of cells includes a respective perturbagen
(e.g., a compound to which one or more cells are exposed), the activation data structure will

include a respective activation weight, for each respective cellular constituent module in the
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plurality of cellular constituent modules, indicating the activation (e.g., inducement and/or
differential expression) of the respective cellular constituent module, correlating to and/or in

response to treatment with the respective compound.
[00268] Aodels.

[00269] Referring to Block 212, the method further includes training a model using, for
each respective covariate in the plurality of covariates, a difference between (i) a calculated
activation against each cellular constituent module represented by the model upon input of a
representation of the respective covariate into the model and (i) actual activation against
each cellular constituent module represented by the model. In some embodiments, the model
is an ensemble model that includes a component model for each cellular constituent model in
the plurality of cellular constituent models. The training adjusts a plurality of covariate
weights associated with the model responsive to the difference, where the plurality of
covariate weights comprises, for each respective cellular constituent module in the plurality
of cellular constituent modules, for each respective covariate, a corresponding weight
indicating whether the respective covariate correlates, across the second plurality of cells,

with the respective cellular constituent module.

[00270] In some embodiments, input to the model includes a representation of a respective
covariate, and the activation represented by the respective covariate serves as a label (e.g.,
categorical value indication absence or presence of a response to the covariate, or a value
drawn from a continuous scale indicating the extent of response to a covariate) for training a
multi-task model to identify correlations between modules and covariates of interest. In this
way, it is possible to distinguish between core features of the input (e.g., genes,
transformation of genes, and/or cellular constituent modules) and covariates of interest (e.g.,
cell batch, cell donor, cell type, cell line, and/or disease status). In some embodiments, a
respective covariate in the plurality of covariates comprises cell batch and the representation
of the respective covariate that is inputted into the model is a cell batch identification. In
some embodiments a respective covariate in the plurality of covariates that is inputted into
the model comprises cell donor and the representation of the respective covariate is an

identification of the cell donor or a characteristic of the cell donor. In some embodiments,

a respective covariate in the plurality of covariates comprises cell type and the representation

of the respective covariate that is inputted into the model is a cell type identification. In some
embodiments a respective covariate in the plurality of covariates comprises disease status and
the representation of the respective covariate that is inputted into the model is an indication of

absence or presence of the disease. In some embodiments a respective covariate in the
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plurality of covariates comprises exposure to a compound and the representation of the
respective covariate that is inputted into the model is a fingerprint of the compound. In some
such embodiments the method further comprises generating the fingerprint from a chemical
structure of the compound using Daylight, BCI, ECFP4, EcFC, MDL, TTFP, UNITY 2D,
RNNS2S, GraphConv, fingerprint SMILES Transformer, RNNS2S, or GraphConv. In some
embodiments, the representation of the respective covariate further comprises a duration of
time the respective covariate was incubated with the respective cell. In some embodiments,
the representation of the respective covariate further comprises a concentration of the
respective covariate used to incubate the respective cell.

[00271] In some embodiments, an output of the model includes a cellular constituent
module knowledge construct 124 (e.g., a covariate weight matrix), as illustrated in Figure 1E.
Figure 1E illustrates an example cellular constituent module knowledge construct including a
plurality of covariate weights (e.g., knowledge term weight 130) indicating whether each
respective covariate in a plurality of covariates (e.g., knowledge term identity 128) correlates,
across the second plurality of cells, with each respective cellular constituent module in the
plurality of cellular constituent modules 126. In some embodiments, each respective cellular
constituent module is associated (e.g., correlated) with a different subset of covariates.

Figure 1E shows, for instance, 3 example modules, each module correlated with a different

subset of knowledge terms (e.g., P, Q, and S).

[00272] In some embodiments, the model is an autoencoder, a sparse autoencoder, and/or
a sparse multi-readout, knowledge-coupled autoencoder. In some embodiments, the model is
a semi-supervised model. In some embodiments, the model is a one-layer neural network
(e.g., a SoftMax and/or logistic regression). In some embodiments, the model is a one-
dimensional Huber Outlier Regressor model. In some embodiments, the model comprises
100 or more parameters, 1000 or more parameters, 10,000 or more parameters, 100,000 or

more parameters, or 1 x 10° or more parameters.

[00273] In an example embodiment, the method comprises using a sparse autoencoder to
obtain both the latent representation 118 and the cellular constituent module knowledge
construct 124. In some embodiments, the autoencoder comprises a plurality of layers, where
the first layer is used to obtain the latent representation 118 and the second layer is used to
obtain the cellular constituent module knowledge construct 124 (e.g., a covariate weight

matrix).

[00274] In some embodiments, the model is any of the models disclosed herein (see, for

example, Definitions: Models).
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[00275] For instance, in some embodiments, the model is a neural network comprising one
or more inputs, a corresponding first hidden layer comprising a corresponding plurality of
hidden neurons, where each hidden neuron in the corresponding plurality of hidden neurons
(1) s fully connected to each input in the plurality of inputs, (ii) is associated with a first
activation function type, and (ii1) is associated with a corresponding parameter (e.g., weight)
in a plurality of parameters for the neural network, and one or more corresponding neural
network outputs, where each respective neural network output in the corresponding one or
more neural network outputs (i) directly or indirectly receives, as input, an output of each
hidden neuron in the corresponding plurality of hidden neurons, and (ii) is associated with a
second activation function type. In some such embodiments, the neural network is a fully

connected network.

[00276] In some embodiments, the neural network comprises a plurality of hidden layers.
As described above, hidden layers are located between input and output layers (e.g., to
capture additional complexity). In some embodiments, where there is a plurality of hidden

layers, each hidden layer may have a same respective number of neurons.

[00277] In some embodiments, each hidden neuron (e.g., in a respective hidden layer in a
neural network) is associated with an activation function that performs a function on the input
data (e.g., a linear or non-linear function). Generally, the purpose of the activation function is
to introduce nonlinearity into the data such that the neural network is trained on
representations of the original data and can subsequently “fit” or generate additional
representations of new (e.g., previously unseen) data. Selection of activation functions (e.g.,
a first and/or a second activation function) is dependent on the use case of the neural network,
as certain activation functions can lead to saturation at the extreme ends of a dataset (e.g.,
tanh and/or sigmoid functions). For instance, in some embodiments, an activation function
(e.g., a first and/or a second activation function) is selected from any suitable activation

functions known in the art.

[00278] In some embodiments, each hidden neuron is further associated with a parameter
(e.g., a weight and/or a bias value) that contributes to the output of the neural network,
determined based on the activation function. In some embodiments, the hidden neuron is
initialized with arbitrary parameters (e.g., randomized weights). In some alternative

embodiments, the hidden neuron is initialized with a predetermined set of parameters.

[00279] In some embodiments, the plurality of hidden neurons in a neural network (e.g.,
across one or more hidden layers) is at least 2, at least 3, at least 4, at least 5, at least 6, at

least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least
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15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 30, at least 40, at least
50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at
least 400, or at least 500 neurons. In some embodiments, the plurality of hidden neurons is at
least 100, at least 500, at least 800, at least 1000, at least 2000, at least 3000, at least 4000, at
least 5000, at least 6000, at least 7000, at least 8000, at least 9000, at least 10,000, at least
15,000, at least 20,000, or at least 30,000 neurons. In some embodiments, the plurality of
hidden neurons is no more than 30,000, no more than 20,000, no more than 15,000, no more
than 10,000, no more than 9000, no more than 8000, no more than 7000, no more than 6000,
no more than 5000, no more than 4000, no more than 3000, no more than 2000, no more than
1000, no more than 900, no more than 800, no more than 700, no more than 600, no more
than 500, no more than 400, no more than 300, no more than 200, no more than 100, or no
more than 50 neurons. In some embodiments, the plurality of hidden neurons is from 2 to 20,
from 2 to 200, from 2 to 1000, from 10 to 50, from 10 to 200, from 20 to 500, from 100 to
800, from 50 to 1000, from 500 to 2000, from 1000 to 5000, from 5000 to 10,000, from
10,000 to 15,000, from 15,000 to 20,000, or from 20,000 to 30,000 neurons. In some
embodiments, the plurality of hidden neurons falls within another range starting no lower

than 2 neurons and ending no higher than 30,000 neurons.

[00280] In some embodiments, the neural network comprises from 1 to 50 hidden layers.
In some embodiments, the neural network comprises from 1 to 20 hidden layers. In some
embodiments, the neural network comprises at least 2, at least 3, at least 4, at least 5, at least
6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at
least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 30, at least 40, at
least 50, at least 60, at least 70, at least 80, at least 90, or at least 100 hidden layers. In some
embodiments, the neural network comprises no more than 100, no more than 90, no more
than 80, no more than 70, no more than 60, no more than 50, no more than 40, no more than
30, no more than 20, no more than 10, no more than 9, no more than 8, no more than 7, no
more than 6, or no more than 5 hidden layers. In some embodiments, the neural network
comprises from 1 to 5, from 1 to 10, from 1 to 20, from 10 to 50, from 2 to 80, from 5 to 100,
from 10 to 100, from 50 to 100, or from 3 to 30 hidden layers. In some embodiments, the
neural network comprises a plurality of hidden layers that falls within another range starting

no lower than 1 layer and ending no higher than 100 layers.

[00281] In some embodiments, the neural network comprises is a shallow neural network.
A shallow neural network refers to a neural network with a small number of hidden layers. In

some embodiments, such neural network architectures improve the efficiency of neural
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network training and conserve computational power due to the reduced number of layers
involved in the training. In some embodiments, the neural network comprises has only one

hidden layer.

[00282] In some embodiments, the model comprises a plurality of parameters (e.g.,
weights and/or hyperparameters). In some embodiments, the plurality of parameters for the
model comprises at least 10, at least 50, at least 100, at least 500, at least 1000, at least 2000,
at least 5000, at least 10,000, at least 20,000, at least 50,000, at least 100,000, at least
200,000, at least 500,000, at least 1 million, at least 2 million, at least 3 million, at least 4
million or at least 5 million parameters. In some embodiments, the plurality of parameters
for the model comprises no more than 8 million, no more than 5 million, no more than 4
million, no more than 1 million, no more than 500,000, no more than 100,000, no more than
50,000, no more than 10,000, no more than 5000, no more than 1000, or no more than 500
parameters. In some embodiments, the plurality of parameters for the model comprises from
10 to 5000, from 500 to 10,000, from 10,000 to 500,000, from 20,000 to 1 million, or from 1
million to 5 million parameters. In some embodiments, the plurality of parameters for the
model falls within another range starting no lower than 10 parameters and ending no higher

than 8 million parameters.

[00283] In some embodiments, the model is associated with one or more activation
functions. In some embodiments, an activation function in the one or more activation
functions is tanh, sigmoid, softmax, Gaussian, Boltzmann-weighted averaging, absolute
value, linear, rectified linear unit (ReLU), bounded rectified linear, soft rectified linear,
parameterized rectified linear, average, max, min, sign, square, square root, multiquadric,
inverse quadratic, inverse multiquadric, polyharmonic spline, swish, mish, Gaussian error

linear unit (GeLU), and/or thin plate spline.

[00284] In some embodiments, the training of the model is further characterized by one or
more hyperparameters (e.g., one or more values that may be tuned during training). In some
embodiments, the hyperparameter values are tuned (e.g., adjusted) during training. In some
embodiments, the hyperparameter values are determined based on the specific elements of
the training dataset and/or one or more inputs (e.g., cells, cellular constituent modules,
covariates, efc.). In some embodiments, the hyperparameter values are determined using
experimental optimization. In some embodiments, the hyperparameter values are determined
using a hyperparameter sweep. In some embodiments, the hyperparameter values are

assigned based on prior template or default values.
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[00285] In some embodiments, a respective hyperparameter of the one or more
hyperparameters comprises a learning rate. In some embodiments, the learning rate is at least
0.0001, at least 0.0005, at least 0.001, at least 0.005, at least 0.01, at least 0.05, at least 0.1, at
least 0.2, at least 0.3, at least 0.4, at least 0.5, at least 0.6, at least 0.7, at least 0.8, at least 0.9,
or at least 1. In some embodiments, the learning rate is no more than 1, no more than 0.9, no
more than 0.8, no more than 0.7, no more than 0.6, no more than 0.5, no more than 0.4, no
more than 0.3, no more than 0.2, no more than 0.1 no more than 0.05, no more than 0.01, or
less. In some embodiments, the learning rate is from 0.0001 to 0.01, from 0.001 to 0.5, from
0.001 to 0.01, from 0.005 to 0.8, or from 0.005 to 1. In some embodiments, the learning rate
falls within another range starting no lower than 0.0001 and ending no higher than 1. In
some embodiments, the one or more hyperparameters further include regularization strength
(e.g., L2 weight penalty, dropout rate, efc.). For instance, in some embodiments, the model
(e.g., a neural network) is trained using a regularization on a corresponding parameter (e.g.,
weight) of each hidden neuron in the plurality of hidden neurons. In some embodiments, the

regularization includes an L1 or L2 penalty.

[00286] In some embodiments, a respective hyperparameter of the one or more
hyperparameters is a loss function. In some embodiments, the loss function is mean square
error, flattened mean square error, quadratic loss, mean absolute error, mean bias error, hinge,
multi-class support vector machine, and/or cross-entropy. In some embodiments, the loss

function is a gradient descent algorithm and/or a minimization function.
[00287] AModel training.

