
US 20210266174A1
MON IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0266174 A1

Snow (43) Pub . Date : Aug. 26 , 2021

(54) CPU MINING IN BLOCKCHAIN
ENVIRONMENTS

(52) U.S. CI .
CPC H04L 9/3239 (2013.01) ; G06F 16/2465

(2019.01) ; G06F 2216/03 (2013.01) ; H04L
2209/38 (2013.01) ; G06F 21/602 (2013.01) (71) Applicant : Factom , Inc. , Austin , TX (US)

(72) Inventor : Paul Snow , Austin , TX (US) (57) ABSTRACT
(73) Assignee : Factom , Inc. , Austin , TX (US)
(21) Appl . No .: 17 / 141,278
(22) Filed : Jan. 5 , 2021

Related U.S. Application Data
(60) Provisional application No. 63 / 061,372 , filed on Aug.

5 , 2020 , provisional application No. 62 / 962,486 , filed
on Jan. 17 , 2020 , provisional application No. 62/963 ,
217 , filed on Jan. 20 , 2020 .

Blockchain environments may mix - and - match different
encryption , difficulty , and / or proof - of - work schemes when
mining blockchain transactions . Each encryption , difficulty ,
and / or proof - of - work scheme may be separate , stand - alone
programs , files , or third - party services . Blockchain miners
may be agnostic to a particular coin's or network's encryp
tion , difficulty , and / or proof - of - work schemes , thus allowing
any blockchain miner to process or mine data in multiple
blockchains . GPUs , ASICs , and other specialized processing
hardware components may be deterred by forcing cache
misses , cache latencies , and processor stalls . Hashing , dif
ficulty , and / or proof - of - work schemes require less program
ming code , consume less storage space / usage in bytes , and
execute faster . Blockchain mining schemes may further
randomize byte or memory block access , further improve
cryptographic security .

Publication Classification
(51) Int . Cl .

H04L 9/32 (2006.01)
G06F 16/2458 (2006.01)
G06F 21/60 (2006.01)

28 26
24 30

Blockchain Network
Server

Input (s)
Blockchain Transactions

32

22 Miner System

CPU Memory
20 36

POW Target Scheme .
Block of Data
PoW Result

POW Mechanism
Encryption Algorithm
Difficulty Algorithm

Difficulty .
PoW Algorithm

-34
-40

42
-44

-46
-48

50
-52

38

FIG . 1

Patent Application Publication

28

26

24

30

Blockchain Network Server

Input (s) Blockchain Transactions
32

Aug. 26 , 2021 Sheet 1 of 45

22

Lo

Miner System
CPU

Memory

20

36

-34
-40

-42
-44

46
-48

50

52

PoW Target Scheme Block of Data POW Result POW Mechanism Encryption Algorithm Difficulty Algorithm Difficulty PoW Algorithm

38

US 2021/0266174 A1

FIG . 2 .

Patent Application Publication

26

28

24

30

Blockchain Network Server

Input ($) Blockchain Transactions
32

Aug. 26 , 2021 Sheet 2 of 45

-24

22

Miner System
CPU

Memory

20

36

Input ($) Blockchain Transactions PoW Target Scheme Block of Data Encryption Algorithm Hashing Algorithm . Output Digest Hash Value (s)

-32
-34

40
-46

54

56
-58

60

38

44

US 2021/0266174 A1

FIG . 3

Patent Application Publication

-26

28

24

30

Blockchain Network Server

Input (s) Blockchain Transactions
32

Aug. 26 , 2021 Sheet 3 of 45

424 32
-34

22

Miner System

Input (s) Blockchain Transactions PoW Target Scheme Block of Data Encryption Algorithm Hashing Algorithm Output Hash Value (s)

PoW Algorithm POW Result Puzzle Difficulty Algorithm Difficulty Blockchain

CPU

Memory

20

36

40
46 54

56
-60

52

-42
62

48 50 64

38

US 2021/0266174 A1

FIG . 4

Patent Application Publication

24 32

-Input (s) Blockchain Transactions · Block of Data

40

Encryption Algorithm

46

22

Aug. 26 , 2021 Sheet 4 of 45

Miner System
CPU

Memory

Difficulty Algorithm

48

36

38

PoW Algorithm

52

US 2021/0266174 A1

20

FIG . 5

Patent Application Publication

24 32

-Input (s) Blockchain Transactions · Block of Data

40

Encryption Algorithm

46

22

Aug. 26 , 2021 Sheet 5 of 45

Miner System
CPU

Memory

36

Difficulty Algorithm +48 POW Algorithm

52

38

US 2021/0266174 A1

20

FIG . 6

Patent Application Publication

24

-Input (s) -Blockchain Transactions - Block of Data

24 40

32 40

Input (s) Block of Data Encryption Algorithm Hashing Algorithm Output Hash Value (s)

46
54

56 60

22

Miner System

56

Aug. 26 , 2021 Sheet 6 of 45

60

CPU

Output Hash Value (s) Difficulty Algorithm Difficulty

Memory

36

-48 50

38

56

60

Output Hash Value (s)

PoW Algorithm PoW Result Puzzle

52

42

62

US 2021/0266174 A1

20

FIG . 7

Patent Application Publication

24
In the

32

Input ($) Blockchain Transactions Block of Data

40

22

- 46

Miner System

54

Encryption Algorithm Hashing Algorithm Output Hash Value (s)

56

CPU

Memory

36

-60

38

Database of Encryption Algorithms

Aug. 26 , 2021 Sheet 7 of 45

70

72

PoW Target Scheme

Encryption Algorithm
Scheme 1

SHA - 256

54

Scheme 2

Algorithm 2

Scheme 3

Algorithm 3

US 2021/0266174 A1

20

34

46

FIG . 8

Patent Application Publication

24 32

- Input (s) -Blockchain Transactions Block of Data

40

Encryption Algorithm +46 Hashing Algorithm

-54

Output

56

Hash Value (s)

60

22

Miner System
CPU

Memory

36

Output

56

Hash Value (s)

-60

Difficulty Algorithm +48 Difficulty
50

38

Database of Difficulty Algorithms

Aug. 26 , 2021 Sheet 8 of 45

74

76

PoW Target Scheme

Difficulty Algorithm
Scheme 1

Algorithm 1

Scheme 2

Algorithm 2

Scheme 3

Algorithm 3

US 2021/0266174 A1

20

34

48

FIG . 9

Patent Application Publication

24 32

- Input (s) Blockchain Transactions Block of Data

40

Encryption Algorithm +46 Hashing Algorithm

—54

Output

56

Hash Value (s)

60

22

56

Miner System

60

Output Hash Value (s) Difficulty Algorithm Difficulty

CPU

Memory

-48 50

36

38

-56

Aug. 26 , 2021 Sheet 9 of 45

60

Output Hash Value (s)

PoW Algorithm POW Result Puzzle

Database of PoW Algorithms

52

78

42

62

PoW Target Scheme

Po ? Algorithm
Scheme 1

Algorithm 1

Scheme 2

Algorithm 2

80

Scheme 3

Algorithm 3

US 2021/0266174 A1

20

34

52

FIG . 10

Patent Application Publication

24

--Input (s) Blockchain Transactions Block of Data

24 40

32
40

Input (s) Block of Data Encryption Algorithm Hashing Algorithm Output Hash Value (s)

46
54

56 60

22

Miner System

Aug. 26 , 2021 Sheet 10 of 45

CPU

Memory

Output

56

Hash Value (s)

-60

Difficulty Algorithm +48 Difficulty
50

Target Difficulty

-84

36

38

34 4 *

56

44

60

Output Hash Value (s)

PoW Algorithm PoW Result Puzzle Target Hash Value

- 52

42

-62
82

US 2021/0266174 A1

20

FIG . 11

Patent Application Publication

46

Encryption Algorithm Hashing Algorithm Output Hash Value (s)

54

56 60

56

60

22

Miner System

Output Hash Value (s) Difficulty Algorithm Difficulty Bit Shuffle

-48 50

CPU

Memory

92

36

34 44

38

Database Table

-56

Aug. 26 , 2021 Sheet 11 of 45

60

Output Hash Value (s)

PoW Algorithm PoW Result Puzzle Bit Shuffle

90

- 52

42

62 -92

100111010
011001011

00010011

1101

96

-94 } -94

001011

11101

US 2021/0266174 A1

00111101

1100

20

FIG . 12

Patent Application Publication

22

-54

Cache miss Cache latency

Hashing Algorithm Output Hash Value (s)

36

56 60

Processor

Aug. 26 , 2021 Sheet 12 of 45

L1 Cache

38

Bus

100)

System RAM Memory

L2 Cache

Table Byte Size

-102

104

Database Table

90

L3 Cache

sof 94

Power Supply

-110

US 2021/0266174 A1

FIG . 13

Patent Application Publication

26

28

24

30

Blockchain Network Server

Input ($) Blockchain Transactions

Database Table

32

-112

90 94

Network Latency

Aug. 26 , 2021 Sheet 13 of 45

24

22

Miner System

32
34

Network Interface

114

20

Input (s) Blockchain Transactions PoW Target Scheme Block of Data Encryption Algorithm Hashing Algorithm Hash Value (s)

POW Algorithm Difficulty Algorithm Difficulty Bit Shuffle Operation

CPU

Memory

36

40
-46 54 -60

52
48 -50

-92

US 2021/0266174 A1

38

FIG . 14

Patent Application Publication

124

28

PoW Server

Blockchain Network Server

26

PoW Service Provider PoW Service Difficulty Algorithm PoW Algorithm Party ID

-120
-122

-48 -52 -126

Database Table

90 94

Aug. 26 , 2021 Sheet 14 of 45

130 /

PoW Service Response

50 42

128

PoW Request

24 60

22

Miner System

20

CPU

Memory

PoW Target Scheme

34

US 2021/0266174 A1

36

38

FIG . 15

Patent Application Publication

124

28

PoW Server

Blockchain Network Server

26

PoW Service Provider PoW Service Difficulty Algorithm PoW Algorithm Machine ID

-120
-122

-48 -52 -132

Database Table

90 94

Aug. 26 , 2021 Sheet 15 of 45

130 /

PoW Service Response

50 42

128

PoW Request

24 60

22

Miner System

20

CPU

Memory

PoW Target Scheme

34

US 2021/0266174 A1

36

38

FIG . 16

Patent Application Publication

124

28

PoW Server

Blockchain Network Server

26

Database Table

90 94

PoW Service Provider PoW Service Difficulty Algorithm PoW Algorithm
Network Address (es) . Source Address (es) . Destination Address (es) Network Routing

-120
-122

-48 -52
-134 -136 -138 -140

Aug. 26 , 2021 Sheet 16 of 45

130 /

PoW Service Response

50 42

128

PoW Request

24 60

22

Miner System

20

CPU

Memory

PoW Target Scheme

34 -34

US 2021/0266174 A1

36

38

FIG . 17

150

Encryption Service Provider Encryption Service Encryption Algorithm

Patent Application Publication

152

160

46

Difficulty Service Provider Difficulty Service Difficulty Algorithm

-156 -158 48

154

Difficulty Server

Encryption Server

26

28

Blockchain Network Server

124

Aug. 26 , 2021 Sheet 17 of 45

130

PoW Service Response

PoW Server

60 50 42

PoW Service Provider PoW Service PoW Algorithm

-120 -122 52

128 128

PoW Request

24 60 [

22

Miner System
CPU

Memory

PoW Target Scheme

34

36

US 2021/0266174 A1

38

20

FIG . 18

Patent Application Publication

28

26

24

30

Blockchain Network Server

Z

Input (s) Blockchain Transactions
32

Aug. 26 , 2021 Sheet 18 of 45

22 36

US 2021/0266174 A1

168

166

162

160

162

164

20

FIG . 19

Patent Application Publication

28

26

24

30

Blockchain Network Server

Input (s) Blockchain Transactions
32

24 32
40

- Input (s) Blockchain Transactions Block of Data

Aug. 26 , 2021 Sheet 19 of 45

182

170

46

Encryption Algorithm

TX / RX

22

Difficulty Algorithm PoW Algorithm

ECU

PCU

-48 52

1

BCU

CCU

US 2021/0266174 A1

2 . 172-180

FIG . 20

Patent Application Publication

28

26

24

30

Blockchain Network Server

Input ($) Blockchain Transactions PoW Target Scheme .

P

Memory

190

-194

34

32

192

Server - Side Blockchain Application -PoW Target Scheme

34

Aug. 26 , 2021 Sheet 20 of 45

196

Client - Side
Blockchain Application 34

PoW Target Scheme Block of Data

40

Blockchain

-64

22

Miner System

46 54 60

CPU

Memory

Hashing Algorithm

20

36

38

50

Difficulty Algorithm +48 Difficulty PoW Algorithm 52
PoW Result

-42

Puzzle

62

US 2021/0266174 A1

44

FIG . 21

150

Patent Application Publication

152

- Encryption Service Provider Encryption Service Encryption Algorithm

160

46

154

Difficulty Server

Difficulty Service Provider Difficulty Service Difficulty Algorithm Difficulty —
156 158 -48 50

P

Memory

Encryption Server

26

Memory
P

28

Blockchain Network Server

124

Aug. 26 , 2021 Sheet 21 of 45

130

Y
Service Response

PoW Server

60 50 42

P

Memory

Service Request

24 32

PoW Service Provider PoW Service PoW Algorithm

-120 -122 52

22

Miner System
CPU

Memory

PoW Target Scheme

34

36

US 2021/0266174 A1

38

20

FIG . 22

Patent Application Publication

28

26

24

30

Blockchain Network Server

Input (s) Blockchain Transactions
32

Aug. 26 , 2021 Sheet 22 of 45

-196

Client - Side Blockchain Mining Software Application

22

Miner System

Blockchain Transactions PoW Target Scheme . Encryption Algorithm Difficulty Algorithm PoW Algorithm

-32
34

54 48
52

CPU

Memory

20

36

US 2021/0266174 A1

38

FIG . 23

Patent Application Publication

34

28

26

24

200

Blockchain Network Server

Input (s) Blockchain Transactions
32

Aug. 26 , 2021 Sheet 23 of 45

196

Client - Side Blockchain Mining Software Application

22

34

Miner System

PoW Target Scheme Encryption Algorithm Hashing Algorithm Encryption ID

-46
54

200

CPU

Memory

20

36

US 2021/0266174 A1

38

FIG . 24

Patent Application Publication

28

26

202

Blockchain Network Server

Message Encryption ID
200

Aug. 26 , 2021 Sheet 24 of 45

196

Client - Side Blockchain Mining Software Application

22

34

Miner System

PoW Target Scheme Encryption Algorithm Hashing Algorithm Encryption ID

-46
54

200

CPU

Memory

20

36

US 2021/0266174 A1

38

FIG . 25

Patent Application Publication

196

Client - Side Blockchain Mining Software Application Input (s) Blockchain Transactions PoW Target Scheme . Encryption Algorithm Hashing Algorithm Encryption ID

24
-32

34
46

54
200

22

Miner System
CPU

Memory

36

38

Database of Encryption Algorithms

Aug. 26 , 2021 Sheet 25 of 45

70

72

Service

Encryption ID
PoW Target Scheme

Encryption Algorithm
Encryption Service

Encryption Service Provider

Resource

ID1

Scheme 1

SHA - 256

Service 1

Provider 1

IP address

ID2

Scheme 2

Algorithm 2

Service 2

Provider 2

Website

ID3

Scheme 3

Algorithm 3

Service 3

Provider 3

URL

US 2021/0266174 A1

20

200

34

46

152

150

204

FIG . 26

Patent Application Publication

34

28

26

24

210

Blockchain Network Server

Input (s) Blockchain Transactions
32

Aug. 26 , 2021 Sheet 26 of 45

196

Client - Side Blockchain Mining Software Application

22

34

Miner System

PoW Target Scheme Difficulty Algorithm Difficulty Difficulty ID -

48
50

-210

CPU

Memory

20

36

US 2021/0266174 A1

38

FIG . 27

Patent Application Publication

28

26

202

Blockchain Network Server

Message Difficulty ID
210

Aug. 26 , 2021 Sheet 27 of 45

196

Client - Side Blockchain Mining Software Application

22

34

Miner System

PoW Target Scheme Difficulty Algorithm Difficulty Difficulty ID -

48
50

-210

CPU

Memory

20

36

US 2021/0266174 A1

38

FIG . 28

Patent Application Publication

196

Client - Side Blockchain Mining Software Application Hash Value (s)
PoW Target Scheme Difficulty Algorithm Difficulty ID

60
-34

48 -210

22

Miner System
CPU

Memory

36

38

Database of Difficulty Algorithms

Aug. 26 , 2021 Sheet 28 of 45

74

76

Service

Difficulty ID
PoW Target Scheme

Difficulty Algorithm
Difficulty Service

Difficulty Service Provider

Resource

ID4

Scheme 1

Diff 1

Service 4

Provider 4

IP address

ID5

Scheme 5

Diff 2

Service 5

Provider 5

Website

ID6

Scheme 3

Diff 3

Service 6

Provider 6

URL

US 2021/0266174 A1

20

210

34

48

158

156

212

FIG . 29

Patent Application Publication

34

28

26

24

214

Blockchain Network Server

Input (s)

, Blockchain Transactions
32

Aug. 26 , 2021 Sheet 29 of 45

196

Client - Side Blockchain Mining Software Application

22

-34

Miner System

PoW Target Scheme PoW Algorithm PoW ID

+52

CPU

Memory

214

20

36

US 2021/0266174 A1

38

FIG . 30

Patent Application Publication

28

26

202

Blockchain Network Server

Message POW ID

214

Aug. 26 , 2021 Sheet 30 of 45

196

Client - Side Blockchain Mining Software Application

22

-34

Miner System

PoW Target Scheme PoW Algorithm PoW ID

+52

CPU

Memory

214

20

36

US 2021/0266174 A1

38

FIG . 31

Patent Application Publication

196

Client - Side Blockchain Mining Software Application Hash Value (s)
PoW Target Scheme PoW Algorithm POWID

60
-34

52 -214

22

Miner System
CPU

Memory

36

38

Database of PoW Algorithms

Aug. 26 , 2021 Sheet 31 of 45

78

80

PoW

Service

PoW Target Scheme

PoW Algorithm
POW Service

PoW Service Provider

ID

Resource

ID7

Scheme 1

PoW 1

Service 7

Provider 1

IP address

ID8

Scheme 8

PoW 2

Service 8

Provider 8

Website

ID9

Scheme 9

PoW 3

Service 9

Provider 9

URL

US 2021/0266174 A1

20

214

34

48

122

120

216

FIG . 32

Patent Application Publication

46

48

160

Difficulty Algorithm

Encryption Algorithm

154

Difficulty Server

Encryption Server

26

Database of Difficulty Algorithms

-74

Database of Encryption Algorithms
70

124

PoW Algorithm

-52

Aug. 26 , 2021 Sheet 32 of 45

130

Query Response

POW Server

46 48 52

Database of PoW Algorithms

78

Query

200 210 214

22

Miner System
CPU

Memory

PoW Target Scheme

-34

36

US 2021/0266174 A1

38

20

FIG . 33

Patent Application Publication

46
54

Encryption Algorithm Hashing Algorithm Output Hash Value (s)

56 60

60

22

Hash Value (s) Difficulty Algorithm Difficulty Bit Shuffle

Miner System

-48 50 92

CPU

Memory

36

34 44

38

Database Table

-60

Hash Value (s) POW Algorithm PoW Result Puzzle Bit Shuffle

Aug. 26 , 2021 Sheet 33 of 45

90

- 52

42

62 -92

100111010
011001011

00010011

1101

96

-94 } -94

001011

11101

US 2021/0266174 A1

00111101

1100

20

FIG . 34

Patent Application Publication

60 60

Generated Hash Value : 110100101010101010101010101001001110000011000011000100000110110010101010101010101010 220

226

Randomized Hash Value : 100111010101010101010101001001110000011000011000100000110110010101010101010101010 220

Aug. 26 , 2021 Sheet 34 of 45

96

94 {

100111010
011001011

00010011

1101

Hash Value (s)

Bit Shuffle RNG Random Number
? ?

60
92

222

001011

11101

00111101

1100

224

Miner System

22

US 2021/0266174 A1

Database Table

-90

FIG . 35

Patent Application Publication

-196

Client - Side Blockchain Mining Software Application

102

22

Miner System

36

CPU

Memory

Table Size Processor Cache Size Cache Read / Write Cache Miss Cache Latency Cache Deficit Cache Surplus
Additional Row (s) Additional Column (s) .

RNG Random Number .

