UK Patent Application .,GB ,2593485

(13)A

(43)Date of A Publication 29.09.2021
(21) Application No: 2004257.8 (51) INT CL:
GO6F 12/14 (2006.01) GO6F 21/57 (2013.01)
(22) Date of Filing: 24.03.2020

(71) Applicant(s):
ARM Limited
(Incorporated in the United Kingdom)
110 Fulbourn Road, Cambridge, Cambridgeshire,
CB1 9NJ, United Kingdom

(72) Inventor(s):
Jason Parker
Yuval Elad

(74) Agent and/or Address for Service:

D Young & Co LLP
120 Holborn, LONDON, EC1N 2DY, United Kingdom

(56) Documents Cited:
US 20190042324 A1
US 20130283017 A1
US 20040158727 A1
ARM, "isolation using virtualization in the Secure
world"”, 2018

US 20140380425 A1
US 20050268095 A1

(58) Field of Search:

INT CL GO6F
Other: WPI, EPODOC, INTERNET

(54) Title of the Invention: Apparatus and method using plurality of physical address spaces
Abstract Title: Trust execution environment with root domain with own physical address space

(57) A trust execution environment where domains are associated with Physical Address Spaces (PASs) and include a
root domain for managing switching between the domains. The root domain has its own separate PAS. A root
domain page table entry may include protection bits that provide memory protection allowing to select PAS of the
other domains. In this way, the accessibility of the other domains may be based on accessibility permissions set by
the root domain (see table, p.33). The PAS may be selected based on a domain of operation (e.g. secure, non-
secure, realm or root). Transactions remain tagged with a PAS TAG as they propagate throughout the system 24, 8
until they read a Point of Physical Aliasing (PoPA) 60 at a completer side of the system (see fig 3). At the PoPA, the
PAS TAG is stripped and the address changes from a Logical Physical Address to a System Physical Address.

86 84
: Realm %8 s o Non-Secure ’/ ; Secure 30
f42 T ¥ P30 ot 30 N “///.}
E < i i o N E T T //38
ELO LR Aop [Ao RO Aep) VTR TA 07
ﬂ ; a4 R1 = ; R ' 5
| i H N8 Kar H o Soure
EL 46 “WooSKemel |3} OSkemel | ' T0S Satiion
80y . OEM i S 5 e |
EL2 Boot |1 } RMM L/}/ . Hypervisor H SPM !/40
._“w,-____i_,ugﬂ. e —— A /L. o o —— o — — — — — — -
EL3| BL1 f—=] BL2 [/ Monitor . | Root
increasing i Boot time E 32 34 Fun fime 29 b§2
priviiege !
FIG. 2

V G8YE6SC €9

1/13

4
N
requester device 12
10 £
& registers
L : —1 14
processing circuitry current domain
currentEL
15
VA, Domain ID
18 2
¥ y] e
16~] address translation
circuitry LB
lockup
caches
PA, PAS 22 T couldbe
20 y granule protection combined
~)
PAS filter information cache 4
| PA PAS . z
other
24 requester
N cachels) ! device(s)
¥ ¥
8~ inferconnect
, PoPA PoPA
60 60
completer |6 6~J completer
device device

FIG. 1

¢ Ol

NN - 67 SR Uny pe ¢ > a aunioog
100y) JOHLOY| /) < 718 j=—] 118
ot ettt ety = S
- O NS M 1081A180AH ; WA e
N == E = LD
uonile ! L A) :
anoog ||| S0L |1 || ewenso | mmgw O Thopy O
P 0 i = - “ m
DL] v |) ddy Frod) aoy | day || |ow |
wm\\ “m\\\ i wr L* b LY m r/x m
0c ainoss w/ om\ amosg-toy O€! wmm wesy ¢V
v8 a8

£

AE

absiaud
fuisesloul

J:

1

3/13

ajde| LONOSI0Id
9¢ | 9{nuRLC) ﬂm ﬁm
, _
se h mmw_\mﬂn] mwm,m
——) ayoen- ¥d 151 | L ebel
TR o9 zg L2 T T | |
w 0z | ¥G ﬂ
W auice] WelsAs A gewmo S ww
¢ % P ; A i A - !
W VLSV owep Ainoeg
....... o ejnuely |, SleS
N Aunoeg ™1
SIXSIU0D AInoss B -
Bunasias 1o; pue Buibbe;) H Ngy

~aY380 J0] PsSh O] SYd

4/13

¥ Old

1004 58 Wiesy se cse ON S
pafife nabbe; pabfe) nabifie;
SO5S800B $OSSO008 9ASSeNoR $95Se00e

W L9 ,w 19 @ L9 w L9

A < <

B e BN N NN

s = = N uonesuel
mmx\ 3581DD8 JC)
Svd pasn 3 U
v 100 / UOIRWIOLU JO/pUR
LIBLIOD JUBLND
{vdog) Buiseyy i Xyd = Uo paseq
mmg_w\fa\ i0 Eaamm pelosias Svd
ssalppe eashyd €8+ m& |
alues o) paddew ¥ Wiesy £9
sgoeds sseippe »
“mua_%n JUBIBLD L N NN Xod | e NN Joneisues
WoJj s8ssalppe / ssaippe ui
ipaishyd Buiseg I Sy / 1IN0 Sy
/ / BInaes / 10 abue;
9y i _
¥ e \ 444%0
cg-1 Xyd - XYd \A«wo! Xvd
Yd i
§9- 09 aimog | 0291
/ "UON L joxo
{
ad-1s0d e ————— . ’
mum%Mmmmmm eaishyd e 'Syl siusuodwod walsAs AiowsLl yd0-aud 9
(aiBNp Mm,ﬂ A aﬂ_um_t% AQ pameiA S8 80BdS sSRIppe BaISAYd
EE&% \ SO0ETS SS8IpPE [BoISAUT JO DUSeNE

¢ 10 LC

5/13

SYd UoBs Loy
858298 84 0}
DBMOJE 8J8 Sy
QUSMPIRY BAIOBLS
10 suonod yaIym
S8uyep 149

|

LR B J

wiesy

SN

8In%eg

(SN yum paueys)
wesy

100y
SN
8iN08g
SN
e

80Bds
sseippe poisiud g

wasks

G Olid

L9

¢

DA

\

Svd

100y

Svd
Wwieay

BINOOS-UON
ylim paieys se uoibe.
SIY) pesiew sey wipay
SNRISY BIISSA00E =

L9

/

L9

b
.
[

Ead
<>

\
N\

A\

NN 040

Svd
2IN08g

Svd
8IN99G-UON
4

%
Sa0eds $S2IpPR |RoIsALd |RInaBLIYDIR

6/13

determining
current domain

100~] current exception

level is EL37
Y N 104
¥ ¥ /
102~ current domain current domain
= Root = one of Non-Secure,

Secure and Realm
indicated by Domain
indicating bits in
control register

FIG. 6

Page fable enfry formats:
122 124 112
'}' bi ”i /E Q \m !’j i i'/' i //‘
anie Attributes | NST 1 Pointer to next level PT

description:
- (for domains other than NS}

122 126 120
) e 114~ 7 7 y;
Root block/page o . PAS ;
descriptor Attributes select Output address

\. at least 2 bits selecting
between (Root, Realm, S, NS)

1 ?2 1 /26 "E%G
Realm/Secure 116 7 7 7
block/page e Altributes S{;@%{ Output address
descript '
ST N atleast 1 bit selecting between
Realm/NS {for Realm)
SINS (for Secure)
@;22 "E%G

NS blockipage LN

4 7
descriptor Attributes Output address

FIG. 7

713

Non-Secure

136

130~ memory access request received
specifying VA
132~ franslate VA {-—IPA—) PA
using page table entries
134
R o
oot current domain?
Realm Secure
142 140 138

y y y

select output PAS select output select output
based on PAS based on PAS based on
PAS selection PAS selection PAS selection
information in information in information in

Root block/page block/page block/page

descriptor PTE, descriptor PTE, descriptor PTE,
output PAS = output PAS output PAS
any of Root, Realm, = gne of = one of
Secure, Non-Secure Realm, Secure,

Non-Secure Non-Secure

output
PAS

Non-Secure

FIG. 8

8/13

154
152 aftributes
N f *
GPTIPA] | Assigned PAS | Sharing attibute information Pﬁ%@g&@h\
™~ N
1 {(; 156 158
5
FIG. S
filter receives memory access
17071 request specifying PA, output PAS
¥
172 1 obtain GPT [PA]
174 .
N output PAS =
y | Assigned FAS?
¥ N
¥
Output PAS indicated
. in sharing atiribute /‘1 78
y | information as allowed
to access PA?
¥ N
¥
_ Pass-through indicator | 180
176 - Y 1 specified in GPT [PA]?
N
allow memory { N
taécgis;a;egeudei block memory access request, | 182
$ and/or interconnect signal faul
specifying PA, PAS

FIG. 10

9/13

8BS
Anaeg

LL "Old

B8l Svd vd

)

o

el 1dD (18111 S} %o8yD) LoRoslold sjnuels)

8N+
SN+ Vd

AN
| obei

VA

€1

&

AR
, abelg

YA

R L R R R I T L

¢

SN+ Yd

NI 7 8Beig

NN
L obeig

A

{SN+) vdl

NN
, abejg

YA

e

~ 02

91

204
N

reject/

exception |~

10/13

PE executes 53 lookup
cache invalidate
instruction specifying PA

¥

~200

N menteL=EL37 1202

Y

1]

issue lookup § invalidation command
specifying PA to any GPT caches
or combined TLB/GPT caches

206

¥

GPT caches/combined TLB/GPT caches
invalidate any entries dependent on

granule protection information from
GPTIPA]

208

FIG. 12

11/13

cache - invalidate - to - PoPAinstruction | 220
executed (VA)

¥

4

translate

VA — PA

222

%

4

issue invalidation commands specifying PA | -224

to any pre-PoPA caches

%

4

{if instruction is clean & invalidate instruction,
pre-PoPA caches receiving command
write back dirty data from
entries associated with PAto
post-PoPA location)

226

P
30

L

g

pre-PoPA caches invalidate 998
entries associated with PA 7
{regardless of PAS tag)

FIG

.13

12/13

amm 09¢ vl 9l
Aowsu | Aicusul AoWRW i
Y joiuco cst % dipro | OP® dpro | OPE dipyo - OFE
J ol - i
Bngagaesay/iomog \ b/ € | aidagrioy By] -9 ey | -9 i | -9
0g¢ TR fiowiay Riouiayy Riowspy
T — wzm mmf 8Inosg E\:N@m 09 09
8 ¥dOd
fessuclisg TR ln\.H o0 “M&wmmm 09/ Oﬂ m M}V\ oo
B SY T yuewop ooy \. = m - 0¢E : 0z 8I¢
. S uEsy | \ P2~ 8Ue) PCE~] °Ye) PCo~] S4ED JS § § 10888004
\\\ = m = . | weyshs Wwajshs weists | T Svd 1 jonuon
: 2 SYd
ole wn%} c%wm_ L 9E %_migm_m. 3 m m,ili.ll \\\.\L
- Ja) doou SU0aIa) [810] g sseooy
198UOIBI] UBIBYOn-LON / S ol mﬁ%w\ e m\\\\\m\ lllllJ 9@ inepg
: A ‘
9 0Ze auuoaia uaeyey | 02 @% Le
g
_ m |
PE
0z~ LS
s | ~04E
e 0] [s A
aopepod] | | M0 4
pLe 485

13/13

target code 400
410
N
imuf
412 simulator code 413
N\ /
processing program register emulating
logic program logic
414 M\\ current domain
= 151
address translation S~ current FL
program logic

416 415
™ >
filtering program address space
logic mapping program logic
host 05
420"
host hardware

430~

FIG. 15

10

15

20

25

30

35

APPARATUS AND METHOD USING PLURALITY OF PHYSICAL ADDRESS SPACES

The present technique relates to the field of data processing.

A data processing system may have address translation circuitry to translate a virtual
address of memory access request to a physical address corresponding to a location to be
accessed in a memory system.

At least some examples provide an apparatus comprising: processing circuitry to
perform processing in one of at least three domains; and address translation circuitry to
translate a virtual address of a memory access performed from a current domain to a
physical address in one of a plurality of physical address spaces selected based at least on
the current domain; in which: the at least three domains include a root domain for managing
switching between a plurality of other domains of the at least three domains; and the plurality
of physical address spaces include a root physical address space associated with the root
domain, separate from physical address spaces associated with the plurality of other
domains.

At least some examples provide a data processing method comprising: performing
processing in one of at least three domains; and translating a virtual address of a memory
access performed from a current domain to a physical address in one of a plurality of
physical address spaces selected based at least on the current domain; in which: the at least
three domains include a root domain for managing switching between a plurality of other
domains of the at least three domains; and the plurality of physical address spaces include a
root physical address space associated with the root domain, separate from physical
address spaces associated with the plurality of other domains.

At least some examples provide a computer program for controlling a host data
processing apparatus to provide an instruction execution environment for execution of target
code; the computer program comprising: processing program logic to simulate processing of
the target code in one of at least three domains; and address translation program logic to
translate a virtual address of a memory access performed from a current domain to a
physical address in one of a plurality of simulated physical address spaces selected based
at least on the current domain; in which: the at least three domains include a root domain for
managing switching between a plurality of other domains of the at least three domains; and
the plurality of simulated physical address spaces include a root simulated physical address
space associated with the root domain, separate from simulated physical address spaces
associated with the plurality of other domains.

At least some examples provide a computer-readable storage medium storing the
computer program described above. The computer-readable storage medium may be a non-

transitory storage medium or a transitory storage medium.

10

15

20

25

30

35

Further aspects, features and advantages of the present technique will be apparent
from the following description of examples, which is to be read in conjunction with the
accompanying drawings, in which:

Figure 1 illustrates an example of a data processing apparatus;

Figure 2 illustrates a number of domains in which processing circuitry can operate;

Figure 3 illustrates an example of a processing system supporting granule protection
lookups;

Figure 4 schematically illustrates aliasing of a number of physical address spaces
onto a system physical address space identifying locations in the memory system;

Figure 5 illustrates an example of partitioning the effective hardware physical address
space so that different architectural physical address spaces have access to respective
portions of the system physical address space;

Figure 6 is a flow diagram illustrating a method of determining the current domain of
operation of the processing circuitry;

Figure 7 shows examples of page table entry formats for page table entries used for
translating virtual addresses to physical addresses;

Figure 8 is a flow diagram showing a method of selecting a physical address space
to be accessed by a given memory access request;

Figure 9 illustrates an example of an entry of a granule protection table for providing
granule protection information indicating which physical address spaces are allowed to
access a given physical address;

Figure 10 is a flow diagram showing a method of performing a granule protection
lookup;

Figure 11 illustrates a number of stages of address translation and granule protection
information filtering;

Figure 12 is a flow diagram illustrating processing of a cache invalidation instruction;

Figure 13 is a flow diagram illustrating processing of a cache-invalidate-to-PoPA
(point of physical aliasing) instruction;

Figure 14 illustrates an example of a data processing system; and

Figure 15 shows a simulator example that may be used.

Controlling Access to Physical Address Spaces

Data processing systems may support use of virtual memory, where address
translation circuitry is provided to translate a virtual address specified by a memory access
request into a physical address associated with a location in a memory system to be
accessed. The mappings between virtual addresses and physical addresses may be
defined in one or more page table structures. The page table entries within the page table

structures could also define some access permission information which may control whether

10

15

20

25

30

35

a given software process executing on the processing circuitry is allowed to access a
particular virtual address.

In some processing systems, all virtual addresses may be mapped by the address
translation circuitry onto a single physical address space which is used by the memory
system to identify locations in memory to be accessed. In such a system, control over
whether a particular software process can access a particular address is provided solely
based on the page table structures used to provide the virtual-to-physical address translation
mappings. However, such page table structures may typically be defined by an operating
system and/or a hypervisor. If the operating system or the hypervisor is compromised then
this may cause a security leak where sensitive information may become accessible to an
attacker.