[00288] Generally, training a model (e.g., a neural network) comprises updating the
plurality of parameters (e.g., weights) for the respective model through backpropagation (e.g.,
gradient descent). First, a forward propagation is performed, in which input data (e.g., an
activation data structure comprising activation weights for each respective cell in the second
plurality of cells, for each respective cellular constituent module in a plurality of modules,
and a corresponding plurality of covariates represented by the plurality of cells) is accepted
into the neural network, and an output is calculated based on the selected activation function
and an initial set of parameters (e.g., weights and/or hyperparameters). In some
embodiments, parameters (e.g., weights and/or hyperparameters) are randomly assigned (e.g.,
initialized) for an untrained or partially trained model. In some embodiments, parameters are
transferred from a previously saved plurality of parameters or from a pre-trained model (e.g.,

by transfer learning).
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[00289] A backward pass is then performed by calculating an error gradient for each
respective parameter corresponding to each respective unit in each layer, where the error for
each parameter is determined by calculating a loss (e.g., error) based on the network output
(e.g., the predicted absence or presence of each covariate in each cellular constituent module)
and the input data (e.g., the expected value or true labels; the actual absence or presence of
each covariate in each cellular constituent module). Parameters (e.g., weights) are then

updated by adjusting the value based on the calculated loss, thereby training the model.

[00290] For example, in some general embodiments of machine learning, backpropagation
is a method of training a network with hidden layers comprising a plurality of weights (e.g.,
embeddings). The output of an untrained model (e.g., the predicted absence or presence of
covariates) s first generated using a set of arbitrarily selected initial weights. The output is
then compared with the original input (e.g., the actual absence or presence of covariates) by
evaluating an error function to compute an error (e.g., using a loss function). The weights are
then updated such that the error is minimized (e.g., according to the loss function). In some
embodiments, any one of a variety of backpropagation algorithms and/or methods are used to

update the plurality of weights, as will be apparent to one skilled in the art.

[00291] In some embodiments, the loss function is mean square error, quadratic loss, mean
absolute error, mean bias error, hinge, multi-class support vector machine, and/or cross-
entropy. In some embodiments, training an untrained or partially trained model comprises
computing an error in accordance with a gradient descent algorithm and/or a minimization
function. In some embodiments, training an untrained or partially trained model comprises
computing a plurality of errors using a plurality of loss functions. In some embodiments,
each loss function in a plurality of loss functions receives a same or a different weighting

factor.

[00292] Turning to Figure 6, in some instances, each row of activation data structure 170
(from Figure 5 and now at the top of Figure 6) serves as training data for a different model
601. For instance, consider the case where model 601 includes the weights of row 604-1
(Weighti-1 through Weighti-w) to represent the extent to which covariates 1 through W
respectively activate cellular constituent module 1. This model 601 is trained on the elements
of row 640 of activation data structure 170, which provide the extent to which each of the
covariates 1, ..., G activate cellular constituent module 1. In this training, first a
representation of the covariate associated with cell 1 is inputted into the model 601.
Responsive to this input, the model 601 for cellular constituent module 1 outputs an

activation value, termed Pred. Valuei in the nomenclature of Figure 6. This output activation
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value is compared to the actual activation value for the covariate associated with cell 1, which
is Acti-1 of activation data structure 170. Next, a representation of the covariate associated
with cell 2 is inputted into the model 601. In response to this input, the model outputs an
activation value (Pred. Valuez). This output activation value is compared to the actual
activation value for the covariate associated with cell 2 of row 640, which is Acti-2 of
activation data structure 170. This process proceeds through cell G. A representation of the
covariate associated with cell G is inputted into the model 601. In response to this, the model
will output an activation value (Pred. Valueg). This output activation value is compared to
the actual activation value for cell G, which is Acti.g of row 640 of activation data structure
170. In this example, W and G have the same value. In this way, there is a resulting
prediction (Pred. Value) for each covariate in the plurality of covariates used to derive the
activation data structure as outlined in Figure 5 for cellular constituent module 1. The above-
described calculated predictions (of the activation value ) are compared to the above-
described actual activation values for each of these covariates and the differences between the
predicted and actual activation values are used to further train the model 601 using back-

propagation and related model refinement techniques.

[00293] In some embodiments, the error function is used to update one or more parameters
(e.g., weights) in a model (e.g., a neural network) by adjusting the value of the one or more
parameters by an amount proportional to the calculated loss, thereby training the model. In
some embodiments, the amount by which the parameters are adjusted is metered by a
learning rate hyperparameter that dictates the degree or severity to which parameters are
updated (e.g., smaller or larger adjustments). Thus, in some embodiments, the training
updates all or a subset of the plurality of parameters based on a learning rate. In some

embodiments, the learning rate is a differential learning rate.

[00294] In some embodiments, training a model (e.g., a neural network) further uses a
regularization on the corresponding parameter of each hidden neuron in the corresponding
plurality of hidden neurons. For example, in some embodiments, a regularization is
performed by adding a penalty to the loss function, where the penalty is proportional to the
values of the parameters in the neural network. Generally, regularization reduces the
complexity of the model by adding a penalty to one or more parameters to decrease the
importance of the respective hidden neurons associated with those parameters. Such practice
can result in a more generalized model and reduce overfitting of the data. In some
embodiments, the regularization includes an L1 or L2 penalty. For example, in some

preferred embodiments, the regularization includes an L2 penalty on lower and upper
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parameters. In some embodiments, the regularization comprises spatial regularization (e.g.,
determined based on a priori and/or experimental knowledge) or dropout regularization. In

some embodiments, the regularization comprises penalties that are independently optimized.

[00295] In some embodiments, the training process including the adjusting the plurality of
covariate weights associated with the model (e.g., responsive to the difference between the
predicted and actual labels), is repeated for each training instance in a plurality of training

instances.

[00296] In some embodiments, the plurality of training instances comprises at least 3, at
least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 50, at least 100,
at least 500, at least 1000, at least 2000, at least 3000, at least 4000, at least 5000, or at least
7500 training instances. In some embodiments, the plurality of training instances comprises
no more than 10,000, no more than 5000, no more than 1000, no more than 500, no more
than 100, or no more than 50 training instances. In some embodiments, the plurality of
training instances comprises from 3 to 10, from 5 to 100, from 100 to 5000, or from 1000 to
10,000 training instances. In some embodiments, the plurality of training instances falls
within another range starting no lower than 3 training instances and ending no higher than

10,000 training instances.

[00297] In some such embodiments, the training includes repeating the adjustment of the
parameters of the model (e.g., via backpropagation) over a plurality of training instances,
therefore increasing the model’s accuracy in indicating whether a respective covariate

correlates with a respective cellular constituent module.

[00298] In some embodiments, the training comprises transfer learning. Transfer learning

is further described, for example, in the Definitions section (see, “Untrained models,” above).

[00299] In some embodiments, training an untrained or partially trained model forms a
trained model following a first evaluation of an error function. In some such embodiments,
the trained model is formed following a first updating of one or more parameters based on a
first evaluation of an error function. In some alternative embodiments, the trained model is
formed following at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at
least 8, at least 9, at least 10, at least 20, at least 30, at least 40, at least 50, at least 100, at
least 500, at least 1000, at least 10,000, at least 50,000, at least 100,000, at least 200,000, at
least 500,000, or at least 1 million evaluations of an error function. In some such
embodiments, the trained model is formed following at least 1, at least 2, at least 3, at least 4,
at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 30, at least
40, at least 50, at least 100, at least 500, at least 1000, at least 10,000, at least 50,000, at least
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100,000, at least 200,000, at least 500,000, or at least 1 million updatings of one or more
parameters based on the at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least
7, at least 8, at least 9, at least 10, at least 20, at least 30, at least 40, at least 50, at least 100,
at least 500, at least 1000, at least 10,000, at least 50,000, at least 100,000, at least 200,000, at

least 500,000, or at least 1 million evaluations of an error function.

[00300] In some embodiments, the trained model is formed when the model satisfies a
minimum performance requirement. For example, in some embodiments, the trained model
is formed when the error calculated for the trained model, following an evaluation of an error
function (e.g., a difference between a predicted and an actual absence or presence of each
covariate in each cellular constituent module represented in the activation data structure)
satisfies an error threshold. In some embodiments, the error calculated by the error function
satisfies an error threshold when the error is less than 20 percent, less than 18 percent, less

than 15 percent, less than 10 percent, less than 5 percent, or less than 3 percent.

[00301] In an example embodiment, the training the model is performed using a
categorical cross-entropy loss in a multi-task formulation, in which each covariate in the
plurality of covariates corresponds to a cost function in plurality of cost functions and each

respective cost function in the plurality of cost functions has a common weighting factor.

[00302] In some embodiments, training a model provides weights for each covariate and
hence reveals modules that inform covariates possibly informative of the cellular process of
interest (e.g., disease status over donor identity). The dimensions of the covariate weight
matrix are n_covariates x n_modules, where n_covariates s the number of covariates in the
plurality of covariates represented by the second plurality of cells and n modules is the
number of modules in the plurality of cellular constituent modules. Thus, each weight
indicates the degree to which each covariate associates with the activation of a module.
These modules can be used in downstream applications to elucidate the molecular

mechanisms underlying the cellular process of interest, such as drug discovery.

[00303] In some embodiments, the training the model comprises obtaining a plurality of
covariate weights that can be used for cross-system identification of modules (e.g., where
modules are shared between systems and/or orthogonal across systems). Typically, cellular
constituent modules (e.g., gene modules) decompose disease-induced and perturbation-
induced variation into shared and orthogonal biological modules across systems. To
systematically arrive at critical factors and cellular programs that translate across a wide array
of in vitro and in vivo sources (e.g., pre-clinical models and/or patients), a cross-system

modeling approach can be used to analyze cellular processes of interest at varying levels of
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resolution (e.g., the gene, gene module, and/or compound level). In some embodiments, a
cross-system model is used to identify shared and/or orthogonal cellular constituent modules
across any one or more of: multiple disease-relevant and/or perturbational datasets; multiple
cell types, cell states, and/or cell trajectories; multiple experiment types (e.g., in vitro and/or
in vivo), multiple tissue, subject, and/or species; and/or multiple facilities or sample

collection points (e.g., laboratories and/or clinics).

[00304] In an example implementation of a cross-system approach, two complex cell
systems are considered (e.g., an in vifro model of hematopoiesis and a mouse model), from
which cellular constituent data (e.g., sScRNA-seq of the bone marrow containing all lineages
of the hematopoietic developmental processes) is obtained. The cellular constituent data
(e.g., scRNA-seq data) sampled from these two systems is transformed into module

activation space.

[00305] For given comparisons of interest (e.g., differentiated megakaryocytes versus un-
differentiated megakaryocytes, and/or healthy donors versus diseased donors), differential
module activations are determined by computing v-scores (mu_[ —mu_2)/ (var_1+var 2y
03 where mu_i denotes means of module activations across cells in the condition i, and var i
denotes the variance of module activation in condition i. In some instances, v-scores can be

represented as t-scores that are not normalized by the number of cells in the denominator.

[00306] Using the obtained t-scores, in some embodiments, a model (e.g., a 1-dimensional
Huber Outlier Regressor model) is trained by defining module activations from one system as
the response variable y and the module activations from the other system as the predictor
variable x. After training, the model provides a one-dimensional regression relationship that
estimates how well module activations in system x explain module activations in system y.
For instance, in particular, the Huber regressor identifies outlier modules that are activated in
a highly orthogonal fashion. An example comparison of interest is illustrated in Example 1
with reference to Figure 7, below.

[00307]  Pruning.

[00308] Referring to Block 214, the method further includes identifying, using the
plurality of covariate weights upon training the model, one or more cellular constituent
modules in the plurality of cellular constituent modules that is associated with one or more
covariates in the plurality of covariates, thereby associating a plurality of cellular constituents
with the cellular process of interest.

[00309] In some embodiments, the method further comprises using the identity of each

cellular constituent in a cellular constituent module in the plurality of cellular constituent

78



WO 2022/266256 PCT/US2022/033680
modules to associate the cellular constituent module with a known cellular pathway, a
biological process, a transcription factor, a cell receptor, or a kinase using a contextualization
algorithm. In some embodiments, the contextualization algorithm is a gene set enrichment

analysis algorithm.

[00310] In some embodiments, the method further comprises, for each respective cellular
constituent module in the plurality of cellular constituent modules, using the identity of each
cellular constituent in the respective cellular constituent module to associate the respective
cellular constituent module with a known cellular pathway, a biological process, a
transcription factor, a cell receptor, or a kinase using a contextualization algorithm. In some

embodiments, the contextualization algorithm is a gene set enrichment analysis algorithm.

[00311] In some embodiments, the contextualization algorithm is any contextualization
algorithm and/or any annotation method disclosed herein, including those further described in

the section entitled, “Contextualization,” below.