-104 230 -232 234 236 238
- 240 242 222 -224

100

Aug. 26 , 2021 Sheet 35 of 45

38

Database Table

90

100111010
011001011

00010011

1101

96

-94 3-94

001011

11101

US 2021/0266174 A1

00111101

1100

FIG . 36

Patent Application Publication

-196

Client - Side Blockchain Mining Software Application

36

Processor

102

L1 Cache

38

Bus

System RAM Memory

Aug. 26 , 2021 Sheet 36 of 45

100 104

Table Size Processor Cache Size Cache Read / Write Cache Miss Cache Latency Cache Deficit Cache Surplus
Additional Row (s) . Additional Column (s) .

RNG Random Number

L2 Cache

104 230 -232 -234
236 238

240
242 222 -224

Database Table

L3 Cache

90 94

US 2021/0266174 A1

22

FIG . 37

Patent Application Publication

34

28

26

24

/

250

Blockchain Network Server
-

Input (s) Blockchain Transactions
32

Aug. 26 , 2021 Sheet 37 of 45

-196

Client - Side Blockchain Mining Software Application

-34

22

Miner System

PoW Target Scheme Table ID- : Database Table

250 -90

CPU

Memory

20

36

38

Database of Tables
252

US 202/0266174 A1

FIG . 38

Patent Application Publication

90

254

Database Table

Table Server

26

Database of Tables
252

Aug. 26 , 2021 Sheet 38 of 45

Query Response
90

Query

- 250

22

Miner System
CPU

Memory

PoW Target Scheme

34

36

US 2021/0266174 A1

38

20

FIG . 39

20a

Blockchain Environment PoW Target Scheme

Patent Application Publication

-256

-34a

254

Table Service Provider Table Service Table ID Database Table

258 250 90

22a

Miner System

Table Server

26

Database of Tables
252

Aug. 26 , 2021 Sheet 39 of 45

20

226 22b

Miner System

20b

Blockchain Environment PoW Target Scheme

US 2021/0266174 A1

34b

FIG . 40

Patent Application Publication

254

Table Service Provider Table Service Bit Shuffle Table ID Database Table

256 258 92 250 90

Table Server

26

Database of Tables
252

Aug. 26 , 2021 Sheet 40 of 45

226 226

Service Result

60 250
}) ;

Hashing Algorithm Hash Value (s)

3

54 60

Service Request

22 22

Miner System

Difficulty Algorithm POW Algorithm

48 52

US 2021/0266174 A1

20

FIG . 41

46? 48a 52a

Patent Application Publication

196a

20a

Blockchain Environment # 1 PoW Target Scheme # 1

28a

-34a

260a

32a

22 36

Blockchain Network Server # 1

Miner System

Blockchain Transactions
26

20b

Blockchain Environment # 2 PoW Target Scheme # 2
-34b

Aug. 26 , 2021 Sheet 41 of 45

196b

46b 48b 52b

32b

28b

Blockchain Transactions

260b

Blockchain Network Server # 2

US 2021/0266174 A1

20

FIG . 42

46a 48a 52a

Patent Application Publication

196a

20a

Blockchain Environment # 1 PoW Target Scheme # 1

28a

-34a

260a

32a

22 36

262b

Blockchain Network Server # 1

Miner System
VM1

VM2

262a

Blockchain Transactions
26

20b

Blockchain Environment # 2 PoW Target Scheme # 2

34b

Aug. 26 , 2021 Sheet 42 of 45

196b

46b 48b 52b

32b

28b

Blockchain Transactions

260b

Blockchain Network Server # 2

US 2021/0266174 A1

20

FIG . 43

Patent Application Publication

32

Blockchain Transactions

22

Miner System
CPU

Memory

36

38

Database of Virtual Machines

Aug. 26 , 2021 Sheet 43 of 45

264

266

PoW

VM

Encrypt / Hashing ID

Target Scheme

Difficulty ID
ID

ID1

Scheme 1

Diff 1

PoW 1

Address

ID8

Scheme 8

Diff 2

PoW 2

Core

ID9

Scheme 9

Diff 3

PoW 3

VM 3

20

US 2021/0266174 A1

200

34

210

214

262

Patent Application Publication Aug. 26 , 2021 Sheet 44 of 45 US 2021/0266174 A1

FIG . 44

300 Receive inputs

302 306

Receive PoW target scheme Receive message Receive identifier (s)
304 "

308 Generate block of data

310 314
.

Outsource to encryption / hashing service provider Identify encryption / hashing algorithm
316 312

Generate output / hash Receive output / hash

318 322

Identify difficulty algorithm Outsource to difficulty service provider

320 324

Identify database table &
generate difficulty Receive difficulty

326 330

Identify PoW algorithm Outsource to PoW service provider

328 332

Identify database table &
generate PoW result Receive PoW result

334 Compare output / hash , difficulty , PoW result to PoW target scheme

STOP

FIG . 45

-196

Patent Application Publication

CPU

CPU # 2

350

1

Client - Side Blockchain Mining Software Application

Graphics Subsystem

System Controller

Memory Subsystem

Keyboard Port

Audio Subsystem

Aug. 26 , 2021 Sheet 45 of 45

Mouse Port

SIO

EIDE

Serial Port

Peripheral Bus Controller

USB

Flash Memory

Parallel Port

Bus

Bus

Ethernet

SCSI

External Device

US 2021/0266174 A1

US 2021/0266174 A1 Aug. 26 , 2021
1

CPU MINING IN BLOCKCHAIN
ENVIRONMENTS

ming code , consume less storage space / usage in bytes , and
execute faster . Blockchain mining schemes may further
randomize byte or memory block access , further improve
cryptographic security . CROSS - REFERENCE TO RELATED

APPLICATIONS
BRIEF DESCRIPTION OF THE SEVERAL

VIEWS OF THE DRAWINGS [0001] This patent application claims domestic benefit of
U.S. Provisional Application No. 63 / 061,372 filed Aug. 5 ,
2020 and is incorporated herein by reference in its entirety .
This patent application claims domestic benefit of U.S.
Provisional Application No. 62 / 962,486 filed Jan. 17 , 2020
and is incorporated herein by reference in its entirety . This
patent application also claims domestic benefit of U.S.
Provisional Application No. 62 / 963,217 filed Jan. 20 , 2020
and is incorporated herein by reference in its entirety .

BACKGROUND

[0002] Today's blockchain processing consumes great
hardware , network , and energy resources . When Satoshi first
proposed a cryptographic blockchain , so - called “ miners ”
expended CPU time and electricity to mine blockchain data .
The mining of blockchains was democratic , meaning anyone
with a conventional CPU - based computer could process the
complicated calculations required to embed a block of data
on a blockchain . Soon , though , the miners realized that a
graphics processing unit (or GPU) was much faster than a
CPU and could be optimized to solve the complicated
calculations . Soon thereafter , most or all blockchain mining
was performed by a specially programmed GPU computer ,
as a conventional CPU - based computer was comparatively
too slow . Today , though , the miners use a specially - designed
application - specific integrated circuit (or ASIC) , as ASICS
are even faster than GPUs . These ASIC computers are much
faster at solving the complicated calculations , but the ASIC
computers are very expensive and consume large amounts of
electrical power . The ASIC computers are so cost prohibitive
that , today , blockchain mining is largely undemocratic . Only
a relatively small number of miners have access to the
financial capital and to energy sources to mine blockchains .

[0004] The features , aspects , and advantages of the exem
plary embodiments are understood when the following
Detailed Description is read with reference to the accom
panying drawings , wherein :
[0005] FIGS . 1-19 are simplified illustrations of a block
chain environment , according to exemplary embodiments ;
[0006] FIGS . 20-21 are more detailed illustrations of an
operating environment , according to exemplary embodi
ments ;
[0007] FIGS . 22-31 illustrate mining specifications ,
according to exemplary embodiments ;
[0008] FIG . 32 illustrates remote retrieval , according to
exemplary embodiments ;
[0009] FIGS . 33-34 illustrate a bit shuffle operation ,
according to exemplary embodiments ;
[0010] FIGS . 35-36 illustrate a database table , according
to exemplary embodiments ;
[0011] FIGS . 37-40 illustrate a table identifier mechanism ,
according to exemplary embodiments ;
[0012] FIG . 41 illustrates agnostic blockchain mining ,
according to exemplary embodiments
[0013] FIGS . 42-43 illustrate virtual blockchain mining ,
according to exemplary embodiments ;
[0014] FIG . 44 is a flowchart illustrating a method or
algorithm for mining blockchain transactions , according to
exemplary embodiments ; and
[0015] FIG . 45 depicts still more operating environments
for additional aspects of exemplary embodiments .

DETAILED DESCRIPTION

now
SUMMARY

[0003] Exemplary embodiments may separate hashing
operations from difficulty and proof - of - work operations .
When blockchain transactions or other data is processed or
mined , encryption (such as a hashing algorithm) may be a
stand - alone software application or programming code .
Blockchain miners may also use a separate difficulty scheme
and a separate proof - of - work scheme . The encryption / hash
ing algorithm , a difficulty algorithm , and a proof - of - work
algorithm may thus be separately called or executed . A
blockchain may thus use any encryption algorithm , any
difficulty algorithm , and / or any proof - of - work algorithm .
Blockchain environments may thus mix - and - match different
encryption , difficulty , and / or proof - of - work schemes when
mining blockchain data . Each encryption , difficulty , and / or
proof - of - work scheme may be separate , stand - alone pro
grams , files , or third - party services . Blockchain miners may
be agnostic to a particular blockchain's encryption , diffi
culty , and / or proof - of - work schemes , thus allowing any
blockchain miner to process or mine data in multiple block
chains . GPUs , ASICs , and other specialized processing
hardware components may be deterred by forcing cache
misses , cache latencies , and processor stalls . Hashing , dif
ficulty , and / or proof - of - work schemes require less program

[0016) The exemplary embodiments will be
described more fully hereinafter with reference to the
accompanying drawings . The exemplary embodiments may ,
however , be embodied in many different forms and should
not be construed as limited to the embodiments set forth
herein . These embodiments are provided so that this disclo
sure will be thorough and complete and will fully convey the
exemplary embodiments to those of ordinary skill in the art .
Moreover , all statements herein reciting embodiments , as
well as specific examples thereof , are intended to encompass
both structural and functional equivalents thereof . Addition
ally , it is intended that such equivalents include both cur
rently known equivalents as well as equivalents developed
in the future (i.e. , any elements developed that perform the
same function , regardless of structure) .
[0017] Thus , for example , it will be appreciated by those
of ordinary skill in the art that the diagrams , schematics ,
illustrations , and the like represent conceptual views or
processes illustrating the exemplary embodiments . The
functions of the various elements shown in the figures may
be provided through the use of dedicated hardware as well
as hardware capable of executing associated software . Those
of ordinary skill in the art further understand that the
exemplary hardware , software , processes , methods , and / or
operating systems described herein are for illustrative pur

US 2021/0266174 A1 Aug. 26 , 2021
2

poses and , thus , are not intended to be limited to any
particular named manufacturer .
[0018] As used herein , the singular forms “ a , ” “ an , ” and
“ the ” are intended to include the plural forms as well , unless
expressly stated otherwise . It will be further understood that
the terms “ includes , " " comprises , ” “ including , ” and / or
" comprising , " when used in this specification , specify the
presence of stated features , integers , steps , operations , ele
ments , and / or components , but do not preclude the presence
or addition of one or more other features , integers , steps ,
operations , elements , components , and / or groups thereof . It
will be understood that when an element is referred to as
being " connected ” or “ coupled ” to another element , it can be
directly connected or coupled to the other element or inter
vening elements may be present . Furthermore , “ connected ”
or " coupled ” as used herein may include wirelessly con
nected or coupled . As used herein , the term " and / or ”
includes any and all combinations of one or more of the
associated listed items .
[0019] It will also be understood that , although the terms
first , second , etc. may be used herein to describe various
elements , these elements should not be limited by these
terms . These terms are only used to distinguish one element
from another . For example , a first device could be termed a
second device , and , similarly , a second device could be
termed a first device without departing from the teachings of
the disclosure .
[0020] FIGS . 1-19 are simplified illustrations of a block
chain environment 20 , according to exemplary embodi
ments . A miner system 22 receives one or more inputs 24 via
a communications network 26 from a blockchain network
server 28. While the inputs 24 may be any electronic data 30 ,
in the blockchain environment 20 , the inputs 24 are block
chain transactions 32 (such as financial transactions , inven
tory / shipping data , and / or healthcare medical data) . The
actual form or content represented by the electronic data 30
and the blockchain transactions 32 may be unimportant . The
blockchain network server 28 sends , distributes , or broad
casts the inputs 24 to some or all of the authorized mining
participants (such as the miner system 22) . The blockchain
network server 28 may also specify a proof - of - work
(“ PoW ”) target scheme 34 , which may accompany the
inputs 24 or be separately sent from the inputs 24 .
[0021] The miner system 22 may mine the inputs 24 .
When the miner system 22 receives the inputs 24 , the miner
system 22 has a hardware processor (such as CPU 36) and
a solid - state memory device 38 that collects the inputs 24
(such as the blockchain transactions 32) into a block 40 of
data . The miner system 22 then finds a difficult proof - of
work (“ POW ”)) result 42 based on the block 40 of data . The
miner system 22 performs , executes , or calls / requests a
proof - of - work (“ Pow ”) mechanism 44. The proof - of - work
mechanism 44 is a computer program , instruction (s) , or code
that instruct or cause the miner system 22 to call , request ,
and / or execute an encryption algorithm 46. The proof - of
work mechanism 44 may instruct or cause the miner system
22 to call , request , and / or execute a difficulty algorithm 48
that generates or creates a difficulty 50. The proof - of - work
mechanism 44 may also instruct or cause the miner system
22 to call , request , and / or execute a proof - of - work (“ PoW ”)
algorithm 52. The proof - of - work mechanism 44 may thus be
one or more software applications or programming schemes
that separate the encryption algorithm 46 from the difficulty
algorithm 48 and / or from the proof - of - work algorithm 52 .

Because the encryption algorithm 46 may be separately
executed / called from the difficulty algorithm 48 and / or from
the proof - of - work algorithm 52 , encryption of the electronic
data 30 (representing the inputs 24) is separately performed
from the difficulty 50 of solving the proof - of - work . In other
words , any encryption algorithm 46 may be used , along with
any difficulty algorithm 48 , and / or along with any proof - of
work algorithm 52 .
[0022] FIG . 2 further illustrates the proof - of - work mecha
nism 44. While the encryption algorithm 46 may utilize any
encryption scheme , process , and / or function , many readers
may be familiar with a cryptographic hashing algorithm 54
(such as the SHA - 256 used by BITCOIN®) . The crypto
graphic hashing algorithm 54 may thus generate an output
56 (sometimes called a digest 58) by implementing or
executing the cryptographic hashing algorithm 54 using the
inputs 24 (such as the blockchain transactions 32) . So ,
whatever the arbitrary bit values of the inputs 24 , and
whatever the arbitrary bit length of the inputs 24 , the
cryptographic hashing algorithm 54 may generate the output
56 as one or more hash values 60 , perhaps having a fixed
length (or n - bit) . The miner system 22 may thus receive the
inputs 24 from the blockchain network server 28 , call and / or
execute the encryption algorithm 46 (such as the crypto
graphic hashing algorithm 54) , and generate the hash value
(s) 60 .
[0023] As FIG . 3 illustrates , the miner system 22 may
separately perform or call the proof - of - work algorithm 52 .
After the encryption algorithm 46 creates the output (s) 56 ,
the miner system 22 may read / retrieve the output (s) 56 and
send the output (s) 56 to the proof - of - work algorithm 52. The
miner system 22 may thus generate the proof - of - work result
42 by calling and / or by executing the proof - of - work algo
rithm 52 using the output (s) 56. The miner system 22 , for
example , may send the hash value (s) 60 (generated by the
cryptographic hashing algorithm 54) to the proof - of - work
algorithm 52 , and the proof - of - work algorithm 52 generates
the proof - of - work result 42 using the hash value (s) 60. The
proof - of - work algorithm 52 may also compare the proof
of - work result 42 to the proof - of - work (" POW ”) target
scheme 34. The proof - of - work algorithm 52 may , in general ,
have to satisfy or solve a mathematical puzzle 62 , perhaps
defined or specified by the proof - of - work target scheme 34 .
The proof - of - work target scheme 34 may also specify , or
relate to , the difficulty 50 of solving the mathematical puzzle
62. That is , the more stringent or precise the proof - of - work
target scheme 34 (e.g. , a minimum / maximum value of the
hash value 60) , the more difficult the mathematical puzzle 62
is to solve . In other words , the difficulty 50 is a measure of
how difficult it is to mine the block 40 of data , given the
solution requirements of the proof - of - work target scheme
34 .

[0024] The miner system 22 may own the block 40 of data .
If the miner system 22 is the first to satisfy the proof - of - work
target scheme 34 (e.g. , the proof - of - work result 42 satisfies
the mathematical puzzle 62) , the miner system 22 may
timestamp the block 40 of data and broadcast the block 40
of data , the timestamp , the proof - of - work result 42 , and / or
the mathematical puzzle 62 to other miners in the blockchain
environment 20. The miner system 22 , for example , may
broadcast a hash value representing the block 40 of data , and
the other miners begin working on a next block in the
blockchain 64 .

US 2021/0266174 A1 Aug. 26 , 2021
3

[0025] Today's BITCOIN difficulty is increasing . On or
about Jun . 16 , 2020 , BITCOIN's network adjusted its dif
ficulty level (the measure of how hard it is for miners to
compete for block rewards on the blockchain) to 15.78
trillion , which was nearly a 15 % increase in the difficulty 50 .
As the difficulty 50 increases , older , less capable , and less
power efficient miners are unable to compete . As a result ,
today's BITCOIN® miners must have the latest , fastest
hardware (such as an ASIC) to profitably solve the math
ematical puzzle 62 according to the proof - of - work target
scheme 34. Indeed , Satoshi envisioned that increasing hard
ware speed would allow miners to easier solve the proof
of - work . Satoshi thus explained that the difficulty would be
a moving target to slow down generation of the blocks 40 of
data .
[0026] Conventional mining schemes are integrated .
When a conventional blockchain miner attempts to solve the
mathematical puzzle 62 , the conventional blockchain miner
executes a conventional scheme that integrates hashing ,
difficulty , and proof - of - work . That is , conventional proof
of - work schemes require the miners to execute a combined
software offering or pre - set combination of encryption and
proof . These conventional proof - of - work scheme , in other
words , integrate a predetermined encryption / hashing algo
rithm into or with a predetermined difficulty and a prede
termined proof - of - work algorithm . These conventional
proof - of - work schemes thus force the miners to execute a
predetermined or predefined scheme that functionally mar
ries or bundles encryption , difficulty , and proof - of - work .
[0027] The conventional schemes specify a difficulty
mechanism . BITCOIN's difficulty mechanism , for example ,
is a measure of how difficult it is to mine a BITCOIN block
of data . BITCOIN® miners are required to find a hash value
below a given target (e.g. , SHA256 (nonce + input) has n
leading zeros , where n determines the mining difficulty) . The
difficulty adjustment is directly related to the total estimated
mining power (sometimes estimated in Total Hash Rate per
second) . BITCOIN's difficulty mechanism is adjusted to
basically ensure that ten (10) minutes of computation are
required before a miner may solve the mathematical puzzle
62 .
[0028] The conventional schemes force the use of special
ized hardware . When blockchain mining first appeared ,
home / desktop computers and laptops (and their conven
tional processors or CPUs) were adequate . However , as
blockchain mining became more difficult and competitive ,
miners gained an advantage by repurposing a dedicated
graphics processing unit (or GPU) for blockchain mining .
As an example , the RADEON® HD 5970 GPU has a
clocked processing speed of executing about 3,200 of 32 - bit
instructions per clock , which is about 800 times more than
the speed of a CPU that executes only four (4) 32 - bit
instructions per clock . This increased processor clock speed
allowed GPUs to perform far more calculations and made
GPUs more desirable for cryptocurrency / blockchain min
ing . Later , field programmable gate arrays (FPGAs) were
also re - modeled for cryptocurrency / blockchain mining .
FPGAs were able to compute the mathematical operations
required to mine the block 40 of data twice as fast as the
GPU . However , FPGA devices were more labor - intensive to
build and still require customized configurations (both soft
ware programming and hardware) . Today's BITCOIN®
miners have pushed the hardware requirements even further
by using a specialized application - specific integrated circuit