Therefore, for some systems where there is a need for certain processes to execute
securely in isolation from other processes, the system may support operation in a number of
domains and a number of distinct physical address spaces may be supported, where for at
least some components of the memory system, memory access requests whose virtual
addresses are translated into physical addresses in different physical address spaces are
treated as if they were accessing completely separate addresses in memory, even if the
physical addresses in the respective physical address spaces actually correspond to the
same location in memory. By isolating accesses from different domains of operation of the
processing circuitry into respective distinct physical address spaces as viewed for some
memory system components, this can provide a stronger security guarantee which does not
rely on the page table permission information set by an operating system or hypervisor.

The processing circuitry may support processing in a root domain which is
responsible for managing switching between other domains in which the processing circuitry
can operate. By providing a dedicated root domain for controlling the switching, this can
help to maintain security by limiting the extent to which code executing in one domain can
trigger a switch to another domain. For example the root domain may perform various
security checks when a switch of domain is requested.

Hence, the processing circuitry may support processing being performed in one of at
least three domains: the root domain, and at least two other domains. Address translation
circuitry may translate a virtual address of a memory access performed from a current
domain to a physical address in one of the plurality of physical address spaces selected
based at least on the current domain.

In the examples described below, the plurality of physical address spaces include a
root physical address space which is associated with the root domain, separate from
physical address spaces associated with the other domains. Hence, rather than using one

of the physical address spaces associated with one of the other domains, the root domain

10

15

20

25

30

35

has its own physical address space allocated to it. By providing a dedicated root physical
address space isolated from physical address spaces associated with the other domains,
this can provide a stronger guarantee of security for the data or code associated with the
root domain, which may be regarded as the most critical for security given that it will manage
entry into other domains. Also, the provision of a dedicated root physical address space
distinguished from the physical address spaces of other domains can simplify system
development because it may simplify allocation of physical addresses within the respective
physical address spaces to particular units of hardware memory storage. For example, by
identifying a separate root physical address space it can be simpler for the data or program
code associated with the root domain to be preferentially stored in a protected memory on-
chip rather than in a less secure off-chip memory, with less overhead in determining the
portions associated with the root domain than if the root domain’s code or data was stored in
a common address space shared with another domain.

The root physical address space may be exclusively accessible from the root
domain. Hence, when the processing circuitry is operating in one of the other domains, the
processing circuitry may not be able to access the root physical address space. This
improves security by ensuring that code executing in one of the other domains cannot
tamper with data or program code relied upon by the root domain for managing switching
between domains or for controlling what rights the processing circuitry has when in one of
the other domains.

On the other hand, all of the plurality of physical address spaces may be accessible
from the root domain. As the code executing in the root domain has to be trusted by any
party providing code operating in one of the other domains, as the root domain code will be
responsible for the switching into that particular domain in which that party’s code is
executing, then inherently the root domain can be trusted to access any of the physical
address spaces. Making all of the physical address spaces accessible from the root domain
allows to perform functions such as transitioning memory regions into and out of the domain,
copying code and data into a domain e.g. during boot, and providing services to that domain.

The address translation circuitry may restrict which physical address spaces are
accessible depending on the current domain. When a particular physical address space is
accessible to the current domain, this means that it is possible for the address translation
circuitry to translate a virtual address specified for a memory access issued from the current
domain into a physical address in that particular physical address space. This does not
necessarily imply that the memory access would be allowed, as even if a particular memory
access can have its virtual address translated into a physical address of a particular physical
address space, there may be further checks performed to determine whether that physical

address is actually allowed to be accessed within that particular physical address space.

10

15

20

25

30

35

This is discussed further below with reference to granule protection information which
defines the partitioning of the physical addresses between respective physical address
spaces. Nevertheless, by restricting which subset of physical address spaces are accessible
to the current domain, this can provide stronger guarantees of security.

In some examples the processing circuitry may support two additional domains, in
addition to the root domain. For example, the other domains may comprise a secure domain
associated with a secure physical address space and a less secure domain associated with
a less secure physical address space. The less secure physical address space may be
accessible from each of the less secure domain, the secure domain and the root domain.
The secure physical address space may be accessible from the secure domain and the root
domain but may be inaccessible from the less secure domain. The root domain can be
accessible to the root domain but may be inaccessible to the less secure domain and the
secure domain. Hence, this allows code executing in the secure domain to have its code or
data protected from access by code operating in the less secure domain with stronger
security guarantees than if page tables were used as the sole security controlling
mechanism. For example, portions of code which require stronger security can be executed
in the secure domain managed by a trusted operating system distinct from a non-secure
operating system operating in the less secure domain. An example of a system supporting
such secure and less secure domains may be processing systems operating according to a
processing architecture which supports the TrustZone® architecture feature provided by
Arm® Limited of Cambridge, UK. In conventional TrustZone® implementations the monitor
code for managing switching between secure and less secure domains uses the same
secure physical address space that is used by the secure domain. In contrast, by providing
a root domain for managing switching of other domains and assigning a dedicated root
physical address space for use by the root domain as described above, this helps to improve
security and simplify system development.

However, in other examples, the other domains could include further domains, for
example at least three other domains in addition to the root domain. These domains could
include the secure domain and the less secure domain discussed above, but may also
include at least one further domain associated with a further physical address space. The
less secure physical address space may also be accessible from the further domain, while
the further physical address space may be accessible from the further domain and the root
domain but may be inaccessible from the less secure domain. Hence, similar to the secure
domain, the further domain may be considered more secure than the less secure domain
and allow further partitioning of code into respective worlds associated with distinct physical

address spaces to limit their interaction.

10

15

20

25

30

35

In some examples the respective domains may have a hierarchy so that they are
associated with increasing levels of privilege as the system ascends from the less secure
domain, through the secure and further domains to the root domain, with the further domain
being considered more privileged than the secure domain and so having access to the
secure physical address space.

However, increasingly there is a desire for a software provider to be provided with a
secure computing environment which limits the need to trust other software providers
associated with other software executing on the same hardware platform. For example,
there may be a number of uses in fields such as mobile payment and banking, enforcement
of anti-cheating or piracy mechanisms in computer gaming, security enhancements for
operating system platforms, secure virtual machine hosting in a cloud system, confidential
computing, etc., where a party providing software code may not be willing to trust the party
providing an operating system or hypervisor (components which might previously have been
considered trusted). In a system supporting secure and less secure domains with respective
physical address spaces, such as systems based on the TrustZone® architecture described
above, with the increasing take-up of secure components operating in a secure domain, the
set of software typically operating in the secure domain has grown to include a number of
pieces of software which may be provided from a different number of software providers,
including parties such as an original equipment manufacturer (OEM) who assembles a
processing device (such as a mobile phone) from components including a silicon integrated
circuit chip provided by a particular silicon provider, an operating system vendor (OSV) who
provides the operating system running on the device, and a cloud platform operator (or cloud
host) who maintains a server farm providing server space for hosting virtual machines on the
cloud. Hence, if the domains were implemented in a strict order of increasing privilege, then
there may be a problem because an application provider providing application-level code
which wishes to be provided with a secure computing environment may not wish to trust a
party (such as the OSV, OEM or cloud host) who might traditionally have provided software
executing the secure domain, but equally the parties providing the code operating in a
secure domain are unlikely to wish to trust application providers to provide code operating at
a higher privilege domain which is given access to data associated with less privileged
domains. Therefore, it is recognised that a strict hierarchy of domains of successively
increasing privilege may not be appropriate.

Hence, in the more detailed examples below, the further domain may be considered
to be orthogonal to the secure domain. VWhile the further domain and the secure domain can
each access the less secure physical address space, the further physical address space
associated with the further domain is inaccessible from the secure domain, while the secure

physical address space associated with the secure domain is inaccessible from the further

10

15

20

25

30

35

domain. The root domain can still access the physical address spaces associated with both
the secure domain and the further domain.

Hence, with this model the further domain (an example of which is the realm domain
described in the examples below) and the secure domain have no dependencies upon each
other and so do not need to trust each other. The secure domain and the further domain
only need to trust the root domain, which is inherently trusted as it is managing the entry into
the other domains.

While the examples below describe a single instance of the further domain (realm
domain), it will be appreciated that the principle of a further domain orthogonal to the secure
domain can be extended to provide multiple further domains so that each of the secure
domain and at least two further domains can access the less secure physical address space,
cannot access the root physical address space, and cannot access the physical address
spaces associated with each other.

The less secure physical address space may be accessible from all of the domains
supported by the processing circuitry. This is useful because it facilitates sharing of data or
program code between software executing in different domains. If a particular item of data
or code is to be accessible in different domains, then it can be allocated to the less secure
physical address space so that it can be accessed from any of the domains.

When translating a virtual address to a physical address, the address translation
circuitry may perform the translation based on at least one page table entry. At least when
the current domain is one of a subset of the at least three domains supported by the
processing circuitry, the address translation circuitry may select which of the physical
address spaces is to be used as the physical address space into which the physical address
is translated for a given memory access, based on the current domain and physical address
space selection information specified in the at least one page table entry used for the
translation of the virtual address to the physical address. Hence, information defined within
the page table structure may influence which physical address space is selected for a given
memory access when issued from the current domain. For some domains, this selection
based on physical address space selection information specified in the page table entry may
not be necessary. For example, if the current domain is the less secure domain described
above, then as all the other address spaces may be inaccessible to the less secure domain,
the less secure physical address space may be selected regardless of any information
specified in the at least one page table entry used for the address translation.

However for other domains, it is possible for that domain to select between two or
more different physical address spaces. Hence, for these domains it can be useful to define
information in a page table entry for a given block of addresses indicating which physical

address space should be used for that access, so that different parts of the virtual address

10

15

20

25

30

35

space seen by a given piece of software can be mapped onto different physical addresses.

For example when the current domain is the root domain, the address translation
circuitry may translate the virtual address to the physical address based on a root-domain
page table entry for which the physical address space selection information comprises at
least two bits of physical address space selection information for selecting between at least
three physical address spaces accessible from the root domain. For example, in an
implementation supporting the root domain, less secure domain and secure domain, the
physical address space selection information in the root-domain page table entry could
select between any of these three physical address spaces. In an implementation also
having at least one further domain, the physical address space selection information may
select between any of the root physical address space, secure physical address space, less
secure physical address space and at least one further physical address space.

On the other hand, when the current domain is the secure domain or the further
domain, the choice of physical address spaces may be more restricted and so fewer bits of
physical address space selection information may be needed compared to the root domain.
For example, in the secure domain the physical address space selection information may
select between the secure address space and the less secure address space (as the root
physical address space and further physical address space may be inaccessible). When the
current domain is the further domain, the physical address space selection information may
be used to select between the further physical address space and the less secure physical
address space, as the secure physical address space and the root physical address space
may be inaccessible. For page table entries used to select the physical address space to be
used when the current domain is the secure domain or the further domain, the physical
address space selection indicator used to make this selection may be encoded at a same
position within the at least one page table entry regardless of whether the current domain is
the secure domain or the further domain. This makes encoding of the page table entries
more efficient and allows hardware for interpreting that portion of page table entries to be
reused for both secure and further domains, reducing circuit area.

The memory system may include a point of physical aliasing (PoPA), which is a point
at which aliasing physical addresses from different physical address spaces which
correspond to the same memory system resource are mapped to a single physical address
uniquely identifying that memory system resource. The memory system may include at least
one pre-PoPA memory system component which is provided upstream of the PoPA, which
treats the aliasing physical addresses as if they correspond to different memory system
resources.

For example, the at least one pre-PoPA memory system component could include a

cache or translation lookaside buffer which may cache data, program code or address

10

15

20

25

30

35

translation information for the aliasing physical addresses in separate entries, so that if the
same memory system resource is requested to be accessed from different physical address
spaces, then the accesses will cause separate cache or TLB entries to be allocated. Also,
the pre-PoPA memory system component could include coherency control circuitry, such as
a coherent interconnect, snoop filter, or other mechanism for maintaining coherency
between cached information at respective master devices. The coherency control circuitry
could assign separate coherency states to the respective aliasing physical addresses in
different physical address spaces. Hence, the aliasing physical addresses are treated as
separate addresses for the purpose of maintaining coherency even if they do actually
correspond to the same underlying memory system resource. Although on the face of it,
tracking coherency separately for the aliasing physical addresses could appear to cause a
problem of loss of coherency, in practice this is not a problem because if processes
operating in different domains are really intended to share access to a particular memory
system resource then they can use the less secure physical address space to access that
resource (or use the restrictive sharing feature described below to access the resource using
one of the other physical address spaces). Another example of a pre-PoPA memory system
component may be a memory protection engine which is provided for protecting data saved
to off-chip memory against loss of confidentiality and/or tampering. Such a memory
protection engine could, for example, separately encrypt data associated with a particular
memory system resource with different encryption keys depending on which physical
address space the resource is accessed from, effectively treating the aliasing physical
addresses as if they were corresponding to different memory system resources (e.g. an
encryption scheme which makes the encryption dependent on the address may be used,
and the physical address space identifier may be considered to be part of the address for
this purpose).

Regardless of the form of the pre-PoPA memory system component, it can be useful
for such a PoPA memory system component to treat the aliasing physical addresses as if
they correspond to different memory system resources, as this provides hardware-enforced
isolation between the accesses issued to different physical address spaces so that
information associated with one domain cannot be leaked to another domain by features
such as cache timing side channels or side channels involving changes of coherency
triggered by the coherency control circuitry.

It may be possible, in some implementations, for the aliasing physical addresses in
the different physical address spaces to be represented using different numeric physical
address values for the respective different physical address spaces. This approach may
require a mapping table to determine at the PoPA which of the different physical address

values correspond to the same memory system resource. However, this overhead of

10

15

20

25

30

35

10

maintaining the mapping table may be considered unnecessary, and so in some
implementations it may be simpler if the aliasing physical addresses comprise physical
addresses which are represented using the same numeric physical address value in each of
the different physical address spaces. If this approach is taken then, at the point of physical
aliasing, it can be sufficient simply to discard the physical address space identifier which
identifies which physical address space is accessed using a memory access, and then to
provide the remaining physical address bits downstream as a de-aliased physical address.

Hence, in addition to the pre-PoPA memory system component, the memory system
may also include a POPA memory system component configured to de-alias the plurality of
aliasing physical addresses to obtain a de-aliased physical address to be provided to at least
one downstream memory system component. The PoOPA memory system component could
be a device accessing a mapping table to find the dealiased address corresponding to the
aliasing address in a particular address space, as described above. However, the PoOPA
component could also simply be a location within the memory system where the physical
address tag associated with a given memory access is discarded so that the physical
address provided downstream uniquely identifies a corresponding memory system resource
regardless of which physical address space this was provided from. Alternatively, in some
cases the POPA memory system component may still provide the physical address space
tag to the at least one downstream memory system component (e.g. for the purpose of
enabling completer-side filtering as discussed further below), but the PoOPA may mark the
point within the memory system beyond which downstream memory system components no
longer treat the aliasing physical addresses as different memory system resources, but
consider each of the aliasing physical addresses to map the same memory system resource.
For example, if a memory controller or a hardware memory storage device downstream of
the PoPA receives the physical address tag and a physical address for a given memory
access request, then if that physical address corresponds to the same physical address as a
previously seen transaction, then any hazard checking or performance improvements
performed for respective transactions accessing the same physical address (such as
merging accesses to the same address) may be applied even if the respective transactions
specified different physical address space tags. In contrast, for a memory system
component upstream of the PoPA, such hazard checking or performance improving steps
taken for transactions accessing the same physical address may not be invoked if these
transactions specify the same physical address in different physical address spaces.

As mentioned above, the at least one pre-PoPA memory system component may
include at least one pre-PoPA cache. This could be a data cache, an instruction cache or a

unified level 2, level 3 or system cache.