[00312] In some embodiments, the method further comprises pruning the activation data
structure by removing from the activation data structure one or more cellular constituent
modules that fail to associate with a known cellular pathway, a biological process, a
transcription factor, a cell receptor, or a kinase that is implicated in the cellular process of
interest. For instance, in some embodiments, the pruning allows for the prioritization of
cellular constituent modules that are most likely to be associated with a cellular process of
interest (e.g., prioritization of disease-critical and/or process-critical gene modules). In some
embodiments, the pruning allows for the prioritization of candidate targets for drug

discovery.
[00313] Contextualization.

[00314] Referring to Figure 3, another aspect of the present disclosure provides a method
300 of associating a plurality of cellular constituents with a cellular process of interest. The
method 300 includes a contextualization that is used to infer knowledge for each cellular
constituent module. For instance, in some embodiments, the contextualization is used
alternatively, or in addition, to a model for obtaining a latent representation and a covariate

weight matrix.

[00315] Referring to Block 302, the method comprises, at a computer system comprising a
memory and one or more processors obtaining one or more first datasets in electronic form,
the one or more first datasets comprising or collectively comprising, for each respective cell
in a first plurality of cells, where the first plurality of cells comprises, e.g., twenty or more

cells and collectively represents a plurality of annotated cell states, for each respective
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cellular constituent in a plurality of cellular constituents, where the plurality of cellular
constituents comprises, e.g., S0 or more cellular constituents, a corresponding abundance of

the respective cellular constituent in the respective cell.

[00316] Referring to Block 304, the method further includes accessing or forming a
plurality of vectors, each respective vector in the plurality of vectors (i) corresponding to a
respective cellular constituent in the plurality of constituents and (ii) comprising a
corresponding plurality of elements, each respective element in the corresponding plurality of
elements having a corresponding count representing the corresponding abundance of the

respective cellular constituent in a respective cell in the first plurality of cells.

[00317] Itis to be understood that any of the methods and embodiments for cells in the
first plurality of cells, including but not limited to type, number, source, cellular processes,
and/or annotated cell states, disclosed herein in the above section entitled, “Cell states and
processes,” are contemplated with respect to the method 300, and/or any substitutions,
modifications, additions, deletions, and/or combinations thereof, as will be apparent to one
skilled in the art. It is to be further understood that any of the methods and embodiments for
cellular constituents in the plurality of cellular constituents, including but not limited to type,
number, methods of measurement, preprocessing, filtering, and/or transformations, disclosed
herein in the above section entitled, “Cellular constituents,” and/or any substitutions,
modifications, additions, deletions, and/or combinations thereof, are contemplated with
respect to the method 300. For instance, the plurality of cellular constituent vectors can be
represented as the count matrix 110 illustrated in Figure 1B and Figure 4 (top panel). The
count matrix 110 includes a corresponding count 114 for each corresponding abundance of
each cellular constituent 112, for each respective cell in the first plurality of cells representing

a plurality of annotated cell states 116.

[00318] Referring to Block 306, the method further comprises using the plurality of
vectors to identify each cellular constituent module in a plurality of cellular constituent
modules, each cellular constituent module in the plurality of cellular constituent modules
including a subset of the plurality of cellular constituents (e.g., where the plurality of cellular
constituent modules comprises more than ten cellular constituent modules). It is to be
understood that any of the methods and embodiments for cellular constituent modules,
including but not limited to type, number, membership, clustering algorithms and/or
partitioning methods, dimension reduction and/or latent representations, disclosed herein in

the above sections entitled, “Cellular constituent modules” and “Latent representations,” are
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contemplated with respect to the method 300, and/or any substitutions, modifications,

additions, deletions, and/or combinations thereof, as will be apparent to one skilled in the art.

[00319] In some embodiments, the method further comprises determining a knowledge
contextualization for each respective cellular constituent module in the plurality of cellular
constituent modules. In some embodiments, the determining a knowledge contextualization
comprises obtaining, for each respective cellular constituent module in the plurality of
cellular constituent modules, one or more knowledge terms and/or a corresponding one or

more contextualization scores (e.g., knowledge term weights).

[00320] Thus, referring to Block 308, the method includes, for each respective cellular
constituent module in the plurality of cellular constituent modules, using the identity of each
cellular constituent in the respective cellular constituent module to associate the respective
cellular constituent module with a known cellular pathway, a biological process, a

transcription factor, a cell receptor, or a kinase using a contextualization algorithm.

[00321] In some embodiments, knowledge contextualization refers to the incorporation of
external knowledge sources to add biological significance to one or more cellular constituent
modules, which can be used to obtain meaningful interpretations from the dataset. In some
embodiments, knowledge contextualization is data-driven (e.g., using statistical analyses of
large datasets such as genome-wide association studies (GWAS) and/or gene set enrichment
analysis (GSEA)). In some embodiments, knowledge contextualization is theory-driven (e.g.,
using proposed or experimentally determined relationships between a small number of
cellular constituents and cellular processes of interest to establish candidate modules for
further validation). While data-driven and theory-driven approaches have unique advantages
and limitations, the use of one or both methods to annotate and contextualize cellular
constituent modules in accordance with embodiments of the present disclosure can improve
the interpretation and prioritization of modules for deeper understanding of the cellular
processes of interest. For example, large datasets are amenable to robust statistical analyses
but can be subject to noise and oversensitivity to outliers that exhibit high levels of variation
but are not biologically meaningful. In some embodiments, inclusion of theory-driven
annotations and other knowledge terms removes noise and focuses the prioritization of

cellular constituent modules on those that are most likely to have biological relevance.

[00322] In some embodiments, the contextualization algorithm is a gene set enrichment
analysis (GSEA) algorithm. In some embodiments, each cellular constituent module in the
plurality of cellular constituent modules includes a GSEA score indicating the differential

enrichment of the cellular constituents within each module across the plurality of modules.
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Methods for obtaining GSEA scores are described, for example, in Subramanian ef al., 2005,
PNAS 102, 15545-15550 and Liberzon et al., 2015, Cell Systems 23; 1(6): 417-425, each of

which is hereby incorporated herein by reference in its entirety.

[00323] In some embodiments, the contextualization algorithm is a genome-wide
association study (GWAS). GWAS is a data-driven approach that can be used to identify
biomarkers (e.g., SNPs) that are enriched in individuals characterized by one or more

phenotypes of interest (e.g., diseases).

[00324] In some embodiments, the contextualization algorithm comprises obtaining a
combined score obtained, at least in part, from GSEA scores and GWAS scores. In some
embodiments, the contextualization algorithm comprises obtaining a combined score
obtained for a plurality of cellular constituents (e.g., a polygenic score). Methods for
obtaining GSEA scores, GWAS scores, and polygenic scores are further described in, for
example, Elam e7 al., 2019, Translational Psychiatry 9:212; doi: 10.1038/s41398-019-0513-7,

which is hereby incorporated herein by reference in its entirety.

[00325] In some embodiments, the contextualization algorithm assigns, for each respective
cellular constituent module in the plurality of cellular constituent modules, for each
respective knowledge term in a plurality of knowledge terms, a corresponding
contextualization score. Thus, the plurality of contextualization scores for each respective
cellular constituent module in the plurality of cellular constituent modules can be represented
as the cellular constituent module knowledge construct 124 illustrated in Figure 1E. The
knowledge construct 124 includes a corresponding knowledge term 128 and a corresponding
knowledge term weight (e.g., score) 130 for each respective cellular constituent module in a

plurality of cellular constituent modules 126.

[00326] In some embodiments, the contextualization algorithm assigns, to a respective
cellular constituent module in the plurality of cellular constituent modules, at least at least 3,
at least 5, at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at
least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 400, at least
500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 2000, or at least
3000 knowledge terms. In some embodiments, the contextualization algorithm assigns, to a
respective cellular constituent module in the plurality of cellular constituent modules, no
more than 5000, no more than 1000, no more than 500, no more than 200, no more than 100,
no more than 50, or no more than 20 knowledge terms. In some embodiments, the
contextualization algorithm assigns, to a respective cellular constituent module in the

plurality of cellular constituent modules, from 3 to 10, from 10 to 50, from 20 to 500, from
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200 to 1000, or from 1000 to 5000 knowledge terms. In some embodiments, the
contextualization algorithm assigns, to a respective cellular constituent module in the
plurality of cellular constituent modules, a plurality of knowledge terms that falls within
another range starting no lower than 3 knowledge terms and ending no higher than 5000

knowledge terms.

[00327] In some embodiments, the contextualization score is a weight. In some
embodiments, the contextualization score is a binary label (e.g., absence or presence of the
knowledge term associated with the respective cellular constituent module). In some
embodiments, the contextualization score is a correlation coefficient. In some embodiments,
the contextualization score is a GSEA score, a GWAS score, and/or a polygenic risk score.
In some embodiments, the contextualization score comprises a measure of central tendency
(e.g., a mean, median, and/or mode) across the subset of cellular constituents for a respective
cellular constituent module. In some embodiments, the contextualization score comprises a
measure of dispersion (e.g., a standard deviation, standard error, and/or confidence interval)
across the subset of cellular constituents for a respective cellular constituent module. In some
embodiments, the contextualization score comprises a measure of confidence (e.g., a p-value,
false discovery rate (FDR), and/or g-value). In some embodiments, the contextualization

score is a GSEA p-value.

[00328] In some embodiments, each respective knowledge term associated with a
respective cellular constituent module is ranked according to the corresponding

contextualization score (e.g., weight) for the respective knowledge term.

[00329] In some embodiments, a plurality of knowledge terms for a respective cellular
constituent module is filtered based on contextualization score, where, when the
contextualization score for a respective knowledge term fails to satisfy a significance
criterion, the respective knowledge term is not assigned to the respective module, and when
the contextualization score for the respective knowledge term satisfies the significance
criterion, the respective knowledge term and the corresponding contextualization score is
included in the knowledge construct. For instance, in some embodiments, a respective
plurality of knowledge terms is assigned to a respective cellular constituent module, each
respective knowledge term having a corresponding weight (e.g., a p-value), and the plurality
of knowledge terms is ranked in order of their corresponding weights. Knowledge terms
having weights that satisfy the significance criterion are retained and used for annotation and
contextualization of the respective module, while knowledge terms having weights that do

not satisty the significance criterion are removed.
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[00330] In an example embodiment, cellular constituent modules (e.g., gene modules) are
contextualized by transforming each vector into a list and enriching each cellular constituent
module using GSEA and various public databases of gene sets and other data modalities,
such as GWAS. Labeling is weighted by GSEA p-values and annotations of cellular
constituent modules with knowledge terms are ranked in decreasing order of weights. Labels
are filtered using a significance threshold for GSEA, such that when the GSEA produces a
statistically significant result, the cellular constituent module is labeled with knowledge terms
such as known pathways, biological processes, risk alleles, biomarkers, genetic variants,

and/or driving transcription factors, receptors, and kinases.

[00331] In some embodiments, the contextualization comprises labeling each respective
cellular constituent module in the plurality of cellular constituent modules with one or more
labels obtained from a public database. In some embodiments, public databases include, but
are not limited to, the NIH Gene Expression Omnibus (GEO), EBI ArrayExpress, NCBI,
BLAST, EMBL-EBI, GenBank, Ensembl, the KEGG pathway database, the Library of
Integrated Network-based Cellular Signatures (LINCS) L1000 dataset, the Reactome
pathway database, the Gene Ontology project, and/or any disease-specific database. In some

embodiments, the public database is any public knowledge database known in the art.

[00332] Referring to Block 310, the method includes pruning the activation data structure
by removing from the activation data structure one or more cellular constituent modules that
fail to associate with a known cellular pathway, a biological process, a transcription factor, a
cell receptor, or a kinase that is implicated in the cellular process of interest thereby
identifying one or more cellular constituent modules in the plurality of cellular constituent
modules that is associated with the cellular process of interest and, from the one or more
cellular constituent modules, the plurality of cellular constituents associated with the cellular

process of interest.

[00333] In some embodiments, the pruning allows for the prioritization of cellular
constituent modules that are most likely to be associated with a cellular process of interest
(e.g., prioritization of disease-critical and/or process-critical cellular constituent modules). In
some embodiments, the pruning allows for the prioritization of candidate targets for drug

discovery.
[00334] Additional Embodiments.

[00335] Another aspect of the present disclosure provides a computer system, comprising
one or more processors and memory, the memory storing instructions for performing a

method for associating a plurality of cellular constituents with a cellular process of interest.
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The method comprises obtaining one or more first datasets in electronic form, the one or
more first datasets comprising or collectively comprising, for each respective cell in a first
plurality of cells, where the first plurality of cells comprises, e.g., twenty or more cells and
collectively represents a plurality of annotated cell states, for each respective cellular
constituent in a plurality of cellular constituents, where the plurality of cellular constituents
comprises, e.g., 50 or more cellular constituents, a corresponding abundance of the respective

cellular constituent in the respective cell.

[00336] A plurality of vectors is thereby accessed or formed, each respective vector in the
plurality of vectors (i) corresponding to a respective cellular constituent in the plurality of
constituents and (i1) comprising a corresponding plurality of elements, each respective
element in the corresponding plurality of elements having a corresponding count representing
the corresponding abundance of the respective cellular constituent in a respective cell in the

first plurality of cells.