(ASIC) that is exclusively designed for blockchain mining .
These ASICs may be 100 billion times faster than mere
CPUs . These ASICs have made BITCOIN® mining
undemocratic and only possible by a relatively few , well
capitalized entities running mining farms . Today's BIT
COIN® miners thus consume great quantities of electrical
power and pose concerns for the electrical grid .
[0029] Today's conventional mining hardware has further
specialized . Some ASICs have also been further designed
for particular blockchains to achieve additional optimiza
tions . For example , a hardware implementation of the SHA
256 hash is much faster than a version coded in software .
Today , nearly all BITCOIN® mining is performed using
hardware ASICs . Specialized hardware has even been devel
oped for particular hashing functions . The RAVENCOIN®
scheme , as an example , uses several different hashing algo
rithms , and a particular hashing algorithm is picked for one
block based off of a hash of a previous block (the RAVEN
COIN® scheme resembles a random selection of the hash
ing algorithm) . However , because fifteen (15) of the sixteen
(16) algorithms sit on the sidelines unused at any given time ,
the RAVENCOIN® scheme makes it very expensive for a
miner to buy sixteen (16) different hardware rigs in order to
mine according to the RAVENCOIN® scheme . Even if a
miner decides to only mine the blocks that match a particular
hardware requirement , the hardware still sits idle 14-15
cycles on average .
[0030] Some blockchains may also alter or modify the
mining scheme . For example , the MONERO® mining
scheme uses a specialized hashing function that implements
a random change . That is , the MONERO® mining scheme
uses a hash algorithm that unpredictably rewrites itself . The
MONERO® mining network introduced a RandomX min
ing algorithm that was designed to deter ASICs and to
improve the efficiency of conventional CPUs . MONERO's
RandomX mining algorithm uses random code execution
and memory - intensive techniques , rendering ASICs too
expensive and ineffective to develop .
[0031] The conventional mining schemes thus have many
disadvantages . Conventional mining schemes have become
so specialized and so expensive that only a small number of
large miners have the resources to compete . Blockchain
mining , in other words , has become centralized and
undemocratic . Some conventional schemes try to find new
hashing algorithms , new proof - of - work schemes , or modify
existing schemes to de - centralize and to democratize mining
participants . Some conventional mining schemes (such as
ETHERTUIM®) require very large memory spaces in bytes ,
which disadvantages its hardware . LITECOIN® also disad
vantages hardware by copying large byte amounts of data .
[0032] As FIGS . 4-6 illustrate , though , exemplary
embodiments may mix - and - match the encryption algorithm
46 , the difficulty algorithm 48 , and the proof - of - work algo
rithm 52. The inventor has observed that there is no mining
law or scheme that requires a preset or predefined difficulty
scheme (such as BITCOIN'S counting zeroes on the hash to
decide its difficulty) . Instead , exemplary embodiments may
use any encryption algorithm 46 that a cryptographic coin ,
network , or scheme desires or specifies . Exemplary embodi
ments may use any difficulty algorithm 48 that the crypto
graphic coin , network , or scheme desires or specifies . Exem
plary embodiments may use any proof - of - work algorithm 52
that the cryptographic coin , network , or scheme desires or
specifies . FIG . 4 illustrates the encryption algorithm 46 , the

US 2021/0266174 A1 Aug. 26 , 2021
4

difficulty algorithm 48 , and proof - of - work algorithm 52 as
separate software mechanisms . FIG . 5 illustrates alternative
software mechanism where the difficulty algorithm 48 and
proof - of - work algorithm 52 may be functionally inter
twined , but the encryption algorithm 46 is a separate ,
stand - alone program , file , or service . FIG . 6 illustrates the
inputs and outputs for the encryption algorithm 46 , the
difficulty algorithm 48 , and proof - of - work algorithm 52 .
[0033] FIG . 7 illustrates agnostic hashing . Exemplary
embodiments may use any encryption algorithm 46 that a
cryptographic coin , blockchain network , or scheme desires
or specifies . Because most blockchain mining schemes use
hashing , FIG . 7 illustrates the cryptographic hashing algo
rithm 54. The proof - of - work (“ POW ”) target scheme 34 may
thus use any cryptographic hashing algorithm 54 , as exem
plary embodiments are agnostic to hashing / encryption . The
encryption algorithm 46 may be any cryptographic hashing
algorithm 54 (e.g. , the SHA - 2 family (SHA - 256 and SHA
512) and / or the SHA - 3 family) . The miner system 22 need
only request , call , and / or execute the particular crypto
graphic hashing algorithm 54 specified by the proof - of - work
target scheme 34. FIG . 7 thus illustrates an electronic
database 70 of encryption algorithms accessible to the miner
system 22. While the database 70 of encryption algorithms
is illustrated as being locally stored in the memory device 38
of the miner system 22 , the database 70 of encryption
algorithms may be remotely stored and accessed / queried at
any networked location . Even though the database 70 of
encryption algorithms may have any logical structure , a
relational database is perhaps easiest to understand . FIG . 7
thus illustrates the database 70 of encryption algorithms as
an electronic table 72 that maps , converts , or translates
different proof - of - work target schemes 34 to their corre
sponding or associated encryption algorithm 46 (such as the
particular cryptographic hashing algorithm 54) . The miner
system 22 may thus identify the encryption algorithm 46 by
querying the electronic database 70 of encryption algorithms
for the proof - of - work target scheme 34 specified for use by
the blockchain environment 20. So , once the particular
cryptographic hashing algorithm 54 is identified , the miner
system 22 may acquire or retrieve any inputs 24 (such as the
blockchain transactions 32) and execute the cryptographic
hashing algorithm 54 specified by the proof - of - work target
scheme 34. The miner system 22 may optionally send the
inputs 24 via the Internet or other network (e.g. , the com
munications network 26 illustrated in FIGS . 1-3) to a remote
destination for service execution (as later paragraphs will
explain) . The encryption algorithm 46 (e.g. , the crypto
graphic hashing algorithm 54 specified by the proof - of - work
target scheme 34) may thus generate the output 56 / digest 58
represented as the hash value (s) 60 .
[0034] FIG . 8 illustrates agnostic difficulty . Exemplary
embodiments may use any difficulty algorithm 48 that a
cryptographic coin , blockchain network , or scheme desires
or specifies . For example , when or even after the encryption
algorithm 46 (e.g. , the cryptographic hashing algorithm 54)
generates the output 56 (such as the hash value (s) 60) , the
miner system 22 may request , call , and / or execute the
particular difficulty algorithm 48 selected by , or specified by ,
the proof - of - work target scheme 34 and / or the blockchain
environment 20. The proof - of - work target scheme 34 may
thus use any difficulty algorithm 48 , as the miner system 22
is agnostic to difficulty . FIG . 8 , for example , illustrates an
electronic database 74 of difficulty algorithms that is acces

sible to the miner system 22. While the database 74 of
difficulty algorithms is illustrated as being locally stored in
the memory device 38 of the miner system 22 , the database
74 of difficulty algorithms may be remotely stored and
accessed / queried at any networked location . Even though
the database 74 of difficulty algorithms may have any logical
structure , a relational database is again perhaps easiest to
understand . FIG . 8 thus illustrates the database 74 of diffi -
culty algorithms as an electronic table 76 that maps , con
verts , or translates different proof - of - work target schemes 34
to their corresponding or associated difficulty algorithm 48
(such as the particular cryptographic hashing algorithm 54) .
The miner system 22 may thus identify the difficulty algo
rithm 48 by querying the electronic database 74 of difficulty
algorithms . So , once the particular difficulty algorithm 48 is
identified , the miner system 22 may acquire or retrieve any
inputs that are required by the difficulty algorithm 48 (such
as the output hash value (s) 60 generated by the crypto
graphic hashing algorithm 54) . The miner system 22 may
execute the difficulty algorithm 48 specified by the proof
of - work target scheme 34. The miner system 22 may option
ally send the hash value (s) 60 via the Internet or other
network (e.g. , the communications network 26 illustrated in
FIGS . 1-3) to a remote destination for service execution (as
later paragraphs will explain) . The difficulty algorithm 48
creates or generates the difficulty 50 based on the hash
value (s) 60 .
[0035] FIG . 9 illustrates agnostic proof - of - work . Exem
plary embodiments may use any proof - of - work algorithm 52
that a cryptographic coin , blockchain network , or scheme
desires or specifies . The proof - of - work target scheme 34
may thus use any proof - of - work algorithm 52 , as the miner
system 22 is agnostic to encryption , difficulty , and / or proof
of - work . FIG . 9 , for example , illustrates an electronic data
base 78 of proof - of - work algorithms that is accessible to the
miner system 22. While the database 78 of proof - of - work
algorithms is illustrated as being locally stored in the
memory device 38 of the miner system 22 , the database 78
of proof - of - work algorithms may be remotely stored and
accessed / queried at any networked location . Even though
the database 78 of proof - of - work algorithms may have any
logical structure , a relational database is again perhaps
easiest to understand . FIG . 9 thus illustrates the database 78
of proof - of - work algorithms as an electronic table 80 that
maps , converts , or translates different proof - of - work target
schemes 34 to their corresponding proof - of - work algorithm
52. The miner system 22 may thus identify the proof - of
work algorithm 52 by querying the electronic database 78 of
proof - of - work algorithms . After the hash value (s) 60 are
generated , and perhaps after the difficulty 50 is generated ,
the miner system 22 may execute the proof - of - work algo
rithm 52 (specified by the proof - of - work target scheme 34)
using the hash value (s) 60 and / or the difficulty 50 as inputs .
The miner system 22 may optionally send the hash value (s)
60 and / or the difficulty 50 via the Internet or other network
to a remote destination for service execution (as later
paragraphs will explain) . The proof - of - work algorithm 52
generates the proof - of - work result 42 using the hash value (s)
60 and / or the difficulty 50. The proof - of - work algorithm 52
may also compare the proof - of - work result 42 to the proof
of - work (“ PoW ”) target scheme 34 to ensure or to prove a
solution to the mathematical puzzle 62 .
[0036] Exemplary embodiments may thus use any encryp
tion algorithm 46 , any difficulty algorithm 48 , and / or any

US 2021/0266174 A1 Aug. 26 , 2021
5

proof - of - work algorithm 52. Exemplary embodiments may
implement any cryptographic security . Instead of merely
counting zeroes (as specified by BITCOIN ') , exemplary
embodiments may run the resulting hash value 60 through
the difficulty algorithm 48 to calculate the difficulty 50 in
order to determine whether it's more or less difficult than
other hashes .
[0037] As FIG . 10 illustrates , exemplary embodiments
may use any PoW target scheme 34. There are many
different target schemes , some of which use or specify
random number / nonce values , addresses , starting points , and
other security schemes . The proof - of - work algorithm 52 , for
example , may have to compare the hash value (s) 60 to a
target hash value 82. The target hash value 82 may be any
minimum or maximum hash value that must be satisfied . If
the hash value 60 is less than or perhaps equal to the target
hash value 82 , then the proof - of - work algorithm 52 has
perhaps solved the mathematical puzzle 62. However , if the
hash value 60 is greater than the target hash value 82 , then
perhaps the proof - of - work algorithm 52 has failed to solve
the mathematical puzzle 62. Likewise , the hash value 60
may need to be equal to or greater than the target hash value
82 to be satisfactory . Regardless , should the hash value 60
fail to satisfy the target hash value 82 , exemplary embodi
ments may modify any data or input (e.g. , the electronic data
30 , a random number / nonce value , address , starting points ,
etc.) according to the proof - of - work target scheme 34 , again
call or request the cryptographic hashing algorithm 54 to
generate the corresponding hash value (s) 60 , and compare
the hash value (s) 60 to the target hash value 82. Exemplary
embodiments may repeatedly modify the electronic data 30
and / or any other parameters until the corresponding hash
value (s) 60 satisfy the target hash value 82 .
[0038] Exemplary embodiments may also use any diffi
culty scheme . The inventor envisions that there will be many
different difficulty schemes . The difficulty algorithm 48 , for
example , may have to compare the difficulty 50 to a target
difficulty 84. The target difficulty 84 has a bit or numeric
value that represents a satisfactory difficulty of the corre
sponding cryptographic hashing algorithm 54 and / or the
hash value 60. For example , suppose the target difficulty 84
is a minimum value that represents a minimum permissible
difficulty associated with the corresponding cryptographic
hashing algorithm 54. If the difficulty 50 is less than or
perhaps equal to the target difficulty 84 , then perhaps the
corresponding cryptographic hashing algorithm 54 and / or
the hash value 60 is adequately difficult . However , if the
difficulty 50 is greater than the target difficulty 84 , then
perhaps the corresponding cryptographic hashing algorithm
54 and / or the hash value 60 is too difficult . Likewise , the
difficulty 50 may need to be equal to or greater than the
target difficulty 84 to be adequately difficult . Regardless ,
should the difficulty 50 fail to satisfy the target difficulty 84 ,
exemplary embodiments may modify any data or input (e.g. ,
the electronic data 30 , a random number / nonce value ,
address , starting points , etc.) and recompute the correspond
ing hash value (s) 60. Moreover , exemplary embodiments
may additionally or alternatively change the cryptographic
hashing algorithm 54 and / or the difficulty algorithm 48 and
recompute .
[0039] Exemplary embodiments may thus functionally
separate hashing , difficulty , and proof - of - work . The conven
tional proof - of - work target scheme 34 functionally com
bines or performs both hashing and difficulty . The conven

tional proof - of - work target scheme 34 integrates or
combines the difficulty in the hash . The conventional proof
of - work target scheme 34 integrates or combines the diffi
culty in the hash , thus greatly complicating the hash deter
mination . Exemplary embodiments , instead , may separate
the hashing algorithm 54 from the difficulty algorithm 48 .
Exemplary embodiments put the difficulty 50 in the mea
surement of the difficulty 50. Exemplary embodiments
remove the difficulty 50 from the hashing algorithm 54. The
hashing algorithm 54 is not complicated by also having to
integrate / calculate the difficulty algorithm 48. The difficulty
algorithm 48 may thus be a separate , stand - alone function or
service that determines or calculates which hash is more
difficult . The hashing algorithm 54 is much simpler to code
and much faster to execute , as the hashing algorithm 54
requires less programming code and less storage space /
usage in bytes . The hashing algorithm 54 need not be
complicated to deter ASIC mining . Exemplary embodiments
need not rely on the hashing algorithm 54 to also determine
the difficulty 50 and / or the proof - of - work . The difficulty
algorithm 48 is , instead , a separate functional mechanism ,
perhaps performed or executed by a service provider . Exem
plary embodiments thus need not use an electrical power
hungry mechanism that is inherent in the conventional
proof - of - work scheme .
[0040] FIG . 11 illustrates a randomized database table 90 .
The difficulty algorithm 48 and / or the proof - of - work algo
rithm 52 may use or consult the database table 90 when
conducting any proof - of - work (e.g. , 34 and / or 44) . While
exemplary embodiments may use any encryption scheme ,
most blockchain mining uses some form of hashing . FIG . 11
thus the proof - of - work target scheme 34 that utilizes the
separate cryptographic hashing algorithm 54 , but the diffi
culty algorithm 48 and / or the proof - of - work algorithm 52
implements a further randomization of the resulting hash
value (s) 60. The proof - of - work target scheme 34 or mecha
nism 44 may generate , store , and / or use the database table 90
when performing any proof - of - work . Exemplary embodi
ments may implement a bit shuffle operation 92 on the hash
value (s) 60. Exemplary embodiments may use entries in the
database table 90 to perform the bit shuffle operation 92 (as
later paragraphs will explain) . Each entry 94 in the database
table 90 may contain a random selection of bits / bytes 96 .
The difficulty algorithm 48 and / or the proof - of - work algo
rithm 52 may select any bit values representing the hash
value (s) 60 and swap any one or more of the bit values with
any one or more entries 94 specified by the database table
90. The difficulty algorithm 48 and / or the proof - of - work
algorithm 52 may read or select a bit portion of the bit values
representing the hash value (s) 60 and exchange or replace
the bit portion with an entry 94 contained in , or referenced
by , the database table 90. Each entry 94 in the database table
90 represents or is associated with random bits or bytes .
Exemplary embodiments may thus randomly shuffle the
hash value (s) 60 generated by the cryptographic hashing
algorithm 54. Exemplary embodiments randomize byte or
memory block access .
[0041] FIG . 12 illustrates RAM binding . Exemplary
embodiments may discourage or deter the use of specialized
hardware (such as GPUs and ASICs) in blockchain mining .
The proof - of - work target scheme 34 , for example , may take
advantage of , or target , memory size restrictions and cache
latency of any on - board processor cache memory 100. As
the reader may understand , any hardware processing ele

US 2021/0266174 A1 Aug. 26 , 2021
6

ment (whether a GPU , an ASIC , or the CPU 36) may have
integrated / embedded L1 , L2 , and L3 SRAM / DRAM cache
memory . The processor cache memory 100 is generally
much smaller than a system / main memory (such as the
memory device 38) , so the hardware processing element
may store frequently - needed data and instructions . Because
the processor cache memory 100 is physically much closer
to the processing core , any hardware processing element is
able to quickly fetch or hit needed information . If the
processor cache memory 100 does not store the needed
information , then a cache miss has occurred and the hard
ware processing element must request and write blocks of
data via much - slower bus from the system / main memory
38. A cache miss implies a cache latency in time and / or
cycles to fetch the needed information from the system / main
memory 38. Any hardware processing element (again ,
whether a GPU , an ASIC , or the CPU 36) may sit idle , or
stall , while awaiting fetches from the system / main memory
38 .

[0042] Exemplary embodiments may thus force latency ,
cache misses , and stalls . Exemplary embodiments may
target cache latency and processor stalls by generating ,
storing , and / or using the database table 90 when determining
the hash value (s) 60 (as later paragraphs will explain) . The
database table 90 , however , may be sized to overload the
processor cache memory 100. The database table 90 , in other
words , may have a table byte size 102 (in bits / bytes) that
exceeds a storage capacity or cache byte size 104 of the
processor cache memory 100. The database table 90 , for
example , may exceed one gigabyte (1 GB) . Today's L1 , L2 ,
and L3 processor cache memory is typically hundreds of
megabits in size . Because the database table 90 may exceed
one gigabyte (1 GB) , any caching operation will miss or
invalidate . That is , the L1 , L2 , and L3 processor cache
memory 100 lacks the storage capacity or byte size 104 to
store the entire database table 90. Perhaps only a portion (or
perhaps none) of the database table 90 may be stored in the
processor cache memory 100. Indeed , exemplary embodi
ments thus force some , most , or even all of the database
table 90 to be written or stored to the main / host memory
device 38 (or accessed / retrieved from a remote source , as
later paragraphs will explain) . Because any hardware pro
cessing element (again , whether a GPU , an ASIC , or the
CPU 36) is unable to cache the entire database table 90 ,
exemplary embodiments force a cache miss and further
force the hardware processing element to repeatedly use the
processor cache memory 100 to fetch and load a portion of
the database table 90. The main / system memory 38 thus
provides perhaps a particular portion of the database table 90
via the bus to the processor cache memory 100 , and the
processor cache memory 100 then provides that particular
portion of the database table 90 to the hardware processing
element . The hardware processing element may then purge
or delete that particular portion of the database table 90 from
the processor cache memory 100 and request / fetch / load
another portion of the database table 90. Because exemplary
embodiments may force repeated cache misses , the hard
ware processing element may continuously repeat this cycle
for loading / retrieving most or all portions of the database
table 90. The hardware processing element , in other words ,
repeatedly queries the processor cache memory 100 and / or
the main / host memory device 38 and awaits data retrieval .
The hardware processing element must therefore sit , perhaps
mostly idle , while the processor cache memory 100 and / or

the main / host memory device 38 processes , retrieves , and
sends different segments / portions / blocks of the database
table 90. The processor cache memory 100 and / or the
main / host memory device 38 have the cache latency (per
haps measured in clock cycles , data transfer rate , or time)
that limits blockchain computations . A faster processor /
GPU / ASIC , in other words , will not improve memory access
times / speeds , so any computational speed / performance is
limited by the latency of repeatedly accessing the processor
cache memory 100 and / or the main / host memory device 38 .
The database table 90 thus deters GPU / ASIC usage when
processing the blockchain transactions 32. The database
table 90 may thus be purposefully designed to be non
cacheable by intensively using the processor cache memory
100 and / or the main / host memory device 38 as an ASIC
deterrence mechanism .
[0043] Byte or memory block access may be randomized .
Whatever the hashing algorithm 54 , exemplary embodi
ments may implement the bit shuffle operation 92 on the
hash value (s) 60. Exemplary embodiments may use the
entries 94 in the database table 90 to perform the bit shuffle
operation 92 (as later paragraphs will further explain) . The
proof - of - work target scheme 34 may use bit values repre
senting the hash value (s) 60 , but the proof - of - work target
scheme 34 may swap any one or more of the bit values with
any one or more entries 94 specified by the database table
90. Each entry 94 in the database table 90 may contain a
random selection of bits / bytes . The proof - of - work target
scheme 34 may cause the proof - of - work algorithm 52 to
read or to select a bit portion of the bit values representing
the hash value (s) 60 and exchange or replace the bit portion
with an entry 94 contained in , or referenced by , the database
table 90. Each entry 94 in the database table 90 represents
or is associated with random bits or bytes . The proof - of
work target scheme 34 may thus randomly shuffle the hash
value (s) 60 generated by the cryptographic hashing algo
rithm 54 .
[0044] Exemplary embodiments may discourage or deter
specialized hardware in blockchain mining . The miner sys
tem 22 must have access to the database table 90 in order to
execute the bit shuffle operation 92 , difficulty algorithm 48 ,
and / or the proof - of - work algorithm 52. Because any pro
cessing component (e.g. , ASIC , GPU , or the CPU 36) is
unable to cache the entire database table 90 , exemplary
embodiments force the processing component to query the
processor cache memory 100 and / or the main / host memory
device 38 and to await data retrieval . The hardware pro
cessing component must therefore sit , perhaps mostly idle ,
while the processor cache memory 100 and / or the main / host
memory device 38 processes , retrieves , and sends different
segments / portions / blocks of the database table 90. A faster
GPU / ASIC will thus not improve memory access times /
speeds . Exemplary embodiments thus force miners to
choose the CPU 36 , as a faster GPU / ASIC provides no
performance / speed gain . Moreover , because a faster GPU /
ASIC is ineffective , the extra capital expense of a faster
GPU / ASIC offers little or no benefit and cannot be justified .
Exemplary embodiments thus bind miners to the CPU 36 for
blockchain processing / mining .
[0045] Exemplary embodiments thus include RAM hash
ing . The electronic database table 90 may have a random
number of columns and / or a random number of rows . The
electronic database table 90 may have a random number of
database entries 94. Moreover , each columnar / row database

