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The United States Patent Office (USPTO) has pu'blished a notice‘to the
effect that the USPTQO’s computer programs require that patent applicants reference
both a serial number and indicate whether an application is a continuation or )
continuation in part. Stephen G. Kunin, Benefit of Prior-Filed Application, USPTO
Electronic Official Gazette, March 18, 2003 at-

httn://www.usoto.gov/web/ofﬁces/com/sol/og/2003/weok] 1/patbeneitm. The present

applicant entity has provided a specific reference to the application(s) from which
priority is being claimed as recited by statute, Applicant entity understands that the
statute is unambiguous in its specific reference language and does not require either a
serial number or any characterization such as “continuation” or “continuation-in-part.”
Notwithstanding the foregoing, applicant entity understands that the USPTO’s computer
programs have certain data entry requirements, and hence applicant entity is designating
the present application as a continuation in part of its parent applications, but expressly
points out that such designations are not to be construed in any way as any type of
commentary and/or admission as to whether or not the present application contains any

new matter in addition to the matter of its parent application(s).

Summary
An embodiment provides a system The system includes a synchronous

circuit. The synchronous circuit includes a first subcircuit powered by a first power
plane having a first power plane voltage and a'second subcircuit powered by a second
power plane having a second power plane voltage. - The system also includes an error
detector operable to detect an incidence of a computational error occurring in the first
subcircuit. The system further includes a controller operable to change the first power
plane voltage based upon the detected incidence of a computational error. The system

may include a power supply operable to provide a selected one of at least two voltages

“to the first power plane in response to the controller. The system may include.a power

supply configured to electrically engage a portable power source and operable to

provide a selected one of at least two voltages to the first power plane in response to the
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controller. In addition to the foregoing, other system embodiments are described in the
claims, drawings, and text that form a part of the present application.

Another efnbodiment provides a method. The method includes detecting
a computational error occurring in a first subcircuit of a synchronous circuit. The
synchronous circuit includes the first sv..xbcircuit powered by a first power plane at a first
power plane voltage and a second subcircuit powered by a second power plane at a
second power plane voltage. The method also includes increasing the first power plane
voltage based upon the detected computational error. The method may further include
operating the first subcircuit at a first power plane voltage. In addition to the foregoing,
other method embodiments are described in the claims,‘drawings, and text that form a
part of the present application.

A further embodiment provides a device. The device includes means for
detecting a computational error occurring in a first subcircuit of a synchronous circuit.
The subcircuit includes the first subcircuit powered by a first power plane at a first
power plane voltage and a second subcircuit powered by a second power plane at a
second power plane voltage. The device also includes means for increasing the first
power plane voltage based upon the detected computational error. The device may
include means for operating the first subcircuit at an initial first power plané voltage.
The device may also include means for decreasing the first power plane voltage. In
addition to the foregoing, other device embodiments are described in the claims,
drawings, and text that form a part of the present application.

An embodiment provides an apparatus. The apparatus includes a
synchronous circuit including a first subcircuit powered by a first power plane having a
first power plane voltage and a second subcircuit powered by a second power plane
having a second power plane voltage. The apparatus also includes an error detector
operable to detect an incidence of a computational error occurring in the first subcircuit,
The apparatus includes a controller operable to change the first power plane voltage
based upon the detected 'incidence of a computational error. The apparatus also
includes a power supply configured to electrically couple with a portable power source

and operable to provide a selected one of at least two voltages to the first power plane in

5



WO 2007/089660 PCT/US2007/002296

10

15

20

25

response to the controller. In addition to the foregoing, other apparatus embodiments
are described in the claims, drawings, and text thal form a part of the present
application.

Another embodiment provides a‘method. The method includes
decreasing a voltage received at a first power plane from a power supply that includes a
portable energy source. The first power plane being a component of a synchronous
circuit that includes a first subcircuit powered by the first power plane and a second
subcircuit powered by a second power plane having a second power plane voltage. The
method also includes detecting an incidence of a computational error occurring in the
first subcircuit. The method further includes increasing the \./oltage received at the first
power plane from the power supply that includes a portable energy source in response
to the detected computational error. In addition to the foregoing, other method -
embodiments are described in the claims, drawings, and text that form a part of the
present application.

A further embodiment provides an apparatus. The apparatus includes
means for decreasing a voltage received at a first power plane from a power supply that -
includes a portable energy source. The first power plane being a component of a
synchronous circuit that includes a first subcirc-uit powered by the first power plane and
a second subcircuit powered by a second power plane having a second power plane
voltage. The apparatus also includes means for detecting an incidence of a
computational error occurring in the first subcircuit. The apparatus includes means for
increasing in response to the detected computational error the voltage received at the
first power plane from the power supply that includes a portable energy source. In
addition to the foregoing, other apparatus embodiments are described in the claims,
drawings, and text that form a part of the present application.

The foregoing summary is illustrative only and is not intended to be'in
any way limiting. In addition to the illustrative aspects, embodiments, and features
described above, further aspects, embodiments, and features will become apparent by

reference to the drawings and the following detailed description.
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Brief Description of the Drawings

FIG. 1 illustrates a partial view of an exemplary device in which
embodiments may be implemented;

FIG. 2 illustrates a partial view of an exemplary device in which
embodiments may be implemented;

FIG. 3 partially illustrates an association between optimization
information and a program and/or data;

FIG. 4 illustrates an-exemplary operational flow in which embodiments
may be implemented;

F1G. 5 illustrates an alternative embodiment of the exemplary
operational flow of FIG. 4; _

FIG. 6 illustrates another alternative embodiment of the exemplary
operational flow of FIG. 4; )

FIG. 7 illustrates a partial view of an exemplary device in which
embodiments may be implemented;

FIG. 8 illustrates a partial view of an exemplary device in which
embodiments may be implemented; '

FI1G. 9 illustrates an exemplary operational flow implemented in a
hardware device and in which embodiments may be implemented;:

FIG. 10 illustrates an alternative embodiment of the exemplary
operational flow of FIG. 9; l

FIG. 11 illustrates another alternative embodiment of the exemplary
operational flow of FIG. 9; .

FIG. 12 illustrates a further alternative embodiment of the exemplary
operational flow of FIGS. 9 and 11;

FIG. 13 illustrates an alternati\;e embodiment of the exemplary
operational flow of FIGS.9and 11;

FIG. 14 illustrates another alternative embodiment of the exemplary
operational flow of FIGS. 9 and 11;
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FIG. 15 illustrates another alternative. embodiment of the excmplarif
operational flow of FIG. 9,

FIG. 16 illustrates a partial view of an exemplary device in which
embodiments may be implemented;

FIG. 17 illustrates a partial view of an exemplary device in which
embodiments may be implemented;

FIG. 18 illustrates an exemplary operational flow that may implement
embodiments; ’

FIG. 19 illustrates an alternative embodiment of the exemplary
operational flow of FIG. 18;

FIG. 20 illustrates an alternative embodiment of the exemplary -
operational flow of FIG. 18;

FIG. 21 illustrates an alternative embodiment of the exemplary
operational flow of FIG, 18;

FIG. 22 illustrates a partial view of an exemplary device in which
embodiments may be implemented;

FIG. 23 illustrates a partial view of an exemplary computing
environment that includes a computer processor-error controller in which embodiments
may be implemented;

FIG. 24 illustrates a partial view of an exemplary computerized device
1200 in which embodiments may be implemented;

FIG. 25 illustrates an exemplary operational flow that may implement
embodiments;

FIG. 26 illustrates another embodiment of the exemplary operational
flow of FIG. 25;

_ FIG. 27 illustrates another embodiment of the exemplary operational
flow of FIG. 25;

F1G. 28 illustrates another embodiment of the exemplary operational

flow of FIG. 25;
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FIG. 29 illustrates a partial view of an exemplary device in which

embodiments may be implemented;
- FIG. 30 illustrates a partial view of a controller apparatus in which

embodiments may be implemented;

FIG. 31 includes a graphical illustration of an anticipated perfbxmancc of
a processor in which embodiments may be implemented;

| FIG. 32 illustrates a partial view of a computerized apparatus in which

embodiments may be implemented,

F1G. 33 illustrates an exemplary operatiénal flow that may implement
embodiments;

F1G. 34 illustrates an alternative embodiment of the exemplary
operational flow of FIG. 33;

Fi1G. 35 illustrates an alternative embodiment of'the exemplary
operational flow of FIG. 33;

FIG. 36 illustrates a partial view of a computerized apparatus in which
embodiments may be implemented;

FIG. 37 illustrates a partial view of a computing system in which
embodiments may be implemented;

FIG. 38 illustrates an exemplary operational flow i_mplerﬁented ina
computerized system,;

FIG. 39 illustrates an alternative embodiment of the exemplary-
operational flow of FIG, 38;

FIG. 40 illustrates another alternative embodiment of the exemplary
operational flow of FIG. 38;

FIG. 41 illustrates another alternative embodiment of the exemplary
operational flow of FIG. 38;

FIG. 42 illustrates another alternative embodiment of the exemplary
operational flow of FIG. 38;

FIG. 43 illustrates an exemplary device in which embodiments may be

implemented;
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FIG. 44 il]uétrates an exemplary system that includes synchronous circuit
having at least two subcircuit blocks in which embodiments may be implemented;

FIG. 45 illustrates an exemplary system that includes a portion of a
synchronous circuit having at least two circuit blocks in which embodiments may be
irﬁplemented;

FIG. 46 illustrates an exemplary system that includes a synchronous
multicore circuit having at least two subcircuit blocks in which embodiments may be
implemented;
| FIG. 47 illustrates an exemplary operational flow;

F1G. 48. illustrates an alternative embodiment of the exemplary
operational flow of FIG. 47; .

FIG. 49 illustrates another alternative embodiment of the exemplary
operational flow of FIG. 47,

FIG. 50 illustrates a further alternative embodiment of the exemplary
operational flow of FI1G. 47,

FIG. 51 illustrates a partial view of an exemplary device in which
embodiments may be implemented; '

FIG. 52 illustrates a partial view of an exemplary environment in which
embodiments may be implemented,;

FIG. 53 illustrates an exemplary system in which embodiments may be
implemented;

FIG. 54 illustrates an exemplary operational flow;

FIG. 55 illustrates an alternative embodiment of the exemplary
operational flow of FIG. 54;

FIG. 56 illustrates an alternative embodiment of the exemplary
operational flow of FIG. 54;

FIG. 57 illustrates an alternative embodiment of the exemplary
operational flow of FIG. 54;

FIG. 58 illustrates an alternative embodiment of the exemplary

operational flow of FIG. 54; and
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FIG. 59 illustrates an exemplary apparatus in which embodiments may

be implemented.

Detailed Description

In the following detailed description, reference is made to the

" accompanying drawings, which form a part hereof. In the drawings, similar symbols

typically identify similar components, unless context dictates otherwise. The illustrated
embodiments described in the detailed description, drawings, and claims are not meant

to be limiting. Other embodiments may be utilized, and other changes may be made,

~ without departing from the spirit or scope of the subject matter presented here.

FIG. 1 illustrates an exemplary general-purpose computing system in
which embodiments may be implemented, shown as a computing system environment
100. Components of the computing system environment 100 may include, but are not
limited to, a computing device 110 having a processing unit 120, a system memory 130,
and a system bus 121 that couples various system components including the system
memory to the processing unit 120. The system bus 121 may be any of several types of
bus structures including a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. By way of example, and not
limitation, such architectures include Induétry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral Component Intercbnnect (PCID)
bus, also known as Mezzanine bus. '

The computing system environment 100 typically includes a variety of
computer-readable media products. Computer-readable media may include any media
that can be accessed by the computing device 110 and include both volatile and
nonvolatile media, removable and non-removable media. By way of example, and not
of limitation, computer-readable media may include computer storage media and
communications media. Computer storage media includes volatile and nonvolatile,
remévable and non-removable media implemented in any method or technology for

storage of information such as computer-readable instructions, data structures, program
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modules, or other data. Computer storage media include, but are not limited to,
random-access memory (RAM), read-only memory (ROM), electrically erasable
programmable read-only memory (EEPROM), flash memory, or other memory
technology, CD-ROM, digital versatile disks (DVD), or other optical disk storage,
magnetic cassettes, magnetic tape, magnetic disk storage, or other magnetic storage
devices, or any other medium which can be used to store the desired information and
which can be accessed by the computing device 110. Communications media typically
embody computer-readable instructions, data structures, program modules, or other data
in a modulated data signal such as a carrier wave or other transport mechanism and
include any information delivery media. The term "modulated data signal" means a
signal that has one or more of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and not limitation,
communications media include wired media such as a wired network and a direct-wired
connection and wireless media such as acoustic, RF, optical, and infrared media.
Combinations of any of the above should also be included within the scope of
computer-readable media.

The system memory 130 includes computer storage media in the form of
volatile and nonvolatile memory such as ROM 131 and RAM 132. A basic input/output
system (BIOS) 133, containing the basic routines that help to transfer information
between elements within the computing device 110, such as during start-up, is typically
stored in ROM 131. RAM 132 typically contains data and program modules that are
immediately accessible to or presently being operated on by processing unit 120. By
way of example, and not limitation, F1G. 1 illustrates an operating system 134,
application programs 135, other program modules 136, and program data 137. Often,
the operating system 134 offers services to applications programs 135 by way of one or
more application programming interfaces (APIs) (not shown). Because the operating
system 134 incorporates these services, developers of applications programs 135 need
not redevelop code to use the services. Examples of APIs provided by operating
systems such as Microsoft's "WINDOWS" are well known in the art. In an

embodiment, an information store may include a computer storage media.
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The computing device 110 may also includé other removable/non-
removable, volatile/nonvolatile computer storage media products. By way of example
only, FIG. 1 illustrates a non-removable non-volatile memory interface (hard disk
interface) 140 that reads from and writes to non-removable, non-volatile magnetic
media, a magnetic disk drive 151 that reads from and writes to a removable, non-
volatile magnetic disk 152, and an optical disk drive 155 that reads from and writes to a
removable, non-volatile optical disk 156 such as a CD ROM. Other
removable/nonremovable, volatile/non-volatile computer storage media that can be used
in the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, DVDs, digital video tape, solid state RAM, and solid
state ROM. The hard disk drive 141 is typically connected to the system bus 121
through a non-removable memory interface, such as the interface 140, and magnetic
disk drive 151 and optical disk drive 155 are typically connected to the system bus 121
by a removable non-volatile memory interface, such as interface 150.

The drives and their associated computer storage media discussed above
and illustrated in FIG. 1 provide storage of computer-readable instructions, data -
structures, program modules, and other data for the computing device 110. In FIG. 1,
for example, hard disk drive 141, is illustrated as storing an operating system 144,
application programs 145, other program modules 146, and program data 147. Note
that these components can either be the same as or different from the operating system
134, application programs 1335, other program modules 136, and program data 137. The
operating system 144, application programs 145, other program modules 146, and
program data 147 are given different numbers here to illustrate that, at a minimum, they
are different copies. A user may enter commands and information into the computing
device 110 through input devices such as a microphone 163, keyboard 162, and
pointing device 161, commonly referred to as a mouse, trackball, or touch pad. Other
input devices (not shown) may include a joystick, game pad, satellite dish, and scanner.
These and other input devices are often connected to the processing unit 120 through a
user input interface 160 that is coupled to the system bus, but may be connected by

other interface and bus structures, such as a parallel port, game port, or a universal serial
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bus (USB). A monitor 191 or other type of display device is also connected to the
system bus 121 via an interface, such as a video interface 190. In addition to the
monitor, computers may also include other peripheral output devices such as speakers
197 and printer 196, which may be connected through an output peripheral interface
195.

The computing system environment 100 may operate in a networked
environment using logical connections to one or more remote computers, such as a
remote computer 180. The remote computer 180 may be a personal computer, a server,
a router, a network PC, a peer device, or other common network node, and typically
includes many or all of the elements described above relative to the computing device
110, although only a memory storage device 181 has been illustrated in FIG. 1. The
logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a
wide area network (WAN) 173, but may also include other networks such as a personal ~
area network (PAN) (not shown). Such networking environments are commonplace in
offices, enterprise-wide computer networks, intranets, and the Internet.

When used in a LAN networking environment, tﬁe computing system
environment 100 is connected to the LAN 171 through a network interface or adapter
170. When used in a WAN networking environment, the computing device 110
typically includes a modem 172 or other means for establishing communications over
the WAN 173, such as the Internet. The modem 172, which may be internal or external,
may be connected to the system bus 121 via the user input interface 160, or via another
appropriate mechanism. In a networked environment, program modules depicted
relative to the computing device 110, or portions thereof, may be stored in a remote
memory storage device. By way of example, and not limitation, FIG. 1 illustrates
remote application programs 185 as residing on computer storage medium 181. It will
be appreciated that the network connections shown are exemplary and other means of
establishing a communications link between the computers may be used.

FIG. 1 is intended to provide a brief, general description of an illustrative
and/or suitable exemplary environment in which embodiments may be implemented.

An exemplary system may include the computing system environment 100 of FIG. 1.
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FIG. 1 is an example of a suitable environment and is not intended to suggest any
limitation as to the structure, scope of use, or functionality of an embodiment. A
particular environment should not be interpreted as having any dependency or
requirernent relating to any one or combination of components illustrated in an
exemplary operating environment. For example, in certain instances, one or more
elements of an environment may be deemed not necessary and omitted. In other
instances, 6ne or more other elements may be deemed necessary and added.

In the description that follows, c;ertain embodiments may be described
with reference to acts and symbolic representations of operations that are performed by
one or more computing devices, such as the computing device 110 of FIG. 1. As such,
it will be understood that such acts and operations, which are at times referred to as
being computer-executed, include the manipulation by the processing unit of %Lhe )
computer of electrical signals representing data in a structured form. This manipulation
transforms the data or maintains them at locations in the memory system of the
computer, which reconfigures or otherwise alters the operation of the computer in a
manner well understood by those skilled in the art. The data structures in which data is
maintained are physical locations of the memory that have particular properties defined
by the format of the data. However, while an embodiment is being described in the
foregoing context, it is not meant to be limiting as those of skill in the art will appreciate
that the acts and operations described hereinafter may also be implemented in hardware.

Embodiments may be implemented with numerous other general-
purpose or special-purpose computing devices and computing system environments or
configurations. Examples of well-known computing systems, environments, and
configurations that may be suitable for use with an embodiment include, but are not
limited to, personal computers, handheld or laptop devices, personal digital assistants,
multiprocessor systems, microprocessor-based systems, set top boxes, programmable
consumer electronics, network, minicomputers, server computers, game server
computers, web server computers, mainframe Coi'nputeré, and distributed computing

environments that include any of the above systems or devices.
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Embodiments may be described in a general context of computer-
executable instructions, such as program modules, being executed by a computer.
Generally, program modules include routines, programs, objects, components, data
structures, etc., that perform particular tasks or implement particular abstract data types.
An embodiment may also be practiced in a distributed computing environment where
tasks are performed by remote processing devices that are linked through a
communications network. In a distributed computing environment, program modules
may be located in both local and remote computer storage media including memory
storage devices.

FIG. 2 illustrates a partial view of an e;emplary device 200 in which
embodiments may be implemented. The device includes a processor 210, an execution-
optimization synthesizer 230, and a communications link 240 exposed to the execution-
optimization synthesizer and to the processor. The processor may include any
processing unit, and may be described as a central processing unit that controls
operation of a computer, such as for example, the processing unit 120 described in
conjunction with FIG. 1. The device may also include a hardware resource 220
interconnected with the processor. The hardware resource may be any hardware
resource associated and/or interconnected with the processor. In an embodiment, the
hardware resource may include one or more caches, illustrated as a cache A (222), a
cache B (224), and through a cache N-(226). Also, the hardware resource may include a
branch predictor (not shown). In another embodiment, the hardware resource 220 may
include any other resource associated with the processor, illustrated as other on-chip
resource 228. In a further embodiment, the hardware resource includes an off-chip
resource, illustrated as an off-chip resource 229. For example, the cache A (222) may
be an on-chip L1 cache and the off-chip resource 229 may be an off-chip cache, such as
an off-chip L2 cache.