[00337] The plurality of vectors is used to identify each cellular constituent module in a
plurality of cellular constituent modules, each cellular constituent module in the plurality of
cellular constituent modules including a subset of the plurality of cellular constituents, where
the plurality of cellular constituent modules are arranged in a latent representation
dimensioned by (i) the plurality of cellular constituent modules and (ii) the plurality of
cellular constituents or a representation thereof (e.g., where the plurality of cellular

constituent modules comprises more than ten cellular constituent modules).

[00338] The method further includes obtaining one or more second datasets in electronic
form, the one or more second datasets comprising or collectively comprising, for each
respective cell in a second plurality of cells, where the second plurality of cells comprises,
e.g., twenty or more cells and collectively represents a plurality of covariates possibly
informative of the cellular process of interest, for each respective cellular constituent in the
plurality of cellular constituents, a corresponding abundance of the respective cellular
constituent in the respective cell. A cellular constituent count data structure dimensioned by
(1) the second plurality of cells and (i1) the plurality of cellular constituents or the

representation thereof is thereby obtained.

[00339] An activation data structure is formed by combining the cellular constituent count
data structure and the latent representation using the plurality of cellular constituents or the
representation thereof as a common dimension, where the activation data structure comprises,
for each cellular constituent module in the plurality of cellular constituent modules, for each

cellular constituent in the plurality of cellular constituents, a respective activation weight.
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[00340] The method further comprises training a model using a difference between (i) a
prediction of an absence or presence of each covariate in the plurality of covariates in each
cellular constituent module represented in the activation data structure upon input of the
activation data structure into the model and (i1) actual absence or presence of each covariate
in each cellular constituent module, where the training adjusts a plurality of covariate weights
associated with the model responsive to the difference. The plurality of covariate weights
comprises, for each respective cellular constituent module in the plurality of cellular
constituent modules, for each respective covariate, a corresponding weight indicating whether
the respective covariate correlates, across the activation data structure, with the respective

cellular constituent module.

[00341] The plurality of covariate weights is used, upon training the model, to identify one
or more cellular constituent modules in the plurality of cellular constituent modules that is
associated with one or more covariates in the plurality of covariates, thereby associating a

plurality of cellular constituents with the cellular process of interest.

[00342] Another aspect of the present disclosure provides a non-transitory computer-
readable medium storing one or more computer programs, executable by a computer, for
associating a plurality of cellular constituents with a cellular process of interest, the computer
comprising one or more processors and a memory, the one or more computer programs

collectively encoding computer executable instructions that perform a method.

[00343] The method comprises obtaining one or more first datasets in electronic form, the
one or more first datasets comprising or collectively comprising, for each respective cell in a
first plurality of cells, where the first plurality of cells comprises, e.g., twenty or more cells
and collectively represents a plurality of annotated cell states, for each respective cellular
constituent in a plurality of cellular constituents, where the plurality of cellular constituents
comprises, e.g., 50 or more cellular constituents, a corresponding abundance of the respective

cellular constituent in the respective cell.

[00344] A plurality of vectors is thereby accessed or formed, each respective vector in the
plurality of vectors (i) corresponding to a respective cellular constituent in the plurality of
constituents and (i1) comprising a corresponding plurality of elements, each respective
element in the corresponding plurality of elements having a corresponding count representing
the corresponding abundance of the respective cellular constituent in a respective cell in the

first plurality of cells.

[00345] The plurality of vectors is used to identify each cellular constituent module in a

plurality of cellular constituent modules, each cellular constituent module in the plurality of
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cellular constituent modules including a subset of the plurality of cellular constituents, where
the plurality of cellular constituent modules are arranged in a latent representation
dimensioned by (i) the plurality of cellular constituent modules and (ii) the plurality of
cellular constituents or a representation thereof (e.g., where the plurality of cellular

constituent modules comprises more than ten cellular constituent modules).

[00346] The method further includes obtaining one or more second datasets in electronic
form, the one or more second datasets comprising or collectively comprising, for each
respective cell in a second plurality of cells, where the second plurality of cells comprises,
e.g., twenty or more cells and collectively represents a plurality of covariates possibly
informative of the cellular process of interest, for each respective cellular constituent in the
plurality of cellular constituents, a corresponding abundance of the respective cellular
constituent in the respective cell. A cellular constituent count data structure dimensioned by
(1) the second plurality of cells and (i1) the plurality of cellular constituents or the

representation thereof is thereby obtained.

[00347] An activation data structure is formed by combining the cellular constituent count
data structure and the latent representation using the plurality of cellular constituents or the
representation thereof as a common dimension, where the activation data structure comprises,
for each cellular constituent module in the plurality of cellular constituent modules, for each

cellular constituent in the plurality of cellular constituents, a respective activation weight.

[00348] The method further comprises training a model using a difference between (i) a
prediction of an absence or presence of each covariate in the plurality of covariates in each
cellular constituent module represented in the activation data structure upon input of the
activation data structure into the model and (i1) actual absence or presence of each covariate
in each cellular constituent module, where the training adjusts a plurality of covariate weights
associated with the model responsive to the difference. The plurality of covariate weights
comprises, for each respective cellular constituent module in the plurality of cellular
constituent modules, for each respective covariate, a corresponding weight indicating whether
the respective covariate correlates, across the activation data structure, with the respective
cellular constituent module.

[00349] The plurality of covariate weights is used, upon training the model, to identify one
or more cellular constituent modules in the plurality of cellular constituent modules that is
associated with one or more covariates in the plurality of covariates, thereby associating a

plurality of cellular constituents with the cellular process of interest.
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[00350] Another aspect of the present disclosure provides a computer system having one
or more processors, and memory storing one or more programs for execution by the one or
more processors, the one or more programs comprising instructions for performing any of the
methods and/or embodiments disclosed herein. In some embodiments, any of the presently
disclosed methods and/or embodiments are performed at a computer system having one or
more processors, and memory storing one or more programs for execution by the one or more

Processors.

[00351] Another aspect of the present disclosure provides a non-transitory computer
readable storage medium storing one or more programs configured for execution by a
computer, the one or more programs comprising instructions for carrying out any of the

methods disclosed herein.

[00352] IIL. EXAMPLES

[00353] The Examples below provide performance measures and practical applications of

models that identify activation values for cellular constituent modules.

[00354] Example 1. Predicting shared and orthogonal cell type and treatment modules for
megakaryocyte differentiation.

[00355] In this example, a first dataset is obtained in electronic form that comprises, for
each respective cell in a first plurality of cells, where the first plurality of cells comprises
twenty or more cells and collectively represents a plurality of annotated cell states, for each
respective cellular constituent in a plurality of cellular constituents, where the plurality of
cellular constituents comprises 50 or more cellular constituents, a corresponding abundance
of the respective cellular constituent in the respective cell, thereby accessing or forming a
plurality of vectors, each respective vector in the plurality of vectors (i) corresponding to a
respective cellular constituent in the plurality of constituents and (ii) comprising a
corresponding plurality of elements, each respective element in the corresponding plurality of
elements having a corresponding count representing the corresponding abundance of the

respective cellular constituent in a respective cell in the first plurality of cells.

[00356] In particular, in this example, scRNA-seq is collected from cells of an in vitro
model of differentiating CD34 stem cells, perturbed with Megakaryocyte stimulating media
(MKP) and different interventions (and thus representing different annotated states). This
scRNA-seq data was pre-processed through filtering and normalization steps. This resulted in
a pre-processed count matrix 110 of the form illustrated in the upper portion of Figure 4 and

contained between 100 to 8000 cellular constituents with a high signal-to-noise ratio.
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[00357]  Further in this example, the plurality of vectors (e.g., the counter matrix 110 of the
upper portion of Figure 4) is used to identify each cellular constituent module in a plurality of
cellular constituent modules. Each cellular constituent module in the plurality of cellular
constituent modules includes a subset of the plurality of cellular constituents. The plurality
of cellular constituent modules were arranged in a latent representation (e.g., latent
representation 118 in the lower portion of Figure 4) dimensioned by (i) the plurality of
cellular constituent modules and (i1) the plurality of cellular constituents or a representation
thereof. To compute the cellular constituents modules, a correlation-based or sparse auto-
encoder cost function was optimized. Optimizing the correlation-based cost function
amounted to computing a nearest-neighbor graph defining neighborhood relations among
cellular constituents, representing each cellular constituents by a vector formed by storing the
expression values for the cellular constituents in each cell (e.g., count matrix 110 of upper
portion of Figure 4), and computing correlations among cellular constituents. Cellular
constituents whose abundance values had a high correlation (e.g., more than 0.5, more than
0.6, more than 0.7) across the first plurality of cells end up being nearest neighbors, and form a
cellular constituent module. In some embodiment such correlation determination and
clustering was performed using a graph based method such as Leiden or any other graph

clustering method.

[00358] The identification of the cellular constituent modules can be considered a latent
representation, such as the latent representation 118 illustrated in the lower portion of Figure
4. The latent representation includes between 50 to 500 latent dimensions, each of which is
numbered and represents a single cellular constituent module (latent representation 118 Y-
axis), containing between 2 and 300 cellular constituents (latent representation 118 X-axis).
The weights of the latent representation 118 can be represented by an indicator matrix, with an
entry 1/n_genes if a cellular constituent is part of a cellular constituent module, and an entry O
ifitis not. Here, n_genes is the number of cellular constituents in a cellular constituent
module. Thus, referring to the latent representation 118 of Figure 4, weights 122 for a
particular cellular constituent have a value of “0” in individual cellular constituent modules
that the particular cellular constituent is not present in and have a value of “1” in individual
cellular constituent modules that the particular cellular constituent is present in. It will be
appreciated that any labeling scheme that indicates which cellular constituents are in which

cellular constituent modules in the latent representation 118 can be used.

[00359] In this example, a second dataset was received in electronic form that contained,

for each respective cell in a second plurality of cells, where the second plurality of cells
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comprises twenty or more cells and collectively represents a plurality of covariates possibly
informative of the cellular process of interest, for each respective cellular constituent in the
plurality of cellular constituents, a corresponding abundance of the respective cellular
constituent in the respective cell, thereby obtaining a cellular constituent count data structure
dimensioned by (1) the second plurality of cells and (i1) the plurality of cellular constituents or
the representation thereof. In this example, the second dataset is an appropriately normalized
scRNA-seq count matrix of shape n cells x n genes that included cells for each of the
covariates of interest. This second dataset has the form of count data structure (covariate set)

160 of Figure 5.

[00360] Next in this example, an activation data structure 170 (e.g., of the form on the
lower right hand side of Figure 5) was formed by combining the above described cellular
constituent count data structure (of the form of count data structure 160 on the lower left hand
side of Figure 5) and the latent representation (e.g., of the form of latent representation 118 of
the upper portion of Figure 5) using the plurality of cellular constituents or the representation
thereof as a common dimension. As illustrated in Figure 5, the activation data structure 170
comprises, for each cellular constituent module in the plurality of cellular constituent
modules, for each cell in the second plurality of cells, a respective activation weight. In other
words, the matrix multiplication of the latent representation 118 by the second dataset
(counter data structure 160) maps the scRNA-seq data into a space, illustrated by activation
data structure 170 in the lower right hand side of Figure 5, in which each cell (Cell 1, ..., Cell
G) is characterized by its cellular constituent module activations (Acti-1, ..., Actk-G) in which

the resulting matrix representation has dimensions n_cells x n_modules.

[00361] The example continues by training a model 601. For instance, consider the case
where model 601 includes the weights of row 604-1 (Weighti-1 through Weight1-w) to
represent the extent to which covariates 1 through W respectively activate cellular constituent
module 1. This model 601 is trained on the elements of row 640 of activation data structure
170, which provide the extent to which each of the covariates 1, ..., G activate cellular
constituent module 1. In this training, first a representation of the covariate associated with
cell 1 is inputted into the model 601. Responsive to this input, the model 601 for cellular
constituent module 1 outputs an activation value, termed Pred. Value: in the nomenclature of
Figure 6. This output activation value is compared to the actual activation value for the
covariate associated with cell 1, which is Acti-1 of activation data structure 170. Next, a
representation of the covariate associated with cell 2 is inputted into the model 601. In

response to this input, the model outputs an activation value (Pred. Valuez). This output

90



WO 2022/266256 PCT/US2022/033680
activation value is compared to the actual activation value for the covariate associated with
cell 2 of row 640, which is Act1-2 of activation data structure 170. This process proceeds
through cell G. A representation of the covariate associated with cell G is inputted into the
model 601. In response to this, the model will output an activation value (Pred. Valueg).
This output activation value is compared to the actual activation value for cell G, which is
Acti-G of row 640 of activation data structure 170. In this example, W and G have the same
value. In this way, there is a resulting prediction (Pred. Value) for each covariate in the
plurality of covariates used to derive the activation data structure as outlined in Figure 5 for
cellular constituent module 1. The above-described calculated predictions (of the activation
value ) are compared to the above-described actual activation values for each of these
covariates and the differences between the predicted and actual activation values are used to
further train the model 601 using back-propagation and related model refinement techniques.
In this example, the model, illustrated as element 601 in Figure 6, is a one-layer neural net
model (SoftMax/ Logistic Regression) for each cellular constituent module. In this
optimization, the input features for each model 601 are the representations of the covariates

associated with each column of the activation data structure 170.