US 2021/0266174 A1 Aug. 26 , 2021
7

entry 94 may also have a random sequence or selection of
bits / bytes (l's and O's) . So , whatever the hash values 60
generated by the hashing algorithm 54 , the separate diffi
culty algorithm 48 and / or proof - of - work algorithm 52 may
use the electronic database table 90 to further randomize the
hash values 60 for additional cryptographic security . Indeed ,
because only at least a portion of the electronic database
table 90 may be stored in the processor cache memory 100 ,
exemplary embodiments effectively confine hashing opera
tions to the main / host memory device 38 (such as a subsys
tem RAM) . Regardless of what device or service provider
executes the hashing algorithm 54 , the electronic database
table 90 , which is mostly or entirely stored in the main / host
memory device 38 , provides the randomized inputs to the
separate difficulty algorithm 48 and / or proof - of - work algo
rithm 52. Operationally and functionally , then , exemplary
embodiments divorce or functionally separate any hardware
processing element from the hashing operation . Simply put ,
no matter what the performance / speed / capability of the
ASIC , GPU , or the CPU 36 , the database table 90 may be
randomly sized to always exceed the storage capacity or
cache byte size 104 of the processor cache memory 100 .
Hashing operations are thus reliant on cache latency , cache
misses , and processor stalls when using the database table
90. The hashing operations are thus largely confined to , and
performed by , the off - board or off - processor main / host
memory device 38 (such as a subsystem RAM) . Because the
main / host memory device 38 performs most or all of the
cryptographic security , the hardware processing component
(ASIC , GPU , or the CPU 36) may play little or no role in the
hashing operations (perhaps only performing database
lookup queries) . Again , a better / faster ASIC or GPU pro
vides little to no advantage in the hashing operations .
Moreover , the main / host memory device 38 consumes much
less electrical power , thus further providing reduced energy
costs that deter / resist ASIC / GPU usage .
[0046] Exemplary embodiments may also add crypto
graphic security . Exemplary embodiments may force the
miner / network to possess , or have authorized access to , the
database table 90. In simple words , the proof - of - work target
scheme 34 swaps random bytes in the hash value 60 with
other random bytes specified by the database table 90. Any
party that provides or determines a proof - of - work must
possess (or have access to) the database table 90. If the
difficulty algorithm 48 and / or the proof - of - work algorithm
52 lacks authorized access to the database table 90 , then the
difficulty algorithm 48 and / or the proof - of - work algorithm
52 cannot query the database table 90 nor perform database
lookup operations . Difficulty and / or proof - of - work will fail
without having access to the database table 90 .
[0047] Exemplary embodiments may also separately
specify the difficulty algorithm 48. The proof - of - work target
scheme 34 may cause the miner system 22 to apply the bit
shuffle operation 92 to the hash value 60. The proof - of - work
target scheme 34 may also specify the difficulty algorithm 48
and the target difficulty 84 , perhaps having a high number or
value . Because these byte accesses to the processor cache
memory 100 are random and over a gigabyte of the memory
space , the byte accesses blow or exceed the retrieval and / or
byte size storage capabilities of the processor cache memory
100. The proof - of - work target scheme 34 thus forces the
miner system 22 to wait on the slower main / host memory
device 38 (rather than waiting on the speed of the hardware
processing component) . A faster / better hardware processing

element (such as an ASIC) , in other words , does not alleviate
the bottleneck of accessing the main / host memory device
38. Moreover , because exemplary embodiments may heav
ily rely on the main / host memory device 38 (rather than the
hardware processing component) to do proof of work , the
miner system 22 consumes significantly less of electrical
power (supplied by a power supply 110) . Because the
proof - of - work algorithm 52 and the difficulty algorithm 48
may be separate from the cryptographic hashing algorithm
54 , exemplary embodiments utilize the security of a well
tested hashing function , but exemplary embodiments also
require the proof - of - work scheme to use the main / host
memory device 38 , which makes it unreasonable to build
ASICS .
[0048] Exemplary embodiments may thus force usage of a
particular physical memory . Exemplary embodiments , for
example , may overload the processor cache memory 100 by
gorging the byte size of the database table 90 with additional
database entries . Even as L1 , L2 , and L3 processor cache
memory 100 increases in the storage capacity or byte size
104 , exemplary embodiments may concomitantly increase
the table byte size 102 (in bits / bytes) to ensure the database
table 90 continues to exceeds the storage capacity or byte
size 104 of the processor cache memory 100. Exemplary
embodiments may thus bind the encryption algorithm 46 ,
the difficulty algorithm 48 , and / or the proof - of - work algo
rithm 52 to the main / host memory device 38 to deter
GPU / ASIC usage .
[0049] Exemplary embodiments may also unbind the
hashing algorithm 54 from the difficulty algorithm 48 .
Exemplary embodiments easily validate the proof - of - work
by changing how proof - of - work is calculated without chang
ing the hashing algorithm 54. Because the hashing algorithm
54 is disassociated or disconnected from the difficulty algo
rithm 48 , the cryptographically security of the hashing
algorithm 54 is increased or improved . Moreover , the sepa
rate difficulty algorithm 48 and / or proof - of - work algorithm
52 may have other / different objectives , without compromis
ing the cryptographically security of the hashing algorithm
54. The difficulty algorithm 48 and / or proof - of - work algo
rithm 52 , for example , may be designed for less consump
tion of the electrical power . The difficulty algorithm 48
and / or proof - of - work algorithm 52 may additionally or
alternatively be designed to deter / resist ASIC / GPU usage ,
such as increased usage of the processor cache memory 100
and / or the main / host memory device 38. The difficulty
algorithm 48 and / or proof - of - work algorithm 52 need not be
cryptographically secure . Because the hashing algorithm 54
ensures the cryptographically security , the difficulty algo
rithm 48 and / or proof - of - work gorithm 52 need not be
burdened with providing the cryptographically security . The
difficulty algorithm 48 and / or proof - of - work algorithm 52
each require less programming code and less storage space /
usage in bytes , so each is much simpler to code and much
faster to execute .
[0050] FIG . 13 illustrates network binding . Because the
encryption algorithm 46 , the difficulty algorithm 48 , and the
proof - of - work algorithm 52 may be separate software mod
ules , routines , or clients , network communications may be
used to deter specialized hardware . As FIG . 13 illustrates ,
the miner system 22 communicates with the blockchain
network server 28 via the communications network 26 .
Because the miner system 22 may be authorized to perform
blockchain mining (perhaps according to the proof - of - work

US 2021/0266174 A1 Aug. 26 , 2021
8

target scheme 34 specified or used by the blockchain net
work server 28) , the miner system 22 may receive the inputs
24 from the blockchain network server 28. The miner system
22 , in other words , must use the communications network 26
to receive the inputs 24 and to subsequently mine the inputs
24. The miner system 22 uses the inputs 24 to determine the
hash value 60 and / or the difficulty 50 (as this disclosure
above explains) . However , suppose the blockchain network
server 28 stores the database table 90 that is required for the
difficulty algorithm 48 and / or the proof - of - work algorithm
52. Even though the miner system 22 may execute the
encryption algorithm 46 , the difficulty algorithm 48 , and / or
the proof - of - work algorithm 52 , the miner system 22 may be
forced to send one or more database queries to the block
chain network server 28. The blockchain network server 28
may have a hardware processing element and a memory
device (not shown for simplicity) that stores the database
table 90. The blockchain network server 28 may also store
and execute a query handler software application (also not
shown for simplicity) that receives queries from clients ,
identifies or looks up entries 94 in the database table 90 , and
sends query responses to the clients . So , when the miner
system 22 is instructed to perform , or require , the bit shuffle
operation 92 , the miner system 22 may thus be forced to
retrieve any entry 94 (specified by the database table 90) via
the communications network 26 from the blockchain net
work server 28. The miner system 22 may thus send the
database query to the network address assigned to or asso
ciated with the blockchain network server 28. The miner
system 22 then awaits a query response sent via the com
munications network 26 from the blockchain network server
28 , and the query response includes or specifies the random
selection of bits / bytes retrieved from the particular entry 94
in the database table 90. The miner system 22 may then
perform the bit swap operation 92 on the hash value (s) 60 (as
this disclosure above explains) .
[0051] Exemplary embodiments may use a network
latency 112 to discourage or deter specialized hardware .
Because the blockchain network server 28 may store the
database table 90 , the miner system 22 is performance bound
by the network latency 112 in the communications network
26. Packet communications between the blockchain network
server 28 and the destination miner system 22 require time ,
and the network latency 112 is affected by network routing ,
network segment travel distances , network traffic , and many
other factors . Exemplary embodiments may thus addition
ally or alternatively force the miner system 22 to wait on the
communications network 26 to obtain any entry 94 in the
database table 90. A faster / better hardware processing com
ponent (such as an ASIC) does not overcome bottleneck (s)
due to the network latency 112 in the communications
network 26. Moreover , because the electrical power required
by a network interface 114 is likely less than the hardware
processing component , the miner system 22 consumes sig
nificantly less of electrical power .
[0052] FIG . 14 illustrates party binding . Here the miner
system 22 may utilize an authorized proof - of - work (“ PoW ”)
service provider 120 that provides a PoW service 122. The
miner system 22 may communicate with a PoW server 124
via the communications network 26 , and the PoW server 124
is operated by , or on behalf of , the PoW service provider
120. Perhaps only the PoW service provider 120 may be
authorized to execute the difficulty algorithm 48 and / or the
proof - of - work algorithm 52 as a provable party . The PoW

server 124 may have a hardware processing element and a
memory device (not shown for simplicity) that stores the
difficulty algorithm 48 and / or the proof - of - work algorithm
52. If an incorrect or unauthorized party attempts the proof
of - work , the proof - of - work is designed to fail . As an
example , FIG . 14 illustrates a party identifier 126 as one of
the inputs 24 to the difficulty algorithm 48 and to the
proof - of - work algorithm 52. While the party identifier 126
may be supplied or sent from any network location (such as
the blockchain network server 28 and / or the miner system
22) , the party identifier 126 may be locally retrieved from
the memory device of the PoW server 124. The miner
system 22 may send a PoW request 128 to a network address
(e.g. , IP address) associated with the PoW server 124. The
PoW request 128 may include or specify one or more of the
inputs 24 to the difficulty algorithm 48 and / or to the proof
of - work algorithm 52. Suppose , for example , that the PoW
request 128 includes or specifies the hash value (s) 60
(determined by the hashing algorithm 54 , as above
explained) . The PoW server 124 may generate the difficulty
50 (by calling or executing the difficulty algorithm 48)
and / or the proof - of - work result 42 (by calling and / or by
executing the proof - of - work algorithm 52) using the hash
value (s) 60 and the party identifier 126. The PoW server 124
may then send the difficulty 50 and / or the proof - of - work
result 42 as a PoW service response 130 back to the IP
address associated with the miner system 22 and / or back to
the IP address associated with the blockchain network server
28. Either or both of the PoW server 124 and / or the
blockchain network server 28 may compare the difficulty 50
and / or the proof - of - work result 42 to the proof - of - work
(" POW ”) target scheme 34. If the difficulty 50 and / or the
proof - of - work result 42 satisfies the proof - of - work (" PoW ')
target scheme 34 , then the correct , authorized party has
solved the mathematical puzzle 62 associated with the
mining scheme .
[0053] Exemplary embodiments may thus be socially
bound . Because the party identifier 126 may be an input to
the difficulty algorithm 48 and / or to the proof - of - work
algorithm 52 , the party identifier 126 must specify the
correct name , code , alphanumeric combination , binary
value , or any other representation of the PoW service
provider 120. If the wrong , incorrect , or unauthorized value
is input , the difficulty algorithm 48 and / or the proof - of - work
algorithm 52 will generate incorrect results that cannot
satisfy the proof - of - work (" PoW ”) target scheme 34. An
unauthorized party has been used to conduct the proof - of
work .

[0054] FIG . 15 illustrates machine binding . Here the miner
system 22 may utilize a particular machine , device , or other
computer to provide the PoW service 122. The miner system
22 , for example , must use the PoW server 124 to execute the
difficulty algorithm 48 and / or the proof - of - work algorithm
52 as a provable party . That is , perhaps only the PoW server
124 is authorized to execute the difficulty algorithm 48
and / or the proof - of - work algorithm 52. A different computer
or server , even if also operated by , or on behalf of , the PoW
service provider 120 , is ineligible or unauthorized . FIG . 15
thus illustrates a machine identifier 130 as one of the inputs
24 to the difficulty algorithm 48 and / or to the proof - of - work
algorithm 52. The machine identifier 130 is any value ,
number , or alphanumeric combination that uniquely identi
fies the PoW server 124 executing the difficulty algorithm 48
and / or the proof - of - work algorithm 52. The machine iden

US 2021/0266174 A1 Aug. 26 , 2021
9

tifier 130 , for example , may be a chassis or manufacturer's
serial number , MAC address , or IP address that is assigned
to or associated with the PoW server 124. When the PoW
server 124 receives the input (s) 24 from the miner system 22
(perhaps via the PoW request 128 , as above explained) , the
PoW server 124 may generate the difficulty 50 and / or the
proof - of - work result 42 using the hash value (s) 60 and the
machine identifier 130 as inputs . The PoW server 124 may
then send the difficulty 50 and / or the proof - of - work result 42
as a PoW service response 130 back to the IP address
associated with the miner system 22 and / or back to the IP
address associated with the blockchain network server 28 .
Either or both of the PoW server 124 and / or the blockchain
network server 28 may compare the difficulty 50 and / or the
proof - of - work result 42 to the proof - of - work (“ PoW ”) target
scheme 34. If the difficulty 50 and / or the proof - of - work
result 42 satisfy the proof - of - work (“ PoW ”) target scheme
34 , then the correct , authorized machine or device has
solved the mathematical puzzle 62 associated with the
mining scheme . Exemplary embodiments may thus be
machine bound . If the wrong , incorrect , or unauthorized
machine identifier 130 is input , the difficulty algorithm 48
and / or the proof - of - work algorithm 52 will generate incor
rect results that cannot satisfy the proof - of - work (“ PoW ”)
target scheme 34. An unauthorized computer has been used
to conduct the proof - of - work .
[0055] FIG . 16 further illustrates network binding . Here a
predetermined network addressing scheme must be used to
conduct the difficulty 50 and / or the proof - of - work result 42 .
Suppose , for example , that the proof - of - work (" PoW ')
target scheme 34 requires one or more predetermined net
work addresses 134 when executing the difficulty algorithm
48 and / or the proof - of - work algorithm 52. The inputs 24 to
the difficulty algorithm 48 and / or to the proof - of - work
algorithm 52 , for example , may include one or more source
addresses 136 and / or one or more destination addresses 138
when routing packetized data via the communications net
work 26 from the miner system 22 to the PoW service
provider 120 (e.g. , the PoW server 124) . The hash values 60 ,
in other words , must traverse or travel a predetermined
network routing 140 in order to satisfy the proof - of - work
(“ POW ”) target scheme 34. The predetermined network
routing 140 may even specify a chronological list or order of
networked gateways , routers , switches , servers , and other
nodal addresses that pass or route the inputs 24 from the
miner system 22 to the PoW server 124. The source
addresses 136 , the destination addresses 138 , and / or the
predetermined network routing 140 may thus be additional
data inputs 24 to the difficulty algorithm 48 and / or to the
proof - of - work algorithm 52. The PoW server 124 may
perform network packet inspection to read / retrieve the
source addresses 136 , the destination addresses 138 , and / or
the predetermined network routing 140 associated with , or
specified by , a data packet . When the PoW server 124
receives the input (s) 24 from the miner system 22 (perhaps
via the PoW request 128 , as above explained) , the PoW
server 124 may generate the difficulty 50 and / or the proof
of - work result 42 using the hash value (s) 60 , the source
addresses 136 , the destination addresses 138 , and / or the
predetermined network routing 140. The PoW server 124
may then send the difficulty 50 and / or the proof - of - work
result 42 as the PoW service response 130 back to the IP
address associated with the miner system 22 and / or back to
the IP address associated with the blockchain network server

28. Either or both of the PoW server 124 and / or the
blockchain network server 28 may compare the difficulty 50
and / or the proof - of - work result 42 to the proof - of - work
(“ POW ”) target scheme 34. If the difficulty 50 and / or the
proof - of - work result 42 satisfy the proof - of - work (" PoW ")
target scheme 34 , then the correct , authorized networked
devices were used to solve the mathematical puzzle 62
associated with the mining scheme . If a wrong , incorrect , or
unauthorized routing was used , the difficulty algorithm 48
and / or the proof - of - work algorithm 52 will fail to satisfy the
proof - of - work (“ PoW ”) target scheme 34. An unauthorized
network of computers has been used to conduct the proof
of - work .