The processor 210 includes a processor operable to execute an
instruction set. In an embodiment, the instruction set may include a collection of
instructions that the processor can execute. In a further embodiment, the instruction set

may include an instruction set architeciure of the processor. In another embodiment,
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the instruction set may include a group of machine instructions and/or computer
instructions that the processor can execute. In another embodiment, the instruction set

may be interpreted by the processor. In further embodiment, the instruction set may

.include a high-level language, an assembly language, and/or a machine code that the

processor can execute, with or without a compiling and/or a translation.

In an embodiment, an instruction may include a functional instruction, a
branching instruction, a memory instruction, and/or other instruction that may be
executed by a processor. In another embodiment, an instruction may include a
statement or a portion of a statement in a program. In a further embodiment, an
instruction may include at least two statements from a program. A program may
include any type of a program, from several lines of instructions, to an application, and
to an operating system. In an embodiment, an instruction may include a decoded
instruction, a translated instruction, a portion of a translated instruction, and/or a micro-
operation. In a further embodiment, an instruction may include an instruction block, a
basic block, a functional biock, and/or an instruction module.

The execution-optimization synthesizer 250 includes an execution-
optimization synthesizer operable to collect data from the communications link that
correéponds to an execution of at least one instruction of the instruction set. In an
embodiment, the data may include certain data items, such as datum, byte, bit, and/or a
block that are associated together. The execution-optimization synthesizer is also
operable to generate an execution-optimization information utilizing the collected data
from the communications link and corresponding to the execution of at least one
instruction of the instruction set. .

In an embodiment, the communications link 240 may include at least one
of a signal-bearing medium, digital-signal-bearing medium, a light propagation
medium, a light propagation medium, an optical fiber, a light guide, a computer
readable storage medium, a hardware register, a bus, a memory local to the processor,
an interconnection structure, and/or a digital-signal conductor. For example, a
computer readable storage medium may include a memory and/or a memory system

directly accessible by the processor and the execution-optimization synthesizer, By
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way of further example, a digital-signal conductor may include any digital signal
conducting structure configured to at least transfer digital signals from the processor to
the execution-optimization synthesizer. In another embodiment, the communications
link includes a signal-bearing medium exposed only to an execution-optimization
synthesizer and the processor. In a further embodiment, the communications link
includes a signal-bearing medium expo;s.ed to an execution-optimization synthesizer and
the processor, and transparent to software executing on the processor. In another
embodiment, the communications link includes a signal-bearing medium exposed to an
execution-optimization- synthesizer, to the processor, and to software.

In an embodiment, the processor 210 and the communications link 240
reside on a single chip, illustrated as a single chip 201. In another embodiment, the
processor and the execution-optimization synthesizer 250 reside on a single chip, also
illustrated as the single chip 201. In a further embodiment, the processor,
communications link, and the execution-optimization synthesizer are formed on a single
chip, illustrated as the single chip 201.

In an embodiment, the execution-optimization synthesizer 250 includes a
hardware implemented execution-optimization synthesizer. In another embodiment, the
execution-optimization synthesizer includes a microengine implemented execution-
optimization synthesizer. .

In a further embodiment, the execution-optimization synthesizer 250
operable to collect data from the communications link that corresponds to an execution
of at least one instruction of the instruction set includes an execution-optimization
synthesizer operable to collect dynamic data from the communications link that
corresponds to a runtime execution of at least one instruction of the instruction set. In
an embodiment, the data collected by the execution-optimization synthesizer includes at
least one of an interpreted instruction, a translated instruction, a decoded instruction, a
micro-operation corresponding to at least a portion of an instruction, data correlating to
the execution of the at least one instruction, a movement of data correlating to an
execution of the at least one instruction of the instruction set, a result of an execution of

an instruction, a branch outcome of an execution of an instruction, an exception
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correlating to an execution of an instruction, a store-to-load dependency correlating an
execution of an instruction, a predicted value correlating to an execution of an
instruction, and/or a relationship between at least two instructions of the instruction set.

In an embodiment, the execution-optimization synthesizer 250 operable
to collect data from the communications link that corresponds to an execution of at least
one instruction of the instruction set includes an execution-optimizaiion synthesizer
operable to collect at least one of data transparent to a user, data visible to a user, data
transparent to software executing on the processor, data visible to software executing on
the processor, and/or data exposed for user manipulation.

In another embodiment, the execution-optimization synthesizer 250
operable to generate an execution-optimization information utilizing the collected data
includes an execution-optimization synthesizer operable to generate an optimization
information that is at least one of responsive to the collected data, derived from the
collected data, associated with the collected data, and/or using the collected data. In a
further embodiment, fhe execution-optimization synthesizer operable to generate an
execution-optimization information corresponding to the execution of at least one
instruction of the instruction set includes an execution-optimization synthesizer
operable to generate at least one of an execution-environment optimization information,
a processor-environment optimization information, a data-environment optimization
information, and/or a metadata reporting an execution environment. For example, an
execution-environment optimization information may include an indication that an
identified micro-op is used frequently and may be advantageously saved in a memory
close to the processor 210. Another execution-environment optimization may include
one or more versions of the at least one instruction of the instruction set that provides
some expected benefit over the original at least one instruction of the instruction set. A
memory management system serving the processor may cause one of the versions to be
executed transparently instead of the original at least one instruction of the instruction
set, such as through a translation lookaside buffer. By way of further example,
metadata reporting an execution environment may include tracking information with

respect to data objects. For example, certain access predictors may work well with
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certain data objects, or some objects do not appear to be co-resident in the cache, or
may be highly co-resident, or certain pointers in object-orientated systems typically
point to specific object types, or specific value predictors have worked well with some
data in the past.

In other embodiments, the execution-optimization synthesizer 250
operable to generate an execution-optimization information utilizing the collected data
may include an execution-optimization synthesizer operable to generate an execution-
optimization information optimizing data handling, which may be by a data class. In
some instances, a data class may include certain data items (datum, byte, bit, a block, a
page) that are used once and never again. In other instances, a data class may include
certain data items are used constantly but never written and/or infrequently written. In
further data classes, certain data items may be constantly read and written to, or other
data items may be often being written but never read. The execution-optimization
synthesizer operable to generate an execution-optimization information may predict
how a data class will likely be used in the future and/or saves the data items in a manner
and/or a location that substantially optimizes utilization of the data ilems by an
instruction group and/or storage of the data items by the éomputing device. Any
suitable type of predictive algorithm providing meaningful results may be used,
including a predictive algorithm based on a Bayesian method, and/or a learning
algorithm. The prediction may be written to a ghost page associated with a piece of
data. A prediction may be straight forward if it is known that the data piece will never
be written or read. Each data item will expose what its peculiar flavor is. This may be
implemented down to the size of a single cache line, or even below the cache line.

In further embodiments, the execution-optimization synthesizer 250
operable to generate an execuﬁon-optimization information utilizing the collected data
may includg an execution-optimization synthesizer operable to generate an execution-
optimization information providing a storage mobility for data items that are associated
together in a substantial disequilibrium based upon a shared fate, a shared nature, an
entanglement to a page and/or line of similarly handled data. The data item may

include one or more extra bits (tag) on end of a datd item that may indicate its size,

[y
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nature (written but never read, read but never written, read once in the life of the
program, used by at least two threads). In a further embodiment, an indicator may say
which code relates with to the data item. This may be used for doing storage
assignment. For example, if the data item includes a semaphore that is used across
multiple threads, that should be known and the data item managed accordingly. Most
data is associated with a particular body of code and assigned to a storage unit together.
By watching that, these assignments can be done together between the I-cache and the
D-cache.

In an embodiment, the execution-optimization synthesizer 250 further
includes an execution-optimization synthesizer operable to save the optimization
information. The optimization information may be saved close to the processor 210, for
example in an on-chip resource such as the cache A (222), or in the off-chip resource
229, such as a system memory or storage medium. In another embodiment, the
execution-optimization synthesizer further includes an execution-optimization
synthesizer operable to save the optimization information in an association with the at
least one tnstruction of the instruction set.

In an embodiment, the device 200 includes a computing device, such as
for example, the computing device 110 of the computing system environment 100 of
FIG 1. In a further embodifnent, the computing device includes at least one of desktop
computing device, a laptop-computing device, a portable computing device, and/or a
supercomputing device.

FIG. 3 partially illustrates an association between optimization
information and a program and/or data. An instruction set architecture is illustrated as
an instruction set architecture 265, and related compiled programs are illustrated as an
operating system 272 and an application pfogram 276. The application program 276
may be a compiled application program or a compliable application program. Also
illustrated is a data set 274. .

The execution-optimization information generated by the execution-
optimization synthesizer 250 may be associated with the at least one instruction of the

instruction set of a program, an application, and/or a module that includes the at least
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one instruction. In the case of data, the execution-optimization information generated
by the execution-optimization synthesizer may be associated with data received for
processing by the execution, data produced by the execution, the at least one instruction
of the instruction set that processed the data, and/or other related matter. FIG. 3
illustrates certain embodiments of an association of the execution-optimization
information with the at least one instruction of the instruction set. The ghost pages 282
that include the execution-optimization information pertaining to the operating system
272 may be virtually and/or physically associated in an information storage with the
operating system. The information storage may include a non-volatile memory
structure. For example, the ghost pages may be saved in the same file as the operating
system. When the operating system is loaded into system memory, the ghost pages may
remain in the information storage, or may be, such as for example, also loaded into
system memory, or loaded into an inboard memory. In another embodiment, an
execution-optimization information 284 pertaining to a data set 274 is associated in a
information storage with the data set. In a further embodirﬁent, an execution-
optimization profile 286 is associated in an information storage with an application 276.

In an embodiment, a ghost page of the ghost pages 282 containing the
execution-optimization information may be associated with a selected page of a
program or data whose content corresponds to the generation of the execution-

optimization information, such as for example, a selected page containing the

instruction of the operating system 272, a selected page containing the data of the data

set 274, and/or a selected page containing the application program 276. By way of
further example, data in a ghost page of the ghost pages 282 may indicate that a branch
instruction on an identified line of an associated selected page of an application should
not be taken. In another embodiment, a file containing the execution-optimization
information 284 may be associated with a file containing the data set.

The illustrated embodiments of the ghost page 282, the execution-
optimization information 284, and the execution-optimization profile 286 respectively
associated with the operating system 272, the data 274, and the application 276 are

intended only to be illustrative and are not limiting. In another embodiment for

22



WO 2007/089660 PCT/US2007/002296

10

15

20

25

30

examp)é, the ghost pages 282 may be associated with the application 276, or the data set
274,

FIG. 4 illustrates an exemplary operational flow 300 in which
embodiments may be implemented. 1n an embodiment, the operational flow may be
implemented in the computing system environment 100 of FIG 1 and/or the device 200
of FIG. 2. Afier a start operation, the operational flow moves to an accumulation
operation 310. The accumulation operation collects data corresponding to an execution
of at least one instruction of an instruction set from a processor executing the at least
one instruction of an instruction set. An enhancement operation 330 creates an
execution-optimization information utilizing the collected data corresponding to the
execution of at least one instruction of the instruction set and which is usable in another
execution of the at least one instruction of an instruction set. The operational flow then
moves to an end operation.

FIG. 5 illustrates an alternative embodiment of the exemplary
operational flow 300 of FIG. 4. The accumulation operation 310 may include at least
one additional operation. The at least one additional operation may include an
operation 312 and/or an operation 314. The operation 312 collects data corresponding
to an execution of at least one instruction of an instruction set from a processor actually
executing the at least one instruction of an instruction set. The operatién 314 collects
data corresponding to a runtime execution of at least one instruction of an instruction set
from a processor executing the at least one instruction of an instruction set.

FIG. 6 illustrates another alternative embodiment of the exemplary
operational flow 300 of FIG. 4. The enhancement operation 330 may include at least
one additional operation. The at least one additional operation may include an
operation 332, an operation 334, an operation 336, and/or an operation 338. The
operation 332 creates a modification of the at least one instruction of the instruction set
usable in another execution of the at least one instruction of an instruction set. For
example, the creating a modification of the at least one instruction may include creating
one or more versions of the instruction where each version may provide some expected

benefit over the original version, or saving a decoded version of a frequently fetched at
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least one instruction to save a future decoding of the frequently fetched instruction. The
operation 334 creates a branch predictor modification usable in another execution of the
at least one instruction of an instruction set. The operation 336 creates a data format
modification usable in another execution of the at least one instruction of an instruction
set. The operation 338 creates a data layout optimization usable in another execution of
the at least one instruction of an instruction set. For example, in an embodiment, a data
layout optimization may include a repacking of data, a compaction of data, and/or a
saving of data that may be useful in execution the at least one instruction.

FI1G. 7 illustrates a partial view of an exemplary device 400 in which
embodiments may be implemented. The device includes a first circuit 410 for
collecting data corresponding to a runtime execution of at least one instruction of an
instruction set from a communications link that is transparent to software executing on
the processor and exposed to a processor having a processor instruction set that includes
the instruction set. The device also includes a second circuit 420 for creating an
execution-optimization information utilizing the collected data corresponding to the
execution of at least one instruction of the instruction set and which'is usable in another
execution of the at least one instruction of an instruction set. In an embodiment, the
second circuit for creating the execution-optimization information includes the first
circuit for collecting data corresponding to an execution.

FIG. 8 illustrates a partial view of an exemplary device 500 in which
embodiments may be implemented. The device includes a microengine 550 operatively
coupled with a processor 510 having an instruction set. The processor may include any
processor, such as for example, the processing unit 120 described in conjunction with
FIG. 1. The processor may be described as a central processing unit that controls
operation of a computer. In an embodiment, the device may include an internal bus 530
providing a parallel data transfer path between the processor and the hardware resource
220.

The microengine 550 includes a microengine operable to gather dataina
manner transparent to software executing on the processor 510 and corresponding to a

runtime execution of at least a portion of the instruction set by the processor. The
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microengine is also operable to create a runtime-based optimization pfoﬁle utilizing the
gathered dynamic data and which is useable in a subsequent execution of the at least of
a portion of the instruction set by the processor.

- In an embodiment, the microengine 550 may include a microengine
operable to gather at least one of dynamic data and/or static data in a manner
transparent to software executing on the processor and corresponding to a runtime
execution of at least a portion of the instruction set by the processor 510.

In another embodiment, the device 500 may further include the processor
510 having an instruction set. In a further embodiment, the processor and the
microengine 550 are formed on a chip, illustrated as a single chip 501. In an
embodiment, the device may further include a communications link 540 exposed to the
microengine. In another embodiment, the device may include the communications link
exposed to the microengine and transparent to software executing on the processor. Ina
further embodiment, the device may include the communications link operably coupled
to the microengine and to the processor. In another embodiment, the communications
link may include an interconnection structure.

. FIG. 9 illustrates an exemplary operational flow 600 implemented in a
hardware device and in which embodiments may be implemented. In an embodiment,
the operational flow may be implemented in the computing system environment 100 of
FIG 1, and/or the device 500 of FIG. 8. After a start operation, the operational flow
moves to a harvesting operation 610. The harvesting operation gathers data
corresponding to an execution of at least one instruction of an instruction set by a
processor and in a manner transparent to software executing on the proceésor. An
improvement operation 630 creates an execution-based optimization profile utilizing the
gathered data and which is useable in a subsequent execution of the at least one
instruction of the instruction set by the processor. In an embodiment, the execution-
based optimization profile may enhance a future execution of the at least one instruction
by increasing an efficiency of the execution, reducing cacﬁe misses, reducing
exceptions, reducing storage used, and/or reducing energy consurned. The operational

flow then proceeds to an end operation.

25



WO 2007/089660 PCT/US2007/002296

10

15

20

25

30

FIG. 10 illustrates an alternative embodiment of the exemplary
operational flow 600 of F1G. 9. The harvesting operation 610 may include at least one
additional operation. The at least one additional operation may include an operation
612, an operation 614, and/or an operation 616. The operation 612 gathers at least one
of dynamic data and/or static data in a manner transparent to software executing on the
processor and corresponding to an execution of at least one instruction of an instruction
set by a processor. The operation 614 gathers data in a manner transparent to software
executing on the processor and corresponding to a normal execution of at least one
instruction of an instruction set by a processor. The operation 616 gathers data in a
manner transparent to software executing on the processor and corresponding to a
runtime execution of at least one instruction of an instruction set by a processor. The
improvement operation 630 may include at least one additional operation, such as an
operation 632, The operation 632 creates an execution-based optimization profile
utilizing the gathered data and which is operable to modify a subsequent execution of
the at least one instruction of the instruction set by the processor.

FIG. 11 illustrates another alternative embodiment of the exemplary
operational flow 600 of FIG. 9. The operational flow may include at least one
additional operation. The at least one additional operation may include a modification
operation 640. The modification operation changes-an execution of the at least one
instruction of the instruction set in response to the execution-based optimization profile.

The modification operation 640 may include at least one additional
operation. The at least one additional operation may include an operation 642, an
operation 644, and/or an opération 646. The operation 642 changes a movement of data
with respect to the processor in response to the execution-based optimization profile.
For example, changing a movement of data may include changing a movement of data
toward and/or away from the processor. Changing a movement of data toward the
processor may include a prefetch of data. By way of further example, frequently read
data may be stored in a memory close to the processor and infrequently read data may
be stored in 2 memory far from the processor. By way of example, frequently written or

rewritten data may be stored in a memory close to the processor and infrequently read
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data may be stored in a memory far from the processor. The operation 644 changes a
format of data processable by the processor in response to the execution-based
optimization profile. For example, the operation 644 may save data translated from one
format to another, such as from big-endian to little-endian, or floating-point formats.
The operation 646 changes a movement of the at least one instruction of the instruction
set toward a processor for execution in response to the execution-based optimization
profile.

FI1G. 12 illustrates a further alternative embodiment of the exemplary
operational flow 600 of FIGS. 9 and 11. The modification operation 640 may include at
least one additional operation. The at least one additional operation may include an
operation 648, and/or an operation 652. The operation 648 substitutes at least one other

instruction of the instruction set for execution by the processor in place of the at least

one instruction of the instruction set in response to the execution-based optimization

profile. The operation 652 substitutes at least one other instruction of the instruction set
for the at least one instruction of the instruction set in a static program in response to the
execution-based optimization profile.

FIG. 13 illustrates an alternative embodiment of the exemplary
operational flow 600 of FIGS. 9 and 11. The modification operation 640 may include at
least one additional operation. The at least one additional operation may include an
operation 654. The operation 654 executes at least one other instruction of the
instruction set in response to the execution-based optimization profile. The operation
654 may include at least one additional operation, such as an operation 656. The
operation 656 executes at least one other instruction of the instruction set in response to
the execution-based optimization profile and omits an execution of the at least one
instruction.

FIG. 14 illustrates another alternative embodiment of the exemplary
operational flow 600 of FIGS. 9 and 11. The modification operation 640 may include at
least one additional operation. The at least one additional operation may include an
operation 658, and/or an operation 662. The operation 658 omits an execution of at

least one other instruction of the instruction set in response to the execution-based
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optimization profile. The operation 662 omits an execution of the at least one
instruction of the instruction set in response to the execution-based optimization profile.

FIG. 15 illustrates another alternative embodiment of the exemplary
operational flow 600 of FIG. 9. The operational flow may include at least one
additional operation, such as the operation 670. The operation 670 saves the execution-
based optimization profile. The operation 670 may include at least one additional
operation, such as the operation 672. The operation 672 saves the execution-based
optimization profile in an association with the at least one instruction of the instruction
set. The operation 672 may include at least one additional operation, such as the
operation 674. The operation 674 saves the execution-based optimization profile in an
associative cache with the at least one instruction of the instruction set.

FIG. 16 illustrates a partial view of an exemplary device 700 in which
embodiments may be implemented. The device includes means 710 for gathering data
in a manner transparent to software executing on the processor and corresponding to an
execution of at least one machine instruction of an instruction set by the processor. The
device includes means 720 for creating an execution-based optimization profile utilizing
the gathered data and which is useable in a subsequent execution of the at least one
machine instruction of the instruction set by the processor.

