

7-
4

ir, X

SPRUSON FERGUSON
AUSTRALIA

PATENTS ACT 1990

PATENT REQUEST: STANDARD PATENT

I/We, the Applicant(s)/Nominated Person(s) specified below, request I/We be
granted a patent for the invention disclosed in the accompanying standard
complete specification.

[70,71] Ap;i; t(s)/Nominated Person(s):

Dell USA organized and existing under the laws of the State of
Delaware, of One Dell Way, Round Rock, Texas, 78682-2244, UNITED
STATES OF AMERICA

[54] Invention Title:
Software Installation and Testing for a Build-to-order Computer
System

[72] Inventor(s):
Richard D. Amberg, Roger W. Wong and Michael A. Brundridge

[74] Address for service in Australia:
Spruson Ferguson, Patent Attorneys
Level 33 St Martins Tower
31 Market Street
Sydney New South Males Australia (Code SF)

4t

4

.4 4*

i. 44

*4

4 4*

4

[31] Appl'n No(s):

08919959

Details of Basic Application
[33] Country: [32] Application Date:

29 August 1997

DATED this TWELFTH day of AUGUST 1998

Dell USA L.P.

Registered Patent Attorney

IRN: 422690 INSTR CODE: 64110

S088752 2 1 AUG1998

I -e

SPRUSON FERGUSON
Australia

0

S
0 0.

09

0 0

6

.400.

Patents Act 1990

NOTICE OF ENTITLEMENT

I, John Gordon Hinde, of Spruson Ferguson, St Martins Tower, 31 Market

Street, Sydney, New South Wales 2000, Australia, being the patent attorney for

the Applicant(s)/Nominated Person(s) in respect of an application entitled:

Software Installation and Testing for a Build-to-order Computer System

state the following:-

The Applicant(s)/Nominated Person(s) has/have entitlement from the actual

inventor(s) as follows:-

The Applicant(s)/Nominated Person(s) is/are the assignee(s) of the

actual inventor(s).

The Applicant(s)/Nominated Person(s) is/are entitled to rely on the basic

application(s) listed on the Patent Request as follows:

The Applicant(s)/Nominated Person(s) is/are the assignee(s) of the basic

applicant(s).

The basic application(s) listed on the Patent Request is/are the first

application(s) made in a Convention country in respect of the invention.

DATED this 16th day of July 1998

John Gordon Hinde

IRN: 422690 INSTR CODE:64110

lil-~ b LC~

II

I11111111111111 111 111111111111 i l 111111111111111 li
AU9880889

(12) PATENT ABSTRACT (11) Document No. AU-A-80889/98
(19) AUSTRALIAN PATENT OFFICE

(54) Title
SOFTWARE INSTALLATION AND TESTING FOR A BUILD-TO-ORDER COMPUTER SYSTEM

International Patent Classification(s)
(51) 6 G06F 009/445

(21) Application No.: 80889/98 (22) Application Date :21/08/98

Priority Data

(31) Number (32) Date (33) Country
08919959 29/08/97 US UNITED STATES OF AMERICA

(43) Publication Date 11/03/99

(71) Applicant(s)
DELL USA L.P.

(72) Inventor(s)
RICHARD D. AMBERG; ROGER W. WONG; MICHAEL A. BRUNDRIDGE

(74) Attorney or Agent
SPRUSON FERGUSON GPO Box 3898, SYDNEY NSW 2001

(57)

A method for installing and/or testing software for a build-to-order computer

system includes reading a plurality of component descriptors from a computer readable

file At least one component descriptor (108) describes a respective component of

the computer system. A plurality of steps (102) are retrieved (550) from a database

(100), at least one step (102) being associated with a respective component descriptor

(108). A step (102) also includes a respective sequence number. The plurality of steps

(102) are sequenced (570) in a predetermined order according to the sequence numbers

to provide a step sequence (570). The step sequence (570) includes commands for

installing and/or testing software upon the computer system.

L IL-~IL-4-s L~ s I

j~si

~iai~-t~ 4i
"-ix,

S F Ref: 422690

AUSTRALIA

PATENTS ACT 1990

COMPLETE SPECIFICATION

FOR A STANDARD PATENT

ORIGINAL

V. S
9

*e

V 00
4 9

9 99

0

9. 9r

*o p
0

I

Name and Address
of Applicant:

Actual Inventor(s):

Address for Service:

Invention Title:

Dell USA L.P.
One Dell Way
Round Rock Texas 78682-2244
UNITED STATES OF AMERICA

Richard D. Amberg, Roger W.
Brundrldge

Hong and Michael A.

Spruson Ferguson, Patent Attorneys
Level 33 St Martins Tower, 31 Market Street
Sydney, New South Wales, 2000, Australia

Software Installation and Testing for a Build-to-order
Computer System

The following statement is a full description of this invention, including the
best method of performing it known to me/us:-

plr ~II

i

I__L il

SOFTWARE INSTALLATION AND TESTING FOR A BUILD-TO-ORDER
COMPUTER SYSTEM

BACKGROUND

Cross-Reference to Related Applications

This application relates to co-pending United States patent application Serial

No. attorney docket number M-5216 US, filed on even date herewith, entitled

10 Database For Facilitating Software Installation And Testing For A Build-To-Order

Computer System and naming Richard D. Amberg, Roger W. Wong, and Michael A.

Brundridge as inventors, the application being incorporated herein by reference in its

entirety.

This application relates to co-pending United States patent application Serial

No. attorney docket number M-5217 US, filed on even date herewith, entitled

Software Installation And Testing For A Build-To-Order Computer System and

naming Richard D. Amberg, Roger W. Wong, and Michael A. Brundridge as

inventors, the application being incorporated herein by reference in its entirety.

Field

20 The present embodiment relates to computer system diagnostics and more

particularly to a method for sequencing software installation and/or testing steps for a

computer system.

Description of the Related Art

Personal computer systems in general and IBM compatible personal computer

systems in particular have attained widespread use for providing computing power to

-1-

A

many segments of society. A personal computer system can usually be defined as a

desk-top, floor-standing, or portable microcomputer that includes a sys-,tem unit

having a system processor and associated volatile and non-volatile memory, a display

monitor, a keyboard, one or more diskette drives, a fixed disk storage device and an

optional printer.

It has been known to install software and to perform tests on computer systems

before they are shipped to businesses or individual customers. The goal of software

installation and testing is to efficiently produce a useful, reliable computer system

which may be delivered to businesses and individuals free from errors and ready to

run. In general, testing detects and analyzes errors that occur in both the hardware and

software portions of the computer system. A partial list of computer system hardware

tests might include diagnostics upon hardware components such as a processor,

memory, a disk storage device, an audio device, a graphics device, a keyboard, a
I .~.mouse, and a printer. Software installation often includes loading a desired package of

15 software onto the computer system, preparing appropriate environment variables for

too. the computer, and preparing appropriate initialization files for the loaded software.
*9 U9Software testing often includes making sure that a desired version of software has

been installed onto the computer system and that appropriate drivers are present on

the computer system.

It has been known in the industry to install software and to test computer

systems during manufacture by performing a fixed procedure before they are shipped

to customers. For instance, a diskette containing certain, diagnostic tests for a certain

type of computer system is created. The diskette includes lengthy, often-complicated

batch files which direct the software installation and diagnostic processes, The
diskette further contains all the executable files for performing tests on the computer

system being purchased.

Each computer system being built is provided with a respective copy of this

diskette. These diskettes accompany the computer systems being built around a

factory floor during the manufacturing process, tests being run on the respective

-2-

I

computer system according to the order inherent in the batch file. If a modification

needs to be made to the process, the batch file is correspondingly changed by adding

to or removing portions from the batch code. That change to the batch file results in a

corresponding change to testing parameters (including the sequence in which the tests

are run) of each subsequent computer system being manufactured, for each computer

system shares the same batch file diagnostic procedure.