[0056] FIG . 17 illustrates vendor processing . The miner
system 22 may communicate with one or more service
providers via the communications network 26. The miner
system 22 may enlist or request that any of the service
providers provide or perform a processing service . An
encryption service provider 150 , for example , may provide
an encryption service 152 by instructing an encryption
server 154 to execute the encryption algorithm 46 chosen or
specified by the miner system 22 and / or the blockchain
network server 28. A difficulty service provider 156 may
provide a difficulty service 158 by instructing a difficulty
server 160 to execute the difficulty algorithm 48 chosen or
specified by the miner system 22 and / or the blockchain
network server 28. The proof - of - work (PoW) service pro
vider 120 (e.g. , the PoW server 124) may provide the PoW
service 122 by executing the proof - of - work algorithm 52
chosen or specified by the miner system 22 and / or the
blockchain network server 28. The miner system 22 may
thus outsource or subcontract any of the encryption algo
rithm 46 , the difficulty algorithm 48 , and / or the proof - of
work algorithm 52 to the service provider (s) . Because the
encryption algorithm 46 , the difficulty algorithm 48 , and / or
the proof - of - work algorithm 52 may be separate software
mechanisms or packages , the service providers 150 , 156 ,
and 120 may specialize in their respective algorithms 46 , 48 ,
and 52 and / or services 152 , 158 , and 122. The encryption
service provider 150 , for example , may offer a selection of
different encryption services 152 and / or encryption algo
rithms 46 , with each encryption service 152 and / or encryp
tion algorithm 46 tailored to a specific encryption need or
feature . The difficulty service provider 156 may offer a
selection of different difficulty services 158 and / or difficulty
algorithms 48 that are tailored to a specific difficulty need or
feature . The PoW service provider 120 may offer a selection
of different PoW services 122 and / or PoW algorithms 52
that are tailored to a specific proof - of - work need or feature .
The blockchain network server 28 , the miner system 22 ,
and / or the proof - of - work (“ PoW ”) target scheme 34 may
thus mix - and - match encryption , difficulty , and proof - of
work options .
[0057] Exemplary embodiments may thus decouple
encryption , difficulty , and proof - of - work efforts . Because
the encryption algorithm 46 may be a stand - alone software
offering or module , exemplary embodiments greatly
improve encryption security . The encryption algorithm 46
(such as the hashing algorithm 54) need not intertwine with
the difficulty algorithm 48 and / or the proof - of - work algo
rithm 52. Because the hashing algorithm 54 may be func
tionally divorced from difficulty and proof - of - work calcu
lations , the hashing algorithm 54 remains a safe , secure , and
proven cryptology scheme without exposure to software

US 2021/0266174 A1 Aug. 26 , 2021
10

bugs and errors introduced by difficulty and proof - of - work
needs . The difficulty algorithm 48 may also be severed or
isolated from encryption and proof - of - work , thus allowing a
blockchain scheme to dynamically alter or vary different
difficulty calculations without affecting encryption and / or
proof - of - work . The proof - of - work algorithm 52 may also be
partitioned , split off , or disconnected from encryption and
difficulty , thus allowing any blockchain scheme to dynami
cally alter or vary different proof - of - work calculations or
schemes without affecting encryption and / or difficulty .
[0058] FIG . 18 illustrates democratic mining . Exemplary
embodiments reduce or even eliminate the need for graphics
processors and specialized application - specific integrated
circuits . The miner system 22 may thus rely on a conven
tional central processing unit (such as the CPU 36) to
process the blockchain transactions 32. The miner system 22
may thus be a conventional home or business server / desktop
160 or laptop computer 162 that is much cheaper to pur
chase , use , and maintain . Moreover , the miner system 22
may even be a smartphone 164 , tablet computer 166 , or
smartwatch 168 , as these devices also have adequate pro
cessing and memory capabilities to realistically mine and
win the block 40 of data (illustrated in FIGS . 1-10) . Indeed ,
the miner system 22 may be any network - connected device ,
as exemplary embodiments reduce or even eliminate the
need for specialized hardware processors . The miner system
22 thus opens - up blockchain mining to any network - con
nected appliance (e.g. , refrigerator , washer , dryer) , smart
television , camera , smart thermostat , or other Internet of
Thing
[0059] FIG . 19 also illustrates democratic mining .
Because exemplary embodiments reduce or even eliminate
the need for graphics processors and specialized application
specific integrated circuits , the miner system 22 may even be
a car , truck , or other vehicle 170. As the reader may realize ,
the vehicle 170 may have many electronic systems control
ling many components and systems . For example , the engine
may have an engine electronic control unit or “ ECU ” 172 ,
the transmission may have a powertrain electronic control
unit or “ PCU ” 174 , the braking system may have a brake
electronic control unit or “ BCU ” 176 , and the chassis system
may have a chassis electronic control unit or " CUC ” 178 .
There may be many more electronic control units throughout
the vehicle 170. A controller area network 180 thus allows
all the various electronic control units to communicate with
each other (via messages sent / received via a CAN bus) . All
these controllers may also interface with the communica
tions network 26 via a wireless vehicle transceiver 182
(illustrated as “ TX / RX ”) . The vehicle 170 may thus com
municate with the blockchain network server 28 to receive
the inputs 24 (such as the blockchain transactions 32) . The
vehicle 170 may then use the various controllers 172-178 to
mine the blockchain transactions 32 using the encryption
algorithm 46 , the difficulty algorithm 48 , and / or the PoW
algorithm 52 (as this disclosure above explains) . The reader
may immediately see that the vehicle 170 is a powerful
processing platform for blockchain mining . The vehicle 170
may mine the blockchain transactions 32 when moving or
stationary , as long as electrical power is available to the
various controllers 172-178 and to the vehicle transceiver
182. Indeed , even when parked with the ignition / battery /
systems on or off , exemplary embodiments may maintain the
electrical power to mine the blockchain transactions 32. So ,
a driver / user may configure the vehicle 17 to mine the

blockchain transactions 32 , even when the vehicle sits
during work hours , sleep hours , shopping hours , and other
times of idle use . The reader may also immediately see that
vehicular mining opens up countless additional possibilities
to win the block 40 of data (i.e. , solve the puzzle 62) without
additional investment in mining rigs . Thousands , millions ,
or even billions of vehicles 170 (e.g. , cars , trucks , boats ,
planes , buses , trains , motorcycles) may mine the blockchain
transactions 32 , thus providing a potential windfall to offset
the purchasing and operational expenses .
[0060] Exemplary embodiments reduce energy consump
tion . Because a conventional , general purpose central pro
cessing unit (e.g. , the CPU 36) is adequate for mining the
blockchain transactions 32 , exemplary embodiments con
sume much less electrical power . Moreover , because a
conventional central processing unit consumes much less
electrical power , the CPU operates at much cooler tempera
tures , generates less waste heat / energy , and therefore
requires less cooling , air conditioning , and refrigerant
machinery . Exemplary embodiments are thus much cheaper
to operate than GPUs and ASICs .
[0061] Exemplary embodiments thus democratize block
chain mining . Because encryption , difficulty , and proof - of
work efforts may be functionally divided , general - purpose
computer equipment has the processing and memory capa
bility to compete as blockchain miners . For example ,
because the function (s) that calculate (s) the magnitude of the
proof of work (such as the difficulty algorithm 48 and / or the
proof - of - work algorithm 52) may be detached or isolated
from the function that performs cryptography (such as the
hashing algorithm 54) , encryption need not be modified in
order to improve security (e.g. , such as the MONERO®
mining scheme) . The well - tested SHA - 256 hashing func
tion , for example , remains stable and unaffected by difficulty
and / or proof - of - work . The difficulty algorithm 48 , in other
words , need not be determined by or with the hashing
algorithm 54. The difficulty algorithm 48 , instead , may be
separately determined as a true , independent measure of the
difficulty 50. The inventor has realized that most or all proof
of work schemes generally may have two functions (i.e. , one
function to do a cryptographic hash and another function to
determine the level of difficulty of a given hash) . Exemplary
embodiments may separate , or take away , what makes proof
of work hard from the cryptographic hash and , perhaps
instead , put it in the difficulty algorithm 48 that calculates
which hash is more difficult . The difficulty algorithm 48 , for
example , may be functionally combined with the proof - of
work algorithm 52 that calculates the magnitude of the proof
of work instead of using the hashing algorithm 54 (as FIG .
5 illustrates) . Exemplary embodiments need not try to
design , develop , or modify hashing functions that deter
ASIC mining
[0062] Encryption may thus be independent from proof
of - work determinations . The proof of work (such as the
difficulty algorithm 48 and / or the proof - of - work algorithm
52) may be a different or separate software mechanism from
the hashing mechanism . The difficulty 50 of the proof - of
work , for example , may be a separate component from
staking in a blockchain . The difficulty algorithm 48 and / or
the proof - of - work algorithm 52 may require communica
tions networking between provably different parties . The
difficulty algorithm 48 and / or the proof - of - work algorithm
52 may require network delays and / or memory bandwidth
limitations . The difficulty algorithm 48 and / or the proof - of

US 2021/0266174 A1 Aug. 26 , 2021
11

work algorithm 52 may have a random component (such as
incorporating a random function) , such that the difficulty
algorithm 48 and / or the proof - of - work algorithm 52 may
randomly to determine the difficulty 50 and / or the proof - of
work result 42. Exemplary embodiments thus reduce or even
eliminate the power intensive mechanism that is inherent in
today's proof of work schemes by changing how the proof
of work is calculated . Exemplary embodiments need not
change the hashing algorithm 54 , and exemplary embodi
ments allow a more easily validated proof of work . The
hashing algorithm 54 is not bound or required to determine
the proof of work . The proof of work need not be crypto
graphically secure . The liberated , autonomous hashing algo
rithm 54 generates and guarantees an input (e.g. , the hash
values 60) that cannot be predicted by some other faster
algorithm . The disassociated hashing algorithm 54 effec
tively generates the hash values 60 as random numbers . The
hashing algorithm 54 , in other words , provides crypto
graphic security , so neither the difficulty algorithm 48 nor
the proof - of - work algorithm 52 need be cryptographically
secure . The difficulty algorithm 48 and / or the proof - of - work
algorithm 52 need not be folded into the hashing algorithm
54 .
[0063] Exemplary embodiments provide great value to
blockchains . Exemplary embodiments may functionally
separate encryption (e.g. , the hashing algorithm 54) from
proof of work (such as the difficulty algorithm 48 and / or the
proof - of - work algorithm 52) . Exemplary embodiments may
thus bind proof - of - work to a conventional central processing
unit . Deploying a different cryptographic hash is hugely
dangerous for blockchains , but deploying another difficulty
or proof of work mechanism is not so dangerous . Exemplary
embodiments allow blockchains to experiment with differ
ent difficulty functions (the difficulty algorithms 48) and / or
different proof - of - work algorithms 52 without changing the
hashing algorithm 54. Exemplary embodiments thus miti
gate risk and reduce problems with cryptographic security .
Many blockchain environments would prefer to make their
technology CPU mineable for lower power , lower costs , and
more democratic participation . The barrier , though , is that
conventionally these goals would require changing their
hash function . Exemplary embodiments , instead , reduce
costs and increase the pool of miner systems without chang
ing the hash function . The difficulty algorithm 48 and / or the
proof - of - work algorithm 52 may be refined , modified , or
even replaced with little or no impact on the hashing
algorithm 54 .
[0064] Exemplary embodiments reduce electrical power
consumption . Blockchain mining is very competitive , as the
first miner that solves the mathematical puzzle 62 owns the
block 40 of data and is financially rewarded . Large “ farms ”
have thus overtaken blockchain mining , with each miner
installation using hundreds or even thousands of ASIC
based computers to improve their chances of first solving the
calculations specified by the mathematical puzzle 62. ASIC
based blockchain mining requires tremendous energy
resources , though , with some studies estimating that each
BITCOIN® transaction consumes more daily electricity
than an average American home . Moreover , because ASIC
based blockchain mining operates 24/7/365 at full process
ing power , the ASIC - based machines quickly wear out or fail
and need periodic (perhaps yearly) replacement . Exemplary
embodiments , instead , retarget blockchain mining back to
CPU - based machines that consume far less electrical power

and that cost far less money to purchase . Because the capital
costs and expenses are greatly reduced , more miners and
more CPU - based machines may effectively participate and
compete . The CPU - based machines , in other words , have a
realistic and profitable chance of first solving the calcula
tions specified by the mathematical puzzle 62. Democratic
participation is greatly increased .
[0065] FIGS . 20-21 are more detailed illustrations of an
operating environment , according to exemplary embodi
ments . FIG . 20 illustrates the blockchain network server 28
communicating with the miner system 22 via the commu
nications network 26. The blockchain network server 28 and
the miner system 22 operate in the blockchain environment
20. The blockchain network server 28 has a hardware
processing component 190 (e.g. , “ P ”) that executes a server
side blockchain software application 192 stored in a local
memory device 194. The blockchain network server 28 has
a network interface to the communications network 26 , thus
allowing two - way , bidirectional communication with the
miner system 22. The server - side blockchain software appli
cation 192 includes instructions , code , and / or programs that
cause the blockchain network server 28 to perform opera
tions , such as sending the inputs 24 (such as the blockchain
transactions 32) and / or the proof - of - work (“ POW ”) target
scheme 34 via the communications network 26 to the
network address (e.g. , Internet protocol address) associated
with or assigned to the miner system 22. The inputs 24 may
be any electronic data 30 that is shared among miners
participating in the blockchain environment 20 .
[0066] The miner system 22 operates as a mining node in
the blockchain environment 20. The miner system 22 has the
central processing unit (e.g. , “ CPU ”) 36 that executes a
client - side blockchain mining software application 196
stored in the local memory device 38. The miner system 22
has a network interface to the communications network 26 ,
thus allowing two - way , bidirectional communication with
the blockchain network server 28. The client - side block
chain mining software application 196 includes instructions ,
code , and / or programs that cause the miner system 22 to
perform operations , such as receiving the inputs 24 , the
electronic data 30 , and / or the proof - of - work (“ POW ”) target
scheme 34. The client - side blockchain mining software
application 196 may then cause the miner system 22 to
execute the proof - of - work (“ POW ”) mechanism 44 based on
the electronic data 30 representing the inputs 24. The
client - side blockchain mining software application 196 may
instruct the CPU 36 to call and / or to execute the encryption
algorithm 46 , the difficulty algorithm 48 , and / or the PoW
algorithm 52. The CPU 36 calls or executes any or all of the
encryption algorithm 46 , the difficulty algorithm 48 , and / or
the PoW algorithm 52 using the electronic data 30 .
[0067] The miner system 22 mines blockchain transac
tional records . Whatever the electronic data 30 represents ,
the miner system 22 applies the electronic data 30 according
to the proof - of - work target scheme 34. While the proof - of
work target scheme 34 may specify any encryption algo
rithm 46 , most blockchains specify the hashing algorithm
54. The miner system 22 may thus generate the hash values
60 by hashing the electronic data 30 (e.g. , the blockchain
transactions 32) using the hashing algorithm 54. The miner
system 22 may generate the difficulty 50 by executing the
difficulty algorithm 48 using the hash values 60. The miner
system 22 may generate the proof - of - work result 42 using
the hash value (s) 60 as inputs to the proof - of - work algorithm

US 2021/0266174 A1 Aug. 26 , 2021
12

52. If the proof - of - work result 42 satisfies the mathematical puzzle 62 , according to the rules / regulations specified by the
blockchain network server 28 and / or the proof - of - work
target scheme 34 , then perhaps the miner system 22 earns or
owns the right or ability to write / record blockchain trans
action (s) to the block 40 of data . The miner system 22 may
also earn or be rewarded with a compensation (such as a
cryptographic coin , points , other currency / coin / money , or
other value) .
[0068] The miner system 22 may own the block 40 of data .
If the miner system 22 is the first to satisfy the proof - of - work
target scheme 34 (e.g. , the proof - of - work result 42 satisfies
the mathematical puzzle 62) , the miner system 22 earns the
sole right or ability to write the blockchain transactions 32
to the block 40 of data . The miner system 22 may timestamp
the block 40 of data and broadcast the block 40 of data , the
timestamp , the proof - of - work result 42 , and / or the math
ematical puzzle 62 to other miners in the blockchain envi
ronment 20. The miner system 22 , may broadcast a hash
value representing the block 40 of data . The miner system 22
thus adds or chains the block 40 of data (and perhaps its hash
value) to the blockchain 64 , and the other miners begin
working on a next block in the blockchain 64 .
[0069] The proof - of - work target scheme 34 and / or the
mathematical puzzle 62 may vary . Satoshi's BITCOIN®
proof - of - work scanned for a value that , when hashed , the
hash value begins with a number of zero bits . The average
work required is exponential in the number of zero bits
required and can be verified by executing a single hash .
BITCOIN's miners may increment a nonce in the block 40
of data until a value is found that gives the block's hash the
required zero bits .
[0070] FIG . 21 further illustrates the operating environ
ment . The miner system 22 may optionally utilize vendors
for any of the hashing algorithm 54 , the difficulty algorithm
48 , and the proof - of - work algorithm 52. The miner system
22 may enlist or request that a service provider provide or
perform a processing service . The encryption server 154 , for
example , may communicate with the blockchain network
server 28 and the miner system 22 via the communications
network 26. The encryption server 154 has a hardware
processing element (“ P ”) that executes the encryption algo
rithm 46 stored in a local memory device . The encryption
server 154 is operated on behalf of the encryption service
provider 150 and provides the encryption service 152. The
miner system 22 and / or the blockchain network server 28
may send an encryption service request to the encryption
server 154 , and the encryption service request may specify
the inputs 24 (such as the blockchain transactions 32) . The
encryption server 154 executes the encryption algorithm 46
using the inputs 24 to generate the hash value (s) 60. The
encryption server 154 sends a service response to the miner
system 22 , and the service response includes or specifies the
hash value (s) 60 .
[0071] Other suppliers may be used . The difficulty server
160 may communicate with the blockchain network server
28 and the miner system 22 via the communications network
26. The difficulty server 160 has a hardware processing
element (“ P ”) that executes the difficulty algorithm 48 stored
in a local memory device . The difficulty service provider
156 may provide the difficulty service 158 by instructing the
difficulty server 160 to execute the difficulty algorithm 48
chosen or specified by the miner system 22 and / or the
blockchain network server 28. The miner system 22 and / or

the blockchain network server 28 may send a difficulty
service request to the difficulty server 160 , and the difficulty
service request may specify the hash value (s) 60. The
difficulty server 160 executes the difficulty algorithm 48
using the hash value (s) 60 to generate the difficulty 50. The
difficulty server 160 sends the service response to the miner
system 22 , and the service response includes or specifies the
difficulty 50. The PoW server 124 may communicate with
the blockchain network server 28 and the miner system 22
via the communications network 26. The PoW server 124
has a hardware processing element (“ P ”) that executes the
proof - of - work algorithm 52 stored in a local memory
device . The PoW service provider 120 (e.g. , the PoW server
124) may provide the PoW service 122 by executing the
proof - of - work algorithm 52 chosen or specified by the miner
system 22 and / or the blockchain network server 28. The
PoW server 124 sends the service response to the miner
system 22 , and the service response includes or specifies the
PoW result 42. The miner system 22 may compare any of the
hash value (s) 60 , the difficulty 50 , and / or the PoW result 42
to the proof - of - work target scheme 34. If the proof - of - work
target scheme 34 is satisfied , perhaps the miner system 22 is
the first miner to have solved the puzzle 62 .
[0072] Exemplary embodiments may be applied regard
less of networking environment . Exemplary embodiments
may be easily adapted to stationary or mobile devices having
wide - area networking (e.g. , 4G / LTE / 5G cellular) , wireless
local area networking (WI - FI®) , near field , and / or BLU
ETOOTH® capability . Exemplary embodiments may be
applied to stationary or mobile devices utilizing any portion
of the electromagnetic spectrum and any signaling standard
(such as the IEEE 802 family of standards , GSM / CDMA /
TDMA or any cellular standard , and / or the ISM band) .
Exemplary embodiments , however , may be applied to any
processor - controlled device operating in the radio - frequency
domain and / or the Internet Protocol (IP) domain . Exemplary
embodiments may be applied to any processor - controlled
device utilizing a distributed computing network , such as the
Internet (sometimes alternatively known as the “ World Wide
Web ”) , an intranet , a local - area network (LAN) , and / or a
wide - area network (WAN) . Exemplary embodiments may
be applied to any processor - controlled device utilizing
power line technologies , in which signals are communicated
via electrical wiring . Indeed , exemplary embodiments may
be applied regardless of physical componentry , physical
configuration , or communications standard (s) .
[0073] Exemplary embodiments may utilize any process
ing component , configuration , or system . For example , the
miner system 22 may utilize any desktop , mobile , or server
central processing unit or chipset offered by INTEL® ,
ADVANCED MICRO DEVICES® , ARM® , TAIWAN
SEMICONDUCTOR MANUFACTURING® , QUAL
COMM® , or any other manufacturer . The miner system 22
may even use multiple central processing units or chipsets ,
which could include distributed processors or parallel pro
cessors in a single machine or multiple machines . The
central processing unit or chipset can be used in supporting
a virtual processing environment . The central processing
unit or chipset could include a state machine or logic
controller . When any of the central processing units or
chipsets execute instructions to perform “ operations , ” this
could include the central processing unit or chipset perform