In an alternative embodiment the means 710 includes hardware-
implemented means 712 for gathering data in a manner transparent to software
executing on a processor and corresponding to an execution of at Jeast one machine
instruction of an instruction set by the processor. In another alternative embodiment,
the means 720 may include at least one additional means. The at least one additional
means may include hardware-implemented means 722 for creating an execution-based
optimization profile utilizing the gathered data and which is useable in a subsequent
execution of the at least one machine instruction of the instruction set by the processor.
The at least one additional means may include software-implemented means 724 for
creating an execution-based optimization profile utilizing the gathered data and which is
useable in a subsequent execution of the at least one machine instruction of the

instruction set by the processor.
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FIG. 17 illustrates a partial view of an exemplary device 800 in which
embodiments may be implemented. The device includes an information store 840
operable to save an execution-optimization information 842, a first processor 810, and a
hardware circuit 850. The hardware circuit includes a circuit for altering an execution
of a program by the first processor in response to the execution-optimization
information. The execution-optimization information includes execution-optimization
information created by a hardware device utilizing data collected from a second
processor (not shown). The collected data corresponding to a previous runtime
execution by the second processor of at least a portion of the program that was
transparent to any software executing on the second processor.

In an embodiment, the execution-optimization information 842 may
include the execution-optimization information generated by the execution-optimization
synthesizer 250 of FIG. 2. In another embodiment, the execution-optimization
information may include at least one of the ghost pages 272, the execution-optimization
information 274, and/or the execution-optimization profile 276 described in conjunction
with FIGS. 2 and 3. In an alternative embodiment, the first processor 810 includes a '
first processor operable to execute an instruction set and operably coupled to the
information store 840. In another embodiment, the hardware circuit for altering an
execution of a program includes a hardware circuit for altering an execution of a
program and operably coupled to the information store. In a further embodiment, the
hardware circuit includes a hardware circuit operably coupled to the processor.

In an embodiment, the hardware circuit 850 includes a hardware circuit
for copying the execution-optimization information from the information store to a
memory operably coupled to the first processor. For example, the memory opérably
coupled to the first processor may include the hardware resource 220, such as the on-
chip cache B 224, or the off-chip resource 229, such as an off-chip cache or an outboard
memory or an outboard storage.

In a further embodiment, the hardware circuit 850 for altering an
execution of a program by the first processor 810 in response to the execution-

optimization information includes a hardware circuit for causing an alteration of an
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execution of al least one instruction of an instruction set of a static program by the first
processor in response to the execution-optimization information. In another
embodiment, the altering an execution of a program by the first processor in response to
the execution-optimization information includes altering an execution of at least one
instruction of an instruction set of a dynamic program by the first processor in response
to the execution-optimization information. In a further embodiment, the altering an
execution of a program by the first processor in response to the execution-optimization
information includes altering a context of an execution of a program by the first
processor in response to the execution-optimization information.

In an embodiment, the hardware circuit for altering an execution of a
program by the first processor in response to the execution-optimization information
includes a hardware circuit for altering an execution of at least one instruction of an
instruction set of a program by the first processor in response to the execution-
optimization information. In another embodiment, the hardware circuit for altering an
execution of a program by the first processor in response to the execution-optimization
information includes a hardware circuit for altering a movement of data with respect to
the first processor in response to the execution-optimization information. In a further
embodiment, the hardware circuit for altering an execution of a prbgram by the first
processor in response to the execution-optimization information includes a hardware
circuit for altering a movement of at least one instruction of the program toward the first
processor in response to the execution-optimization information.

In some instances, the altering an execution of a program by the first
processor in response to the execution-optimization information may include directly
altering an execution of a program by the first processor in response to the execution-
optimization information. In other instances, the altering an execution of a program by
the first processor in response to the execution-optimization information may include
causing an alteration of an execution of a program by the first processor in response to
the execution-optimization information. In further instances, the altering an execution

of a program by the first processor in response to the execution-optimization
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information may include initiating an alteration of an execution of a program by the first
processor in response to the execution-optimization information. '

In an embodiment, the execution-optimization information includes
execution-optimization information created by a hardware device (not shown) utilizing
data collected from a second processor (not shown) that is at least substantially a same
processor as the first processor 810. For example, the execution-optimization
information used to alter a current execution of a program by the first processor §10
may have been created during a prior execution of the program by the first processor.
In another embodiment, the execulion-optimization information includes an execution-
optimization information created by a hardware device utilizing data collected from a
second processor that is at least a substantially different processor from the first
processor. For example, the execution-optimization information used to alter a current
execution of a program by the first processor may have been created during a prior
execution of the program by a completely different second processor, which may be a
processor running in a completely different computing device.

In an embodiment, the information store includes at least a portion of a
cache. In another embodiment, the information store includes at least one of an [-cache
or a D-cache. In a further embodimient, the information store includes at least one ofa
volatile memory or a non-volatile memory. In a further embodiment, the information
store includes a compuler readable medium. In another embodiment, the information
store may include a non-volatile outboard storage, such as magnetic disk storage.

In another embodiment, the first processor 810 and the hardware circuit
850 are formed on a single chip, illustrated as a single chip 801. In a further
embodiment, the first processor 810 and the information store 840 are formed on a
single chip, illustrated as a single chip 801.

FIG. 18 illustrates an exemplary operational flow 900 that may
implement embodiments. In an embodiment, the opéx_*ational flow may be implemented
in the computing system environment 100 of FIG 1, and/or the device 800 of FIG. 17.
After a start operation, the operational flow moves to an instruction determination

operation 910. The instruction determination operation identifies an instruction to be
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fetched for execution by a first processor. An optimization operation 920 alters an
execution of the instruction to be fetched for execution in response to an execution-
optimization information. The execution-optimization information 930 was previously
generated by a hardware device utilizing data corresponding to a real execution of the
instruction to be fetched by a second processor that was transparent to software
executing on the second processor. The flow then moves to an end operation.

FIG. 19 illustrates an alternative embodiment of the exemplary
operational flow 900 of FIG. 18. The instruction determination operation 910 may
include at least one additional operation, such as an operation 912. The operation 912
identifies an instruction to be fetched from an instruction set of a static program for
execution by a first processor. The optimization operation 920 may include at least one
additional operation, illustrated as the operation 922. The operation 922 alters an
execution of the instruction to be fetched from an instruction set of a static program for
execution in response to an execution-optimization information.

FIG. 20 illustrates an alternative embodiment of the exemplary
operational flow 900 of FIG. 18. The execution-optimization information 930 may
include at least one additional embodiment. The at least one additional embodiment
may include an execution-optimization information 932 and/or an execution-
optimization information 934. The execution-optimization information 932 includes
execution-optimization information having been previously generated by a hardware
device utilizing data corresponding to a real execution of the instruction to be fetched
by a second processor that was transparent to software executing on the second
processor, the second processor being at least a substantially same processor as the first
processor. The execution-optimization information 934 may include an execution-
optimization information having been previously generated by a hardware device
utilizing data corresponding to a real execution of the instruction to be fetched by a
second processor that was transparent to software executing on the second processor,
the second processor being at least a substantially different processor from the first
processor. In an embodiment, the second processor may be a processor of a

multiprocessor computing device that includes the first processor. In another

32



WO 2007/089660 PCT/US2007/002296

n

10

15

20

25

embodiment, the second processor may be a processor of a second computing device
that is a separate and a distinct computing device from a first computing device that
includes the first processor.

FIG. 21 illustrates an alternative embodiment of the exemplary
operational flow 900 of FIG. 18. The execution-optimization information 930 may
include at least one additional embodiment. The at least one additional embodiment
may include an execution-optimization information 936, an execution-optimization
information 938, and/or an execution-optimization information 942. The execution-
optimization information 936 includes an execution-optimization information having
been previously generated by a hardware device utilizing data corresponding to a state
of the second processor during a real execution of the instruction to be fetched by a
second processor that was transparent to software executing on the second processor.
The execution-optimization information 938 includes an execution-optimization
information having been previously generated by a hardware device utilizing data
corresponding to an instruction state during a real execution of the instruction to be
fetched by a second processor that was transparent to software executing on the second
processor. The execution-optimization information 942 includes an execution-
optimization information having been previously generated by a hardware device
utilizing data corresponding to a data relationship during a real execution of the
instiuction to be fetched by a second processor that was transparent to software
executing on the second processor.

FIG. 22 illustrates a partial view of an exemplary device 1000 in which
embodiments may be implemented. The device includes means 1010 for identifying an
instruction to be fetched from an instruction sel of a program for execution by a first
processor. The device also includes means 1020 for altering an execution of the
instruction from the instruction set of a program in response to an execution-
optimization information. The execution-optimization inforrqation 1030 having been
generated by a hardware device utilizing data generated by a second processor, and

which data corresponds to a previous real execution the instruction to be fetched from
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the instruction set of a program that was transparent to software executing on the second
processor, '

FIG. 23 illustrales a partial view of an exemplary computing
environment 1100 that includes a computer processor-error controller 1120 in which
embodiments may be implemented. The computer processor-error controller includes a
monitoring circuit 1130 and an error recovery circuit 1140. The monitoring circuit is
operable to detect a computational error corresponding to an execution of a second
instruction by a processor 1110 operable to execute a sequence of program instructions
1160. The sequence of program instructions includes a first instruction that is fetched
before the second instruction. The error recovery circuit is operable to restore an
execution of the sequence of program instructions to the first instruction in response to
the detected computational error.

In an embodiment, a computational error includes an error introduced
during computation. In another embodiment, a computational error includes a
setup/hold violation, also known as a setup and hold time requirement violation for a
transistor. For example, in an embodiment, a transistor of the processor 1110 has input
requirements. A setup and hold time defines a window of time during which the input
of the transistor must be valid and stable in order to assure valid data at the output of the
transistor. Setup is a time that the input must be valid before the transistor samples.
Hold time is a time the input must be maintained valid while the transistor samples. In
a further embodiment, a setup and hold violation may include valid values, but the
values occur outside the window of time. In another embodiment, a setup and hold
violation may include an invalid value that occurs within the window of time. In a
further embodiment, a computational error includes at least one of a computational error
corresponding to a processor clock speed, a processor voltage, a processor temperature,
a noise spiké, a charged particle, a soft error, an unreliable processor hardware, an
incorrectly executed instruction, and/or an electromigration induced error.

Program instructions are generally fetched in a sequence or order for
execution by the processor 1110. A first instruction of the sequence of program

instructions 1160 may execute, but a second instruction of the sequence may not
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execute because of a processor computational error. The monitoring circuit 1130 is
operable 1o detect a computational error corresponding to an execution of the second
instruction. Rather than losing the entire execution of the sequence of program
instructions because of the computational error, the error recovery circuit is operable to
restore an execution of the sequence of program instructions to the first instruction in
response to the detected computational error. Execution of the sequence of program
instructions then restarts from the first instruction. Means for designating the first
instruction are described below.

In an embodiment, the monitoring circuit 1130 further includes a
monitoring circuit implemented in hardware and operable to detect a computational
error corresponding to an execution of a second instruction by a processor operable to
execute a sequence of program instructions that includes a first instruction that ts
fetched before the second instruction. Any technique known by those skilled in the art
may be used to implement the monitoring circuit in hardware. In another embodiment,
the monitoring circuit further includes a monitoring circuit implemented in a dynamic
implementation verification architecture (DIVA) and operable to detect a computational
error corresponding to an execution of a second instruction by a processor operable to
execute a sequence of program instructions that includes a first instruction that is
fetched before the second instruction. Examples of a DIVA architecture approach can
be found in T. Austin, DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design, printed on February 6, 2006, and located at

http://www.huron.ucdavis.edu/micro32/presentations/p austin.pdf: S. Chatterjee,

Efficient Checker Processor Design, printed on February 6, 2006, and located at

http://www.eecs.umich.edu/~taustin/papers/MICR 03 3-divadesign.pdf, each of which is

incorporated herein by reference. In a further embodiment, the monitoring circuit may
includes a hardware implemented monitoring circuit employing a TEATime execution
checker algorithm architecture and operable to detect a computational error
corresponding to an execution of a second instruction by a processor operable to
execute a sequence of program instructions that includes a first instruction that is

fetched before the second instruction. The TEATime execution checker algorithm
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architecture may also be known as a Timing Error Avoidance system. Examples of a
TEATime execution checker algorithm approach can be found in United States Patent
application entitled SYSTEM AND METHOD OF DIGITAL SYSTEM

‘PERFORMANCE ENHANCEMENT, naming Augustus K. Uht as inventor and

published as US 2004/0174944 A1; G. Uht and R. Vaccaro, Adaptive Computing (... via
Timing Error Avoidance), printed on February, 6, 2006, and located at
http://www.lems.brown.edu/~irissBARC2005/Webpape/B ARCpresentations/ubt.pdf;, A.
Uht and R. Vaccaro, TEAPC. Adaptive Computing and Underclocking in a Real PC,
printed on February 6, 2006, and located at http://www.ele.uri.edu/~uht/papers/MuRI-
TR-20041027.pdf; A. Uht, TEAtime. Timing Error Avoidance for Performance

Enhancement and Environment A daptation, printed on February 6, 2006, and iocated at

www.ele.uri.edu/~uht/talks/TEAtimeroadshow2003.Dist.pdf; A, Uht, Uniprocessor

Performance Enhancement Through Adaptive Clock Frequency Control, printed on
February 6, 2006, and located at
http://www.ele.uri.edu/~uht/papers/SSGRR2003wFnlUht.pdf, each of which is

incorporated herein by reference. In another embodiment, the monitoring circuit may
be implemented in a RAZOR architectural approach. An example of a RAZOR
architecture approach can be found in D. Emnst et al., Razor: A Low-Power Pipeline
Based on Circuit-Level Timing Speculation, printed on July 7, 2006, and located at

http://www.gigascale.org/pubs/426/razor.submit.authors.pdf, which is incorporated

herein by reference.

In an embodiment, the monitoring circuit 1130 further includes a
hardware implemented monitoring circuit employing another processor (not shown)
operable to execute the second instruction substantially in parallel with the processor
1110. The monitoring circuit also is operable to detect a computational error
corresponding to an execution of a second instruction by the processor by correlating an
output of the processor with the output of the another processor. In another
embodiment, the monitoring circuit further includes a hardware implemented

monitoring circuit operable to detect a computational error corresponding to a
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setup/hold violation occurring in a processor operable to execute a sequence of program
instructions that includes a first instruction that is fetched before the second instruction.

In an embodiment, error recovery circuit 1140 includes an error recovery
circuit operable to restore an execution of the sequence of program instructions to a
logical state associated with the first instruction in response to the detected
computational error. In a further embodiment, the error recovery circuit includes an
EITOT recovery circuit imblemented in at least one of hardware, software, firmware,
and/or a microengine, and operable to restore an execution of the sequence of program
instructions to the first instruction in response to the detected computational error. In
another embodiment, the error recovery circuit includes an error recovery circuit
implemented in software associated with at least one of an operating system or a
program executable by the processor and operable to restore an execution of the
sequence of program instructions to the first instruction in response to the detected
computational error. For example, in an embodiment, the error recovery circuit detects
a computationai error and hands off recovery from the error to an operating system that
includes the error recovery circuit. In a further embodiment, the error recovery circuit
includes an error recovery circuit operable to designate the first instruction as a
checkpoint and to restore an execution of the sequence of program instructions to the
checkpoint in response to the detected computational error. In an embodiment, the error
recovery circuit includes an error recovery circuit operable to designate the first
instruction as an instruction separated from the second instruction by a predetermined
number of instructions and to restore an execution of the sequence of program
instructions to the first instruction in response to the detected computational error. For
example, a predetermined number of instructions may include a 5K instruction, a 10K
instruction, a 25K instruction, or a 50K instruction Spacing;

In another embodiment, the error recovery circuit 1140 includes an error
recovery circuit operable to select the first instruction corresponding to a checkpoint
protocol and to rollback an execution of the sequence of program instructions to the
selected checkpoint in response to the detected computational error. In a further

embodiment, the exemplary computing environment 1100 includes the controller 1 120,

37



WO 2007/089660 PCT/US2007/002296

10

15

20

25

30

the processor 1110, and an information store 1150. In another embodiment, the
controller and the processor are formed on a single chip 1101.

F1G. 24 illustrates a partial view of an exemplary computerized device
1200 in which embodiments may be implemented. The computerized device includes a
processor 1210 and a controller 1220. The processor is operable to execute a sequence
of program instructions 1250 having a fetch order that includes a first instruction that is
fetched before a second instruction. The controller includes a hardware-implemented
execution verification circuit 1230 and an error recovery circuit 1240. The hardware-
implemented execution verification circuit is configured for detecting a computational
error corresponding to an execution of the second instruction by the processor. The
error recovery circuit is configured for rolling back an execution of the sequence of
program instructions io the first instruction in response to the detected computational
€ITOr.

In an embodiment, the controller further includes a controller that
includes an error recovery circuit for at least one of initiating, activating, causing,
facilitating, accomplishing, and/or achieving a rollback of an execution of the sequence
of program instructions to the first instruction in response to the detected computational
error. In another embodiment, the controller further includes a controller that includes
an error recovery circuit implemented in at least one of hardware, software, firmware,
and/or microengine for rolling back an execution of the sequence of program
instructions to the first instruction in response to the detected computational error.

In an embodiment, the processor and the controller are formed on a same
chip, illustrated as a chip 1201. In another embodiment, the computerized device 1200
further includes the processor 1210, the controller 1220, and an information store 1250.

FIG. 25 illustrates an exemplary operational flow 1300 that may
implement embodiments. After a start operation, the operational flow moves to a
detecting operation 1310. The detecting operation senses a computational error
corresponding to an execution of a second instruction by a processor operable to
execute an instruction sequence having a first instruction that is fetched before the

second instruction. In an embodiment, a computational error includes any failure of a
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processor to perform its intended function. For example, a computational error includes -
an incorrectly executed instruction. In another embodiment, a computational error
includes a computational error occurring in a processor execution path. A
computational error occurring in the processor execution path may include a error
corresponding to a setup/hold violation, a timing error because a clock is running too
fast, a voltage error because a processor voltage is too low, a noise spike, a soft error
such as a single event upset failure, an unreliable processor hardware, an incorrectly
executed instruction, and/or a charged particle. A charged particle may include a
cosmic ray, an alpha particle, a thermal neutron, a neutron, proton, pion, and/or muon.

A recovery operation 1330 restores an execution of the instruction
sequence to a logical state associated with the first instruction in response to the sensed
computational error. The operational flow then moves to an end operation.

In an embodiment, the operational flow 1300 may be implemented in the
computing system environment 1100 and the computer processor-error controller 1120
of FIG. 23, and/or in the exemplary computing device 1200 of FIG. 24.

FIG. 26 illustrates another embodiment of the exemplary operational
flow 1300 of FIG. 25. The detecting operation 1310 may include at least one additional
operation. The at least one additional operation may include an operation 1312 and/or
an operation 1314, The operation 1312 senses a computational error corresponding to
an execution of a second instruction by a processor operable to execute an instruction
sequence having a first instruction that is fetched before the second instruction. The
operation 1314 senses an execution path synchronization error corresponding to an
execution of a second instruction by a processor operable to execute an instruction
sequence having a first instruction that is fetched before the second instruction.

FIG. 27 illustrates another embodiment of the exemplary operational
flow 1300 of FIG. 25. The detecting operation 1310 may include at least one additional
operation. The at least one additional operation may include an operation 1316, an
operation 1318, and/or an operation 1319. The operation 1316 senses an error
correlating to a voltage applied to a processor and that corresponds to an execution of a

second instruction by the processor operable to execute an instruction sequence having
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a first instruction that is fetched before the second instruction. The voltage applied to
the processor may include a processor core voltage, a processor associated cache
voltage, and/or a buffer voltage. The operation 1318 senses an error correlating to a
processor temperature and corresponding to an execution of a second instruction by a
processor operable to execute an instruction sequence having a first instruction that is
fetched before the second instruction. The operation 1319 senses at least one of a
computational error corresponding to a processor clock speed, a processor voltage, a
noise spike, a cosmic particle, a soft error, an unreliablg hardware, an incorrectly
executed instruction, and/or an electromigration induced error that corresponds to an
execution of a second instruction by a processor operable to execute an instruction
sequence having a first instruction that is fetched before the second instruction.