While diagnostic arrangements of this kind have exhibited some degree of

usefulness in increasing the reliability of computer systems prior to shipment, room

for improvement remains. For instance, as testing continues to become more

complicated and thorough, batch files and executable files of the diagnostic tests often

exceed the storage capabilities of a diskette. Furthermore, it is often difficult or

impossible to customize testing and software installation procedures for a single

build-to-order computer system or for a certain family of computer systems without

modifying the testing for other systems or families. Moreover, it is difficult or

15 impossible to modify the order of software installation or testing for a single build-to-

So order computer system or for a certain family of computer systems without modifying

the order for other systems and families. Finally, the often-complicated nature of

current batch file structures sometimes makes it difficult for manufacturers to

troubleshoot or maintain testing and software installation procedures quickly and

efficiently. Correspondingly, it would be desirable to devise an improved method for

installing software and testing computer systems before they are shipped to customers.

SUMMARY

*A method for installing and/or testing software for a build-to-order computer

system includes reading a plurality of component descriptors from a computer

readable file. At least one component descriptor describes a respective component of

the computer system. A plurality of steps are retrieved from a database, at least one

step being associated with a respective component descriptor. A step also includes a

respective sequence number. The plurality of steps are sequenced in a predetermined

oi-der according to the sequence numbers to provide a step sequence. The step

-3-

sequence includes commands for installing and/or testing software upon the computer

system.

In preferred embodiments, a first step sequence of a first computer system may

be modified independent of a second step sequence of a second computer system.

Additionally, the database may be configured to associate a first sequence of steps

with a first family of computer systems and a second sequence of steps with a second

family of computer system. The first sequence of steps may be modified independent

of the second sequence of steps.

In another aspect, a method for installing and/or testing software includes

receiving an order for a computer system, the computer system to be manufactured to

include a plurality i f components. The order is converted into a computer readable

0OV, system descriptor record which is descriptive of the plurality of components. The

000.00system descriptor record is read with a computer. A plurality of steps are retrieved
00*

0 from a database, A step being associated with a respective component. A step also

includes a respective sequence and phase number. The plurality of steps are

sequenced in a predetermined order in accordance with the respective sequence

numbers and phase numbers to provide a step sequence. The step sequence includes

0 commands for installing and/or testing software upon the computer system during

phases of manufacture. The phases of manufacture correspond to respective phase

numbers.

In yet another aspect, a method for sequencing software installation includes

receiving an order for a computer system, the computer system to be manufactured to
cos include a plurality of components. The order is converted into a computer readable

0 to:system descriptor record which is descriptive of the plurality of components. A

modification to the system descriptor record is permitted using a system descriptor

patch. The system descriptor record is read with a computer. A plurality of derivcd

objects corresponding to the plurality of components is created, With the derived

objects, a plurality of steps from a database are retrieved. Each step is associated with

a respective component and includes a respective sequence number and phase

-4-

number. The plurality of steps are sequenced in a predetermined order in accordance

with the respective sequence numbers and phase numbers to provide a step sequence.

A modification to the step sequence is permitted using a step sequence patch. The

step sequence is written to a computer readable text file. The text file includes

comrmands for installing software upon the computer system during phases of

manufacture, the phase of manufacture corresponding to respective phase numbers.

Prmferably, the step sequence is adapted to provide for commands repeatable

for a defined length of time. It is also preferred that the step sequence be adapted to

provide for commands repeatable for a definied number of iterations.

The described method thus provides for effective sequencing of software

installation and computer testing which allows for straightforward troubleshooting

*and customnization of build-to-order computer systems. The modular design of the

0 04 sequencing advantageously allows for elementary maintenance of a testing system and
00

for the rapid creation of steps for new computer systems and families.
*00

15 Thlese and other objects, features and advantages of the invention will be
Do00* 6n further described and more readily apparent from a review of the detailed description

#4 of the preferred embodiments which follows,

BRIEF-DESCRPINO THE DRA13aNGS

09 Figure l is a schematic diagram showing software installation and testing.

Figure 2 is a schematic diagramn of softwvare installation and testing according

to another embodiment.

Figure 3A is a flowchart for converting a computer order into a system

descriptor record according to the present invention.

Figure 3B3 shows a portion of an example computer order, Base Assembly

Record (BAR) file, and system descriptor record.

.Figure 4 is a flowchart for creating aid providing a step sequence,

-~a~--'-Llllsslsl13sll~RI~ ~C I

11 1 li--saul--_=~_~qplC

Figure 5 is a more detailed flowchart for creating a step sequence.

Figure 6 shows a structure of a database.

Figure 7 is a flowchart for modifying a system descriptor record and step

sequence.

Figure 8 shows an example of a step file before being executed.

Figure 9 shows the exemplative step file after being executed.

Figure 10 is a flowchart of the operation of a program for executing a step

sequence,

Figure 11 is a more detailed flowchart of the operation of the program of

10 Figure 10 for executing a step sequence.
I

DETAILED DESCRIPTION

The following sets forth a detailed description of the best contemplated mode

for carrying out the invention. The description is intended to be illustrative and

should not be taken to be limiting. In the drawings, like or similar elements may be
*e

15 designated by the same reference numeral. In the description, a module is defined as a

command or set of commands.

•Figure 1 is a schematic diagram of software installation and testing system

In operation, order 92 is placed to purchase build-to-order target computer system

160. Target system 160 is to be manufactured to contain a plurality of hardware and

20 software components. For instance, target system 160 might include a certain brand

of hard drive, a particular type of monitor, a certain brand of processor, and a

particular version of an operating system. Before target system 160 is shipped to the

customer, the plurality of components are installed and tested. Such software

installation and testing advantageously ensures a reliable, working computer system

which is ready-to-run upon being received.

-6-

7I

Because different families of computer systems and different individual

computer components requaire different software installation and testing steps, it is

necessary to determine which tests need be run on target system 160 and in what order

those tests should be executed so as to achieve an effective software installation and

testing process. Step maker 140 is a computer system configured to sequence the

software installation and testing steps to be rnm on target system 160. To sequence the

software installation and/or testing steps, step maker 140, and more particularly,

sequencing program 204 residing on step maker 140, first reads a plurality of

component descriptors from descriptor file 96. Descriptor file 96 is provided by

converting an order 92, which corresponds to a desired computer system having

desired components, into a computer readable format via conversion module 94.

Component descriptors are computer readable descriptions of the components

of target system 160 which components are defined by the order 92. In the preferred
embodiment, the component descriptors,-are included in a descriptor file called a

system descriptor record which is a computer readable file containing a listing of the
components, hardware and/or software components, to be installed onto target system

160. Having read the plurality of comnponent descriptors, sequencing program 204
retrieves a plurality of software installation and/or testing steps corresponding to the

component descriptors from database 100 over network connection 1 10. Network

connection 110 may be any network connection well-known in the art, such as a local

area network, an intranet, or the internet. The information contained in database 100
may be updated through a modification depicted by arrow 130,

Having retrieved the softwvare installation and/or testing steps appropriate for

target system 160, sequencing programn 204 sequences the steps in a predetermined

order according to sequence numbers corresponding to each step. Having sequenced

the steps required for target system 160, sequencing program 204 writes a series of

output files to step disk 150, In the embodiment set forth in Figure 1, the output files

include text files containing command lines appropriate for executing the appropriate

software installation and/or testing steps upon target system 160. The execution is

performed in the predetermined order according to the sequence numbers

s o

0,19 0"

4000

*000

corresponding to each step, Step disk 150 accompanies target system 160 on the

factory floor where tests are run directly from step disk 150 or, alternatively, from file

server 190, connected to target system 160 via network connection 180. Preferably,

network connection 180 is a generic network device plugged into a corresponding

network port of the target computer system. Following the execution of the software

installation and testing steps, results of the installation and tests are logged back to file

server 190 over network connection 180.

Figure 2 is a schematic diagram of software installation and testing system 192

pursuant to another embodiment of the present invention. A customer places order 92

to purchase build-to-order target computer system 160. Target system 160 is to be

manufactured to contain a plurality of components whidch components may include

both hardware and/or software components. Before target system 160 is shipped to

the customer, the plurality of components are installed and tested. Such installation

and testing advantageously ensures a reliable, working computer system which is

15 ready-to-run upon being received by the customer.