US 2021/0266174 A1 Aug. 26 , 2021
13

ing the operations directly and / or facilitating , directing , or
cooperating with another device or component to perform
the operations .
[0074] Exemplary embodiments may packetize . When the
blockchain network server 28 and the miner system 22
communicate via the communications network 26 , the
blockchain network server 28 and the miner system 22 may
collect , send , and retrieve information . The information may
be formatted or generated as packets of data according to a
packet protocol (such as the Internet Protocol) . The packets
of data contain bits or bytes of data describing the contents ,
or payload , of a message . A header of each packet of data
may be read or inspected and contain routing information
identifying an origination address and / or a destination
address .
[0075] Exemplary embodiments may use any encryption
or hashing function . There are many encryption algorithms
and schemes , and exemplary embodiments may be adapted
to execute or to conform to any encryption algorithm and / or
scheme . In the blockchain environment 20 , though , many
readers may be familiar with the various hashing algorithms ,
especially the well - known SHA - 256 hashing algorithm . The
SHA - 256 hashing algorithm acts on any electronic data or
information to generate a 256 - bit hash value as a crypto
graphic key . The key is thus a unique digital signature .
However , there are many different hashing algorithms , and
exemplary embodiments may be adapted to execute or to
conform to any hashing algorithm , hashing family , and / or
hashing scheme (e.g. , Blake family , MD family , RIPE
family , SHA family , CRC family) .
[0076] The miner system 22 may store or request different
software packages . The hashing algorithm 54 may be a
software file , executable program , routine , module , pro
gramming code , or third - party service that hashes the block
chain transactions 32 to generate the hash value (s) 60. The
difficulty algorithm 48 may be a software file , executable
program , routine , module , programming code , or third - party
service that uses the hash value (s) 60 difficulty 50. The proof - of - work (“ POW " O generate the) a
software file , executable program , routine , module , pro
gramming code , or third - party service that uses the hash
value (s) 60 to generate the PoW result 42. The miner system
22 may download or otherwise acquire the hashing algo
rithm 54 , the difficulty algorithm 48 , and / or the PoW algo
rithm 52 to provide mining operations for the blockchain
transactions 32 .
[0077] The blockchain environment 20 may flexibly
switch or interchange encryption , difficulty , and proof - of
work . Because the hashing algorithm 54 , the difficulty
algorithm 48 , and the proof - of - work algorithm 52 may be
separate software packages , the proof - of - work (“ PoW ")
target scheme 34 and / or the blockchain environment 20 may
mix - and - match the encryption algorithm 46 , the difficulty
algorithm 48 , and the proof - of - work algorithm 52. The
blockchain environment 20 may thus easily evaluate differ
ent combinations of the encryption algorithm 46 , the diffi
culty algorithm 48 , and the proof - of - work algorithm 52 with
little or no intra - algorithm or intra - application effect . The
blockchain environment 20 may mix - and - match encryption ,
difficulty , and proof - of - work .
[0078] FIGS . 22-31 illustrate mining specifications ,
according to exemplary embodiments . When the miner
system 22 communicates with the blockchain network
server 28 , the blockchain network server 28 may specify the

proof - of - work (“ POW ”) target scheme 34 that is required by
the blockchain environment 20. That is , when the miner
system 22 participates as a miner and mines or processes
blockchain records / transactions , the miner system 22 may
be required or instructed to use the particular hashing
algorithm 54 , the difficulty algorithm 48 , and / or the proof
of - work algorithm 52 specified by the blockchain network .
For example , in order for the miner system 22 to be
authorized or recognized as a mining participant , the miner
system 22 may be required to download the client - side
blockchain mining software application 196 that specifies or
includes the hashing algorithm 54 , the difficulty algorithm
48 , and / or the proof - of - work algorithm 52. The client - side
blockchain mining software application 196 may thus com
prise any software apps or modules , files , programming
code , or instructions representing the hashing algorithm 54 ,
the difficulty algorithm 48 , and / or the proof - of - work algo
rithm 52 .
[0079] FIGS . 23-25 illustrate an encryption identifier
mechanism . FIG . 23 illustrates the miner system 22 receiv
ing the proof - of - work (“ PoW ”) target scheme 34 that is
required by the blockchain environment 20. In order to
reduce a memory byte size and / or programming line size of
the PoW target scheme 34 and / or the client - side blockchain
mining software application 196 , exemplary embodiments
may specify an encryption identifier (encryption " ID ") 200
associated with the blockchain network's chosen or required
encryption scheme . The encryption identifier 200 may be
any alphanumeric combination , hash value , network
address , website , or other data / information that uniquely
identifies the PoW target scheme 34 and / or the encryption
algorithm 46 used by the blockchain environment 20. As
FIG . 23 illustrates , the miner system 22 may receive the
encryption identifier 200 as a specification or parameter
associated with the PoW target scheme 34 and / or the encryp
tion algorithm 46. As FIG . 24 illustrates , though , the miner
system 22 may receive a packetized message 202 from the
blockchain network server 28 , and a packet header and / or
payload may specify or include the encryption identifier 200
as a data field , specification , or parameter . Again , because
many or most blockchain networks use hashing as an
encryption mechanism , the encryption identifier 200 may
specify , be assigned to , or be associated with the hashing
algorithm 54. The blockchain network server 28 may thus
send the encryption identifier 200 (via the communications
network 26) to the miner system 22. The encryption iden
tifier 200 may be packaged as a downloadable component ,
parameter , or value with the client - side blockchain mining
software application 196. However , the encryption identifier
200 may additionally or alternatively be sent to the miner
system 22 at any time via the message 202. Because the
encryption identifier 200 may be separately sent from the
client - side blockchain mining software application 196 , the
encryption identifier 200 may be dynamically updated or
changed without downloading a new or updated client - side
blockchain mining software application 196 .
[0080] As FIG . 25 illustrates , exemplary embodiments
may consult the electronic database 70 of encryption algo
rithms . Once the miner system 22 receives or determines the
encryption identifier 200 , the miner system 22 may imple
ment the encryption scheme represented by the encryption
identifier 200. The miner system 22 may obtain , read , or
retrieve the encryption identifier 200 specified by the client
side blockchain mining software application 196 and / or

US 2021/0266174 A1 Aug. 26 , 2021
14

packet inspect the message 202 from the blockchain network
server 28. Once the encryption identifier 200 is determined ,
the miner system 22 may identify the corresponding block
chain encryption scheme by querying the electronic database
70 of encryption algorithms for the encryption identifier
200. FIG . 25 illustrates the electronic database 70 of encryp
tion algorithms locally stored in the memory device 38 of the
miner system 22. The electronic database 70 of encryption
algorithms may store , reference , or associate the encryption
identifier 200 to its corresponding proof - of - work target
scheme 34 and / or encryption algorithm 46. The miner
system 22 may thus perform or execute a database lookup
for the encryption identifier 200 to identify which proof - of
work target scheme 34 and / or encryption algorithm 46 is
required for miners operating in the blockchain environment
20. The miner system 22 may then retrieve , call , and / or
execute the encryption algorithm 46 using the inputs 24
(such as the blockchain transactions 32) , as this disclosure
above explained (with reference to FIG . 7) .
[0081] Exemplary embodiments may outsource encryp
tion operations . When the miner system 22 determines the
encryption identifier 200 , the corresponding blockchain
encryption scheme may require or specify the encryption
service provider 150 that provides the encryption service
152. As FIG . 25 also illustrates , the electronic database 70
of encryption algorithms may map or relate the encryption
identifier 200 to its corresponding encryption service pro
vider 150 that provides the encryption service 152. The
miner system 22 may thus identify an encryption service
resource 204 that provides the encryption service 152. The
encryption service resource 204 , for example , may be an
Internet protocol address , website / webpage , and / or uniform
resource locator (URL) that is assigned to , or associated
with , the encryption service provider 150 and / or the encryp
tion service 152. The miner system 22 may outsource or
subcontract the inputs 24 (such as the blockchain transac
tions 32) to the encryption service resource 204 (perhaps
using the service request and service response mechanism
explained with reference to FIG . 21) .
[0082] Exemplary embodiments may thus be agnostic to
hashing . The miner system 22 may call , request , and / or
execute any encryption scheme specified by any client ,
cryptographic coin , or blockchain network . The miner sys
tem 22 may dynamically switch or mix - and - match different
encryption schemes . Once the miner system 22 determines
the proof - of - work target scheme 34 , the encryption algo
rithm 46 , the encryption service provider 150 , the encryption
service 152 , the encryption identifier 200 , and / or the encryp
tion service resource 204 , the miner system 22 may perform
any encryption scheme vecified for the blockchain envi
ronment 20. The blockchain environment 20 may dynami
cally change the encryption scheme at any time . The block
chain environment 20 may flexibly switch , change , and
evaluate different encryption strategies , perhaps with little or
no impact or effect on difficulty and proof - of - work opera
tions . Moreover , the miner system 22 may operate within or
mine different blockchain environments 20 without special
ized hardware rigs .
[0083] Exemplary embodiments improve computer func
tioning . Because exemplary embodiments may only specify
the encryption identifier 200 , the memory byte size con
sumed by the proof - of - work (“ POW ”) target scheme 34
and / or the client - side blockchain mining software applica
tion 196 is reduced . That is , the blockchain network server

28 need not send the entire software program , code , or
instructions representing the hashing algorithm 54 used by
the blockchain environment 20. The blockchain environ
ment 20 , the blockchain network server 28 , and / or the
proof - of - work (“ PoW ”) target scheme 34 need only specify
much smaller byte - sized data or information representing
the encryption algorithm 46 , the encryption service provider
150 , the encryption service 152 , the encryption identifier
200 , and / or the encryption service resource 204. The block
chain environment 20 need not be burdened with conveying
the hashing algorithm 54 to the miner system 22 and other
mining nodes . The blockchain environment 20 and the
communications network 26 convey less packet traffic , so
packet travel times and network latency are reduced . More
over , especially if the miner system 22 outsources the
hashing operation , the miner system 22 is relieved from
processing / executing the hashing algorithm 54 and con
sumes less of the electrical power . Again , then , a faster and
more expensive graphics processor or even ASIC will not
speed up the hashing operation . The conventional central
processing unit 36 is adequate , reduces costs , and promotes
democratic mining .
[0084] FIGS . 26-28 illustrate illustrates a difficulty iden
tifier mechanism . FIG . 26 illustrates the miner system 22
receiving the proof - of - work (" POW ”) target scheme 34 that
is required by the blockchain environment 20. In order to
reduce a memory byte size and / or programming line size of
the PoW target scheme 34 and / or the client - side blockchain
mining software application 196 , exemplary embodiments
may specify a difficulty identifier (difficulty “ ID ”) 210
associated with the blockchain network's chosen or required
difficulty scheme . The difficulty identifier 210 may be any
alphanumeric combination , hash value , network address ,
website , or other data / information that uniquely identifies
the PoW target scheme 34 and / or the difficulty algorithm 48
used by the blockchain environment 20. As FIG . 26 illus
trates , the miner system 22 may receive the difficulty iden
tifier 210 as a specification or parameter associated with the
PoW target scheme 34 and / or the difficulty algorithm 48. As
FIG . 27 illustrates , though , the miner system 22 may receive
the packetized message 202 from the blockchain network
server 28 , and a packet header and / or payload may specify
or include the difficulty identifier 210 as a data field ,
specification , or parameter . The blockchain network server
28 may thus send the difficulty identifier 210 (via the
communications network 26) to the miner system 22. The
difficulty identifier 210 may be packaged as a downloadable
component , parameter , or value with the client - side block
chain mining software application 196. However , the diffi
culty identifier 210 may additionally or alternatively be sent
to the miner system 22 at any time via the message 202 .
Because the difficulty identifier 210 may be separately sent
from the client - side blockchain mining software application
196 , the difficulty identifier 210 may be dynamically
updated or changed without downloading a new or updated
client - side blockchain mining software application 196 .
[0085] As FIG . 28 illustrates , exemplary embodiments
may consult the electronic database 74 of difficulty algo
rithms . Once the miner system 22 receives or determines the
difficulty identifier 210 , the miner system 22 may implement
the difficulty scheme represented by the difficulty identifier
210. The miner system 22 may obtain , read , or retrieve the
difficulty identifier 210 specified by the client - side block
chain mining software application 196 and / or packet inspect

US 2021/0266174 A1 Aug. 26 , 2021
15

the message 202 from the blockchain network server 28 .
Once the difficulty identifier 210 is determined , the miner
system 22 may identify the corresponding blockchain dif
ficulty scheme by querying the electronic database 74 of
difficulty algorithms for any query parameter (such as the
difficulty identifier 210) . FIG . 28 illustrates the electronic
database 74 of difficulty algorithms locally stored in the
memory device 38 of the miner system 22. The electronic
database 74 of difficulty algorithms may store , reference , or
associate the difficulty identifier 210 to its corresponding
proof - of - work target scheme 34 and / or difficulty algorithm
48. The miner system 22 may thus perform or execute a
database lookup for the difficulty identifier 210 to identify
which proof - of - work target scheme 34 and / or difficulty
algorithm 48 is required for miners operating in the block
chain environment 20. The miner system 22 may then
retrieve , call , and / or execute the difficulty algorithm 48
using the hash value (s) 60 , as this disclosure above
explained (with reference to FIG . 8) .
[0086] Exemplary embodiments may outsource difficulty
operations . When the miner system 22 determines the dif
ficulty identifier 210 , the corresponding blockchain diffi
culty scheme may require or specify the difficulty service
provider 156 that provides the difficulty service 158. As FIG .
28 also illustrates , the electronic database 74 of difficulty
algorithms may map or relate the difficulty identifier 210 to
its corresponding difficulty service provider 156 that pro
vides the difficulty service 158. The miner system 22 may
thus identify a difficulty service resource 212 that provides
the difficulty service 158. The difficulty service resource
212 , for example , may be an Internet protocol address ,
website / webpage , and / or uniform resource locator (URL)
that is assigned to , or associated with , the difficulty service
provider 156 and / or the difficulty service 158. The miner
system 22 may outsource or subcontract the hash value (s) 60
to the difficulty service resource 212 (perhaps using the
service request and service response mechanism explained
with reference to FIG . 21) .
[0087] Exemplary embodiments may thus be agnostic to
difficulty . The miner system 22 may call , request , and / or
execute any difficulty scheme specified by any client , cryp
tographic coin , or blockchain network . The miner system 22
may dynamically switch or mix - and - match different diffi
culty schemes . Once the miner system 22 determines the
proof - of - work target scheme 34 , the difficulty algorithm 48 ,
the difficulty service provider 156 , the difficulty service 158 ,
the difficulty identifier 210 , and / or the difficulty service
resource 212 , the miner system 22 may perform any diffi
culty scheme specified for the blockchain environment 20 .
The blockchain environment 20 may dynamically change
the difficulty scheme at any time . The blockchain environ
ment 20 may flexibly switch , change , and evaluate different
difficulty strategies , perhaps with little or no impact or effect
on hashing and proof - of - work operations . Moreover , the
miner system 22 may operate within or mine different
blockchain environments 20 without specialized hardware
rigs .
[0088] Exemplary embodiments improve computer func
tioning . Because exemplary embodiments may only specify
the difficulty identifier 210 , the memory byte size consumed
by the proof - of - work (“ POW ”) target scheme 34 and / or the
client - side blockchain mining software application 196 is
reduced . That is , the blockchain network server 28 need not
send the entire software program , code , or instructions

representing the difficulty algorithm 48 used by the block
chain environment 20. The blockchain environment 20 , the
blockchain network server 28 , and / or the proof - of - work
(“ PoW ”) target scheme 34 need only specify much smaller
byte - sized data or information representing the difficulty
algorithm 48 , the difficulty service provider 156 , the diffi
culty service 158 , the difficulty identifier 210 , and / or the
difficulty service resource 212. The blockchain environment
20 need not be burdened with conveying the difficulty
algorithm 48 to the miner system 22 and other mining nodes .
The blockchain environment 20 and the communications
network 26 convey less packet traffic , so packet travel times
and network latency are reduced . Moreover , especially if the
miner system 22 outsources the difficulty operation , the
miner system 22 is relieved from processing / executing the
difficulty algorithm 48 and consumes less of the electrical
power . Again , then , a faster and more expensive graphics
processor or even ASIC will not speed up the difficulty
operation . The conventional central processing unit 36 is
adequate , reduces costs , and promotes democratic mining .
[0089] FIGS . 29-31 illustrate illustrates a proof - of - work
(“ POW ”) identifier mechanism . FIG . 29 illustrates the miner
system 22 receiving the proof - of - work (“ PoW ') target
scheme 34 that is required by the blockchain environment
20. In order to reduce a memory byte size and / or program
ming line size of the PoW target scheme 34 and / or the
client - side blockchain mining software application 196 ,
exemplary embodiments may specify a PoW identifier 214
associated with the blockchain network's chosen or required
PoW scheme . The PoW identifier 214 may be any alphanu
meric combination , hash value , network address , website , or
other data / information that uniquely identifies the PoW
target scheme 34 and / or the PoW algorithm 52 used by the
blockchain environment 20. As FIG . 29 illustrates , the miner
system 22 may receive the PoW identifier 214 as a speci
fication or parameter associated with the PoW target scheme
34 and / or the PoW algorithm 52. As FIG . 30 illustrates ,
though , the miner system 22 may receive the packetized
message 202 from the blockchain network server 28 , and a
packet header and / or payload may specify or include the
PoW identifier 214 as a data field , specification , or param
eter . The blockchain network server 28 may thus send the
PoW identifier 214 (via the communications network 26) to
the miner system 22. The PoW identifier 214 may be
packaged as a downloadable component , parameter , or value
with the client - side blockchain mining software application
196. However , the PoW identifier 214 may additionally or
alternatively be sent to the miner system 22 at any time via
the message 202. Because the PoW identifier 214 may be
separately sent from the client - side blockchain mining soft
ware application 196 , the PoW identifier 214 may be
dynamically updated or changed without downloading a
new or updated client - side blockchain mining software
application 196 .
[0090] As FIG . 31 illustrates , exemplary embodiments
may consult the electronic database 78 of PoW algorithms .
Once the miner system 22 receives or determines the PoW
identifier 214 , the miner system 22 may implement the
proof - of - work scheme represented by the PoW identifier
214. The miner system 22 may obtain , read , or retrieve the
PoW identifier 214 specified by the client - side blockchain
mining software application 196 and / or packet inspect the
message 202 from the blockchain network server 28. Once
the PoW identifier 214 is determined , the miner system 22

US 2021/0266174 A1 Aug. 26 , 2021
16

may identify the corresponding blockchain proof - of - work
scheme by querying the electronic database 78 of PoW
algorithms for any query parameter (such as the PoW
identifier 214) . FIG . 31 illustrates the database 78 of PoW
algorithms locally stored in the memory device 38 of the
miner system 22. The electronic database 78 of PoW algo
rithms may store , reference , or associate the PoW identifier
214 to its corresponding proof - of - work target scheme 34
and / or difficulty algorithm 48. The miner system 22 may
thus perform or execute a database lookup for the PoW
identifier 214 to identify which proof - of - work target scheme
34 and / or PoW algorithm 52 is required for miners operating
in the blockchain environment 20. The miner system 22 may
then retrieve , call , and / or execute the PoW algorithm 52
using the hash value (s) 60 , as this disclosure above
explained (with reference to FIG . 9) .
[0091] Exemplary embodiments may outsource difficulty
operations . When the miner system 22 determines the PoW
identifier 214 , the corresponding blockchain proof - of - work
scheme may require or specify the PoW service provider 120
that provides the PoW service 122. As FIG . 31 also illus
trates , the electronic database 78 of PoW algorithms may
map or relate the PoW identifier 214 to its corresponding
PoW service provider 120 and PoW service 122. The miner
system 22 may thus identify a PoW service resource 216 that
provides the PoW service 122. The PoW service resource
216 , for example , may be an Internet protocol address ,
website / webpage , and / or uniform resource locator (URL)
that is assigned to , or associated with , the PoW service
provider 120 and / or PoW service 122. The miner system 22
may outsource or subcontract the hash value (s) 60 to the
PoW service resource 216 (perhaps using the service request
and service response mechanism explained with reference to
FIG . 21) .
[0092] Exemplary embodiments may thus be agnostic to
proof - of - work . The miner system 22 may call , request ,
and / or execute any proof - of - work scheme specified by any
client , cryptographic coin , or blockchain network . The
miner system 22 may dynamically switch or mix - and - match
different proof - of - work schemes . Once the miner system 22
determines the proof - of - work target scheme 34 , the PoW
algorithm 52 , the PoW service provider 120 , the PoW
service 122 , the PoW identifier 214 , and / or the PoW service
resource 216 , the miner system 22 may perform any proof
of - work scheme specified for the blockchain environment
20. The blockchain environment 20 may dynamically
change the proof - of - work scheme at any time . The block
chain environment 20 may flexibly switch , change , and
evaluate different proof - of - work strategies , perhaps with
little or no impact or effect on hashing and difficulty opera
tions . Moreover , the miner system 22 may operate within or
mine different blockchain environments 20 without special
ized hardware rigs .
[0093] Exemplary embodiments improve computer func
tioning . Because exemplary embodiments may only specify
the PoW identifier 214 , the memory byte size consumed by
the proof - of - work (“ PoW ”) target scheme 34 and / or the
client - side blockchain mining software application 196 is
reduced . That is , the blockchain network server 28 need not
send the entire software program , code , or instructions
representing the PoW algorithm 52 used by the blockchain
environment 20. The blockchain environment 20 , the block
chain network server 28 , and / or the proof - of - work (“ PoW ”)
target scheme 34 need only specify much smaller byte - sized

data or information representing the PoW algorithm 52 , the
PoW service provider 120 , the PoW service 122 , the PoW
identifier 214 , and / or the PoW service resource 216. The
blockchain environment 20 need not be burdened with
conveying the PoW algorithm 52 to the miner system 22 and
other mining nodes . The blockchain environment 20 and the
communications network 26 convey less packet traffic , so
packet travel times and network latency are reduced . More
over , especially if the miner system 22 outsources the
proof - of - work operation , the miner system 22 is relieved
from processing / executing the PoW algorithm 52 and con
sumes less of the electrical power . Again , then , a faster and
more expensive graphics processor or even ASIC will not
speed up the difficulty operation . The conventional central
processing unit 36 is adequate , reduces costs , and promotes
democratic mining .
[0094] FIG . 32 illustrates remote retrieval , according to
exemplary embodiments . After the miner system 22 deter
mines the proof - of - work (“ PoW ”) target scheme 34 that is
required by the blockchain environment 20 , the miner sys
tem 22 may acquire or download the encryption algorithm
46 , the difficulty algorithm 48 , and / or the PoW algorithm 52 .
For example , the miner system 22 may determine the
encryption identifier 200 (as this disclosure above explains)
and send a query to the encryption server 154. The query
specifies the encryption identifier 200. When the encryption
server 154 receives the query , the encryption server 154 may
query the database 70 of encryption algorithms for the
encryption identifier 200. The encryption server 154 may
locally store the database 70 of encryption algorithms and
function as a networked encryption resource for clients . The
encryption server 154 identifies and / or retrieves the corre sponding encryption algorithm 46. The encryption server
154 sends a query response to the miner system 22 , and the
query response specifies or includes the corresponding
encryption algorithm 46. The miner system 22 may then
execute the encryption algorithm 46 , as above explained .
[0095] The miner system 22 may remotely retrieve the
difficulty algorithm 48. After the miner system 22 deter
mines the proof - of - work (“ PoW ”) target scheme 34 that is
required by the blockchain environment 20 , the miner sys
tem 22 may acquire or download the difficulty algorithm 48 .
For example , the miner system 22 may determine the
difficulty identifier 210 (as this disclosure above explains)
and send a query to the difficulty server 160. The query
specifies the difficulty identifier 210. When the difficulty
server 160 receives the query , the difficulty server 160 may
query the database 74 of difficulty algorithms for the diffi
culty identifier 210. The difficulty server 160 may locally
store the database 74 of difficulty algorithms and function as
a networked difficulty resource for clients . The difficulty
server 160 identifies and / or retrieves the corresponding
difficulty algorithm 48. The difficulty server 160 sends a
query response to the miner system 22 , and the query
response specifies or includes the corresponding difficulty
algorithm 48. The miner system 22 may then execute the
difficulty algorithm 48 , as above explained .
[0096] The miner system 22 may remotely retrieve the
PoW algorithm 52. After the miner system 22 determines the
proof - of - work (" PoW ") target scheme 34 that is required by
the blockchain environment 20 , the miner system 22 may
acquire or download the PoW algorithm 52. For example ,
the miner system 22 may determine the PoW identifier 214
(as this disclosure above explains) and send a query to the