10

15

20

25

30

35

1"

The processing circuitry may support a cache-invalidate-to-PoPA instruction which
specifies a target address (which could be a virtual address or a physical address). In
response to the cache-invalidate-to-PoPA instruction, the processing circuitry may issue at
least one invalidation command to request that at least one pre-PoPA cache invalidates one
or more entries associated with the target physical address value which corresponds to the
target address. In contrast, when the at least one invalidation command is issued, at least
one post-PoPA cache located downstream of the POPA may be allowed to retain one or
more entries associated with the target physical address value. For the at least one pre-
PoPA cache, the cache may invalidate the one or more entries associated with the target
physical address value specified by the at least one invalidation command, regardless of
which of the physical address spaces is associated with those entries. Therefore, even if
physical addresses having the same address value in different physical address spaces are
treated as if they represent different physical addresses by the pre-PoPA caches, for the
purpose of handling invalidations triggered by the cache-invalidate-to-PoPA instruction, the
physical address space identifier may be ignored.

Hence, a form of cache invalidation instruction can be defined which enables the
processing circuitry to request that any cached entries associated with a particular physical
address corresponding to a target virtual address are invalidated in any caches up to the
point of physical aliasing. This form of invalidation instruction may differ from other types of
invalidation instruction which may request invalidations of cached entries which affect
caches up to other points of the memory system, such as up to the point of coherency (a
point at which all observers (e.g. processor cores, direct memory access engines, etc.) are
guaranteed to see the same copy of data associated with a given address). Providing a
dedicated form of instruction which requests invalidations up to the point of physical aliasing
can be useful, especially for the root domain code which may manage changes of address
allocation to the respective domains. For example, when updating granule protection
information which defines which physical addresses are accessible within a given physical
address space, or when reallocating a particular block of physical addresses to a different
physical address space, the root domain code can use the cache-invalidate-to-PoPA
instruction to ensure that any data, code or other information resident within a cache, whose
accessibility depends on out of date values of the granule protection information, is
invalidated to ensure that subsequent memory accesses are controlled correctly based on
the new granule protection information. In some examples, in addition to invalidating a
cached entry, the at least one pre-PoPA cache could also clean data from that cached entry
so as to write any dirty versions of data associated with the entry to be invalidated back to a

location in the memory system which is beyond the PoPA. In some cases, different versions

10

15

20

25

30

35

12

of the cache-invalidate-to-PoPA instruction could be supported to indicate whether cleaning
is required or not.

Memory encryption circuitry may be provided which is responsive to a memory
access request specifying a selected physical address space and a target physical address
within the selected physical address space, when the target physical address is within a
protected address region, to encrypt or decrypt data associated with the protected region
based on one of a number of encryption keys selected depending on the selected physical
address space. In some examples, the protected address region could be the entire physical
address space, while other examples may apply the encryption/decryption only to certain
sub-regions as the protected address region. By assigning a dedicated root physical address
space separate from the physical address spaces associated with the other domains, this
makes it simpler for the memory encryption circuitry to select a different encryption key for
the root domain compared to other domains so as to improve security. Similarly, the
selection of different encryption keys for all the other domains enables stronger isolation of
code or data assets associated with a particular domain.

In one particular example, the apparatus may have at least one on-chip memory on a
same integrated circuit as the processing circuitry, and all valid physical addresses in the
root physical address space may be mapped to the at least one on-chip memory, as distinct
from off-chip memory. This helps to improve security of the root domain. It will be
appreciated that information from other domains could also be stored in on-chip memory.
The provision of a separate root physical address space simplifies the allocation of memory
because, whereas in an example where the root domain shares the secure physical address
space with a secure domain, there may be too much data associated with the secure domain
to hold all of that data in on-chip memory and it may be difficult to determine which particular
pieces of data are associated with the root domain, it is much simpler to partition out the root
domain’s data (or code) when this is flagged with a separate physical address space
identifier.

Nevertheless, in other examples it is possible for some addresses in the root physical
address space to be mapped to off-chip memory. Memory encryption, integrity and
freshness mechanisms can be used to protect root domain data stored off-chip.

The techniques discussed above can be implemented in a hardware apparatus which
has hardware circuitry logic for implementing the functions as discussed above. Hence, the
processing circuitry and the address translation circuitry may comprise hardware circuit
logic. However, in other examples a computer program for controlling a host data
processing apparatus to provide an instruction execution environment for execution of target
code may be provided with processing program logic and address translation program logic

which performs, in software, equivalent functions to the processing circuitry and address

10

15

20

25

30

35

13

translation circuitry discussed above. This can be useful, for example, for enabling target
code written for a particular instruction set architecture to be executed on a host computer
which may not support that instruction set architecture. Hence, functionality expected by the
instruction set architecture which is not provided by the host computer could be emulated
instead by simulation software providing an equivalent instruction execution environment for
the target code as would be expected if the target code had been executed on the hardware
device which actually supports the instruction set architecture. Hence, the computer
program providing the simulation could include processing program logic which simulates
processing in one of the at least three domains described earlier, and address translation
program logic which translates virtual addresses to physical addresses in one of a number of
simulated physical address spaces selected based at least on the current domain. As in the
hardware device, the at least three domains may include a root domain for managing
switching between other domains and the root domain may have a root simulated physical
address space associated with it, separate from simulated physical address spaces
associated with the other domains. For the approach where a simulation of the architecture
is provided, the respective physical address spaces selected by the address translation
program logic are simulated physical address spaces because they do not actually
correspond to physical address spaces identified by hardware components of the host
computer, but would be mapped to addresses within the virtual address space of the host.
Providing such a simulation can be useful for a range of purposes, for example for enabling
legacy code written for one instruction set architecture to be executed on a different platform
which supports a different instruction set architecture, or for assisting with software
development of new software to be executed for a new version of an instruction set
architecture when hardware devices supporting that new version of the instruction set
architecture are not available yet (this can enable the software for the new version of the
architecture to start to be developed in parallel with development of the hardware devices
supporting the new version of the architecture).

Granule Protection Lookups

In a system in which a virtual address of a memory access request can be mapped to
a physical address in one of two or more distinct physical address spaces, granule
protection information can be used to limit which physical addresses are accessible within a
particular physical address space. This can be useful for ensuring that certain physical
memory locations implemented in hardware either on-chip or off-chip can be restricted for
access within a particular physical address space or a particular subset of physical address
spaces if desired.

In one approach for managing such restrictions, the enforcement of whether a given

physical address can be accessed from a particular physical address space may be

10

15

20

25

30

35

14

implemented using completer-side filtering circuitry provided at or near a completer device
for servicing a memory access request. For example, the completer-side filtering circuitry
can be associated with a memory controller or peripheral controller. In such an approach,
the issuing of memory access requests to a cache, or an interconnect for routing
transactions from a requester device to the completer device, may not depend on any lookup
of information for defining which physical addresses are accessible within a given physical
address space.

In contrast, in the examples described below, a granule protection lookup is
performed by requester-side filtering circuitry which checks whether a memory access
request is allowed to be passed to a cache or an interconnect, based on a lookup of granule
protection information which indicates at least one allowed physical address space
associated with a target granule of physical addresses to be accessed. The granules of
physical address space for which respective items of granule protection information are
defined may be of a particular size, which may be the same as, or different to, the size of the
pages used for a page table structure used for the address translation circuitry. In some
cases the granules may be of a larger size than the pages defining address translation
mappings for the address translation circuitry. Alternatively, the granule protection
information may be defined at the same page-level granularity as address translation
information within a page table structure. Defining granule protection information at page-
level granularity can be convenient as this may then allow more fine-grained control over
which regions of memory storage hardware are accessible from particular physical address
spaces and hence from particular domains of operations of processing circuitry.

Hence, an apparatus may have address translation circuitry to translate a target
virtual address specified by a memory access request issued by requester circuitry into a
target physical address, and requester-side circuitry to perform a granule protection lookup
based on the target physical address and a selected physical address space associated with
the memory access request, to determine whether to allow the memory access request to be
passed to a cache or passed to an interconnect for communicating with a completer device
for servicing the memory access request. The selected physical address space may be one
of a plurality of physical address spaces. In the granule protection lookup, the requester-
side filtering circuitry may be configured to:

obtain granule protection information corresponding to a target granule of
physical addresses including the target physical address, the granule protection
information indicative of at least one allowed physical address space associated with

the target granule; and

10

15

20

25

30

35

15

block the memory access request when the granule protection information
indicates that the selected physical address space is not one of said at least one
allowed physical address space.

An advantage of performing a granule protection lookup at the requester-side of the
interconnect instead of on the completer-side is that this can enable more fine-grained
control over which physical addresses are accessible from a given physical address space
than would be practical at the completer-side. This is because the completer-side may
typically have relatively limited ability to access the memory system as a whole. For
example, a memory controller for a given memory unit may only have access to the locations
within that memory unit and may not have access to other regions of the address space.
Providing more fine-grained control may rely on a more complex table of granule protection
information which may be stored in the memory system and it may be more practical to
access such a table from the requester side where there is more flexibility to issue memory
access request to a wider subset of the memory system.

Also, performing the granule protection lookup on the requester side can help enable
the ability to dynamically update granule protection information at runtime, which may not be
practical for completer-side filtering circuitry which may be restricted to accessing a relatively
small amount of statically defined data defined at boot-time.

Another advantage of requester-side filtering circuitry is that this would enable the
interconnect to allocate different addresses within the same granule to different completer
ports communicating with different completer devices (e.g. different DRAM (dynamic random
access memory) units), which may be efficient for performance but may be impractical if the
granule as a whole needs to be directed to the same completer unit so that the granule
protection lookup can be performed on the completer side to verify whether a memory
access is allowed.

Hence there may be a number of advantages to performing the granule protection
lookup for distinguishing whether a particular physical address can be accessed from a
particular physical address space selected for a given memory access request at the
requester side instead of the completer side.

The granule protection information can be represented in different ways. In one
example the granule protection could be defined in a single linearly indexed table stored at a
single contiguous block of addresses, with the particular entry to be accessed within that
block selected based on the target physical address. However, in practice, granule
protection information may not be defined for the entire physical address space and so it
may be more efficient to use a multi-level table structure for storing the granule protection
information, similar to a multi-level page table used for address translation. In such a multi-

level structure, a portion of the target physical address may be used to select a level one

10

15

20

25

30

35

16

granule protection table entry which may provide a pointer identifying a location in memory
storing a further level granule protection table. Another portion of the target physical
address may then select which entry of that further granule protection table is to be obtained.
After iterating through one or more levels of the table beyond the first level, eventually a
granule protection table entry may be obtained which provides the granule protection
information associated with the target physical address.

Regardless of the particular structure chosen for the table storing the granule
protection information, the granule protection information may represent which of the
physical address spaces is the at least one allowed physical address in a number of ways.
One approach could be to provide a series of fields which each indicate whether a
corresponding one of the physical address spaces is allowed to access the granule of
physical addresses including the target physical address. For example, a bitmap may be
defined within the granule protection information, with each bit of the bitmap indicating
whether a corresponding physical address space is an allowed physical address space or a
non-allowed physical address space for that granule.

However, in practice for most use cases it may be relatively unlikely that a significant
number of the physical address spaces are expected to be allowed to access a given
physical address. As discussed in the earlier section on controlling access to physical
address spaces, a less secure physical address space could be available for selection in all
domains so can be used when data or code is to be shared between the number of domains,
so that it may not be necessary for a particular physical address to be mapped into all or a
substantial fraction of the available physical address spaces.

Hence, a relatively efficient approach can be that the granule protection information
may specify an assigned physical address space assigned to the target granule of physical
addresses, and the at least one allowed physical address space may include at least the
assigned physical address space designated by the granule protection information for that
particular target granule. In some implementations the granule protection information may
specify a single physical address space as the assigned physical address space. Hence in
some cases the granule protection information may comprise an identifier of one particular
physical address space which acts as the assigned physical address space allowed to
access that target granule of physical addresses.

In some implementations the only physical address space allowed to access the
target granule of physical addresses may be the assigned physical address space, and the
target granule of physical addresses may not be allowed to be accessed from any other
physical address space. This approach can be efficient for maintaining security. Access
from different domains to a particular physical address space could instead be controlled

through the address translation functionality, where the address translation circuitry may be

10

15

20

25

30

35

17

able to select which particular physical address space is to be used for a given memory
access, so there may not be any need to allow a granule of physical addresses to be shared
between multiple physical address spaces. If only the assigned physical address space is
allowed to access the target granule of physical addresses, then to enable that granule of
physical addresses to be accessed from other physical address spaces, this may require an
update of which physical address space is the assigned physical address space. For
example, this may require the root domain described earlier to perform some processing to
switch the assigned physical address space for a given granule of physical addresses. This
processing may have a certain performance cost, as for example it may (for security) include
overwriting each location in the given granule of physical addresses with null data or other
data which is independent of a previous contents of those physical addressed locations, to
ensure that processes with access to the new assigned physical address space are not able
to learn anything from the data previously stored at locations associated with the given
granule of physical addresses.

Hence, another approach can be that as well as identifying an assigned physical
address space, the granule protection information could also comprise sharing attribute
information which indicates whether at least one other physical address space other than the
assigned physical address space is one of the at least one allowed physical address space.
Hence, if the sharing attribute information indicates that at least one other physical address
space is allowed to access the corresponding granule of physical addresses then that
granule of physical addresses can be accessed from multiple physical address spaces. This
could be useful for allowing code in a domain associated with one physical address space to
temporarily allow one of its assigned granules of physical addresses to be visible to a
domain associated with a different physical address space. This could make temporary
sharing of data or code more efficient because it is not necessary to incur a potentially costly
operation for changing which physical address space is the assigned physical address
space. The sharing attribute information could be set directly by code executing in the
domain associated with the assigned physical address space, or could be set by the root
domain on request from the code executing in the domain associated with the assigned
physical address space.

Where the sharing attribute information is supported, then as well as using the
sharing attribute information to validate whether an address assigned to one physical
address space can be accessed by requests specifying a different address space, the
requester-side filtering circuitry may also transform the physical address space selected for
the memory access request issued downstream to a cache or interconnect, based on the
sharing attribute information. Hence, when the granule protection lookup determines that

the selected physical address space is a physical address space other than the assigned

10

15

20

25

30

35

18

physical address space which is one of said at least one allowed physical address space
indicated by the sharing attribute information, the requester-side filtering circuitry may allow
the memory access request to be passed to the cache or interconnect specifying the
assigned physical address space instead of the selected physical address space. This
means that, for the purpose of accessing downstream memory, the components prior to the
PoPA treat the memory access as if it was issued specifying the assigned physical address
space in the first place, so that cache entries or snoop filter entries tagged with that assigned
physical address space can be accessed for the memory access request.

In some implementations, the requester-side filtering circuitry may obtain the granule
protection information used for the granule protection lookup from memory each time a
memory access request is checked against the granule protection information. This
approach may require less hardware cost at the requester side. However, it may be
relatively slow to obtain the granule protection information from memory.

Therefore, to improve performance the requester-side filtering circuitry may have
access to at least one lookup cache which may cache the granule protection information, so
that the granule protection lookup can be performed in the at least one lookup cache and if
the required granule information is already stored in the at least one lookup cache then it is
not necessary to fetch it from memory. The at least one lookup cache may in some cases
be a separate cache from a translation lookaside buffer (TLB) used by the address
translation circuitry for caching page table data providing mappings between virtual and
physical addresses. However, in other examples the at least one lookup cache could
combine caching of page table data with caching of granule protection information. Hence,
the at least one lookup cache could in some cases store at least one combined translation-
granule protection entry specifying information depending on both the granule protection
information and at least one page table entry used by the address translation circuitry for
mapping the target virtual address to the target physical address. VWhether the TLB and
granule protection cache are implemented as separate structures or as the single combined
structure is an implementation choice and either can be used.

Regardless of which approach is used for the at least one lookup cache, the at least
one lookup cache may be responsive to at least one lookup cache invalidation command
which specifies an invalidation target physical address to invalidate lookup cache entries
storing information which depends on granule protection information associated with a
granule of physical addresses including the invalidation target physical address. In a
conventional processing system having a TLB, while the TLB may typically support
invalidation commands specifying a virtual address or (in a system supporting two stages of
address translation, an intermediate address), it is not typically needed for TLBs to be able

to identify which entry is to be invalidated using a physical address. However, when at least

10

15

20

25

30

35

19

one lookup cache is provided to cache granule protection information, then if the granule
protection information for a given granule of physical addresses changes then it may be
useful to be able to invalidate any entries which depend on that information. Hence, the
command may identify a particular physical address for which entries containing information
depending on granule protection information are to be invalidated.