To sequence the software installation and testing steps, sequencing program

204 reads a plurality of component descriptors from descriptor file 96. Order 92 is

converted into descriptor file 96 via conversion module 94. Component descriptors

are computer readable descriptions of the components of target system 160. In the

preferred cmbodiment, the component descriptors are included in a descriptor file

called a system descriptor record, a computer readable file containing a listing of each

component, both hardware and software, to be installed onto target system 160. The

system descriptor record may be stored directly on file server 202. Sequencing

program 204 retrieves a plurality of software installation and/or testing steps

corresponding to the component descriptors from database 100. Having retrieved the

appropriate software installation and/or testing steps for target system 160, sequencing

program 204 sequences the steps in a predetermined order according to sequence

numbers corresponding to each step. Having sequenced the steps required for target,

system 160, sequencing program 204 directs the execution of the software installation

and testing steps upon target system 160 in the predetermined order via network

connections 195 and 180. It is desired that network connection 200 be a generic

network device plugged into a corresponding port of target system 160. Nletwork 195

may be any communication connection well-known in the art. Following the

execution of the software installation and/or testing steps, results of the installation

and tests are logged back to file server 202 over network connection 200 or stored

within an appropriate database. As apparent from the illustration, there is no need for

separate step maker computer system 140 of Figure 1. Additionally, step disk 150 is

not necessary. Rather, only boot disk 220, which is configured to boot target system

160, is needed to accompany target system 160 on the factory floor.

Having generally described the software installation and testing systems,

attention will now be turned to describing the operation of the systems set forth in

Figures 1 and 2 in more detail.

Figure 3A depicts the preferred process in which an order for a computer

system is converted into a computer readable system descriptor record. More

specifically, in item 300, an order is received for a target computer system. This order

*may be in any one of countless forms. For instance, different ordering formats are

possible as well as different order delivery mechanisms. For example, orders for a

target computer system may be placed by telephone, by mail, or over computer

networks over the intemet). Regardless of the means of taking or the form of

the order, the order includes the type of target computer system which a customer

desires to purchase and, possibly, an explicit listing of the particular components the

customer wishes that target computer system to include. After the order is received,

*control transitions to transmit module 31 0 during which the target computer system

order is transmitted over a computer network to a manufacturing system (not shown)
which produces the target computer system. The target computer system order is also

provided to the software installation and testing system where it is piped into a

conversion program in module 320. The computer network used in module 3 10 may

be of any type well-known in the art.

The conversion program converts the target computer system order to a record

useful for the manufacturing process., More specifically, the conversion program

converts the computer order first into a record called a BAR file at module 330.

Preferably, the BAR file contains a unique identifier which identifies the specific

target computer system being manufactured. The BAR file also contains a detailed

2 listing of components, which may include both hardware and software, to be included

with the target system. Further, it is desired that the BAR file contain manufacturer-

specific part numbers or other useful identifiers for each component. Finally, the

BAR file may contain customer-specific information such as name, address, and

phone number.

Following the creation of the BAR file in module 330, a system descriptor

record is created at module 340. A system descriptor record, in the preferred

't tl 9 embodiment, is a computer-readable file which is descriptive of the hardware and

software components to be included with the target computer system. In a preferred

embodiment, the system descriptor record contains a list of components of the target

system in a format including hardware tags, software tags, information tags, and

comments. A hardware tag identifies to sequencing program 204 that information

following the tag relates to a hardware component. Similarly, the software tag

identifies information following the tag as being related to a software component.

The information tag indicates that general information is to follow. Comments allow

for various statements to be included into the system descriptor record wiich are

ignored by sequencing program 204. It is desired that the system descriptor record be

a text file which is human-readable and easy ts; understand. Such a file

advantageously allows for easy troubleshooting and maintenance of the installation

25 and testing process. It will be appreciated that the system descriptor record could be

any list of unique identifiers that correspond to a unique set of tokens, for example, in

a simple example, the system descriptor record may be a list of part numbers.

Figure 3B shows an example target computer system order 350, a

corresponding BAR file 360, and a corresponding system descriptor record 370.

Target computer system order 350 contains the name of a computer family, in this

p; l 1_ j

illustration, family Also included in target computer system order 350 are three

exemplary hardware components including a Pentium® processor, a hard drive, and a

monitor. BAR file 360 results from running target computer system order 350

through a conversion program as depicted in module 320 of Figure 3A. BAR file 360

contains a unique identifier for the specific target computer system within family X.

BAR file 360 also includes the manufacturer-specific part numbers for each of the

components listed in the target computer system order. Further, BAR file 360

contains an identifier indicating the quantity desired of each component as well as a

text description of each component to be included on the target computer system.

System 90 uses BAR File 360 to create system descriptor record 370.

As illustrated, the system descriptor record 370 also contains the unique

identifier for the specific target computer system within family X. Moreover, the

system descriptor record 370 contains appropriate tags, here indicating that the 1

processor, hard drive and monitor are all hardware, rather than software, components.

15 The system descriptor record 370 describes those components in a text description.

Additionally, the exemplative system descriptor record 370 contains a software tag

indicating that certain software should be insilled or tested on the target computer

system belonging to family X. For example, the software tag might indicate that a

certain operating system appropriate for the Pentium® processor always be installed

onto the hard drive of the target computer system belonging to family X.

In Figure 4, the preferred general method for sequencing software installation

and testing steps is set forth. In module 400, the unique identifier of the target

computer system is generated for the target computer system 160. In the embodiment

depicted in Figure 1, a user sitting at step maker computer system 140 provides the

unique Identifier the BAR identifier which functions as a tracking code) into

sequencing program 204 of step maker 140. Alternatively, in the embodiment of

Figure 2, the unique identifier is automatically read into sequencing program 204 after

the target computer system order is received.

-11-

i,

In module 410, a system descriptor record corresponding to the BAR identifier

is located. In the embodiment of Figure 1, either network connection 110 or network

connection 195 locates the system descriptor record. In the embodiment of Figure 2,

network connection 195 locates the system descriptor record. In module 420, the

located system descriptor record is provided to sequencing program 204. In the

Figure 1 embodiment, the sequencing program resides on step maker computer system

140 while in the Figure 2 embodiment, the sequencing program resides upon file

server 202. Sequencing program 204 works in conjunction with database 100 (of

Figures 1 and 2) to sequence software installation and testing steps for target

computer system 160. Once the software installation and testing steps appropriate for

the particular target computer system are sequenced, sequencing program 204

produces output files as depicted in module 430.

In the embodiment depicted in Figure 1, the output files are preferably written

to step disk 150 (see Figure 1) in six separate files. Those files include a step file,

15 a Setenv.bat file, a Qt.txt file, an Et.txt file, an Etlast.txt, and an

Ft.txt file. It is desired that the step file be an ASCII text file including a list of

appropriate command lines for executing the software installation and testing steps for

the target computer system being ordered. In a preferred embodiment, the step file

also includes commands which may be looped. More specifically, the step file allows

commands to be repeated for a defined number or iterations or for a defined length of

time. Such a format advantageously allows for software installation or testing steps to

."be repeated in a calculated, predetermined manner. The Setenv.bat file preferably sets

environment variables on the target computer system. It will be appreciated that in a

mode of operation, only the Step file and the Setenv.bat file are necessary for

installation and testing. The Step file and the Setenv.bat file are ASCII text script

files containing a list of appropriate command lines for executing the installation and

testing steps for the target computer system. The Qt.txt, Et.txt, Etlast.txt, and Ft.txt

files are preferably all ASCII text files containing a list of appropriate command lines

for executing the software installation and testing steps for the target computer system

-12-

J.D

in the Quick Test Extended Testl Extended Test2 (Etlast), and Final 'rTest

(Ft) phases of manufacture of the target computer system.

In the embodiment of Figure 2, on the other hand, output files are not written

to a step disk as depicted in Figure 1. Instead, the output files reside upon file server

202 or file server 190, where they are used to direct the execution of the software

installation and/or testing steps upon target computer system 160.

Figure 5 depicts a more detailed schematic of the operation of sequencing

program 204 depicted in Figures 1 and 2. In module 500, a system descriptor record

corresponding to target computer system 160 is provided to sequencing program 204.