US 2021/0266174 A1 Aug. 26 , 2021
17

PoW server 124. The query specifies the PoW identifier 214 .
When the PoW server 124 receives the query , the PoW
server 124 may query the database 78 of PoW algorithms for
the PoW identifier 214. The PoW server 124 may locally
store the database 78 of PoW algorithms and function as a
networked proof - of - work resource for clients . The PoW
server 124 identifies and / or retrieves the corresponding PoW
algorithm 52. The PoW server 124 sends a query response
to the miner system 22 , and the query response specifies or
includes the corresponding PoW algorithm 52. The miner
system 22 may then execute the PoW algorithm 52 , as above
explained .
[0097] FIGS . 33-34 further illustrate the bit shuffle opera
tion 92 , according to exemplary embodiments . The difficulty
algorithm 48 and / or the proof - of - work algorithm 52 may
perform the bit shuffle operation 92 to conduct any difficulty
and / or proof - of - work . After the hashing algorithm 54 gen
erates the hash value (s) 60 (as this disclosure above
explains) , exemplary embodiments may use the database
table 90 to further deter GPU / ASIC usage . The difficulty
algorithm 48 and / or the proof - of - work algorithm 52 may
implement the bit shuffle operation 92 on the hash value (s)
60. As FIG . 34 illustrates , suppose the hash value 60 is
represented by a sequence or series of 256 bit values . The
difficulty algorithm 48 and / or the proof - of - work algorithm
52 may select an arbitrary portion or number 220 of the bit
values . The difficulty algorithm 48 and / or the proof - of - work
algorithm 52 , for example , may call , use , or execute a
random number generator (RNG) 222 to generate one or
more random numbers 224. As an example , a first random
number 224 may be used to select a random entry 94 in the
database table 90. The difficulty algorithm 48 and / or the
proof - of - work algorithm 52 may then query the database
table 90 for the random entry 94 and identify / retrieve the
corresponding random bits 96. The difficulty algorithm 48
and / or the proof - of - work algorithm 52 may then select and
replace the arbitrary portion or number 220 of the bit values
in the hash value 60 with the random bits retrieved from the
entry 94 in the database table 90. The bit shuffle operation
92 thus converts the hash value 60 and generates a resulting
randomized hash value 226. The difficulty algorithm 48
and / or the proof - of - work algorithm 52 may instruct or cause
the miner system to repeat the bit shuffle operation 92 as
many times as desired . The randomized hash value 226 may ,
or may not , have the same number of 256 bit values . The
randomized hash value 226 may have less than , or more
than , 256 bit values . The randomized hash value 226 may
have an arbitrary number of bit values . Once the specified or
required number of bit shuffle operations 92 is complete , the
difficulty algorithm 48 and / or the proof - of - work algorithm
52 may instruct or cause the miner system to determine the
difficulty 50 and / or the PoW result 42 (as this disclosure
above explains) .
[0098] FIGS . 35-36 further illustrate the database table 90 ,
according to exemplary embodiments . Exemplary embodi
ments may autonomously or automatically adjust the table
byte size 102 (in bits / bytes) of the database table 90 to
exceed the storage capacity or cache byte size 104 of the
on - board processor cache memory 100. The client - side
blockchain mining application 196 , for example , may query
the CPU 36 to determine the storage capacity or cache byte
size 104 of the processor cache memory 100. If the table
byte size 102 consumed by the database table 90 exceeds the
storage capacity or cache byte size 104 of the processor

cache memory 100 , then perhaps no action or resolution is
required . That is , the database table 90 requires more bytes
or space than allocated to , or available from , the processor
cache memory 100 (integrated / embedded L1 , L2 , and L3
SRAM / DRAM cache memory) . Any cache read / write
operation 230 will invalidate , thus forcing the processing
component (whether a GPU , ASIC , or the CPU 36) to incur
a cache miss 232 and endure the cache latency 234 of
requesting and writing blocks of data via the much - slower
bus from the system / main memory 38. The processing
component (whether a GPU , ASIC , or the CPU 36) stalls ,
thus negating the use of a faster GPU or ASIC .
[0099] Exemplary embodiments may auto - size the data
base table 90. When the client - side blockchain mining
application 196 determines the storage capacity or cache
byte size 104 of the processor cache memory 100 , the
client - side blockchain mining application 196 may compare
the storage capacity or cache byte size 104 to the table byte
size 102 of the database table 90. The storage capacity or
cache byte size 104 of the processor cache memory 100 , for
example , may be subtracted from the table byte size 102 of
the database table 90. If the resulting value (in bits / bytes) is
positive (greater than zero) , then the database table 90
exceeds the storage capacity or cache byte size 104 of the
processor cache memory 100. The client - side blockchain
mining application 196 may thus determine a cache deficit
236 , ensuring the cache miss 232 and the cache latency 234 .
[0100] Exemplary embodiments , however , may determine
a cache surplus 238. If the resulting value (in bits / bytes) is
zero or negative , then the database table 90 is less than the
storage capacity or cache byte size 104 of the processor
cache memory 100. Whatever the processing component
(whether a GPU , ASIC , or the CPU 36) , some or even all of
the database table 90 could be stored and retrieved from the
processor cache memory 100 , thus giving an advantage to a
faster processing component . The client - side blockchain
mining application 196 may thus increase the table byte size
102 of the database table 90. The client - side blockchain
mining application 196 , for example , may add one (1) or
more additional database rows 240 and / or one (1) or more
additional database columns 242. The client - side blockchain
mining application 196 may increase the table byte size 102
of the database table 90 by adding additional entries 94 , with
each added entry 94 specifying more random bits 96. As an
example , the client - side blockchain mining application 196
may call , use , or execute the random number generator 222
to generate the random number 224 and then add the
additional database row (s) 240 and / or additional database
column (s) 242 according to the random number 224. Exem
plary embodiments may thus continually or periodically
monitor the storage capacity or cache byte size 104 of the
processor cache memory 100 and the table byte size 102 of
the database table 90. The cache surplus 238 may trigger a
resizing operation to ensure the database table 90 always
exceeds the processor cache memory 100 .
[0101] The database table 90 may be large . The above
examples only illustrated a simple configuration of a few
database entries 94. In actual practice , though , the database
table 90 may have hundreds , thousands , or even millions of
the rows and columns , perhaps producing hundreds , thou
sands , millions , or even billions of database entries 94 .
Exemplary embodiments may repeatedly perform the bit
shuffle operation 92 to suit any difficulty or proof - of - work
strategy or scheme . The proof - of - work target scheme 34 , the

US 2021/0266174 A1 Aug. 26 , 2021
18

some

difficulty algorithm 48 , and / or the proof - of - work algorithm
52 may each specify a minimum and / or a maximum number
of bit shuffle operations that are performed .
[0102] Exemplary embodiments may use the XOR / Shift
random number generator (RNG) 222 coupled with the
lookup database table 90 of randomized sets of bytes . The
database table 90 may have any number of 256 byte tables
combined and shuffled into one large byte lookup table .
Exemplary embodiments may then index into this large table
to translate the state built up while hashing into deterministic
but random byte values . Using a 1GB lookup table results in
a RAM Hash PoW algorithm that spends over 90 % of its
execution time waiting on memory (RAM) than it does
computing the hash . This means far less power consump
tion , and ASIC and GPU resistance . The ideal platform for
PoW using a RAM Hash is a Single Board Computer like a .
Raspberry PI 4 with 2 GB of memory .
[0103] Any or all parameters may be specified . The size of
the database table 90 may be specified in bits for the index ,
the seed used to shuffle the lookup table , the number of
rounds to shuffle the table , and the size of the resulting hash .
Because the LXRHash is parameterized in this way , as
computers get faster and larger memory caches , the
LXRHash can be set to use 2 GB or 16 GB or more . The
Memory bottleneck to computation is much easier to man
age than attempts to find computational algorithms that
cannot be executed faster and cheaper with custom hard
ware , or specialty hardware like GPUs . Very large lookup
tables will blow the memory caches on pretty much any
processor or computer architecture . The size of the database
table 90 can be increased to counter improvements in
memory caching . The number of bytes in the resulting hash
can be increased for more security (greater hash space) ,
without significantly more processing time . LXRHash may
even be fast by using small lookup tables . ASIC implemen
tations for small tables would be very easy and very fast .
LXRHash only uses iterators (for indexing) shifts , binary
ANDs and XORs , and random byte lookups . The use case
for LXTHash is Proof of Work (PoW) , not cryptographic
hashing .
[0104] The database table 90 may have equal numbers of
every byte value , and shuffled deterministically . When hash
ing , the bytes from the source data are used to build offsets
and state that are in turn used to map the next byte of source .
In developing this hash , the goal was to produce very
randomized hashes as outputs , with a strong avalanche
response to any change to any source byte . This is the prime
requirement of PoW . Because of the limited time to perform
hashing in a blockchain , collision avoidance is important but
not critical . More critical is ensuring engineering the output
of the hash isn't possible . Exemplary embodiments yield
some interesting qualities . For example , the database table
90 may be any size , so making a version that is ASIC
resistant is possible by using very big lookup tables . Such
tables blow the processor caches on CPUs and GPUs ,
making the speed of the hash dependent on random access
of memory , not processor power . Using 1 GB lookup table ,
a very fast ASIC improving hashing is limited to about
~ 10 % of the computational time for the hash . 90 % of the
time hashing isn't spent on computation but is spent waiting
for memory access . At smaller lookup table sizes , where
processor caches work , LXRHash can be modified to be
very fast . LXRHash would be an easy ASIC design as it only
uses counters , decrements . XORs , and shifts . The hash may

be altered by changing the size of the lookup table , the seed ,
size of the hash produced . Change any parameter and you
change the space from which hashes are produced . The
Microprocessor in most computer systems accounts for 10x
the power requirements of memory . If we consider PoW on
a device over time , then LXRHash is estimated to reduce
power requirements by about a factor of 10 .
[0105] Testing has revealed optimizations .
LXRHash is comparatively slow by design (to make PoW
CPU bound) , but quite a number of use cases don't need
PoW , but really just need to validate data matches the hash .
So using LXRHash as a hashing function isn't as desirable
as simply using it as a POW function . The somewhat
obvious conclusion is that in fact we can use Sha256 as the
hash function for applications , and only use the LXR
approach as a PoW measure . So in this case , what we do is
change how we compute the PoW of a hash . So instead of
simply looking at the high order bits and saying that the
greater the value the greater the difficulty (or the lower the
value the lower the difficulty) we instead define an expensive
function to calculate the PoW .
[0106] Exemplary embodiments may break out PoW mea
sures from cryptographic hashes . The advantage here is that
what exactly it means to weigh PoW between miners can be
determined apart from the hash that secures a blockchain .
Also , a good cryptographic hash provides a much better base
from which to randomize PoW even if we are going to use
a 1 GB byte map to bound performance by DRAM access .
And we could also use past mining , reputation , staking , or
other factors to add to PoW at this point .
[0107] PoW may be represented as a nice standard sized
value . Because exemplary embodiments may use a function
to compute the PoW , we can also easily standardize the size
of the difficulty . Since bytes that are all 0xFF or all 0x00 are
pretty much wasted , we can simply count them and combine
that count with the following bytes . This encoding is com
pact and easily compared to other difficulties in a standard
size with plenty of resolution . So with PoW represented as
a large number , the bigger the more difficult , the following
rules may be followed . Where bit 0 is most significant , and
bit 63 is least significant :

[0108] Bits 0-3 Count of leading OxFF bytes ; and
[0109] Bits 4-63 bits of the following bytes .

[0110] For example , given the hash
[0111] ffffff7312334c442bf42625f7856fe0d50e4aa45c
98d7a391c016b89e242d94 , the difficulty is
37312334c442bf42 . The computation counts the lead
ing bytes with a value of OxFF , then calculates the
uint64 value of the next 8 bytes . The count is combined
with the following bytes by shifting the 8 bytes right by
4 , and adding the count shifted left by 60. As computing
power grows , more significant bits of the hash can be
used to represent the difficulty . At a minimum , difficulty
is represented by 4 bits Ox0 plus the following 0_60
bits = > 60 bits of accuracy . At the maximum , difficulty is
represented by 4 bits OxF plus the following 60
bits = > 120-60 = 180 bits of accuracy .

[0112] Sha256 is very well tested as a cryptographic
function , with excellent waterfall properties (meaning odds
are very close to 50 % that any change in the input will flit
any particular bit in the resulting hash) . Hashing the data
being mined by the miners is pretty fast . If an application
chooses to use a different hashing function , that's okay as
well .

US 2021/0266174 A1 Aug. 26 , 2021
19

[0113] FIGS . 37-40 illustrate a table identifier mechanism ,
according to exemplary embodiments . When the miner
system 22 communicates with the blockchain network
server 28 , the blockchain network server 28 may specify the
proof - of - work (“ PoW ”) target scheme 34 and / or the data
base table 90 that is required by the blockchain environment
20. For example , in order to reduce a memory byte size
and / or programming line size of the proof - of - work (“ PoW ')
target scheme 34 and / or the client - side blockchain mining
software application 196 , exemplary embodiments may only
specify a table identifier 250 associated with the blockchain
network's chosen or required difficulty and proof - of - work
scheme . The table identifier 250 may be any alphanumeric
combination , hash value , network address , website , or other
data / information that uniquely identifies the database table
90 used by the blockchain environment 20. The blockchain
network server 28 may thus send the table identifier 250 (via
the communications network 26) to the miner system 22 .
The table identifier 250 may be packaged as a downloadable
component , parameter , or value with the client - side block
chain mining software application 196. However , the table
identifier 250 may additionally or alternatively be sent to the
miner system 22 , such as the packetized message 202 that
includes or specifies the table identifier 250 (explained with
reference to FIGS . 22-31) . Because the table identifier 250
may be separately sent from the client - side blockchain
mining software application 196 , the table identifier 250
may be dynamically updated or changed without download
ing a new or updated client - side blockchain mining software
application 196 .
[0114] Exemplary embodiments may consult an electronic
database 252 of tables . When the miner system 22 receives
the table identifier 250 , the miner system 22 may use , call ,
and / or implement the database table 90 represented by the
table identifier 250. The miner system 22 may obtain , read ,
or retrieve the table identifier 250 specified by the client - side
blockchain mining software application 196. The miner
system 22 may additionally or alternatively inspect , read , or
retrieve the table identifier 250 from the message 202. Once
the table identifier 250 is determined , the miner system 22
may identify the corresponding database table 90 by que
rying the database 252 of tables for the table identifier 250 .
FIG . 37 illustrates the electronic database 252 of tables
locally stored in the memory device 38 of the miner system
22. The database 252 of tables stores , references , or asso
ciates the table identifier 250 and / or the proof - of - work target
scheme 34 to the corresponding database table 90. The
miner system 22 may thus identify and / or retrieve the
database table 90. The miner system 22 may then execute the
difficulty algorithm 48 and / or the proof - of - work algorithm
using the entries specified by the database table 90 (as this
disclosure above explains) .
[0115] FIG . 38 illustrates remote retrieval . FIG . 38 illus
trates the database 252 of tables remotely stored by a table
server 254 and accessed via the communications network
26. The table server 254 may be the only authorized source
for the database table 90. The table server 254 may thus
operate within the blockchain environment 20 and provide
the latest / current database table 90 for all miners in the
blockchain network . The table server 254 , however , may be
operated on behalf of an authorized third - party vendor or
supplier that provides the database table 90 for all miners in
the blockchain network . Once the miner system 22 deter
mines the table identifier 250 , the miner system 22 may send

a query to the network address associated with or assigned
to the table server 254. The query specifies the table iden
tifier 250. When the table server 254 receives the query , the
table server 254 queries the electronic database 252 of tables
for the table identifier 250 specified by the query . The table
server 254 has a hardware processor and memory device
(not shown for simplicity) that stores and executes a query
handler software application . The query handler software
application causes the table server 254 to perform a database
lookup operation . The table server 254 identifies the corre
sponding database table 90 by querying the database 252 of
tables for the table identifier 250. The table server 254
generates and sends a query response to the network address
associated with or assigned to the miner system 22 , and the
query response includes or specifies the database table 90
that is associated with the table identifier 250. The miner
system 22 may thus identify , download , and / or retrieve the
database table 90 .