If a granule protection information cache is implemented separately from a TLB, then
a TLB may need not have any capability to search entries by physical address. In this case,
the granule protection information cache may respond to the cache invalidation command
specifying a physical address, but the command may be ignored by the TLB.

However, if the at least one lookup cache includes a combined translation/granule
protection cache whose entries are searched based on a virtual address or an intermediate
address and return both the page table information associated with the virtual/intermediate
address and the granule protection information associated with the corresponding physical
address, then it may be useful to provide a further scheme for searching entries based on
the physical address, so that the at least one lookup cache invalidation command which
specifies an invalidation target physical address can be processed. Such searches by
physical address would not be needed by regular lookups of the combined cache, because if
the entries are combined then searching by a virtual address or an intermediate address
may be sufficient to access all of the combined information for performing both the address
translation and the granule protection lookup. However, on cache invalidation commands
the combined cache can be searched based on a physical address to identify any entries
which may need to be invalidated because they depend on granule protection information for
the specified physical address.

The memory system may have a POPA memory system component, at least one pre-
PoPA memory system component and at least one post-PoPA memory system component
as discussed above for the earlier examples. Hence, aliasing physical addresses within
different physical address spaces may correspond to the same memory system resource
identified using a de-aliased physical address when memory access requests pass beyond
the point of physical aliasing, in the same way as discussed earlier. Prior to the PoPA, at
least one pre PoOPA memory system component treats aliasing physical addresses from
different physical address spaces as if they correspond to different memory system
resources which can improve security. Again, although in theory it may be possible for the
aliasing physical addresses in the different physical address spaces to be identified using
different numeric address values, this may be relatively complex to implement and it can be
simpler if the aliasing physical addresses are represented using the same physical address

value in the different physical address spaces.

10

15

20

25

30

35

20

Where the at least one pre-PoPA memory system component comprises at least one
pre-PoPA cache, the processing circuitry may be responsive to a cache-invalidate-to-PoPA
instruction specifying a target virtual address to trigger invalidations by target physical
address to any pre-PoPA caches which are upstream of the point of physical aliasing, while
allowing any post-PoPA caches to retain data with the target physical address (as described
earlier).

The selected physical address space associated with the memory access can be
selected in different ways. In some examples, the selected physical address space may be
selected (either by the address translation circuitry or by the requester-side filtering circuitry)
based at least on a current domain of operation of the requester circuitry from which the
memory access request was issued. The selection of the selected physical address space
could also depend on physical address space selection information specified in at least one
page table entry used for the translation of the target virtual address to the target physical
address. The selection of which physical address space is the selected physical address
space may be performed as discussed earlier for the preceding examples.

The domains and physical address spaces available for a selection in the given
system may be as described earlier, and may include the less secure domain, secure
domain, root domain and further domain as discussed above each with corresponding
physical address spaces. Alternatively, the domains/physical address spaces could include
a subset of these domains. Hence, any of the features relating to any of the domains
described earlier can be included in a system having the requester-side filtering circuitry.

In an implementation where the root domain has a corresponding root physical
address space as described earlier, then when the current domain is the root domain, the
requester-side filtering circuitry could bypass the granule protection lookup. The granule
protection lookup could be unnecessary when the current domain is the root domain as the
root domain may be trusted to access all regions of physical addresses and so power can be
saved by skipping the granule protection lookup when in the root domain.

The granule protection information may be modifiable by software executed in the
root domain. Hence, the granule protection information may be dynamically updateable at
run-time. This can be an advantage for some of the realm use cases discussed, where
realms providing secure execution environments may be dynamically created at runtime and
allocated corresponding regions of memory reserved for the realm. Such an approach
would often be unpractical using completer-side filtering only. In some implementations the
root domain may be the only domain allowed to modify the granule protection information, so
if other domains need a change to the granule protection information to be implemented,
then they may request that the root domain modifies the granule protection information, and

the root domain can then check whether to allow the request made from another domain.

10

15

20

25

30

35

21

Although it can be beneficial to provide requester-side filtering circuitry for performing
a granule protection lookup on the requester-side before a memory access request is
passed to a cache or an interconnect, there may be other scenarios in which it may be
preferred for protection information (defining which physical addresses can be accessed
from a given physical address space) to be checked on the completer-side of the
interconnect instead. For example, while for some parts of the address space it may be
desirable to provide a fine-grained page-level granularity of division of the memory hardware
into regions of physical addresses accessible from different physical address spaces, for
other parts of the memory system it may be preferred to allocate a large block of contiguous
addresses to a single physical address space, and so the overheads of accessing a
(potentially multi-level) granule protection structure stored in memory may be unjustified. If
an entire memory unit (e.g. a particular DRAM module) is to be allocated to a single physical
address space then it may be simpler to handle the enforcement of restriction of access to
that memory unit through a completer-side check.

Therefore, in some implementations, as well as providing requester-side filtering
circuitry, there may also be completer-side filtering circuitry which is responsive to a memory
access request received from the interconnect specifying a target physical address and a
selected physical address space, to perform a completer-side protection lookup of
completer-side protection information based on the target physical address and the selected
physical address space, to determine whether the memory access request is allowed to be
serviced by the completer device. By providing a hybrid approach enabling some parts of
memory to be protected through a requester-side filter and other parts to be protected by a
completer-side filter, this allows a better balance between performance and flexibility of
allocating usage of memory than could be achieved either through requester-side filtering or
completer-side filtering alone.

Hence, in some implementations the granule protection information may specify a
pass-through indicator indicating that the at least one allowed physical address space is to
be resolved by completer-side filtering circuitry. Hence, the requester-side filtering circuitry
may, in cases when the granule protection information specifies the pass-through indicator,
determine whether or not to pass the memory access request to the cache or the
interconnect independent of any check of whether the selected physical address space is
one of the at least one allowed physical address space for the target granule of physical
addresses. On the other hand, if the granule protection information accessed for the target
granule does not specify the pass-through indicator, then the determination of whether the
memory access request can be passed to the cache or the interconnect may depend on the
check of whether the selected physical address space is one of the at least one allowed

physical address space, as in this case there may not be a subsequent completer-side

10

15

20

25

30

35

22

filtering performed after the memory access request is allowed to progress to the cache or
interconnect. Hence, the pass-through indicator can enable control of a partitioning of the
address space between those granules of physical addresses for which checks are to be
performed requester-side and those granules for which those checks are to be performed on
the completer-side, providing added flexibility for a system designer.

The completer-side protection information used by the completer-side filtering
circuitry need not have the same format as the granule protection information used by the
requester-side filtering circuitry. For example the completer-side filtering circuitry may be
defined at a coarser granularity than the granule protection information used for the granule
protection lookup by the requester-side filtering circuitry. The granule protection information
may be defined in a multi-level table structure where each level of the table provides entries
each corresponding to a block of memory of a given number of addresses corresponding to
a power of two and so the entry of a given level of table needed for checking a given target
physical address can be indexed simply by adding a multiple of a certain portion of bits from
the target physical address to a base address associated with that level of the table,
avoiding a need for comparing contents of the accessed entry with the target physical
address to determine whether it is the correct entry. In contrast, for the completer-side
protection information a smaller number of entries may be defined, each entry specifying
start and end addresses (or a start address and size) of a region of memory which may
correspond to a non-power of two number of addresses. This can be more suitable for
defining relatively coarse-grained blocks in the completer-side protection information, but this
approach may require the target physical address to be compared against the upper and
lower bounds of the respective ranges of physical addresses defined in each completer-side
protection information entry to determine whether any of those match the specified physical
address. The indexed multi-level table approach used for the requester-side granule
protection information may support a relatively large number of distinct entries so that a fine-
grained mapping of physical addresses to physical address spaces is supported, which
would typically not be practical using the approach of defining upper and lower bounds of
each region in the completer-side protection information due to the comparison overhead in
looking up each of those entries to check whether a target address falls within the bounds of
that entry, but the completer-side protection information may be more efficient in terms of
memory storage and may be less variable in terms of performance as there is less of a
penalty if there is a miss in a lookup cache. Of course this is just one example of how the
looked up information could be implemented on the requester side and the completer side.

The requester-side protection information may be dynamically updateable at run-

time. The completer-side protection information could be either statically defined by

10

15

20

25

30

35

23

hardware on the system-on-chip, configured at boot time, or dynamically re-configured at
run-time.

As for the earlier described examples, although the techniques described above for
the granule protection lookup can be implemented in a system having dedicated hardware
logic for performing the functions of the address translation circuitry and the requester-side
filtering circuitry, the equivalent functions could also be implemented in software within in
computer program for controlling host data apparatus to provide an instruction execution
environment for execution of target code, for similar reasons to those described earlier.
Hence, address translation program logic and filtering program logic may be provided to
emulate the functionality of the address translation circuitry and requester-side filter
described earlier. As for the earlier examples, for the computer program providing the
instruction execution environment, at least one of the following may apply: the granule
protection information is dynamically updatable by the target code at runtime; and the
granule protection information is defined at page-level granularity.

Description of Examples

Figure 1 schematically illustrates an example of a data processing system 2 having
at least one requester device 4 and at least one completer device 6. An interconnect 8
provides communication between the requester devices 4 and completer devices 6. A
requester device is capable of issuing memory access requests requesting a memory
access to a particular addressable memory system location. A completer device 6 is a
device that has responsibility for servicing memory access requests directed to it. Although
not shown in Figure 1, some devices may be capable of acting both as a requester device
and as a completer device. The requester devices 4 may for example include processing
elements such as a central processing unit (CPU) or graphics processing unit (GPU) or other
master devices such as bus master devices, network interface controllers, display
controllers, etc. The completer devices may include memory controllers responsible for
controlling access to corresponding memeory storage units, peripheral controllers for
controlling access to a peripheral device, etc. Figure 1 shows an example configuration of
one of the requester devices 4 in more detail but it will be appreciated that the other
requester devices 4 could have a similar configuration. Alternatively, the other requester
devices may have a different configuration to the requester device 4 shown on the left of
Figure 1.

The requester device 4 has processing circuitry 10 for performing data processing in
response to instructions, with reference to data stored in registers 12. The registers 12 may
include general purpose registers for storing operands and results of processed instructions,
as well as control registers for storing control data for configuring how processing is

performed by the processing circuitry. For example the control data may include a current

10

15

20

25

30

35

24

domain indication 14 used to select which domain of operation is the current domain, and a
current exception level indication 15 indicating which exception level is the current exception
level in which the processing circuitry 10 is operating.

The processing circuitry 10 may be capable of issuing memory access requests
specifying a virtual address (VA) identifying the addressable location to be accessed and a
domain identifier (Domain ID or ‘security state’) identifying the current domain. Address
translation circuitry 16 (e.g. a memory management unit (MMU)) translates the virtual
address into a physical address (PA) through one of more stages of address translation
based on page table data defined in page table structures stored in the memory system. A
translation lookaside buffer (TLB) 18 acts as a lookup cache for caching some of that page
table information for faster access than if the page table information had to be fetched from
memory each time an address translation is required. In this example, as well as generating
the physical address, the address translation circuitry 16 also selects one of a number of
physical address spaces associated with the physical address and outputs a physical
address space (PAS) identifier identifying the selected physical address space. Selection of
the PAS will be discussed in more detail below.

A PAS filter 20 acts as requester-side filtering circuitry for checking, based on the
translated physical address and the PAS identifier, whether that physical address is allowed
to be accessed within the specified physical address space identified by the PAS identifier.
This lookup is based on granule protection information stored in a granule protection table
structure stored within the memory system. The granule protection information may be
cached within a granule protection information cache 22, similar to a caching of page table
data in the TLB 18. While the granule protection information cache 22 is shown as a
separate structure from the TLB 18 in the example of Figure 1, in other examples these
types of lookup caches could be combined into a single lookup cache structure so that a
single lookup of an entry of the combined structure provides both the page table information
and the granule protection information. The granule protection information defines
information restricting the physical address spaces from which a given physical address can
be accessed, and based on this lookup the PAS filter 20 determines whether to allow the
memory access request to proceed to be issued to one or more caches 24 and/or the
interconnect 8. If the specified PAS for the memory access request is not allowed to access
the specified physical address then the PAS filter 20 blocks the transaction and may signal a
fault.

While Figure 1 shows an example with a system having multiple requester devices 4,
the features shown for the one requester device on the left hand side of Figure 1 could also
be included in a system where there is only one requester device, such as a single-core

processor.

10

15

20

25

30

35

25

While Figure 1 shows an example where selection of the PAS for a given request is
performed by the address translation circuitry 16, in other examples information for
determining which PAS to select can be output by the address translation circuitry 16 to the
PAS filter 20 along with the PA, and the PAS filter 20 may select the PAS and check whether
the PA is allowed to be accessed within the selected PAS.

The provision of the PAS filter 20 helps to support a system which can operate in a
number of domains of operation each associated with its own isolated physical address
space where, for at least part of the memory system (e.g. for some caches or coherency
enforcing mechanisms such as a snoop filter), the separate physical address spaces are
treated as if they refer to completely separate sets of addresses identifying separate memory
system locations, even if addresses within those address spaces actually refer to the same
physical location in the memory system. This can be useful for security purposes.

Figure 2 shows an example of different operating states and domains in which the
processing circuitry 10 can operate, and an example of types of software which could be
executed in the different exception levels and domains (of course, it will be appreciated that
the particular software installed on a system is chosen by the parties managing that system
and so is not an essential feature of the hardware architecture).

The processing circuitry 10 is operable at a number of different exception levels 80,
in this example four exception levels labelled ELO, EL1, EL2 and EL3, where in this example
EL3 refers to the exception level with the greatest level of privilege while ELO refers to the
exception level with the least privilege. It will be appreciated that other architectures could
choose the opposite numbering so that the exception level with the highest number could be
considered to have the lowest privilege. In this example the least privileged exception level
ELO is for application-level code, the next most privileged exception level EL1 is used for
operating system-level code, the next most privileged exception level EL2 is used for
hypervisor-level code which manages switching between a number of virtualised operating
systems, while the most privileged exception level EL3 is used for monitor code which
manages switches between respective domains and allocation of physical addresses to
physical address spaces, as described later.

When an exception occurs while processing software in a particular exception level,
for some types of exceptions, the exception is taken to a higher (more privileged) exception
level, with the particular exception level in which the exception is to be taken being selected
based on attributes of the particular exception which occurred. However, it may be possible
for other types of exceptions to be taken at the same exception level as the exception level
associated with the code being processed at the time an exception was taken, in some
situations. When an exception is taken, information characterising the state of the processor

at the time the exception was taken may be saved, including for example the current

10

15

20

25

30

35

26

exception level at the time the exception was taken, and so once an exception handler has
been processed to deal with the exception, processing may then return to the previous
processing and the saved information can be used to identify the exception level to which
processing should return.

In addition to the different exception levels, the processing circuitry also supports a
number of domains of operation including a root domain 82, a secure (S) domain 84, a less
secure domain 86 and a realm domain 88. For ease of reference, the less secure domain
will be described below as the “non-secure” (NS) domain, but it will be appreciated that this
is not intended to imply any particular level of (or lack of) security. Instead, “non-secure”
merely indicates that the non-secure domain is intended for code which is less secure than
code operating in the secure domain. The root domain 82 is selected when the processing
circuitry 10 is in the highest exception level EL3. When the processing circuitry is in one of
the other exception levels ELO to EL2, the current domain is selected based on the current
domain indicator 14, which indicates which of the other domains 84, 86, 88 is active. For
each of the other domains 84, 86, 88 the processing circuitry could be in any of the
exception levels ELO, EL1 or EL2.