In module 510, a component descriptor is read from the system descriptor record. A

Each component descriptor describes a respective component, hardware or software,

of the target computer system.

*j

STurning to Figure 3B, the line of the system desciptor record including the

Pentium® processor in module 370 is an example component descriptor. In module

5" 15 520, sequencing program 204 instantiates a plurality of derived objects corresponding

to the plurality of components of target computer system 160. In the preferred

embodiment, those derived objects are used to store information (obtained from

database 100) about software installation and testing steps that need to be run, on

target computer system 160. In module 550, software installation and testing steps

I' *20 associated the respective components of target computer system 160 are retrieved

from database 100 and stored in the appropriate derived object. In the embodiment of

Figure 1, the steps are retrieved via network connection 110 while in the Figure 2

embodiment, the steps may be retrieved directly from file server 202. To describe

how the steps are retrieved from database 100 in the preferred embodiment requires a

description of the preferred construction of that database.

Figure 6 shows the design of database 100. Database 100 associates

sequences of software installation and/or testing steps, in a predetermined order, with

families of computer systems. Further, database 100 is configured to associate

components of computer systems with families of computer systems. Still further,

-13-

I

database 100 associates software installation and/or testing steps with components of

computer systems.

Database 100 is preferably a relational database. Database 100 contains

several tables, each containing attributes suitable for creating the associations

mentioned above.

Database 100 contains Step table 102, SysFamily table 104, Sys_Step_Seq

table 106, Component table 108, Sys_Comp table 112, and Comp Step table 114. In

the preferred embodiment, each table contains a list of attributes, the underlined

attributes serving as a primary key.

Step table 102 contains a set of software installation and testing steps being

shared among different components of all computer families. In the preferred

construction, Step table 102 has attributes including StepID, Phase, Name, Cmd,
CmdType, AftcrCode, and MaxInstance. StepID is a unique identification number for

each software installation or testing step. Phase designates which phase of

manufacture the step is to be executed. For example, Phase is an integer chosen to

correspond to four phases of computer system manufacturing consisting of: Quick

Test, Extended Testl, Extended Test2, and Final Test. Name is a string

assigning a name which is descriptive of the step. Cmd is a string assigning an

executable command line for performing the software installation or testing step upon

20 target system 160 (depicted in Figures 1 and AfterCode is an identifier which

determines if a halt or reboot is needed after the software installation or testing step is

executed. MaxInstance is an identifier which indicates the maximum number of

allowed times the step may run. Finally, ClasslD identifies a certain type of

component which is associated with the software installation or testing step.

SysFamily table 104 identifies each family of computer systems with an

identification integer specified in attribute SyslD. Also included in the SysFamily

table is a string identifying the name of the family.

-14-

I

I

SysStep_Seq table 106 is a relational table which contains relations between

Step table 102 and SysFamily table 104. SysStep_Seq table 106 includes a family

identification integer specified in attribute SysID for a particular family of computer

systems (from SysFamily table 104), a step identification integer specified in attribute

StepID (from Step table 102) identifying a particular set of steps appropriate for that

family, and a sequence number. The sequence number is preferably contained within

the attribute SeqNum which represents a predetermined order in which steps

associated with a particular family are to be run. Test engineers assign the sequence

numbers, unique within each phase of manufacture, in an order chosen to be the most

effective for a particular target system. It will be appreciated that other ways of

assigning sequence numbers may be used.

Component table 108 contains all possible components that are included

within computer systems being manufactured. Attributes of this table are preferably

CompID which assigns an identifier to each component, NameDesc which assigns a

15 string name to each component, and ClassId which references the type of component

hard drive, CD-ROM drive).

Sys_Comp table 112 is a relational table containing relations between a family

S of computer systems and a set of components that can be included in that family. The

attributes of Sys_Comp table 112 include a computer fhmily identification integer

specified in attribute SysID (from SysFamily table 104) and a component

S' identification integer specified in attribute ComplD (from Component table 108).

Comp Step table 114 is a relational table containing relations between a

component and a set of software installation and testing steps appropriate for that

component. The attributes of Comp_Step table 114 include a component

identification integer specified in attribute CompID (from Component table 108) and

a step identification integer specified in attribute StepID (from Step table 102).

The example target computer system depicted in Figure 3B will be used to

illustrate how the above-outline database design is utilized to retrieve software

installation and testing steps. The computer family identifier in the system descriptor

ix

record identifying family X is associated with the SysID corresponding to family X in

SysFamily table 104. Component table 108 is used to check if the components of the

target computer system listed in the target computer system order are legal. In other

words, the sequencing program and database determine if the processor, hard drive,

monitor, and software contained in the system descriptor record of Figure 3B have

corresponding entries and corresponding integers specified by CompID in Component

table 108. If a component is not legal if a component in the system descriptor

record is not contained in Component table 108), an error flag is raised. The

Sys_Comp table 112 is a relational table which contains mappings from the

Component table 108 and the SysFamily table 104. The Sys_Comp table 112

contains all the legal components which may be included on a target computer system

belonging to family X. Thus, the Sys_Comp table 112 may be used to check if all the

components of the target system are legal. In other words, the sequencing program

9and database determine if the processor, hard drive, monitor, and software contained

15 in the system descriptor record of Figure 3B have corresponding relations in the

SysComp table 112. If a component is not legal if a component in the system

0. descriptor record may not be included on a target system belonging to family an

error flag is raised.

In the relational SysStep_Seq table 106 resides mappings from Step table 102

20 and SysFamily table 104. The Sys_Step_Seq table 106 contains all the software

installation and testing steps which may legally be run on target computer systems

belonging to family X. Furthermore, it is in this SysStep_Seq table 106 that

sequence and phase numbers are associated with each software installation and testing

step. Those sequence and phase numbers represent the proper order in which steps

25 should be run for a particular family of computer systems. Therefore, the

Sys_Step_Seq table 106 contains a listing of steps to be run on family X target

computer systems as well as sequence and phase numbers representing a

predetermined order in which the steps should be executed.

The C;mpStep table 114 is a relational table which contains mappings from

the Component table 108 and the Step table 102. The CompStep table 114 contains

-16-

database 100 associates software installation and/or testing steps with components of

computer systems.

Database 100 is preferably a relational database. Database 100 contains

several tables, each containing attributes suitable for creating the associations

mentioned above.

Database 100 contains Step table 102, SysFamily table 104, SysStep_Seq

table 106, Component table 108, Sys_Comp table 112, and CompStcp table 114. In

the preferred embodiment, each table contains a list of attributes, the underlined

attributes serving as a primary key.

Step table 102 contains a set of software installation and testing steps being

shared among different components of all computer families. In the preferred

W, 1 construction, Step table 102 has attributes including SteplD, Phase, Name, Cmd,

CmdType, AfterCode, and MaxInstance. SteplD is a unique identification number for

each software installation or testing step. Phase designates which phase of

15 manufacture the step is to be executed. For example, Phase is an integer chosen to

correspond to four phases of computer system manufacturing consisting of: Quick

I Test, Extended Testl, Extended Test2, and Final Test. Name is a string

assigning a name which is descriptive of the step. Cmd is a string assigning an

executable command line for performing the software installation or testing step upon

20 target system 160 (depicted in Figures 1 and AfterCode is an identifier which

*determines ifa halt or reboot is needed after the software installation or testing step is

executed. MaxInstance is an identifier which indicates the maximum number of

allowed times the step may run. Finally, ClassID identifies a certain type of

*component which is associated with the software installation or testing step.

SysFamily table 104 identifies each family of computer systems with an

identification integer specified in attribute SysID. Also included in the SysFamily

table is a string identifying the name of the family.

-14-

Sys_StepSeq table 106 is a relational table which contains relations between

Step table 102 and SysFamily table 104. SysStepSeq table 106 includes a family

identification integer specified in attribute SysID for a particular family of computer

systems (from SysFamily table 104), a step identification integer specified in attribute

StepID (from Step table 102) identifying a particular set of steps appropriate for that

family, and a sequence number. The sequence number is preferably contained within

the attribute SeqNum which represents a predetermined order in which steps

associated with a particular family are to be run. Test engineers assign the sequence

numbers, unique within each phase of manufacture, in an order chosen to be the most

effective for a particular target system. It will be appreciated that other ways of

assigning sequence numbers may be used.