[00362] Referring to Figure 6, the parameters of the classification model 601 are weights
1-1, ... 1-W, ..., K-1, ..., K-W, for the cellular constituents modules, values for the weights
1-1, ... 1-W, ... K-1, ..., K-W are determined using categorical cross-entropy loss in a multi-
task formulation in this example. Classifying each categorical (batch, donor, disease status,
efc.) corresponds to one such cost function each. Each of these cost functions receive the
same weighting factor. In this example the covariates were cell type labels, flow cytometry

readouts, and coupling of a collection of public knowledge bases.

[00363] The example continued by identifying, using the plurality of covariate weights
upon training the model 601, one or more cellular constituent modules in the plurality of
cellular constituent modules that was associated with one or more covariates in the plurality
of covariates, thereby associating a plurality of cellular constituents with the cellular process
of interest. Here, the trained model 601 offers trained weights 1-1, ... 1-W, ... K-1, ..., K-W
for each of the covariates, and hence revealed cellular constituent modules that inform for
megakaryocyte differentiation. For instance, from the analysis of these trained weights, the
top 10 most strongly activated cellular constituent modules were identified. Table 2 provides
the identities of the top 10 most strongly activated cellular constituent modules, along with
associated annotations (KEGG: Kyoto Encyclopedia of Genes and Genomes; REAC:

Reactome; TF: transcription factors; GO: gene ontology; BP: biological process; MF:
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molecular function). Among these, as presented in Table 2, four cellular constituent modules

were found to be significantly associated with platelet activation, the cellular processes

known to associate with the phenotypic endpoint of thrombocytopenia. Comparison of

shared and orthogonally activated cellular constituent modules after treatment with MkP and

additional interventions (Compound N and Compound P) is illustrated in Figure 7. For

example, cellular constituent module 77 was identified as having shared activation after both

Compound P and MkP treatment.

[00364] Table 2 — Cellular constituent modules activated by interventions.
Module | KEGG REAC TF GO:BP GO:MF
Modules activated in MkP condition
4 Platelet Platelet Platelet Molecular
activation | activation, activation function
signaling and regulator
aggregation
1 Platelet Hemostasis Response to
activation wounding
0 Platelet Platelet Cell activation
activation | degranulation
6 Antibiotic Hemoglobin
catabolic binding
process
3 Steroid Platelet Factor: Spl; motif: | Secondary Protein
biosynthes | activation, NNGGGGCGGGG | aleohol binding
is signaling and NN: match class: 0 | biosynthetic
aggregation process
30 Allograft | Endosomal / Antigen
rejection vacuolar processing and
pathway presentation of
€X0geno. ..
7 Cell cycle | Cell cycle Factor: YB-I; Mitotic cell Enzyme
motif: cycle process binding
NNNNCCAATNN;
match class: 1
8 Ribosome | Selenoamino Nuclear- Structural
acid metabolism transcribed constituent of
mRNA catabolic | ribosome
process
2 Cell cycle | S phase Factor: E2F-2; Cellular Nucleic acid
motif: metabolic binding
GCGCGCGCGYW | process
; match class: 1
Module uniquely activated in Compound P-treated condition
77 JAK- Interleukin-4 Response to 1-
STAT and Interleukin- cytokine phosphatidyli
signaling | 13 signaling nositol-3-
pathway kinase
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regulator
activation

[00365] The approach was validated using the in vifro model of megakaryocyte
differentiation from CD34 stem cells. Module activation and differentiation from CD34 stem
cells in response six 6 different compounds (Compound B4, Compound BS, Compound B6,
Compound B7, Compound B*, and Compound B9) are indicated in Figure 8. The top panel
shows activation of modules (labeled as numbers along the x-axis) in response to each of the
six compound treatments. In the top panel of Figure 8, module size (e.g., number of elements)
is indicated by the size of the circle. Cellular constituent modules with negative concordance
are indicated by asterisks, whereas all other cellular constituent modules not so marked have
positive concordance. Degree of concordance is indicated by the intensity of shading in

accordance with the legend (“concordance”).

[00366] Differentiated lineages are indicated in the bottom panel of Figure 8. The dot plot
shows gene module activation of scRNA-seq gathered across the six compound treatment
conditions (Baso: basophils; MkP: megakaryocytes), where the degree of activation is
indicated by the intensity of shading. Regions of the dot plot indicating positive activation are
circled. In particular, module 20 was shared between megakaryocytes and basophils. The
compounds that target module 20 (e.g., Compound B4, Compound BS, and Compound B9, as
shown in the top panel) induce both of these cell types, whereas the compounds that do not

activate module 20 do not give rise to both lineages.

[00367] Example 2. Correcting epithelial inflammation in a patient-derived pre-clinical
organoid model of COPD.

[00368] In COPD and other muco-obstructive pulmonary diseases, goblet cell hyperplasia
and resultant mucus hypersecretion contributes to patient morbidity and mortality.
Inflammatory signaling such as IL-13 induces basal cells to predominantly differentiate to
disease-driving goblet cells, at the expense of ciliated cells and club cells. To identify and
target the disease-driving cell behaviors underlying these alterations in epithelial lineage
differentiation, scRNA-seq data was generated using an air liquid interface (ALI) model of

IL-13 induced goblet cell hyperplasia.

[00369] Figure 9A illustrates that histology and scRNA-seq manifold of the air liquid
interface (ALI) model of IL-13 induced goblet cell hyperplasia. IL-13 alters lineage
differentiation and induces multiple cell behavior shifts in lung epithelium along with the

observed goblet cell hyperplasia, which results in establishment of a detrimental mucus layer.
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This indicated that multiple disease cell behaviors may contribute to the disease phenotype in

a complex system like the airway epithelium.

[00370] Figure 9B illustrates cellular constituent module activation in different disease-
modulating cell state transitions (e.g., cell behavior transitions). Module size (e.g., number of
cellular constituents) is indicated by the size of the circle, and negative activation is indicated
by asterisks. Degree of activation is indicated by the intensity of shading in accordance with
the legend (“activation”). Highlighted modules indicate molecular changes specific to a cell
state (thin arrow) or across multiple cell states (thick arrows). Predictions that a BRD4
inhibitor Compound B10 targets modules associated with multiple cell states was further

validated by studies using chemical interventions.

[00371] Thus, by mapping cellular constituent modules to disease-modulating cell state
transitions, it was possible to determine that some transcriptional changes are state-specific,
while some are associated with multiple cell states. In particular, Compound B10 is predicted
to modulate multiple cellular transcriptional programs of interest, which was validated from

observations of the sSCRNA-seq data gathered from the ALI model system.

[00372] Example 3. Predicting translation of T-cell exhaustion reversal through tool

compounds, impact on patient response to checkpoint inhibitors, and survival.

[00373] By using a cellular constituent modules trained on scRNA-seq of an in vifro T cell
exhaustion model system and mapping it on public patient data, it was determined

that some of the in vifro biology finds correspondence in the patient data, where some does
not. For instance, comparison of the top panel (in vifro model data) with the bottom panel of
Figure 10A (human in vivo data) reveals differences in the proportions and/or degrees of
positive or negative activations for various cellular constituent modules. Negative activation
is indicated by asterisks. Degree of activation is indicated by the intensity of shading in

accordance with the legend (“activation”).

[00374] However, all cellular constituent modules that are related to key marker cellular
constituent (e.g., modules 15, 6, and 26, highlighted by shaded boxes) display the
same changes in vifro upon treatment with the tool compound K as observed when comparing

responders to non-responders in the in vivo data.

[00375]  Asillustrated in Figure 10B, mapping module 15 onto the survival data of the
Cancer Genome Atlas (TCGA) shows a significant association with survival, similar to
previous observations in breast cancer (nof shown). Thus, predictions obtained from the

methods of the present disclosure can be used to carve out the cellular constituents of
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identified cellular constituent modules as initial targets for learning from a screening

iteration.

[00376] Example 4. Informing disease modules using statistical genetics to predict

modules that enrich for known disease traits.

[00377] Many diseases have unknown etiology, where disease-causing cellular programs
are not fully known. Genome-wide association studies (GWAS) identify single nucleotide
polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. The
modeling architecture allows the input of GWAS data to enrich cell states and modules. To
test the predictive capability of the approach, transcription factors from the megakaryocyte
differentiation system described above were input into a model in accordance with the
present disclosure. As illustrated in Figure 11, predicting the disease associations for the
signature predicts diseases linked to platelets (black bars), blood-related disease (light grey
bars), and others (medium grey bars), among 3616 total traits assessed. This approach also
makes unexpected predictions, including that megakaryocyte transcriptional signatures are
associated with PR intervals, commonly associated with atrial and atrioventricular electrical
activity.

[00378] Example 5. Predicting malignant cells by integrating copy number variations for

scRNA-seq of cells derived from dissociated breast cancer patient samples.

[00379] Somatic copy number variations (CNVs) are ubiquitous in cancer cells. Arising
from genomic instability, CNVs are typically identified from DNA sequencing data and are
detected as amplifications or deletions of large portions of genomes. Understanding CNVs in

tumors can provide insight into how genetic changes correlate with or drive phenotypes.

[00380] CNYV information was proxied by scoring a cell’s gene expression density on
chromosomes. The approach has been shown to correlate well with whole-genome-
sequencing based CNV characterization. Inputting the CNV profile for each gene allows the
formation of connections between cell states and modules and their genetic architecture. For
example, as illustrated in the heatmap in Figure 12, cell malignancy can be predicted through

its CNV profile.

[00381] Using publicly available data, DCX+ cells in triple negative breast cancer SCRNA-
seq data were studied and investigated to determine whether these cells were healthy neural
progenitors or malignant cancer cells. Figure 12 plots the CNV profile through chromosomal
deletions and duplications (e.g., degree indicated by intensity of shading) for genes
segregated by chromosome (x-axis). CNV profiles were clustered and each cell (row) was

annotated by clusters inferring malignancy and DCX+ state (e.g., top cluster characterized by
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greater degree of copy number variations; bottom cluster characterized by lesser degree of
copy number variations). As confirmation of the validity of the approach, immune cells such

as T cells and macrophages were found to be not malignant and exhibited low levels of

CNVs.

[00382] FExample 6. Predicting interactions of immune cells and malignant cells in breast

cancer.

[00383] The roles of DCX+ neural progenitor cells in the tumor microenvironment were
further examined by identifying DCX+ cells in triple negative breast cancer (TNBC) single
cell data and determining that they were associated with worse outcomes in adenocarcinomas
and breast cancer patients. Using copy number variation inference, it was predicted that these
DCX+ cells are actually malignant. Figure 13 shows the results of an investigation into how
these cells interact with other cells in the tumor microenvironment. By scoring expression of
ligand receptor pairs across cell types, it was observed that stromal cells and macrophages

display the highest number of significant interactions with DCX+ cells.

[00384] With reference to Figure 13, A: a Uniform Manifold Approximation and
Projection (UMAP) plot of different cell types in a tumor environment (e.g., DCX+,
macrophages, stroma, and epithelial) is illustrated. Numbers indicate cellular constituent
modules expressed by DCX+ cells and other cell types (e.g., 0/DCX+; 11/macrophages;
4/stroma; and 10/epithelial). B: the number of interactions between DCX+ cells and other
cell types are indicated by circled numbers as well as by arrow shading intensity (darker
shading indicates a greater number of interactions). Circles denote cellular constituent
modules expressed by DCX+ and other cell types. In the left panel, DCX+ cells are source
cells, while in the right panel, DCX+ cells are target cells. C: Investigation of specific
molecular interactions, revealed that NCAMI1 (a neural cell adhesion molecule), a neural
progenitor cell marker in DCX + cells, communicated predominantly with 3 other cell types
including itself, stroma, and basal epithelial cells by co-binding FGF2 with FGFR1 receptor.
Expression of NCAMI1 in DCX+ cells and expression of FGFR1 in stroma cells 1s indicated
by intensity of shading across the UMAP plot, in accordance with the legend (“Expression”).
Academic literature suggests that there exists an NCAM1-FGF2-FGFRI signaling axis that
regulates tumor survival and migration. Thus, the findings obtained using cellular constituent
modules (and/or models for identifying the same) can be used to prioritize critical cell targets

for downstream application.
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[00385] Example 7. Air-liquid interface (ALI) differentiation of primary human bronchial
epithelial cells (HBECs) is an accepted in vitro model of 1L-13 - induced goblet cell
hyperplasia.

[00386] FExpansion of HBEC culture: Primary HBECs (Lonza) were thawed into T75

flasks in PneumaCult Ex Plus medium (STEMCELL Technologies) and cultured for 2-3 days
until 80% confluency. Cells were then dissociated for 10 min using Animal Component-Free
(ACF) Cell Dissociation Kit (STEMCELL Technologies) and plated onto the apical chamber
of 6.5 mm wide, 0.4 um pore-sized Transwells (STEMCELL Technologies) at 3.3e4 cells per

well with PneumaCult-Ex medium on both sides of the membrane.

[00387] ALI culture: After the cells reached 50-80% confluency on transwells (1-2 days
later), cultures were transferred to ALI conditions. Medium was removed from the apical and
basal chambers and replaced only in the basal chamber with complete PneumaCult-ALI
Medium (STEMCELL Technologies). Where appropriate, 0.3-1 ng/ml IL-13 (R&D) and test
compounds were added to the basal chamber. Medium containing IL-13 and test compounds
was replenished every 2-3 days, and excess mucus was washed from the apical chamber with

200 ul warm PBS-/- twice a week starting on day 7.