FIG. 28 illustrates another embodiment of the exemplary operational
flow 1300 of FIG. 25. The recovery operation 1330 may include at least one additional
operation. The at least one additional operation may include an operation 1332, and/or
an operation 1334. The operation 1332 rolls back an execution of the instruction
sequence to a checkpoint corresponding to a logical state associated with the execution
of the first instruction in response to the sensed computational error. The operation
1334 restores an execution of the instruction sequence to a logical state associated with
the first instruction determined by a checkpoint proto~col and in response to the sensed
computational error.

FIG. 29 illustrates a partial view of an exemplary device 1400 in which
embodiments may be implemented. The device includes means 1410 for sensing a
computational error corresponding to an execution of a second instruction by a
processor operable to execute an instruction sequence having a first instruction that is
fetched before the second instruction. The device also includes means 1420 for
restoring an execution of the instruction sequence to the first instruction in response to
the sensed computational error.

FIG. 30 illustrates a partial view of a controller apparatus 1500 in which
embodiments may be implemented. The controller apparatus includes a monitoring

circuit 1520, a recovery circuit 1530, and a control circuit 1540. The monitoring circuit
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includes a monitoring circuit for detecting a computational error corresponding to an
execution of an instruction of a sequence of instructions 1560 by a processor subsystem
1510 having an adjustable operating parameter. An adjustable operating parameter may
include any adjustable operating parameter of the processor subsystem. Examples
include an adjustable clock signal, illustrated as CLK 1514, and/or an adjustable
voltage, illustrated as a voltage Vee 1516 applied to the processor core 1512, The
recovery circuit includes a recovery circuit for rolling back an execution of the
sequence of instructions to a checkpoint in response to the detected computational error.
The control circuit includes a control circuit for adjusting thé adjustable operating
parameter in response to a performance criterion. In an embodiment, the control circuit
includes a control circuit for adjusting the adjustable operating parameter in response to
a performance criterion corresponding to an incidence of the detected computational
eITor.

In an embodiment, the monitoring circuit 1520 includes a hardware-
implemented monitoring circuit for detecting a computational error corresponding to an
execution of an instruction of a sequence of instructions 1560 by a processor subsystem
1510 having an adjustable operating parameter. 1n another embodiment, the monitoring
circuit includes a monitoring circuit implemented in at least one of hardware, software,
firmware, and/or a microengine for detecting a computational error corresponding to an
execution of an instruction of a sequence of instructions by a processor subsystem
having an adjustable operating par'ameter. In a further embodiment, the monitoring
circuit includes a monitoring circuit implemented in dynamic implementation
verification architecture (DIV A) and for detecting a computational error corresponding
to an execution of an instruction of a sequence of instructions by a processor subsystem
having an adjustable operating parameter. In another embodiment, the monitoring

circuit includes a monitoring circuit employing a TEATime execution checker

- algorithm and for detecting a computational error corresponding to an execution of an

instruction of a sequence of instructions by a processor subsystem having an adjustable

operating parameter.
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In an embodiment, the recovery circuit 1530 includes a recovery circuit

implemented in at least one of hardware, software, firmware, and/or a microengine and

for rolling back an execution of the sequence of instructions 1560 to a checkpoint in

response to the detected computational error. In a further embodiment, the recovery
circuit includes a recovery circuit implemented in software associated with at least one
of an operating system or a program executable by the processor subsystem 1510 and
for rolling back an execution of the sequence of instructions to a checkpoint in response
to the detected computational error. In another embodiment, the recovery circuit
includes a recovery circuit for at least one of initiating, activating, causing, facilitating,
accomplishing, and/or achieving a re-execution of the instruction by the processor
subsystem by rolling back an execution of the sequence of instructions to a checkpoint
in response to the detected computational error.

In an embodiment, the control circuit 1540 includes a control circuit
implemented in at least one of hardware, software, firmware, and/or a microengine and
for adjusting the adjustable operating parameter in response to a performance criterion.

FIG. 31 includes a graphical illustration of an anticipated performance
1570 of a processor in which embodiments may be implemented. The graphical
illustration includes a state where a processor voltage Vcc essentially equals a constant
N. The horizontal axis represents an adjustable operating parameter, illustrated as an
increasing processor clock rate, and the vertical axis illustrates an increasing time. The
horizontal axis also illustrates respectfully a manufacturer’s specified nominal zero
error point MNZEP, an actual nominal zero error point ANZEP, and an optimized error-
tolerant operating point OETOP for the processor. In another embodiment, a variation
of FI1G. 31 may include a similar graphical illustration of an anticipated processor
performance where the horizontal axis illustrates a reciprocal of a processor voltage,
such as Vec. In such embodiment, the clock rate remains constant.

The manufacturer’s nominal zero error point MNZEP reflects a common
practice of manufacturers in specifying processor ratings and operating parameters to
generally assume a worst-case operating situation, and to set the operating clock rate or

frequency at the manufacturer’s nominal zero error point MNZEP. The manufacturer’s
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_nominal zero error point MINZEP may be a point selected to produce a tolerated

operating error rate that is very small, for example an operating error rate that is in a
range of 107 per hour. In other instances, the manufacturer’s nominal zero error point
MNZEP reflects a manufacturer’s practice of labeling a higher speéd processor chip as
a lower speed processor chip. In situations, an individual processor can be operated at a
higher clock rate than the manufacturer’s nominal zero error point MNZEP without
exceeding a manufacturer’s tolerated operating error rate. Without an ability to recover
from timing errors resulting from a clock rate higher than the actual nominal zero error
point ANZEP, a computational system is subject to an increased possibility of system
failure and data loss/corruption due to the timing errors as clock rate further increases.

An error rate line ER illustrates an error rate per instruction or per
instruction sequence for a processor. An execution rate line ET illustrates an execution
time per instruction or per instruction sequence for the processor. A time for error-
corrected execution line TECE illustrates a time for a time for error-corrected execution
of an instruction or instruction sequence, and reflects a measure of useful work
performed by the processor. A time for an error-corrected execution at a particular
clock rate in excess of the ANZEP includes a sum of the execution rate line ET and a
time to correct erroneous executions because the ANZEP is exceeded. The time for
error-corrected execution lipe TECE illustrates this sum and includes an optimal error-
tolerant operating portion OETOP, identified as a “0° siope” location. Inan
embodiment, running a processor having a computational fault recovery means at the
OETOP results in a minimum time for an error-correcied execution of an instruction or
instruction sequence. In a further embodiment, the time for error-corrected execution
line TECE illustrates a performance criterion. In another embodiment, the time for
error-corrected execution line TECE represents a performance criterion corresponding
to an incidence of a detected computational error, illustrated as a selected point (not
shown) on the error rate line ER.

Returning to FIG. 30, in an embodiment, the control circuit 1540
includes a control circuit for adjusting the adj ustable operating parameter in response to

a performance criterion corresponding to an incidence of the detected computational
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error. In another embodiment, the performance criterion includes a performance
criterion embodied in the time for error-corrected execution line TECE of FIG. 31. For
example, the adjusting the adjustable operating parameter in response to a performance
criterion may include adjusting a clock rate 10 achieve a performance criterion of a
minimum TECE. In a further embodiment, the performance criterion includes a
performance criterion corresponding to an incidence of the detected computational
error. For example, the adjusting may include adjusting a clock rate to achieve a
performance criterion of a target error rate along the ER line, thus achieving a
performance criterion of no more than the target error rate.

In an embodiment, the control circuit 1540 includes a control circuit
implemented in software associated with at least one of an operating system and/or a
program executable by the processor subsystem and for adjusting the adjustable
operating parameter in response to a performance criterion. In another embodiment, the
control circuit includes a control circuit for adjusting the adjustable operating parameter
in response to a performance criterion corresponding to an incidence of a detected
processor subsystem computational error. In a further embodiment, the control circuit
includes a control circuit for at least one of initiating, activating, causing, facilitating,
accomplishing, and/or achieving an adjustment of the adjustable operating parameter in
response to a performance criterion. In an embodiment, the control circuit includes a
control circuit for adjusting a voltage of the processor subsystem in response to a
performance criterion.

In an embodiment, the control circuit 1540 includes a control circuit for
adjusting a processor subsystem in response to a performance criterion corresponding to
an incidence of the detected computational error. In another embodiment, the control
circuit includes a control circuit for adjusting a frequency of a timing signal employed
by the processor subsystem in response to a performance criterion. In a further
embodiment, the control circuit includes a control circuit for adjusting a processor
subsystem clock in response to a performance criterion corresponding to an incidence of
the detected computational error. In another embodiment, the control circuit includes a

control circuit for adjusting the adjustable operating parameter in response to a
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performance criterion corresponding to at least one of a single incidence of the detected
computational error, an incidence frequency of the detected computational error, an
incidence occurrence raie of the detected computational error, an incidence tempo of the
detected computational error, an incidence p'atterﬁ of the detected computational error,
or an incidence prevalence of the detected computational error. For example, the
incidence frequency of the detected computational error may include an incidence
frequency over a time of the detected computational error. In another example, the
incidence rate of the detected computational error may include an incidence rate of the
detected computational error per execution of an instruction or an instruction sequence.
In a further example, the incidence prevalence of the detected computational error may
include an incidence distribution of the detected computational error, such as more than
X instances occurring within Y instructions of a sequence of Z instructions.

In an embodiment, the control circuit 1540 includes a control circuit for
adjusting the adjustable operating parameter based on a performance criterion
substantially minimizing a time required to complete successfully an execution of the
sequence of instructions 1560. In another embodiment, the control circuit includes a
control circuit for adjusting the adjustable operating parameter in a substantial

conformity with a performance criterion corresponding to

A time to complete an execution of the sequence of instructions

A adjustable operation parameter.

For example, FIG. 31 illustrates an embodiment of the above performance criterion at
the where the adjustable operating parameter is clock rate at a location where the slope
of the line OETOP is zero, i.e., “0° slope line.” In a further embodiment, the control
circuit includes a control circuit for adjusting the adjustable operating parameter in
response to a performance criterion corresponding to a substantial minimization of time
to complete an execution of the sequence of instructions.

In an embodiment, the control circuit 1540 includes a control circuit for

adjusting a frequency of the processor subsystem clock signal 1514 based upon a
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performance criterion corresponding to a substantial minimization of time to complete
an execution of the sequence of instrucﬁions 1560. In another embodiment, the control
circuit includes a control circuit for adjusting a processor subsystem clock signal
frequency in substantial conformity with a performance criterion corresponding to

0= A time to complete an execution of the sequence of instructions

A processor subsystem clock frequency.

In a further embodiment, the control circuit includes a control circuit for
adjusting a processor subsystem voltage Vcc 1516 in response 1o a performance
criterion corresponding to a substantial minimization of time to execute the sequence of
instructions 1560. In another embodiment, the control circuit includes a control circuit
for adjusting a processor subsystem voltage in substantial conformity. with a
performance criterion corresponding to

0 = A time to complete an execution of the sequence of instructions

A processor subsystem voltage.
For example, the performance criterion involving an adjustable processor subsystem
voltage may be graphically illustrated in a manner at least substantially similar to the
graphical illustration of the performance criterion involving an adjustable clock rate of
FIG. 31.

In an embodiment, the control circuit 1540 includes a control circuit for
adjusting the adjustable operating parameter based upon a performance criterion
substantially minimizing an expected time to successfully complete an execution of the
sequence of instructions 1560 while at least one other adjustable operating parameter
remains substantially constant. In another embodiment, the control circuit includes a
control circuit for adjusting the adjustable oiaerating parameter based upon a
dynamically-derived performance criterion and an incidence of the detected
computational error. For example, the control circuit may include an operability to vary
a clock rate of a processor subsystem in an environment, dynamically determine
corresponding times required for an error-corrected execution of an instruction
sequence, and select a clock signal 1514 rate for a subsequent execution accordfng toa

performance criterion. For example, the performance criterion may include selection of
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a clock signal rate corresponding to the optimized error-tolerant operating portion
OETOP for the processor. Alternatively, the performance criterion may include
selection of a clock signal rate based upon another portion of the TECE line
representing a time for an error-corrected execution of the instruction sequence, such as
a 10% lesser clock rate than the optimized error-tolerant operating portion OETOP. In
a further embodiment, the dynamically-derived performance criterion includes a
dynamically-derived performance criterion having an objective 10 substantial]};
minimize an expected time to successfully complete an execution of the sequence of
instructions.

In an embodiment, the control circuit 1540 includes a control circuit for
adjusting the adjustable operating parameter based upon a performance map and an
empirically-based incidence of the detected computational error. In another
embodiment, the control circuit includes a control circuit for adjusting the adjustable
operating parameter based upon an error-tolerant performance criterion corresponding
to an incidence of the deiected computational error. In a further embodiment, the
control circuit includes a control circuit for adjusting the adjustable operating parameter
in response to a performance criterion embodied in a lookup table and an incidence of
the detected computational error. ln another embodiment, the performance criterion
embodied in the lookup table includes a performance criterion embodied in a lookup
table having an objective to substantially minimize an expected time to execute the
sequence of instructions. '

FI1G. 32 illustrates a partial view of a computerized apparatus 1600 in
which embodiments may be implemented. The computerized apparatus includes a
processor subsystem 1610, a sensing module 1620, a recovery module 1630, and a
control module 1640. The processor subsystem has an adjustable operating parameter
and operable to execute a sequence of instructions. The sensing module is operable to
detect an operating-parameter-induced error in an execution of an instruction of the
sequence of instructions 1660. The recovery module is operable to rollback an
execution of the sequence of instructions to a checkpoint in response to the detected

operating-parameter-induced error. The control module is operable to adjust the
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adjustable operating parameter in response to a performance criterion corresponding to
an incidence of the detected operating-parameter-induced error.

In an embodiment, the sensing module 1620 includes a sensing module
operable to detect a computational error in an execution of an instruction of the
sequence of instructions 1660. In another embodiment, the sensing module includes a
sensing module operable to detect an execution path synchronization error in an
execution of an instruction of the sequence of instructions. In a further embodiment, the
sensing module includes a sensing module operable to detect a clock-induced error in
an execution of an instruction of the sequence of instructions. In another embodiment,
the sensing module includes a sensing module 6perable to detect a processor voltage-
induced error in an execution of an instruction of the sequence of instructions. In a
further embodiment, the sensing module includes a sensing module implemented in
hardware and operable to detect an operating-parameter-induced error in an execution
of an instruction of the sequence of instructions.

In an embodiment, the recovery module 1630 includes a recovery
module implemented in at least one of hardware, software, firmware, and/or a
microengine and operable to rollback an execution of the sequence of instructions to a
checkpoint in response to the detected operating-parameter-induced error. In another
embodiment, the processor subsystem 1610 and at least one of the sensing module
1620, the recovery module 1630, and/or the control module 1640 are formed on a same
chip 1601.

In an embodiment, the control module 1640 includes a control module
implemented in at least one of hardware, software, firmware, and/or a microengine and
operable to adjust the adjustable operating parameter in response to a performance
criterion corresponding to an incidence of the detected operating-parameter-induced
error. In another embodiment, the control module includes a control module operable
to adjust the adjustable operating parameter in response to an error-tolerant performance
criterion corresponding to an incidence of the detected operating-parameter-induced

€rror.
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FIG. 33 illustrates an exemplary operational flow 1700 that may
implement embodiments. After a start operation, the operational flow moves to a
monitoring operation 1710. The monitoring operation detects a computational error
corresponding to an execution of an instruction of a sequence of instructions by a
processor having an adjustable operating parameter. A restore operation 1720 rolls
back an execution of the sequence of instructions to a checkpoint in response to the
detected computational error. A tuning operation 1730 changes the adjustable processor
operating parameter in response to a performance criterion corresponding to an
incidence of the detected computational error. The flow then proceeds to an end
operation. .

FIG. 34 illustrates an alternative embodiment of the exemplary
operational flow 1700 of FIG. 33. The tuning operation 1730 may include at least one
additional operation, such as the operation 1732. The operation 1732 determines that
changing the adjustable processor operating parameter is at least substantially likely to
decrease an expected time to successfully complete an execution of the sequence of
instructions, and appropriately changing the adjustable processor operating parameter in
response to a performance criterion corresponding to an incidence of the detected
computational error.

FIG. 33 illustrates an alternative embodiment of the exemplary
operational flow 1700 of FIG. 33. The tuning operation 1730 may include at least one
additional operation. The at least one additional operation may include an operation
1734, an operation 1736, and/or an operation 1738. The operation 1734 changes the
adjustable processor operating parameter in response to a performance criterion
substantially minimizing a time to complete an execution of the sequence of
instructions. The operation 1736 changes a voltage supplied to the processor in
response to a performance criterion corresponding to an incidence of the detected
computational error. The operation 1738 changes the adjustable processor operating
parameter in response to an error-tolerant performance criterion corresponding to an

incidence of the detected computational error.
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FI1G. 36 illustrates a partial view of a computerized apparatus 1800 in
which embodiments may be implemented. The computerized apparatus includes means
1810 for detecting a computational error corresponding to an execution of an instruction
of a sequence of instructions by a processor having an adjustable operating parameter
The computerized apparatus also includes means 1820 for rolling back an execution of
the sequence of instructions to a checkpoint in response to the detected computational
error. The computerized apparatus further inciudes means 1830 for changing the
adjustable processor operating parameter in response to a performance criterion
corresponding to an incidence of the detected computational error.

F1G. 37 illustrates a partial view of a computing system 1900 in which
embodiments may be implemented. The computing system includes a processor
subsystem 1910, an information store 1950, and a controller module 1920. The
processor subsystem includes an adjustable operating parameter, illustrated as an
adjustable clock signal (CLK) 1914, and/or an adjustable précessor voltage (Vec) 1916.
The information store is operable to save a sequence of instructions 1950. The
controller module includes a monitor circuit 1930, and a control circuit 1940. The
monitor circuit includes a monitor circuit for detecting an incidence of an operating-
parameter-caused error corresponding to an execution of an instruction of the sequence
of instructions by the processor subsystem. The control circuit includes a control circuit
for adjusting the adjustable operating parameter based upon an error-tolerant
performance criterion.

" In an embodiment, the controller module 1920 including a monitor
circuit 1930 further includes a controller module including a monitor circuit for
detecting an incidence of a computational error corresponding to an execution of an
instruction of the sequence of instructions 1960 by the processor subsystem. In another
embodiment, the controller module including a monitor further includes a controller
module including a monitor circuit for detecting an incidence of an execution path
synchronization error corresponding 1o an execution of an instruction of the sequence of
instructions by the processor subsystem. In a further embodiment, the controller

module including a monitor circuit includes a controller module including a hardware-
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implemented monitor circuit for detecting an incidence of an operating-parameter-
caused error corresponding to an execution of an instruction of the sequence of
instructions by the processor subsystem.

In an embodiment, the controller module ]920'including a monitor
circuit 1930 further includes a controller module including a monitor circuit
implemented in at least one of hardware, software, firmware, and/or a microengine for
detecting an incidence of an operating-parameter-caused error corresponding to an
execution of an instruction of the sequence of instructions by the processor subsystem.
In another embodiment, the controller module including a monitor circuit further
includes a controller module including a moniter circuit implemented in dynamic
implementation verification architecture (DIVA) and for detecting an incidence of an
operating-parameter-caused error corresponding to an execution of an instruction of the
sequence of instructions by the processor subsystem. In a further embodiment, the
controller module including a monitor circuit further includes a controlier module

including a monitor circuit employing a TEATime execution checker algorithm and for

detecting an incidence of an operating-parameter-caused error corresponding to an

execution of an instruction of the sequence of instructions by the processor subsystem.
In an embodiment, the controller module 1920 including a control circuit
1940 further includes a control circuit implemented in at least one of hardware,
software, firmware, and/or a microengine and for adjusting the adjustable operating
parameter based upon an error-tolerant performance criterion. In another embodiment,
the controller module including a control circuit further includes a control circuit .
implemented in software associated with at least one of an operating system and/or a
program executable by the processor subsystem and for adjusting the adjustable
operating parameter based upon an error-tolerant performance criterion.
In a further embodiment, the controller module including a control circuit further
includes a controller module including a control circuit for at least one of initiating,
activating, causing, facilitating, accomplishing, and/or achieving an adjustment of the

adjustable operating parameter based upon an error-tolerant performance criterion.