[0116] Because the database 252 of tables may store or
reference many different database tables , exemplary
embodiments may dynamically switch or change the data
base table 90 to suit any objective or performance criterion .
Exemplary embodiments may thus need only specify the
table identifier 250 , and the table identifier 250 may be
dynamically changed at any time . The blockchain environ
ment 20 may flexibly switch , change , and evaluate different
database tables , merely by changing or modifying the table
identifier 250. The blockchain network may thus experiment
with different database tables , different difficulty algorithms
48 , and / or different proof - of - work algorithms 52 with little
or no impact or effect on hashing . Should an experimental
scheme prove or become undesirable , for whatever reason
(s) , the blockchain environment 20 (such as the blockchain
network server 28) may distribute , assign , or restore a
new / different table identifier 250 (perhaps by updating the
client - side blockchain mining software application 196 and /
or distributing / broadcasting the message 202 , as this disclo
sure above explains) . The blockchain environment 20 may
thus dynamically change the database table 90 , which may
concomitantly change the difficulty algorithm 48 and / or the
proof - of - work algorithm 52 , for quick evaluation and / or
problem resolution .
[0117] FIG . 39 further illustrates table services . Here the
table server 254 may serve different blockchain environ
ments 20. For example , the table server 254 may server
miners 22a operating in blockchain environment 20a . The
table server 254 may also server miners 22b operating in
blockchain environment 206. The table server 254 may thus
be operated on behalf of a table service provider 256 that
provides a table service 258 to clients and blockchain
networks . The table service provider 256 may receive ,
generate , and / or store different database tables 90 , perhaps
according to a client's or a blockchain's specification . Each
different table 90 may have its corresponding unique table
identifier 250. So , whatever the proof - of - work (“ PoW ”)
target scheme (e.g. , 34a and 34b) and / or the blockchain
environment 20a - b , the table server 254 may offer and
provide the corresponding database table 90. The table
service provider 256 and / or the table server 254 may thus be
an authorized provider or participant in the blockchain
environments 20a - b . A first miner system 22a , for example ,
operating in the blockchain environment 20a , may request
and retrieve the database table 90a that corresponds to the
proof - of - work (“ PoW ”) target scheme 34a . A different ,

US 2021/0266174 A1 Aug. 26 , 2021
20

second system 22b , operating in the blockchain environment
20b , may request and retrieve the database table 90b that
corresponds to the proof - of - work (“ PoW ”) target scheme
34b . Miners may query the table server 254 (perhaps by
specifying the corresponding table ID 250) and retrieve the
corresponding database table 90. The table service provider
256 may thus specialize in randomized / cryptographic data
base tables , and the table server 254 may serve different
blockchain networks .
[0118] FIG . 40 further illustrates table services . The block
chain environment 20 and / or the miner system 22 may
outsource the bit shuffle operation 92 to the table service
provider 256. Once the miner system 22 determines or
receives the hash value (s) 60 (generated by the hashing
algorithm 54) , the miner system 22 may outsource or
subcontract the bit swap operation 92 to the table server 254 .
The client - side blockchain mining software application 196
may thus cause or instruct the miner system 22 to generate
a bit shuffle service request that is sent to the table service
provider 256 (such as the IP address assigned to the table
server 254) . The bit shuffle service request may specify or
include the hash values 60. The bit shuffle service request
may additionally or alternatively specify or include the table
identifier 250. The bit shuffle service request may addition
ally or alternatively specify or include a website , webpage ,
network address location , or server from which the hash
values 60 may be downloaded , retrieved , or obtained to
perform the bit shuffle operation 92. While the table service
provider 256 may utilize any mechanism to provide the bit
shuffle operation 92 , FIG . 40 illustrates a vendor's server /
client relationship . The miner system 22 sends the bit shuffle
service request to the table server 254 that is operated on
behalf of the table service provider 256. When the table
server 254 receives the bit shuffle service request , the table
server 254 may query the database 252 of tables for the table
identifier 250 specified by the bit shuffle service request . The
table server 254 identifies the corresponding database table
90. The table server 254 performs the bit shuffle operation 92
using the hash value (s) 60 specified by , or referenced by , the
bit shuffle service request . The table server 254 generates
and sends a service result to the network address associated
with or assigned to the miner system 22 , and the service
result includes or specifies data or information representing
the randomized hash value (s) 226. The miner system 22 may
then execute , or outsource , the difficulty algorithm 48 and / or
the proof - of - work algorithm 52 using the randomized hash
value (s) 226 (as this disclosure above explained) .
[0119] Exemplary embodiments improve computer func
tioning . The database table 90 adds cryptographic security
by further randomizing the hash value (s) 60 generated by the
hashing algorithm 54. Moreover , because the database table
90 may be remotely located and accessed , exemplary
embodiments may only specify the table identifier 250. The
memory byte size consumed by the proof - of - work (“ PoW ”)
target scheme 34 and / or the client - side blockchain mining
software application 196 is reduced . That is , the blockchain
network server 28 need not send the entire software pro
gram , code , or instructions representing the database table
90 used by the blockchain environment 20. The blockchain
environment 20 , the blockchain network server 28 , and / or
the proof - of - work (“ PoW ”) target scheme 34 need only
specify the much smaller byte - sized table identifier 250. The
blockchain environment 20 need not be burdened with
conveying the database table 90 to the miner system 22 and

to other mining nodes . The blockchain environment 20 and
the communication network 26 convey less packet traffic , so
packet travel times and network latency are reduced . More
over , especially if the miner system 22 outsources table
operations , the miner system 22 is relieved from processing
executing the bit swap operation 92 and consumes less
electrical power . Again , then , a faster and more expensive
graphics processor or even ASIC will not speed up the
proof - of - work operation . The conventional central process
ing unit 36 is adequate , reduces costs , and promotes demo
cratic mining
[0120] Exemplary embodiments improve cryptographic
security . If the blockchain environment 20 , the proof - of
work (“ PoW ”) target scheme 34 and / or the client - side block
chain mining software application 196 specifies use of the
database table 90 , only authorized miners may have access
to the actual entries referenced by the database table 90. That
is , if miner system 22 is required to perform , implement , or
even execute the bit shuffle operation 92 , the miner system
22 must have access to the correct database table 90. An
unauthorized or rogue entity , in other words , likely could not
perform the bit shuffle operation 92 without access to the
correct database table 90. Moreover , if the bit shuffle opera
tion 92 is remotely performed from the miner system 22
(such as by the table server 254 , as above explained) ,
perhaps not even the authorized miner system 22 need have
access to the database table 90. So , even if the miner system
22 is authorized to mine or process blockchain transactions
32 in the blockchain environment 20 , the authorized miner
system 22 may still be blind to the database table 90. The
authorized miner system 22 , in other words , is operationally
reliant on the table server 254 to perform the bit shuffle
operation 92 that may be required for the difficulty algorithm
48 and / or for the proof - of - work algorithm 52. The miner
system 22 simply cannot solve the mathematical puzzle 62
without the table service 258 provided by the table server
254. The database table 90 may thus be proprietary to the
blockchain environment 20 , but , unknown and unavailable
to even the authorized miner system 22 for added crypto
graphic security .
[0121] FIG . 41 illustrates agnostic blockchain mining ,
according to exemplary embodiments . As the reader may
now realize , the miner system 22 may be agnostic to the
blockchain environment 20. Because the miner system 22
may be agnostic to encryption , difficulty , and proof - of - work
operations , the miner system 22 may process or mine the
blockchain transactions 32 in multiple blockchain environ
ments 20. That is , because the conventional CPU 36 is
adequate for mining blockchain transactions 32 , no special
ized ASIC is required for any particular blockchain envi
ronment 20. The miner system 22 may thus participate in
multiple blockchain environments 20 and potentially earn
multiple rewards . The miner system 22 , for example , may
participate in the blockchain environment 22a and mine the
blockchain transactions 32a sent from the blockchain net
work server 28a to authorized miners in blockchain network
260a . The miner system 22 may thus mine the blockchain
transactions 32a according to the proof - of - work (“ PoW ”)
target scheme 34a that is specified by the blockchain envi
ronment 22a , the blockchain network server 28a , and / or the
blockchain network 260a . The miner system 22 , however ,
may also participate in the blockchain environment 22b and
mine the blockchain transactions 32b sent from the block
chain network server 28b to authorized miners in blockchain

US 2021/0266174 A1 Aug. 26 , 2021
21

network 260b . The miner system 22 may thus mine the
blockchain transactions 32b according to the proof - of - work
(“ PoW ”) target scheme 34b that is specified by the block
chain environment 22b , the blockchain network server 28b ,
and / or the blockchain network 260b . Because exemplary
embodiments require no specialized GPU or ASIC , the
miner's conventional CPU 36 may be adequate for mining
operations in both blockchain environments 22a and 22b .
The miner system 22 may thus download , store , and execute
the client - side blockchain mining software application 196a
that is required to mine the blockchain transactions 32a in
the blockchain environment 20a . The miner system 22 may
also download , store , and execute the client - side blockchain
mining software application 196b that is required to mine
the blockchain transactions 32b in the blockchain environ
ment 206. The miner system 22 may thus call , execute ,
coordinate , or manage the encryption algorithm 46a , the
difficulty algorithm 48a , and / or the proof - of - work (“ PoW ”)
algorithm 52a according to the proof - of - work (“ PoW ")
target scheme 34a specified by the blockchain environment
20a . The miner system 22 may also call , execute , coordinate ,
or manage the encryption algorithm 46b , the difficulty
algorithm 48b , and / or the proof - of - work (“ PoW ”) algorithm
52b according to the proof - of - work (“ PoW ”) target scheme
34b specified by the blockchain environment 206. Because
exemplary embodiments require no specialized GPU or
ASIC , the miner system 22 has the hardware processor
capability and performance (e.g. , clock speed , processor
core (s) / thread (s) count , cycles , the on - board cache memory
100 , thermal profile , electrical power consumption , and / or
chipset) to mine in both blockchain environments 20a and
206. The miner system 22 may participate in multiple
blockchain environments 20 , thus having the capability to
earn additional rewards , while also being less expensive to
purchase and to operate .
[0122] FIGS . 42-43 illustrate virtual blockchain mining ,
according to exemplary embodiments . Because the miner
system 22 may be agnostic to the blockchain environment
20 , the miner system 22 may outsource or subcontract
mining operations to a virtual machine (or “ VM ”) 262. For
example , the miner system 22 may implement different
virtual machines 262 , with each virtual machine 262 dedi
cated to a particular blockchain environment 20. The miner
system 22 , for example , may assign the virtual machine
262a to mining the blockchain transactions 32a sent from
the blockchain network server 28a . The miner system 22
may assign the virtual machine 2625 to mining the block
chain transactions 32b sent from the blockchain network
server 28b . The miner system 22 may thus be a server
computer that participates in multiple blockchain environ
ments 20 and potentially earns multiple rewards . The miner
system 22 may provide virtual mining resources to multiple
blockchain environments 20 , thus lending or sharing its
hardware , computing , and programming resources . While
FIG . 42 only illustrates two (2) virtual machines 262a and
262b , in practice the miner system 22 may implement any
number or instantiations of different virtual machines 262 ,
with each virtual machine 262 serving or mining one or
multiple blockchain environments 20. So , when the miner
system 22 receives the blockchain transactions 32 , the miner
system 22 may inspect the blockchain transactions 32 for the
proof - of - work (“ POW ”) target scheme 34 that identifies the
corresponding encryption , difficulty , and PoW scheme (such
as by consulting the databases 70 , 74 , and 78 , as above

explained) . The miner system 22 may additionally or alter
natively inspect the blockchain transactions 32 for the
identifiers 200 , 210 , 214 , and 250 (as this disclosure above
explains) . Once the blockchain environment 20 is deter
mined , the miner system 22 may then
[0123] FIG . 43 illustrates a database lookup . When the
miner system 22 determines the PoW scheme 34 and / or any
of the identifiers 200 , 210 , 214 , and 250 , the miner system
22 may identify the corresponding virtual machine 262. For
example , the miner system 22 may consult an electronic
database 264 of virtual machines . While the database 264 of
virtual machines may have any structure , FIG . 43 illustrates
a relational table 266 having entries that map or associate the
PoW scheme 34 and / or any of the identifiers 200 , 210 , 214 ,
250 to the corresponding virtual machine 262. The miner
system 22 may thus query the electronic database 264 of
virtual machines for any of the PoW scheme 34 and / or any
of the identifiers 200 , 210 , 214 , 250 and determine the
corresponding virtual machine 262. Once the virtual
machine 262 is identified (e.g. , a memory address or pointer ,
processor core , identifier , network address and / or service
provider , or other indicator) , the miner system 22 may assign
the blockchain transactions 32 to the virtual machine 262 for
mining
[0124] The miner system 22 may thus serve many block
chains . The miner system 22 , for example , may mine
BITCOIN® and other cryptographic coin transactional
records . However , the miner system 22 may also nearly
simultaneously mine financial records sent from or associ
ated with a financial institution , inventory / sales / shipping
records sent from a retailer , and transactional records sent
from an online website . The miner system 22 may partici
pate in multiple blockchain environments 20 , thus having
the capability to earn additional rewards , while also being
less expensive to purchase and to operate .
[0125) FIG . 44 is a flowchart illustrating a method or
algorithm for mining the blockchain transactions 32 , accord
ing to exemplary embodiments . The inputs 24 (such as the
blockchain transactions 32) may be received (Block 300) .
The proof - of - work (“ PoW ”) target scheme 34 may be
received (Block 302) . The message 202 may be received
(Block 304) . The identifiers 200 , 210 , 214 , and / or 250 may
be received (Block 306) . The block 40 of data may be
generated (Block 308) . The encryption algorithm 46 (such as
the hashing algorithm 54) may be identified (Block 310) and
the output 56 (such as the hash values 60) may be generated
by encrypting / hashing the blockchain transactions 32 and / or
the block 40 of data (Block 312) . The encryption / hashing
service provider 150 may be identified and the blockchain
transactions 32 and / or the block 40 of data outsourced
(Block 314) . The output 56 (such as the hash values 60) may
be received from the encryption / hashing service provider
150 (Block 316) . The difficulty algorithm 48 may be iden
tified (Block 318) , the database table 90 may be generated
or identified , and the difficulty 50 may be generated by
executing the difficulty algorithm 48 (Block 320) . The
difficulty service provider 156 may be identified and the
difficulty calculation outsourced (Block 322) . The difficulty
50 may be received from the difficulty service provider 156
(Block 324) . The PoW algorithm 52 may be identified
(Block 326) , the database table 90 may be generated or
identified , and the PoW result 42 determined by executing
the PoW algorithm 52 (Block 328) . The PoW service
provider 120 may be identified and the PoW calculation

US 2021/0266174 A1 Aug. 26 , 2021
22

outsourced (Block 330) . The PoW result 42 may be received
from the PoW service provider 120 (Block 332) . The output
56 (such as the hash values 60) , the difficulty 50 , and / or the
PoW result 42 may be compared to the PoW target scheme
34 (Block 334) .
[0126] Exemplary embodiments may win the block 40 of
data . If the output 56 , the difficulty 50 , and / or the PoW result
42 satisfy the PoW target scheme 34 , then the miner system
22 may submit the output 56 , the difficulty 50 , and / or the
PoW result 42 to the blockchain network server 28. The
miner system 22 may itself determine if the miner system 22
is the first to satisfy the PoW target scheme 34 , or the miner
system 22 may rely on the blockchain network server 28 to
determine the first solution . When the miner system 22 is the
first solver , the miner system 22 earns the right to add the
block 40 of data to the blockchain 64. However , if the PoW
target scheme 34 is not satisfied , the miner system 22
implements a change or modification and repeats .
[0127] FIG . 45 is a schematic illustrating still more exem
plary embodiments . FIG . 45 is a more detailed diagram
illustrating a processor - controlled device 350. As earlier
paragraphs explained , the miner system 22 may be any home
or business server / desktop 160 , laptop computer 162 , smart
phone 164 , tablet computer 166 , or smartwatch 168 , as
exemplary embodiments allow these devices to have adequate processing and memory capabilities to realistically
mine and win the block 40 of data (as explained with
reference to FIG . 18) . Moreover , exemplary embodiments
allow any CPU - controlled device to realistically , and prof
itably , process the blockchain transactions 32 , thus allowing
networked appliances , radios / stereos , clocks , tools (such as
OBDII diagnostic analyzers and multimeters) , HVAC ther
mostats and equipment , network switches / routers / modems ,
and electric / battery / ICU engine cars , trucks , airplanes , con
struction equipment , scooters , and other vehicles 170 .
[0128] Exemplary embodiments may be applied to any
signaling standard . Most readers are familiar with the smart
phone 164 and mobile computing . Exemplary embodiments
may be applied to any communications device using the
Global System for Mobile (GSM) communications signal
ing standard , the Time Division Multiple Access (TDMA)
signaling standard , the Code Division Multiple Access
(CDMA) signaling standard , the " dual - mode ” GSM - ANSI
Interoperability Team (GAIT) signaling standard , or any
variant of the GSM / CDMA / TDMA signaling standard .
Exemplary embodiments may also be applied to other
standards , such as the I.E.E.E. 802 family of standards , the
Industrial , Scientific , and Medical band of the electromag
netic spectrum , BLUETOOTH® , low - power or near - field ,
and any other standard or value .
[0129] Exemplary embodiments may be physically
embodied on or in a computer - readable storage medium .
This computer - readable medium , for example , may include
CD - ROM , DVD , tape , cassette , floppy disk , optical disk ,
memory card , memory drive , and large - capacity disks . This
computer - readable medium , or media , could be distributed
to end - subscribers , licensees , and assignees . A computer
program product comprises processor - executable instruc
tions for processing or mining the blockchain transactions
32 , as the above paragraphs explain .
[0130] While the exemplary embodiments have been
described with respect to various features , aspects , and
embodiments , those skilled and unskilled in the art will
recognize the exemplary embodiments are not so limited .

Other variations , modifications , and alternative embodi
ments may be made without departing from the spirit and
scope of the exemplary embodiments .

1. A method of deterring a specialized hardware processor
in a blockchain environment , comprising :

receiving , by a central processing unit (CPU) operating in
a miner system , a proof - of - work target scheme associ
ated with the blockchain environment ;

receiving , by the CPU operating in the miner system , a
blockchain transaction associated with the blockchain
environment ;

identifying , by the CPU operating in the miner system , a
proof - of - work service provider that provides a proof
of - work service ;

mining , by the CPU operating in the miner system , the
blockchain transaction by outsourcing the blockchain
transaction via a packetized communications network
to the proof - of - work service provider that provides the
proof - of - work service ; and

receiving , by the CPU operating in the miner system , a
service result of the proof - of - work service via the
packetized communications network ;

wherein the outsourcing of the blockchain transaction
deters the specialized hardware processor in the block
chain environment .

2. The method of claim 1 , further comprising identifying
a hashing algorithm that is associated with the proof - of
work target scheme .

3. The method of claim 2 , further comprising generating
a hash value by hashing the blockchain transaction using the
hashing algorithm .

4. The method of claim 3 , further comprising sending the
hash value via the packetized communications network to
the proof - of - work service provider that provides the proof
of - work service .

5. The method of claim 1 , further comprising comparing
the service result of the proof - of - work service to the proof
of - work target scheme associated with the blockchain envi
ronment .

6. The method of claim 1 , further comprising receiving a
difficulty via the packetized communications network as the
service result of the proof - of - work service .

7. The method of claim 6 , further comprising comparing
the difficulty to the proof - of - work target scheme associated
with the blockchain environment .

8. The method of claim 1 , further comprising receiving a
proof - of - work result via the packetized communications
network as the service result of the proof - of - work service .

9. The method of claim 8 , further comprising comparing
the proof - of - work result to the proof - of - work target scheme
associated with the blockchain environment .

10. A miner system for mining a blockchain transaction
associated with a blockchain environment , comprising :

a central processing unit ; and
a memory device storing instructions that , when executed

by the central processing unit , perform operations ,
comprising :

receiving a proof - of - work target scheme associated with
the blockchain environment ;

receiving the blockchain transaction associated with the
blockchain environment ;

identifying a proof - of - work service provider that provides
a proof - of - work service ;

US 2021/0266174 A1 Aug. 26 , 2021
23

mining the blockchain transaction by outsourcing the
blockchain transaction via a packetized communica
tions network to the proof - of - work service provider
that provides the proof - of - work service ; and

receiving a service result of the proof - of - work service via
the packetized communications network ;

wherein the outsourcing of the blockchain transaction
deters the mining of the blockchain transaction using an
application - specific integrated circuit .

11. The miner system of claim 10 , wherein the operations
further comprise identifying a hashing algorithm that is
associated with the proof - of - work target scheme .

12. The miner system of claim 11 , wherein the operations
further comprise generating a hash value by hashing the
blockchain transaction using the hashing algorithm .

13. The miner system of claim 12 , wherein the operations
further comprise sending the hash value via the packetized
communications network to the proof - of - work service pro
vider that provides the proof - of - work service .

14. The miner system of claim 10 , wherein the operations
further comprise comparing the service result of the proof
of - work service to the proof - of - work target scheme associ
ated with the blockchain environment .

15. The miner system of claim 10 , wherein the operations
further comprise receiving a difficulty via the packetized
communications network as the service result of the proof
of - work service .

16. The miner system of claim 15 , wherein the operations
further comprise comparing the difficulty to the proof - of
work target scheme associated with the blockchain environ
ment .

17. The miner system of claim 10 , wherein the operations
further comprise receiving a proof - of - work result via the
packetized communications network as the service result of
the proof - of - work service .

18. The miner system of claim 17 , wherein the operations
further comprise comparing the proof - of - work result to the
proof - of - work target scheme associated with the blockchain
environment .

19. A memory device storing instructions that , when
executed by a central processing unit , perform operations
that mine a blockchain transaction associated with a block
chain environment , the operations comprising :

receiving a proof - of - work target scheme associated with
the blockchain environment ;

receiving the blockchain transaction associated with the
blockchain environment ;

identifying a proof - of - work service provider that provides
a proof - of - work service ;

mining the blockchain transaction by outsourcing the
blockchain transaction via a packetized communica
tions network to the proof - of - work service provider
that provides the proof - of - work service ; and

receiving a service result of the proof - of - work service via
the packetized communications network ;

wherein the outsourcing of the blockchain transaction
deters the mining of the blockchain transaction using an
application - specific integrated circuit .

20. The memory device of claim 18 , wherein the opera
tions further comprise comparing the service result to the
proof - of - work target scheme associated with the blockchain
environment .