At boot time, a number of pieces of boot code (e.g. BL1, BL2, OEM Boot) may be
executed, e.g. within the more privileged exception levels EL3 or EL2. The boot code BL1,
BL2 may be associated with the root domain for example and the OEM boot code may
operate in the Secure domain. However, once the system is booted, at runtime the
processing circuitry 10 may be considered to operate in one of the domains 82, 84, 86 and
88 at a time. Each of the domains 82 to 88 is associated with its own associated physical
address space (PAS) which enables isolation of data from the different domains within at
least part of the memory system. This will be described in more detail below.

The non-secure domain 86 can be used for regular application-level processing, and
for the operating system and hypervisor activity for managing such applications. Hence,
within the non-secure domain 86, there may be application code 30 operating at ELO,
operating system (OS) code 32 operating at EL1 and hypervisor code 34 operating at EL2.

The secure domain 84 enables certain system-on-chip security, media or system
services to be isolated into a separate physical address space from the physical address
space used for non-secure processing. The secure and non-secure domains are not equal,
in the sense that the non-secure domain code cannot access resources associated with the
secure domain 84, while the secure domain can access both secure and non-secure
resources. An example of a system supporting such partitioning of secure and non-secure
domains 84, 86 is a system based on the TrustZone® architecture provided by Arm®
Limited. The secure domain can run trusted applications 36 at ELO, a trusted operating

system 38 at EL1, as well as optionally a secure partition manager 40 at EL2 which may, if

10

15

20

25

30

35

27

secure partitioning is supported, use stage 2 page tables to support isolation between
different trusted operating systems 38 executing in the secure domain 84 in a similar way to
the way that the hypervisor 34 may manage isolation between virtual machines or guest
operating systems 32 executing in the non-secure domain 86.

Extending the system to support a secure domain 84 has become popular in recent
years because it enables a single hardware processor to support isolated secure processing,
avoiding the need for the processing to be performed on a separate hardware processor.
However, with the increasing popularity of use of the secure domain, many practical systems
having such a secure domain now support, within the secure domain, a relatively
sophisticated mixed environment of services which are provided by a wide range of different
software providers. For example the code operating in the secure domain 84 may include
different pieces of software provided by (among others). the silicon provider who
manufactured the integrated circuit, an original equipment manufacturer (OEM) who
assembles the integrated circuit provided by the silicon provider into an electronic device
such as a mobile telephone, an operating system vendor (OSV) who provides the operating
system 32 for the device; and/or a cloud platform provider who manages a cloud server
supporting services for a number of different clients through the cloud.

However, increasingly there is a desire for parties providing user-level code (which
might normally be expected to execute as applications 30 within the non-secure domain 86)
to be provided with secure computing environments which can be trusted not to leak
information to other parties operating code on the same physical platform. It may be
desirable for such secure computing environments to be dynamically allocatable at runtime,
and to be certified and attestable so that the user is able to verify whether sufficient security
guarantee is provided on the physical platform, before trusting the device to process
potentially sensitive code or data. A user of such software may not wish to trust the party
providing a rich operating system 32 or hypervisor 34 which might normally operate in the
non-secure domain 86 (or even if those providers themselves can be trusted, the user may
wish to protect themselves against the operating system 32 or hypervisor 34 being
compromised by an attacker). Also, while the secure domain 84 could be used for such
user-provided applications needing secure processing, in practice this causes problems both
for the user providing the code requiring the secure computing environment and for the
providers of existing code operating within the secure domain 84. For the providers of
existing code operating within the secure domain 84, the addition of arbitrary user-provided
code within the secure domain would increase the attack surface for potential attacks
against their code, which may be undesirable, and so allowing users to add code into the
secure domain 84 may be strongly discouraged. On the other hand, the user providing the

code requiring the secure computing environment may not be willing to trust all of the

10

15

20

25

30

35

28

providers of the different pieces of code operating in the secure domain 84 to have access to
its data or code, if certification or attestation of the code operating in a particular domain is
needed as a prerequisite for the user-provided code to perform its processing, it may be
difficult to audit and certify all of the distinct pieces of code operating in the secure domain
84 provided by the different software providers, which may limit the opportunities for third
parties to provide more secure services.

Therefore, as shown in Figure 2, an additional domain 88, called the realm domain, is
provided which can be used by such user-introduced code to provide a secure computing
environment orthogonal to any secure computing environment associated with components
operating in the secure domain 24. In the realm domain, the software executed can include a
number of realms, where each realm can be isolated from other realms by a realm
management module (RMM) 46 operating at exception level EL2. The RMM 46 may control
isolation between the respective realms 42, 44 executing the realm domain 88, for example
by defining access permissions and address mappings in page table structures similar to the
way in which hypervisor 34 manages isolation between different components operating in
the non-secure domain 86. In this example, the realms include an application-level realm 42
which executes at ELO and an encapsulated application/operating system realm 44 which
executes across exception levels ELO and EL1. It will be appreciated that it is not essential
to support both ELO and ELO/EL1 types of realms, and that multiple realms of the same type
could be established by the RMM 46.

The realm domain 88 has its own physical address space allocated to it, similar to
the secure domain 84, but the realm domain is orthogonal to the secure domain 84 in the
sense that while the realm and secure domains 88, 84 can each access the non-secure PAS
associated with the non-secure domain 86, the realm and secure domains 88, 84 cannot
access each other’s physical address spaces. This means that code executing in the realm
domain 88 and secure domains 84 have no dependencies on each other. Code in the realm
domain only needs to trust the hardware, the RMM 46 and the code operating in the root
domain 82 which manages switching between domains, which means attestation and
certification becomes more feasible. Attestation enables a given piece of software to
request verification that code installed on the device matches certain anticipated properties.
This could be implemented by checking whether a hash of the program code installed on the
device matches an expected value that is signed by a trusted party using a cryptographic
protocol. The RMM 46 and monitor code 29 could for example be attested by checking
whether a hash of this software matches an expected value signed by a trusted party, such
as the silicon provider who manufactured the integrated circuit comprising the processing
system 2 or an architecture provider who designed the processor architecture which

supports the domain-based memory access control. This can allow user-provided code 42,

10

15

20

25

30

35

29

44 to verify whether the integrity of the domain-based architecture can be trusted prior to
executing any secure or sensitive functions.

Hence, it can be seen that the code associated with realms 42, 44, which would
previously have executed in the non-secure domain 86 as shown by the dotted lines
showing the gap in the non-secure domain where these processes would previously have
executed, can now be moved to the realm domain where they may have stronger security
guarantees because their data and code is not accessible by other code operating in a non-
secure domain 86. However, due to the fact that the realm domain 88 and secure domain
84 are orthogonal and so cannot see each other’s physical address spaces, this means that
the providers of code in the realm domain do not need to trust the providers of code in the
secure domain and vice versa. The code in the realm domain can simply trust the trusted
firmware providing the monitor code 29 for the root domain 82 and the RMM 46, which may
be provided by the silicon provider or the provider of the instruction set architecture
supported by the processor, who may already inherently need to be trusted when the code is
executing on their device, so that no further trust relationships with other operating system
vendors, OEMs or cloud hosts are needed for the user to be able to be provided with a
secure computing environment.

This can be useful for a range of applications and use cases, including for example
mobile wallet and payment applications, gaming anti-cheating and piracy mechanisms,
operating system platform security enhancements, secure virtual machine hosting,
confidential computing, networking, or gateway processing for Internet of Things devices. It
will be appreciated that users may find many other applications where the realm support is
useful.

To support the security guarantees provided to a realm, the processing system may
support an attestation report function, where at boot time or at run time measurements are
made of firmware images and configuration, e.g. monitor code images and configuration or
RMM code images and configuration and at runtime realm contents and configuration are
measured, so that the realm owner can trace the relevant attestation report back to known
implementations and certifications to make a trust decision on whether to operate on that
system.

As shown in Figure 2, a separate root domain 82 is provided which manages domain
switching, and that root domain has its own isolated root physical address space. The
creation of the root domain and the isolation of its resources from the secure domain allows
for a more robust implementation even for systems which only have the non-secure and
secure domains 86, 84 but do not have the realm domain 88, but can also be used for
implementations which do support the realm domain 88. The root domain 82 can be

implemented using monitor software 29 provided by (or certified by) the silicon provider or

10

15

20

25

30

35

30

the architecture designer, and can be used to provide secure boot functionality, trusted boot
measurements, system-on-chip configuration, debug control and management of firmware
updates of firmware components provided by other parties such as the OEM. The root
domain code can be developed, certified and deployed by the silicon provider or architecture
designer without dependencies on the final device. In contrast the secure domain 84 can be
managed by the OEM for implementing certain platform and security services. The
management of the non-secure domain 86 may be controlled by an operating system 32 to
provide operating system services, while the realm domain 88 allows the development of
new forms of trusted execution environments which can be dedicated to user or third party
applications while being mutually isolated from existing secure software environments in the
secure domain 84.

Figure 3 schematically illustrates another example of a processing system 2 for
supporting these techniques. Elements which are the same as in Figure 1 are illustrated
with the same reference numeral. Figure 3 shows more detail in the address translation
circuitry 16, which comprises stage 1 and stage 2 memory management units 50, 52. The
stage 1 MMU 50 may be responsible for translating virtual addresses to either physical
addresses (when the translation is triggered by EL2 or EL3 code) or to intermediate
addresses (when the translation is triggered by ELO or EL1 code in an operating state where
a further stage 2 translation by the stage 2 MMU 52 is required). The stage 2 MMU may
translate intermediate addresses into physical addresses. The stage 1 MMU may be based
on page tables controlled by an operating system for translations initiated from ELO or EL1,
page tables controlled by a hypervisor for translations from EL2, or page tables controlled by
monitor code 29 for translations from EL3. On the other hand, the stage 2 MMU 52 may be
based on page table structures defined by a hypervisor 34, RMM 46 or secure partition
manager 14 depending on which domain is being used. Separating the translations into two
stages in this way allows operating systems to manage address translation for themselves
and applications under the assumption that they are the only operating system running on
the system, while the RMM 46, hypervisor 34 or SPM40 may manage isolation between
different operating systems running in the same domain.

As shown in Figure 3, the address translation process using the address translation
circuitry 16 may return security attributes 54 which, in combination with the current exception
level 15 and the current domain 14 (or security state), allow section of a particular physical
address space (identified by a PAS identifier or “PAS TAG”) to be accessed in response to a
given memory access request. The physical address and PAS identifier may be looked up
in a granule protection table 56 which provides the granule protection information described
earlier. In this example the PAS filter 20 is shown as a granular memory protection unit

(GMPU) which verifies whether the selected PAS is allowed to access the requested

10

15

20

25

30

35

31

physical address and if so allows the transaction to be passed to any caches 24 or
interconnect 8 which are part of the system fabric of the memory system.

The GMPU 20 allows assigning memory to separate address spaces while providing
a strong, hardware-based, isolation guarantee and providing spatial and temporal flexibility
in the assignment methods of physical memory into these address spaces, as well as
efficient sharing schemes. As described earlier, the execution units in the system are
logically partitioned to virtual execution states (domains or “Worlds”) where there is one
execution state (Root world) located at the highest exception level (EL3), referred to as the
“Root World” that manages physical memory assignment to these worlds.

A single System physical address space is virtualized into multiple “Logical” or
“Architectural” Physical Address Spaces (PAS) where each such PAS is an orthogonal
address space with independent coherency attributes. A System Physical Address is
mapped to a single “Logical” Physical Address Space by extending it with a PAS tag.

A given World is allowed access to a subset of Logical Physical Address Spaces.
This is enforced by a hardware filter 20 that can be attached to the output of the Memory
Management Unit 16.

A World defines the security attributes (the PAS tag) of the access using fields in the
Translation Table Descriptor of the page tables used for address translation. The hardware
filter 20 has access to a table (Granule Protection Table 56, or GPT) that defines for each
page in the system physical address space granule protection information (GPI) indicating
the PAS TAG itis associated with and (optionally) other Granule Protection attributes.

The hardware filter 20 checks the World ID and the Security Attributes against the
Granule’s GPI and decides if access can be granted or not, thus forming a Granular Memory
Protection Unit (GMPU).

The GPT 56 can reside in on-chip SRAM or in off-chip DRAM, for example. If stored
off-chip, the GPT 56 may be integrity-protected by an on-chip memory protection engine that
may use encryption, integrity and freshness mechanisms to maintain security of the GPT 56.

Locating the GMPU 20 on the requester-side of the system (e.g. on the MMU output)
rather than on the completer-side allows allocating access permissions in page granularity
while permitting the interconnect 8 to continue hashing/striping the page across multiple
DRAM ports.

Transactions remain tagged with the PAS TAG as they propagate throughout the
system fabric 24, 8 until reaching a location defined as the Point of Physical Aliasing 60. This
allows to locate the filter on the Master-side without diminishing the security guarantees
comparing to Slave-side filtering. As the transaction propagates throughout the system, the
PAS TAG can be used as an in-depth security mechanism for address isolation: e.g. caches

can add the PAS TAG to the address tag in the cache, preventing accesses made to the

10

15

20

25

30

35

32

same PA using the wrong PAS TAG from hitting in the cache and therefore improving side-
channel resistance. The PAS TAG can also be used as context selector for a Protection
Engine attached to the memory controller that encrypts data before it is written to external
DRAM.

The Point of Physical Aliasing (PoPA) is a location in the system where the PAS TAG
is stripped and the address changes back from a Logical Physical Address to a System
Physical Address. The PoPA can be located below the caches, at the completer-side of the
system where access to the physical DRAM is made (using encryption context resolved
through the PAS TAG). Alternatively, it may be located above the caches to simplify system
implementation at the cost of reduced security.

At any point in time, a world can request to transition a page from one PAS to
another. The request is made to the monitor code 29 at EL3 which inspects the current state
of the GPI. EL3 may only allow a specific set of transitions to occur (e.g. from Non-secure
PAS to Secure PAS but not from Realm PAS to Secure PAS). To provide a clean transition,
a new instruction is supported by the System - “Data Clean and Invalidate to the Point of
Physical Aliasing” which EL3 can submit before transitioning a page to the new PAS - this
guarantees that any residual state associated with the previous PAS is flushed from any
caches upstream of (closer to the requester-side than) the PoPA 60.

Another property that can be achieved by attaching the GMPU 20 to the master side
is efficient sharing of memory between worlds. It may be desirable to grant a subset of N
worlds with shared access to a physical granule while preventing other worlds from
accessing it. This can be achieved by adding a “restrictive shared” semantic to the Granule
Protection Information, while forcing it to use a specific PAS TAG. As an example, the GPI
can indicate that a physical Granule is can accessed only by “Realm World” 88 and “Secure
World” 84 while being tagged with the PAS TAG of the Secure PAS 84.

An example of the above property is making fast changes in the visibility properties of
a specific physical granule. Consider a case where each world is assigned with a private
PAS that is only accessible to that World. For specific granules, the World can request to
make them visible to the Non-Secure world at any point in time by changing their GPI from
“exclusive” to “restrictive shared with Non-Secure world”, and without changing the PAS
association. This way, the visibility of that granule can be increased without requiring costly
cache-maintenance or data copy operations.

Figure 4 illustrates the concept of aliasing of the respective physical address spaces
onto physical memory provided in hardware. As described earlier, each of the domains 82,
84, 86, 88 has its own respective physical address space 61.

At the point when a physical address is generated by address translation circuitry 16,

the physical address has a value within a certain numeric range 62 supported by the system,

10

15

20

25

30

33

which is the same regardless of which physical address space is selected. However, in
addition to the generation of the physical address, the address translation circuitry 16 may
also select a particular physical address space (PAS) based on the current domain 14
and/or information in the page table entry used to derive the physical address. Alternatively,
instead of the address translation circuitry 16 performing the selection of the PAS, the
address translation circuitry (e.g. MMU) could output the physical address and the
information derived from the page table entry (PTE) which is used for selection of the PAS,
and then this information could be used by the PAS filter or GMPU 20 to select the PAS.

The selection of PAS for a given memory access request may be restricted
depending on the current domain in which the processing circuitry 10 is operating when

issuing the memory access request, according to rules defined in the following table:

Current Domain | Non-Secure Secure PAS Realm PAS Root PAS
PAS

Non-secure Accessible Inaccessible Inaccessible Inaccessible

Secure Accessible Accessible Inaccessible Inaccessible

Realm Accessible Inaccessible Accessible Inaccessible

Root Accessible Accessible Accessible Accessible

For those domains for which there are multiple physical address spaces available for
selection, the information from the accessed page table entry used to provide the physical
address is used to select between the available PAS options.