Component table 108 contains all possible components that are included

,within computer systems being manufactured. Attributes of this table are preferably

ComplD which assigns an identifier to each component, NameDcse which assigns a

15 string name to each component, and ClassId which references the type of component

$oo hard drive, CD-ROM drive).

Sys_Comp table 112 is a relational table containing relations between a family

of computer systems and a set of components that can be included in that family. The

attributes of Sys_Comp table 112 include a computer family identification integer

specified in attribute SysID (from SysFamily table 104) and a component

*identification integer specified in attribute CompID (from Component table 108).

CompStcp table 114 is a relational table containing relations between a

component and a set of software installation and testing steps appropriate for that

i* component. The attributes of Comp Step table 114 include a component

identification integer specified in attribute CompID (from Component table 108) and

a step identification integer specified in attribute StepID (from Step table 102).

The example target computer system depicted in Figure 3B will be used to

illustrate how the above-outline database design is utilized to retrieve software

installation and testing steps. The computer family identifier in the system descriptor

I 4.

record identifying family X is associated with the SysID corresponding to family X in

SysFamily table 104. Component table 108 is used to check if the components of the

target computer system listed in the target computer system order are legal. In other

words, the sequencing program and database determine if the processor, hard drive,

monitor, and software contained in the system descriptor record of Figure 3B have

correspondin(g entries and corresponding integers specified by CompID in Component

table 108. If a component is not legal if a component in the system descriptor

record is not contained in Component table 108), an error flag is raised. The

Sys_Comp table 112 is a relational table which contains mappings from the

Component table 108 and the SysFamily table 104. The Sys_Comp table 112

contains all the legal components which may be included on a target computer system

belonging to family X. Thus, the SysComp table 112 may be used to check if all the

components of the target system are legal. In other words, the sequencing program

and database determine if the processor, hard drive, monitor, and software contained

15 in the system descriptor record of Figure 3B have corresponding relations in the

SysComp table 112. If a component is not legal if a component in the system

descriptor record may not be included on a target system belonging to family an

error flag is raised.

In the relational Sys Step_Seq table 106 resides mappings from Step table 102

and SysFamily table 104. The Sys_Stcp Seq table 106 contains all the software

installation and testing steps which may legally be run on target computer systems

belonging to family X. Furthermore, it is in this Sys.StcpSeq table 106 that

sequence and phase numbers are associated with each software installation and testing

step. Those sequence and phase numbers represent the proper order in which steps

25 should be run for a particular family of computer systems. Therefore, the

SysStepSceq table 106 contains a listing of steps to be run on family X target

computer systems as well as sequence and phase numbers representing a

predetermined order in which the steps should be executed.

The CompStep table 114 is a relational table which contains mappings from

the Component table 108 and the Step table 102. The Comp_Step table 114 contains

-i 16-

the software installation and testing steps to be run for the processor, hard drive,

monitor, and software of the target computer system.

To retrieve software installation and testing steps associated with the

respective components to be included on the target system involves performing ajoin

operation on the SysComp table 112 and the CompStep table 114 to obtain an

intermediate set listing steps to be run on the components of target computer system

160.

The join operation results in a list of steps to be run on the processor, hard

drive, monitor, and software listed in the system descriptor record depicted in Figure

3B. The result of the joinder of the Sys_Comp table 112 and the CompStep table

.114 is then joined with the Sys_StepSeq table 106 which contains all the steps for

family X. The result of this join operation includes sequencing information in the

form of sequence numbers and phase numbers, the sequence numbers being unique

.within a particular phase. Thus, a three-table join of Sys_Comp table 112,

15 Comp.Step table 114, and SysStep_Seq table 106 yields the appropriate software

installation and testing steps as well as sequencing information in the form of

sequence and phase numbers to install and/or test software upon target computer

system 160.

If the result of the first join operation (the join of SysComp table 112 and

Comp_Step table 114) is an empty set, an error condition is be raised, for an empty set

signals that a component to be included on the target system does not belong in the

family listed on the system descriptor record. An example of this is illustrative.

Consider that a system descriptor record correctly indicates that a target computer

system belongs to family Y. Assume, however, that system descriptor record

incorrectly indicates that a hard drive (hard drive Z) belonging only to target systems

in family X should be included on the target system which is in family Y. In that

case, CompStep table 114 contains steps associated with hard drive Z. Sys_Comp

table 112 contains components associated with family Y. Thus, joining Comp_Stcp

table 114 with SysComp table 112 produces an empty set, for hard drive Z is not a

-17-

-II t:

hK

component associated with family Y (instead, it is only associated with family As

apparent from the above example, the preferred design of the database advantageously

allows one to make certain that a target system of certain family contains only

components appropriate for that family.

Referring again to Figure 5, after the steps associated with the components to

be included in the target system are retrieved, sequencing program 204 prepares

environment variables for the target computer system in module 560 by reading the

system descriptor record and creating a environment file corresponding to the

components to be included on the target system. For example, the system descriptor

record depicted in Figure 3B is read, and an environment variable such as "set

cpu=pentium" might be prepared corresponding to the processor hardware component

of the system descriptor record.

In module 570 of Figure 5, the plurality of retrieved software installation and

testing steps, retrieved by the three-table join described above, are sequenced in the

15 predetermined order. This sequencing is in accordance with the respective sequence

numbers and phase numbers to provide a step sequence. The sequencing itself be

accomplished using any one of many sorting algorithms well-known in the art.

In module 580, the sequencing program 204 outputs files. As mentioned

earlier, the output files, are preferably written to step disk 150 (see Figure 1) in six

20 separate files in the embodiment depicted in Figure 1. Those files include a step

file, a Setenv.bat file, a Qt.txt file, an Et,txt file, an Etlast.txt, and an

Ft.txt file. It is desired that the step file be an ASCII text file. In a preferred
'embodiment, the step file also includes commands which may be looped. More

specifically, the step file allows commands to be repeated for a defined number or

iterations or for a defined length of time. The Setenv.bat file sets the environment

variables on the target computer system. The step file contains the steps to be

executed respectively during the Quick Test Extended Testl Extended

Test2 (Etlast), and Final Test (Ft) phases of manufacture of the target computer

system. In the embodiment of Figure 2, on the other hand, the output files are not

-18-

written to a step disk as depicted in Figure 1. Instead, the output files reside upon file

server 202 or file server 190, where they can be used to direct the execution of the

software installation and testing steps upon target computer system 160.

Turning again to Figures 1 and 2, arrow 130 depicts that modifications may be

made to database 100. For instance, if a new family of computer systems is created,

one may modify database 100 accordingly. More specifically, the new family is

assigned a new family identifier in SysID of SysFamily table 104 and a name for the

new family is assigned to the Name attribute of SysFamily table 104. A list of

software installation steps and testing steps is added to Sys_Step_Seq table 106, these

steps representing which steps need be run, and in what predetermined order, upon the

new computer system family. If the new family of computer systems shares several

similarities with an existing family, it is likely that entries for the existing family in

Sys_Step _Seq table 106 may be modified to produce entries for the new family. If

any new steps need be created for the new family of computer systems, these steps are

,15 added to Step table 102. Similarly, if any new components accompany the new

family of computer systems, those components are added to Component table 108.

S" Comp_Step table 114 is updated to associate each component of the new family of

computer systems with the steps appropriate for its software installation and testing.

If the new family uses only components already present in the database, this table

need not be modified. Sys_Comp table 112 is updated so that a list of allowed
components which may be included on the new family would be in the database.

Particularly, one would need to associate the SysID of the new computer system with

the CompID of each allowed component. Again, this could may be done by copying

and then modifying an existing entry of an older family of computer systems.

It shall be appreciated that in constructing a database accczding to the

preferred embodiment, certain significant advantages are provided. In particular, the

modular design of the database advantageously allows for easy setup of software

installation and testing steps for new families of computer systems. Additionally,

software installation and testing steps for a particular family of computer systems or

-19-

for a particular component may be modified independent of other software installation

and testing steps.