[00388] Pseudostratified airway epithelium was formed by day 14 of ALI differentiation.
Goblet (MucSac+, AB/PAS+) and ciliated cells (Acetyl a-tubulin+) were visualized via
immunofluorescence or histology. Immunofluorescence allows for a top down view of the
most apical layer of cells, while histology presents a cross-section of the pseudostratified
epithelium and is amenable for image quantification. In addition, qPCR of ciliated (Foxj1)
and goblet (MucSac) marker expression was used as a sensitive and quantitative readout of
epithelial cell type distribution. Figures 14A-B and 15A-C illustrate that ciliated cells arise
only in the untreated condition, while, conversely, goblet cells arise only in the IL-13-treated

condition, modeling goblet cell hyperplasia.

[00389] Immunofluorescence readout. For the immunofluorescence (IF) readout,
transwells were fixed with 4% formaldehyde (Sigma) for 30 min and washed 3x in PBS-/-.
Transwell membranes were excised with a scalpel and blocked/permeabilized for 1 hour in
solution containing 2.5% goat serum (Invitrogen), 2.5% donkey serum (Sigma), 1% BSA
(ThermoFisher), and 0.2% Triton X-100 (MP Biomedicals) in PBS-/-. Membranes were then
incubated with primary antibodies (Muc5ac, clone 45M1, ThermoFisher and acetyl a-tubulin,
clone 6-11B-1, Sigma) overnight at 4 °C, washed 3X in PBS-/-, incubated with secondary
antibodies (goat anti-mouse IgG1 Alexa 555 and goat anti-mouse IgG2b Alexa 647,

ThermoFisher) for 45 min at room temperature, washed again, and mounted apical side down
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onto 48 well plates with SlowFade Diamond Antifade Mountant with DAPI (Invitrogen) and
covered with 8 mm coverslips (Thomas Scientific). Plates were imaged on ImageXpress

Micro 4 (Molecular Devices).

[00390] Histology readout: For the histology readout, transwells were fixed with 4%
formaldehyde (Sigma) for 4 hours, washed 3x in PBS-/-, and shipped to HistoTox Labs
(HTL), Boulder CO, in PBS-filled 50 ml tubes. At HTL, samples were trimmed, placed in
individually labeled cassettes, and processed per HTL SOPs for paraffin embedding. Tissue
blocks were sectioned at 4 pm onto labeled slides and stained with Hematoxylin & Eosin
(H&E) and Alcian Blue/Periodic Acid Schiff (AB/PAS) dyes per HTL SOPs.
Immunohistochemical (IHC) staining of Formalin-Fixed Paraffin-Embedded (FFPE) was
conducted on a Leica Bond Rxm using standard chromogenic methods. For antigen retrieval
(HIER), slides were heated in a pH 6 Citrate based buffer for 2 hours at 70 °C (Acetyl a-
Tubulin, clone EPR16772 Abcam), or pH 9 EDTA based buffer for 2 hours at 70 °C
(Muc5ac, clone 45M1 ThermoFisher), followed by a 30 minute antibody incubation (acetyl
a-tubulin) or 45 minute antibody incubation (Muc5ac). Antibody binding was detected using
an HRP-conjugated secondary polymer, followed by chromogenic visualization with
diaminobenzidine (DAB). A Hematoxylin counterstain was used to visualize nuclei. Slides
were scanned and visualized on PathCore. Quantification of AB/PAS, acetyl a-tubulin, and
Muc5ac staining signal was performed on MetaXpress (Molecular Devices) software as %

positive area.

[00391] ¢PCR readout: At day 14, transwell membranes were excised and cut in half
with scalpel (VWR, 10148-884) and placed into 1.5mL tube with 350uL of Buffer RLT
(QIAGEN, 74106) and 2-mercaptoethanol (Gibco, 21985023) added at 1:100. Lysate
(350pl) was then transferred into QIAShredder Column (QIAGEN, 79656), and centrifuged
at max speed for 2 minutes at +4°C. RNA extraction was performed according to the
manufacturer’s instructions for RNeasy Mini Kit (QIAGEN, 74106). RNA was quantified on
NanoDrop One (ThermoFisher), and cDNA generated using High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, 4368814), on the Biorad C1000 Touch Thermal
Cycler.

[00392] For qPCR, target genes MUCSAC-FAM-MGB (ThermoFisher, 4331182,
Hs00873651 mH), human FOXJ1 FAM-MGB (ThermoFisher, Hs00230964 m1), or human
SCGB1A1 FAM-MGB (ThermoFisher, 4331182 | Hs00171092 m1) were duplexed with
reference gene primer YWHAZ-VIC-MGB (ThermoFisher, 4448484, Hs03044281 gl) for

simultaneous detection in a single qPCR reaction. Each reaction was run in triplicate, using
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TagqMan Fast Advanced Master Mix (ThermoFisher, 444456) according to manufacturer’s
protocols in Hard-Shell 384-well thin-wall PCR plates (BioRad HSP3805) on BioRad CFX
384 Touch Real-Time PCR Detection System. For qPCR analysis, technical replicates were

normalized by housekeeping genes and averaged, and ACt values were calculated.

[00393] Example 8. Simulated versus measured impact of chaetocin on blood cells (in

vitro CD34+).

[00394] Methods to generalize and prioritize, from transcriptional profiles of perturbed
cell lines, compounds that will modify a cell behavior of interest were developed. See United
States Patent Publication Number 2020-0020419 entitled “Methods of Analyzing Cells,”
which is hereby incorporated by reference. The methods score a target cell behavior and
predict a set of compounds (where each compound is considered a perturbation) that are most
likely to induce that cell behavior. However, the effect of predicted compounds on overall
cell type composition, apart from target cell behavior, remained unclear. To address this, the
disclosed methods were developed, which allows, among other things, for the prediction of

global change in cell type distribution.

[00395] Previously, the effect of 75 unique small molecule interventions in CD34+ cells
was determined using single cell RNA sequencing, which allowed for assignment of CD34+
cells to one of the 10 biologically relevant clusters and measurement of the proportion of
each cluster in each sample. The shift in distribution of cell types in perturbed CD34+ cells
relative to the control, unperturbed cells was measured. Using this observed shift, a model
that can predict the expected shift in cell type abundance in samples perturbed with unseen
small molecules was trained. This model uses the score described in United States Patent
Publication Number 2020-0020419 entitled “Methods of Analyzing Cells,” to quantify cell
behavior transition from HSPC cells to one of the 9 target cell types (granulocyte monocyte
progenitor cell, MEMP (MK-erythroid-mas), erythroid, megakaryocyte progenitor cell,
megakaryocyte cell, mast cell, monocyte cell, B cell, and precursor B cell) to predict change

in abundance of the target cell type under a given small molecule perturbation.

[00396] The model was evaluated using k-fold cross validation strategy and in how many
cases a correct prediction was made in the direction of the change (increase or decrease in
abundance) for each of the nine terminal target cell types. The direction of change for B cells
was correctly predicted by the model in 66% of the cases. The direction of change for
monocytes was correctly predicted by the model in 74% of the cases. The direction of
change for megakaryocytes was correctly predicted by the model in 63% of the cases. The

model shows positive predictive power on six (6) blood cell types, with 70% balanced
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accuracy on erythroid and megakaryocyte progenitor cells upon intervention with 61
compounds. As such the model shows potential value for predicting compounds that, upon
intervention, elicit desired behaviors in multiple cell types, and thus for predicting
compounds for treatment of complex diseases. The model further shows potential value for
optimizing such compound “hits” into “leads” (e.g., new chemical entities) against behaviors
in multiple cell types, and for minimizing and/or avoiding potential unwanted side effects or

toxicities associated with inadvertently modulating healthy cells.

[00397] Figure 16A illustrates the predicted UMAP plot (of increase or decrease in end
cell types) provided by the model (e.g., in response to inputting into the model the fingerprint
for chaetocin) while Figure 16B illustrated the UMAP plot (of increase or decrease in end
cell types) of actual measurement of increase or decrease in end cell types for in vitro CD34+
cells exposed to chaetocin. For information on chaetocin, see Isham ef al., 2007, “Chaetocin:
a promising new antimyeloma agent with in vitro and in vivo activity mediated via

imposition of oxidative stress,” Blood 109, 2579, which is hereby incorporated by reference.

REFERENCES CITED AND ALTERNATIVE EMBODIMENTS

[00398]  All references cited herein are incorporated herein by reference in their entirety
and for all purposes to the same extent as if each individual publication or patent or patent
application was specifically and individually indicated to be incorporated by reference in its

entirety for all purposes.

[00399] The present invention can be implemented as a computer program product that
includes a computer program mechanism embedded in a non-transitory computer readable
storage medium. For instance, the computer program product could contain the program
modules shown in any combination of Figures 1, 2A-B, or 3. These program modules can be
stored on a CD-ROM, DVD, magnetic disk storage product, or any other non-transitory

computer readable data or program storage product.

[00400] Many modifications and variations of this invention can be made without
departing from its spirit and scope, as will be apparent to those skilled in the art. The specific
embodiments described herein are offered by way of example only. The embodiments were
chosen and described in order to best explain the principles of the invention and its practical
applications, to thereby enable others skilled in the art to best utilize the invention and
various embodiments with various modifications as are suited to the particular use
contemplated. The invention is to be limited only by the terms of the appended claims, along

with the full scope of equivalents to which such claims are entitled.
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WHAT IS CLAIMED IS:

1. A method of training a model to identify a set of cellular constituents associated with a
cellular process of interest, the method comprising:

at a computer system comprising a memory and one or more processors:

(A) obtaining one or more first datasets in electronic form, the one or more first
datasets individually or collectively comprising:

for each respective cell in a first plurality of cells, wherein the first plurality of
cells comprises twenty or more cells and collectively represents a plurality of
annotated cell states:
for each respective cellular constituent in a plurality of cellular
constituents, wherein the plurality of cellular constituents comprises 50 or
more cellular constituents:
a corresponding abundance of the respective cellular
constituent in the respective cell,

thereby accessing or forming a plurality of vectors, each respective vector in the
plurality of vectors (i) corresponding to a respective cellular constituent in the plurality of
constituents and (i1) comprising a corresponding plurality of elements, each respective
element in the corresponding plurality of elements having a corresponding count representing
the corresponding abundance of the respective cellular constituent in a respective cell in the
first plurality of cells;

(B) using the plurality of vectors to identify each respective cellular constituent
module in a plurality of cellular constituent modules, each respective cellular constituent
module in the plurality of cellular constituent modules including an independent subset of the
plurality of cellular constituents, wherein the plurality of cellular constituent modules are
arranged in a latent representation dimensioned by (i) the plurality of cellular constituent
modules and (i1) the plurality of cellular constituents or a representation thereof, and wherein
the plurality of cellular constituent modules comprises more than ten cellular constituent
modules;

(C) obtaining one or more second datasets in electronic form, the one or more second

datasets individually or collectively comprising:
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for each respective cell in a second plurality of cells, wherein the second plurality of
cells comprises twenty or more cells and collectively represents a plurality of covariates
associated with the cellular process of interest:
for each respective cellular constituent in the plurality of cellular constituents:
a corresponding abundance of the respective cellular
constituent in the respective cell,

thereby obtaining a cellular constituent count data structure dimensioned by (i) the
second plurality of cells and (i1) the plurality of cellular constituents or the representation
thereof;

(D) forming an activation data structure by combining the cellular constituent count
data structure and the latent representation using the plurality of cellular constituents or the
representation thereof as a common dimension, wherein the activation data structure
comprises, for each cellular constituent module in the plurality of cellular constituent
modules:

for each cell in the second plurality of cells, a respective activation weight; and

(E) training the model using, for each respective covariate in the plurality of
covariates, a difference between (1) a calculated activation against each cellular constituent
module represented by the model upon input of a representation of the respective covariate
into the model and (i) actual activation against each cellular constituent module represented
by the model, wherein the training adjusts a plurality of covariate parameters associated with
the model responsive to the difference, wherein each respective covariate parameter in the

plurality of covariate parameters represents a covariate in the plurality of covariates.

2. The method of claim 1, wherein the plurality of covariate parameters comprises, for each
respective cellular constituent module in the plurality of cellular constituent modules, for
each respective covariate, a corresponding parameter indicating whether the respective
covariate correlates, across the second plurality of cells, with the respective cellular
constituent module, and wherein the method further comprises:

(F) identifying, using the plurality of covariate weights upon training the model, one
or more cellular constituent modules in the plurality of cellular constituent modules that is
associated with one or more covariates in the plurality of covariates, thereby associating each
cellular constituent in the set of plurality of cellular constituents, from among the cellular
constituents in the identified one or more cellular constituent modules, with the cellular

process of interest.
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3. The method of claim 1 or 2, wherein an annotated cell state in the plurality of annotated
cell states is an exposure of a cell in the first plurality of cells to a compound under an

exposure condition.

4. The method of claim 3, wherein the exposure condition is a duration of exposure, a
concentration of the compound, or a combination of a duration of exposure and a

concentration of the compound.