Hence, at the point when the PAS filter 20 outputs a memory access request to the
system fabric 24, 8 (assuming it passed any filtering checks), the memory access request is
associated with a physical address (PA) and a selected physical address space (PAS).

From the point of view of memory system components (such as caches,
interconnects, snoop filters etc.) which operate before the point of physical aliasing (PoPA)
60, the respective physical address spaces 61 are viewed as entirely separate ranges of
addresses which correspond to different system locations within memory. This means that,
from the point of view of the pre-PoPA memory system components, the range of addresses
identified by the memory access request is actually four times the size of the range 62 which
could be output in the address translation, as effectively the PAS identifier is treated as
additional address bits alongside the physical address itself, so that depending on which
PAS is selected the same physical address PAx can be mapped to a number of aliasing
physical addresses 63 in the distinct physical address spaces 61. These aliasing physical
addresses 63, all actually correspond to the same memory system location implemented in
physical hardware, but the pre-PoPA memory system components treat aliasing addresses
63 as separate addresses. Hence, if there are any pre-PoPA caches or snoop filters
allocating entries for such addresses, the aliasing addresses 63 would be mapped into

different entries with separate cache hit/miss decisions and separate coherency

10

15

20

25

30

35

34

management. This reduces likelihood or effectiveness of attackers using cache or coherency
side channels as a mechanism to probe the operation of other domains.

The system may include more than one PoPA 60 (e.g. as shown in Figure 14
discussed below). At each PoPA 60, the aliasing physical addresses are collapsed into a
single de-aliased address 65 in the system physical address space 64. The de-aliased
address 65 is provided downstream to any post-PoPA components, so that the system
physical address space 64 which actually identifies memory system locations is once more
of the same size as the range of physical addresses that could be output in the address
translation performed on the requester side. For example, at the PoPA 60 the PAS identifier
may be stripped out from the addresses, and for the downstream components the addresses
may simply be identified using the physical address value, without specifying the PAS.
Alternatively, for some cases where some completer-side filtering of memory access request
is desired, the PAS identifier could still be provided downstream of the PoPA 60, but may not
be interpreted as part of the address so that the same physical addresses appearing in
different physical address spaces 60 would be interpreted downstream of the PoPA as
referring to the same memory system location, but the supplied PAS identifier can still be
used for performing any completer-side security checks.

Figure 5 illustrates how the system physical address space 64 can be divided, using
the granule protection table 56, into chunks allocated for access within a particular
architectural physical address space 61. The granule protection table (GPT) 56 defines
which portions of the system physical address space 65 are allowed to be accessed from
each architectural physical address space 61. For example the GPT 56 may comprise a
number of entries each corresponding to a granule of physical addresses of a certain size
(e.g. a 4K page) and may define an assigned PAS for that granule, which may be selected
from among the non-secure, secure, realm and root domains. By design, if a particular
granule or set of granules is assigned to the PAS associated with one of the domains, then it
can only be accessed within the PAS associated with that domain and cannot be accessed
within the PASs of the other domains. However, note that while a granule allocated to the
secure PAS (for instance) cannot be accessed from within the root PAS, the root domain 82
is nevertheless able to access that granule of physical addresses by specifying in its page
tables the PAS selection information for ensuring that virtual addresses associated with
pages which map to that region of physical addressed memory are translated into a physical
address in the secure PAS instead of the root PAS. Hence, the sharing of data across
domains (to the extent permitted by the accessibility/inaccessibility rules defined in the table
described earlier) may be controlled at the point of selecting the PAS for a given memory

access request.

10

15

20

25

30

35

35

However, in some implementations, in addition to allowing a granule of physical
addresses to be accessed within the assigned PAS defined by the GPT, the GPT could use
other GPT attributes to mark certain regions of the address space as shared with another
address space (e.g. an address space associated with a domain of lower or orthogonal
privilege which would not normally be allowed to select the assigned PAS for that domain’s
access requests). This can facilitate temporary sharing of data without needing to change
the assigned PAS for a given granule. For example, in Figure 5 the region 70 of the realm
PAS is defined in the GPT as being assigned to the realm domain, so normally it would be
inaccessible from the non-secure domain 86 because the non-secure domain 86 cannot
select the realm PAS for its access requests. As the non-secure domain 26 cannot access
the realm PAS, then normally non-secure code could not see the data in region 70.
However, if the realm temporarily wishes to share some of its data in its assigned regions of
memory with the non-secure domain then it could request that the monitor code 29 operating
in the root domain 82 updates the GPT 56 to indicate that region 70 is to be shared with the
non-secure domain 86, and this may make region 70 also be accessible from the non-secure
PAS as shown on the left hand side of Figure 5, without needing to change which domain is
the assigned domain for region 70. If the realm domain has designated a region of its
address space as shared with the non-secure domain, then although the memory access
requests targeting that region which are issued from the non-secure domain may initially
specify the non-secure PAS, the PAS filter 20 may remap the PAS identifier of the request to
specify the realm PAS instead, so that downstream memory system components treat the
request as if it was issued from the realm domain all along. This sharing can improve
performance because the operations for assigning a different domain to a particular memory
region may be more performance intensive involving a greater degree of cache/TLB
invalidation and/or data zeroing in memory or copying of data between memory regions,
which may be unjustified if the sharing is only expected to be temporary.

Figure 6 is a flow diagram showing how to determine the current domain of
operation, which could be performed by the processing circuitry 10 or by address translation
circuitry 16 or the PAS filter 20. At step 100 it is determined whether the current exception
level 15 is EL3 and if so then at step 102 the current domain is determined to be the root
domain 82. If the current exception level is not EL3, then at step 104 the current domain is
determined to be one of the non-secure, secure and realm domains 86, 84, 88 as indicated
by at least two domain indicating bits 14 within an EL3 control register of the processor (as
the root domain is indicated by the current exception level being EL3, it may not be essential
to have an encoding of the domain indicating bits 14 corresponding to the root domain, so at

least one encoding of the domain indicating bits could be reserved for other purposes). The

10

15

20

25

30

35

36

EL3 control register is writable when operating at EL3 and cannot be written from other
exception levels EL2-ELO.

Figure 7 shows an example of page table entry (PTE) formats which can be used for
page table entries in the page table structures used by the address translation circuitry 16 for
mapping virtual addresses to physical addresses, mapping virtual addresses to intermediate
addresses or mapping intermediate addresses to physical addresses (depending on whether
translation is being performed in an operating state where a stage 2 translation is required at
all, and if stage 2 translation is required, whether the translation is a stage 1 translation or a
stage 2 translation). In general, a given page table structure may be defined as a multi-level
table structure which is implemented as a tree of page tables where a first level of the page
table is identified based on a base address stored in a translation table base address
register of the processor, and an index selecting a particular level 1 page table entry within
the page table is derived from a subset of bits of the input address for which the translation
lookup is being performed (the input address could be a virtual address for stage 1
translations of an intermediate address for stage 2 translations). The level 1 page table entry
may be a “table descriptor” 110 which provides a pointer 112 to a next level page table, from
which a further page table entry can then be selected based on a further subset of bits of the
input address. Eventually, after one or more lookups to successive levels of page tables, a
block or page descriptor PTE 114, 116, 118 may be identified which provides an output
address 120 corresponding to the input address. The output address could be an
intermediate address (for stage 1 translations performed in an operating state where further
stage 2 translation is also performed) or a physical address (for stage 2 translations, or
stage 1 translations when stage 2 is not needed).

To support the distinct physical address spaces described above, the page table
entry formats may, in addition to the next level page table pointer 112 or output address 120,
and any attributes 122 for controlling access to the corresponding block of memory, also
specify some additional state for use in physical address space selection.

For a table descriptor 110, the PTEs used by any domain other than the non-secure
domain 86 includes a non-secure table indicator 124 which indicates whether the next level
page table is to be accessed from the non-secure physical address space or from the
current domain’s physical address space. This helps to facilitate more efficient management
of page tables. Often the page table structures used by the root, realm or secure domains
24 may only need to define special page table entries for a portion of the virtual address
space, and for other portions the same page table entries as used by the non-secure domain
26 could be used, so by providing the non-secure table indicator 124 this can allow higher
levels of the page table structure to provide dedicated realm/secure table descriptors, while

at a certain point of the page table tree, the root realm or secure domains could switch to

10

15

20

25

30

35

37

using page table entries from the non-secure domain for those portions of the address space
where higher security is not needed. Other page table descriptors in other parts of the tree of
page tables could still be fetched from the relevant physical address space associated with
the root, realm or the secure domain.

On the other hand, the block/page descriptors 114, 116, 118 may, depending on
which domain they are associated with, include physical address space selection information
126. The non-secure block/page descriptors 118 used in the non-secure domain 86 do not
include any PAS selection information because the non-secure domain is only able to
access the non-secure PAS. However for the other domains the block/page descriptor 114,
116 includes PAS selection information 126 which is used to select which PAS to translate
the input address into. For the root domain 22, EL3 page table entries may have PAS
selection information 126 which includes at least 2 bits to indicate the PAS associated with
any of the 4 domains 82, 84, 86, 88 as the selected PAS into which the corresponding
physical address is to be translated. In contrast, for the realm and secure domains, the
corresponding block/page descriptor 116 need only include one bit of PAS selection
information 126 which, for the realm domain, selects between the realm and non-secure
PASs, and for the secure domain selects between the secure and non-secure PASs. To
improve efficiency of circuit implementation and avoid increasing the size of page table
entries, for the realm and secure domains the block/page descriptor 116 may encode the
PAS selection information 126 at the same positon within the PTE, regardless of whether the
current domain is realm or secure, so that the PAS selection bit 126 can be shared.

Hence, Figure 8 is a flow diagram showing a method of selecting the PAS based on
the current domain and the information 124, 126 from the block/page PTE used in
generating the physical address for a given memory access request. The PAS selection
could be performed by the address translation circuitry 16, or if the address translation
circuitry forwards the PAS selection information 126 to the PAS filter 20, performed by a
combination of address translation circuitry 16 and the PAS filter 20.

At step 130 in Figure 8, the processing circuitry 10 issues a memory access request
specifying a given virtual address (VA) as a target VA. At step 132 the address translation
circuitry 16 looks up any page table entries (or cached information derived from such page
table entries) in its TLB 18. If any required page table information is not available, address
translation circuitry 16 initiates a page table walk to memory to fetch the required PTEs
(potentially requiring a series of memory accesses to step through respective levels of the
page table structure and/or multiple stages of address translation for obtaining mappings
from a VA to an intermediate address (IPA) and then from an IPA to a PA). Note that any
memory access requests issued by the address translation circuitry 16 in the page table

walk operations may themselves be subject to address translation and PAS filtering, so the

10

15

20

25

30

35

38

request received at step 130 could be a memory access request issued to request a page
table entry from memory. Once the relevant page table information has been identified, the
virtual address is translated into a physical address (possibly in two stages via an IPA). At
step 134 the address translation circuitry 16 or the PAS filter 20 determines which domain is
the current domain, using the approach shown in Figure 6.

If the current domain is the non-secure domain then at step 136 the output PAS
selected for this memory access request is the non-secure PAS.

If the current domain is the secure domain, then at step 138 the output PAS is
selected based on the PAS selection information 126 which was included in the block/page
descriptor PTE which provided the physical address, where the output PAS will be selected
as either secure PAS or non-secure PAS.

If the current domain is the realm domain, then at step 140 the output PAS is
selected based on the PAS selection information 126 included in the block/page descriptor
PTE from which the physical address was derived, and in this case the output PAS is
selected as either the realm PAS or the non-secure PAS.

If at step 134 the current domain is determined to be the root domain, then at step
142 the output PAS is selected based on the PAS selection information 126 in the root
block/page descriptor PTE 114 from which the physical address was derived. In this case
the output PAS is selected as any of the physical address spaces associated with the root,
realm, secure and non-secure domains.

Figure 9 illustrates an example of an entry of the GPT 56 for a given granule of
physical addresses. The GPT entry 150 includes an assigned PAS identifier 152 identifying
the PAS assigned to that granule of physical addresses and optionally incudes further
attributes 154, which could for example include the sharing attribute information 156
described earlier which enables the granule of physical addresses to become visible in one
or more other PASs other than the assigned PAS. The setting of the sharing attribute
information 156 could be performed by the root domain on request from code running in the
domain associated with the assigned PAS. Also, the attributes could include a pass-through
indicator field 158 which indicates whether or not the GPT checks (for determining whether
the selected PAS for a memory access request is allowed to access that granule of physical
addresses) should be performed on the requester-side by the PAS filter 20 or by completer-
side filtering circuitry at the completer device side of the interconnect as will be discussed
further below. If the pass-through indicator 158 has a first value, then the requester-side
filtering checks may be required at the PAS filter 20 on the requester side, and if these fail
then the memory access request may be blocked and a fault may be signalled. However, if
the pass through indicator 158 has a second value, then the requester-side filtering checks

based on the GPT 56 may not be needed for memory access requests specifying a physical

10

15

20

25

30

35

39

address in the granule of physical addresses corresponding to that GPT entry 150, and in
this case the memory access request may be passed through to a cache 24 or interconnect
8 regardless of checking whether the selected PAS is one of the allowed PASs allowed to
access that granule of physical addresses, with any such PAS-filtering checks then being
performed later at the completer-side instead.

Figure 10 is a flow diagram showing the requester-side PAS filtering checks
performed by the PAS filter 20 at the requester side of the interconnect 8. At step 170 the
PAS filter 20 receives the memory access request associated with a physical address and
an output PAS which may be selected as shown in Figure 8 described earlier.

At step 172 the PAS filter 20 obtains the GPT entry corresponding to the specified
PA, either from the granule protection information cache 22 if available, or by issuing a
request to memory to fetch the required GPT entry from a table structure stored in memory.
Once the GPT entry needed has been obtained, then at step 174 the PAS filter determines
whether the output PAS selected for the memory access request is the same as the
assigned PAS 152 defined in the GPT entry obtained at step 172. If so, then at step 176 the
memory access request (specifying the PA and the output PAS) can be allowed to be
passed to the cache 24 or the interconnect 8.

If the output PAS is not the assigned PAS, then at step 178 the PAS filter determines
whether the output PAS is indicated in the sharing attribute information 156 from the
obtained GPT entry as an allowed PAS allowed to access the granule of addresses
corresponding to the specified PA. If so, then again at step 176 the memory access request
is allowed to be passed to the cache 24 or the interconnect 8. The sharing attribute
information could be encoded as a unique bit (or set of bits) within the GPT entry 150, or
could be encoded as one or more encodings of a field of the GPT entry 150 for which other
encodings of that same field may indicate other information. If step 178 determines that the
sharing attribute indicates that the output PAS other than the assigned PAS is allowed to
access the PA, then at step 176 the PAS specified in the memory access request passed to
the cache 24 or the interconnect 8 is the assigned PAS, not the output PAS. The PAS filter
20 transforms the PAS specified by the memory access request to match the assigned PAS
so that downstream memory system components treat it the same as requests issued
specifying the assigned PAS.

If the output PAS is not indicated in the sharing attribute information 156 as being
allowed to access the specified physical address (or alternatively, in an implementation
which does not support the sharing attribute information 156, step 178 is skipped) then at
step 180 it is determined whether the pass through indicator 158 in the obtained GPT entry
for the target physical address identifies that the memory access request can be passed

through to the cache 24 or the interconnect 8 regardless of the checks performed at the

10

15

20

25

30

35

40

requester-side PAS filter 20, and if the pass-through indicator is specified then at step 176
and the memory access request is again allowed to proceed (specifying the output PAS as
the PAS associated with the memory access request). Alternatively, if none of the checks at
steps 174, 178 and 180 identify that the memory access request is allowed, then at step 182
the memory access request is blocked. Hence the memory access request is not passed to
the cache 24 or to the interconnect 8, and a fault may be signalled which may trigger
exception processing to deal with the fault.