WO 2007/089660 PCT/US2007/002296

U

10

15

20

25

30

In an embodiment, the controller module 1920 including a control circuit
1940 further includes a controller module including a control circuit for adjusting a
voltage of the processor subsystem based upon an error-tolerant performance criterion.
In another embodiment, the controller module including a control circuit further
includes a controller module including a contro! circuit for adjusting a frequency of a
timing signal employed by the processor subsystem based upon an error-tolerant
performance criterion. In a further embodiment, the controller module including a
control circuit further includes a controller module including a control circuit for
adjusting a processor clock based upon an error-tolerant performance criterion.

In an embodiment, the controller module 1920 including a contro] circuit
1940 further includes a controller module including a control circuit for adjusting the
adjustable operating parameter to at least substantially minimize a time required to
successfully complete an execution of the sequence of instructions. In another
embodiment, the controller module including a control circuit further includes a
controller module including a control circuit for adjusting the adjustable operating
parameter in substantial conformity with an error-tolerant performance criterion that
corresponds to

0 = A time to complete an execution of the sequence of instructions

A adjustable operating parameter.

In a further embodiment, the controller module including a control circuit further
includes a controller module including a control circuit for adjusting the adjustable
operating parameter to substantially minimize a time to complete an execution of the
sequence of instructions.

In an embodiment, the controller module 1920 including a control circuit
1940 further includes a controller module including a control circuit for adjusting a
processor clock frequency to substantially minimize a time to complete an execution of
the sequence of instructions. In another embodiment, the controller module including a
control circuit further includes a controller module including a control circuit for
adjusting a processor clock frequency in substantial conformity with

0 = A time to complete an execution of the sequence of instructions
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A processor clock frequency.
In a further embodiment, the controller module including a control circuit includes a
controller module including a control circuit for adjusting a processor clock frequency
in substantial conformity with

£ 0.05 = A time to complete an execution of the seguence of instructions

A processor clock frequency.
In another embodiment, the controller module including a control circuit further
includes a controller module including a control circuit for adjusting a processor clock
frequency in substantial conformity with

+ 0.10 = A time to complete an execution of the sequence of instructions

A processor clock frequency.
In a further embodiment, the controller module including a control circuit further
includes a controller module including a control circuit for adjusting a processor clock
frequency in substantial conformity with

+ 0.20 = A time to complete an execution of the sequence of instructions

A processor clock frequency.
In an embodiment, the controller module 1920 including a control circuit
1940 further includes a controller module incfuding a control circuit for adjusting a
processor voltage to substantially minimize a time to complete an execution of the
sequence of instructions. In another embodiment, the controller module including a
control circuit further includes a controller module including a control circuit for
adjusting a processor clock frequency in substantial conformity with

0 = A time to complete an execution of the sequence of instructions

A processor clock frequency.

In another embodiment, the controller module including a control circuit
further includes a controller module including a control circuit for adjusting a processor
clock frequency to substantially minimize an expected time to successfully complete an
execution of the sequence of instructions while at least one other adjustable operating
parameter remains substantially constant. In a further embodiment, the controller

module including a control circuit further includes a controller module including a
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control circuit for adjusting the adjustable operating parameter based upon an error-
tolerant and dynamically-derived performance criterion. For example, the control
circuit may dynamically derive data representative of the time for error-corrected
execution line TECE of FIG. 31. The time for error-correcied execution line TECE
represents a time for an error-corrected execution of an instruction or instruction
sequence as at least one adjustable operating parameter of CLK signal 1914 and/or
processor voltage Vec 1916 1s varied for the processor subsystem 1910. This allows the
processor subsystem to be tuned for its unique properties and its environment. In an
embodiment, the dynamically-derived performance criterion may be derived once for a
processor and be available for a future use. In another embodiment, thé'dynamically—
derived performance criterion may be derived periodically for a processor and be
available for a future use. In a further embodiment, the dynamically-derived
performance criterion may be derived from a processor of a processor class and be
available for a future use by other instances of processors of the processor class. In
another embodiment, the controller module including a control circuit for adjusting the
adjustable operating parameter based upon an error-tolerant dynamically-derived
performance criterion further includes a controller module including a control circuit for
adjusting the adjustable operating parameter based upon an error-tolerant dynamically-
derived performance criterion having an objective to substantially minimize an expected
time to successfully complete an execution of the sequence of instruction.

In an embodiment, the controller module 1920 including a control circuit
1940 further includes a controller module including a control circuit for adjusting the
adjustable operating parameter based upon an empirically-based error-tolerant
performance map. In another embodiment, the controller module including a control
circuit further includes a controller module including a control circuit for adjusting the
adjustable operating parameter based upon a performance criterion embodied ina
lookup table. In a further embodiment, the controller module including a control circuit
further includes a controller module including a control circuit for adjusting the

adjustable operating parameter based upon a performance criterion embodied in a
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lookup table and having an objective of substantially minimizing a time to comp]ete an
execution of the sequence of instruction.

In an embodimem, the controller module 1920 including a control circuit
1940 further includes a controller module including a control circuit for adjusting the
adjustable operating parameter based upon an error-tolerant performance crilerion
corresponding to an incidence of the detected operating-parameter-caused error. In
another embodiment, the controller module further includes an error recovery circuit
operable to restore an execution of the sequence of program instructions to a checkpoint
based upon the detected operating-parameter-caused error.

F1G. 38 illustrates an exemplary operational flow 2000 implemented in a
computerized system. After a start operation, the operational flow moves to a sensing
operation 2010. The sensing operation detects an incidence of a processor-operating-
parameter-caused error corresponding to an execution of an instruction of the sequence
of instructions by a processor subsystem having an adjustable operating parameter. A
tuning operation 2030 changes the adjustable processor operating parameter based upon
an error-tolerant performance criterion. The operational flow then moves to an end
operation.

FIG. 39 illustrates an alternative embodiment of the exemplary
operational flow 2000 of FIG. 38. The sensing operation 2010 may include at least one
additional operation. The additional operation may include an operation 2012, and
operation 2014, and/or an operation 2016. The operation 2012 detects an incidence of a
processor setup/hold viclation corresponding to an execution of an instruction of the
sequence of instructions by a processor subsystem having an adjustable operating
parameter. The operation 2014 detects an incidence of an execution path
synchronization error corresponding to an execution of an instruction of the sequence of
instructions by a processor subsystem having an adjustable operating parameter. The
operation 2016 detects an incidence of at least one of a single incidence, an incidence
frequency, an incidence occurrence rate, an incidence tempo, an incidence pattern, or an

incidence prevalence of a processor-operating-parameter-caused error corresponding to
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an execution of an instruction of the sequence of instructions by a processor subsystem
having an adjustable operating parameter.

FIG. 40 illustrates another alternative embodiment of the-exemplary
operational flow 2000 of FIG. 38. The tuning operation 2030 may include at least one
additional operation. The additional operation may include an operation 2032, and
operation 2034, and/or an operation 2035. The operation 2032 changes the adjustable
processor operating parameier based upon an error-tolerant performance criterion to
substantially minimize a time required to successfully complete an execution of the
seqﬁence of instructions. The operation 2034 changes at least one of a voltage of the
processor subsystem and/or a processor clock firequency based upon an error-tolerant
performance criterion to substantially minimize a time required to successfully
complete an execution of the sequence of instructions. The operation 2035 changes the
adjustable processor operating parameter based upon an error-tolerant and dynamically-
derived performance criterion having an objective to substantially minimize a time to
execute the sequence of instruction by the processor subsystem. .

FIG. 41 illustrates another alternative embodiment.of the exemplary
operational flow 2000 of FIG. 38. The tuning operation 2030 may include at least one
additional operation. The additional operation may include an operation 2036, an
operation 2038, and/or an operation 2042. The operation 2036 changes a processor
clock frequency in substantial conformity with

0 = A time to complete an execution of the sequence of instructions

A processor clock frequency.
The operation 2038 changes a processor voltage in substantial conformity with

0 = A time to compleie an execution of the sequence of instructions

A processor voltage. _
The operation 2042 determines that changing the adjustable prbcessor operating
parameter is at least substantially likely to decrease a time to complete an execution of
the sequence of instructions by the processor and changes the adjustable processor

operating parameter based upon an error-tolerant performance criterion.
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FI1G. 42 illustrates another alternative embodiment of the exemplary
operational flow 2000 of F1G. 38. The of:erational flow may include at least one
additional operation. The additional operation may include an opération 2050, The
operation 2050 restores an execution of the sequence of program instructions to a
checkpoint based upon the detected processor-operating-parameter-caused error.

FIG. 43 illustrates an exemplary embodiment of a device 2100 in which
embodiments may be implemented. The device includes means 2110 for detecting an
incidence of a processor-operating-parameter-caused error corresponding to an
execution of an instruction of the séquence of instructions by a processor subsysiem
having an adjustable operating parameter. The device also includes means 2120 for
changing the adjustable processor operating parameter based upon an error-tolerant
performance criterion. In another embodiment, the device further includes means 2130 .
for restoring an execution of the sequence of program instructions to a checkpoint based
upon the detected processor-operating-parameter-caused error.

FIGS. 44, 45, and 46 include circuit block diagrams illustrating
exemplary environments that include synchronous circuits in which embodiments may '
be implemented. FIG. 44 illustrates an exemplary system 2200 that includes
synchronous circuit having at least two subcircuit blocks in which embodiments may be
implemented, such as a Pentium® P-4 processor. FIG. 45 illustrates an exemplary
system 2300 that includes a portion of a synchronous circuit Having at least two circuit
blocks in which embodiments may be implemented, such as a portion of the Pentium®
P-4 processor illustrated in FIG. 44. FIG. 46 illustrates an exemplary system 2400 that
includes a synchronous multicore circuit having at least two subcircuit blocks in which
embodiments may be implemented.

An embodiment includes a system. The system may include at least a
part of the system 2200 of FI1G. 44, the system 2300 of F1G. 45, and/or the system 2400
of FIG. 46. The system includes a synchronous circuit including a first subcircuit
powered by -a first power plane having a first power plane voltage and a second
subcircuit powered by a second power plane having a second power plane voltage.‘ The.

system also includes an error detector operable to detect an incidence of a
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computational error occurring in the first subcircuit. The system further includes a
controller operable to change the first power plane voltage based upon the detected
incidence of a computational error. For exampie, the first subcircuit may include any
circuit block of the circuit blocks illustrated in system 2200 of F1G. 44. The second
subcircuit may include any other circuit of the circuit blocks illustrated in FIG. 44.

By way of further example of the above system, the system 2300 of FIG.
45 illustrates six subcircuit blocks in which embodiments may be implemented. The six
subcircuits include: an integer register file 2310; an ALUI 23.20§ an ALU?2 2324; a load
AGU 2329; an L1 cache 2330; and an L2 cache 2336. The six subcircuit blocks are
linked together as appropriate be communications links, illustrated by a communication
link 2364. The illustrated embodiment also includes a power plane having a power
plane voltage that powers a subcircuit block. A power plane 2312 powers the integer
register file 2310; a power plane 2322 powers the ALU1 2320; a power plane 2326 '
powers the. ALU2 2324; a power plane 2329 powers the load AGU 2328; a power plane

* 2332 powers the L1 cache 2330; and power plane 2338 powers the L2 cache 2336. In

an alternative embodiment, one power plane may provide power to two or more

subcircuit blocks. A power supply 2370 prO\;ides voltages to the power planes via

couplers (not illustrated) as appropriate.

Continuing with the further example, the system 2300 further includes an
error detector 2340 operable to detect an incidence of a computational error occurring in
the first subcircuit. The first subcircuit may include any one or more of the six
subcircuit blocks: i.e., the integer register file 2310; the ALUI 2320; the ALUZ2 2324,
the load AGU 2328; the L1 cache 2330; and the L2 cache 2336. The second subcircuit
may include any subcircuit block not included in the first subcircuit. The system also '
includes an error detector 2340. FIG. 45 illustrates an embodiment where a single error
detector is coupled to at least two subcircuit blocks via a coupler 2362.

The error detector 2340 may be implemented in any manner and/or
technique known to those skilled in the art. In an embodiment, the error detector may
be implemented in the DIV A technology. In anothel embodiment, the error detector

may be implemented in the TEATime execution checker algorithm architecture. Ina
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further embodiment, the error detector may be implemented in the RAZOR architectural
approach, In another embodiment, the error detector may be implemented employing
another synchronous circuit (not shown) operable to execute at least one instruction
substantially in paralle! with the first subcircuit.

In operation of an embodiment, the system 2300 operates with the power
planes receiving a selected voltage or respectively receiving selected voltages from the
power supply 2370. For example, an initial operation of the system 2300 may include
the power planes each receiving a same voltage, for example 1.40 volts. If the error
detector 2340 detects an incidence of a computational error occurring in the ALU2
2324, the controller 2350 causes an increase in the voltage received by the power plane
2326 for the ALU?2, for example increasing it to 1.45 volts. In another embodiment, the
voltage received by the other power planes remains the same at 1.40 volts. This
operational configuration results in less overall power consumption by the system
because only the voltage to the power plane 2326 serving ALUZ2 is increased to address
a computational error while the other power plane voltages remain unchanged.

By way of additional example, FIG. 46 illustrates the exemplary system
2400 that includes a synchronous multicore circuit having at least two subcircuit blocks
each respectively associated with a power plane. The at least two subcircuit blocks and
respectively associated power planes are illustrated as.five subcircuit blocks. The five
subcircuit blocks include a Core-1 2410 that receives power from a power plane 2412; a

Core-2 2420 that receives power from a power plane 2422; an L1 cache 2426 that

-receives power from a power plane 2428; and a L2 cache 2430 that receives power from

a power plane 2432. The system also includes an error detector 2440 operable to detect
an incidence of a computational error occurring in the first subcircuit. The system
further includes a controller 2450 operable to change the first power plane voltage
based upon the detected incidence of a computational error. The system may also
include a power supply 2470. |

In operation of an embodiment, the system 2400 operates with the power
planes receiving a selected voltage or respectively receiving selected voltages from the

power supply 2470. For example, an initial operation of the system 2400 may include
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the power planes each receiving a same voltage, for example 1.10 volts. If the error
detector 2440 detects an incidence of a computational error occurring in Core-2 2420,
the controller 2450 causes an increase in the voltage received by the power plane 2422
providing power to the Core-2. For example, the voltage of the power plane 2422 may
be increased to 1.20 volts. In another embodiment, the voltage received by the other
power planes, including the power plane 2412 providing power to the Core-1 2410,
remains at 1.10 volis. '

The following describes alternative embodiments which may be
implemented in the system 2200 described in conjunction with FIG. 44, the system
2300 described in conjunction with F1G. 45, and/or the system 2400 described in
conjunction with FIG.'46. Certain reference numbers of one or more of these figures
may be cited in the following description as an aid for complying with requirements of
§112. However, inclusion of a particular figure, element, and/or reference number in a
description is not intended to suggest any limitation as to the structure, scope of use, or
functionality of an embodiment. A particular system should not be interpreted as
having any dependency or requirement relating to any one or combination of
components illustrated in an exemplary operating systém. For example, in certain
instances, one or more elements of a system may be deemed not necessary and omitted.
In other instances, one or more other elements may be deemed necessary and added.

FIG. 45 illustrates an embodiment where the synchronous circuit of the
system 2300 includes a synchronou.s uniprocessor on a chip 2301. The uniprocessor
includes a first subsystem powered by a first power plane having a first power plane
voltage. The first subsystem may include at least one of the six subcircuit blocks; the
integer register file 2310, the ALU1 2320, the ALU2 2324, the load AGU 2328, the L1
cache 2330, and the L2 cache 2336. The second subsystem powered by a second power
plane having a second power plane voltage may include any subcircuit block not
included as the first subcircuit.

In another embodiment of the system 2300, the synchronous circuit
includes a synchronous uniprocessor including a first arithmetic logic unit 2320

powered by a first power plane 2322 having a first power plane voltage and a second
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arithmetic logic unit 2324 powered by a second power plane 2326 having a second
power plane voltage. In a further embodiment, the synchronous circuit includes a
synchronous uniprocessor including an arithmetic logic unit powered by.a first power
plane having a first power plane voltage, such as the ALU1 2320 and/or the ALU2
2324. The synchronous uniprocessor also includes an on-chip cache powered by a
second power plane having a second power plane voltage, such as the L1 cache 2330
powered by a power plane 2332 and/or the L2 cache 2336 powered by a power plane
2338.

In an embodiment of the system 2300, the error detector 2340 includes a
hardware-implemented error detector operable to detect an incidence of a computational
error occurring in the first subcircuit. In another embodiment, the error detector
includes one error detector coupled 2362 with both the first subcircuit and the second
subciréuit, and bperable to detect an incidence of a computational error occurring in the
first subcircuit. In a further embodiment, the one error detector includes one error
detector coupled with both the first subcircuit and the second subcircuit, and operable to
detect an incidence of a computational error occurring in the first subcircuit and/or the
second subcircuit. In another embodiment, the error detector includes a first error
detector (not shown) coupled with the first subcircuit and a second error detector (not
shown) coupled with the second subcircuit. The first error detector and the second error
detector are respectfully operable to detect an incidence of a computationél error
occurring in the first subcircuit and the second subcircuit. Iﬁ a further embodiment, the
error detector includes an error detector coupled with the controller 2350 and operable
to detect an incidence of a computational error occurring in the first subcircuit.

In an embodiment, the error detector 2340 includes an error detector
operable to detect a computational error corresponding to a setup/hold violation. In
another embodiment, the error detector includes an error detector operable to detect at
least one incidence of a computational error corresponding to a setup/hold violation, a
processor clock speed, a processor voltage, a noise spike, a charged particle, a soft
error, a single event upset failure, an unreliable processor hardware, an incorrectly

executed instruction, on-chip cache error, an oxide breakdown, an induced error, and/or
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an electromigration induced error. In a further embodiment, the error detector includes
an error detector operable to detect at least one of a single incidence, an incidence
frequency, an incidence occurrence rate, an incidence lempo, an incidence pattern,
and/or an incidence prevalence of a computational error.

In an embodiment, the controller 2350 operable to change the first power
plane voltage based upon the detected incidence of a computational error includes a
controller operable to change a first power plane voltage based upon the detected
incidence of a computational error without substantially changing the second power
plane voltage. In another embodiment, the controller includes a controller implemented
in at least one.of hardware, software, firmware, and/or a microengine, and operable to
change the first power plane voltage based upon the detected incidence of a
computational error. In. a further embodiment, the controller includes a controller
implemented in software associated with at least one of an operating system and/or a
program executable by the synchronous circuit and operable to éhange the first power
plane voltage based upon the detected incidence of a computational error. In another
embodiment, the controller includes a controller operable to increase the first power

plane voltage based upon the detected incidence of a computational error. In a further

25

30

embodiment, the controller includes a controller operable to decrease the first power
plane voltage based upon the detected incidence of a computational error.

In an embodiment of the system, the synchronous circuit, the error
detector, and the controller are formed on a single chip. For example, the synchronous
circuit, the error detector 2340, and the controller 2350 are formed on a single chip
2301 as illustrated in conjunction with FIG. 45. By way of further example, the
synchronous circuit 2402, the error detector 2440, and the controller 2450 are formed
on a single chip 2404, as illustrated in conjunction with FIG. 46. In another

embodiment, the system further comprises a recovery module (not shown) operable to

cause a correction of the computational error.

In a further embodiment, the system further comprises a power supply
operable to provide a selected one of at least two voltages to the first power plane in

response to the controller. For example, the system may include the system 2300 that
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includes the power supply 2370, and the controller 2350 of FIG 45. By way of further
example, the system may include the system 2400 that includes the power supply 247h0,
and the controller 2450 of FIG 46. In an embodiment, the power supply includes a
power supply operable to provide in respon.se to the controller a selected voltage to the
first power plane and. another selected voltage to the second power plane. In another
embodiment, the power supply includes an on-circuit chip power supply operable to
provide a selected one of at least two voltages to the first power plane in response to the
controller. In a further embodiment, the power supply inclgdes an off-circuit chip .
power supply electrically coupled with the circuit and operable to provide a selected
one of at least two voltages to the first power plane in response to the controller. In an
embodiment, the power supply includes at least one of a DC/DC regulated, a
controllable, and/or programmable power supply operable to provide a selected one of
at least two voltages to the first power plane in response to the controller. In a further
embodiment, the system further includes a power supply configured to electrically
engage a portable power source and operable to provide a selected one of at least two
voltages to the first power plane in response to the controller.