Figure 7 depicts how a system descriptor record and a step sequence may be

patched to allow for modular modifications in a software installation and testing

process pursuant to the invention. In module 600, a system descriptor record is

created. In module 610, the system descriptor record is modified using a system

descriptor record patch. In the preferred embodiment, this patch is modular, allowing

patches to be created for a specific target computer system, a particular family of

computer systems, or for a particular component. For instance, if a manufacturer

wished to substitute one brand of hard drives for another for a certain family of

computer systems on a certain day, a patch may be formed which would modify all

system descriptor records containing the hard drive to be substituted and make the

substitution in module 610. In module 620, a step sequence is determined as outlined

above. In module 630, the step sequence is modified using a step sequence patch. In i

,15 the preferred embodiment, this patch is modular, allowing patches to be created for a

specific target computer system, a particular family of computer systems or for a

S. particular component. For instance, if a manufacturer wished to run one testing step
before another for a certain component on a certain day, a patch may be formed which

would modify all step sequences containing the steps whose order is to be modified

and correspondingly change the execution order in module 640.

Attention will now be turned on executing the step sequence on target system

160. Software installation and testing steps are executed upon target computer system

160 using a program which reads, interprets, and executes the step sequence

corresponding to the target computer system. In the preferred embodiment, this

program is called Runstep and is located on step disk 150 in the embodiment of

Figure 1 and on file server 202 in the embodiment of Figure 2.

Figure 8 depicts a portion of a step sequence contained in a step file before any

software installation and testing steps have been executed. As mentioned earlier, the

step sequence includes commands for installing software and/or for testing the build-

i'

to-order target computer system. Additionally, the step sequence in the step file

allows commands to be repeated for a defined number of iterations or for a defined

length of time. Further, the step file may contain remarks, ignored by the Runstep

program. In the step file, marks 800 are used to separate fields of the step sequence.

Items 810 are commands for testing target computer system 160. The commands

include, for example, a command for testing memory and for testing small computer

system interface (SCSI) devices. As can be seen from the figure, each command may

include switches such as appropriate for the particular testing environment. Item

820 is a remark which is ignored by the Runstep program. Item 810c is a command

which is looped by time. In the preferred construction, the 'begin_timeloop'

instruction designates the starting point of a loop. The 'end_timeloop' instruction

designates the ending point of a loop. The 'begintime loop' instruction is combined

with a field designating the length of time to iterate through the loop. Here, for

example, command 810c is run for one hour and thirty minutes. Item 810dis a

15 command which is looped according to number of iterations. In the preferred

embodiment, the 'beginiterate loop' command instructs the Runstep program that an

iterative loop is to be performed. The 'enditerate_loop' command signals the end of

the looping commands. Here, command 810d is run three times.

As the Runstep program executes the step sequence, the Runstep program

20 places timestamp information into the step file, advantageously allowing easy

troubleshooting and tracking of the software installation and testing process.

Figure 9 shows a portion of the step sequence of Figure 8 after the steps are

executed. As illustrated, the Runstep program inserts timestamp information into the

step sequence. Item 830 shows when the memory test began, and item 832 shows

when that test ended. Item 834 shows when the last iteration of the test began. Items

836 and 838 show when the scsiHD test began and ended, respectively. Item

confirms that the iterative loop was performed three times. Finally, items 842 and

844 show when the last iteration of the scsiCD test began and ended, respectively.

Inserting timestamp information adjacent to the command which was executed

-21-

advantageously allows for efficient troubleshooting and tracking of the software

installation and testing process.

Figure 10 shows the preferred general flow of the Runstep program. Runstep

program 860 is run in a loop with a Runstep batch file 870. Runstep program 860

reads and interprets a step in a step sequence and writes the command to be run from

the step sequence into batch file 870. Batch file 870 is then run, executing the step

upon target computer system 160. Upon completion of a step, control is returned

from the batch file to Runstep program 860 which then reads and interprets the next

line of the step sequence.

Figure 11 shows a more detailed flow of the Runstep program. As illustrated

:in module 900, the Runstep program first checks to see ifa file named Re Run.bat

exists. A Re_Run.bat file is created before any command is executed from a step

sequence and is removed after successful completion of the command. The existence

of Re_Run.bat indicates to the Runstep program in module 900 that the last command

15 run was not successfully completed. Thus Re_Run.bat functions as a start of execution

indication. If ReRun.bat does exist, an operator is asked in module 904 whether or

not the software installation and testing process should continue or whether the

operator prefers instead to perform troubleshooting. If an operator chooses to

*continue, then control passes to execute module 928 where the Runstep.bat file is

S 20 reexecuted. (This condition is the defauld option if neither option is affirmatively

chosen.) If the troubleshooting option is chosen, then troubleshooting is performed as

is well known in the art.

If ReRun.bat does not exist, then the Runstep program determines that the

last command was completed correctly, and control is passed to module 910, where a

line of the step sequence, preferably contained in a step file, is read. The Runstep

program reads the line and determines if there is a beginning or ending timestamp in

module 912. If there is a beginning or ending timestamp, then the Runstep program

determines, in module 914, whether there is only a beginning timestamp for the line

that the Runstep program is reading. If there is only a beginning timestamp, then the

-22-

I

1-

T

Runstep program assumes in module 916 that a software installation or testing step

has just been finished and fills in an ending timestamp ;i module 918. After filling in

the ending timestamp, control is returnea to module 900.

If there is more than just a beginning timestamp for the line that the Runstep

program is reading, the Runstep program determines in module 906 whether there is

both a beginning and an ending timestamp. If so, then the Runstep program assumes

in module 908 that the step has been executed and control is returned to module 900.

If the Runstep program encounters no beginning or ending timestamp in module 912,

then the Runstep program fills in the beginning timestamp in module 920 and

prepares to run the step on the line of the step sequence that the Runstep program is

reading.

"hIn module 922, the Runstep program determines if the command to be run is

stored on a local drive (the step file controls which drive in the system is the local

.drive). The local drive may be, the step disk, a hard drive of the target system, a

RAM drive of the target system, or a network drive If the command is not located on

the local drive, then the Runstep program assumes that the test to be run is contained

on a file server somewhere on a network. The Runstep program determines in module

932 whether the Runstep program is already connected to that network. If not, the

Runstep program, in module 936, embeds a command into Runstep.bat to login to the

20 network. Therefore a network connection is made before Runstep.bat executes the

step on target computer system 160 over network connection 180.

.i Following module 936, control is passed to module 926. If the Runstep

program is already logged into the network the Runstep program, during module 934,

removes commands from Runstep.bat to login to the network, for an additional login

step is unnecessary if a network connection already exists. Control is then passed to

module 926. If the step to be run happens to be on step disk 150, the Runstep

program need not log into the network. Thus, in module 924, the Runstep program

removes commands from Runstep.bat to login to the network. Control is then passed

to module 926. In module 926, the Runstep program embeds the proper command to

-23

be run into Runstep.bat and into Re Run.bat. The command so embedded is taken

from the step sequence, preferably contained in the step file. In module 928, the step

is executed by running Runstep.bat and, if executed successfully, ReRun.bat is

deleted. If the step is not executed successfully, then the ReRun.bat file is not

deleted and control transfers to failure state 929. Control is then returned to module

900 so that another line may be read from the step sequence. This process continues

until all the software installation and testing steps are completed.

Upon execution of the step sequence, the target system is tested and software

is installed. In the embodiment of Figure 1, a select number of tests may be run

directly from step disk 150, but the majority of tests are run from file server 190 over

network connection 180. Running tests from file server 190 advantageously

eliminates limitations imposed by the storage capacities of floppy disks such as step

disk 150.
r

In the embodiment of Figure 2, the steps are run from file server 190 over

network connection 180. A floppy disk, here boot disk 220, is needed only to boot

target computer system 160. Such a system advantageously simplifies the software

installation and testing process.