5. The method of any one of claims 1-4, wherein each cellular constituent in the plurality of
cellular constituents is a particular gene, a particular mRNA associated with a gene, a

carbohydrate, a lipid, an epigenetic feature, a metabolite, a protein, or a combination thereof.

6 The method of any one of claims 1-4, wherein

each cellular constituent in the plurality of cellular constituents is a particular gene, a
particular mRNA associated with a gene, a carbohydrate, a lipid, an epigenetic feature, a
metabolite, a protein, or a combination thereof, and

the corresponding abundance of the respective cellular constituent in the respective
cell in the first or second plurality of cells is determined by a colorimetric measurement, a
fluorescence measurement, a luminescence measurement, or a resonance energy transfer

(FRET) measurement.

7. The method of any one of claims 1-4, wherein

each cellular constituent in the plurality of cellular constituents is a particular gene, a
particular mRNA associated with a gene, a carbohydrate, a lipid, an epigenetic feature, a
metabolite, a protein, or a combination thereof, and

the corresponding abundance of the respective cellular constituent in the respective
cell in the first or second plurality of cells is determined by single-cell ribonucleic acid
(RNA) sequencing (scRNA-seq), scTag-seq, single-cell assay for transposase-accessible
chromatin using sequencing (scATAC-seq), CyTOF/SCoP, E-MS/Abseq, miRNA-seq, CITE-

seq, or any combination thereof.

8. The method of any one of claims 1-7, wherein using the plurality of vectors to identify

each cellular constituent module in a plurality of cellular constituent modules comprises
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application of a correlation model to the plurality of vectors using each corresponding

plurality of elements of each vector in the plurality of vectors.

9. The method of claim 8, wherein the correlation model includes a graph clustering.

10. The method of claim 9, wherein the graph clustering is Leiden clustering on a Pearson-

correlation-based distance metric.

11. The method of claim 9, wherein the graph clustering is Louvain clustering.

12. The method of any one of claims 1-11, wherein using the plurality of vectors to identify
each cellular constituent module in the plurality of cellular constituent modules comprises a
dictionary learning model that produces the representation of the plurality of cellular

constituents as a plurality of dimension reduction components.

13. The method of claim 12, wherein the dictionary learning model is LO-regularized

autoencoder.

14. The method of any one of claims 1-13, wherein the plurality of cellular constituent

modules consists of between 10 and 2000 cellular constituent modules.

15. The method of any one of claims 1-13, wherein the plurality of cellular constituent

modules consists of between 50 and 500 cellular constituent modules.

16. The method of any one of claims 1-15, wherein the plurality of cellular constituents

consists of between twenty and 10,000 cellular constituents.

17. The method of any one of claims 1-15, wherein the plurality of cellular constituents

consists of between 100 and 8,000 cellular constituents.
18. The method of any one of claims 1-17, wherein each cellular constituent module in the

plurality of constituent modules consists of between two cellular constituents and three

hundred cellular constituents.
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19. The method of any one of claims 1-18, wherein the cellular process of interest is an
aberrant cell process associated with a disease, and the first plurality of cells includes cells
that are representative of the disease and cells that are not representative of the disease as

indicated by the plurality of annotated cell states.

20. The method of any one of claims 1-19, wherein a respective covariate in the plurality of
covariates comprises cell batch and the representation of the respective covariate is a cell

batch identification.

21. The method of any one of claims 1-19, wherein a respective covariate in the plurality of
covariates comprises cell donor and the representation of the respective covariate is an

identification of the cell donor or a characteristic of the cell donor.

22. The method of any one of claims 1-19, wherein a respective covariate in the plurality of
covariates comprises cell type and the representation of the respective covariate is a cell type

identification.

23. The method of any one of claims 1-19, wherein a respective covariate in the plurality of
covariates comprises disease status and the representation of the respective covariate is an

indication of absence or presence of the disease.

24. The method of any one of claims 1-19, wherein a respective covariate in the plurality of
covariates comprises exposure to a compound and the representation of the respective

covariate 18 a fingerprint of the compound.

25. The method of claim 24, the method further comprising generating the fingerprint from a
chemical structure of the compound using Daylight, BCI, ECFP4, EcFC, MDL, TTFP,
UNITY 2D, RNNS2S, GraphConv, fingerprint SMILES Transformer, RNNS2S, or
GraphConv.

26. The method of claim 24 or 25, wherein the representation of the respective covariate

further comprises a duration of time the respective covariate was incubated with the

respective cell.
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27. The method of any one of claims 24-26, wherein the representation of the respective
covariate further comprises a concentration of the respective covariate used to incubate the

respective cell.

28. The method of any one of claims 1-27, wherein the training the model (E) is performed
using a categorical cross-entropy loss in a multi-task formulation, in which each covariate in
the plurality of covariates corresponds to a cost function in plurality of cost functions and
each respective cost function in the plurality of cost functions has a common weighting

factor.

29. The method of any one of claims 1-28, the method further comprising using the identity
of each cellular constituent in a cellular constituent module in the plurality of cellular
constituent modules to associate the cellular constituent module with a known cellular
pathway, a biological process, a transcription factor, a cell receptor, or a kinase using a

contextualization algorithm.

30. The method of claim 29, wherein the contextualization algorithm is a gene set

enrichment analysis algorithm.

31. The method of any one of claims 1-30, the method further comprising, for each
respective cellular constituent module in the plurality of cellular constituent modules, using
the identity of each cellular constituent in the respective cellular constituent module to
associate the respective cellular constituent module with a known cellular pathway, a
biological process, a transcription factor, a cell receptor, or a kinase using a contextualization

algorithm.

32. The method of claim 31, wherein the contextualization algorithm is a gene set

enrichment analysis algorithm.

33. The method of claims 31 or 32, the method further comprising pruning the activation
data structure by removing from the activation data structure one or more cellular constituent
modules that fail to associate with a known cellular pathway, a biological process, a
transcription factor, a cell receptor, or a kinase that is implicated in the cellular process of

interest.
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34. The method of any one of claims 3, 4, or 24-27 wherein the compound is an organic

compound having a molecular weight of less than 2000 Daltons.

35. The method of any one of claims 3, 4, or 24-27, wherein the compound is an organic

compound that satisfies each of the Lipinski rule of five criteria.

36. The method of any one of claims 3, 4, or 24-27, wherein the compound is an organic

compound that satisfies at least three criteria of the Lipinski rule of five criteria.

37. The method of any one of claims 1-13 or 16-36, wherein the plurality of cellular

constituent modules comprises five or more cellular constituent modules.

38. The method of any one of claims 1-13 or 16-36, wherein the plurality of cellular

constituent modules comprises ten or more cellular constituent modules.

39. The method of any one of claims 1-13 or 16-36, wherein the plurality of cellular

constituent modules comprises 100 or more cellular constituent modules.

40. The method of any one of claims 1-39, wherein the independent subset of the plurality of
cellular constituents in the respective cellular constituent module comprises five or more

cellular constituents.

41. The method of any one of claims 1-39, wherein the independent subset of the plurality of
cellular constituents in the respective cellular constituent module consists of between two and
20 cellular constituents in a molecular pathway associated with the cellular process of

interest.

42. The method of any one of claims 1-7 or 14-41, wherein the model is a regressor.

43. The method of any one of claims 1-7 or 14-41, wherein the model is a logistic regression
model, a neural network model, a support vector machine model, a Naive Bayes model, a

nearest neighbor model, a boosted trees model, a random forest model, a decision tree model,

a multinomial logistic regression model, a linear model, or a linear regression model.
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44. The method of any one of claims 1-43, wherein each respective covariate parameter in
the plurality of covariate parameters represents a different covariate in the plurality of

covariates.

45. The method of any one of claims 1-44, wherein more than one covariate parameter in the

plurality of covariate parameters represents a common covariate in the plurality of covariates.

46. The method of any one of claims 1-45, wherein a corresponding abundance of the

respective cellular constituent in the respective cell is determined using a cell-based assay.

47. The method of any one of claims 1-46, wherein the first plurality of cells or the second

plurality of cells comprises or consists of cells from an organ.

48. The method of claim 47, wherein the organ is heart, liver, lung, muscle, brain, pancreas,

spleen, kidney, small intestine, uterus, or bladder.

49. The method of any one of claims 1-46, wherein the first plurality of cells or the second

plurality of cells comprises or consists of cells from a tissue.

50. The method of claim 49, wherein the tissue is bone, cartilage, joint, tracheae, spinal cord,

cornea, eye, skin, or blood vessel.

51. The method of any one of claims 1-46, wherein the first plurality of cells or the second

plurality of cells comprises or consists of a plurality of stem cells.

52. The method of claim 51, wherein the plurality of stem cells is a plurality of embryonic
stem cells, a plurality of adult stem cells, or a plurality of induced pluripotent stem cells

(iPSC).

53. The method of any one of claims 1-46, wherein the first plurality of cells or the second

plurality of cells comprises or consists of a plurality of primary human cells.

54. The method of claim 53, wherein the plurality of primary human cells are a plurality of
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CD34+ cells, a plurality of CD34+ hematopoietic stems, a plurality of progenitor cells
(HSPC), a plurality of T-cells, a plurality of mesenchymal stem cells (MSC), a plurality of

airway basal stem cells, or a plurality of induced pluripotent stem cells.

55. The method of any one of claims 1-46, wherein the first plurality of cells or the second

plurality of cells comprises or consists of a plurality of human cell lines.

56. The method of any one of claims 1-46, wherein the first plurality of cells or the second
plurality of cells comprises or consists of cells from umbilical cord blood, from peripheral

blood, or from bone marrow.

57. The method of any one of claims 1-46, wherein the first plurality of cells or the second

plurality of cells comprises or consists of cells in or from a solid tissue.

58. The method claim 57, wherein the solid tissue is placenta, liver, heart, brain,

kidney, or gastrointestinal tract.

59. The method of any one of claims 1-46, wherein the first plurality of cells or the second

plurality of cells comprises or consists of a plurality of differentiated cells.

60. The method of claim 59, wherein the plurality of differentiated cells is a plurality of
megakaryocytes, a plurality of osteoblasts, a plurality of chondrocytes, a plurality of
adipocytes, a plurality of hepatocytes, a plurality of hepatic mesothelial cells, a plurality of
biliary epithelial cells, a plurality of hepatic stellate cells, a plurality of hepatic sinusoid
endothelial cells, a plurality of Kupffer cells, a plurality of pit cells, a plurality of vascular
endothelial cells, a plurality of pancreatic duct epithelial cells, a plurality of pancreatic duct
cells, a plurality of centroacinous cells, a plurality of acinar cells, a plurality of islets of
Langerhans, a plurality of cardiac muscle cells, a plurality of fibroblasts, a plurality of
keratinocytes, a plurality of smooth muscle cells, a plurality of type I alveolar epithelial cells
a plurality of type II alveolar epithelial cells, a plurality of Clara cells, a plurality of ciliated
epithelial cells, a plurality of basal cells, a plurality of goblet cells, a plurality of
neuroendocrine cells, a plurality of kultschitzky cells, a plurality of renal tubular epithelial
cells, a plurality of urothelial cells, a plurality of columnar epithelial cells, a plurality of

glomerular epithelial cells, a plurality of glomerular endothelial cells, a plurality of
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podocytes, a plurality of mesangium cells, a plurality of nerve cells, a plurality of astrocytes,

a plurality of microglia, or a plurality of oligodendrocytes.

61. The method of claim 2, wherein the set of cellular constituents consists of between 2 and
20 cellular constituents in the plurality of cellular constituent and the one or more cellular

constituent modules consists of a single cellular constituent module.

62. The method of claim 2, wherein the set of cellular constituents consists of between 2 and
100 cellular constituents in the plurality of cellular constituent and the one or more cellular

constituent modules comprises two or more cellular constituent modules.

63. The method of claim 2, wherein the set of cellular constituents consists of between 2 and
1000 cellular constituents in the plurality of cellular constituent and the one or more cellular

constituent modules comprises five or more cellular constituent modules.

64. The method of any one of claims 1-63, wherein the model is an ensemble model
comprising a plurality of component models, and wherein each respective component model
in the plurality of component models provides a calculated activation for a different cellular
constituent module in the plurality of cellular constituent modules responsive to inputting the

representation of the respective covariate into the respective component model.

65. The method of claim 64, wherein the ensemble model includes a different component

model for each cellular constituent module in the plurality of cellular constituent modules.