Embodiments described above in conjunction with FIG. 45 may also be
implemented in the exemplary system 2400 of FI1G. 46. In addition, FIG. 46 illustrates
an embodiment where the synchronous circuit of the system 2400 includes a
synchronous processor including a first processor core 2410 powered by a first power
plane 2412 having a first power plane voltage and a second processor core 2420
powered by a second power pléne 2422 having a second power plane voltage.

FIG. 47 illustrates an exemplary operational flow 2500. After a start
operation, the flow includes a monitoring operation 2510. The monitoring operation
detects a computational error occurring in a first subcircuit of a synchronous circuit.
The synchronous circuit includes the first subcircuit powered by a first power plane at a
first power plane voltage and a second subcircuit powered by a second power plane at a
second power plane voltage. A tuning operation 2520 increases the first power plane
voltage based upon the detected computational error. The operational flow then

proceeds to an end operation.
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FIG. 48 illustrates an alternative embodiment of the exemplary
operational flow 2500 of FIG. 47. The monitoring operation 2510 may include at least
one additional operation. The at least one additional operation may include an
operation 2512, and/or an operation 2514. The operation 2512 detects a computational
error occurring in a first processor core of a synchronous processor that includes the
first processor core powered by a first power plane at & first power plane voltage and a
second processor core powered by a second power plane at a second power plane
voltage. The operation 2514 detects a computational error occurring in a first subcircuit
of a synchronous uniprocessor that includes the first subcircuit powered by a first power
plane at a first power plane voltage and a second subcircuit powered by a second power
plane at a second power plane voltage. .

FIG. 49 illustrates another alternative embodiment of the exemplary
operational flow 2500 of FIG. 47. The tuning operation 2520 may include at least one
additional operation, such as an operation 2522. The operation 2522 increases the first
power plane voltage based upon the detecied computational error while maintaining the
second power plane voltage at least substantially constant.

FIG. 50 illustrates a further alternative embodiment of the exemplary
operational flow 2500 of FIG. 47. The exemplary operational flow may include at least
one additional operation, such as an operation 2530. The operation 2530 operates the
first subcircuit at a first power plane voltage. The operation 2530 may include at least
one additiona} operation. The at least one additional operation may include an
operation 2532 and/or an operation 2534. The operation 2532 operates the first
subcircuit at an initial first power plane voltage. The operation 2534 decreases the first
power plane voltage.

FIG. 51 illustrates a partial view of an exemplary device 2550 in which
embodiments may be implemented. The device includes means 2560 for detecting a
computational error occurring in a first subcircuit of a synchronous circuit. The
synchronous including the first subcircuit powered by a first power plane at a first

power plane voltage and a second subcircuit powered by a second power plane at a
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second power plane voltage. The device also includes means 23570 for increasing the
first power plane voltage based upon the detected computational error.

In an embodiment, the dévice 2550 also includes means 2580 i’or
operating the first subcircuit at an initial first power plane voltage: In another
embodiment, the device also includes means 2590 for decreasing the first power plane
voltage.

FIG. 52 illustrates a partial view of an exemplary environment in which
embodiments may be implemented. FIG. 52 and the following discussion are intended
to provide a brief, general description of the environment. FIG. 52 illustrates an
exemplary thin computing device 2600 that interfaces with an electronic device (not
shown) that includes one or more functional elements. For example, the electronjc
device may include any item having electrical and/or electronic components playing a
role in a functionality of the item, such as a portable electronic device, a limited
resource computing device, a digital camera, a cell phone, a printer, a refrigerator, a car,
and an airplane. The thin computing device 2600 includes a synchronous processing
unit 2621, a system memory 2622, and a system bus 2623 that couples various system
components including the system memory 2622 to the synchronous processing unit
2621. The system bus 2623 may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. The system memory includes read-only memory (ROM)
2624 and random access memory (RAM) 2625. A basic input/output system (BIOS)
2626, containing the basic routines that help to transfer .information between sub-
components within the thin computing device 2600, such as during start-up, is stored in
the ROM 2624. A number of program modules may be stored in the ROM 2624 and/or
RAM 2625, including an operating system 2628, one or more.application programs
2629, other program modules 2630 and program data 2631.

A user may enter commands and information into the computing device
2600 through input devices, such as a number of switches and buttons, illustrated as
hardware buttons 2644, connected to the electronic device via a suitable interface 2645.

Input devices may further include a touch-sensitive display screen 2632 with suitable
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input detection circuitry 2633. The output circuitry of the touch-sensitive display 2632
is connected to the system bus 2623 via a video driver 2637. Other input devices may
include a microphone 2634 connected through a suitable audio interface 2635, and a
physical hardware keyboard (not shown). In addition to the display 2632, the
computing device 2600 may include other peripheral output devices, such as at least one
speaker 2638.

Other external input or output devices 2639, such as a joystick, game
pad, satellite dish, scanner or the like may be connected to the processing unit 2621
through a USB port 2640 and USB port interface 2641, to the system bus 2623.
Alternatively, the other external input and output devices 2639 may be connected by
other interfaces, such as a parallel port, game port or other port. The computing device
2600 may further include or be capable of connecting to a flash card memory (not
shown) through an appropriate connection port (not shown). The computing device
2600 may further include or be capable of connecting with a network through a network
port 2642 and network interface 2643, and/or connecting through wireless port 2646
and corresponding wireless interface 2647. In addition, these connections may facilitate
communication with other peripheral devices, including other computers, printers, and
so on (not shown). It will be appreciated that the various components and connections
shown are exemplary and other components and means of establishing communications
links may be used.

The computing device 2600 may be primarily designed to include a user
interface having a character, key-based, user input, or user data input via the touch
sensitive display 2632 using a stylus (not shown). Moreover, the user interface is not
limited to an actual touch-sensitive panel arranged for directly receiving input, but may
alternatively or in addition respond to another input device, such as the microphone
2634. For example, spoken words may be received at the microphone 2634 and
recognized. Alternatively, the computing device 2600 may be designed to include a
user interface having a physical keyboard (not shown).

The thin computing device 2600 functional elements (not shown) may be

typically application specific and related to a function of the electronic device. The
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device functional elements are driven by a device functional element(s) interface 2650,
which coupled with the system bus 2623, A functional element may typically perform a
single well-defined task with little of no user configuration or setup, such as a
refrigerator keeping food cold, a cell phone connecting with an appropriate tower and
transceiving voice or data information, and/or a camera capturing and saving an image.
FIG. 53 illustrates an exemplary system 2700 in which embodiments
may be implemented. The system includes an apparatus 2705. The apparatus includes
a synchronous circuit 2702. The synchronous circuit includes a first subcircuit powered
by a first power plane having a first power plane voltage and a second subcircuit
powered by a second powér plane having a second power plane voltage. The first
subcircuit includes at least one of a Core-1 2710 having a power plane 2712; a L1
cache(C1) having a power plane 2718; a Core-2 2720 having a power plane 2722; a L1
cache (C2) and/or an L2 cache 2430 having a power plane 2432. The second subcircuit
may include at least one subcircuit not selected as the first subcircuit. In an
embodiment, the thin computing device 2600 described in conjunction with FIG. 52
may include the synchronous circuit. The apparatus 27035 also includes an error
detector 2740 operable to detect an incidence of a computational error occurring in the
first subcircuit. The apparatus further includes a controller 2750 operable to change the
first power plane voltage based upon the detected incidence of a computational error.
The apparatus also includes a power supply 2770. The power supply is
configured to electrically couple with a portable power source 2772 and operable to
provide a selected one of at least two voltages to the first power plane in response to the
controller. In an embodiment, the apparatus 2705 powered by the power supply may
include the thin computing device of F1G. 52 that interfaces with an electronic device.
In an embodiment, the configuration of the power supply to accept the portable power
source imparts mobility and/or portability to the thin computing device and thus the
electronic device. The electronic device may include a handheld device, a wireless
device, a camera, a laptop computer, a game console, a cell phone, a pager, aPDA, a
global positioning unit, a satellite, media player, an electronic scanner, an electronic

book reader, and/or a browsing device.
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In an embodiment, the synchronous circuit further includes a
synchronous processor including a first processor core powered by a first power plane
having a first power plane voltage and a second processor core powered by a second
power plane having a second power plane voltage. In another embodiment, the
synchronous circuit further includes a synchronous uniprocessor including a first
subcircuit powered by a first power plane having a first power plane voltage and a
second subcircuit powered by a second power plane having a second power plane
voltage. In an embodimeni, the error detector includes a hardware-implemented error
detector operable to detect an incidence of a computational error occurring in the first
subcircuit.

In another embodiment, the power supply includes a power supply
configured to electrically couple with a replaceable portable power source and operable
to provide a selected one of at least two voltages to the first power plane in response to
the controller. In a further embodiment, the power supply includes a power supply
configured to electrically couple with a selectively replaceable portable power source
and operable to provide a selected one of at least two voltages to the first power plane in
response to the controller. In an embodiment, the power supply includes a power
supply configured to electrically couple with a rechargeable portable power source and
operable to provide a selécted one of at least two voltages to the first power piane in
response to the controller. In another embodiment, the power supply includes a power
supply configured to electrically couple with at least one of a battery, a rechargeable
battery, a replaceable battery, a fuel cell, an energy harvesting system, a capacitor,
and/or a selectively removable power source and operable to provide a selected one of
at least two voltages to the first power plane in response to the controller.

In an embodiment, the power supply includes a power supply electrically
coupled with at least one of a battery, a rechargeable battery, a replaceable battery, a
fuel cell, an energy harvesting system, a capacitor, and/or a selectively removable
power source and operable to provide a selected one of at least two voltages to the first
power plane in response to the controller. In another embodiment, the power supply

includes a power supply configured to electrically couple with a portable power source
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and operable to provide a selected one of at least two voltages to the first power plane in
response 1o the controller and another selected voltage to the second power plane. Ina
further embodiment, the power supply includes at least one of a DC/DC regulated, a
controllable, and/or programmable power supply configured to electrically couple with
a portable power source and operable to provide a selected one of at least two voltages
to the first power plane in response to the controlier.

FIG. 54 illustrates an exemplary operational flow 2800. After a start
operation, the operational flow includes a conservation operation 2810. The
conservation operation decreases a voltage received at a first power plane from a power
supply that includes a portable energy source. The first power plane is a component of
a synchronous circuil that includes a first subcircuit powered by the first power plane
and a second subcircuit powered by a second power plane having a second power plane
voltage. A monitoring operation 2820 detects an incidence of a computational error
occurring in the first subcircuit. An adjustment operation 2830 increases the voltage
received at the first power plane from the power supply that includes a portable energy
source in response to the detected computational error.

Operation of an embodiment may be illustrated with reference to the
system 2700 of FIG. 53. An initial voltage is supplied to the first power plane of the
synchronous circuit from the power supply that includes an energy source. For
example, a voltage of 1.60 volts may be initially supplied to the power plane 2722

associated with the Core-2 2720 described in conjunction with FIG. 53. The energy

‘source may include a replaceable battery and/or rechargeable battery. The conservation

operation 2810 decreases the voltage received at the first power plane in an increment
of 0.10 volts to 1.50 volts. Decreasing the voltage received at the first power plane
reduces electrical power supplied by the power supply, and correspondingly, reduces
power drawn from an energy source coupled to the power supply. The monitoring
operation monitors operations related to the Core-2, and detects an incidence of a -
computat'ional error occurring in the Core-2. For example, the incidence may include
an incidence rate of computational errors exceeding a predetermined number of

computational errors per 10'? clock cycles, such as 10 computational errors per 10%
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clock cycles. The adjustment operation 2830 increases the voltage received at the first
power plane in response to the detected computational error. The voltage received may
be increased to the previous 1.60 volts from the 1.50 volts, or increased to another
value.

Operation of another embodiment may be illustrated with reference to
the system 2700. The conservation operation 2810 decreases the 1.60 voltage received
at the first power plane in increments of 0.035 volts until a selected incidence of a
computational error is detected occurring in the Core-2 by the monitoring operation
2820. Assuming for illustrative purposes that the predetermined incidence of
computational errors is detected at a first power plane voltage of 1.45 volis. In response
to the detection of the predetermined incidence of computational errors corresponding
to the Core-2, the adjustment operation 2830 increases the first power plane voltage.
For example, the adjustment operation may increase the first power plane voltage to
1.50, and the monitoring operation continues detection for the selected incidence of
computational errors. If the selected incidence of predetermined computational errors is
detected at 1.50 volts, the adjustment operation may increase the first power plane
voltage to 1.55. In another alternative embodiment, if the monitoring operation does
not detect the selected incidence of computational errors corresponding to Core-2, the
conservation operation again decreases the first power plane voltage and the operational
flow 2800 repeated. )

FIG. 55 illustrates ain alternative embodiment of the exemplary
operational flow 2800 of FIG. 54. The conservation operation 2810 may include at
least one additional operation. The at least one additional operation may include an
operation 2812 and/or aﬁ operation 2814. The operation 2812 decreases a voltage
received at a first power plane from a power supply that includes a portable energy
source. The first power plane being a component of a synchronous processor that
includes a first processor core powered by the first power plane and a second processor
core powered by a second power plane having a second power plane voltage. The
operation 2814 decreases a voltage received at a first power plane from a power supply

that includes a portable energy source. The first power plane being a component of a

70



WO 2007/089660 PCT/US2007/002296

U

10

15

20

30

synchronous uniprocessor that includes a first subcircuit powered by the first power
plane and a second subcircuit powered by a second power plane having a second power
plane voltage.

FIG. 56 illustrales an allernative embodiment of the exemplary
operational flow 2800 of FIG. 54. The monitoring operation 2820 may include at least
one additional operation. The at least one additional operation may include an
operation 2822 and/or an operation 2824. The operation 2822 detects an incidence of a
computational error occurring in the first subcircuit with a hardware-implemented
detector. The operation 2824 detects at least one incidence of a computational error
corresponding to a setup/hold violation, a processor clock speed, a processor voltage, a
noise spike, a charged particle, a soft error, a single event upset failure, an unreliable
processor hardware, an incorrectly executed instruction; on-chip cache error, an oxide
breakdown, an induced error, and/or an electromigration induced eﬁ‘or occurring in the
first subcircuit.

FIG. 57 illustrates an alternative embodiment of the exemplary
operational flow 2800 of FIG. 54. The monitoring operation 2820 may include at least
one additional operation, such as the operation 2826. The operation 2826 detects at
least one of a single incidence, an incidence frequency, an incidence occurrence rate, an
incidence tempo, an incidence pattern, and/or an incidence prevalence of a
computational error occurring in the first subcircuit.

FIG. 58 illustrates an alternative embodiment of the exemplary
operational flow 2800 of FIG. 54. The adjustment operation 2830 may include at least
one additional operation. The at least one additional operation may include an
operation 2832, an operation 2834, and/or an operation 2836. The operation 2832, in
response to the detected computational error, increases the voltage received at the first
power plane from the power supply that includes a portable energy source to a level that
at least substantially minimizes the detected incidence of the computational error. The
operation 2834, in response to the detected computational error, increases the voltage
received at the first power plane from the power supply that includes a portable energy

source without substantially changing the second power plane voltage. The operation
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2836, in response to the detecied computational error, increases the voltage received at
the first power plane from the power supply that includes a portable energy source, the
portable energy source including at least one of a battery, a rechargeable battery, a
replaceable battery, a fuel cell, an energy harvesting system, a capacitor, and/or a
selectively removable portable electrical energy source.

FIG. 59 illustrates an exemplary apparatus 2900 in which embodiments
may be implemented. The apparatus includes means 2910 for decreasing a voltage
received at a first power plane from a power supply that includes a portable energy
source. The first power plane is a component of a synchronous circuit that includes a
first subcircuit powered by the first power plane and a second subcircuit powered by a
second power plane having a second power plane voltage. The apparatus also includes
means 2920 for detecting an incidence of a computational error occurring in the first
subcircuit. The apparatus further includes means 2930 for increasing in response to the
detected computational error the voltage received at the first power plane from the

power supply that includes a portable energy source.

Those having skill in the art will recognize that the state of the art has
progressed to the point where there is little distinction left between hardware and
software implementations of aspects of systems; the use of hardware or software is
generally (but not always, in that in certain contexts the choice between hardware and
software can become significant) a design choice representing cost vs. efficiency
tradeoffs. Those having skill in the art will appreciate that there are various vehicles by
which processes and/or systems and/or other technologies described herein can be
effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will
vary with the context in which the processes and/or systems and/or other technologies
are deployed. For example, if an implementer determines that speed and accuracy are
paramount, the implementer may opt for a mainly hardware and/or firmware vehicle;
alternatively, if flexibility is paramount, the implementer may opt for a mainly software
implementation; or, yet again alternatively, the implementer may opt for some

combination of hardware, software, and/or firmware. Hence, there are several possible
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vehicles by which the processes and/or devices and/or other technologies described
herein may be effected, none of which is inherently superior to the other in that any
vehicle to be utilized is a choice dependent upon the context in which the vehicle will
be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the
implementer, any of which may vary. Those skilled in the art will recognize that optical
aspects of implementations will typically employ optically-oriented hardware, software,
and or firmware.

The foregoing detailed description has set forth various embodiments of
the devices and/or processes via the use of block diagrams, flow diagrams, operation
diagrams, flowcharts, illustrations, and/or examples. Insofar as such block diagrams,
operation diagrams, flowcharts, illustrations, and/or examples contain one or more
functions and/or operations, it will be understood by those within the art that each
function and/or operation within such block diagrams, operation diagrams, flowcharts,
illustrations, or examples can be implemented, individually and/or collectively, by a
wide range of hardware, software, firmware, or virtually any combination thereof.

In addition, those skilled in the art will appreciate that the mechanisms of
the subject matter described herein are capable of being distributed as a program
product in a variety of forms, and that an illustrative embodiment of the subject matter
described herein applies equally regardless of the particular type of signal- bearing
media used to actually carry out the distribution. Examples of a signal-bearing media
include, but are not limited to, the following: recordable type media such as floppy
disks, hard disk drives, CD ROMs, digital tape, and computer memory; and
transmission type media such as digital and analog communication links using TDM or
IP based communication links (e.g., packet links).

It will be understood by those within the art that, in general, terms used
herein, and especially in the appended claims (e.g., bodies of the appended claims) are
generally intended as “open” terms (e.g., the term “including” should be interpreted as
“including but not limited to,” the term “having” should be interpreted as “having at
least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).

It will be further understood by those within the art that if a specific number of an
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introduced claim recitation is intended, such an intent will be explicitly recited in the
claim, and in the absence of such recitation no such intent is present. For example, as
an aid to understanding, the following appended claims may contain usage of the
introductory phrases "at least one" and "one or more" 10 introduce claim recitations.
However, the use of such phrases should not be Constr.ugad. o imply that the introduction
of a claim recitation by the indefinite articles "a" or "an" limits any particular claim
containing such introduced claim recitation to inventions containing only one such
recitation, even when the same claim includes the intréductory phrases "one or more" or
"at least one" and indefinite articles such as "a" or "an" (e.g., ““a” and/or “an” should
typically be interpreted to mean “at least one” or “one or more™); the same holds true
for the use of definite articles used to introduce claim recitations. In addition, even ifa
specific number of an introduced claim recitation is explicitly recited, those skilled in
the art will recognize that such recitation should typically be interpreted to mean at least
the recited number (e.g., the bare recitation of "two recitations," without other
modifiers, typically means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analogous to “at least one of A, B,
and C, etc.” is used, in general such a construction is intended in the sense one having
skill in the art would understand the convention (e.g., * a system having at least one of
A, B, and C” would include but not be limited to systems that have A alone, B alone, C
alone, A and B together, A and C together, B and C together, and/or A, B, and C
together, etc.). In those instances where a convention.analogous to “at least one of A,
B, or C, etc.” is used, in general such a construction is intended in the sense one having
skill in the art would understand the convention (e.g., © a system having at least one of
A, B, or C” would include but not be limited to systems that have ‘A alone, B alone, C
alone, A and B together, A and C together, B and C together, and/or A, B, and C
together, etc.).