Turning once again to Figures 1 and 2, arrow 210 depicts that results from the

software installation and testing may be logged back to either file server 190 or to file

server 202. The results preferably include whether all the steps were completed

successfully and what types of failures (if any) were encountered. Logging the results

might include simply saving or writing a modified version of the step file following

the execution of the step sequence, for as discussed above, the step file is timestamped

by the Runstep program. Such a system advantageously allows for improved

troubleshooting capabilities during computer system manufacturing.

While particular embodiments of the present invention have been shown and

described, it will be obvious to those skilled in the art that changes and modifications

may be made without departing from this invention in its broader aspects and,

-24-

C

therefore, the appended claims are to encompass within their scope all such changes

and modifications as fall within the true spirit and scope of this invention.

S

A*

9

,I i

a

i

IAT IS CLAM D rThe claims defining the invention are as follows:

1 1. A method for installing software on a computer system, the method

2 comprising the steps of:

3 reading a plurality of component descriptors from a computer readable file, at

4 least one component descriptor describing a respective component of

the computer system;

6 reading a plurality of steps from a database, a step being associated with a

7 respective component descriptor and including a respective sequence

8 number; and

9 sequencing the plurality of steps in a predetermined order according to the

10 sequence numbers to provide a step sequence, the step sequence

11 including at least one command for installing software upon the

S" 12 computer system.

9

1 2. The method of claim 1, wherein at least one respective component is a

2 hardware component.

1 3. The method of claim 1, wherein at least one respective component is a

2 software component.

I I I

1 4. The method of claim 1, wherein at least one of the plurality of steps is

2 a software installation step.

1 5. The method of claim 1, further comprising creating a plurality of

2 derived objects corresponding to the plurality of component descriptors.

1 6. The method of claim 1, wherein the predetermined order is in

2 accordance with a sequential ordering of the sequence numbers.

-26-

~LC C IB

1 7. The method of claim 1, wherein the plurality of steps further include

2 respective phase numbers and wherein the sequencing the plurality of steps in a

3 predetermined order is further in accordance with the phase numbers.

1 8. The method of claim 1, further comprising preparing environment

2 variables corresponding to the plurality of components.

1 9. The method of claim 1, further comprising writing the step sequence to

2 a non volatile storage media configured to accompany the computer system during

3 manufacture.

1 10. The method of claim 1, further comprising manufacturing the computer

2 system having the plurality of components. i

1 11. A method for sequencing software installation for a target computer

2 system, the method comprising:

3 receiving an order for the target computer system, the target computer system

4 to include a plurality of components;

converting the order into a computer readable file, the file being descriptive of

6 the plurality of components;

oo 7 reading the file;

8 retrieving a plurality of steps from a database according to the file, a step

9 being associated with a respective component and including a

respective sequence number and phase number;

11 sequencing the plurality of steps in a predetermined order in accordance with

12 the respective sequence numbers and phase numbers to provide a step

13 sequence, the step sequence including commands for installing

14 software upon the target computer system during phases of

manufacture, the phases of manufacture corresponding to respective

16 phase numbers.

-27-

I

1 12. The method of claim 11, wherein an error condition is raised if the

2 intermediate set is empty.

1 13. The method of claim 11, finrther comprising preparing environment

2 variables corresponding to the plurality of components.

1 14. The method of claim 11, wherein the step sequence is adapted to

2 provide for commands repeatable for a defined length of time.

1 15. The method of claim 11, wherein the step sequencc is adapted to

2 provide for commands repeatable for a defined number of iterations.

1 16. The method ofeclalim 11, further comprising writing the step sequence

2 to a non volatile storage device configured to accompany the computer system during

3 manufacture.

17. A method for sequencing software installation for a target computer

2 system belonging to a certain family, the method comprising:

3 receiving an order for the target computer system, the target computer system

to include a certain plurality of components including hardware

components and software components;

6 converting the order into a computer reaidable file, the file being descriptive of

007 the certain plurality of components;

*8 reading the file;

9 joining a first database table containing all components belonging to the

certain family with a second database table containing all software

11 installation steps to be run on the certain plurality of components,

12 wherein the joining produces an intermediate set;

13 joining the intermediate set with a third database table containing all software

14 installation steps to be run on the certain family, wherein the joining

is produces a plurality of steps, each step being associated with a

-28-

16 respective component to be included on the target computer system and

17 each step including a respective sequence number and phase number;

is retrieving the plurality of steps; and

19 sequencing the plurality of steps in a predetermined order in accordance with

the respective sequence numbers and phase numbers to provide a step

21 sequence, the step sequence including commands for installing

22 software upon the target computer system during phases of

23 manufacture, the phases of manufacture corresponding to respective

24 phase numbers.

1 18. The .method of claim 17, further comprising preparing environment

2 variables corresponding to the certain plurality of components.

1 19. The method of claim 17, wherein the step sequcnce is adapted to

2 provide for cormmands repeatable for a defined length of time.

1 20. The method of claim 17, wherein the step sequence is adapted to
S44

provide for commands repeatable for a defined number of iterations.

1 21. The method of claim 17, further comprising writing the step scquence

2 to a computer readable text file.

1 22. A method for testing a computer system, the method '.omprising the

2 steps of:
3 reading a plurality of component descriptors from a computer readable file, at

4 least one component descriptor describing a respective component of

the computer system;

6 reading a plurality of steps from a database, a step being associated with a

7 respective component descriptor and including a respetve sequence

8 number; and

29-

-I *---T3-911 I C- l~

9 sequencing the plurality of steps in a predetermined order according to the

sequence numbers to provide a step sequence, the step sequence

11 including at least one command for testing the computer system.

1 23. The method of claim 22, wherein at least one respective component is

2 a hardware component.

1 24. The method of claim 22, wherein at least one respective component is

2 a software component.

1 25. The method of claim 22, wherein at least one of the plurality of steps is

2 a testing step.

1 26. The method of claim 22, further comprising creating a plurality of

2 derived objects corresponding to the plurality of component descriptors.

1 27, The method of claim 22, wherein the predetermined order is in
r 2 accordance with a sequential ordering of the sequence numbers.

1 28. The method of claim 22, wherein the plurality of steps further include

2 respective phase numbers and wherein the sequencing the plurality of steps in a

^3 predetermined order is further in accordance with the phase numbers.

*i 1 29. The method of claim 22, further comprising preparing environment

2 variables corresponding to the plurality of components.

1 30. The method of claim 22, further comprising writing the step sequence

2 to a non volatile storage media configured to accompany the computer system during

3 manufacture.

1 31. The method of claim 22, further comprising testing the computer

2 system having the plurality of components.

c L~ 4- 11 Ipgl I

A

1 32. A Computer system comprising:

2 a processor;

3 a component coupled to the processor; and

4 a memory coupled to the processor, the memory including software installed

thereon, the software being installed by

6 reading a plurality of component descriptors from a computer readable

7 file, at least one component descriptor describing a respective

8 component of the computer system;

9 reading a plurality of steps from a database, a step being associated

with a respective component descriptor and including a
11 respective sequence number; and

I 12 sequencing the plurality of steps in a predetermined order according to

13 the sequence numbers to provide a step sequence, the step

14 sequence including at least one command for installing

15 software upon the computer system.

1 33. The computer system of claim 32, wherein at least one respective

2 component is a hardware component.

1 34. The computer system of claim 32, wherein at least one respective

2 component is a software component.

1 35. The computer system of claim 32, wherein at least one of the plurality

2 of steps is a software installation step.

1 36. The computer system of claim 32, further comprising creating a

2 plurality of derived objects corresponding to the plurality of component descriptors.

1 37. The computer system of claim 32, wherein the predetermined order is

2 in accordance with a sequential ordering of the sequence numbers.

-31-

11--I 1- C~ I

1 38. The computer system of claim 32, wherein the plurality of steps further

2 include respective phase numbers and wherein the sequencing the plurality of steps in

3 a predetermined order is further in accordance with the phase numbers.

1 39. The computer system of claim 32, further comprising preparing

2 environment variables corresponding to the plurality of components.

1 40. The computer system of claim 32, further comprising writing the step

2 sequence to a non volatile storage media configured to accompany the computer

3 system during manufacture.