While steps 174, 178, 180 are shown sequentially in Figure 10, these steps could
also be implemented in parallel or in a different order if desired. Also it would be appreciated
that steps 178 and 180 are not essential and some implementations may not support use of
the sharing attribute information 156 and/or the pass through indicator 158.

Figure 11 summarises the operation of the address translation circuitry 16 and PAS
filter. The PAS filtering 20 can be regarded as an additional stage 3 check performed after
the stage 1 (and optionally stage 2) address translations performed by the address
translation circuitry. Note also that the EL3 translations are based on page table entries
which provide two bits of address based selection information (labelled NS,NSE in the
example of Figure 11), while a single bit of selection information “NS” is used to select the
PAS in the other states. The security state indicated in Figure 11 as input to the granule
protection check refers to the Domain ID identifying the current domain of the processing
element 4.

Figure 12 is a flow diagram showing processing of a stage 3 lookup cache invalidate
instruction which can be used by the monitor code 29 operating in the root domain 82 to
trigger invalidation of any lookup cache entries which depend on GPT entries associated
with a particular physical address. This can be useful when the root domain is changing the
allocation of which physical address space a given system PA is assigned to, so that any
lookup caches 22 will not retain out of date information.

Hence, at step 200 processing circuitry 10 within a given processing element
(requester device) 4 may execute the stage 3 lookup cache invalidation instruction. The
instruction specifies a physical address.

At step 202, in response to the stage 3 lookup cache invalidate instruction the
processing circuitry 10 may check whether the current exception level is EL3 and if not may
at step 204 reject the instruction and/or signal an exception (such as an undefined
instruction exception). This restricts the execution of the stage 3 lookup cache invalidate
instruction to the monitor code 29 associated with the root domain to prevent malicious
parties triggering loss of performance by forcing invalidation of granule protection information

from lookup caches 22 as triggered by other exception levels.

10

15

20

25

30

35

41

If the current exception level is EL3 then, at step 206, in response to the instruction
executed at step 200 the processing element issues at least one lookup cache invalidation
command which is sent to any lookup caches 18, 22 which may contain information
depending on a granule protection table entry associated with the physical address identified
by the instruction. These caches may include not only the granule protection information
cache 22 as shown in Figure 1, but also in some implementations a combined TLB/granule
protection cache which combines information from the page table structures and the GPT
into a single entry. For such combined TLB/GPT caches, the combined cache may require
the ability to be looked up both by virtual address and by physical address.

At step 208, in response to the issued command, the GPT caches 22 or combined
TLB/GPT caches invalidate any entries which depend on granule protection information from
a GPT entry associated with a granule of physical addresses corresponding to the physical
address specified by the lookup cache invalidation command.

As caches within the memory system may tag entries with an identification of an
associated PAS for those caches located prior to the PoPA, then if the root domain code 29
changes which PAS is associated with a certain granule of physical addresses by updating
the GPT 56, there could still be data cached in pre-PoPA caches which is tagged with the
wrong PAS for that granule of physical addresses. To prevent subsequent accesses issued
after the GPT update hitting on cache entries which should no longer be accessible to the
domain which issues those requests, it can be useful to provide an instruction which ensures
that any cached entries associated with a particular physical address are invalidated in any
caches which are prior to the PoPA 60. This instruction may be a different instruction to
other types of cache invalidation instruction which may act on caches within a different
subset of the memory system, such as caches prior to the point of coherency or caches local
to a particular processing element. Hence, the processing circuitry may support a cache-
invalidate-to-PoPA instruction which is distinguished in terms of the scope over which the
invalidations are observed by the caches in the system, with that scope corresponding to the
portion of the memory system upstream of the POPA. That is, for this instruction the PoPA is
the limit to the extent to which the invalidation has to be observed by caches.

Figure 13 is a flow diagram showing processing of the cache-invalidate-to-PoPA
instruction. At step 220 of the cache-invalidate-to-PoPA instruction is executed by the
processing circuitry 10 of a given requester device 4. The instruction specifies a virtual
address, and at step 222 this virtual address is mapped to a physical address. However, in
some cases the execution of the instruction for invalidated caches up to the PoPA could be
restricted for execution only in EL3 similar to the instruction shown in Figure 12. At step 224
the processing element which executed the instruction issues invalidation commands

specifying the physical address, with those commands being sent to any pre-PoPA caches

10

15

20

25

30

35

42

24 within the system. This may include caches upstream of the PoPA not only within the
requester device 4 but also within the interconnect 8 or within other requester devices 4 or
other memory system components which are located at a point where the distinct physical
address spaces 61 are treated as separate ranges of addressed memory locations.

The cache-invalidate-to-PoPA instruction could in some cases be a “clean and
invalidate” form of the instruction, which not only requests that data associated with the
specified PA is invalidated from the pre-PoPA caches, but also requests that prior to
invalidation the data is cleaned by writing back any dirty data to a location beyond the PoPA
60. Hence, at step 226, if the instruction is a clean and invalidate form of the instruction then
the pre-PoPA caches receiving the command trigger a write back of the dirty data from any
entries associated with the specified physical address. This data may be written to a cache
beyond the PoPA or to main memory. If the instruction was not a clean and invalidate form
of the instruction, or if clean and invalidate forms of the instruction are not supported then
step 226 can be omitted and the method can proceed straight to step 228, which would also
be performed if step 226 is performed. At step 228 the pre-PoPA caches which receive the
commands at step 224 invalidate their entries which were associated with a specified
physical address. Cached entries associated with a specified physical address are
invalidated regardless of which PAS tag is associated with those entries.

Hence, the cache-invalidate-to-PoPA instruction can be used to ensure that the
caches do not continue to tag entries associated with a given physical address with the
wrong PAS identifier following an update of the GPT.

Figure 14 shows a more detailed example of a data processing system which may
implement some of the techniques discussed above. The elements which are the same as
in earlier examples are illustrated with the same reference numerals. In the example of
Figure 14 the processing elements 4 are shown in more detail, in that in addition to the
processing circuitry 10, address translation circuitry 16, TLB 18 and PAS filter 20, the caches
24 are shown in more detail including a level 1 instruction cache, level 1 data cache, level 2
cache, and optionally a shared level 3 cache 24 shared between processing elements. An
interrupt controller 300 may control handling of interrupts by the respective processing
elements.

As shown in Figure 14, the processing elements 4, which are capable of executing
program instructions to trigger accesses to memory, are not the only type of requesting
device which may be provided with a requester-side PAS filter 20. In other examples, a
system MMU 310 (which is provided for providing address translation functionality for
requesting devices 312, 314 which do not support their own address translation functionality,
such as an on-chip device 312 such as a network interface controller or display controller, or

off-chip device 314 which may communicate with the system via a bus) may be provided

10

15

20

25

30

35

43

with a PAS filter 20 to perform requester-side checking of GPT entries the same as for the
PAS filter 20 in the processing elements 4. Other requesting devices could include a debug
access port 316 and a control processor 318 which may again have PAS filters 20
associated with them to check whether memory access issued by the requesting devices
316, 318 to a particular physical address space are allowed, given the PAS assignments
defined in the GPT 56.

The interconnect 8 is shown in more detail in Figure 14 as a coherent interconnect 8,
which as well as the routing fabric 320 also includes a snoop filter 322 for managing
coherency between caches 24 in the respective processing elements, and one or more
system caches 324 which may perform caching of shared data shared between requesting
devices. The snoop filter 322 and system caches 324 may be located upstream of the PoOPA
60 and so may tag their entries using the PAS identifier selected by the MMU 16, 310 for
particular masters. Requesting devices 316, 318 not associated with an MMU could be
assumed by default to always issue requesting a particular domain, such as the non-secure
domain (or the root domain if they can be trusted).

Figure 14 shows, as another example of a pre-PoPA component which treats aliasing
physical addresses in the respective PASs as if they were referring to different address
locations, a memory protection engine (MPE) 330 provided between the interconnect 8 and
a given memory controller & for controlling access to off-chip memory 340. The MPE 330
may be responsible for encrypting data written to off-chip memory 340 to maintain
confidentiality, and decrypting the data when read back. Also the MPE could protect against
tampering of data stored in off-chip memory by generating integrity metadata when writing
data to memory, and using the metadata when the data is read back from off-chip memory to
verify whether the data has changed. When encrypting data or generating hashes for
memory integrity, different keys could be used depending on which physical address space
is being accessed, even if accessing aliasing physical addresses which actually correspond
to the same location in the off-chip memory 340. This improves security by further isolating
the data associated with different domains of operation.

In this example, the PoPA 60 is between the memory protection engine 330 and the
memory controller 6, so that by the time requests reach the memory controller 6 the physical
addresses are no longer treated as mapping to different physical locations in memory 340
depending on the physical address space from which they were accessed.

Figure 14 shows another example of a completer device 6, which may be a
peripheral bus or non-coherent interconnect used to communicate with peripherals 350 or
regions of on-chip memory 360 (e.g. implemented as static random access memory
(SRAM)). Also, the peripheral bus or non-coherent interconnect 6 could be used to

communicate with secure elements 370 such as cryptographic units for performing

10

15

20

25

30

35

44

cryptographic processing, a random number generator 372 or certain fuses 374 which store
statically hard wired information. Also various power/reset/debug controllers 380 may be
accessible through the peripheral bus or the non-coherent interconnect 6.

For the on-chip SRAM 360, it may be useful to provide a slave-side (completer-side)
PAS filter 400 which can perform completer-side filtering of memory accesses based on
completer-side protection information which defines which physical address spaces are
allowed to access a given block of physical addresses. This completer-side information may
be more coarsely defined than the GPT used by the requester-side PAS filters 20. For
example, the slave-side information could simply indicate that an entire SRAM unit 361 could
be dedicated for use by the realm domain, another SRAM unit 362 could be dedicated for
use by the root domain, and so on for the other domains. Hence, relatively coarsely defined
blocks of physical addresses could be directed to the different SRAM units. This completer-
side protection information could be statically defined by the boot-loader code loading in
information to the completer-side PAS filter at boot time that cannot be changed at run time,
so it is not as flexible as the GPTs used by the requester-side PAS filters 20. However, for
use cases where the division of physical addresses into particular regions accessible to each
domain is known at boot time and will not change, and do not require a fine-grained
partitioning, it can be more efficient to use the slave-side PAS filter 400 instead of the PAS
filter 20 on the requester side, as this may allow the power and performance cost of
obtaining the GPT entry and comparing the assigned PAS and sharing attribute information
with information for the current memory access request to be eliminated on the requester
side. Also, if the pass-through indicator 158 can be indicated in a top-level GPT entry (or
other table descriptor entry at a level other than the final level) in a multi-level GPT structure
then accesses to further levels of the GPT structure (which may be performed to find more
fine-grained information on the assigned PAS for requests to be subject to the requester-
side checking) can be avoided for requests which target one of the regions of physical
addresses which are mapped to the on-chip memory 360 which is policed by the completer-
side PAS filter 400.

Hence, supporting a hybrid approach enabling both requester-side and completer-
side checking of protection information can be useful for performance and power efficiency.
The system designer may define which approach should be taken for particular regions of
memory.

Figure 15 illustrates a simulator implementation that may be used. Whilst the earlier
described embodiments implement the present invention in terms of apparatus and methods
for operating specific processing hardware supporting the techniques concerned, it is also
possible to provide an instruction execution environment in accordance with the

embodiments described herein which is implemented through the use of a computer

10

15

20

25

30

35

45

program. Such computer programs are often referred to as simulators, insofar as they
provide a software based implementation of a hardware architecture. Varieties of simulator
computer programs include emulators, virtual machines, models, and binary translators,
including dynamic binary translators. Typically, a simulator implementation may run on a
host processor 430, optionally running a host operating system 420, supporting the simulator
program 410. In some arrangements, there may be multiple layers of simulation between
the hardware and the provided instruction execution environment, and/or multiple distinct
instruction execution environments provided on the same host processor. Historically,
powerful processors have been required to provide simulator implementations which execute
at a reasonable speed, but such an approach may be justified in certain circumstances, such
as when there is a desire to run code native to another processor for compatibility or re-use
reasons. For example, the simulator implementation may provide an instruction execution
environment with additional functionality which is not supported by the host processor
hardware, or provide an instruction execution environment typically associated with a
different hardware architecture. An overview of simulation is given in “Some Efficient
Architecture Simulation Techniques”, Robert Bedichek, Winter 1990 USENIX Conference,
Pages 53 - 63.

To the extent that embodiments have previously been described with reference to
particular hardware constructs or features, in a simulated embodiment, equivalent
functionality may be provided by suitable software constructs or features. For example,
particular circuitry may be implemented in a simulated embodiment as computer program
logic. Similarly, memory hardware, such as a register or cache, may be implemented in a
simulated embodiment as a software data structure. In arrangements where one or more of
the hardware elements referenced in the previously described embodiments are present on
the host hardware (for example, host processor 430), some simulated embodiments may
make use of the host hardware, where suitable.

The simulator program 410 may be stored on a computer-readable storage medium
(which may be a non-transitory medium), and provides a program interface (instruction
execution environment) to the target code 400 (which may include applications, operating
systems and a hypervisor) which is the same as the interface of the hardware architecture
being modelled by the simulator program 410. Thus, the program instructions of the target
code 400 may be executed from within the instruction execution environment using the
simulator program 410, so that a host computer 430 which does not actually have the
hardware features of the apparatus 2 discussed above can emulate these features. This
can be useful, for example, for allowing testing of target code 400 being developed for a new

version of a processor architecture before hardware devices actually supporting that

10

15

20

25

30

35

46

architecture are yet available, as the target code can be tested by running within the
simulator executing on a host device which does not support that architecture.

The simulator code includes processing program logic 412 which emulates the
behaviour of the processing circuitry 10, e.g. including instruction decoding program logic
which decodes instructions of the target code 400 and maps the instructions to
corresponding sequences of instructions in the native instruction set supported by the host
hardware 430 to execute functions equivalent to the decoded instructions. The processing
program logic 412 also simulates processing of code in different exception levels and
domains as described above. Register emulating program logic 413 maintains a data
structure in a host address space of the host processor, which emulates architectural
register state defined according to the target instruction set architecture associated with the
target code 400. Hence, instead of such architectural state being stored in hardware
registers 12 as in the example of Figure 1, it is instead stored in the memory of the host
processor 430, with the register emulating program logic 413 mapping register references of
instructions of the target code 400 to corresponding addresses for obtaining the simulated
architectural state data from the host memory. This architectural state may include the
current domain indication 14 and current exception level indication 15 described earlier.

The simulation code includes address translation program logic 414 and filtering
program logic 416 which emulate the functionality of the address translation circuitry 16 and
PAS filter 20 respectively, with reference to the same page table structures and GPT 56 as
described earlier. Hence, the address translation program logic 414 translates virtual
addresses specified by the target code 400 into simulated physical addresses in one of the
PASs (which from the point of view of the target code refer to physical locations in memory),
but actually these simulated physical addresses are mapped onto the (virtual) address space
of the host processor by address space mapping program logic 415. The filtering program
logic 416 performs a lookup of granule protection information to determine whether to allow
memory accesses triggered by the target code to proceed, in the same way as the PAS filter
described above.

Further examples are set out in the following clauses:

@) An apparatus comprising: address translation circuitry to translate a target virtual
address specified by a memory access request issued by requester circuitry into a target
physical address; and requester-side filtering circuitry to perform a granule protection lookup
based on the target physical address and a selected physical address space associated with
the memory access request, to determine whether to pass the memory access request via
an interconnect to a completer device for servicing the memory access request, where said
selected physical address space is one of a plurality of physical address spaces; in which: in

the granule protection lookup, the requester-side filtering circuitry is configured to: obtain

10

15

20

25

30

35

47

granule protection information corresponding to a target granule of physical addresses
including the target physical address, the granule protection information indicative of at least
one allowed physical address space associated with the target granule; and block the
memory access request when the granule protection information indicates that the selected
physical address space is not one of said at least one allowed physical address space.