The herein described aspects depict different components contained
within, or connected with, different other components. It is to be understood that such
depicted architectures are merely exemplary, and that in fact many other architectures

can be implemented which achieve the same functionality. In a conceptual sense, any
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such that the desired functionality is achieved. Hence, any two components herein
combined to achieve a particular functionality can be seen as "associated with" each
other such that the desired functionality is achieved, irrespective of architectures or
intermedial components. Likewise, any two components so associated can also be
viewed as being "operably connected," or "operably coupled,” to each other to achieve
the desired functionality: Any two components capable of being so associated can élso
be viewed as being "operably couplable” to each other to achieve the desired
functionality. Specific examples of operably couplable include but are not limited to
physically mateable and/or physically interacting components and/or wirelessly
interactable and/or wirelessly interacting components.

While various aspects and embodiments have been disclosed herein,
other aspects and embodiments will be apparent to those skilled in the art. The various
aspects and embodiments disclosed herein are for purposes of illustration and are not
intended to be limiting, with the true scope and spirit being indicated by the following

claims,
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WHAT IS CLAIMED IS:

1. A system comprising:

a synchronous circuit including a first subcircuit powered by a first power
plane having a first power plane voltage and a second subcircuit powered by a second
power plane having a second power plane voltage;

an error detector operable to detect an incidence of a computational error
occurring in the first subcircuit; and

a controller operable to change the first power plane voltage based upon

the detected incidence of a computational error.

2. The system of claim 1, wherein the synchronous circuit including a first
subcircuit powered by a first power plane having a first power plane voltage and a second
subcircuit powered by a second power plane having a second power plane voltage
includes:

a synchronous processor including a first processor core powered by a first
power plane having a first power plane voltage and a second processor core powered by a

second power plane having a second power plane-voltage.

3. The system of claim 1, wherein the synchronous circuit including a first
subcircuit powered by a first power plane having a first power plane voltage and a second
subcircuit powered by a second power plane having a second power plane voltage
includes: '

a synchronous uniprocessor including a first subsystem powered by a first
power plane having a first power plane voltage and a second subsystem powered by a

second power plane having a second power plane voltage.

4. The system of claim 1, wherein the synchronous circuit including a first
subcircuit powered by a first power plane having a first power plane voliage and a second
subcircuit powered by a second power plane having a second power plane voltage

includes:
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a synchronous uniprocessor including a first arithmetic logic unit powered
by a first power plane having a first power plane voltage and a second arithmetic logic

unit powered by a second power plane having a second power plane voltage.

5. The system of claim 1, wherein the synchronous circuit including a first
subcircuit powered by a first power plane having a first power plane voltage and a second
subcircuit powered by a second power plane having a second power plane voltage
includes:

a synchronous uniprocessor including an arithmetic logic unit powered by
a first power plane having a first power plane voltage and an on-chip cache powered by a

second power plane having a second power plane voltage.

6. The system of claim 1, wherein the error detector operable to detect an
incidence of a computational error occurring in the first subcircuit includes:
a hardware-implemented error detector operable to detect an incidence of

a computational error occurring in the first subcircuit.

7. The system of claim 1, wherein the error detector operable to detect an
incidence of a computational error occurring in the first subcircuit inchudes:
one error detector coupled with both the first subcircuit and the second
" subcircuit, and operable to detect an incidence of 2 computational error occurring in the

first subcircuit.

8. The system of claim 7, wherein the one error detector coupled with both the
first subcircuit and the second subcircuit, and operable to detect an incidence of a
computational error occurring in the first subcircuit includes:
one error detector coupled with both the first subcircuit and the second
subcircuit, and operable to detect an incidence of a computational error occurring in the

first subcircuit and/or the second subcircuit.
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9. The system of claim 1, wherein the error detector operable to detect an
incidence of a computational error occurring in the first subcircuit includes:
a first error detector coupled with the first subcircuit and a second error
detector coupled with the second subcircuit, the first error detector and the second error -
detector respectfully being operable to detect an incidence of a computational error

occurring in the first subcircuit and the second subcircuit.

10. The system of claim 1, wherein the error detector operable to detect an
incidence of a computational error occurring in the first subcircuit includes:
an error detector coupled with the controller and operable to detect an

incidence of a computational error occurring in the first subcircuit.

11. The system of claim 1, wherein the error detector operable to detect an
incidence of a computational error occurring in the first subcircuit includes:
an error detector operable to detect a computational error corresponding to

a setup/hold violation.

12. The system of claim 1, wherein the error detector operable to detect an
incidence of a computational error occurring in the first subcircuit includes:
an error detector operable to detect at least one incidence of a
computational error corresponding to a setup/hold violation, a processor clock speed, a
processor voltage, a noise spike, a charged particle, a soft error, a single event upset
failure, an unreliable processor hardware, an incorrectly executed instruction, on-chip
cache error, an oxide breakdown, an induced error, and/or an electromigration induced

€rror.

13. The system of claim 1, wherein the error detector operable to detect an
incidence of a computational error occurring in the first subcircuit includes:
an error detector operable to detect at least one of a single incidence, an
incidence frequency, an incidence occurrence rate, an incidence tempo, an incidence

pattern, and/or an incidence prevaleni:e of a computational error.
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14. The system of claim 1, wherein the controller operable to change the first
power plane voltage based upon the detected incidence of a computational error includes:
a controller operable to cha}nge a first power plane voltage based upon the
detected incidence of a computational error without substantially changing the second

power plane voltage.

15. The system of claim 1, wherein the controller operable to change the first
power plane voltage based upon the detecied incidence of a computational error includes:
a controller operable to change a first power plane voltage based upon the
detected incidence of a computational error without logically co_fresponding change in the

second power plane voltage.

16. The system of claim 1, wherein the controller operable.to change the first
power plane voltage based upon the detected incidence of a computational error includes:
a controller implemented in at least one of hardware, software, firmware,
and/or a microengine, and operable to change the first power plane voltage based upon

the detected incidence of a computational error.

17. The system of claim 1, wherein the controller operable to change the first
power plane voltage based upon the detected incidence of a computational error includes:
_ acontroller implemented in software associated with at least one of an
operating system and/or a program executable by the synchronous circuit and operable to
change the first power plane voltage based upon the detected incidence of a

computational error.

18. The system of claim 1, wherein the controller operable to change the first
power plane voltage based upon the detected incidence of a computational error includes:
a controller operable to increase the first powér plane voltage based upon

the detected incidence of a computational error.

79



WO 2007/089660 PCT/US2007/002296

19. The system of claim 1, wherein the controller operable to change the first
power plane voltage based upon the detected incidence of a computational error includes:
a controller operable to decrease the first power plane voltage based upon

the detected incidence of a computational error.

20. The system of claim 1, wherein the synchronous circuit, the error detector and

the controller are formed on a single chip.

21. The system of claim I, further comprising:
a recovery module operable to cause a correction of the computational

€Iror.

22. The system of claim 1, further comprising:
a power supply operable to provide a selected one of at least two voltages

to the first power plane in response to the controller.

23. The system of claim 22, wherein the power supply operable to provide a
selected one of at least two voltages to the first power plane in response to the controller
includes:

a power supply operable to provide in response to the controller a selected

_voltage to the first power plane and another selected voltage to the second power plane.

24, The system of claim 22, wherein the power supply operable to provide a
selected one of at least two voltages to the first power plane in response to the controller
includes:

an on-circuit chip power supply operable to provide a selected one of at

least two voltages to the first power plane in response to the controller.

25. The system of claim 22, wherein the power supply operable to provide a
selected one of at least two voltages to the first power plane in response to the controller

includes:
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an off-circuit chip power supply electrically coupled with the circuit and
operable to provide a selected one of at least two voltages to the first power plane in

response to the controller.

26. The system of claim 22, wherein the power supply operable to provide a
selected one of at least two voltages to the first power plane in response to the controller
includes: .

at least one of a DC/DC regulated, a controllable, and/or programmable
power supply operable to provide a selected one of at least two voltages to the first power

plane in response to the controller.

27. The system of claim 1, further comprising:
a power supply configured to electrically engage a portable power source
and operable to provide a selected one of at least two voltages to the first power plane in

response to the controller.
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28. A method comprising;
detecting a computational error occurring in a first subcircuit of a
synchronous circuil that includes the first subcircuit powered by a first power plane at a
first power plane voltage and a second subcircuit powered by a second power plane at a
second power plane voltage; and .
increasing the first power plane voltage based upon the detected

computational error.

29. The method of claim 28, wherein the detecting a computational error
occurring in a first subcircuit of a synchronous circuit that includes the first subcircuit
powered by a first power plane at a first power plane voltage and a second subcircuit
powered by a second power plane at a second power plane voltage further includes:

detecting a computational error occurring in a first processor core of a
synchronous processor that includes the first processor core powered by a first power
plane at a first power plane voltage and a second processor core powered by a second

power plane at a second power plane voltage.

30. The method of claim 28, wherein the detecting a computational error
occurring in a first subcircuit of a synchronous circuit that includes the first subcircuit
powered by a first power plane at a first power plane voltage and a second subcircuit
powered by a second power plane at a second power plane voltage further includes:

detecting a computational error occurring in a first subcircuit of a
synchronous uniprocessor that includes the first subcircuit powered by a first power plane
at a first power plane voltage and a second subcircuil powered by a second power plane

at a second power plane voltage.

31. The method of claim 27, wherein the increasing the first power plane voltage

based upon the detected computational error further includes:
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increasing the first power plane voltage based upon the detected
computational error while maintaining the second power plane voltage at least

substantially constant.

32. The method of claim 27, wherein the increasing the first power plane voltage

based upon the detected computational error further includes:

increasing the first power plane voltage based upon the detected
computational error without a logically corresponding change in the second power plane

voltage.

33. The method of claim 28, further comprising:

operating the first subcircuit at a first power plane voltage.

34. The method of claim 32, wherein the operating the first subcircuit at a first

power plane voltage includes:

operating the first subcircuit at an initial first power plane voltage.

35. The method of claim 32, further comprising:

decreasing the first power plane voltage.
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36. A device comprising:
means for detecting a computational error occurring in a first subcireuit of
a synchronous circuit that includes the first subcircuit powered by a first power plane at a
first power plane voltage and a second subcircuit powered by a second power plane at a
second power plane voltage; and
means for increasing the first power plane voltage based upon the detected

computational error.

’

‘37. The device of claim 36, further comprising;
means for operating the first subcircuit at an initial first power plane

voltage.

38. The device of claim 36, further comprising;

means for decreasing the first power plane voltage.
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FIG. 4
4/59

300
\
(S~ 310

Collecting data corresponding to an execution of at least one
instruction of an instruction set from a processor executing the
at least one instruction of an instruction set.

(‘\_/ 330

Creating an execution-optimization information utilizing the
collected data corresponding to the execution of at least one
instruction of the instruction set, and which is usable in another
execution of the at least one fnstruction of an instruction set.

End
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FIG. 5
5/59

(\_/ 310

Collecting data corresponding to an execution of at least one
instruction of an instruction set from a processor executing the
at least one instruction of an instruction set.

300

| —————————— | | __________ =3

312 Collecting data
corresponding to an
execution of at least
one instruction of an
instruction set from a
processor actually
executing the at least
one instruction of an
instruction set.

| |
| |
|
' 314 Collecting data |
: corresponding to a I
|  runtime execution of at |
I least one instruction of |
I an instruction set from a
’I processor executing the|
| at least one instruction |
|
|
|
i

of an instruction set.

— — — — v— — —— — — —— —— w—— — t— ——
— — —— — — — — i S tamar G . — ——

(\_/ 330

Creating an execution-optimizaﬁon information utilizing the
collected data corresponding to the execution of at least one
instruction of the instruction set, and which is usable in another
execution of the at least one instruction of an instruction set.




WO 2007/089660

FIG. 6
6/59

PCT/US2007/002296

(S

Collecting data corresponding to an execution of at least one
instruction of an instruction set from a processor executing the
at least one instruction of an instruction set.

(\_/ 330

Creating an execution-optimization information utilizing the
collected data corresponding to the execution of at least one
instruction of the instruction set, and which is usable in another
execution of the at least one instruction of an instruction set.
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usable in
another |
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336
Creating a
data format
modification
usable in
another
execution of
the at least
one
instruction of
an
instruction
set.

|
338 I
Creating a :
data layout |
optimization |
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the at least |
one |
instruction of:
.an I
instruction |
set. l
I

I

-— e - m—— m— ——— v — —

End




PCT/US2007/002296

Jos uoranisui
auj sepnjoul jey} 1ss
uononisul jossasold e Buiney
lossaooud e 0} pesodxa pue
Jossaoold sy uo Bunnoaxs

"Jes uononsul
Ue JO Uoiannsul auo jses)
]B 8} JO UoNI8aXa Jayjoue
ul 8|gesn sl YoIym pue }as
UORONJISUl 8U} JO UoHONJISU
BUO 18B3| J JO UoHNIaXD
ay; o} buipuodsaniod

ejep pajod|jod ay} Buiziyn
uolewlojul uoneziuwdo

BJEMJOS 0] Jualedsuel)

SI Jey} YU SUOIIEDIUNLULLOD

B LWOoJ} 18S Uolonijsul

UB 10 UoRONASUl 9Uo

1SEs| Je JO Uo|NI8Xae awjunl
e 0} Buipuodsaliod ejep
Bunosyjoo 10} ynouio Isi4 Ly

-uopnoaxa ue Buneaid
10} IN2JID pU02as (v

WO 2007/089660

69/L 00¥
L9l



PCT/US2007/002296

WO 2007/089660

_.
|
_
_

I
|
|
|
|
|
wmm\/ﬂ/\ (s)soinosay aulbusocioipy
| diyo-uo Jsio
|
| s
N n
622 9zZ | N OLoED g o
: 0 SUOIJEOIUNWIWIOD
] g
(s)ooinosay | " c
diyo “ _
ll.Woa.. 4 ] g ayoey
e " 10558201
_
\/\ v 8yoe)
¢ce “ -
_ diyo 106 |
0Zc ll\,
65/8



WO 2007/089660 PCT/US2007/002296

FIG. 9
9/59

600
\
. (S~ 810

Gathering data corresponding to an execution of at least one
instruction of an instruction set by a processor and in a manner
transparent to software executing on the processor.

(~— 630

Creating an execution-based optimization profile utilizing the
gathered data and which is useable in a subsequent execution
of the at least one instruction of the instruction set by the

processor.

End
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FIG. 10
600 10/59

(\/ 610

Gathering data corresponding to an execution of at least one instruction of

an instruction set by a processor and in a manner transparent to software

executing on the processor. :
r§__1_2__G_ath_eri_ng_at_ i :__6_1& Gathering data | :-QJ_Q Gathering data !
| least one of dynamic: | inamanner : | in a manner :
| data and/or static | | transparent to | | transparent to |
| datain amanner | | software executing | | software executing |
' transparent to I : on the processor : : on the processor |
: software executing : | and corresponding | and corregponding :
| on the processor ' | to a normal | | toaruntime |
| and corresponding | | execution of at least | | execution of at least |
| to an execution of at | : one instruction of an | : one instruction of an |
: least one instruction : j instruction set by a : | instruction set by a :
| of an instruction set | | processor. | | processor. |
: by a processor. [ : : : :
| : e e l

630

Creating an execution-based optimization profile utilizing the gathered
data and which is useable a subsequent execution of the at least one
instruction of the instruction set by the processor.

: gathered data and which is operable to modify a subsequent
| execution of the at least one instruction of the instruction set by the |
| processor. |
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FIG. 11
11/59

m/ 610

Gathering data corresponding to an execution of at least one
instruction of an instruction set by a processor and in a manner
transparent to software executing on the processor.

(\/ 630

Creating an execution-based optimization profile utilizing the
gathered data and which is useable a subsequent execution of
the at least of one instruction of the instruction set by the
processor.

Changing an execution of the at least one instruction of the
instruction set in response to the execution-based optimization
profile. :

646 Changing a ||
movement of the at I]
least one instruction |l
of the instruction set II
toward a processor ||
for execution in |
response to the !
execution-based I|

_______ Qe ———— —
| 642 Changing a ‘: 844 Changing a !

|
movement of datal| format of data :
processable by |
the processor in |
response to the :
!

|

I

f

|

with respect to
the processor in
response to the
execution-based
optimization
profile.

execution-based
optimization
profile.

r— _—_____——_—____—____._ — e —
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FIG. 12
12/59

('\_/ 6‘10

Gathering data corresponding to an execution of at least one
instruction of an instruction set by a processor and in a manner
transparent to software executing on the processor.

(\_/ 630
Creating an execution-based optimization profile utilizing the
gathered data and which is useable in‘a subsequent execution

of the at ieast one instruction of the instruction set by the
processor.

:— Changing an execution of the at least one instruction of the :
| instruction set in response to the execution-based optimization I
| profile. |
! I
I["""""."‘. _____ - ["__“'_._."""—"l
| i 648 Substituting at least I | 652 Substituting at least | |
| { one other instruction of the | | one other instruction of 1 |
: | instruction set for execution : | the instruction set for the : :
I | by the processor in place of | | atleast one instruction of [
| I the at least one instruction | : the instruction setin a b
| I of the instruction set in ! | static program in responsel |
: | response to the execution- : | to the execution-based : :
I {. based optimization profile. | L optimization profile. I}
L
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FIG. 13
13/59

N S

Gathering data corresponding to an execution of at least one
instruction of an instruction set by a processor and in a manner
transparent to software executing on the processor.

(T~ 630

Creating an execution-based optimization profile utilizing the.
gathered data and which is useable in a subsequent execution
of the at least one instruction of the instruction set by the
processor.

Changing an execution of the at least one instruction of the
instruction set in response to the execution-based optimization
profile.

654 Executing at least one other instruction of the
instruction set in response to the execution-based

optimization profile.

l
|
I
__________________ -
| 656 Executing at least one other instruction of | :
I
|
!
|

| the instruction set in response to the execution- |
| based optimization profile and omitting an :
| execution of the at least one instruction. . |
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FIG. 14
14/59

(\_/ 610

Gathering data corresponding to an execution of at least one
instruction of an instruction set by a processor and in a manner
transparent to software executing on the processor.

C\/ 630

Creating an execution-based optimization profile utilizing the
gathered data and which is useable in a subsequent execution
of the at least one instruction of the instruction set by the
processor.

instruction set in response to the execution-based optimization

1
Changing an execution of the at least one instruction of the |
I
profile. :

: 662 Omitting an
1 execution of the at least
one instruction of the

| ‘658 Omitting an :
|
I
instruction set in |
|
|
|
|
|

|
execution of at least one :
other instruction of the |
instruction set in I
I
|
|
|
|

|
|

response to the
execution-based
optimization profile.

response to the
execution-based
optimization profile.

|
|
!
I
|
I
I
l
!
|
I
|
l
!
|




WO 2007/089660 PCT/US2007/002296

FIG. 15
15/59

‘ (\_/ 610

Gathering data corresponding to an execution of at least one
instruction of an instruction set by a processor and in a manner
transparent to software executing on the processor.

(‘\_/ 630

Creating an execution-based optimization profile utilizing the
gathered data and which is useable in a subseguent execution
of the at least one instruction of the instruction set by the
processor.

Fo————— — ——— —— — ——— — —— —

672 Saving the execution-based optimization profile

in an association with the at least one instruction of
the instruction set.

!
| profile in an associative cache with the at least |
| one instruction of the instruction set. :
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FIG. 18
18/59

(‘\/ 910

Identifying an instruction to be fetched for execution by a first

processor.

(‘\/ 920

Altering an execution of the instruction to be fetched for
execution in response to an execution-optimization information.

l , (\/ 930
The execution-optimization information previously generated
by a hardware device utilizing data corresponding to a real
execution of the instruction to be fetched by a second
processor that was transparent to software executing on the
second processor.