66. The method of claim 64, wherein a component model in the plurality of component
models is a logistic regression model, a neural network model, a support vector machine
model, a Naive Bayes model, a nearest neighbor model, a boosted trees model, a random
forest model, a decision tree model, a multinomial logistic regression model, a linear model,

or a linear regression model.
67. A computer system, comprising one or more processors and memory, the memory

storing instructions for performing a method for training a model to identify a set of cellular

constituents associated with a cellular process of interest, the method comprising:
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(A) obtaining one or more first datasets in electronic form, the one or more first
datasets individually or collectively comprising:

for each respective cell in a first plurality of cells, wherein the first plurality of
cells comprises twenty or more cells and collectively represents a plurality of
annotated cell states:
for each respective cellular constituent in a plurality of cellular
constituents, wherein the plurality of cellular constituents comprises 50 or
more cellular constituents:
a corresponding abundance of the respective cellular
constituent in the respective cell,

thereby accessing or forming a plurality of vectors, each respective vector in the
plurality of vectors (i) corresponding to a respective cellular constituent in the plurality of
constituents and (i1) comprising a corresponding plurality of elements, each respective
element in the corresponding plurality of elements having a corresponding count representing
the corresponding abundance of the respective cellular constituent in a respective cell in the
first plurality of cells;

(B) using the plurality of vectors to identify each respective cellular constituent
module in a plurality of cellular constituent modules, each respective cellular constituent
module in the plurality of cellular constituent modules including an independent subset of the
plurality of cellular constituents, wherein the plurality of cellular constituent modules are
arranged in a latent representation dimensioned by (i) the plurality of cellular constituent
modules and (i1) the plurality of cellular constituents or a representation thereof, and wherein
the plurality of cellular constituent modules comprises more than ten cellular constituent
modules;

(C) obtaining one or more second datasets in electronic form, the one or more second
datasets individually or collectively comprising:

for each respective cell in a second plurality of cells, wherein the second plurality of
cells comprises twenty or more cells and collectively represents a plurality of covariates
associated with the cellular process of interest:

for each respective cellular constituent in the plurality of cellular constituents:
a corresponding abundance of the respective cellular

constituent in the respective cell,
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thereby obtaining a cellular constituent count data structure dimensioned by (i) the
second plurality of cells and (i1) the plurality of cellular constituents or the representation
thereof;

(D) forming an activation data structure by combining the cellular constituent count
data structure and the latent representation using the plurality of cellular constituents or the
representation thereof as a common dimension, wherein the activation data structure
comprises, for each cellular constituent module in the plurality of cellular constituent
modules:

for each cell in the second plurality of cells, a respective activation weight; and

(E) training the model using, for each respective covariate in the plurality of
covariates, a difference between (1) a calculated activation against each cellular constituent
module represented by the model upon input of a representation of the respective covariate
into the model and (i) actual activation against each cellular constituent module represented
by the model, wherein the training adjusts a plurality of covariate parameters associated with
the model responsive to the difference, wherein each respective covariate parameter in the

plurality of covariate parameters represents a covariate in the plurality of covariates.

68. The computer system of claim 67, wherein the plurality of covariate parameters
comprises, for each respective cellular constituent module in the plurality of cellular
constituent modules, for each respective covariate, a corresponding parameter indicating
whether the respective covariate correlates, across the second plurality of cells, with the
respective cellular constituent module, and wherein the method further comprises:

(F) identifying, using the plurality of covariate weights upon training the model, one
or more cellular constituent modules in the plurality of cellular constituent modules that is
associated with one or more covariates in the plurality of covariates, thereby associating each
cellular constituent in the set of plurality of cellular constituents, from among the cellular
constituents in the identified one or more cellular constituent modules, with the cellular

process of interest.

69. A non-transitory computer-readable medium storing one or more computer programs,
executable by a computer, a method for training a model to identify a set of cellular

constituents associated with a cellular process of interest, the computer comprising one or
more processors and a memory, the one or more computer programs collectively encoding

computer executable instructions that perform a method comprising:
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(A) obtaining one or more first datasets in electronic form, the one or more first
datasets individually or collectively comprising:

for each respective cell in a first plurality of cells, wherein the first plurality of
cells comprises twenty or more cells and collectively represents a plurality of
annotated cell states:
for each respective cellular constituent in a plurality of cellular
constituents, wherein the plurality of cellular constituents comprises 50 or
more cellular constituents:
a corresponding abundance of the respective cellular
constituent in the respective cell,

thereby accessing or forming a plurality of vectors, each respective vector in the
plurality of vectors (i) corresponding to a respective cellular constituent in the plurality of
constituents and (i1) comprising a corresponding plurality of elements, each respective
element in the corresponding plurality of elements having a corresponding count representing
the corresponding abundance of the respective cellular constituent in a respective cell in the
first plurality of cells;

(B) using the plurality of vectors to identify each respective cellular constituent
module in a plurality of cellular constituent modules, each respective cellular constituent
module in the plurality of cellular constituent modules including an independent subset of the
plurality of cellular constituents, wherein the plurality of cellular constituent modules are
arranged in a latent representation dimensioned by (i) the plurality of cellular constituent
modules and (i1) the plurality of cellular constituents or a representation thereof, and wherein
the plurality of cellular constituent modules comprises more than ten cellular constituent
modules;

(C) obtaining one or more second datasets in electronic form, the one or more second
datasets individually or collectively comprising:

for each respective cell in a second plurality of cells, wherein the second plurality of
cells comprises twenty or more cells and collectively represents a plurality of covariates
associated with the cellular process of interest:

for each respective cellular constituent in the plurality of cellular constituents:
a corresponding abundance of the respective cellular

constituent in the respective cell,
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thereby obtaining a cellular constituent count data structure dimensioned by (i) the
second plurality of cells and (i1) the plurality of cellular constituents or the representation
thereof;

(D) forming an activation data structure by combining the cellular constituent count
data structure and the latent representation using the plurality of cellular constituents or the
representation thereof as a common dimension, wherein the activation data structure
comprises, for each cellular constituent module in the plurality of cellular constituent
modules:

for each cell in the second plurality of cells, a respective activation weight; and

(E) training the model using, for each respective covariate in the plurality of
covariates, a difference between (1) a calculated activation against each cellular constituent
module represented by the model upon input of a representation of the respective covariate
into the model and (i) actual activation against each cellular constituent module represented
by the model, wherein the training adjusts a plurality of covariate parameters associated with
the model responsive to the difference, wherein each respective covariate parameter in the

plurality of covariate parameters represents a covariate in the plurality of covariates.

70. The non-transitory computer-readable medium of claim 69, wherein the plurality of
covariate parameters comprises, for each respective cellular constituent module in the
plurality of cellular constituent modules, for each respective covariate, a corresponding
parameter indicating whether the respective covariate correlates, across the second plurality
of cells, with the respective cellular constituent module, and wherein the method further
comprises:

(F) identifying, using the plurality of covariate weights upon training the model, one
or more cellular constituent modules in the plurality of cellular constituent modules that is
associated with one or more covariates in the plurality of covariates, thereby associating each
cellular constituent in the set of plurality of cellular constituents, from among the cellular
constituents in the identified one or more cellular constituent modules, with the cellular

process of interest.
71. A method of associating a plurality of cellular constituents with a cellular process of

interest, the method comprising:

at a computer system comprising a memory and one or more processors:
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(A) obtaining one or more first datasets in electronic form, the one or more first
datasets individually or collectively comprising:

for each respective cell in a first plurality of cells, wherein the first plurality of
cells comprises twenty or more cells and collectively represents a plurality of
annotated cell states:
for each respective cellular constituent in a plurality of cellular
constituents, wherein the plurality of cellular constituents comprises 50 or
more cellular constituents:
a corresponding abundance of the respective cellular
constituent in the respective cell,

thereby accessing or forming a plurality of vectors, each respective vector in the
plurality of vectors (i) corresponding to a respective cellular constituent in the plurality of
constituents and (i1) comprising a corresponding plurality of elements, each respective
element in the corresponding plurality of elements having a corresponding count representing
the corresponding abundance of the respective cellular constituent in a respective cell in the
first plurality of cells;

(B) using the plurality of vectors to identify each cellular constituent module in a
plurality of cellular constituent modules, each cellular constituent module in the plurality of
cellular constituent modules including a subset of the plurality of cellular constituents, and
wherein the plurality of cellular constituent modules comprises more than ten cellular
constituent modules;

(C) for each respective cellular constituent module in the plurality of cellular
constituent modules, using the identity of each cellular constituent in the respective cellular
constituent module to associate the respective cellular constituent module with a known
cellular pathway, a biological process, a transcription factor, a cell receptor, or a kinase using
a contextualization algorithm; and

(D) pruning the activation data structure by removing from the activation data
structure one or more cellular constituent modules that fail to associate with a known cellular
pathway, a biological process, a transcription factor, a cell receptor, or a kinase that is
implicated in the cellular process of interest thereby identifying one or more cellular
constituent modules in the plurality of cellular constituent modules that is associated with the
cellular process of interest and, from the one or more cellular constituent modules, the

plurality of cellular constituents associated with the cellular process of interest.
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72. The method of claim 71, wherein the contextualization algorithm is a gene set

enrichment analysis algorithm.
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00 A method of associating a plurality of cellular constituents with a cellular

o process of interest.

/—-202
Obtain one or more first datasets comprising or collectively comprising, for each
respective cell in a first plurality of cells, for each respective cellular constituent (112)
in a plurality of cellular constituents, a corresponding abundance of the respective
cellular constituent in the respective cell. The first plurality of cells comprises twenty
or more cells and collectively represents a plurality of annotated cell states (116).
The plurality of cellular constituents comprises 50 or more cellular constituents.

* /—204

Access or form a plurality of vectors (110). Each respective vector in the plurality of
vectors (i) corresponds to a respective cellular constituent in the plurality of
constituents and (ii) comprises a corresponding plurality of elements. Each
respective element in the corresponding plurality of elements has a corresponding
count (114) representing the corresponding abundance of the respective cellular
constituent in a respective cell in the first plurality of cells.

+ —206

Use the plurality of vectors to identify each cellular constituent module (120) in a
plurality of cellular constituent modules. Each cellular constituent module in the
plurality of cellular constituent modules includes a subset of the plurality of cellular
constituents. The plurality of cellular constituent modules are arranged in a latent
representation (118) dimensioned by (i) the plurality of cellular constituent modules
and (ii) the plurality of cellular constituents or a representation thereof. The plurality
of cellular constituent modules comprises more than ten cellular constituent

modules.
* /—-208

Obtain one or more second datasets comprising or collectively comprising, for each
respective cell in a second plurality of cells, for each respective cellular constituent
in the plurality of cellular constituents, a corresponding abundance (164) of the
respective cellular constituent in the respective cell, thereby obtaining a cellular
constituent count data structure (160) dimensioned by (i) the second plurality of cells
and (ii) the plurality of cellular constituents or the representation thereof (162). The
second plurality of cells comprises twenty or more cells and collectively represents a
plurality of covariates possibly informative of the cellular process of interest (166).

Figure 2A
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210
~

Form an activation data structure (170) by combining the cellular constituent count
data structure (160) and the latent representation (118) using the plurality of cellular
constituents or the representation thereof as a common dimension. The activation
data structure comprises, for each cellular constituent module (172) in the plurality of
cellular constituent modules, for each cell in the second plurality of cells, a
respective activation weight (174).

* /—212

Train a model using, for each respective covariate in the plurality of covariates, a
difference between (i) a calculated activation against each cellular constituent
module represented by the model upon input of a representation of the respective
covariate into the model and (ii) actual activation against each cellular constituent
module represented by the model, wherein the training adjusts a plurality of
covariate parameters associated with the model responsive to the difference,
wherein each respective covariate parameter in the plurality of covariate parameters
represents a covariate in the plurality of covariates.

* 214

Identify, using the plurality of covariate weights upon training the model, one or more
cellular constituent modules in the plurality of cellular constituent modules that is
associated with one or more covariates in the plurality of covariates, thereby
associating a plurality of cellular constituents with the cellular process of interest.

Figure 2B
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300 A method of associating a plurality of cellular constituents with a cellular
process of interest.

/—302
Obtain one or more first datasets comprising or collectively comprising, for each
respective cell in a first plurality of cells, for each respective cellular constituent (112)
in a plurality of cellular constituents, a corresponding abundance of the respective
cellular constituent in the respective cell. The first plurality of cells comprises twenty
or more cells and collectively represents a plurality of annotated cell states (116).
The plurality of cellular constituents comprises 50 or more cellular constituents.

+ /-304

Access or form a plurality of vectors (110). Each respective vector in the pIuraIit§/ of
vectors (i) corresponds to a respective cellular constituent in the plurality of
constituents and (ii) comprises a corresponding plurality of elements. Each
respective element in the corresponding plurality of elements has a corresponding
count (114) representing the corresponding abundance of the respective cellular
constituent in a respective cell in the first plurality of cells.

* _—306

Use the plurality of vectors to identify each cellular constituent module (126) in a
plurality of cellular constituent modules. Each cellular constituent module in the
plurality of cellular constituent modules includes a subset of the plurality of cellular
constituents. The plurality of cellular constituent modules comprises more than ten
cellular constituent modules.

* /—-308

Use, for each respective cellular constituent module in the plurality of cellular
constituent modules, the identity of each cellular constituent in the respective cellular
constituent module to associate the respective cellular constituent module with a
known cellular pathway, a biological process, a transcription factor, a cell receptor,
or a kinase (128, 130) using a contextualization algorithm.

* /-310

Prune the activation data structure by removing from the activation data structure
one or more cellular constituent modules that fail to associate with a known cellular
pathway, a biological process, a transcription factor, a cell receptor, or a kinase that
is implicated in the cellular process of interest, thereby identifying one or more
cellular constituent modules in the plurality of cellular constituent modules that is
associated with the cellular process of interest and, from the one or more cellular
constituent modules, the plurality of cellular constituents associated with the cellular
process of interest.

Figure 3
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