2 The apparatus according to clause (1), in which the granule protection information
specifies an assigned physical address space assigned to the target granule of physical
addresses; and the at least one allowed physical address space includes at least the
assigned physical address space.

3) The apparatus according to clause (2), in which the granule protection information
also comprises sharing attribute information indicative of whether at least one other physical
address space other than the assigned physical address space is one of said at least one
allowed physical address space.

4) The apparatus according to clause (3), in which when the granule protection lookup
determines that the selected physical address space is a physical address space other than
the assigned physical address space which is one of said at least one allowed physical
address space indicated by the sharing attribute information, the requester-side filtering
circuitry is configured to allow the memory access request to be passed to the cache or
interconnect specifying the assigned physical address space instead of the selected physical
address space.

5) The apparatus according to any preceding clause, in which the requester-side
filtering circuitry is configured to perform the granule protection lookup in at least one lookup
cache configured to cache the granule protection information.

®) The apparatus according to clause (5), in which the at least one lookup cache is
configured to store at least one combined translation-granule protection entry specifying
information dependent on both the granule protection information and at least one page
table entry used by the address translation circuitry for mapping the target virtual address to
the target physical address.

) The apparatus according to any of clauses (5) and (6), in which the at least one
lookup cache is responsive to at least one lookup cache invalidation command specifying an
invalidation target physical address to invalidate lookup cache entries storing information
dependent on granule protection information associated with a granule of physical
addresses including the invalidation target physical address.

(8) The apparatus according to any preceding clause, comprising a point of physical
aliasing (PoPA) memory system component configured to de-alias a plurality of aliasing
physical addresses from different physical address spaces which correspond to the same

memory system resource, to map any of the plurality of aliasing physical addresses to a

10

15

20

25

30

35

48

de-aliased physical address to be provided to at least one downstream memory system
component; and at least one pre-PoPA memory system component provided upstream of
the PoPA memory system component, where the at least one PoPA memory system
component is configured to treat the aliasing physical addresses from different physical
address spaces as if the aliasing physical addresses correspond to different memory system
resources.

9) The apparatus according to clause (8), in which the aliasing physical addresses are
represented using the same physical address value in the different physical address spaces.
(10) The apparatus according to any of clauses (8) and (9), in which said at least one pre-
PoPA memory system component comprises at least one pre-PoPA cache; and the
apparatus comprises processing circuitry responsive to a cache-invalidate-to-PoPA
instruction specifying a target address, to issue at least one invalidation command to request
that said at least one pre-PoPA cache invalidates one or more entries associated with a
target physical address value corresponding to the target virtual address.

(11) The apparatus according to any preceding clause, in which at least one of the
address translation circuitry and the requester-side filtering circuitry is configured to select
the selected physical address space based at least on a current domain of operation of the
requester circuitry from which the memory access request was issued, the current domain
comprising one of a plurality of domains of operation.

(12) The apparatus according to clause (11), in which the address translation circuitry is
configured to translate the target virtual address to the target physical address based on at
least one page table entry; and at least when the current domain is one of a subset of the
plurality of domains, said at least one of the address translation circuitry and the requester-
side filtering circuitry is configured to select the selected physical address space based on
the current domain and physical address space selection information specified in said at
least one page table entry.

(13) The apparatus according to any of clauses (11) and (12), in which the plurality of
domains comprise at least a secure domain associated with a secure physical address
space, and a less secure domain associated with a less secure physical address space; the
less secure physical address space is selectable as the selected physical address space
when the current domain is the less secure domain or the secure domain; and the secure
physical address space is selectable as the selected physical address space when the
current domain is the secure domain, and is prohibited from being selected as the selected
physical address space when the current domain is the less secure domain.

(14) The apparatus according to clause (13), in which the plurality of domains also
comprise a further domain associated with a further physical address space; the less secure

physical address space is selectable as the selected physical address space when the

10

15

20

25

30

35

49

current domain is the further domain; the further physical address space is selectable as the
selected physical address space when the current domain is the further domain but is
prohibited from being selected as the selected physical address space when the current
domain is the secure domain or the less secure domain; and the secure address space is
prohibited from being selected as the selected physical address space when the current
domain is the further domain.

(15) The apparatus according to any of clauses (11) to (14), in which the plurality of
domains include a root domain for managing switching between other domains, the root
domain being associated with a root physical address space.

(16) The apparatus according to clause (15), in which at least one of: all of the physical
address spaces are selectable as the selected physical address space when the current
domain is the root domain; and the root physical address space is prohibited from being
selected as the selected physical address space when the current domain is a domain other
than the root domain.

(17) The apparatus according to any of clauses (15) and (16), in which the granule
protection information is modifiable by software executed in the root domain.

(18) The apparatus according to any preceding clause, in which the granule protection
information is defined at page-level granularity.

(19) The apparatus according to any preceding clause, in which the granule protection
information is dynamically updatable at run-time.

(20) The apparatus according to any preceding clause, in which when the granule
protection information specifies a pass-through indicator indicating that the at least one
allowed physical address space is to be resolved by completer-side filtering circuitry, the
requester-side filtering circuitry is configured to determine whether to pass the memory
access request to the interconnect independent of a check of whether the selected physical
address space is one of said at least one allowed physical address space.

(21) The apparatus according to any preceding clause, comprising completer-side filtering
circuitry responsive to a memory access request received from the interconnect specifying a
target physical address and a selected physical address space, to perform a completer-side
protection lookup of completer-side protection information based on the target physical
address and the selected physical address space, to determine whether the memory access
request is allowed to be serviced by the completer device.

(22) A data processing method comprising: translating a target virtual address specified
by a memory access request issued by requester circuitry into a target physical address; and
at requester-side filtering circuitry, performing a granule protection lookup based on the
target physical address and a selected physical address space associated with the memory

access request, to determine whether to pass the memory access request via an

10

15

20

25

30

35

50

interconnect to a completer device for servicing the memory access request, where said
selected physical address space is one of a plurality of physical address spaces; in which: in
the granule protection lookup, the requester-side filtering circuitry: obtains granule protection
information corresponding to a target granule of physical addresses including the target
physical address, the granule protection information indicative of at least one allowed
physical address space associated with the target granule; and blocks the memory access
request when the granule protection information indicates that the selected physical address
space is not one of said at least one allowed physical address space.

(23) A computer program for controlling a host data processing apparatus to provide an
instruction execution environment for execution of target code; the computer program
comprising: address translation program logic to translate a target simulated virtual address
specified by a memory access request into a target simulated physical address; and filtering
program logic to perform a granule protection lookup based on the target simulated physical
address and a selected simulated physical address space associated with the memory
access request, to determine whether the memory access request can be serviced, where
said selected simulated physical address space is one of a plurality of simulated physical
address spaces; in which: in the granule protection lookup, the filtering program logic is
configured to: obtain granule protection information corresponding to a target granule of
simulated physical addresses including the target simulated physical address, the granule
protection information indicative of at least one allowed simulated physical address space
associated with the target granule; and prevent the memory access request being serviced
when the granule protection information indicates that the selected simulated physical
address space is not one of said at least one allowed simulated physical address space.

(24) A computer-readable storage medium storing the computer program of clause 23.

»

In the present application, the words “configured to...” are used to mean that an
element of an apparatus has a configuration able to carry out the defined operation. In this
context, a “configuration” means an arrangement or manner of interconnection of hardware
or software. For example, the apparatus may have dedicated hardware which provides the
defined operation, or a processor or other processing device may be programmed to perform
the function. “Configured to” does not imply that the apparatus element needs to be
changed in any way in order to provide the defined operation.

Although illustrative embodiments of the invention have been described in detail
herein with reference to the accompanying drawings, it is to be understood that the invention
is not limited to those precise embodiments, and that various changes and modifications can
be effected therein by one skilled in the art without departing from the scope of the invention

as defined by the appended claims.

10

15

20

25

30

35

51

CLAIMS

1. An apparatus comprising:

processing circuitry to perform processing in one of at least three domains; and

address translation circuitry to translate a virtual address of a memory access
performed from a current domain to a physical address in one of a plurality of physical
address spaces selected based at least on the current domain; in which:

the at least three domains include a root domain for managing switching between a
plurality of other domains of the at least three domains; and

the plurality of physical address spaces include a root physical address space
associated with the root domain, separate from physical address spaces associated with the

plurality of other domains.

2. The apparatus according to claim 1, in which the root physical address space is

exclusively accessible from the root domain.

3. The apparatus according to any of claims 1 and 2, in which all of the plurality of

physical address spaces are accessible from the root domain.

4 The apparatus according to any preceding claim, in which the plurality of other
domains comprise at least. a secure domain associated with a secure physical address
space, and a less secure domain associated with a less secure physical address space;

the less secure physical address space is accessible from the less secure domain,
the secure domain and the root domain; and

the secure physical address space is accessible from the secure domain and the root

domain and is inaccessible from the less secure domain.

5. The apparatus according to claim 4, in which the plurality of other domains also
comprise a further domain associated with a further physical address space;

the less secure physical address space is also accessible from the further domain;
and

the further physical address space is accessible from the further domain and the root

domain and is inaccessible from the less secure domain.

6. The apparatus according to claim 5, in which the further physical address space is
inaccessible from the secure domain; and

the secure physical address space is inaccessible from the further domain.

10

15

20

25

30

35

52

7. The apparatus according to any of claims 4 to 6, in which the less secure physical

address space is accessible from all of said at least three domains.

8. The apparatus according to any preceding claim, in which the address translation
circuitry is configured to translate the virtual address to the physical address based on at
least one page table entry; and

at least when the current domain is one of a subset of said at least three domains,
the address translation circulitry is configured to select said one of said plurality of physical
address spaces based on the current domain and physical address space selection

information specified in said at least one page table entry.

9. The apparatus according to claim 8, in which when the current domain is the root
domain, the address translation circuitry is configured to translate the virtual address to the
physical address based on a root-domain page table entry for which the physical address
space selection information comprises at least two bits of physical address space selection
information for selecting between at least three physical address spaces accessible from the

root domain.

10. The apparatus according to claim 6, in which the address translation circuitry is
configured to translate the virtual address to the physical address based on at least one
page table entry;

when the current domain is the secure domain, the address translation circuitry is
configured to select whether said one of said plurality of physical address spaces is the
secure physical address space or the less secure physical address space based on a
physical address space selection indicator specified in the at least one page table entry; and

when the current domain is the further domain, the address translation circuitry is
configured to select whether said one of said plurality of physical address spaces is the
further physical address space or the less secure physical address space based on a

physical address space selection indicator specified in the at least one page table entry.

11. The apparatus according to claim 10, in which the physical address space selection
indicator is encoded at a same position within the at least one page table entry regardless of

whether the current domain is the secure domain or the further domain.

12. The apparatus according to any preceding claim, comprising at least one pre-PoPA

memory system component provided upstream of a point of physical aliasing (PoPA), to

10

15

20

25

30

35

53

treat aliasing physical addresses from different physical address spaces which correspond to
the same memory system resource as if the aliasing physical addresses correspond to

different memory system resources.

13. The apparatus according to claim 12, in which the aliasing physical addresses
comprise physical addresses represented using the same physical address value in the

different physical address spaces.

14. The apparatus according to any of claims 12 and 13, comprising a POPA memory
system component configured to de-alias the plurality of aliasing physical addresses to
obtain a de-aliased physical address to be provided to at least one downstream memory

system component.

15. The apparatus according to any of claims 12 to 14, in which said at least one pre-
PoPA memory system component comprises at least one pre-PoPA cache; and

in response to a cache-invalidate-to-PoPA instruction specifying a target address, the
processing circuitry is configured to issue at least one invalidation command to request that
said at least one pre-PoPA cache invalidates one or more entries associated with a target

physical address value corresponding to the target address.

16. The apparatus according to claim 15, in which when the processing circuitry issues
the at least one invalidation command, at least one post-PoPA cache located downstream of
the PoPA is allowed to retain one or more entries associated with the target physical

address value.

17. The apparatus according to any of claims 15 and 16, in which in response to the at
least one invalidation command, the at least one pre-PoPA cache is configured to invalidate
the one or more entries associated with the target physical address value regardless of

which of the plurality of physical address spaces is associated with said one or more entries.

18. The apparatus according to any preceding claim, comprising memory encryption
circuitry responsive to a memory access request specifying a selected physical address
space and a target physical address within the selected physical address space, when the
target physical address is within a protected address region, to encrypt or decrypt data
associated with the protected region based on one of a plurality of encryption keys selected

depending on the selected physical address space.

10

15

20

25

54

19. A data processing method comprising:

performing processing in one of at least three domains; and

translating a virtual address of a memory access performed from a current domain to
a physical address in one of a plurality of physical address spaces selected based at least
on the current domain; in which:

the at least three domains include a root domain for managing switching between a
plurality of other domains of the at least three domains; and

the plurality of physical address spaces include a root physical address space
associated with the root domain, separate from physical address spaces associated with the

plurality of other domains.

20. A computer program for controlling a host data processing apparatus to provide an
instruction execution environment for execution of target code; the computer program
comprising:

processing program logic to simulate processing of the target code in one of at least
three domains; and

address translation program logic to translate a virtual address of a memory access
performed from a current domain to a physical address in one of a plurality of simulated
physical address spaces selected based at least on the current domain; in which:

the at least three domains include a root domain for managing switching between a
plurality of other domains of the at least three domains; and

the plurality of simulated physical address spaces include a root simulated physical
address space associated with the root domain, separate from simulated physical address

spaces associated with the plurality of other domains.

21. A computer-readable storage medium storing the computer program of claim 20.

55

Intellectual
Property
Office

Application No: GB2004257.8 Examiner: Dr Maria Lada
Claims searched: 1-21 Date of search: 23 September 2020

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:
Category |Relevant | Identity of document and passage or figure of particular relevance
to claims

XY X:1-7 | US2014/0380425 Al
and 12- | (LOCKET) [see whole document and note figs 2, 3 and paras [0061]-
21; Y:8- | [0068]]
11

XY X: 1-7 | ARM, "Isolation using virtualization in the Secure world", 2018
and 12- | (ARM)(see whole document and especially note pp. 8 and 11)
21; Y:8- | available from:

11 https://community.arm.com/developer/ip-
products/processors/b/processors-ip-blog/posts/architecting-more-
secure-world-with-isolation-and-virtualization

XY X:1-7 | US 2019/042324 Al

and 12- | (CHHABRA) [see whole document and especially note figs 1,8 and 9]

21; Y:8-
11

XY X:1-7 | US2005/0268095 Al

and 12- | Al (OCONNOR) [see whole document and note figs 1A, 3 and 4]

21; Y:8-
11

XY X:1-7 | US2004/0158727 Al
and 12- | (WATT) [see whole document and note fig 4,5, 37 and 40-41]

21; Y:8-
11
Y 8-11 US2013/0283017 Al
(WILKERSON) [see whole document and especially note reference to
prior art fig 5 - and see reference to textbook in paras [0048-52]]
Categories:

X Document indicating lack of novelty or inventive A Document indicating technological background and/or state

step of the art.
Y Document indicating lack of inventive step it P Document published on or after the declared priority date but

combined with one or more other documents of before the filing date of this invention.

same category.
& Member of the same patent family E Patent document published on or after, but with priority date

earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™ :

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

56

Intellectual
Property
Office

Worldwide search of patent documents classified in the following areas of the IPC

| GOGF

The following online and other databases have been used in the preparation of this search report

‘ WPI, EPODOC, INTERNET

International Classification:

Subclass Subgroup Valid From
GO6F 0012/14 01/01/2006
GO6F 0021/57 01/01/2013

Intellectual Property Office is an operating name of the Patent Office

www.gov.uk/ipo

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DRAWINGS
	Page 11 - DRAWINGS
	Page 12 - DRAWINGS
	Page 13 - DRAWINGS
	Page 14 - DRAWINGS
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - CLAIMS
	Page 66 - CLAIMS
	Page 67 - CLAIMS
	Page 68 - CLAIMS
	Page 69 - SEARCH_REPORT
	Page 70 - SEARCH_REPORT