End
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FIG. 19
19/59

r\/ 910

Identifying an instruction to be fetched for execution by a first
processor. '

' 912 ldentifying an instruction to be fetched from an '

| instruction set of a static program for execution by a
| first processor.

l (\_/ 920

Altering an execution of the instruction to be fetched for
execution in response to an execution-optimization information.

|
| fetched from an instruction set of a static program for
| execution in response to an execution-optimization

I information.

|

The execution-optimization information previously generated
by a hardware device utilizing data corresponding to a real
execution of the instruction to be fetched by a second

processor that was transparent to software executing on the
second processor.
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FIG. 20
20/59

900
\
(\/ 910

Identifying an instruction to be fetched for execution by a first
processor.

l : (\_/ 920
Altering an execution of the instruction to be fetched for
execution in response to an execution-optimization information.

l (~— 930

The execution-optimization information previously generated by a hardware device
utilizing data corresponding to a real execution of the instruction to be fetched by a
second processor that was transparent to software executing on the second
processor.

Moo o - == ——=— 1T

932 The execution-optimization 934 The execution-optimization
information having been previously information having been previously
generated by a hardware device generated by a hardware device

|
!
|
utilizing data corresponding to a real : utilizing data corresponding to a real
|
l
|
|

I

|

|

: execution of the instruction to be execution of the instruction to be
-} fetched by a second processor that
|
|
|
|
|

— e — b - — —

was transparent to software executing|
on the second processor, the second |
processor being at least a |

was transparent to software executing
on the second processor, the second |
processor being at least a substantially |

|
|
|
I
!
: fetched by a second processor that
I
|
|
|
same processor as the first processor. | I
I

End
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FIG. 21
21/59

0N\
' (T 910

Identifying an instruction to be fetched for execution by a first
processor.

i (‘\/ 920
Altering an execution of the instruction to be fetched for
execution in response to an execution-optimization information.

L T 930

The execution-optimization information previously generated by a hardware device
utilizing data corresponding to a real execution of the instruction to be fetched by a
second processor that was transparent to software executing on the second
processor.

998 Tre oxeosior. ™ 1 Me38 The sxmention.” T | Moms Tre axeomam.” |

936 The execution- |, 938 The execution- 942 The execution-
optimization information | | optimization information | optimization information |
having been previously ' | having been previously | | having been previously |
generated by a hardware : | generated by a I generated by a |
device utilizing data I : hardware device : hardware device
corresponding to a state | | utilizing data i utilizing data

| | corresponding to an | corresponding to a data

: : instruction state during : relationship during a
I !
I |
! |
I I
| |
I |
| I

!
I
!
|
I
I
of the second processor |
I
a real execution of the : real execution of the
|
|
!
!
!
|

|

I

I

|

I

|

|

I

I during a real execution of
: the instruction to be

| fetched by a second

| processor that was

| transparent to software

: executing on the second
| processor.

instruction to be fetched instruction to be fetched
by a second processor
that was transparent to
software executing on software executing on
the second processor. the second processor.

—— s —— — — —— — — — — m—— v — — v— . w— — —

by a second processor

I
]
|
: that was transparent to
I
|
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End
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FIG. 25
25/59

o —
(\/ 1310

Sensing a computational error corresponding to an execution of
a second instruction by a processor opefable to execute an
instruction sequence having a first instruction that is fetched
before the second instruction.

(-\‘/ 1330

Restoring an execution of the instruction sequence to a logical
state associated with the first instruction in response to the
sensed computational error.

End
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FIG. 26
26/59

(T~ 1310

Sensing a computational error corresponding to an execution
of a second instruction by a processor operable to execute an
instruction sequence having a first instruction that is fetched
before the second instruction.

1312 Sensing a
computational fault
corresponding to an
execution of a
second instruction by
a processor operable
to execute an
instruction sequence
having a first
instruction that is
fetched before the
second instruction.

| 1314 Sensing an :
| execution path I
| synchronization error |
l corresponding toan |
: execution of a :
| second instruction by I
| a processor operable |
I to execute an !
: instruction sequence :
| having a first |
| instruction that is ;
| fetched before the |
: second instruction. |

("\~\_—//1330

Restoring an execution of the instruction sequence to a logical
state associated with the first instruction in response to the
sensed computational error.

End
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FIG. 27
27159

o —
W 1310

Sensing a computational error corresponding to an execution of a second
instruction by a processor operable to execute an instruction sequence having a

first instruction that is fetched before the second instruction.

—————————— 1
:1_3_1_9_ Sensing at least one |

———————— ‘ — i — mm—— — — — — ..' .
I 1316 Sensing an J 1318 Sensing an | of a computational error
| correlating to a processor

error correlating to a : error correlating to a |
voltage applied to a | processor clock speed, a processor
processor and that I temperature and j voltage, a nf)ise spike, a
corresponds to an : that corresponds to | cosmic partlcl§, a soft
execution of a | an execution of a :error, an unreiilable
second instruction | second instruction hardware, an incorrectly
by the processor | by a processor Iexecuted instruction, and/
operable to execute : operable to execute |joran electrf)migration
an instruction | an instruction : corres;.aondmg toan

| execution of a second
|
|
I
|
f
|
)

sequence having a
first instruction that | instruction by a processor
is fetched before | operable to execute an
the second linstruction sequence
instruction. ' having a first instruction

I that is fetched before the
j |second instruction.

sequence having a
first instruction that
is fetched before
the second
instruction.

— — - E——— —— — —— —— — — — —— — — S — — — —

I
I
I
|
I
!
l
I
l
I
|
|
I
|
|
I
|
I
|
!

— v — —— — — - — — — — f— — e — — — — — — —

Restoring an execution of the instruction sequence to a logical
state associated with the first instruction in response to the
sensed computational error.

End
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FIG. 28
28/59

1990 —\
‘ (T~ 1310

Sensing a computational error corresponding to an execution
of a second instruction by a processor operable to execute an
instruction sequence having a first instruction that is fetched
before the second instruction.

(\/ 1330

Restoring an execution of the instruction sequence to a logical
state associated with the first instruction in response to the
sensed computational error.

1332 Rolling back an
execution of the
instruction sequence to
a checkpoint
corresponding to a
logical state associated

| 1334 Restoring an
|
|
|
|
|
|
| with the execution of the
I
|
|
|
I
|
|

: execution of the
| instruction sequence to a
l logical state associated
: with the first instruction
| determined by a
I checkpoint protocol and

first instruction in |

response to the sensed :

computational error. I

!

|

!

in response to the
sensed computational
error.

— v —— — — — — — — w— — - o—— — ——
— o — — — —— — — — —— — — T v—— S— —

End
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FIG. 33
33/59

e —
' (\/ 1710

Detecting a computational error corresponding to an execution
of an instruction of a sequence of instructions by a processor
having an adjustable operating parameter.

(~— 1720

Rolling back an execution of the sequence of instructions to a
checkpoint in response o the detected computational error.

(\/ 1730

Changing the adjustable processor operating parameter in
response to a performance criterion corresponding to an
incidence of the detected computational error.

End
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FIG. 34
34/59

1700
. | (M~ 1710

Detecting a computational error corresponding to an execution
of an instruction of a sequence of instructions by a processor
having an adjustable operating parameter.

(\/ .1720

Rolling back an execution of the sequence of instructions to a
checkpoint in response to the detected computational error.

L (T~ 1730

Changing the adjustable processor operating parameter in
response to a performance criterion corresponding to an
incidence of the detected computational error.

1732 Determining that changing the adjustable processor
operating parameter is at ieast substantially likely to
decrease an expected time to successfully complete an
execution of the sequence of instructions, and appropriately
changing the adjustable processor operating parameter in
response to a performance criterion corresponding to an
incidence of the detected computationat error.

— eevs e o W e — ——
L — — — — o — — —
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FIG. 35
35/59

-
(S 1710

Detecting a computational error corresponding to an execution
of an instruction of a sequence of instructions by a processor
having an adjustable operating parameter.

(‘\/ 1720

Rolling back an execution of the sequence of instructions to a
checkpoint in response to the detected computational error.

{ (~— 1730

Changing the adjustable processor operating parameter in response to a performance
criterion corresponding to an incidence of the detected computational error.

______________ T
1734 Changing the r 1738 Changing the

|

adjustable processor | adjustable processor
operating parameter | operating parameter in .
: response to an error-

' tolerant performance

| criterion corresponding
I

|

I

|

|

1736 Changing a I
voltage supplied to |
the processor in :
response to a |
performance criterion |
substantially |
minimizing to :
complete an execution I
of the sequence of |
instructions. '

performance criterion
corresponding to an
incidence of the
detected
computational error.

to an incidence of the
detected

-
|
|
|

. |

in response to a |
|
I
I
|
|
| computational error.
|

— — e —— —— — —— — — — —— —
— ——. — — —— — e — om— — t—
T — o — — — — — —— —— ——

End
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FIG. 38
38/59

2000_\
' (M 2010

Detecting an incidence of a processor-operating-parameter-
caused error corresponding to an execution of an instruction of
the sequence of instructions by a processor subsystem having
an adjustable operating parameter.

(\_/ 2030

Changing the adjustable processor operating parameter based
upon an error-tolerant performance criterion.

End
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FIG. 39
39/59

2000 _\
(T~ 2010

Detecting an incidence of a processor-operating-parameter-caused error
corresponding to an execution of an instruction of the sequence of instructions by a
processor subsystem having an adjustable operating parameter.

rgg_j_g Detecting ) 2014 Detecting an ; 2016 Detecting an )
an incidence of a incidence of an incidence of at least one of
setup/hold execution path a single incidence, an
violation synchronization incidence frequency, an

incidence cccurrence rate,
an incidence tempo, an
incidence pattern, or an
incidence prevalence of a
processor-operating-

corresponding to
an execution of

an instruction of
the sequence of

1
I I
| I
l I
| |
| ! .
| | error corresponding
| |
| |
| I
: instructions by a :
| |
! |
| i
| |
| |
| I
I |
| |
| |

|

|

l

|

l

|

| toan execution of

| an instruction of the
: sequence of
|

|

!

I

|

|

|

|

|

|

[
|
|
I
|
|
|
|
I
instructions by a :
|
|
|
|
|
|
|
|

processor processor parameter-caused error

subsystem subsystem having corresponding fo an

having an an adjustable execution of an instruction

adjustable operating of the sequence of

operating parameter. instructions by a processor

parameter. subsystem having an

adjustable operating

S Yl y \paameter _ _ _ _ _ !

Changing the adjustable processor operating parameter based
upon an error-tolerant performance criterion.

End
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FIG. 40
40/59

2000 ‘\ |
T~ 2010

Detecting an incidence of a processor-operating-parameter-
caused error corresponding to an execution of an instruction of
the sequence of instructions by a processor subsystem having
an adjustable operating parameter.

(T 2030

Changing the adjustable processor operating parameter based upon an error-tolerant

performance criterion.

e R A T A
2032 Changing the 2034 Changing at 2035 Changing the
adjustable processor least one of a voltage adjustable processor
operating parameter operating parameter
based upon an error- based upon an error-
tolerant performance tolerant and

dynamically-derived

performance criterion
having an objective

to substantially

minimize a time to

execute the

sequence of

instruction by the

processor

subsystem.

of the processor
subsystem and/or a
processor clock
frequency based
upon an error-tolerant

|
I
|
I
|
I
criterion to |
|
: performance criterion
|
!
!
I
I
I
I
I

|

|

|

|

!

!

I

| substantially minimize
: a time required to

| successfully complete o substantially
| an execution of the
| sequence of

I

|

|

|

|

instructions.

minimize a time
required to
successfully complete
an execution of the
sequence of
instructions.
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FIG. 41
41/59

o
(S~ 2010

Detecting an incidence of a processor-operating-parameter-
caused error corresponding to an execution of an instruction of
the sequence of instructions by a processor subsystem having
an adjustable operating parameter.

(\_/ 2030

Changing the adjustable processor operating parameter based upon an error-
tolerant performance criterion.

I 2036 Changing a processor clock frequency to be in substantial
| conformity with
| 0= A time to complete an execution of the sequence of instructions

| A processor clock frequency.

2038 Changing a processor voltage to be in substantial conformity with

0 = A time to complete an execution of the sequence of instructions

l
I
! A processor voltage.
|

—— — —— — — — — p— — v T— S M — — —— — S— | gmmen manse i — e e e

:_Lf-lz Determining that changing the adjustable processor operating |
| parameter is at least substantially likely to decrease a time to complete an :
| execution of the sequence of instructions by the processor and changing
| the adjustable processor operating parameter based upon an error-tolerant |
| performance criterion. :

End
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FIG. 42
42/59

w0
| (\/ 2010

Detecting an incidence of a processor-operating-parameter-
caused error corresponding to an execution of an instruction of
the sequence of instructions by a processor subsystem having
an adjustable operating parameter.

* (\/ 2030 :

Changing the adjustable processor operating parameter based
upon an error-tolerant performance criterion.

Restoring an execution of the sequence of program instructions
to a checkpoint based upon the detected processor-operating- |
parameter-caused error. I

I

End
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FIG. 44
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FIG. 47
47/59

M~ 2510

Detecting a computational error occurring in a first subcircuit of a
synchronous circuit that includes the first subcircuit powered by
a first power plane at a first power plane voltage and a second
subcircuit powered by a second power plane at a second power
plane voltage.

E——

Increasing the first power plane voltage based upon the
. detected computational error.

End
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FIG. 48
48/59

2500 K
M~ 2510

Detecting a computational error occurring in a first subcircuit of a
synchronous circuit that includes the first subcircuit powered by
a first power plane at a first power plane voltage and a second
subcircuit powered by a second power plane at a second power

plane voltage. ===
2514 Detecting a

computational error
occurring in a first

2512 Detecting a
computational error
occurring in a first
processor core of a
synchronous processor
that includes the first
processor core powered
by a first power plane at a
first power plane voltage
and a second processor
core powered by a second
power plane at a second
power plane voltage.

— — . — — — — Gy — —

I
' I
I |
' |
| subcircuit of a |
: synchronous t
| uniprocessor that I
| includes the first |
' subcircuit powered by a |
: first power plane at a first :
| power plane voltage and |
| a second subcircuit |
! "powered by a second |
: power plane at a second :
| power plane voltage. |

— - — — — — —— o — —

|
i
|
I
I
I
|
|
I
|
I
|
|
I
|
I

[ 5

Increasing the first power plane voltage based upon the
detected computational error.

End
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FIG. 49
49/59

ey

Detecting a computational error occurring in a first subcircuit of a
synchronous circuit that includes the first subcircuit powered by
a first power plane at a first power plane voltage and a second
subcircuit powered by a second power plane at a second power
plane voltage.

(\_/ 2520

Increasing the first power plane voltage based upon the
detected computational error.

2522 Increasing the first power plane voltage based upon
the detected computational error while maintaining the
second power plane voltage at least substantially constant.
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FIG. 50
50/59

(\/ 2510

Detecting a computational error occurring in a first subcircuit of a
synchronous circuit that includes the first subcircuit powered by
a first power plane at a first power plane voltage and a second
subcircuit powered by a second power plane at a second power
plane voltage.

l (T~ 2520

Increasing the first power plane voltage based upon the
detected computational error.

2532 Operating the first subcnrcmt

at an in

voltage.

2534 Decreasing the first power

|
itial first power plane |
: | Pplane voltage.
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FIG. 54
54/59

e

2810

(\/

Decreasing a voltage received at a first power plane from a
power supply that includes a portable energy source, the first
power plane being a component of a synchronous circuit that
includes a first subcircuit powered by the first power plane and a
second subcircuit powered by a second power plane having a
second power plane voltage.

(’;\\\__,/ 2820

Detecting an incidence of a computational error occurring in the
first subcircuit.

(T 2830

In response to the detected computational error, increasing the
voltage received at the first power plane from the power supply
that includes a portable energy source.
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FIG. 55
55/59

0

Decreasing a voltage received at a first power plane from a power supply that
includes a portable energy source, the first power plane being a component of a
synchronous circuit that includes a first subcircuit powered by the first power plane
and a second subcircuit powered by a second power plane having a second power
plane voltage.

2814 Decreasing a voltage received ]
at a first power plane from a power
supply that includes a portable

| at a first power plane from a power

| supply that includes a portable

| energy source, the first power plane

| being a component of a synchronous

|
I
|
: energy source, the first power plane
I

| Processor that includes a first |
I
!
|
|
|
I

|
I
|
|
being a component of a :
synchronous uniprocessor that I
includes a first subcircuit powered |
by the first power plane and a '
second subcircuit powered by a :
second power plane having a I
second power plane voltage. |

| processor core powered by the first

| power plane and a second processor
core powered by a second power

| plane having a second power plane

| voltage.

Detecting an incidence of a computational error occurring in the
first subcircuit.

l (\_, 2830

In response to the detected computational error, increasing the
voltage received at the first power plane from the power supply
that includes a portable energy source.

End
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FIG. 56
56/59

2800
\Y 2810
(\-/

Decreasing a voltage received at a first power plane from a
power supply that includes a portable energy source, the first
power plane being a component of a synchronous circuit that
includes a first subcircuit powered by the first power plane and a
second subcircuit powered by a second power plane having a

second power plane voltage.
i (\/ 2820

—— — o G— — — — — — — —

Detecting an incidence of a computational error occurring in the first subcircuit.

[ 2824 Detecting at least one incidence of a
computational error corresponding to a setup/
hold violation, a processor clock speed, a
processor voltage, a noise spike, a charged
particle, a soft error, a single event upset
failure, an unreliable processor hardware, an
incorrectly executed instruction, on-chip cache
error, an oxide breakdown, an induced error,
and/or an electromigration induced error

2822 Detecting an
incidence of a
computational error
occurring in the first
subcircuit with a
hardware-implemented
detector.

P A Gt —— — o— —n e o— o—
— ———— — —— — w— — —— m— —

— v — — — — —— v— SSatan W=

In response to the detected computational error, increasing the
voltage received at the first power plane from the power supply
that includes a portable energy source.

End
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FIG. 57
57/59

o
(‘\_/ 2810

Decreasing a voltage received at a first power plane from a
power supply that includes a portable energy source, the first
power plane being a component of a synchronous circuit that
includes a first subcircuit powered by the first power plane and a
second subcircuit powered by a second power plane having a
second power plane voltage.

l ' T~ 2820
Detecting an incidence of a computational error occurring in the
first subcircuit.

2826 Detecting at least one of a single incidence, an
incidence frequency, an incidence occurrence rate, an
incidence tempo, an incidence pattern, and/or an
incidence prevalence of a computational error
occurring in the first subcircuit.

— i — — — — — —

(\_/ 2830

In response to the detected computational error, increasing the
voltage received at the first power plane from the power supply
that includes a portable energy source.

End
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FIG. 58
58/59

2800 |

\ (\/2810
Decreasing a voltage received at a first power plane from a
power supply that includes a portable energy source, the first
power plane being a component of a synchronous circuit that

includes a first subcircuit powered by the first power plane and a
second subcircuit powered by a second power plane having a

second power plane voltage.
‘ [ >~—— 2820

Detecting an incidence of a computational error occurring in the
first subcircuit. '

l (\/ 2830

In response to the detected computational error, increasing the voltage received at
the first power plane from the power supply that includes a portable energy source.

2836 Inresponse to the
detected computational error,
increasing the voltage received
at the first power plane from
the power supply that includes
a portable energy source, the
portable energy source

|

2832 Iinresponse fo the :
|

|

I

|

including at least one of a |
|

I

|

!

I

|

|

detected computational
error, increasing the
voltage received at the
first power plane from the
power supply that

|

i 2834 In response to

|

|

|

|

|
includes a portable :

I

|

|

|

|

|

| |
I |
| the detected I
| computational error, l
' increasing the voltage I
| received at the'first |
| power plane from the :
: power supply that | battery, a rechargeable

| | battery, a replaceable battery,
I | a fuel cell, an energy

|

|

|

I

energy source to a level
that at least substantially
minimizes the detected
incidence of the
computational error.

includes a portable
energy source without
substantially changing |
the second power |
plane voitage. ‘
|

harvesting system, a capacitor,
and/or a selectively removable
portable electrical energy
source.

— — ——— — — —— — — — —— — — S {—
——— — — — — —— — — — —— — — — a—

End
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