S1 41. The computer system of claim 32, further comprising a plurality of

2 components.Se

I 1 42. A method for testing a target computer system, the method comprising:

2 receiving an order for the target computer system, the target computer system
3 to include a plurality of components;

1 4 converting the order into a computer readable file, the file being descriptive of

the plurality of components;

S* 6 reading the file;

,7 retrieving a plurality of steps from a database according to the file, a step

8 being associated with a respective component and including a
*u:9 respective sequence number and phase number;

sequencing the plurality of steps in a predetermined order in accordance with

11 the respective sequence numbers and phase numbers to provide a step

12 sequence, the step sequence including commands for testing software

13 upon the target computer system during phases of manufacture, the

14 phases qfmanufacture corresponding to respective phase numbers.

1 43. The method of claim 42, wherein an error condition is raised if the

2 intermediate set is empty,

-32-

r

-33-

44. The method of claim 42, further comprising preparing environment

variables corresponding to the plurality of components.

The method of claim 42, wherein the step sequence is adapted to

a provide for commands repeatable for a defined length of time.

46. The method of claim 42, wherein the step sequence is adapted to

provide for commands repeatable for a defined number of iterations.

47. The method of claim 42, further comprising writing the step sequence

to a non volatile storage device configured to accompany the computer system during

manufacture.

S, substantially as described herein in relation to any one of the embodiments with

reference to Figures 1 and 2.

l.* A

DATED this Second Day of July 1998

Dell USA, L.P.
o 20 Patent Attorneys for the Applicant

SPRUSON FERGUSON

CI J

Amto o ntligadtstn otaefracmue ytm

I

tn.AbtC0)O134 AJS

8

SOFTWARE INSTALLATION AND TESTING FOR A BUILD-TO-ORDER
COMPUTER SYSTEM

ABSTRACT

A method for installing and/or testing software for a build-to-order computer

system includes reading a plurality of component descriptors from a computer readable

file At least one component descriptor (108) describes a respective component of

the computer system. A plurality of steps (102) are retrieved (550) from a database

(100), at least one step (102) being associated with a respective component descriptor

(108). A step (102) also includes a respective sequence number. The plurality of steps

(102) are sequenced (570) in a predetermined order according to the sequence numbers

to provide a step sequence (570). The step sequence (570) includes commands for

installing and/or testing software upon the computer system.

t o
t

o

b i

4.I

9093 9,

MODIFICATION

NETWORK CONNECTION

DATABASE 110
100

STEP~ DISK

r-]150
0.9

S.

09

99.

0.*

S.

9

9 9*

9*

*9

0**
9

9*9

S S

DATABASE SERVER

NETWORV CONNECTIC

195
19(

STEP fIRkER 204
SEQUENCING
PROG RA M

NETWORK CONNECT ION
N

FILE SERVER

INSTALL SOFTWARE,
RUN TESTS

21 0

LOG RESULTS

160

'i
TARGET' S'

FIG. 1

I'M I

2/8

ORD R-_9 2 192

-1-1 96
DESCRIPTOR FILE

202Ge..
0

C.

C.
Ge C

9e

C.
C C

C.

C

Ge
C

CC

GG
C S

C.

CG C
C C

CC C

Ge
C C

CC

CCC)
C

CCC.,.
C

CC C
C.

S.

BOOT DISK

FILE SERVER

M1ODFCATION

1

NETWORK CONNECTION

FILE SERVERP

FIG. 2

3/8

COMPUTER SYSTEM-
ORDER,

COMPUTER FAMIL'1fX
PENTIUM PROCESSOR
2.1 GIGABYTE HARD

oevrE
300

A S

t. 9*

A V.
V

4*

o
S.

V
V

9**t

5
V

BAR FILE
UNIQUE IDENTIFIER

3 60 PROCESSOR PART No OUANTITY DESCRIPTIOh

HARD DRIVE FART No OUANTITYi DESCRIPTION

MONITOR PART No QUANTITY(DESCRIPTION

SY(STEM DESCRIPTOR

UNIQUE IDENTIFI

COMPUTER FAMILY IDENTIFIER

RECORD
ER

370
HARDWARE TAG PROCESSOR DESCRIPflON
KARDWARE TAG HARD DRIVE DESCRIPTION
HARDWAPE TAG MONITOR DESCRIPTION
SOFTWARE TAG SOFTWA2E DESCRIPTION

FIG. 3A FIG. 3B

I

4/8

500

CREATE DERIVED -520
.*IN PUT OBJECT CORRESPON-

DING TO COMPONENTI
DESCRIPTOR I

*42d SEQUENCING 100
PROGRAM 550 RETRIrLVE STEPS

ASSOCIATED WITH- E1O1 AABS
COfPoNENT DAABS

DESCRIPTOR

430 11___
*OUTPUT FILES PRE PARE 560

ENVI RONMIENfT
I VARIABLES

STE SEUEC

STEPA SEQUEXCE

FT. TXT

OUTPUT

FILE. 58

5/8

DATABASE DESIGN
108

COMIPONENT

COtIP ID TGE

NAME DESO TRN

INTEGER

STRING

o

e a
a.

a a
a,

a..
a

a..

a

C a*
aa a

a a.
0*a*

a a
a

.a
.3

aP

laa

CLASS 10 INTEGER

112)

I VS~ Comp
SlYSID

complo

S~ ID INTEGER

CQ ID INTEGER

I:N

114

COMP SNTEPE

STEPIO INTEGER

(102

STE P
STEP ID INTEGER
PHASE INTEGER
NAME STRING
CMo STRING
AFTER CODE5 INTEGER
MAX INSTANCE INTEGER
CLASS I D INTEGER

Complo INTEGER

106

104 1N

ISYS FAMIILY1

VSID

NNME

S'f iD INTEGER

NAM STRING

FIG. 6

6/8

SYSTEM DESCRIPTOR-^ 600

RECORD

APPLY(PATCHE5 1!
TO SYSTEM

DESCRIPTOR 610
RECORD

1t

DETERMINE A
STEP SEQUENCE 6
FOR THE

o6 v

COMPUTER SYSTEM

APPLY PATCHES"TO STEP 630

SEQUENCE

p

6

WRITE STEP
SSEQUENCE TO 640

STEP FILE

FIG. 7

i

1

rr 1

CI~S;qJ

7/8

800 EHTEST o

810b SSITEST- a-b
bBEGINT MELOOPI:30:00

SCSI 1D
END TIME LOOP
BEGINITERATELOOP-3

820 END ITERATE LOOP

4# REMARKS...

810C

I

4

0
0 00

.4.
i. 4

S

Sr

S.
46

-0 9.

FIG. 8
830

836 (832
(838

834\

-07(25197 12:00:00- 07125197112:30 ',-MENTEM-O
1-07125197 12 30:00-07/25197 I 2:32,'0-SCSITiS-al
BEGIN TiME LOOP- 1 '30 00 -07128197 13:57:00
-075197I3:5700- 07125197 14(:02 :0O-SCSINID
END ITlE LOOP
BEGIN ITERATE LOOP-3-LOOP COUNT 3
-07125197 1l4i6:00-07I25/7 IL :23-:O0-SCSICD
END ITERATE LOP

842

FIG. 9 8AT

RUN SIER EXE

RU)NSTER StAT

870 -C

840

FIG.

900 8/8

RE RUN, SAT ROOFE I
EXISTS OSE

(9 94 912 920

CONTINUE 2E3 HtOFL NTH
OR PERFORM lENIN P-N E~'$U

ITROUBEI WSTAMP ITIrIESTAMP

906 IE5914 YE 922 92936
2~)rs4FN BE GNG

ENDING TIETp COMMAND LOGGED 09 EME
TIMESTAM P. NL O? NO To SERVE? NOLG6CHTIET ONFLOPPY rO sMSrEP BAT

*YS916 (ES924 YEtS 934
:4::ASSUME SitP ASSUME STEP RMNS tOV

HAS HAS JUST COMMANDS R-MV
IST FR OMADEXECUTED FIIHDRUNS1ERBAT ROMTE.

44.908 YES 918 NETWORK TO LOGIN TO

FILL IN COM AND S
49 ENDNTO

I RUNSTER BAT

S.Y..

#9090

/-92

4*UT

FIG. 11

